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- INSTABILITIES OF RELATIVISTIC PARTICLE EEAMS
| Andrew M. Sessler
IR Lawrenée Radiation Laboratory i
o o University of California - o
oL Berkeley, California IS
October 4, 1965

. The'purpose.of this paper 1s twofold: to intrpduce'the:reader

%o the spbject of instabilities exhibited byvréiativistic particle

beéms,;and tovsummarize the present state of our knoﬁledge éoncérning
théée phenomena.. | |
Most of the material in the Pirst part of the peper is not new.

It has been known to éome specialists for‘a’good man& yearé; what 1s
hew is that the ﬁroblems that can<$e solved are now of much more |
interest to the general community of accelerator phyéicists; Conse-
quently, many acceleraior physicists who have not.paid much attention
to thése matters may now want to become informed; it is my hope that
this paper will provide an introduction to the field.

‘ The.second part of the article consists of two sections. The

first sumarizes the experimental information presently available,

with emphasis upon the degree to which it confirms or disagrees with

theory. Our current level of understanding is delineated: considering

the generality and reliabillity of the théorétical ahalysis as well as-

This work was done unde: the auspices of the U..S. Afomié Energy

. Commission.
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‘+he degree of éxperimentgl confirmatibn, the author expreaseé his
opinion as to what can be considered relatively well established.
The final section contains a discussion of subjects needing further

investigation énd, coﬂsequently, supplements the discussion of areas

of understanding by describing the peripheral areas of uncertainty.
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. 1. INTRODUCTION TO THE PHYSICS OF EEAM INSTABILITY

| I. ééction I.1 below consists of & categprizétion of the diverse
phenoména associated‘with self-fields of relativistic particle beams.
An important part of this section 1s an extended bibliograﬁhy of the
“many theoretlcal papers on instabilities of beams in particle accel-
erators. Section I.2 discusses.the two different hathematical methods
that have been employed to analyze instabilitles; Section I.3 consists
of three examples that have been selected to demonstrate both the
variety of physical phenomena and the methods employed for their
enalysis. !

l. Categorization of Self-Field Phenomena

The physical phenomena associated‘with sélf-fieldé may be
either those In which the self-field is static, or those in which the
self-field takes on & dynamical behavior. In Table I, th;sé two
categories are listed with a number of different subcategories.

. Numerous references have been indicated in the table, including

the majority of theoretical papers on the subject prior to this
conference. Experimental papers have not beed inc;udéd; comparison
with experiment will be mede in Section II.l, and appropriate refer-
ences given there, Similarly, contributions to this conference are
not referenced, but are discussed in Section II.l. Although an effort
hes been made to make the bibliography rélatively coﬁplete, surely

- many papers--especlally in the non-Engiish literature~~have escaped
 this reviewéifs attention; the bibliography should, nevertheless,

serve as a uéeful guide to the literature.
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®*  The phenomena iﬁ ﬁhich the self-field is static a?e basically
siﬁpler,'as is.evidenéed by the historical priority of theilr investi-
gation. Most of these effects ére not instabilities and are included
only for completeness and orientation of the reader. Phenémena of the
class in which the self-field is dynamic are more difficult to envision
ahd, in general, are assoclated with instabilities,,or:potential
instabilities. Sometimes, as in the negative-mass Instability, thé
self~-tield motion is rather simply described. (Here, for an initially ;
uniform béam and in the frame of reference in which the unperturbed
particles'arg at rest, the instabllity corresponds to a; exponeﬁtial
growth of a smail density fluctuation.) Ip other cases, such as the
transverse coherent resistive instability, the self-field motlon is
most easily described in a frame of reference that is neither the
laboratory frame nor the frame in which the particlesfaré‘at rest. A
mathematical approach.(and assoclated physical reasoning) that concen-
trates on the particles, and does not ascribe dynémical variables to |
the self-field, is clearly not particularly convenient for ihe anelysis
of such cases. | |

2. Mathematical Methods

Two~differeht.methods have been employed to study self-field
phenomena. The first is the Singh3~Particle~Motion approach, summarized
in Fig. 1. In this method one assumes a current and chﬁrée distribution
© from which‘dﬁe computes self-fields and then determines single-particle
motion. Thﬁf method is particularly errective wheﬁ‘the charge énd current.

distributions ‘are known, as, for example, in the instability studies of

g
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5’
a,slngle partiélévinteracting with an:inteﬁse beam of a storage ring.
The method can be employed even when the charge and currént distributions
are not known, by meking the calculation self-consistent., An example
of this is given in Section I.3c, where the charge distribution is
characterized by a few simple parameters which are easily determined
self-consisfently. This method is often difficult to epply in problems
where the self-field hés dynamical properties, and doeé not=~in an
obvious wﬁy~-jield the phenomeﬁon of lLandau damping.
The second apﬁroach is the Collisionless Boltzmann Equation
(or Vlasov Equation, or--in the USSR-~the Kinetic Eqpation) method.
This is a very powerful theoretical technique that has proved essentiél
in the study of.plasmas; it is equally éffective when employed to study
the instabilitles of relativistic particle beams. More than that, it
is a straightforward approach (it is "easy to use"), and the resulting
suggestions for controlling instabilities are often simplé in cohcept
yet both unobvious and strikingly effective.
The essentials of the approach are indicated in Fig. 2. One

_can readily sée that the method involves characterizing the properties
of the system with a Hamiltonian that is a functional of the (unkhqwn)
distribution/function. As in the Single Particle M>tion approach, one
must employ thwell's equations and Hamilton's equations. The new
feature, in this approach, 1is the solutibn of the equation awyat =0,
. The basis of this equation 1s well known, and amply discussed in thé
literature;iﬁt i1s just Liouville's theorem with the subtlety that the
Hamiltoniag,%s'a functional of the distribgtion function itself, For

&
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long-range forces, in which case direct particie-particle collisions
are unimportant compared with particle-particle interactions mediated
by the self-field, this equation is a very good approximation.
For static self-field phenomena ¥{q,p,t) is indeﬁendeﬁt of

time and the Boltzmann equation becomes a time-indeﬁendént but

nonlinear equation. This equation was first employed, in accelerator

" physics, to study longitudinal space-charge effects.5 In this initial

work attention was limited to distribution functions corresponding to

a uniform density in a restricted reglon of synchrotron phase space;
the analysis yilelded self~consistent "bucket" shapes.‘ éur interest is
in instabilities, so no further attention will be devoted, here, to the
problem of determining stationary distribﬁtion functions.

Almost all investigations of dynamical selféfiel@ effects have
proceéded from the linearized Bolfzmanh equation. This i; not really -
a compromising approximation, as our concern is normally not with the |
mode of development of an instability, but only with the criterion for .
its onset-~which 1s given exactly even in linear approximation. Thus
the linear theory is excellent for obtaining threshﬁlds and for

suggesting ways of avoiding instabilities; the growth rates, hoﬁever,

are valid only for small growth. Some nonlinear work is described in

Ref. 13.

Dynamical studles require, first, a static solution veq(q,p) .

-Linearizing the Boltzmann equation by letting

‘Jf(qm,t) = Vo {wp) + ¥(a,p,t) , (1) SR

G




-damping

one obtains

‘.ﬁ 5€£“+ 35$g t%%>i +‘Eal.(‘%%‘)eq i+ 3523’(§%>1‘f_35;;<%%>eq
| | (2)

where

N OH(4q,p v y
dp v AP . o o
<d;qu T 5q “ﬂé‘»~i; _ fT _ b

[BH( q:P}‘V.eg;ji ‘] . f
aweq N L

@),
@,

and the partial derivatives include différentiation of the Aq and 'p

d
op

|yt vl]:g_ o

€q

within W ‘and ﬁl The eépation is still (usually) a‘partial

differentiallintegral equation-~-and time dependent--but it is linear.

This approach was first used to study the negative-mass instability,lo s 11

an application discussed in detail below.

The reader can find some general corments concerning mathematical

"5approaches in Ref. 29. Finally, it should be emphasized that Landau

%0 isiautomatically contained in the linearized Boltzmann equation .

approach, és;wlll be seen in the example to follow. Some of the

1
i . ) . ¢
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should find the articles by Landau

' -8-_ X
mathematical complekities assoclated with Landaﬁ damping are discussed
in Ref., 31, while Ref. 32 gives a particularly lucid--and expansive--
discussion of the phenomenon. The reader first approaching this subject
30 and Hereward32Amost 111uminating.

3., Examples

In this section we discuss first a static selfgfiéld effect;
employing the Sihglé Particle Motion method. Then we étudy 8 dynamic
self-field instability by use of the Collisionless Boltzmann Equation
approach.k Finally, in large part because of the interisting new

physical results obtained, we study the transverse coherent resistive

instability of a tightly bunched beam.

" (a) Incoherent Transverse Space-Charge Limit by Single Particle Motion

Mefhod

3

Proceeding according to the general outline of Fig. 1, we first

. agsume a charge and current distribution, which in this calculation is

taken to be a uniform beam. of circular cross section, with minor radius

‘e and major radius R . The azimuthal direction is E and the verticel

direction :\l\g , 80 that

-——-lki—7§- for r £ a ’
(2xR)(na”)
p = -
o - - Por- r > a,
J = pBec ;?: ) (h‘)

o
3
e
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' where the beam has been taken to have N particles of velocity Bc .
If we ignore (the negligible) effects of curvature associated with the

_major radius R , then Ma.xwell's equations imply
onp(z & ) R
'éself = .pz,v‘ +_ X~ B . : o

'Eself ; -=-:_'.2’rpﬁ(z'2f,"- xflg )V" - (5)

The Lorentz force equation, ‘plus Hamilton's _equa."bions‘ (in this

‘ éimple case Just F =7 m & ), ‘1mp.1y, for motion in the ﬁ direction,

4z '
ym &2 = e(E, - BH) |
<0 dt2 A x
. 4%z N
7my =5 = 2npe(l.-B)z - ef 5~ z
: at " -0 (6)
We have included the external field, of course; letting
2 R a32{0' :
v ~r:=Eg & | n
s 2=0
and changiug to © &as the independent variable, we obtain :
a%y o 2 R e . o . '
—-—2- +.» Qo zZ = -"'_29'2‘ Z . - (8)
ae- | : V4 mOB e :

. Noting tha't %he solution to Eq. (8) has a 6 dependence of the form

- exp(1 Q e) ) and 1ntroducing the cla.ssical particle radius ro = e /moc2

we obtain

’ .
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2 .ol > . (9)

.

Q< - = e » ‘ .
X S o na 73 B "-fﬂ-tnj' R K
vhere 7 = (1 - 2"1/2 = B/me” .

; Finally, effects not explicitly in our Hamiltonian—-namely,

: machine imperfections--limit the Q value to nonintegral and non-half-

2

- integral values so that Q is festricted. ’LEtting AQ2 E -Q2 - 2
’ _ 20

bwe have the result, eqpivalent to that first obtained by Kerst: 1

with AQa typically of the order of 0,25 (for non-AG devices).

It now remains to be demonstrated that the single-particle

‘motion is consistent with the assumed charge and current distribution,

in this case--if the effects of nonlinearities in the external field

and the effect of the machine imperfections are ignored--it is true.
This point is discussed more carefully in Refs, 2 and 3, where the
Boltzmann equation method is'employed.

The electrodynamics in the above ealcula#ion is rafher poorly

done;. no effect of the surrounding media has been included. Simply by

limproving this aspect of the analysis one oan‘arrive et the formulah

2 2
N = E_gﬁ;z;éﬁ_ 7t ,
0

with S | | . . -

75




, . " :;.‘ v »‘ .' "v.l".- 2 . ‘-" 2 ‘ 2 2
7 = ei'[1~+ﬂ;ﬂl] +15221_ L (2-1B)n

,__".,3(7_._2 -07 0 Pg (7 1) e v ) g (12)

. 'appfop£iaté to an ellipticai.beaﬁ ofrmajor radius a ahd~m1nor radius b,

, Sétween'conducting walls (vacﬁum tank) with separation 2h ,land iron
(magngt) surfaces of separatibn 2g + The coefficienﬁé are, for parallel
plane‘i:on and conducting‘surfaces,> € = n2/h8 ~and € = nz/eh « The

"bcoefficient n is the fraction of the beam neutralized, and B is the
percent of the ciiéumference occupled by beam.’ Details! of the deriva-

 tion, and coefficients for more complicafed geometry, ;re glven by

L Laslett;h it 1is sufficient to notice thét'the‘presence of the surround-

., 1hg media cen have significant consequences, For example, Eq. (11)
implies that at high enefgy' N 1ncreases,6hly lineallyvﬁith V4 -—while

Eq. (10) (incorrectly) predicts a 73 dependence.

(b) Negative;Mass Instability by Collisionleés Boltzmann Equation Method.
‘ We turn now‘to one of the most straightforward applications of
the Boltzmann Equation method; nﬁmely, the study of small density
'fluctuations in an otherwise azimuthally uniform beam of particles. We
vconsider, hege, only the longitudinal degree of freedom and (guided by
) deeper insight)_employ the azimithal angle '¢ and its time defivative
' ¢ as indepeédent variablés, even though‘they are not a set.of canonically
-conjugate co%rdinates and momenta. o | ) l
| : ‘Foffghis case Weq(¢, ﬁ) = Weq(ﬁ), siﬁce the unperfurbed beam
is aséumed té be azimqthally uniform but haviné a possible spread in

§

" particle enebgles, If we let




=12~
W 8, 8) = Y (#) + ¥ (d 4, 1), . (2)
the linéarized Boltzmann eéuation becomes

A ( R (13
+ = 0 . . N 5 o -
ot dt K a¢ - . o |

" Hamilton's eqpations 1mply

o a A df) &
( ) = ot = 2\F i !
| g 7 s
) . ’ C L W v»’ °
dE . L . J‘.. t R .‘ . .

. Wwhere f. is the particle frequency, E 1is the particle energy, and

é; is the longitudinal electric . field. In this problem (dgz/dt)eq _1§ .

- zero; that is, only the perturbed distribufion has any assoclated fielﬁ,
E - £ . Solving Maxwell's equations--details are given in Ref. 10--we £1da

€

E o S [vwwbog, )

7 R

where g is a geometrical factor, vhich for a circular beam of minor

radius a Dbetween conducting planes separated by a distance G 1is
g = 1 + 2.8:1(“-3 . | | (16)

'The formula for f; should be rather evident: The integral is simply
the charge at azimuth ¢ , and the field is proportional to the charge

gradient; thé’factor R -2 is reqpired-on dimensional grounds, and .

{
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the ™2 takes account of the Lorentz contraction 1n the azimuthal

direction. Combining these eqpations, we have

- o,

. N 2 '-'l .. o .
dv, . v l”"(""dE)
= 4y - A

. 7 R .
(a7)
which is a linear partial differential integral equation with three

independent variables. But 1t can easily be solved! Assume ¥, 1s

of the form S - | 1

I __; 1(‘n¢-vt) |
vw1<¢, o= whe (28)

t

vhere n is an 1nteger (because of the boundary condition on ¢), and

w is to be obtained from the eqpation. We find

l&nQCE‘%) eegizlil ‘If (¢)

i(of - 0)Ty(P) = - -2 T(had =0,

7° R d¢'

from vwhich it is ciear that

Wl(d) = [Constant] _dweq(é)

. . (20)
nf - w ag -
Ingerting this, we obtain--after canceling the:constant--.‘
av ()
. Mﬂaezgn<% di“) —-1£L~*w o :
1 a eq f ~af, . (21)
; 7° R nf - o '

~

B
e
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which is a dispersiOn relation, i.,e., an equation for w as a function
of n . We can see the implications of Eq. (21) by taking a simple

‘example for weq , namely a beam with a uniform spread of particle

energies within a band of.full width AE . Thus, take

!

N . ) '
ey fr feqm 8 <0 < Fg v sy
Weq =
0 ' otherwise, .
" (22)
where |
- o raf\ : e |

eq

i

Clearly dweq/dé contains two & functions; the integral in Eq. (21) is -
trivial, and one readily obtains | |
. . 1/2 -
U 2 1 - ,
O - g #|Eed (réi * ,:2(‘92) (2E)? . (2b)
n ZR dE daE
7 eq | eq

eq

One can see that if (AE) is‘very small and df/dE is hegative, then

@ will have a complex term and the perturbation will grow exponentially.

On the other hand, there exists an energy spread (4E) that will

stabllize the beam for any given intensity N, which is Just Landau

damping. The physics 1s described in detail in Refs. 10 and 11, along

. with an expansive discussion, in Ref. 10, of the Landau damping--namely;

the proper definition of the singularity in Eq. (21) as well as the

dependence:dé,the result upon the choice of Weqﬁa) .

1
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~ The readér éﬁoulé éppreqiéﬁe--ffom the biock diagram of Fig. 2,
_ah&'fhisﬁexample-gthe general features of‘an instability calculation

) using fhe.Boltzmann Equation Method,' Often, in the literépu:e, the |
basic simplicity is obscured by very involved mathematical depails.
Take, for example, the rather impenetrable paper (INS)16 on the
transverse resistive wall 1nstability for a'unifofm beaﬁ. The analysis
‘.is fundaméntally no moie éomplicated‘than in the aboVé example: Ohé
assﬁmes a circular beam of minor radius 8 , inside a circular tank of

minor radius b -, having walls of conductivity ¢ .- The equilibrium

distribution function is chosen to be of the form

=

vweq (2!t)2 R £(x, E) ’ | - - (25)

e

where £(x,E) describes the distribution of betatron amplitudes and,

energy in the beam, and 1is normalized

‘

.ff(x,E)xdxdE; 1. o (26)

Assumming a wave of the form exp[1(n® écnt)], one finds a dispersion

relation
rono'[Uf+i(l_¥bi)V]; , - i, ‘”'." i - (27)

- where w, 1is the‘averagé revolution frequency; U and V come from

Maxwell's ‘equations,
i '
L he

dx
A

2NE
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m R a

RS - (1--)1

2n QO wo v4

Ceand v o ' /2 v‘f., .

T QO.7 m, b3 w\ 8o

<
1

, ' (28)

T

" and all other symbols have been defined previously., Tﬁe'dispersidn '

ihtegral I 1is

faf(x,szedxdE S o
, !

[0 - na(x,E)}° - [a(x,E)a(x,E)]

(29)

where Q(x,E) 1s the circulation frequency and Q(x,E) the Q value

- for a particle of betatron emplitude x and energy 'E (Q'==mb) . The

theory 1s evidently similar--in structure--to the simplef'problem, but
the increased difficulty associated with sdlving both Maxwéll's equations
and the linearized Bolﬁzmann equation should be emphaéizéd.

It is not difficult to obtain from Eqs. (27), (28),.and (29) the

main results of INS: If we take £(x,E) = 8(E)8(x)/x , then

w=fm:%mo;(U+ng); o (%0

for n > Q (@ changes sign as does)‘anﬁ the lower choice of sign

. there is an instability with growth time

1/2

} . Q 7 b [Bﬁd(n - QO) J ;

T % VT = s (31)

i 0 PeR

As in the neéhtive-mass problem, Landau damping can prevent an instability; -
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and one can showl6 that the spread in the Quantity_ 8 £ [n - Q(x,E)]0(x,E)

required to prevent growth is AS 3 [U] +V .

- (c¢) Transverse Resistive Instability for a Bunched Beam by Single Particle

1

Motion Method

We consider, for simplicity, the case of a single bunch. Since
the bunch is assumed rigid, the only dynamical variable,is its tfansverse
coordinate. The dynamics is vefy'simple--much as in tﬁe first example
above--but the electfodynamics 1s more complicated. Consequently we
concentrate first on thg sélution of Maxwell's equations, following the
analysis of Rob:!.nson.el B

The importantApoint—-in fact the physical basis of the instability
--1s that in a resistive vacuum tank, fields due to a particle decay,
after the particle has left, only very slowly in timé. The decé; is so'
slow that a bunch traveling sbout a circulaf acceleratog returns soon
enough to be subject to ifs own.wake field. Clearly,’depending upon
1ts phase--relative to the wake field--ﬁhe motion can be damped or
- undamped. We shall see this in detail, but first we must compute the
wake field of an oscillating'chérge. &

| Consiéer a conducting medium, of'conductivity o, locafed
above the y =0 plaﬁe, and subject to the fields of a pérticle moving
with velocity B ¢ 1in the ‘% direction., Within the conductor,

2@

X
r-raniie
3E -,

28
zZ" 1 X
E

s At i o A i, e o et
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‘which clearly ylelds 55

t

2 _ . o .
o~ dy, Yo sz : ' L
2. o= (33)
oy c” ot _ . S . B
with a solution
_ [Constant] R 12_ oo (34)
o = T - | "W T

vhere R = UnBg/c . We may evaluate the constant in Eq. (34) by

equating the integral of J (over y) to the product of c/ux

times the change in @ , obtaining

6

1/2 2
_ Re 1 _ R ¥

.

where the fleld (6x has been teken as a step function that 1s zero

for t <0, and equal to @0 for t 20 . Conséquently the electric

field at the metal surface due to a general time-dependent magnetic field

is

| L aifit-)
X ‘ 1 R X
E,(r0,1) = W, <'§ 3

-C0

at!
(t - t')

1/2 *

(36)

i

"For a pulse o charge moving parallel to the surfaée, @ = 56y ;

while o o o
\ © 3E . | . - | :

[ e o | (31

-0

A3



- yilelds

| -9,

. poo R : B o
: . . 2Ne Lo .
f_oo E/y at! | e ' B (38)
The 1ast 1is valid for a pulse of length. L 1inside & tube of

radius b , when L >> b . Expanding the denominator in Eq. (36) for

t large, and using Egs. (37) and (38), yields

| ke fEN2 : - '
fi%(y=0,t) = g% <;%;> o S (39)

- This‘resﬁlt, of Robinson, is valid for long times (t >$ L/e), but

because the conductor was assumed planar it becomes incorrect for time

% > Rba/ﬁc , which 1s a very long timé;lg'thts‘Eq. (39) suffices for

- our purposes. Notice thét ézg is falling off only algebraically in

»

time,
An analogous Calculation?l for an oscillating charge having an
emplitude ¢ exp(iwt) in the 3, direction, moving in the ;g direction

with speedr Be, and passing the point of observatiqn at time t',

5(1;) . Neg el S (40)
X f B b3 01/2(t _ t,)1/2 N .

- for the wake field. In this case 69 is larger than é;y An the

asymptotic regime. Notice that 63) has the same phase as that of

:‘the particie at the moment when it passes the point of observation,

l/2) in time (not

subsequently 62? simply decreases slowly (£~
oscillating,‘for example). The range of validity of Eq. (40) is the

same as that of Eq. (39).
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We are now 1n a position to follow the Single Particle Motion

L

~ approach, and quickly obtain results concerning the resistive instability.

7 Assume_the transverse motion is of the form

& exp(1 Quy t) , | v_ | - (k1)

where the value Q (presumably near to Qo) 18 to be determined in
the analysis. From Eq. (L40), ignoring the major'radius curvature of
the vacuum tank (a very good approximation), the asymptotic wake field

from the previous turn is proportional to

. |

£ exp [1Qay(t - 2n/wy)]
(2n /oo )2

R €

Consequently, as in Eq. (6), but summing over all previous turns, we

have
§§§ T+ Qoa Qb? é exp(1 Q @, t) | L
o-127Q o o-1knQ
- mrestan ) N T A R B
| (43)

where kl isﬁa positive constant. We have neglected in Eq. (L3) the

"local" fields which have, in fact, a negligible effect on this particular

‘calculation.¥ The local fields are, however, important for the proper

computation of thesholds. Ignoring the slow variation of amplitude (the .

general result is the same when amplitude variation is included7’l8 22)

Sk
;“«

we have
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. with 2 a positive constant. Thus
, o ~12nQ 1 . |
k e
Q= [l - - ) . ‘ (24-5)
% 2 Qoe(l - o"1enq) .~, o

where the positive éign must be taken to be consistent with the initial

assumption of Eq. (41). Now,

ImQ = k sin 2 % Q ‘ g | ' (h6)

‘h'Qo(l - cos 2m Q) ’

vhich, since instability occurs (Eq. 41) for Im Q<o ; implies

2

wvhen I<Q<I+ % » the motion is stable.

It should be noted that the instability can be prevented by

instability when I + £.< Q <I, where I is an integer. Correspondingly

Landau damping; the criterion for stebility can be obtained from the

Boltzmann equation approach.'z’la’22

Conversely, the stable zones remain -
stable in the more complete analysis; this result has yet to be conf;rmed
by experiment;

. Extension of the theory to many bunches is 151;:!‘&1ghti’o:r"z-rab.rd,22 as
23

18 the extension to two beams in an electron-positron storage ring.
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» E - JI. PRESENT STATE OF KNOWLEDGE OF INSTABILITIES
| If T were to summarize in a paragraph the main content of this
sectibn--énd such a summary must perforce be inexact--I would observe
that the need to conquer a diversity of practical problemsvassociated

with the instabilities of relativistic particle beams has precipitated

considerable activity during the past few years. This activity--by

both exﬁerimentalists and theorists--has resulted in a tremendous

increase in our understanding of the diversity of profound and subtle

aspects of cooperative.béhavior exhiblted by these many-particle systems.
!

Concomitant with our increased knowledge there has come the ability to

design and construct particle-handling devices in which we expect to be

. able to control, avoid, or operate successfully despite all presently

known beam instabilities, There are, of course, new subjects to be
investigatedvtheoretically and many predictions to be‘conéirmed
experimentally, but the present spirlt is one of confldence--brought
forth, we trust, from understanding rather than ignorance.

1. Theory and Experiment

It 1s convenient, in reviewing our present situation, to follow

~the categorizétion of effects as outlined in Table I.

The major instability associated with a static self-field is
that of a single partlicle in one beam of a storage ring interacting

with the intense nonlinear field of the other stored beam, The theory

- has been discussed by Courant7 and in a contribution to this meeting by

Beck and Genareau; the comparison of theory with phenomena observed on . ';‘

n
'e:‘§

the Princeﬁqﬂ-Stanford electron storage ring is given in a contribution L

o
4

=Y




'By Béiber ét}al. Eipefimental observatonsﬂaﬁ Nonéibirék are.reported
;vvin'a contfibution bj Ausiaﬁder'ét ai. The’agreémentiis good. For proton
. storage rings the effect 1s ofﬁmﬁch more concern because of the absence
of'any‘radiation dampiné. There are profound gpestions coﬁcerning the
long-time stability of single-pérticle motion in nonlinear fields, and,
"in particular, in the necessarily somewhat stochastic flelds associated 
~ with an intense Beam. The CERN group has attacked these questions

3L

theoretically, and also computationally; the numerical work (which is

still in ﬁrogress) indicates that if resonances are avoided in accordance
with the work of Courant,7 then fhere is no observable Hong—term growth -
--at least in the first (one-dimensional) model--but the theoretical
studies by Schoch indicate that more compiicated models may exhibit
vobservable groﬁths. Experimental studies on long-time beam stability
employing the CERN PS and also the CERN electron model ar;.reported in -
contributions by Baconnier, de Raad and Stéinbach, and Pentz; again,
withino beam growth in the (necessaril& short) times available for
observation. This subject is of immediate concerh.only fo the CERN
group, and it is being veryvéétively invegtigated by them; Judging from
~the reports on the CERN I#S, presented to this meeting, there already
.exist optimiétic opinions on the outcome of tﬁese studies,

Another beam instability, or gt.;east an effect_which has the
consequence of leading to beam enlargement, is the Touschek or AdA
v Effect.35 This is not A self-field effect, but rather an incoherent
particle-p%%%icle interaction within a single inteﬁge beam, It seems

" %0 be welliuﬁderstood theoretically, and the theory is very well

iy
by -
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confirmed by observations on a number of different storagé rings. One
aspect of this phenomenon 1s analyzed in the contribution by Bruck and

LeDuff.

Moving on to the dynamic self-field phenomena, we conéider,‘first,
the negative mass instability. The linear_theorylo'll has been checked
most completely in experiments on the Bevatron in which the pfedicted
functional dependence of threshold upon energy spread was confirmed.56
Similar e#periments on the Cosmotron37 were, for diverse technical reasons,
not definitive, although--like the Bevatron--in rather good qﬁantitative
agreement with the theory. The instabllity has also been'observed and
28,39

studied at a number of other accelerators. Nonlinear effects,
self-stabiiized bunches, and even the interaction of one self-stabilized
bunch with another have been extensively explored in a se?ies of beauti-
ful experiments by Barton and I‘I:tc—:lsen;u0 similar observations are
reported in the contribution of Samollov and Sokolov. An initial
attempt at a theoretical analysis 1s contained in the contribution of
Perelstein; Ref. 40 also hﬁs some contributions to the theory of the
negative-mass instability in thé nonlinéar regime., I think, in sumﬁary,
we can feel confideﬁt about the basic correctness of the linear theory,
and put some reliance upon the quantitati§e predictions of threshold

criteria.

The longitudinal resistive instability of a uniform beam has

‘been observed, if at all, only at MURA. The confrontation of theory

with definitive experiment 1s difficult; the MURA group has attempted

"~ to differeﬁfiate the resistive-wall 1nstability from an alternative '

i
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hipothesis of a two-stream 1nstability by measuring the sign of the

(small) frequency shift associated with the coherent motion.: The

, experimenthl yields a sign in agreement with the resistive-wall theory,

and the measured threshold and growth rate are also in quantitative
agreement with this theory. Naturally, confidence in this theory
must be somevwhat restrained until the effect has been observed and
studled in more detaill at a number of labpratoriés; one of the stroﬁg
arguments in favor of the theory is that 1t very closely pafalleis the

theories of the negetive-mass and transverse resistive-wall instabll-
i .

" 1ties which are, themselves, so well confirmed experimentally.

The transverse coherent Instability of a uniform beam has been

studied by the MURA group and reportedul--in greater detaeil in a seriles

| of internal reports.ua The qualitative agreement with theory (<the

instability is observed for n>» 3 and Q, = 2.7) 1s good, but

quantitative comparison with the linear theory indicated observed

" growth rates up to 100 times the theoretical values and thresholds at

significantly smaller currénts than the theoretical values (less than
1/50). RéCenﬁly, hovever, thé MURA group has changed the termination
of their cleé;ing electrodes, with the dramatic effect of converting
the n =5 mode from growing at 100 times the theoretical growth fate
to damping at approximatei& the same_rate:hE Theoreticai analysise-

sti1ll in a preliminary state--by Laslettuk indicates that clearing

" electrodes é%n have a significant effect on the phenomenon. In

' particular, for the MURA 50-MeV electron machine resonances are likely

for n 4
& H

5Qéhd the élearing electrode can easily become the dominant
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eiément. The presént situétion is, then, one of uncertainty° Further
,theoretical or experimental work needs to be done before one.will be
able to compare the MURA exberiments with the INS theory;l6 either the
experiment must be modified to approximate the simple'geométry of the
theory, or the theory must be extended so as to include the actual
geometry of the MURA e#periment.

Transverse coherent instabilities of bunched beams have been
observed at & number of accelerators: the Cosmotron,u5 the Princeton-
Stenford storage rings (see the report by Barber et al.), the Argonne
2GS (see the report by Martin et al.), Nimrod (see the Lontribution by
Gray), the AGS (see the con£ribution by van Steénbergen), and the CERN
PS.25 The comparison of theory and experiment is, in general, sur-
prisingly good; more detailed comparisons can be made following
numerical evaluation of the recent theory of bunched beam;.ez I think
 that the resistive theories can be considered basically confirmed by
experiment, but this statement 1s correct only when the theories are
extended to include more géneral situations than the~idealized geometry

employed in the work of LNS. In particular, the influence‘of ions,25

and various media and diverse wallses"a8 (see also'the contribufion of
Balbekov andeolomenskij), must be included in the analysis. Perhaps
the most impartant result of the variouskexperiments is the glean
demonstration of the control of the instability, either by feedback or
by artificially increasing the landau damping with nonlinear lenses,
There is & phenomenon in linacs that 1s closely related to the

effect Just ﬁiScussed namely, the interaction of the bunched beam .
L . .

=
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with the transverse modes of the linac rf cavities. Analysis of this

instability (see the contribution by Gluckstern and Butler) appears to

egree well with observation, thus constituting another aree of confidence.
Two-beam transverse coherent instabilities have beenvobserved on

the Princeton-Stanford electron storage rings (contribution of Barber

‘et al.). Unfortunately=--from the point of view of lesfniﬁg about

instabilities-~the instability threshold was greatly increased by

 separating the Q values of the two beams (with quadrupoles) and.

._increasing the vertical thickness of the beams (with skewed quadrupoles);

thus an exper;ment on qpsntum electrodynamics became possible and the
rings have since been devoted exclusively to the experiment. The sole
comparison of theory and experiment consists of noting that the theory
suggested the modifications that did,‘in fact, prove successfel. Quan-
titative comparisons with the maﬂ& detailed'predictioﬁs of the theory25'
will have to await observations at Novosibirsk, Orsay, or Frascati, oi
subsequent work at Stanford. Thus although the comparison of theory
with experiment is scant, the theory is being taken seriously and is

forming the basis for the design and construction of a number of

facllities. A variely of ways to avold coherent instabilities, such

as a pfoper choice of Q values, feedback, use of octupoles, or loading

of the vacuum tank with dielectric, are discussed in Refs, 46 and 47T.

‘The final instability to be discussed is the'interaction of_i

" 'intense beams with rf cavities. A contribution to this meeting by

Auslander et al. describes both experimental and theoretical work on

this subjqug "The paper of Lebedev and Zhilkov presents a sophisticated y

5
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;heory.' The subject appears to be well understOOd,.ahd one can evident-

ly feel confident'concefning our mastery of it.

2. Areas Requiring Further Investigation

]

The preceding section was primarily devoted to thé comparison
of theory ahd experiment. It was seen that there are only a feﬁ"
experimental observations (primarily associated with nonlinear phenomena )"
thet are not underg}éod; or, at least, for which an explanation has not |
been put forth, On the other hand; thefe'is a wealth of theoretical
work that awaits experimental confirmation.n The furthﬁr areas of

Investigation for exﬁerimentalists 1s thus relatively clear: We are

primarily interested in avoiding instabilities,.conséquently emphasis

. should center on the small-amplitude regime, and, in particular, on
_ confronting the theoretical threshold formulas (with thelr multitudinous

dependence upon machine and beam paraméters) with experimental checks.

In consideration or those areas requiring further theoretical
investigation the comments are, necessarily, of a more technical nature

than in the rest of this papei; they are primariiy‘addressed to those

' working on beam instability pfoblems, but should prove of general
-interest by indicating the directions that further theoretical work

may be expected to take. It is convenient, once again, to consider

the instablliitles one by one, following the order of Table I.

We consider, first, the negative-mass instability. The most
Interesting question is: How serious 13.1t? Experimental evidence
appears con{%}ctive, or at best unclear;'thé inétébility seems to

result in b§§m~loss in some accelerators like the Cosmdtron,uo but in T

the Bevatron;hbeam loss (which is unexplained) doesn't seem to correlate

FREY
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ﬁith the presence or absence of iongitudinal structure in the beam

'; (Chupp, Elioff, and Wenzel contribution to this conference). Theoretical

. arguments have been presented for longitudinal buqching's ieading to

beam loss: (i) by leading to local increases in chafge density, as
bunches pass each other in an rf bucket during synchrotron motion, and

hence to loss by exceeding the transverse space-charge limit, and (11)

by self-stabilized bunches' affecting each other in such & way as to

eject a bunch from a stable rf bucket. Nelther of these mechanisms has

.yet been described quantitatively, although the second has been likened

!

to Brownian motion in a potential well (the noise being an approximation

to the fields of the many bunches).

| . A second qpesﬂion, qf some intereét, is: What 1s the.effect of
rf longitudinal bunching on the negative-mass instability? The present
theoiies are for uniform beams; they seem, however, to fi; expefiments
on bunched beams, which fact should be understood, i1f possible. Perhaps
related to this, are ﬁhe very curious, and unexplained, phenomena
reported by Maloy. He observes that at one (intensity-dependent) point
in the acceleration cycle at . Cal Tech particles move freely from one rf
bucket to another, with most of the pafticles concentrating in two of the
four buckets for a sho:t time and then subsequently redistributing them~
selves approximately equally!

Perhaps the most exciting subject, apropos the negative-mass

-instability, 1s the recent suggestion by Briggs a.nd‘Neilh8 that 1t can

be prevented;by appropriate choice of vacuum chamber wall materieal!
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Further theoreticaliwork would be interestiﬁg--in suggesting a variety
of materials and design--but experimental work is the most pressing.

In regard to the transverse resistive instaﬁiiity %n a uniform
beam, we have already commented upbn the special experimental and
theoretical work needed in associatlon with the MURA-accelerétor.'
More generally, and closely related to the work of Biiggs and Neil,
further theoretical work must be done on the effect of various wall
materials as well as that of lons and assoclated low-energy electrons.
Also of importance is removing some 6f the approximatiops in the
present theory (none believed to be severe, but presumably of some
quantitative significance) such as (1) including resistance in all
the vacuum tank walls, and (ii) including longitudinal forces in the
golution of the Boltzmann equation. . | .

The theoretlical work on bunched beams is very.recent; some
extensions of it are obvious, and will pe worked out as time permits.
This inéludés, for example, (i) more careful evaluation of the fields

assoclated with & bunch to include the case in which bunches are

. sufficiently close that near fields (in contrast to wake fields)

become important, and (1i) numerical studlies of the many~bunch problem
to bridge the gap between the soluble problem of all bunches of equal
intensity and the soluble case of very different bunches (see Ref. 22).

A more complicated problem is to include--as must. be done for

"the uniform beam also-~the effect of ions and low-energy electrons,

Y

" Only then cg? comparison be made, in detail, with the observed pressure=

1

dependent ifistabilities on the CERN PS (in mode n = 6, with Q = 6.3)

LT oo - et " et 7 e - " e RS
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with neutralization
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" and on the AGS (in modes n = 8,v9, with Q = 8.7), Perhaps an extension

6f Hereward's wérk25 to’bﬁnched beams'wili sufficé,'but an incorporation

~of his‘iop-prodhction mechanism and the dielectric properties associated

26,28

into one theoretical struéture is‘clearly

desirable.

0f particular importance is further study of the nonlinear
"window shade" phenomena observed by the MURA group;uz not because

large-amplitudé nonlinear effects are themselves important, but because

 the proposed theory would appear to suggest a mechanism by which insta-

- bilities can develop in the regiﬁe that according to linear theory is

stable.

A further important topic is the qnesfion of possible coherent
motion within the bunches (which have been assumed rigid.in the analysis

to date), One expects these high-order modes normall& to be strongly

- damped by rf mixing, but quantitative results are needed to ascertain

the intensity at which this is no longer true.
In regard to two-beam coherent motion, topics réqpiring further

study have already been discussed to a limited extent; we will refrain

- from further comments primafily because the theory is in a state of

very rapid development--stimulated, as it is, by the éonsiderable

interest in its predictions--so'that-problems recorded here would

most likely be solved before this article appeared in print.

Q)
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_ Table I. Physical phenomena associafed_withlselfffields,

’ Static self-field effects

1.

50.

-Incoherent transverse space.charge limit

Linear approximation

Nonlinear approximation
Influence of surrounding medias on transverse
space-charée limit

Longitudinal space-charge limits

Single particle--intense beam interactions

\

Linear approximation
Nonlinear approximation

Beam-rf cavity interaction

Dynemic self-field effects

1.

3.
h.

Negative mass instability
Linear spproximation

Nonlinear approkimationE f;_

Longitudinal ‘resistive instability of a uniform beem

Longitudinal resistive'instability of_é bunched beam
Transverse coherent resistive wali insﬁability _

of a uniform beam :

Transverse coherent resistive wal% instablility

of a bunchéd'beam

Two-béam transverse coherent 1nstabiiity‘

Beam-éf cavity instabilities .

Traﬁséérse coherent instability with.genéral

resiséive media
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e
s . *"  FIGURE CAPTIONS .
f Fig.‘l. ‘A block diagram of the Single Particle Motion approach to
',.self-field phenomena. ‘f'. o .
Fig. 2. A block diagram of the Collisionless Boltzmann Equation epproach
to a self-field phenomena. The symbols q and p represent the set
of geheralized coordinates and momenta describing the dynamical
behavior of a particle. The partial‘derivatives-ihclude differen-
_tlation with respect to thé~ g and p dependence introduced through

the arguments of the distribution function.r . |
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Assume a distribution function R -_'~-_, o
¥(q,p,1t)

Collisionless : P o Maxwell's Eqﬁations;;\ 2
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Boltzmann Equation ' ‘ - o Dynamical information .
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Hamilton's|Equations = .

A partial nonlinear integral
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distribution function.
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A.

Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the

Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee

of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.








