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Theory and Design Parameters for a Positron-emitter 

Beam-imaging Device for Biomedical Research* 

Jorge Llater, Ph.D., Alok~ Ch~tterjee, Ph,D., Grant E. Gauger, M.D.,t 

Cornelius A. Tobias, Ph.D.; and FrederickS. Goulding, B.Sc.· 

Lawrence Berkeley iabo~ktory, University of California, 

Berkeley, Califo~nia, 94720, U.S.A. 

*Work perfo~~ed ~nder th~ auspicea of the U. S. En~rgy Research and 
Development Administration under Contract W-7~05-ENG-48. 

toepartment of Neur~log.ical Surgery, University of California, 

.j, ' 

San Francisco, Californ~a, 94143 ";: 

ABSTRACT. The. design analysis of an instrument for the imaging 

of coincidence annihilation gamma rays emitted from the end point 

of the traje~tories of radioa~tive high-energy heavy ions is carried 

out. The positron-emitting heavy ions are the result of nuclear 

fragmentation of accelerated heavy ions used in tancer th~rapy 

or diagnost·ic medicine. The· instrument designed will be capable 

of locating the beam trajectory and points within·l to 2 mm for 

an injected activity of 100 nanoCi in a measurement time of 1 sec. 
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l. Introduction 

Charged particles with atomic numbe~s as high as 18 (Argon) 

are now being accelerated in a compound accelerator called the 

Bevalac at the Lawrence Berkeley Laboratory (Grunder 1973). The 

energi~s of these particles can be varied to a maximum value 6f 

about 3 GeV/nucleon. Because of their very favorable depth-dose 

char~cteristics and increased biological efficiency, these particles 

will be used in radiation therapy (Tobias 1973). In view of this 

therapeutic goal, many studies are nriw being directed at the under-

standing of the biological effects of these heavy charged particles 

at the 'cellular and molecular levels. 

In addition to therapy, heavy ions are expe~ted to find many 

useful ~pplications in diagnos~ic procedures. Already, these particles 

have be~n used in radiography for localizing tumors. The results 

are far better than can be achieved with x rays (Benton, Henke and 

Tobias 1973). 

Although direct acceleration of radioactive particles 1s not 

possible in the Bevalac, we have produced~ steady flux of radio-

activi beams through the phenomenon of auto~cti~ation (a physical 

process in which the projectile particles undergo nuclear fragmenta- . • 
tion when they collide with target nuclei). The cross section 

• 
for the process of autoactivation is large enough to produce such 

beams with adequate intensities. Witl1 the help of proper detection 

devices, these radioactive particles should allow the development 

of important new diagnostic procedures hitherto impossible. 

At present, we are mostly interested in those fragments that 

decay by positcon emission. These fragments are ,obtai.ned by the 

loss of a few nucleons so that they are still heavy enough to exhibit 

',_ 
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precise range-energy relationships~ Thus, when the beam is directed 

. to a precise location in t'he body,~ the initial eff~ct will be the 
. ' 

highly localized injection o( a positron-emitting isotope at the .. 

end of the particle tracks. The annihilation of the positrons 

generates two detectable 511-keV gamma rays at nearly 180° and 

~n time coincidence. The utilizatiori of this localized initial 

distribution of.positron emitters is of interest both in therapy, 

as a means to obtain direct information ori the location of the region 

of high cell damage, and in studies related to physiology and nuclear 

~edicl.rie; 

·Much of the success of this newly proposed usefulness of radio-

-active beams _will depend on the availability of a proper. detection· 

device. The purpose of this paper is to present theory and design 

parameters for a detection device that will image the isotope distri-

bution'as a function of time in a target. 

,, 
2. B~sic design constraints 

i~ terms of radiation dose, the injection of a certain amount 

of activity into a human being by a beam of energetic ions differs 

considerab_ly from conventional injection into the bloodstream, which 

does not, in itself, involve any radiation dose. , ln the .case of 

an ion beam, slowing down of the ions in tissue until they come 

to rest at the injection poipt involves a radiation.dose that is 

con~entrated principally at the end of the particle tracks. The 

inje~tion of 0.15 p~i of o15 , for example, results in an approximate 

dose of 1 rad, whi~h could,be considered to be the maximum dose 

for clinical studies. There are approximately 5,500 '!-pairs emitted 

per· second initially as a result of such • an injection. 

-3-



· ~l~hough the injection dose appears to be a handicap in the 

s~ccessful u~e of the beam injection technique, activity can be 

injected by this method into areas of the body where blood flow 

cannot be studied ~uccessfully by other methods as in certain regions 

of the.brain. 

One requirement of the imaging instrument that is immediately 

apparent from the small amounts of activity that can be injected 

srifely is high sensitivity. This requirement can best be met.by 

the us~·of large crystals of Nal(Tl). Bismuth germanate is not 

being considered at this time because of its unproven characteristics 

althoug6 its absorbing· power is Fuperior to that bf Nal(Tl). 

In order to bring the detector~ as close as possible to the 

targets, which can range in diameter from approxim~tely 8 to 30 

em, two m6ving banks of detkctors s~parated by a variable distance 

are us~d. For activity confined principally within a cylindrical 

volum~ along the axis of the heavy-ion beam trajectory, the detector 

barik~ are articulated so that the crystals are aimed approximately 

towa~d the beam trajectory line. Figure 1 1S a schematic arawing 

of the conceptual design. Economic~ dictates the use of standard 

detector sizes and a limitation to 48 NaT-photomultiplier detectors 

at this time. 0.75-inch-diameter, 3-inch-long Na~(Tl) detectors 

(1.91 x 7.62 em) are used for the two center detectors .of ~ach 

row, and 0.75-inch-diameter, 2-inch-long detectors (1.91 x 5.08 

em) a~e used for the outer detectors in order to reduce positional 

ambiguity for gamma rays that interact deep in the detectors. 

Initial efficiency calctilations sho~ that the system will detect 

approximately 1% of erriitted ~-ray pairs in coincidence for a distance 

-4-
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of 10 ~~ between planes or 22,800 cts/min-pCi, assuming no ~nergy 

discrimination and no substantial scattering. For a distance of· 

3 em b~tween crystal centers, a lengtl1 of 9 em along the ion beam 

ax1s is covered. 

It' was also decided that each row of four detectors will constitute 

a detachable independent module so that the basic instrument can 

be used in a different or expanded configuration in the future. 

The process of image reconstruction from an instrument made 

with a ·relatively small number of large detectors requires the 

development of an appropriate theoretical background. 

}. Theory of three-dimensional image reconstruction from ~ very 

limited number of projections 

The theory discussed hete is applicable to cases 1n which 

the imaging instrument, constrained by cost and efficiency require-

ments' consists of a relatively small number of large detectors' 

in some geometric arrangement that spans a volume. In the conventional 

la~g~age of image reconstruction, the detector elements of such 

systems have large dimensions 'compared to the desired s~paration 

between sampling pbints, and the number of projections and points per 

projection that can be.obtained from the nonrotating instrument are 

mucl1 too small for a conventional Fourier~based reconstruction 

algorithm. Another very important characteristic of these systems 

is that the point .response function is not "space invari.ant" even 

within a single image plane; that is, moving a point source from 

r: to r~+l does not necessarily form an identical pattern of detector 

responses .displaced at the det.ector plane by a distance proportional 

-5-



to I r·.--;. 
1

1. Under these conditions, solutions to the imaging 
l . l + 

problem· by deconvolution are not fea.sible. For these very limited 

system~, we are left then with purely algebraic methods of 1mage 

reconstruction. The techniques described below not only solve 

the imri~ing problem as-well as possible but help determine the 

physical reasons for the limitations of such systems. 

4. The system matrix 

L~~ us consider a general array of detectors with n outputs; 

for example, in a coincidence annihilation radiation de~ector, 

there could ben possible-chords joining pairs of crystals. If 

we plice a poin~ source during a suitable fixed length of time 

at positions. in a set of m source positions, the detectors will 
J 

respond with a vector of n elements, each element eontaining 'the 

number of times that a detector response has occurred. If this 

experim~nt is repeated for all m source positions and the resultin~ 

vectors'are set side by side as column vectors, we will obtain 

a sy~te~ matrix A with n rows (one per possible detector output) 

and m cblumns (one for each source position). Them source positions 

used to' obtain the A matrix will be called "system points." With 

this matrix we can, in principle, solve the imaging problem. 

~ 

. ~ -~ 

A X = k (l) 

where k is a vector of detector responses caused by unknown amounts 

of ac ti vi ty x.• placed at the sys tern point s.. This is an old idea, 
. J 

which was reported by Robertson, Marr, Rosenblum, Radeka and Yamamoto 

(1973) to lead to considerable error duririg the inversion process 

with experimental data in their 32-crystal, positron-annihilation 

r1ng detector. 

-6-
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The system of linear equations (Kq. p can be 'solved, however, 

if care is taken_in the choice of system points. so that the resulting 
J 

·matrix A behaves well upon inversion in the presence of statistical 
__ ,. 

flue tuations in the experimental vee tor k. The fundament a 1 considera-

tions_ ihat define the behavior of a matrix upon inversion have 

been discussed by Wilkinson (1965). Basically, the argument 1s 

as foll6ws. A solution to Eq. 1 1s equivalent to solving 

(2) 

where AT is the transpose of A. Defining A' 
T .. .:.. 

A A and k' AT It, 

we rewrite Eq. 2 as 

-...> _;. 

A' X= k' (3) 

where A' is (nixm), and -; and k' are also of dimension m (the number 

of system points). 

From the theory of matrices; we know that· A' is symmetric 

and ~~~1 and that, for this reason, there exists a transformation H 

such that 

H-l A' H = diag(i\.) 
. J 

D 

where D is a matrix with values /\. in the diagonal elements, the 
J 

eigenvalues of A~ and all other elements zero. 

The matrix H of the transformation has columns that form the 

eigenvectors of A'. In the present case, these eigenvectors ·x-"-. . . J 

form an orthonormal basis for the-space spanned by A' so that the 

solution~ to Eq. 3 can be expanded i~ that b~sis to 

-7-
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Because eigenvectors and eigenvalues are defined by the equation 

(A' -~.I) X- - 0 (6) 
J - J 

where I 1s the identity matrix, it follows from Eqs. 3, 5 and 6 , 

that 

--" ~ 

+,::/t-X =k'. 
- m m m 

~ 

Similarly the experimental result k' can be expanded as 

+ ct: 'X 
m'm 

(7) 

(8) 

withO( =<X- ,k''), the dot product of the vectors, bec·ause of orthogonality 
l l 

__,_ 
of the ~'s. Then, equating Eqs. 7 and 8, we can find 

(~. 
1 

C).i 
~ for 1 s.; i ~ m, 

l 

and finally the solution to Eq. 3 is given by 

+ ... 
(>; m _-., 

+ X ). m 
m 

Because the eigenvectors are all of unit length, it 1s clear 

that, 10 the presence of fluctuations 1n the experimental results 

--"' (transmitted to the values of c(.), the resultant vector x will 
1 

be meaningful only if there .are no terms in·Eq. 10 with values 

(9) 

(10) 

of/\. that are much smaller than the rest. If this were the case, 
. l 

a small error in the corresponding value ofC':'. would result in 
1 

--" a greatly exaggerated contribution of X· to the resulting vector x. 
·1 

This result, is a fundamental property of the solution. Limita-

tions of the chosen method of solution, truncation errot·s of the 

computer, etc., will only aggravate the problem. One simple measure 

-8-
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of the invertibility of a matrix with respect to statistical fluctuatjons 

lS given by the "condition number" Of the matrix, 

condition number A !>.. . ' max m1n 
(11) 

whicl1 i~ suitably normalized by the numerator. Evidently, a large 

condition number is undesirable. 

Another very useful concept emerges from the above analysis. 

Large condition numbers rrisult from a selection of system points 

in which two or more are too close to each other so that the detector 

responses do not define the point unambiguously. Large condition 

numbers:also result from system roints giving small detector responses 

because they are hidden from detector view or in the periphery 

.of the field. 

In order to illustrate the validity of the above statement, 

let us consider an imaging system formed by a number of detector 

rings stacked in the form of a cylinder with system points located 

at the geometrical center of each ring only ai in Figure 2a for 

a three-ring system. A simple geometrical construction shows that 

the set of coincidences generated from each system point is totally 

different fromthe sets of coincidences from the other points with 

no coincidences belonging to more than one system point. Under 

these conditions, matrix A will have a configuration of columns 

of the form, for example, 

-9-



al, 1 0 0 0 

<12,1 0 0 0 

11
3,1 

0 0 0 

;]4, 1 0 0 0 

0 a5;2 0 0 

0 a6,2 0 0 

0 a7 2 0 0 , 
0 0 as 3 0 , 
0 0 a9,3 0 (12) 

0 0 alO 3 0 
' , 

0 0 all 3 0 , 
0 0 al2 3 0 , 
0 0 0 0 

0 0 0 

The system matrix A' = AT A will then be purely diagonal with 

eigerivectors given by unity vectors, 

The values 

If we 

that their 

of the 

1 
0 
0 

0 

0 
1 
0 

0 

diagonal elements 

consider the eigenvalues 

magnitudes are equal to 

0 
0 
0 

of 

1\. 

J 

the 

A' will be the eigenvalues :~ .. 
J 

~n some detail, we notice 

sum of the squares of the 

number of occurrences of all possible coincidences for a particular 

system point; that is, 

A. = Z.:. (a .. )
2 (13) 

J ~ q 

This equation indicates that, if one of the system points 

~s onlx seen by detectors with small efficiency or by fewer detectors, 

-10-
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the eigenvalue corresponding to that poirit will be smaller than 

those of the others and lead to a large condition number ~ I A . 
max m~n 

In a more general case with system points located arbitrarily, 

mat~ix A will contain rows that are often not zer~ in several columns 

so that A' ~ill not be purely diagonal. It can be diagonalized, 

however, by a matri~ H of eigenvectors (Eq. 4) so that the eigenvalues 

-1 
7\. appear at the diagonal of H A'H. 

J 

The diagonalization of A' by the matrix H is equivalent to 

a transformation of the detector system so that there should be, 

at least in concept, one "ideal" configuration of detectors for 

any arbitrary set of system points that yields a purely diagonal 

A' matrix with elements A.. If the condition number of this more 
J 

gerieral system is large, by analogy with the simple case given 

above the detector locations of the conceptual "ideal" system are 

so that one or more of the system points are seen very little; 

that is; few coincidences are seen from that point by the detectors. 

It is quite clear: that this situation will arise -when a system 

point is chosen at a position that results in a poor detector response 

~n the real physical system. 

Although less obvious, a large condition number will also 

occur when one system point is located too near another point so 

that the column vectors of_their responses in the A matrix are 

not very different. This effect can be readily understood for 

a very simple case by returning to U1e example of the stacked rings 

of detectors with system points at the center of the ring planes 

only as in. Fig. 2. The add~tion of one more system point on the 

ax~s of the CJ:linder very near one of the "good" system points 

-11-



wLll re'sult in A' not being purely di.agonal. The diagonaliz2tion 

procedure through B will be equivalent to forming a new "ideal" 

detector system with one more ring as shown in Fig. 2b. The require­

ment of the uniqueness of the coincidences forces ring 2 i to be. 

much s~aller than the others ahd a reduction in the size of ring 2 

as well. System point 2 will have coincidences between rings 2 

and 2', but point 2 1 will have none between the same rings. It 

is evident tha.t the "ideal'' system of Fig. 2b will have a larger 

condition number than·. that of Fig. 2a and that the closer point 

2' 1s made to 2, the worse the situation will be. 

4. Design analysis of the positron beam-imaging device 

The imaging objectives of the design shown 1n Fig. 1 can be 

summarized as follows: 

(i) ability to locate a point source on the ion-beam.axis 

with an activity of 0.1 to 0.2 pCi with an accuracy on 

the order of 1 to 2 mm In a counting time of a few s'econds; 

(ii) ability to observe quantitatively the di~a~pearance rate 

of activity from the injection point on the ion-beam 

axis; 'and 

(iii) ability to obtain the best possible quantitative inf6rmation 

on activity as· a function of time in the volume spanned 

by the detector planes consistent with the limited number 

of projections available. 

The fir~t two objective~ involve finding the optimum relative positions 

in the~ direction.(Fig. 1) of the twelve detector modules of banks 

A and B (four detectors per module) so that sy~tem points on the 

-12-
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center ax1s can be loc'ated very near each other and still·.tesult 

in ~ w~ll behaved matiix. The s~cond objective requires the:investi-

gation of matrices obtained from three-dimensinnal arrays of points, 

For ~r~cticality in data presentation and interpretation, the array 

should ·be rectangular. 

4.1 Eigenvalue analysis 

System matrices to simulate the physical system have been 

obtained by digital calculations; the two arrays of 24 detectors 

have been simulated with their actual dimensions 1n space. For 

a particular point source at s., the projections from a raster 
J 

of points at the entrance surface nf every detector of bank A, 

passing through s. and intersecting entrance surface~ of detectors 
J 

of bank B, have been calculated. For all lines pass1ng through 

s. that join two opposite detectors, the length of 'the /j-ray trajec­
J 

tories inside the cylindrical detectors and the corresponding proba-

biliti~s of interaction have been obtained (photoelectric plus 

Compton). From these probabilities it is ~ossible to construct 

a column vector of 576 elements (24 x 24) that contains as entries 

the'frequencies with which.all possiblf! coincidences from s. can 
J 

occur. Repeating the procedure for all._system points under investi-

gation and placing the c~lumn vectors side by side, we obtain the 

system matrix A. Multiplicaiton by AT yields the symmetric matrix A', 

which can then be analyzed in terms of the eigenvalues. The simulated 

system should be a good re~resentation of the physical system. 

The only physical phenomenon not included is the interaction in 

a crystal of'photons that do not enter through the entrance window 

of the same detector crystal. The consequences of this simplification 

wi 11 be discussed below. Interaction in more than one crystal 

-13-



of the same bank in time coincid~nce will be rejected electronically· 

so that they need not be of concern in the simulation. 

4 ol.l System points on ~xis only 

The simplest configuration of detectors to be tested is one 

1n which the columns of detectors are vertical and the detectors 

1n b~nk~ A and B are 1n direct opposition. Figure 3 shows the 

locatidri of the detectors 1n the (y,z) plane as defined 1n Fig. 1 

for a distance of 10 em between detector banks. The lihes shown 

correspond to the axes of the ~ylindrical Nal detector with the 

innermost ends.of each line at tl.e entrance faces. Figure 4 shows 

the projection on the (x,y) plane of the centers of the detector 

faces. · De tee tors of banks A and B are shown with + and x marks, 

respectively. The location of a system of four points~ each one 

~t.the center of two directly opposing detector columns, is shown 

by circles in Fig. 4. Figure Sa shows the magnitude of the elements 

constit'uting the (4x4) symmetric matrix A' plotted by columns, 

and Fig. 5b shows the normalized eigenvalues and the condition 

nuniber 'as the ratio";\ /). .. 
max m1n 

Reducing the distance between sampling points by a factor 

of 2, i.e., placing the system points at a distance from each other 

equal to the sampling distance of the center line by the array, 

g1ves the results of Fig. 6, still with a very low condition number. 

Attempts to reduce the inter-point distance further lead to extremely 

high condition numbers a~ seen in Fig. 7. 

l 
In order to increase the sampling frequency at the center 

line, the arrangement of Fig. 8 has been devised. By displacing 

contiguous rows of detectors in a given plane by 0.5 em and using 

-14-
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a cro~s~d pattern between banks A and B, a simple geometrical ~on-

struction shows that the center axis is now sampled ~very 0.~ em. 

Figure 9 shows the condition number of the matrices generated ~n 

this arrangement as a function of bx, the inter-point distance. 

Only the central 5 em of the axis are being sampled in t~ii study. 

The fast rise in /1 //.. . for Ax < 0, 7 em is, undoubtedly, due 
max m1n 

to ambiqui ty in the column vee tors of contiguous points caused by 

the large dimensions of the crystals. The well behaved system 

that will be studied further ~n thi& analysis will be the one labeled 

S-1 in 'rable l, in which NX, NY and NZ correspond to the numbers 

of ~yst~m points in each directicn and OX, ~y and bZ are the distancei 

bet~ee~ points .. S-L ~s shown ~nth~ (X,Y) plarte ~n Fig. 8. 

4.1. 2 System points 1n the spanned volume 

A preliminary. analysis of condition numbers for a three-dimensional 

system ~hows that the irregular geometry of the detector array 

result~ in optimal system points located irregularly in space. 

At the ~expense of some loss in invertibility, a rectangular mesh 

~f ~oin~s will be sought. Attempts to locate points in the (y,z) 

plane at distances less than 1.75 em from the center ax~s result 

1n very high condition numbers. Indeed, there are very few crossings 

of lines connecting detector centers of opposite banks in a graph 

like that of Fig. 3 at distances less than 1.75 em from the center; 

that is, the sampling rate in the (y,z) plane is quite low in all 

orientations. 

For the purposes of the design analysis, four fairly well 

behaved systems will b~ studied. They are characterized in Table 

l (Systems S-2 through S-5). S-2 is shown in the (x,y) plane in 

-15-



Fig. 10, and S-4 is shown in the (y,z) plane in Fig. ll. All systems 

in Tab'ie 1 are for a 10-cm separation between detector banks. 

4.2 Imaging Capabilities 

To establish the imaging capabilities of the systems of Table 1, 

a set of sources of variable strength has been simulated in the 

~ompute~. The response of the chosen detector configuration is 

given by vector~ of Eq. l. 
__,. T 

Premultip1ication of k by A for the 

system under test yields -k, of Eq. 3. The equation can then be 

~olved ~or~. and the results can be displayed conveniently. 

---" 

I~ the computer simulation, ?ector k' contains the statistical 

fluctua~ions corresponding to the actual source strength introduced 

into the results individually for each possible coincidence. Matrix A 

1s a~su~ed to be essentially free of fluctuations because it can 

be ob~ained in a physical system with strong sources and/or long 

count times. Solutions to Eq. 3 have been carried out by the conjugate 

gradient method as described by Beckman (1960), which is guaranteed 

to arrive at the best solution in the least-squares sense. Calculations 

have been carried out 1n single-precision, floating-point arithmetic 

(32 bits) 1n a PDP 11/45 computer. 

Displays have been genet~ted by using the sampling theorem 

1n three dimensions. The solutions for the source position and 

strength are known only at the system points. Because of the Nyquist 

sampling theorem, it is clear that the best estimate that we can 

make about the true source is given by the expression· 

f(x,y,z) L (. ·. ) . (X . . kg 1, J 1 k S 1nC ~ 
1, J, uX 

-16-
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where slnc(x) = sin(~x)/(nx)j i,j,k are sampling point indices 

( systern points), g is the solution known at the system points and 

f i~ the estimated fDnctibn. The indices i,j,k are ~ero at x,y,z 

equa'l to zero. In order to avoid some of the "ringing'; associated 

with Eq·. 14, a guassian weighting function ha:s been used to dampen 

the tails of the sine functions. Negative values of g have been 

set to zero because they have no physical meaning. 

The generated displays contain on the left a description of 

th~ source to be imaged, composed of one or more discrete points. 

,The source strength of a point is represented by the size of the 

rhombus at its position. The image of the source on the right 

of the ~isplay presents a continuous appearance because of Eq. 14. 

The lev~l of activity is represented by the density of data per 

unit ~olume in the rep~esented space. Density levels have been 

chosen so that level 32 corresponds to 1 1-'Ci or 0.1 IJCi of activity 

at a system point (low- and high-sensitivity displays). Results 

belo~ l~vel 1 are not plotted. Count time'is assumed to be 1 sec 

for all simulation experiments. Large count times are equivalent 

to a proportional increa·se in source strength. 

4.2.1 System points on ax1s only 

Figures 12 a through d show the images of point sources located 

at the centers of the systems with activities of 1,000, 500, 200 

and 100 nanoCi imaged during 1 sec in the simulation. The display 

sensitivity is 1,000 nanoCi. System S-1 of Table 1 was used for 

the simulations. The images generated for the present case of 
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a source point at the location of a system point shdw a density 

distiibution of 0.8 em FWHM, a peak position error smaller than 

0~05 em and errors in the detected activity ranging from approximately 

5% for i,OOO-nanoCi sources to 25% for 100-nanoCi source~. 

Figures 13 a through d show images of 100-nanoCi sources. at 

x = 0, 0.25, 0.50 and 0.75 em from the center. The display sensi-

tivi~y is 100 nanoCi. The images at x = 0.25 and x = 0.50 correspond 

to point sources not located at system'points. It can be proven 

-->. 

that,·~£ a detector system results in vectors .k for such points 

that are a linear combination of the column vectors corresponding 

to the ~urrounding system points, it is possible to find the locatio~ 

and activity of the true source point from the solution at the 

surroun~ing system points. 
~ 

If the results vector k for point sources 

not located at system points is not a linear combination of the 

surrounding system point vectors, there is no a priori knowledge 

of what the result of solving Eq. 1 might be. The present model 

of the system under study does not fulfill this "linearity" condition 

well b~~ause a small motion of·the source can result in the complete 

appearance or disappearance of on~ or more coincidences. If the 

system points are brought closer together, the above "linearity" 

condition will be increasingly valid although the condition number 

of the matrix will become worse. It follows that attempts to improve 

localization (i.e., the ability to find the true position of a 

source) and performance under statistical fluctuations will be 

contradictory. In a real physical system with gamma rays entering 

the crystals from points other than the entrance windows, through 

lead shielding, for example, the above "linearity" condition should 
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improve although for the same reason condition numbers will be 

somewh~t worse than at present. A comprom1se system-point separation 

must bi adopted. 

The broadening 1n Figs. 13 b and c due to two syst~m points' 
.0 

contrib,utions to the displays at x = 0.25 and 0.50 em :.s quite 

evident. The ceniroids of the density distributions are, however, 

within less than 2 mm from the correct source positions with FWHM 

ran~tng from 0.95 to-1.4 em. Detecied activity is within 25% of 

the coi~ect value for the 100-nanoCi sources at a 1-sec count time. 

The presence of side lobes of activity clec:r1y seen in Fig. 

13e is typical of the solution of Eq. 1 and' becomes stronger when 

the condition number of the matrix increases. This effect is inde-

pendent of the chosen method of solution, and it appears strongly 

for source points no~ on system-point locations. 

The behavio~ of the on-ax1s system when activity is off-axis 

1s shown 1n Figs. 14 a through d. In each case, the point source 

1s displaced 0.25 em farther from the center in all three directions. 

X i~formation 1s fairly w~ll preserved. Detected activity decays 

at a rate roughly proportional tO 1/d where d 1S the shortest distance 

to the center line. 

Figures 15 a through d show the ability of the system to separate 
(I ... two pdint sources with an activity ratio of 10. The disappearance 

of the 100-nanoCi source in Fig. 15d is due to a negative lobe 

at x = 0 in the solution for the hotter source. Finally, the ability 

to distinguish a "cool" section iri a line is shown in Figs. 16 

a through d. The ratio of activities is 5:1. A "cool" section 

of 0.6 to 0:8 em is distinguishable with an activity of 500 nanoCi 

per c~ in the hot part for a count time of 1 sec. 
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.From the above simulation, we fecl.that the performance objective 

of the systetn along the center ion--beam line has been met successfully. 

The time required for the iterative solution routine in a PDP 11/45 

computer is approximately 0.3 sec fo= the on-ax1s case. 

System points in the spanned volume 

A direct comparison of imaging characteristi~s of systems 

S-2 and S-3 of Table 1 for point s6urces 1n shown in Figs. 17 and 

18. The two systems have the same number of system points, but 

they differ in 6-x, the separation between planes in the direction 

of the.heavy-ion beam (1 em and 0.75 em, respectively). Figures 

17 a through e correspond to 1,000-nanoCi point sources at x = 

0, 0.25, 0.50, 0.75 and 1 em for system S-2; Figs. 17 f through J 

are the corresponding images generated by system S-3. Figs. 17 a, 

e·, · f and i are for sources at sys tern points. The images presented 

are quite wide in the (y,z) plane as expetted from a sampling distance 

of 2 c~ in that plane. Definition along the x axis is, however, 

comparable to the results preserited above for system points along 

the x ax1s.only. 

Inspection of the two groups of results shows that system 

S-3 delivers better images than system S-2 for source points not 

on system points. For these high-activity cases, when statistics 

are not a principal limitation, fewer artifacts appear in the image 

whe11 system planes are closer in the x direction. The "linearity" 

condition discussed in the previous section is better fulfilled 

for S-3 than for S-2. 
) 

Figures 18 a through J show results for a set of images equivalent 

to those of Fig. 17 but for 100-nanoCi source points. Results 
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for. most poir:.t sources stow poor localization, and the advantage 

of S-3 over S-2 obtained for the higher activity has now disappeared. 

The higher condition number of S-3 evidently eliminates its better 

"linearity" characteristics ~n the presence of strong statistical 

fluctuations. It must be pointed out that the differences in every. 

_j paii of images for S-2 and s~3 from the same source position and 

activity are only due to the invertibility characteristics of the 

A matrices because the.sequences of random numbers used to generate 

the statistical fluctuations have been made identical. 

'Th~ behavior of S-2 for a point source moving diagon~lly ~n 

thre~ dimensions between the two syst~m points at (x,y,z) (0,0,0) 

and (2,2,2) em is shown in Figs. 19 a through h for 1,000 nanoCi 

of activity. The appearance of artifacts and the diffusion of 

the so~~ce are quite apparent.near the middle of the trajectory 

when system points are far from the source. These eff~cts are 

due to lack of "linearity" as defined above. 

The comparative behavior of S-4 and S-5 for· central point 

source's' of 1, 000 and 100 nanoCi is shown ~n Figs. 20 a through 

d: Both systems exhibit poor localization, but results ~re worse 

I' \,> 
~n the case of S-5 owing to a high condition number in the system 

matrix. Solution times for 63 system points range between 2 and 

4 sec 1n the PDP. 11/45 computer. 

The possibility of us~ng sequential subsysten1s .of S-'2 consisting 

of 3 x 3 points ~n planes perpendicular to the x axis or 7 x 3 

points parallel to the x axis has been investigated.· Solutions 

one plane at a time are successfully used by Charig (1976) ~nd by 

Perez-Mendez, Chang and MacDonald (197&) in a rleconvol~ti~n proces~. 
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The matrices obtained in our case have very low condition numbers, 

but the r~sults of inversion of the subsystems are not better and 

are often much worse than the results obtained with the complete 

system because of the following two facts: 

(i) errors 1n the system solutions are due to the basic physical 
\.. 

limitations of the instrument and not to the mathematical 

process used in the solution; 

(ii) decoupling one plane of points from another by the use 

of subsystems destroys the nearly "linear" relationship 

between contiguous planes. With separate subsystems, 

activity positioned between two planes appears at full 

strength 1n both subsystem solutions instead of being 

"shared" as happens with the complete system. 

It follows that' for the instrument being studied' complete 

matrices for points spanning the volume are needed. 

T~e above analysis is valid for a 10-~m distance between detector 

planes. At the higher separation of 30 em, the following results 

are obtained: 

(i) sensitivity 1n total number of coincidences per unit 

activity and time decreases by roughly a factor of 3; 

a substantial decrease in subtended solid angle is partly 

offset by the gamma rays entering the detectors more 

parallel to their cylindrical walls, increasing the inter-

action probability; 

(ii) the condition number of systems on the central axis only 

are very similar to the ones obtained at a 10-cm distance; 

(iii~ condition numbers for systems occupying the volume between 
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planes are higher than those at 10 em by a factor of 

apprdximately 2 unless the separation Az (Fig. ll) is 

increased 50 to 100%. 

F~om these observations, it appears that the characteristics 

of the instrument at the higher separations between planes will 

still be within the initial design specifications. 

5. Etectronic characteristics 

The detailed characteristics of the electronic design will 

be th~ subject of a later paper. From the point of view of the 

pres'ent design analysis,' it ~s in.portant to describe the expected-

coincid~nce time resolution as it affe~ts the imaging cha~acteristics. 

Fo~ a distance between planes of 10 c~, the computer calculations 

g1ve a rate bf coincidence events C = 390 (sec~pci)-l fbr a point 
0 

source at the geometric center of the system. The singles rat.e 

-1 
~n one bank of detectors is C = 1,195 (sec-vci) . 

s 

·The' accidental coincidence rate 1s given by C 2 /)..t where 
s 

L\t is the coincidence resolving time. The NaT-crystal-photomultiplier 

combir1ation and the circuits developed for this instrument will 

-9 
allow a value of L\t ~ 30 x 10 sec FWHM for the complete system. 

Even with 100 pCi between the planes, the accidental coincidence 

rate is approximately l.l% so that no pToblems are expected due 

to accidentals in any of the operating modes comtemplated for the 

instrument. The _excellent coincidence resolving time is also a 

safeguard against image deterioration by other kinds of radiation 

~n the experimental environment. 

The computer simulations discussed above assume no energy 

discrimination. The instrument will have a very flexible capability 
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in this. respect by the use of a microprocessor for energy window 

S(~lection with automatic calibration of all 48 photomultiplier 

tubes. The microprocessor will also assist ~n interfc>cing with 

the PDP.ll/45 computer where real-time imaging will be carried 

out. 
f 

The generation of the ~ystem matrices ~n the physic~l instrument 

will be carried out automatically under computer control by the 

use of~ source positioner with motion in three dimensions. A 

20-._.ci point source embedded in pla.stic can give one column of 

the sys'tem matrix A for one system point 1n a few seconds. 

Absoiption effects can be de3lt with by generating the system 

matrices with. the point source moving inside a water contain~r 

of appr6priate geometry. High-density absorbing regibhs simulate 

the anatomical characteristics of the reg~on to be observed. Effects 

due to positron .range before annihilation in tissue, which make 

the images less precise than in the case of point sources, can 

also be incorporated in the syste~ matrices by this procedure. 

~ieliminary measutements with a detector system designed as 

described above have already been carried out, and our findings 

support the essential correctness of the computer simulations. 

.. 
j 

6. Conclusions 

The theory and design analysis discussed above support the 

possibility of constructing an instrument for imaging very small 

amounts of positron-emitting radioactivity in heavy-ion irijection 

from an accelerator. The required high sensi~ivity is obtained 

with relatively large Nai crystals, and ac~urate position information 
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along the beam line 1s obtained by correct positioning of the crystals 

111 the arrays. The instrument will not only allow the initiation 

o( phy~iological studies heretofore impossible but will be of great 

assistance in the on-line visualization of the region of high c~llula~ 

damag~ d~ring heavy-ion cancer treatment. The concepts developed 

are of immediate use in. the design of a more. complete instrument 
-, 

for tile rapid imaging of a volume in finer.detail in planes perpendicular 

to the beam ax1s than has been possible with the present limited 

design. 
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SU.MNARY 

The use of high~energy heavy ions in radiography; cancer th~rapy, 

physiological studies and diagnostic medicine is being implemented 

at the La\vrence Berkeley Laboratory.. In particular, the usc of 

positroh-emitting isotopes generated by nuclear fragmentation from 

an acceler~ted beam allows the injection of known amounts of activity· 

into highly localized volumes of the body. Studies based on this 

beam injection technique require the design df a very sensitive 

instrument to image the isotope di8tribution with high positional 

accuracy. This paper describes t~e design of a 48-crystal imaging 

device that will be able to locat~ the end poiht of an ioh beam 

trajectory within 1 to 2 mm for an injected activity of 100 nanoCi 

in a measurement time of 1 second. System design has been carried 

out by computer simulation and eigenvalue analysis. It is shown 

that the use of Nai crystals of relatively large dimensions (1.91 em 

diameter) for efficient detection of the 511-keV coincidence gamma 

rays still allows designing a system that samples the center line 

of the beam axis every 0.75 em with a resulting set of equations 

whose solution is quite immune to the statistical fluctuations 

resulting from the measurement indicated above. Computer simulation 

of the imaging characteristic of the instrument designed is investi­

gated for a variety of situations, and calibration procedures for 

the instrument are described. 
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Table 1 

System NX NY NZ LW = ~Z Cond. No. 
-----·-· -----------------------~--------------------------------------....:..--

S-1 ll 0.75 em 4.36 

S-2 7 1.0 em 3 3 2 em 20.9 

S-3 7 0.75 em 3 3 2 em 74.1 

S-1_. 4 1.0 em 5 3 2 em 38.6 

S-5 If 1.0 em 5 3 1.75. em 139.1 

·----------------------------------------'--
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.FIGURE CAPT IONS 

Fig. l. Schematic drawing of the positron-emitter, beam-imaging 

system showing the detector entrance faces of one of the banks. 

The ion-beam direction is given by the center line, the x axis. 

Fi.g. 2. (a) Cross section of a hypothetical system consisting 

of three detector rings and three system points in"th~ respective 

c~nters, resulting in a purely diagonal system matrix A'; 

(b) Four-ring structure required for a purely diagonal system 

matrix A' when a n~w point 7' is added to d1e above. 

Fig. 3: Schematjc drawing of the.(y,z) plane of the det~ctor syste~. 

Li~es are center axes of the cylindrical Nai detectors. The 

distance between planes_ ,is lO em .. 

Fig. 4. Projection dn the (x,y) plane of the Nai-cry~tal~ entrance-

f~~e centers for detector banks A and B. A vertical column 

sys tern is shown here with. four sys tern points; 1->.x = 3 ·em. 

Fig. 5. (a) Representation of the rtormalized values of the elements 

of the symmetric system matrix A' plotted one column at a · 

time f?r the four-point system of Fig. 4. (b) Nor-mali.zed 

eigenvalues for the same system showing "condition number." 

Fig. 6. Same as Fig. 5 except the system now consists of seven 

points; Ax = 1. 5 em. 
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Fig. 7, Ef feet of x smaller than the sampling distance with a 

very high condition number. 

Fig. 8. Projection on the (x,y) plane of th~ crtss-cross detector 

pattern that results in a sampling distance of 0.5 em for 

the center axis. Location of system points for S-1 o£ Table 1. 

Fig. 9. Condition numbers for system matri.ces as a function of· 

~x for 1mag1ng of the central ax1s only. 

Fig. 10. Projection on the (x,y: plane of system S-2, Table 1. 

Fig. 11. Projection on the (y,z) plane of system S-4, Table 1. 

Fig. 12. Images created by S-1 for a source of decreasing strength 

(in nanoCi) at the center of the system. Count time = 1 sec; 

low-sensitiviti reconstruction. 

Fig. 13. Images created by S~l for a low-strength source moving 

along the x ax1s. Count time 1 sec; high. sensitivity. 

Fig. 14 .. I~ages created by S-1 for a high-st~ength source mov1ng 

away from the center along the line x 

=·1 sec; low sensitivity. 

z. Courit time 

Fig. 15. Images created by S-1 for two sources of 10:1 ratio ·as 

a function of position of the hot source. Count time = 1 

sec; low sensitivity. 
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Fig. 1&. Images created by s~l for a ~ine source with a growing 

"cool" region in the center section. Count time 1 sec; 

low sensitivity. A cool spot of 0.6 to 0.8 em, 5:1 activity 

ratio, 1s visible. 

Fig. 17. Images created by three-dimensiorial systems S-2 and S-3 

for a point moving along the x ·8Xls. High-activity source 

(1,000 nanoCi); count time 1 sec; low sensitivity. s~3 

images are better in source Localization. 

Fig. 18. Images similar to those of Fig. 17; low-activity source 

(100 nanoCi); count time = 1 sec; high sensitivity. S-2 and 

S-3 images are now both very similar. 

Fig. 19. Images created by S-2 for a high-strength source. mov1ng 

away from the center along the line x = y = z. Count time = 

1 sec; low sensitivity. 

Fig. 20. Comparing images created by S-4 and S-5 from central 

source, high and low activities. Count time = 1 sec. Both 

systems show poorer localization than S-2 and S-3 owing to 

their higher condition numbers. S-5 is markedly worse . 

• 
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