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Mechanisms of Intermicrobial Interactions in the Cheese Rind Microbiome 
 

 
by 
 

 
Emily C. Pierce 

 
 

Doctor of Philosophy in Biology 
 

 
University of California San Diego, 2021 

 
 

Professor Rachel J. Dutton, Chair 
 
 

Despite having traditionally been studied in isolation, the natural context of microbial 

growth is in the presence of other species. Research on microbes in interactive contexts has 

previously been challenging due to the complexity of natural microbiomes and an inability to 

culture non-model organisms. To address these challenges, a model microbiome based on the 

cheese rind has been developed. This system is of intermediate diversity and contains genetically 

tractable and culturable organisms, enabling mechanistic study of microbial interactions. Using 

species from this model microbiome, we apply cutting-edge genetic, metabolomic, and imaging 

techniques to investigate mechanisms of intermicrobial interactions. Chapter 1 reviews recent 
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findings regarding intermicrobial interactions. Chapter 2 reports on the development of an RB-

TnSeq library in cheese-associated bacterium Pseudomonas psychrophila and the use of this 

library in a three-member cheese rind model community to identify intermicrobial interactions. 

Chapter 3 presents the application of RB-TnSeq to the study of mechanisms related to bacterial-

fungal interactions. This chapter also introduces a custom analysis pipeline developed for cross-

condition RB-TnSeq comparisons. Chapter 4 describes three projects stemming from Chapter 3, 

which relate to an E. coli gene of unknown function, a fungal protein with potential antibiotic 

activity, and the application of RB-TnSeq to the study of bacterial-bacterial interactions, 

including the creation and characterization of an RB-TnSeq library in another cheese-associated 

bacterium Hafnia sp. str. JB232. Finally, Chapter 5 discusses potential future directions for this 

work and provides concluding remarks.
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CHAPTER 1: Introduction 

1.1 Recent Insights into Intermicrobial Interactions 

 Next generation sequencing has revealed the enormous diversity of microbial species 

present in almost every imaginable habitat on the planet, and the important roles these microbes 

have is becoming increasingly clear. However, due in part to the complexity of microbial 

communities, or microbiomes, understanding how microbes within a system interact and how 

these interactions affect community-level phenotypes is extremely challenging. The ability to 

uncover and characterize these interactions has the potential to reveal large amounts of new 

biological information about microbes, and can provide insights into how to manipulate 

microbiomes for improved medicinal, agricultural, and environmental outcomes.  

 Despite the challenges associated with the study of species interactions, researchers have 

continued to work towards uncovering the mechanisms that drive interactions in diverse systems. 

Here, we review highlights from recent literature on the molecular mechanisms of intermicrobial 

interactions. Across diverse systems, we find common themes in how microbes interact with 

their neighbors (Figure 1.1-1). We have thus grouped these studies based on the mechanistic 

themes that were identified, including interactions mediated by access to metals, toxic molecules, 

signaling mechanisms, nutrients, pH changes, and physical relationships. The combination of 

genetic, metabolomic, and imaging techniques seen in a number of recent studies has proven to 

be a powerful approach to elucidating these mechanisms. We also highlight some of the 

emerging approaches to studying mechanisms of intermicrobial interactions that have made these 

discoveries possible. 
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Iron as a key driver of species interactions 

 Iron has long been recognized as a key and often limiting nutrient for microbial growth. 

Microbes have evolved a number of strategies to deal with this limitation, including the secretion 

of iron-binding specialized metabolites called siderophores. Siderophores have been indicated in 

a number of intermicrobial interactions, including competition, cooperation, and cheating 

(Kramer, Özkaya, and Kümmerli 2020). It is therefore not surprising that interactions revolving 

around iron access continue to be uncovered in diverse systems.  

 In a recent study with nasal bacteria, Corynebacterium species that strongly inhibited 

coagulase-negative Staphylococcus via iron starvation were found to possess a gene cluster for 

the siderophore dehydroxynocardamine. This cluster is expressed in nasal metatranscriptomes, 

suggesting that Corynebacterium-mediated iron starvation of other bacteria may be relevant to 

the human nasal microbiome (Stubbendieck et al. 2019). Siderophore interactions are also 

relevant to non-host associated microbiomes. Building on an existing body of literature on 

interactions related to the Pseudomonas siderophore pyoverdine, Butaité et al. examined how 

these interactions play out among natural isolates in communities, where producers and non-

producers frequently co-exist. They find that pyoverdine interactions not only involve cheating, 

whereby non-producers benefit directly from producers, but also growth inhibition, where non-

producer pseudomonads cannot benefit from pyoverdine due to incompatible receptors (Butaitė 

et al. 2017). 

 Although siderophore-based interactions have received a lot of attention in bacterial-

bacterial dynamics, recent work in a model microbiome based on the cheese rind have shown 

that fungal siderophores may also play important roles in microbiome dynamics, as they can 

positively impact the fitness of their bacterial neighbors and influence the distribution of closely-
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related species (Kastman et al. 2016; Pierce et al. 2020). Despite a common focus on iron, access 

to other trace metals like zinc and copper can also drive intermicrobial interactions (Cleary et al. 

2018; Han et al. 2019).  

 

Antibiosis  

 Production of specialized metabolites and proteins that are toxic to other microbes is an 

important competitive strategy for microbes in community contexts (García-Bayona and 

Comstock 2018). In the human skin microbiome, a gene cluster for an antibiotic thiopeptide 

produced by many isolates of the common skin bacterium Cutibacterium was found to be 

upregulated when co-cultured with Staphylococcus species. This antibiotic does not affect 

commensal Actinobacteria, but does lead to higher ratios of C. acnes to S. epidermidis, 

suggesting that this antibiotic may impact the composition of hair follicle microbiomes (Claesen 

et al. 2020). Bacterially-derived peptides have also been shown to have a role in bacterial-fungal 

interactions in plant-associated species; Ralstonia solanacearum peptides trigger fungal 

antibiotic production (Spraker et al. 2018). Among rhizosphere species, Pseudomonas spp. can 

produce a family of alkaloids that inhibit Bacteroidetes. Production of related metabolites has 

convergently evolved in plants, suggesting that these bacterial metabolites may have similar 

roles in plant development or protection (Lozano, Park, et al. 2019). A root nodule model 

microbiome composed of Brevibacillus brevis, Paenibacillus sp., Pantoea agglomerans, and 

Pseudomonas sp. was recently used to identify cooperative and competitive interactions. This 

study included the use of metabolomics to identify a novel family of B. brevis antibiotic 

metabolites (B. L. Hansen et al. 2020).  
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 Bacteria must also defend themselves against contact-dependent antagonism such as type 

VI secretion. Bacteria use type VI secretion systems to directly deliver toxic proteins into 

competitor bacterial cells. These systems play important roles in intermicrobial dynamics in 

diverse systems including the human gut (Ross et al. 2019), squid light organs (Speare et al. 

2018), and legume root nodules (Salinero-Lanzarote et al. 2019). Interkingdom antibiosis was 

observed in a study using a combination of genetic and cell imaging techniques to investigate 

mechanisms of bacterial-fungal interactions in cheese rind microbiomes (Pierce et al. 2020). 

 

Signaling-based Interactions 

 Signaling molecules are key to microbial communication and quorum sensing, which 

allows bacteria to adjust gene expression based on the surrounding population. Two recent 

studies highlighted the role of quorum sensing inhibition in interactions with Staphylococcus. A 

Staphylococcus caprae skin commensal can reduce skin infection burden of S. aureus, and 

probiotic B. subtilis reduced colonization of S. aureus in the intestine. Both of these interactions 

were linked to the production of peptides that inhibited S. aureus quorum sensing (Paharik et al. 

2017; Piewngam et al. 2018). In Chromobacterium violaceum, quorum sensing regulates the 

expression of a drug efflux pump that increases resistance to bactobolin produced by 

Burkholderia thailandensis. Loss of quorum-sensing decreased competitive fitness of C. 

violaceum growing with B. thailandensis, and the presence of bactobolin restrained the evolution 

of C. violaceum quorum sensing cheaters, suggesting that interspecies interactions can constrain 

cheaters that exploit public goods (Evans et al. 2018). Predators can also eavesdrop on quorum 

sensing to detect their prey, as seen by the increased predatory behavior of a bacteria-consuming 

myxobacterium in response to quorum sensing molecules (Lloyd and Whitworth 2017). 
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Interactions related to pH 

 Environmental modifications related to physiochemical changes can also drive 

intermicrobial interactions. One common mechanism is the alteration of pH, as changes in pH 

can influence community structure across diverse ecosystems through promoting or inhibiting 

the growth of acid-sensitive or acid-tolerant species (Thompson et al. 2017). Recent work 

showed that the outcome of bacterial pairwise co-cultures could be predicted from a simple 

model based on how individual organisms manipulate and respond to environmental pH (Ratzke 

and Gore 2018). Co-culturing of two species from the fruit fly gut microbiome, Lactobacillus 

plantarum and Acetobacter sp., led to increased antibiotic tolerance of L. plantarum through a 

pH-based mechanism. When co-cultured, Acetobacter consumed lactate produced by L. 

plantarum, resulting in deacidification that favorably altered the L. plantarum growth (Aranda-

Díaz et al. 2020). 

 

Trophic Interactions 

 Trophic interactions such as nutrient cross-feeding or competition are important in many 

systems. Genetic and proteomic studies of bacteria growing alone or in consortia with other 

species have demonstrated that amino acid cross-feeding and/or competition among bacteria is 

seen in a model system from soil (L. B. S. Hansen et al. 2017; Herschend et al. 2017), between 

enteric pathogen species (Abdel-Haleem et al. 2020), among microbes in a cheese rind model 

microbiome (Morin, Pierce, and Dutton 2018), and with species associated with polymicrobial 

urinary tract infections (Armbruster et al. 2017). Competition and cross-feeding of vitamins have 

also been found to be important in interactions between bacteria and both other bacteria and 

microeukaryotes associated with fermented foods, marine systems, and the human gut (Cooper et 
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al. 2019; Pierce et al. 2020; Soto-Martin et al. 2020). In human gut metagenomes, positive 

associations are observed between bacterial Christensenella spp. and the hydrogen-consuming 

archaeon Methanobrevibacter smithii, two organisms whose abundance is correlated with host 

leanness. Ruaud et al. show that Christensenella minuta supports the growth of M. smithii 

through interspecies H2 transfer, a process that is facilitated by physical associations (Ruaud et 

al. 2020). Other recent findings related to trophic interactions include cross-feeding of purines 

between bacteria (Abdel-Haleem et al. 2020; LaSarre et al. 2020) and interbacterial competition 

for carbon sources (Hall, Harrison, and Brockhurst 2018).  

 Trophic interactions have been shown to impact community-level phenotypes. They can 

mediate microbial community succession, as demonstrated in communities that self-assemble on 

organic marine particulates. Succession in these communities is determined by degradation of 

the particle by a primary group which provides carbon sources that facilitate a second group of 

“consumers.” These consumers then inhibit the growth of the primary degraders by taking up 

space and interfering with degrader colonization (Datta et al. 2016; Enke et al. 2018). New work 

with eight soil bacteria showed that spent media from species grown in high nutrient 

concentrations led to more negative interactions with the other species relative to media from 

bacteria grown in low nutrient concentration. This is perhaps because interactions became driven 

by toxic metabolites rather than nutrient competition. The authors suggest that under higher 

nutrient conditions, interactions are stronger and more negative, which could lead to less 

biodiversity in these conditions (Ratzke, Barrere, and Gore 2020). Nutrient cross-feeding 

interactions can also constrain evolution of traits like antibiotic resistance, as the success of one 

member will be limited by the success of its cross-feeding partner; this could inform more 
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effective antibiotic treatment strategies (Adamowicz and Harcombe 2020; Adamowicz et al. 

2020; Flynn et al. 2020). 

 

Physical Interactions 

 Intermicrobial interactions can both influence and be influenced by physical structures 

and spatial organization in mixed biofilms. Spatially structured systems may limit the 

interactions of microbes to other microbes in close range (Dal Co et al. 2020). Combining 

transcriptomics and visual imaging, Liu et al. found that increased biomass production in a 

biofilm of four soil species relative to three-species communities was due to a fine-tuned spatial 

organization dependent on interspecies interactions (Liu et al. 2019). Interactions between 

bacteria isolated from marine biofilms led to the production of a newly secreted 

exopolysaccharide that may have increased biofilm formation in two-species communities 

(Guillonneau et al. 2018). Two soil bacteria, Bacillus subtilis and Pantoea agglomerans, were 

also shown to produce a biofilm structure not present in either monoculture that was dependent 

on contributions from both species. This structure protected P. agglomerans from antibiotic 

killing (Yannarell et al. 2019). Two other soil bacteria, Pseudomonas fluorescens and 

Pedobacter sp., have an emergent motility phenotype when grown together (McCully et al. 

2019). A model microbiome from the soybean rhizosphere consisting of three bacterial species 

also displayed emergent motility and biofilm properties when species were grown in interactive 

contexts (Lozano, Bravo, et al. 2019). Emergent biofilm properties and physical interactions also 

occur in bacterial-fungal interactions. The presence of Candida metabolites stimulates biofilm 

growth of Streptococcus in dental cavities (Kim et al. 2017). Applying ‘transparent soil’ models 

to investigate soil microbial communities, Sharma et al. find that bacteria physically attached to 
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dead fungal hyphal structures are more metabolically active following a desiccation event 

(Sharma et al. 2020). In cheese rind microbiomes, motile Proteobacteria are able to use mycelial 

networks to disperse, giving them a fitness advantage in multispecies communities (Zhang et al. 

2018). 

 

Emerging Techniques for Investigating Interactions  

 Technological advances have enabled new approaches to studying microbial interactions 

(Figure 1.1-1). Multiple groups have recently developed microfluidic droplet based platforms to 

study synthetic microbial communities made up of combinatorial interactions (Hsu et al. 2019; 

Kehe et al. 2019). Kehe et al. used their platform to screen 100,000 multispecies communities 

made up of 19 soil isolates, and were able to find sets of isolates that consistently promoted 

growth of a plant symbiont (Kehe et al. 2019). Variations of transposon insertion sequencing, 

which combines transposon mutant screening and next generation sequencing, have been used to 

determine genes important for bacterial growth in community contexts using species from cheese 

rinds, oral microbiomes, and a synthetic bacterial mutualism (LaSarre et al. 2020; Lewin et al. 

2019; Morin, Pierce, and Dutton 2018; Pierce et al. 2020). Rather than relying on inferring 

interactions from net outcomes such as changes in growth during co-culture, mutant screening 

techniques enable a more mechanistic understanding of intermicrobial interactions. Recently, 

droplet microfluidics has been combined with transposon mutant sequencing, enabling detection 

of fitness impacts related to public goods by separating individual mutants into their own 

compartments. Using this technology, the authors were able to observe interactions between 

Streptococcus pneumoniae strains (Thibault et al. 2019).  
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Conclusion 

  There are many open questions related to the types of interactions that occur within 

microbiomes. As seen in a number of the studies discussed above, these questions have led to 

increasing interest in the development of model microbial communities for the study of 

interaction mechanisms (Enke et al. 2018; B. L. Hansen et al. 2020; Lozano, Bravo, et al. 2019; 

May et al. 2019; Morin, Pierce, and Dutton 2018; Zengler et al. 2019). Although bacteria have 

received a lot of attention in intermicrobial dynamics, fungi play important roles in many 

systems and should be incorporated into model communities when relevant. The further 

development of model microbiomes that enable controlled experiments in more realistic contexts 

is a promising avenue for advancing this field.  

 Here, we have reviewed some of the most recent literature on microbial interaction 

mechanisms. Notably, many of these mechanisms are found across multiple systems, suggesting 

that findings in one microbiome can provide insights into other systems. Further study on 

translatability of mechanistic findings to other microbiomes and more intentional cross-system 

comparisons will undoubtedly be key to our ability to define fundamental principles of 

microbiome assembly and function. 
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Figure 

 

Figure 1.1-1. Recent Work on Intermicrobial Interaction Mechanisms. Left, Mechanistic 
themes found in intermicrobial interactions and microbiomes in which these mechanisms have 
recently been described. Right, Emerging techniques for studying intermicrobial interaction 
mechanisms.  
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CHAPTER 2: Characterization of Interactions in a 3-Member 

Microbiome 

2.1 Chapter Summary  

Initial studies on the development of cheese rind microbiomes showed that microbial 

interactions were widespread (Wolfe et al. 2014). However, the only readout of these interactions 

was a net growth impact observed during co-culture. In order to understand the underlying 

genetic basis of these interactions, we wanted to use a newly available technology, RB-TnSeq, to 

capture information on what genes impact bacterial fitness in cheese rind communities. This was 

the topic of a paper published in eLife on which I was second author, which is provided in this 

chapter in Section 2.2.  

In this paper, we chose to work with a simple three-member community made up of 

Hafnia alvei str. JB232 (cheese bacterium), Geotrichum candidum str. GEO13 (cheese yeast), 

and Penicillium camemberti SAM3 (cheese mold). These species are the main members of Brie 

cheese rind communities. For RB-TnSeq assays, we grew a pooled library of barcoded E. coli or 

P. psychrophila str. JB418 (cheese bacterium) transposon mutants alone, in pairwise 

combinations with the Brie community species, or with all three Brie community members. For 

this work, I created and characterized the P. psychrophila str. JB418 transposon mutant library 

that was used in this work, performed the P. psychrophila RB-TnSeq experiments in the Brie 

community, and contributed to data analysis and writing of the manuscript. The P. psychrophila 

library contains 143,491 mutants with barcoded transposons centrally inserted in protein-coding 

genes.  

Using RB-TnSeq assays, we were able to determine the impact of each community 

member on the fitness of individual mutants in the bacterial libraries and were able to determine 
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how these impacts changed when the full community was present. Analysis of community 

member impacts on bacteria allowed us to identify a few key functions related to microbial 

interactions, which included cross-feeding of amino acids between species and competition for 

iron and nitrogen. While half of the interactions were maintained from pairwise interactions in 

the full community, half were not, suggesting that a different network of interactions may 

emerge with increasing community complexity.  
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Changes in the genetic requirements for
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Abstract Microbial community structure and function rely on complex interactions whose
underlying molecular mechanisms are poorly understood. To investigate these interactions in a
simple microbiome, we introduced E. coli into an experimental community based on a cheese rind
and identified the differences in E. coli’s genetic requirements for growth in interactive and non-
interactive contexts using Random Barcode Transposon Sequencing (RB-TnSeq) and RNASeq.
Genetic requirements varied among pairwise growth conditions and between pairwise and
community conditions. Our analysis points to mechanisms by which growth conditions change as a
result of increasing community complexity and suggests that growth within a community relies on a
combination of pairwise and higher-order interactions. Our work provides a framework for using
the model organism E. coli as a readout to investigate microbial interactions regardless of the
genetic tractability of members of the studied ecosystem.
DOI: https://doi.org/10.7554/eLife.37072.001

Introduction
Microorganisms rarely grow as single isolated species but rather as part of diverse microbial commu-

nities. In these communities, bacteria, archaea, protists, viruses and fungi can coexist and perform

complex functions impacting biogeochemical cycles and human health (Falkowski et al., 2008;

Flint et al., 2012). Deciphering microbial growth principles within a community is challenging due to

the intricate interactions between microorganisms, and between microorganisms and their environ-

ment. While interest in microbial communities has dramatically increased, our understanding of

microbial interactions within communities is lagging significantly behind our ability to describe the

composition of a given community.
Approaches relying on 16S rDNA sequencing analyses of microbial communities can be used to

reconstruct ecosystem networks and detect patterns of co-occurrence to infer general interactions

such as competition, mutualism and commensalism (Faust and Raes, 2012). However, the molecular

mechanisms underlying these interactions remain largely uncharacterized. Further, the way in which

these interactions are organized within a community, such as whether they consist of predominantly

pairwise or higher-order interactions, is even less clear. A more precise understanding of microbial

interactions, their underlying mechanisms, and how these interactions are structured within a com-

munity, are all necessary to elucidate the principles by which a community is shaped. In this study,

we combine genome-scale genetic and transcriptomic approaches within an experimentally tractable

model microbial community to begin to address these questions.
Genome-scale approaches, such as transposon mutagenesis coupled to next-generation sequenc-

ing (TnSeq approaches) have been successfully used to quantify the contribution and thus the impor-

tance of individual genes to a given phenotype (van Opijnen and Camilli, 2013). These techniques

Morin et al. eLife 2018;7:e37072. DOI: https://doi.org/10.7554/eLife.37072 1 of 26
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use a pooled library of transposon insertion mutants whose frequency is measured to identify genes

important for growth in a given condition. Recently, the generation and introduction of unique ran-

dom barcodes into transposon mutant libraries made this approach more high-throughput, enabling

screens of important genes across hundreds of conditions and for numerous genetically tractable

microorganisms (Wetmore et al., 2015; Price et al., 2018).
To investigate the genetic basis of microbial interactions, we have adapted this approach to iden-

tify and compare genetic requirements in single-species (non-interactive) and multi-species (interac-

tive) conditions. We used a large and diverse transposon library previously generated in the

genetically-tractable model bacterium E. coli K12 (Wetmore et al., 2015) to characterize the genetic

requirements of interactions within a model community based on the rind of cheese (Wolfe et al.,

2014). The fact that the E. coli genome has undergone extensive characterization can help more

effectively interpret the genetic requirements introduced by growth within communities. Although E.

coli K12 is not a typical endogenous species of this particular microbiome, non-pathogenic E. coli

strains can be found in raw milk and raw-milk cheese (Trmčić et al., 2016). Shiga-toxin-producing E.

coli 0157:H7 and non-0157 pathogenic E. coli species are common invaders of the cheese environ-

ment and can survive during cheese making causing mild to life-threatening symptoms after inges-

tion (Coia et al., 2001; Montet et al., 2009; Frank et al., 1977).
Using the E. coli transposon library, we (i) identified the set of genes important for growth alone

in the cheese environment, (ii) identified the set of genes important for growth in pairwise conditions

with each individual community member and (iii) identified the set of genes important for growth in

the presence of the complete community. Characterization of the functions or pathways associated

with growth in interactive versus non-interactive conditions were then used to infer the biological

eLife digest Microorganisms live almost everywhere on Earth. Whether it is rainforest soil or
human skin, each environment hosts a unique community of microbes, referred to as its microbiome.
There can be upwards of hundreds of species in a single microbiome, and these species can interact
in a variety of ways; some cooperate, others compete, and some can kill other species. Deciphering
the nature of these interactions is crucial to knowing how microbiomes work, and how they might be
manipulated, for example, to improve human health. Yet studies into these interactions have proven
difficult, not least because most of the species involved are difficult to grow in controlled
experiments.

One environment that is home to a rich community of microbes is the outer surface of cheese,
known as the cheese rind. The cheese rind microbiome is a useful system for laboratory
experiments, because it is relatively easy to replicate and its microbes can be grown on their own or
in combinations with others.

To explore the nature of interactions in microbiomes, Morin et al. have now grown a large
collection of E. coli mutants as members of simplified microbiomes based on the cheese rind. The
mutant bacteria were grown on cheese either alone, paired with one other species, or alongside a
community of three species. The aim was to see which mutants grew poorly when other species
were present, thus allowing Morin et al. to identify specific genes that are important for interactions
within the experimental microbiomes.

Even in these simplified microbiomes, the microbes interacted in a variety of ways. Some
microbes competed with E. coli for elements like iron and nitrogen; others cooperated by sharing
the building blocks needed to make larger molecules. Many of the interactions that happened when
E. coli was paired with one species were not seen when more species were added to the
community. Similarly, some interactions were only seen when E. coli was grown alongside a
community of microbes, and not when it was paired with any of the three species on their own.

These findings show that complex interactions are present even in a simplified microbiome. This
experimental approach can now be applied to other microbiomes that can be grown in the
laboratory to examine whether the patterns of interactions seen are generalizable or specific to the
cheese rind system.
DOI: https://doi.org/10.7554/eLife.37072.002
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processes involved in interactions within the model microbiome. Additionally, we compared the set

of genes important for growth in pairwise conditions with the ones important for growth in a com-

munity to investigate how microbial interactions change depending on the complexity of the interac-

tive context. We also performed a similar RB-TnSeq analysis during non-interactive and interactive

conditions using a transposon library we generated in the cheese-endogenous species Pseudomonas

psychrophila JB418. Finally, we measured changes in the transcriptional profile of E. coli during

growth alone, growth in pairwise conditions, and within the community using RNAseq as a comple-

mentary approach to RB-TnSeq in defining microbial interactions. This analysis revealed a deep reor-

ganization of gene expression whenever E. coli is in the presence of other species.
This work revealed numerous interactions between species, such as metabolic competition for

iron and nitrogen, as well as cross-feeding from fungal partners for certain amino acids. Our analysis

showed that most of the metabolic interactions (competition and cross-feeding) observed in pairwise

conditions are maintained and amplified by the addition of all partners in the community context.

However, around half of the genetic requirements observed in pairwise conditions were no longer

apparent in the community, suggesting that higher-order interactions emerge in a community.

Results

Identification of the basic genetic requirements for growth of E. coli in
isolation
We used the E. coli Keio_ML9 RB-TnSeq library from Wetmore et al., 2015, containing a pool of

152,018 different insertion mutants (with a median of 16 insertion mutants per gene; covering 3728

of 4146 protein-coding genes), each associated with a unique 20 nucleotide barcode. This library

was originally generated in and maintained on lysogeny broth medium (LB) and was used previously

to identify genes required for growth across a variety of conditions (Wetmore et al., 2015;

Price et al., 2018). To determine genes important for growth on our cheese-based medium, we

grew the pooled library by itself on sterile cheese curd agar plates (CCA: 10% freeze-dried fresh

cheese, 3% NaCl, 0.5% xanthan gum, 1.7% agar), the same medium used in all further experiments

and used previously to demonstrate that cheese communities could be successfully reconstructed in

vitro (Wolfe et al., 2014). As the library is composed of multiple insertion mutants for a gene, we

expect the individual insertion mutants to be evenly distributed in the experimental environment,

minimizing the effect on any individual insertion mutant due to stochastic processes such as genetic

drift or localized effects related to spatial structure (Hallatschek et al., 2007). During growth, we

expect the library to modify the environment by taking up nutrients and excreting molecules (waste

products, enzymes, etc). Consequently, we expect that some genetic requirements will change dur-

ing growth. Thus, to provide a comprehensive overview of the genetic requirements for growth, we

grew the pooled library on CCA and collected samples after 1, 2 and 3 days. For each time point,

we harvested the library from the surface of the cheese plate, extracted genomic DNA, used PCR to

amplify the barcoded regions of the transposons, and then sequenced these products to measure

the abundance (i.e. the number of sequencing reads associated with each barcode) of each transpo-

son mutant over time (see Materials and Methods).
The fitness of each insertion mutant was calculated as the log2 of the ratio of its abundance at a

given timepoint compared to its abundance at T0 (the inoculum). We calculated the raw fitness of a

gene as the weighted average of the fitness of all insertion mutants of that gene. Gene fitness values

were then normalized. First, fitness values are corrected to account for changes in copy number

along the chromosome as insertions near the replication fork are expected to have higher copies in

dividing cells. Then, fitness values were normalized based on the assumption that disruption of most

of the genes leads to little or no fitness effect (see Materials and Methods and (Wetmore et al.,

2015) for details). Consequently, most of the fitness values are expected to be close to 0, indicating

that disruption of these genes leads to no particular growth modification compared to the rest of

the library. Negative gene fitness values, however, identify mutants that are growing slower than the

rest of the library and therefore, genes that are of particular importance for growth in the studied

condition. A t-score, calculated as a moderated t-statistic, is determined for each gene fitness value

to assess if the fitness value is reliably different from 0 (see Materials and Methods and
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(Wetmore et al., 2015) for details). The RB-TnSeq pipeline from experimental set-up to gene fitness

calculation is summarized in Figure 1—figure supplement 1.
At each timepoint, we were able to calculate the fitness and a corresponding t-score for 3298

protein-coding genes (Figure 1A, Figure 1—source data 1). Because we were interested in genes

with a strong fitness defect (significant negative fitness values), we first removed genes with an abso-

lute t-score <= 3. This t-score threshold was set to identify strong negative fitness values while mini-

mizing potential false positives (false discovery rate of 0.2%). The t-score assesses how reliably a

fitness value is different from 0. In each condition, most genes have no detectable fitness effect, and

thus have a fitness value close to 0. Thus, in our dataset, most of the genes below this t-score also

have a fitness value close to 0. On average, 97% of the fitness values were associated with a t-score

that falls below our threshold. Within the fitness values that pass the t-score threshold, we then

removed genes associated with positive fitness values. Thus, we only retained the genes whose dele-

tion leads to a consistent growth defect for E. coli on CCA compared to the rest of the library. This

filtering process revealed 160 genes that were important for E. coli growth alone on CCA

(Figure 1A).
To identify the functions associated with these 160 genes, we mapped them to the KEGG BRITE

database (Figure 1B). 84 genes were assigned to KEGG modules and 64 of them were associated

with E. coli metabolism. Within these metabolic genes, we found 28 genes associated with amino

acid metabolism, specifically the biosynthesis of all amino acids except for proline, lysine and histi-

dine. Quantification of free amino acids in our medium highlighted very low concentrations of all

amino acids (Figure 1—figure supplement 2) suggesting that a limited supply of free amino acids

leads to a genetic requirement for amino acid biosynthesis. This is supported by the observation

that both spoT and relA, regulators of the stringent response which can be triggered by amino acid

starvation (Cashel et al., 1996), are also associated with a negative fitness value. Additionally, we

observed the importance of the regulator gcvR, that inhibits catabolism of glycine into C1 metabo-

lism. In fact, GcvR inhibits the glycine cleavage complex, a multienzyme complex that oxidizes gly-

cine (Ghrist and Stauffer, 1995; Ghrist et al., 2001). Furthermore, mutants of the glycine cleavage

complex displayed a significant positive fitness, suggesting that absence of glycine utilization

through C1 metabolism is beneficial in our amino acid-deficient environment. Altogether, this obser-

vation also underlines that amino acids are limiting in the environment and that their biosynthesis

and utilization control is important for growth. 19 of the 160 genes were associated with energy

metabolism and, more specifically, with sulfur assimilation (n = 7 genes) and respiration (n = 8

genes). Here, we deduce that importance of sulfur assimilation is directly caused by the lack of the

amino acids cysteine and methionine, which are the major pools of sulfur-containing compounds in

the cell. As a non-endogenous species, E. coli might not possess the adequate peptidases or pro-

teases to degrade and use the highly available protein casein. Identification of two of the three

genes of the Leloir pathway (galE and galT), involved in the uptake and conversion of galactose into

glucose, suggests that galactose might be a crucial nutrient for E. coli growth on CCA.
Eight genes mapped to membrane transport and were associated with two specific pathways: fer-

ric-enterobactin transport and glycine-betaine transport. Ferric-enterobactin transport allows the

cells to scavenge iron in a low-iron environment (Raymond et al., 2003; Hider and Kong, 2010).

Iron is an essential micronutrient and cheese is known to be iron-limited (Albar et al., 2014). Glycine

betaine is used by cells as an osmoprotectant in high osmolarity environments. During cheese curd

processing, high concentrations of NaCl are added (Guinee, 2004), and our CCA medium contains

3% NaCl to mimic these conditions. The importance for E. coli to maintain its cell osmolarity is also

suggested by the requirement of genes responsible for the transport of the ions sodium, potassium

and zinc.
In our experiment, the fact that all of the mutants are pooled together limits our ability to identify

genes whose phenotypes can be complemented by common goods (molecules released in the envi-

ronment) produced by neighboring cells. For example, given that iron is limiting in cheese, we

expect that enterobactin biosynthesis is an important pathway for growth in this environment. How-

ever, no genes from the enterobactin biosynthesis pathway (entCEBAH, entD and entF) had a signifi-

cant negative fitness value (average fitness of the enterobactin biosynthesis pathway: 0.1), while

individual growth of these enterobactin biosynthesis mutants from the KEIO collection was limited

on CCA compared to a rich, non-iron-limited medium (Figure 1—figure supplement 3).
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Figure 1. Identification of genes important for growth of E. coli alone on cheese curd agar (Figure 1—source data 1). (A) The pooled E. coli RB-TnSeq

library Keio_ML9 (Wetmore et al., 2015) was grown alone on cheese curd agar (CCA). Gene fitness values were calculated for 3298 genes at days 1, 2,

and 3 along with a t-score, which assesses how reliably the fitness value differs from 0. The fitness values obtained at the three timepoints are displayed

on a single volcano plot (3 points per gene). A t-score threshold of absolute(t-score)!3 was used to identify genes with strong fitness effects. 97% of

the genes fell below this threshold and have no strong and significant fitness effect. Black dots represent genes with strong negative fitness effects.

Altogether, they represent 160 different genes that are associated with a significant fitness value for at least one timepoint. (B) These 160 genes were

mapped to the KEGG BRITE Database for functional analysis and identification of required functions for E. coli growth on CCA. 84 of the 160 genes

had hits when mapped to the KEGG BRITE database.

DOI: https://doi.org/10.7554/eLife.37072.003

The following source data and figure supplements are available for figure 1:

Source data 1. RB-TnSeq analysis of E. coli’s growth alone on 10% cheese curd agar, pH7.

DOI: https://doi.org/10.7554/eLife.37072.012

Figure supplement 1. Pipeline of RB-TnSeq experiment using the E. coli Keio M9 library: from experimental set-up to normalized gene fitness and

t-score calculation.

DOI: https://doi.org/10.7554/eLife.37072.004

Figure supplement 2. Quantification of free amino acids in CCA.

DOI: https://doi.org/10.7554/eLife.37072.005

Figure supplement 3. Comparison of individual growth of enterobactin biosynthesis mutants on LB and CCA.

DOI: https://doi.org/10.7554/eLife.37072.006

Figure supplement 4. RB-TnSeq experiments using the P. psychrophila JB418 library.

DOI: https://doi.org/10.7554/eLife.37072.007

Figure supplement 4—source data 1. RB-TnSeq analysis of P. psychrophila’s growth alone, in pairwise conditions and with the community on 10%

cheese curd agar, pH7.

DOI: https://doi.org/10.7554/eLife.37072.008

Figure supplement 5. Competitive assays of 25 mutants of the Keio collection (Baba et al., 2006).

DOI: https://doi.org/10.7554/eLife.37072.009

Figure supplement 6. Map of the JB418_ECP1 transposon library generated in P. psychrophila JB418.

DOI: https://doi.org/10.7554/eLife.37072.010

Figure supplement 7. Quality assessment of all RB-TnSeq experiments.

DOI: https://doi.org/10.7554/eLife.37072.011
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In summary, functions of major importance for E. coli to grow alone in our experimental environ-
ment involved (i) response to low iron availability, (ii) response to osmotic stress and (iii) response to

limited available nutrients (specifically free amino acids). These required functions are consistent with

recently published results on the requirements of the mammary pathogenic E. coli (MPEC) during

growth in milk (Olson et al., 2018) except for resistance to osmotic stress which does not occur in

milk. We also generated an RB-TnSeq library in the bloomy rind cheese endogenous species P. psy-

chrophila JB418 and found comparable requirements for growth alone on cheese (Figure 1—figure

supplement 4).
To validate the results obtained with the RB-TnSeq library, we measured the fitness of individual

knockout mutants from the E. coli Keio collection (Baba et al., 2006). We tested 25 knockout

mutants corresponding to genes with a strong growth defect observed after one day of growth. We

carried out competitive assays between each knockout mutant and the wild-type strain on CCA. We

calculated each knockout mutant fitness as the log2 of the fold change of its abundance after one

day of growth. A z-score was also calculated to assess the confidence of that fitness. 21 of 25 knock-

out mutants displayed a fitness value lower than 0 with at least 95% confidence (Figure 1—figure

supplement 5). The remaining four mutant strains (brnQ, cysK, serA and trxA) were associated with

high fitness value variability across replicate experiments and had a lower z-score. Altogether, this

supports the reliability and validity of RB-TnSeq results.

Identification of E. coli genetic requirements for growth in pairwise
conditions
The growth of the E. coli library alone allowed us to determine the baseline set of genes required

for optimal growth in the model cheese environment. We next wanted to identify genes with nega-

tive fitness during growth when another species is present. First, we analyzed the growth of E. coli

and the partner species. We grew E. coli for 3 days on CCA in the presence of either H. alvei, G. can-

didum or P. camemberti. In addition to belonging to distinct domains or phyla, these three partners

are the typical members of a bloomy rind cheese community (such as Brie or Camembert). The pres-

ence of E. coli did not influence the growth of any partner species (Figure 2—figure supplement 1).

However, E. coli’s growth was reduced in the presence of each partner after three days of growth

(Figure 2A).
We then determined the genes associated with negative fitness during E. coli growth in each pair-

wise condition using RB-TnSeq (i.e. genes whose fitness value is negative and associated with an

absolute t-score greater than three in the pairwise condition) (Figure 2B, Figure 2—source data 1).

As performed above, barcode frequencies were compared between T0 and after growth with each

partner (at days 1, 2 and 3). As our goal is to compare genetic requirements for growth in interactive

and non-interactive conditions rather than to examine changes in requirements over time, we

grouped genes with a significant negative fitness for at least one timepoint as a single set of genes

for each pairwise condition. We identified 145 genes with negative fitness values in E. coli for growth

with H. alvei, 142 genes for growth with G. candidum and 131 genes for growth with P. camemberti.

Altogether they constitute a set of 153 genes that are required for optimal growth in at least one

pairwise culture.
Comparison of genes with negative fitness identified when E. coli is grown alone with the genes

identified when E. coli is grown in pairwise conditions is expected to highlight differences brought

about by the presence of another species (Figure 2C). Consistent presence of multiple genes of the

same pathway within only one of these sets of genes associated with negative fitness is likely to

point out a pathway specifically important in one condition. Thus, we can infer possible interactions

based on the different relevant pathways between interactive and non-interactive growth conditions.

Altogether, the 153 genes with a negative fitness in pairwise conditions and the 160 genes for E.

coli growth alone represent 235 unique genes (Figure 2C). These can be divided into three groups

of genes: (i) conserved negative fitness: genes with negative fitness in both growth alone and in all

pairwise conditions (n = 78), (ii) pairwise-alleviated negative fitness: any gene found to have a nega-

tive fitness during E. coli growth alone that was not associated with a negative fitness in at least one

of the three pairwise cultures (n = 82), and (iii) pairwise-induced negative fitness: any gene with neg-

ative fitness in the presence of at least one of the partners but not associated with a negative fitness

during growth alone (n = 75) (Figure 2C and D and Figure 2—figure supplement 2). We further
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Figure 2. E. coli genes with negative fitness during growth in pairwise conditions (Figure 2—source data 1). (A) We grew E. coli in pairwise conditions

on CCA with either H. alvei, G. candidum or P. camemberti. Asterisks indicate significant differences in growth of E. coli as compared to growth alone

at day 3 (Dunnett’s test, adjusted p-value!5%) (B) Using the E. coli RB-TnSeq library, we identified genes with negative fitness in each pairwise

condition at three timepoints (days 1, 2, 3). Each volcano plot shows fitness values of all 3298 genes at all timepoints (three points per gene). We

identified 145 genes with a negative fitness in the presence of H. alvei in at least one timepoint, 131 genes in pairwise culture with G. candidum and

142 genes in pairwise culture with P. camemberti. Altogether, they constitute 153 genes with negative fitness in pairwise conditions. (C) Comparing

these genes (dark blue) to the 160 genes with a negative fitness during E. coli growth alone (black), we obtained a total of 235 unique genes and

identified 78 genes that have a negative fitness both during growth alone and all pairwise conditions (conserved negative fitness), 75 genes that have a

negative fitness in at least one pairwise condition but not alone (pairwise-induced negative fitness) and 82 genes with a negative fitness in growth alone

but not in at least one pairwise condition (pairwise-alleviated negative fitness). (D) We selected a gene to illustrate conserved negative fitness (corA, 37

insertion mutants), pairwise-induced negative fitness (lpoB, 31 insertion mutants), and to illustrate pairwise-alleviated negative fitness (argH, 50 insertion

mutants). For each gene, we display the number of sequencing reads for associated insertion mutants in the T0 sample, in growth alone day 3 and

growth with G. candidum day 3. These sequencing reads are the raw data accounting for mutant abundance and used for fitness calculation (f

represents each gene’s fitness value). While reads are not rarefied in the fitness calculation pipeline, we used rarefied reads for the purpose of the

figure. Asterisks indicate genes with significant fitness values (consistent decrease in the number of reads per insertion mutant in the condition

compared to T0). (E) We mapped the genes associated with conserved, pairwise-induced, and pairwise-alleviated negative fitness to the KEGG BRITE

database. 41/75, 45/82 and 33/77 genes had hits.

DOI: https://doi.org/10.7554/eLife.37072.013

The following source data and figure supplements are available for figure 2:

Source data 1. RB-TnSeq analysis of E. coli’s growth in pairwise conditions on 10% cheese curd agar, pH7.

DOI: https://doi.org/10.7554/eLife.37072.016

Figure supplement 1. E. coli and community member growth curves alone, in pairwise conditions or during community growth.

Figure 2 continued on next page

Morin et al. eLife 2018;7:e37072. DOI: https://doi.org/10.7554/eLife.37072 7 of 26

Research article Microbiology and Infectious Disease



 

 20 

focused on the pairwise-alleviated and pairwise-induced negative fitness as these groups contain
genes potentially related to interactions.

Genes whose negative fitness is alleviated by pairwise growth can highlight processes that are of
importance for growth alone but no longer important because of the presence of a partner, thus
suggesting interactions between E. coli and the partner. Just over half of the genes with negative fit-
ness alone appeared to be relieved by the presence of a partner (n = 82 genes, Figure 2C), suggest-
ing major modifications of growth conditions following the introduction of a partner. We mapped
these 82 alleviated genes to the KEGG BRITE database to identify functions and pathways that are
no longer critical in the presence of a partner (Figure 2E). 16 genes were associated with unknown
or predicted proteins and did not map to any field of the database. Of the remaining genes, 45
mapped to modules of the KEGG orthology hierarchy.

Most of the genes with alleviated negative fitness were associated with the KEGG metabolism
module and are thus part of metabolic pathways. It is especially evident that pairwise growth leads
to major changes in the need for amino acid biosynthesis. For example, 6 out of the 8 genes of
valine and isoleucine biosynthetic pathways are no longer associated with a negative fitness during
pairwise growth (Figure 3C). In addition, 2 genes of arginine biosynthesis, 2 genes of methionine
biosynthesis as well as final steps of homoserine, aspartate and glutamate biosynthesis are no longer
required. Moreover, ilvY, the transcriptional activator of valine and isoleucine biosynthesis was also
among the genes no longer required for pairwise growth. Here, the dominant presence of amino
acid biosynthesis genes in the alleviated functions suggests cross-feeding of the pathway end-prod-
ucts or intermediates which are either provided directly by the partner species or made more avail-
able in the environment as a consequence of the partner’s metabolic activity. Thus, our data suggest
that pairwise growth may allow cross-feeding of the amino acids valine, isoleucine, arginine, methio-
nine, homoserine, aspartate and glutamate. Isoleucine and methionine are also intermediates of
cofactor biosynthesis, and genes associated with their biosynthesis were also mapped to metabolism
of cofactors and vitamins.

To understand if the genes with pairwise-alleviated negative fitness were related to a specific
partner, we investigated how each partner contributed to this gene set (Figure 2—figure supple-
ment 2). Of the 82 total genes, 36 were alleviated in all pairwise conditions, suggesting that any
partner leads to the compensation of these requirements. They included genes associated with
amino acid metabolism specific to homoserine and methionine biosynthesis. Of the remaining genes,
eight were specifically not required in the presence of H. alvei, nine were specifically not required in
the presence of G. candidum and nine were specifically not required in the presence of P. camem-
berti. Alleviation of leucine and valine biosynthesis was observed with both fungal partners, while
biosynthesis of arginine appeared to be no longer required specifically in the presence of G. candi-
dum. Fungal species are known to secrete proteases that digest small peptides and proteins
(Kastman et al., 2016; Boutrou et al., 2006b; Boutrou et al., 2006a) and may lead to increased
availability of amino acids in the environment.

We then analyzed the 74 genes with pairwise-induced negative fitness in order to identify func-
tions or pathways that become important in the presence of a partner (Figure 2E). These genes rep-
resent almost half (75 out of 153 – Figure 2C) of the genes with negative fitness in pairwise
conditions, suggesting that presence of a partner introduces new selection pressures. 33 genes
mapped to KEGG orthology terms. Among this gene set are pathways associated with signal trans-
duction, biofilm formation and drug resistance. They were related to three major responses: meta-
bolic switch (creB: carbon source responsive response regulator), response to stress and toxic
compounds (cpxA: sensory histidine kinase, oxyR: oxidative stress regulator, acrAB: multidrug efflux)
and biofilm formation (rcsC and rcsB: regulator of capsular synthesis, pgaC: poly-N-acetyl-D-glucos-
amine synthase subunit). Biofilms are microbial structures known to provide resistance to different
stresses, including resistance to antibiotics, and biofilm-inducing genes can be activated in the pres-
ence of stress events (Landini, 2009). The transcriptional regulator OxyR and the transduction

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.37072.014

Figure supplement 2. Comparison of the genes important for E. coli growth alone, in each pairwise condition or with the community.

DOI: https://doi.org/10.7554/eLife.37072.015
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system CpxA and CpxB are known coordinators of stress response and biofilm formation

(Gambino and Cappitelli, 2016; Dorel et al., 2006). While these genes represent only a small sub-

set of the pairwise-induced gene set, they could suggest that partner species are producing toxic

compounds or oxidative stress-inducing compounds.
We again investigated if these responses were partner-specific (Figure 2—figure supplement 2).

Of the 74 pairwise-induced negative fitness, 11 were found to have a negative fitness in the pres-

ence of all partners, 13 were specific to the presence of H. alvei, 24 were specific to the presence of

G. candidum and 11 were specific to the presence of P. camemberti. Despite involving different

genes, necessity of biofilm formation and response to toxic stress were associated with the presence

of all partners.
Finally, functional analysis of the conserved genes with negative fitness highlighted that functions

associated with membrane transport, including resistance to high osmolarity and iron transport as

well as functions associated with energy metabolism and aromatic amino acid biosynthesis were still

important to grow in the presence of a partner (Figure 2E).
We performed similar pairwise assays using the RB-TnSeq library of P. psychrophila JB418 with H.

alvei, G. candidum or P. camemberti. We identified a similar number of genes associated with pair-

wise-alleviated and pairwise-induced requirements (Figure 1—figure supplement 4) as we did when

using the E. coli library. As with E. coli, we can infer production of toxic stress by the partners as
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Figure 3. Comparison of E. coli genes with negative fitness within the community and in pairwise conditions (Figure 3—source data 1). (A) Using the

E. coli RB-TnSeq library, we identified genes required to grow with the community (H. alvei + G. candidum + P. camemberti). During growth with the

community, we identified a total of 126 genes with a negative fitness. (B) We compared the pairwise-induced and community-induced genes

(Interaction-induced genes) as well as the pairwise-alleviated and community-alleviated genes (Interaction-alleviated genes) to identify conservation of

interactions from pairwise to community and emergence of higher-order interactions. (C) Within the alleviated negative fitness, genes associated with

numerous amino acid biosynthetic pathways were identified. F6P: fructose-6-phosphate, PRPP: 5-phospho-ribose-1-di-phosphate, G3P: Glyceraldehyde-

3-phosphate, PEP: phosphoenol-pyruvate, Pyr: Pyruvate, Oxa: Oxaloacetate, 2-oxo: 2-oxoglutarate.

DOI: https://doi.org/10.7554/eLife.37072.017

The following source data is available for figure 3:

Source data 1. RB-TnSeq analysis of E. coli’s growth with the community on 10% cheese curd agar, pH7.

DOI: https://doi.org/10.7554/eLife.37072.018
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genes associated to DNA repair were identified with a negative fitness in pairwise conditions in the
functional analysis. However, cross-feeding by fungal partners was not as striking as for E. coli.

Identification of E. coli genetic requirements for growth within the
community and comparison to pairwise conditions
We next aimed to investigate the differences between genes with a negative fitness during growth

in a community (complex interactive condition) and genes with a negative fitness during growth in
associated pairwise conditions (simple interactive conditions) (Figure 2—figure supplement 2). We
grew the E. coli library with the complete community composed of H. alvei, G. candidum and P.

camemberti and we identified 126 genes with a reliable negative fitness (Figure 3A, Figure 3—
source data 1). E. coli’s final biomass was more reduced by the presence of the community than by
a single partner. However, the growth of each community member remained unaffected (Figure 2—

figure supplement 1).
We first identified community-induced and community-alleviated genes by comparing the genes

with a negative fitness in the community with the genes with a negative fitness during growth alone.

We identified 89 genes that had negative fitness for both community and alone (conserved negative
fitness), 37 genes with negative fitness only with the community (community-induced negative fit-
ness) and 71 genes with negative fitness only for growth alone (community-alleviated negative fit-
ness). As with a single partner, the presence of a complex community potentially relieves some

fitness effects while introducing new ones.
Comparing community-induced and pairwise-induced genes can reveal if and how community

complexity modifies the genes that are important in different interactive contexts compared to
growth alone (Figure 3B – Interaction-induced negative fitness). We identified 29 genes with a nega-
tive fitness in both pairwise and community growth compared to growth alone (conserved interac-
tion-induced negative fitness). These include genes associated with oxidative stress and biofilm

formation. These genes are likely to be associated with pairwise interactions which are maintained in
a community context.

Meanwhile, eight genes appeared to be specifically associated with negative fitness in the pres-
ence of the community (Figure 3B, community-specific induced genes), highlighting higher-order
interactions that emerge from a higher level of complexity in the community composition. Interest-
ingly, these genes represent only a small fraction (22%) of the community-induced requirements,

suggesting that most of the negative fitness effects observed in the community are derived from
pairwise interactions.

Finally, we identified 46 genes that have a negative fitness in pairwise conditions, but not during
growth alone or within the community (Figure 3B, pairwise-specific induced genes). These genes
could be related to interactions that are either alleviated or counteracted in a community, either by
the presence of a specific species or by the community as a whole. For example, some of the identi-

fied genes were associated with antimicrobial resistance, and, in a diverse community, other species
could degrade the putative antimicrobial molecules or prevent the producing species from secreting
it. Consequently, E. coli would be exposed to a lower level of antimicrobials, suppressing the neces-

sity of a resistance gene. Thus, the complex pattern of requirements for these genes may reflect
higher-order interactions.

We next investigated if the interactions related to pairwise-alleviated negative fitness and com-
munity-alleviated negative fitness were similar (Figure 3B – Interaction-alleviated negative fitness).
68 genes were no longer associated with a negative fitness in both pairwise conditions and with the
community compared to growth alone (conserved interaction-alleviated negative fitness). These
genes may represent pairwise interactions maintained in the community context. Amino acid biosyn-

thesis was highly represented within these genes and more specifically biosynthesis of valine, isoleu-
cine, methionine, homoserine, aspartate and glutamate (Figure 3C). This suggests that, despite the
presence of more species, these amino acids are still cross-fed.

We also identified 14 genes that no longer had a negative fitness in pairwise conditions com-
pared to growth alone yet remained with a negative fitness in growth with the community (pairwise-
specific alleviated negative fitness). These 14 genes represent a small fraction of the pairwise-allevi-

ated, thus suggesting that most of interactions related to pairwise-alleviation are maintained in the
community. Finally, only three genes were specifically alleviated in the community (community-spe-
cific alleviated fitness). This points out that presence of the full community does not lead to
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emergence of specific alleviation of fitness effects but that most of the fitness effect alleviations
observed in the community are conserved from pairwise interactions. In both cases, these 14 pair-

wise-specific and three community-specific alleviated genes could highlight existence of more
higher-order interactions. However, too few genes are involved to determine the exact nature of
these interactions.

Finally, we identified 75 genes with negative fitness in all conditions (core negative fitness). These
genes encompass functions including iron uptake and response to high osmolarity. Overall, they are
associated with response to environmental parameters that other species do not alleviate.

To summarize, the community-induced genes were mostly maintained from pairwise-induced
genes. Similarly, the genes that were community-alleviated were highly similar to the pairwise-allevi-
ated genes. However, we also observed emergence of higher-order interactions in the community

condition as numerous interactions observed in pairwise conditions (n = 46 + 14) were not conserved
in the community condition and specific interactions (n = 8 + 3) were observed in the community
condition. Altogether, 58% of the interactions observed in the community were from pairwise inter-

actions while 42% emerged from higher community complexity.
Again, we carried out similar experiments and analysis using the P. psychrophila JB418 RB-TnSeq

library generated in our laboratory. The results were highly similar to the ones observed with E. coli

in terms of number of genetic requirements alleviated in the presence of the community compared
to growth alone as well as the number genes specifically important to grow with the community
compared to growth alone (Figure 1—figure supplement 4). Finally, we consistently observed
importance of higher-order interactions, 61% of the observed interactions in the community were

conserved from pairwise interactions and 39% were higher-order interactions.

Differential expression analysis of E. coli in interactive conditions
versus growth alone
So far, we used a genome-scale genetic approach to investigate potential microbial interactions. As
a complementary strategy, we generated transcriptomic data for E. coli during growth in each previ-
ously described condition. Changes in transcriptional profiles can be a powerful indicator of an

organism’s response to an environment and have been used to identify E. coli pathways involved in
interactions (Croucher and Thomson, 2010; McAdam et al., 2014; Galia et al., 2017).

To measure E. coli gene expression, we extracted and sequenced RNA from each timepoint and
condition of the same samples used for RB-TnSeq above (after 1, 2 and 3 days of growth when
grown alone, in pairwise conditions or with the community). Comparison of transcriptional profiles
suggests a strong reorganization of E. coli gene expression in response to the presence of a partner

(Figure 4A, Figure 4—source data 1 and Figure 4—figure supplement 1).
We first focused on the genes differentially expressed between growth in pairwise conditions and

growth alone. We calculated the fold change of gene expression between pairwise growth and

growth alone and identified differentially expressed genes by screening for adjusted p-values lower
than 1% (Benjamini-Hochberg correction for multiple testing) and an absolute log2 of fold change
(logFC) greater than 1. To remain consistent with the analysis performed for the genetic require-

ments, we pooled the data of all timepoints after identifying the upregulated or downregulated
genes for each timepoint. We found a total of 966 upregulated and 977 downregulated genes
across all partners (482 upregulated genes and 478 downregulated genes in presence of H. alvei,

633 upregulated genes and 719 downregulated genes in presence of G. candidum, 626 upregulated
genes and 694 downregulated genes in presence of P. camemberti, Figure 4A). Almost half of E.
coli’s genome is subjected to expression modification, suggesting a global response to the presence
of a partner. We further investigated if differential expression in pairwise conditions is partner-spe-

cific (Figure 4—figure supplement 1). Around half of E. coli gene expression regulation in the pres-
ence of a partner appears to be independent of which partner is present. Also, a number of genes
were differentially expressed depending on the partner: 66 genes were specifically upregulated and

60 genes downregulated with H. alvei, 213 upregulated and 182 downregulated with G. candidum,
and 183 upregulated and 161 downregulated with P. camemberti.

Due to the larger gene set compared to RB-TnSeq, we performed KEGG pathway enrichment
analyses on the differentially expressed genes in pairwise conditions to determine upregulated func-
tions and pathways (Figure 4B). First, almost all of the aminoacyl-tRNA-synthetases and functions
associated with energy production were upregulated. Interestingly upregulation of energy
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production through aerobic respiration and the TCA cycle happened after 3 days of growth. Oxygen

availability (Gunsalus, 1992) and growth phase (Wackwitz et al., 1999) are the two known regula-

tors of aerobic respiration. At day 3, E. coli was observed to be in log phase when alone, whereas in

the presence of a partner, and especially with P. camemberti, E.coli was observed to enter the sta-

tionary phase between day 2 and day 3 (Figure 2 – figure supplement 1). Therefore, upregulation of

aerobic respiration is most likely associated with the growth stage difference between E. coli alone
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Figure 4. Differential expression analysis of E. coli during interactive and non-interactive growth conditions (Figure 4—source data 1). We used

RNASeq to investigate E. coli gene expression at three timepoints (1, 2 and 3 days) during growth on CCA alone, in pairwise conditions (with H. alvei,

G. candidum or P. camemberti) and with the community. (A) Using DESeq2 (Love et al., 2015), we identified up and downregulated genes during

growth in each pairwise condition compared to growth alone as well as up and downregulated genes during growth with the community compared to

growth alone. Differential expression analysis has been performed at three timepoints, however, we displayed the results of the three timepoints on a

single volcano plot. Only genes associated with an adjusted p-value lower than 1% (Benjamini-Hochberg correction for multiple testing) and an

absolute logFC higher than one were considered differentially expressed. (B) We regroup any genes upregulated in at least one pairwise condition as a

single set of pairwise-upregulated genes and did the same for pairwise-downregulated genes. Then, we performed functional enrichment analysis on

KEGG pathways for pairwise-downregulated genes, community-downregulated genes, pairwise-upregulated genes and community-upregulated genes.

Functional enrichment was performed using the R package clusterProfiler (Yu et al., 2012) and only the KEGG pathways enriched with an adjusted

p-value lower than 5% (Benjamini-Hochberg correction for multiple testing) were considered. (C) We compared pairwise-upregulated genes with

community-upregulated genes and pairwise-downregulated genes with community-downregulated genes to identify if expression regulation from

pairwise conditions is conserved in the community context and if we observe specific changes in pairwise or community conditions. (D) Within the

genes specifically upregulated during growth with the community, we observed the upregulation of multiple genes associated with the nitrogen

starvation response. Most of these genes were also downregulated in pairwise conditions.

DOI: https://doi.org/10.7554/eLife.37072.019

The following source data and figure supplement are available for figure 4:

Source data 1. Differential expression analysis of E. coli’s growth in pairwise and with the community versus growth alone.

DOI: https://doi.org/10.7554/eLife.37072.021

Figure supplement 1. RNASeq analysis of E. coli gene expression during growth alone and in pairwise conditions.

DOI: https://doi.org/10.7554/eLife.37072.020
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and with a partner. While these functions were upregulated regardless of the partner, more genes

were upregulated in the presence of G. candidum than the other partners and thus, several path-
ways associated with nucleotide biosynthesis (C1-pool by folate, purine metabolism, and pyrimidine

metabolism) were specifically upregulated with this partner. This suggests that either E. coli and G.

candidum compete for nucleotide compounds from the environment or that presence of G. candi-
dum leads to an increased demand of nucleotide compounds for E. coli’s metabolism and growth.

We performed a similar KEGG pathway enrichment analysis on the downregulated genes in pair-
wise conditions. Pathways involved in the biosynthesis of amino acids, specifically tyrosine, phenylal-

anine, tryptophan, methionine, lysine, arginine, homoserine, leucine, glutamate, threonine and
glycine, appeared to be the principal downregulated functions in the presence of a partner and

more particularly with a fungal partner. Interestingly, some amino acid biosynthetic pathways were

upregulated later in the growth but not significantly enriched in the enrichment analysis (phenylala-
nine, tyrosine and leucine). Downregulation of amino acid biosynthesis suggests that the partner

species generates amino acids available for cross-feeding. The observation of this interaction in the

transcriptome data is consistent with our interpretation of RB-TnSeq results and reinforces the likeli-

hood of such an interaction. However, late upregulation of some amino acid biosynthesis suggests
that as the partner grows along with E. coli they eventually end up competing for amino acids, lead-

ing to biosynthesis upregulation. This late competition was unlikely to be detected by RB-TnSeq

using our current analysis.
To summarize, presence of a partner triggers a significant and dynamic reorganization of E. coli

gene expression. Most of these modifications restructure E. coli metabolic activity: mostly in

response to modification of growth phase, but also in response to nutrient availability changes and

for example to benefit from cross-feeding and common goods.
Next, we aimed to determine whether E. coli gene expression reorganization significantly

changes when grown with the full community as compared to growth in pairwise conditions. To do

so, we first calculated E. coli gene logFC at each timepoint between growth with the community and

growth alone. We further analyzed genes with adjusted p-values lower than 1% (Benjamini-Hochberg
correction for multiple testing) and absolute logFC greater than 1. After pooling across timepoints,

we identified 465 upregulated and 476 downregulated genes in the presence of the community ver-

sus growth alone (Figure 4A). We then compared these genes to the 966 upregulated genes and
977 downregulated genes in pairwise conditions versus growth alone (Figure 4B and C).

First, 416 genes were found to be upregulated in both pairwise and community growth versus
growth alone (conserved upregulated genes). Enrichment analysis highlighted functions that were

previously described as upregulated in most of the pairwise conditions: aminoacyl-tRNA-synthetase
and energy metabolism (Figure 4B). This suggests that certain interactions that E. coli experienced

in pairwise conditions are conserved in the community context. To investigate if the addition of simi-

lar interactions from different partners leads to an amplified response, we explored if the magnitude
of expression changes in these pathways is higher in the community. We performed differential

expression analysis on the genes comparably regulated in pairwise conditions and with the commu-

nity (Figure 4—figure supplement 1). 50 of the 416 conserved upregulated genes were significantly
more upregulated in community growth compared to pairwise growth. Among them, sulfate assimi-

lation genes were overrepresented. This suggests that similar pairwise interactions may be additive

in the community, leading to a stronger transcriptional response.
Next, we identified 549 genes that were specifically upregulated in pairwise conditions versus

growth alone and not upregulated in community versus growth alone (pairwise-specific upregulated
genes). KEGG pathway enrichment analysis highlighted that these genes were mostly associated

with quorum sensing, fatty acid metabolism and oxidative phosphorylation (Figure 4B). This obser-

vation suggests that the presence of additional species in the community counteracts or prevents
certain pairwise interactions. It supports the presence of higher-order interactions as highlighted

with the RB-TnSeq experiments. Indeed, more than half of the upregulated genes observed in pair-

wise conditions are not conserved with the community.
Finally, 49 genes were specifically upregulated during community growth versus growth alone

(community-specific upregulated genes). Emergence of specific expression patterns with the com-

munity also suggests the existence of higher-order interactions. However, these community-specific

upregulated genes represent only a small fraction (10%) of upregulated genes within the community.
Thus, most expression upregulation observed with the community is conserved from expression
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upregulation observed in pairwise conditions. Genes specifically upregulated with the community
were associated with the biosynthesis of valine, leucine, and isoleucine, pyrimidine metabolism as
well as arginine and proline metabolism (Figure 4B). Upregulation of certain amino acid biosynthesis
pathways suggests that despite potential cross-feeding from individual partners, addition of many
partners eventually leads to competition. Upregulation of pyrimidine, arginine and proline metabo-
lism however is part of a larger response; the response to nitrogen starvation (Figure 4D). This
response facilitates cell survival under nitrogen-limited conditions. Specifically, upregulated genes
included all the genes involved in the regulatory loop of the transcriptional regulator NtrC (glnL) and
nitrogen utilization as well as NtrC transcriptional targets: the transcriptional regulator Nac (nac), the
operon rutABCDEFG involved in ammonium production by uracil catabolism, the astABCDE operon
constituting the arginine degradation pathway (AST pathway) and the two regulators of the stringent
response, relA and spoT. Thus, the presence of additional species in the community specifically trig-
gers the activation of the response to nitrogen starvation, which suggests a potential higher compe-
tition for nitrogen in the community context.

We performed a similar analysis on downregulated genes in pairwise conditions and with the
community versus growth alone to investigate if transcriptional downregulation in pairwise and com-
munity conditions are similar (Figure 4C). We identified 448 genes that were downregulated during
both pairwise and community growth conditions versus growth alone (conserved downregulated
genes). Enrichment analysis pointed to the downregulation of amino acid biosynthesis as well as cys-
teine and methionine metabolism. Therefore, consistent with our RB-TnSeq data, this suggests that
cross-feeding from a single partner is maintained in a more complex context. 527 genes were specif-
ically downregulated in pairwise conditions and not with the community (pairwise-specific downregu-
lated genes). Despite the large number of genes, no specific functions were enriched. However, the
rutABCDEFG and astABCDE operons associated with the response to nitrogen starvation were
downregulated in each pairwise condition (Figure 4D). Altogether, pairwise-specific downregulated
genes represent 54% of the genes downregulated in pairwise conditions, thus strongly suggesting
higher-order interactions. Here, the presence of the community may trigger a highly specific
response that would otherwise be downregulated in the presence of only one species. Finally, also
highlighting potential higher-order interactions, 28 genes were specifically downregulated when E.
coli is grown with the community (community-specific downregulated genes). However, this repre-
sents only 6% of the observed downregulated genes in the community, highlighting again that most
of the gene expression regulations in the presence of the community are conserved from gene
expression regulations pairwise interactions.

To conclude, most of the changes in E. coli gene expression during growth with the community
were similar to a subset of expression changes observed in pairwise conditions. Moreover, some of
these changes were amplified in the community compared to pairwise. This suggests that while a
large part of transcriptional regulation in the community results from pairwise interactions, similar
interactions from different partners may be additive in the community and exert a stronger impact
on transcription. Also, the observed changes in nitrogen availability-related transcription suggest
that community growth may induce new metabolic limitations.

Discussion
In this work, we used the model organism E. coli as a readout for microbial interactions in a model
cheese rind microbiome. We used genome-scale approaches to determine the changes in E. coli’s
genetic requirements and gene expression profiles in conditions with increasing levels of community
complexity. Our analysis highlighted both important changes in E. coli’s genetic requirements
between interactive and non-interactive conditions as well as deep reorganization of E. coli’s gene
expression patterns. We identified a variety of interactive mechanisms in the different interactive
contexts. Our data revealed that interactions within the community include both competitive and
beneficial interactions. By reconstructing a community from the bottom up, we were able to investi-
gate how interactions in a community change as a consequence of being in a more complex, albeit
still simple, community. RNASeq and RB-TnSeq consistently showed that around half of the interac-
tions in a community can be attributed to pairwise interactions and the other half can be attributed
to higher-order interactions. Although community structure is argued to be predictable from pair-
wise interactions in specific cases, higher-order interactions are believed to be responsible for the

Morin et al. eLife 2018;7:e37072. DOI: https://doi.org/10.7554/eLife.37072 14 of 26

Research article Microbiology and Infectious Disease



 

 27 

general lack of predictability (Billick and Case, 1994; Friedman et al., 2017; Momeni et al., 2017).

Similarly, such higher-order interactions have been shown to be responsible for the unpredictability
of community function from individual species traits (Sanchez-Gorostiaga et al., 2018). Our work

demonstrates the existence and prevalence of these higher-order interactions even within a simple
community.

Together, RB-TnSeq and RNASeq provided insight into mechanisms of mutualism between micro-
bial species in this model system. One major interaction mechanism appears to be cross-feeding of

amino acids from fungal partners. Although amino acid biosynthesis pathways were strongly
required when E. coli grew alone, the presence of fungal species, but not bacterial species, led to fit-

ness effect alleviation and downregulation of amino acid biosynthesis. This suggests that fungi

increase the availability of free amino acids in the environment. Cheese-associated fungal species
are known to secrete proteases that can degrade casein, the major protein found in cheese

(Kastman et al., 2016; Boutrou et al., 2006b; Boutrou et al., 2006a), and therefore may increase
the availability of an otherwise limiting resource. Although our model system is based on cheese,

interactions based on cross-feeding are widely observed in other environments, such as soil, the

ocean or the human gut (Freilich et al., 2011; Pacheco et al., 2018; Goldford et al., 2018). For
example, in the gut microbiome, Bifidobacteria can ferment starch and fructooligosaccharides and

produce fermentation products including organic acids such as acetate which can in turn be con-
sumed by butyrate-producing bacteria like Eubacterium hallii (Belenguer et al., 2006; De Vuyst

and Leroy, 2011; Flint et al., 2012). Cross-feeding of other nutrients in the gut has also been

uncovered using a related approach (INSeq) which found that vitamin B12 from Firmicutes or Actino-
bacteria was important for the establishment of Bacteroides thetaiotaomicron in mice

(Goodman et al., 2009).
Our results also revealed mechanisms of competition within the community. RNASeq highlighted

that both siderophore production and uptake are upregulated in interactive conditions, suggesting
that there is competition for iron between species. Competition for iron is frequently observed

across many environments, including cheese, as iron is an essential micronutrient for microbial
growth and often a limited resource (Monnet et al., 2012; Albar et al., 2014; Stubbendieck and

Straight, 2016; Traxler et al., 2012). Interestingly, although we were able to detect fitness defects

for siderophore uptake using RB-TnSeq, we did not see fitness defects for siderophore biosynthesis
mutants. Because RB-TnSeq relies on a pooled library of mutants, one of the limitations to this

approach is that it is difficult to detect fitness effects for genes associated with the production of
common goods. For example, in the pooled library, most cells have wild-type siderophore biosyn-

thesis genes, and thus produce and secrete siderophores into the environment under iron limitation.

A consequence of this is that any cell that has lost the ability to produce siderophores can readily
access the siderophores produced by neighboring cells. In contrast, the genes for uptake of com-

mon goods should remain crucial, and accordingly, we do observe fitness defects in the siderophore

uptake genes. For this reason, using RNASeq can help overcome some of the limitations, such as
pooling effects, associated with RB-TnSeq.

Interactions between species also appeared to lead to stressful growth conditions, as RB-TnSeq
showed the need for genes to deal with growth in the presence of toxic compounds. G. candidum is
known to produce and excrete D-3-phenyllactic acid and D-3-indollactic acid, which inhibit the

growth of Gram-negative and Gram-positive bacteria in the cheese environment (Boutrou and Gué-

guen, 2005; Dieuleveux et al., 1998). Also, strains of H. alvei isolated from meat have been shown
to produce compounds inhibiting biofilm formation in Salmonella enterica serovar Enteritidis

(Chorianopoulos et al., 2010). To begin to understand the extent to which the interactions we
detected with E. coli were specific to this species, or more general, we performed similar RB-TnSeq

experiments with the cheese isolate Pseudomonas psychrophila. This comparative approach showed

that some responses to growth with other species are conserved, such as those needed to survive
stress conditions, while others differ between the two species such as amino acid cross-feeding. This

further highlights the ability to detect the dynamic nature of interactions, which not only change

with community complexity, but also with the composition of the community.
While our analysis highlighted global changes occurring as a consequence of interactions, and

some of the key underlying interaction mechanisms, many more aspects of the biology occurring

within communities are likely to be uncovered even within this simple model system. For example,
much of our current analysis is limited to well-characterized pathways with strong negative fitness
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effects, yet many uncharacterized genes were also identified as potentially involved in interactions.
Further investigation of these genes could uncover novel interaction pathways. Additionally, analysis
of the exact ways in which community members modify the growth environment, such as through
the production of extracellular metabolites, will be important to fully understand the molecular
mechanisms of interactions.

Altogether, this study revealed the intricacy, redundancy and specificity of the many interactions
governing a simple microbial community. The ability of E. coli to act as a probe for molecular inter-
actions, the robustness of RB-TnSeq, and its complementarity with RNASeq open new paths for
investigating molecular interactions in more complex communities, independently of the genetic
tractability of their members, and can contribute to a better understanding of the complexity and
diversity of interactions within microbiomes. Finally, our work provides a starting point for better
understanding the exact nature of higher-order interactions, and how they impact microbial
communities.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Library, strain background
(Escherichia coli K12)

Keio collection PMID: 16738554 CGSC, RRID:SCR_002303 Collection of 3,818
E. coli knockout strains

Library, strain background
(Escherichia coli K12)

Keio_ML9 PMID: 25968644 RB-TnSeq library of E. coli
K12 BW25113 (152,018
pooled insertion mutants)

Library, strain background
(Pseudomonas psychrophila)

JB418_ECP1 this paper RB-TnSeq library generated in the
P. psychrophila JB418 strain
isolated from cheese (272,329
pooled insertion mutants)

Strain, strain background
(Escherichia coli K12)

Keio ME9062 PMID: 16738554 CGSC#: 7636 Parent strain of the Keio
collection mutants. Also referred
as E. coli K12 BW25113

Strain, strain background
(Hafnia alvei)

Hafnia alvei JB232 this paper Strain isolated from cheese

Strain, strain background
(Geotrichum candidum)

Geotrichum candidum Danisco - CHOOZIT GEO13 LYO 2D Industrial starter for
cheese production

Strain, strain background
(Penicillium camemberti)

Penicllium camemberti Danisco - CHOOZIT PC SAM 3 LYO 10D Industrial starter for
cheese production

Strain, strain background
(P. psychrophila)

Pseudomonas
psychrophila JB418

this paper Strain isolated from cheese

Strain, strain
background (E. coli)

E. coli APA766 PMID: 25968644 donor WM3064 which carries
the pKMW7 Tn5 vector library
containing 20 bp barcodes

Sequence-based reagent NEBNext Multiplex Oligos
for Illumina (Set 1); NEBNext
multiplex Oligos for Illumina
(Set 2)

New England Biolabs NEB #E7335
(lot 0091412);,
NEB #E7500
(lot 0071412)

Sequence-based reagent Nspacer_barseq_pHIMAR;
P7_MOD_TS_index3 primers

PMID: 25968644 Primers for transposon-insertion
sites amplication for P. psychrophila
RB-TnSeq library characterization

Sequence-based reagent BarSeq_P1;
BarSeq_P2_ITXXX

PMID: 25968644 Primers for RB-TnSeq PCR
(amplification of the barcode
region of the transposon)

Commercial assay or kit NEBNext Ultra DNA Library
Prep Kit for Illumina

New England Biolabs NEB #E7645

Commercial assay or kit MinElute purification kit Qiagen ID:28004

Commercial assay or kit Turbo DNA-free kit AMBION, Life Technologies AM1907

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Commercial assay or kit MEGAclear Kit Purification
for Large Scale Transcription
Reactions

AMBION, Life Technologies AM1908

Commercial assay or kit Ribo-Zero rRNA removal kit
(bacteria); Ribo-Zero rRNA
removal kit (yeast)

Illumina MRZMB126;
MRZY1306

Commercial assay or kit NEBNextUltraTM RNA
Library Prep Kit for
Illumina

New England Biolabs NEB #E7770

Software, algorithm Geneious http://www.geneious.com

Software, algorithm Perl https://www.perl.org/

Software, algorithm R https://www.r-project.org/

Other MapTnSeq.pl;
DesignRandomPool.pl;
BarSeqTest.pl

PMID: 25968644 Perl scripts for RB-TnSeq library
characterization and RB-TnSeq
analysis - https://bitbucket.org/
berkeleylab/feba

Other DESeq2 PMID: 25516281 R package for RNASeq analysis

Strains and media
Strains
The following strains have been used to reconstruct the bloomy rind cheese community: H. alvei

JB232 isolated previously from cheese (Wolfe et al., 2014) and two industrial cheese strains: G. can-

didum (Geotrichum candidum GEO13 LYO 2D, Danisco – CHOOZITTM, Copenhagen, Denmark) and

P. camemberti (PC SAM 3 LYO 10D, Danisco - CHOOZITTM). The strain P. psychrophila JB418 was

isolated from a sample of Robiola due latti (Italy) (Wolfe et al., 2014) and used for all the experi-

ments involving Pseudomonas. All the E. coli strains used in this study shared the same genetic back-

ground of the initial strain E. coli K12 BW25113. The use of the different strains is described in

Table 1.

Medium
All growth assays have been carried out on 10% cheese curd agar, pH7 (CCA) (10% freeze-dried

Bayley Hazen Blue cheese curd (Jasper Hill Farm, VT), 3% NaCl, 0.5% xanthan gum and 1.7% agar).

The pH of the CCA was buffered from 5.5 to 7 using 10M NaOH.

Growth curve assays on 10% cheese curd agar, pH7
The following growth assays are distinct from the growths carried out for RB-TnSeq and fitness anal-

ysis (see below).
Assays have been performed in at least triplicates. Growth assays have been carried out for the E.

coli JW0024 strain (Baba et al., 2006) and P. psychrophila JB418 during growth alone, in pairwise

conditions with either H. alvei JB232, G. candidum or P. camemberti and with the full community.

E. coli was pre-cultured overnight in liquid LB-kanamycin (50 mg/ml) at 37˚C and P. psychrophila
JB418 was pre-cultured overnight in LB at room temperature (RT) . Then, for growth alone assays,

1000 cells of E. coli or P. psychrophila JB418 were inoculated on a 96 well plate containing 200 mL of

Table 1. E. coli strains used during the study.
Experiment E. coli strain(s) Reference

RB-TnSeq E. coli Keio_ML9 library (Wetmore et al., 2015)

Growth assays E. coli JW0024 strain (undisrupted mutant) (Baba et al., 2006)

Competition assays WT: Keio ME9062
Mutants: (Figure 1—figure supplement 5)

(Baba et al., 2006)

DOI: https://doi.org/10.7554/eLife.37072.022
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CCA per well. For pairwise growth assays, either E. coli or P. psychrophila JB418 was co-inoculated

with either H. alvei JB232, G. candidum or P. camemberti at a ratio of 1:1 cell (1000 cells of E. coli

and 1000 cells of the partner). Finally, for growth assay with the community, E. coli or P. psychrophila

JB418 have been co-inoculated with H. alvei JB232, G. candidum and P. camemberti at a ratio of

10:10:10:1 cells.
Growth assays were then carried out for 3 days at RT. Agar plugs from 96 well plates were har-

vested at T = 0 hr, 6 hr, 12 hr, 24 hr, 36 hr, 48 hr, 72 hr and 120 hr for E. coli growth assays and

T = 0 hr, 12 hr, 24 hr, 48 hr and 72 hr for P. psychrophila JB418 growth assays. Agar plugs were

homogenized in 1 mL of PBS1X-Tween0.05% and three dilutions were plated on different media to

measure growth of each species (see Table 2). Plates were incubated for 24 hr at 37˚C for E. coli

and 2 days at RT for P. psychrophila JB418. After incubation, colony forming units (CFUs) were

counted to estimate the number of bacterial cells on the cheese curd agar plates.
Growth alone of H. alvei JB232, G. candidum and P. camemberti have also been carried out simi-

larly to E. coli and P. psychrophila JB418 growth alone.

P. psychrophila JB418 genome sequencing, assembly and annotation
P. psychrophila JB418 gDNA was sequenced using Pacific Biosciences (PacBio), Oxford Nanopore

Minion (Oxford Nanopore, Oxford, UK) and Illumina sequencing. PacBio library preparation and

sequencing were performed by the IGM Genomics Center at the University of California San Diego.

Nanopore library preparation and sequencing were done at the University of California, Santa Bar-

bara as part of the Eco-Evolutionary Dynamics in Nature and the Lab (ECOEVO17). Illumina library

preparation and sequencing were done at the Harvard University Center for Systems Biology. Canu

was used to assemble the PacBio and nanopore reads (Koren et al., 2017). Illumina data was then

used to correct sequencing error using the software Pilon (Walker et al., 2014). The assembled

genome was annotated using the Integrated Microbial Genomes and Microbiomes (IMG/M) system

(Markowitz et al., 2012). The P. psychrophila JB418 genome is 6,072,477 nucleotides long. It con-

tains a single circular chromosome of 5.85 Mb and 4 plasmids of 172.2 Kb, 37.7 Kb, 5.8 Kb and 2.4

Kb. 6060 genes including 5788 open reading frames were identified. This genome is publicly avail-

able on the IMG/M website as IMG Genome ID 2751185442.

Transposon mutant library construction in P. psychrophila JB418
P. psychrophila JB418 was mutagenized by conjugation with E. coli strain APA766 (donor WM3064

which carries the pKMW7 Tn5 vector library containing 20 bp barcodes) (Wetmore et al., 2015).

This donor strain is auxotrophic for diaminopimelic acid (DAP). The full collection of the APA766

donor strain (1 mL) was grown up at 37˚C overnight at 200 rpm. Four 25 mL cultures (each started

with 250 mL of APA766 stock) were grown in LB-kanamycin:DAP (50 mg/mL kanamycin and 60 mg/mL

DAP). A 20 mL culture was started from an individual P. psychrophila JB418 colony in LB broth and

grown at RT overnight at 200 rpm. E. coli donor cells were washed twice with LB and resuspended

in 25 mL LB. Donor and recipient cells were then mixed at a 1:1 cell ratio based on OD600 measure-

ments, pelleted, and resuspended in 100 mL. This was done separately for each of the four E. coli

cultures. 40 mL were plated on nitrocellulose filters on LB plates with 60 mg/mL DAP. Two filters

were used for each of the four conjugation mixtures (eight total conjugations). The conjugations

took place for 6 hr at RT. After 6 hr, the filters were each resuspended in 2 mL of LB broth and then

plated on LB:kanamycin (50 mg/mL) for selection of transconjugants. 20 plates were plated of a 1:2

Table 2. Organization of CFU’s quantification for growth assays.
E. coli + H. alvei
JB232 LB (E. coli + H. alvei JB232 CFUs) LB-kanamycin (50 mg/ml) (E. coli CFUs)

E. coli + G. candidum LB-kanamycin:cycloheximide (50 mg/ml and 10 mg/ml) (E. coli CFUs) LB-chloramphenicol (G. candidum CFU’s)

E. coli + P.
camemberti

LB-kanamycin:cyclohexamide (50 mg/ml and 10 mg/ml) (E. coli CFUs) LB-chloramphenicol (50 mg/ml)(P. camemberti CFU’s)

E. coli + Community LB-cyclohexamide (10 mg /mL) (E. coli and H. alvei JB232 CFU’s), LB-kanamycin:cyclohexamide (50 mg/ml and 10 mg/ml) (E. coli
CFU’s) and LB-chloramphenicol (50 mg/ml) (G. candidum and P. camemberti CFU’s)

DOI: https://doi.org/10.7554/eLife.37072.023
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dilution for each conjugation (160 plates total). Transconjugants were pooled and harvested after

three days of growth on selection plates. The pooled mixture was diluted back to 0.25 in 100 mL of

LB:kanamycin (50 mg/mL). The culture was then grown at RT to an OD600 of 1.3 before glycerol was

added to 10% final volume and 1 mL aliquots of the library (named JB418_ECP1) were made and

stored at !80˚C for future use.

TnSeq sequencing library preparation for P. psychrophila JB418 and
TnSeq data analysis
Library preparation was performed as in Wetmore et al., 2015 with slight modifications

(Wetmore et al., 2015).

DNA extraction
DNA was extracted from the P. psychrophila JB418_ECP1 RB-TnSeq library by phenol:chloroform

extraction. Briefly, the cell pellet was vortexed at maximum speed for 3 min in the presence of 500

mL buffer B (200 mM NaCl,20mM EDTA sterilized by filtration), 210 mL of 20% SDS, a 1:1 mixture of

425–600 mM and 150–212 mm acid-washed beads, and 500 mL of phenol:chloroform, pH 8. The sam-

ple was then centrifuged for 3 min at 4˚C at 8000 rpm prior to removing the aqueous phase to a

new tube. 1/10 of sample aqueous phase volume of 3M sodium acetate was then added along with

one aqueous phase volume of ice cold isopropanol. The sample was then placed for ten minutes at

!80˚C before centrifugation for five minutes at 4˚C at 13000 rpm. The supernatant was discarded

and 750 mL of ice cold 70% ethanol was added before another centrifugation for five minutes at 4˚C
at 13000 rpm. The supernatant was discarded and the DNA pellet was allowed to air dry before

resuspension in 50 mL of nuclease-free water. DNA was quantified with Qubit double-stranded DNA

high-sensitivity assay kit (Invitrogen, Carlsbad, CA).

DNA fragmentation and size selection
2 mg of DNA was sheared with a Covaris E220 focused-ultrasonicator with the following settings:

10% duty cycle, intensity 5, 200 cycles per burst, 150 s. DNA was split into two aliquots (1 mg each)

and samples were size-selected for fragments of 300 bp using 0.85X Agencourt AMPure XP beads

(Invitrogen) with a 1.4x ratio following the manufacturer’s instructions.

Library preparation
The entire 20 mL volume of these two size-selected samples were then each used as input into the

NEBNext End Prep step 1.1 of the NEBNext Ultra DNA Library Prep Kit for Illumina (New England

Biolabs, Ipswich, MA) protocol. The remainder of the manufacturer’s protocol was then followed

with the exception that for adapter ligation, we used 0.8 mL of 15 mM double-stranded Y adapters.

Adapters were prepared by first combining 5 mL of 100 mM Mod2_TS_Univ (ACGCTCTTCCGATC*T)

and 5 mL of 100 mM Mod2_TruSeq (/5’P/GATCGGAAGAGCACACGTCTGAACTCCAGTCA. This mix-

ture was then incubated in a thermocycler for 30 min at 37˚C, followed by ramping at 0.5˚C per sec-

ond to 97.5˚C before a hold at 97.5˚C for 155 s. The temperature was then decreased by 0.1˚C per

five seconds for 775 cycles, followed by a hold at 4˚C. Annealed adapters were diluted to 15 mM in

TE and stored at !80˚C before use. AMPure XP ratios for a 200 bp insert size were used as recom-

mended in Table 1.1 of the NEBNext Ultra DNA Library Prep Kit for Illumina manual.
To enrich for transposon-insertion sites, PCR amplification was done on the adapter-ligated DNA

with NEBNext Q5 Hot Start HiFi Master Mix and Nspacer_barseq_pHIMAR and P7_MOD_TS_index3

primers (Wetmore et al., 2015) with the following program: 98˚C 30 s, 98˚C 10 s, 65˚C 75 s, repeat

steps 2–3 24X, 65˚C 5 min, and then maintained at 4˚C. Following PCR and clean-up of step 1.5 of

the NEBNext Ultra DNA Library Prep Kit for Illumina manual, the two preps were pooled and the

concentration was quantified with Qubit double-stranded DNA high-sensitivity assay kit (Invitrogen).

A second size selection clean-up was performed by repeating step 1.5 of the NEBNext Ultra DNA

Library Prep Kit for Illumina manual.
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Library sequencing
The sample was analyzed on an Agilent TapeStation and the average size was 380 bp and the con-

centration was 57 pg/mL. This sample was then submitted for sequencing on a HiSeq 2500 Rapid

Run (150 bp fragments, paired-end) at the UCSD IGM Genomics Center.

Library characterization
TnSeq reads were analyzed with the Perl script MapTnSeq.pl from (Wetmore et al., 2015). This

script maps each read to the P. psychrophila genome. The script DesignRandomPool.pl

(Wetmore et al., 2015) was used to generate the file containing the list of barcodes that consis-

tently map to a unique location as well as their location. We obtained a total of 272,329 insertion

mutants. The transposon was inserted in the central part of a gene for 143,491 of these insertion

mutants covering 83% of P. psychrophila JB418 genome (Figure 1—figure supplement 6).

RB-TnSeq experiments for E. coli and P. psychrophila JB418
The E. coli barcoded transposon library Keio_ML9 and the P. psychrophila strain JB418 library were

used for RB-TnSeq fitness assays on CCA during growth alone, growth in pairwise condition with

each bloomy rind cheese community member and during growth with the full community. Figure 1—

figure supplement 1 provides a description of the fitness assays as well as fitness calculation.

Library pre-culture
Each library has to be initially amplified before use. One aliquot of each library was thawed and inoc-

ulated into 25 mL of liquid LB-kanamycin (50 mg/mL). Once the culture reached mid-log phase

(OD = 0.6–0.8), 5 mL of that pre-culture was pelleted and stored at !80˚C for the T0 reference in

the fitness analysis. The remaining cells were used to inoculate the different fitness assay conditions.

Inoculations
For each RB-TnSeq fitness assay, 7*106 cells of the library pre-culture were inoculated by spreading

evenly on a 100 mm petri dish containing 10% CCA, pH seven after having been washed in PBS1x-

Tween0.05%. This represents on average 50 cells per insertion mutant. For each pairwise assay,

7*106 cells of the partner were co-inoculated with the library. For the community assay, 7*106 cells

of H. alvei JB232 and G. candidum as well as 7*105 cells of P. camemberti were co-inoculated with

the library. For each condition, assays were performed in triplicate.

Harvest
Harvests were performed at T = 24 hr, 48 hr and 72 hr. Sampling was done by flooding a plate with

1.5 mL of PBS1X-Tween0.05% and gently scraping the cells off. The liquid was then transferred into

a 1.5 mL microfuge tube and cells were pelleted by centrifugation. After removing the supernatant,

the cells were washed in 1 mL of RNA-protect solution (Qiagen, Hilden, Germany), pelleted and

stored at !80˚C before further experiments.

gDNA and mRNA extraction
gDNA and mRNA were simultaneously extracted by a phenol-chloroform extraction (pH 8) from

samples of the competitive assays. For each extraction: 125 mL of 425–600 mm acid-washed beads

and 125 mL of 150–212 mm acid-washed beads were poured in a screw-caped 2 mL tube. 500 mL of

2X buffer B (200 mM NaCl, 20 mM EDTA) and 210 mL of SDS 20% were added to the tube as well as

the pellet and 500 mL of Phenol:Chloroform (pH 8). Cells were lysed by vortexing the tubes for 2 min

at maximum speed. Aqueous and organic phases were separated by centrifugation at 4˚C, 8,000
RPM for 3 min and 450 mL of the aqueous phase (upper phase) was recovered in a 1.5 mL eppendorf

tube. 45 mL of sodium acetate 3M and 450 mL of ice cold isopropanol were added before incubating

the tubes at !80˚C for 10 min. The tubes were then centrifuged for 5 min at 4˚C at 13,000 RPM. The

pellet was then washed in 750 mL of 70% ice cold ethanol and re-suspended in 50 mL of DNAse/

RNAse free water. Each sample was split into 2 times 25 mL and stored at !80˚C until further

analysis.
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Library preparation and sequencing
After gDNA extraction, the 98˚C BarSeq PCR as described in Wetmore et al., 2015 was used to

amplify only the barcoded region of the transposons. Briefly, PCR was performed in a final volume

of 50 mL: 25 mL of Q5 polymerase master mix (New England Biolab), 10 mL of GC enhancer buffer

(New England Biolab), 2.5 mL of the common reverse primer (BarSeq_P1 – Wetmore et al., 2015) at

10 mM, 2.5 mL of a forward primer from the 96 forward primers (BarSeq_P2_ITXXX) at 10 mM and 50

ng to 2 mg of gDNA. For each triplicate, the PCR was performed with the same forward primer so all

replicates of a condition could be pooled and have the same sequencing multiplexing index. For E.

coli analysis, we performed 46 PCRs (T0 sample and 45 harvest samples) involving 16 different multi-

plexing indexes. For P. psychrophila JB418 analysis, we performed 46 PCR (T0 sample and 45 har-

vest samples) involving 16 other multiplexing indexes. We used the following PCR program: (i) 98˚C
- 4 min, (ii) 30 cycles of: 98˚C – 30 s; 55˚C – 30 s; 72˚C – 30 s, (iii) 72˚C – 5 min. After the PCR, 10 mL

of each of the 92 PCR products were pooled together to create the BarSeq library(920 mL) and 200

mL of the pooled library were purified using the MinElute purification kit (Qiagen). The final elution

of the BarSeq library was performed in 30 mL in DNAse and RNAse free water.
The BarSeq library was then quantified using Qubit dsDNA HS assay kit (Invitrogen) and

sequenced on HiSeq4000 (50 bp, single-end reads), by the IGM Genomics Center at the University

of California San Diego. The sequencing depth for each condition varied between 1.5 and 7.5 million

reads.

Data processing and fitness analysis
BarSeq data processing and gene fitness calculation were performed separately for the E. coli and

the P. psychrophila JB418 experiments. For each library, BarSeq reads were processed using the

Perl script BarSeqTest.pl from (Wetmore et al., 2015). This script combines two Perl scripts essential

for the BarSeq data processing. After the raw reads have been de-multiplexed, the computational

pipeline: (i) identifies individual barcodes and the associated number of reads, (ii) calculates the

strain fitness for each insertion mutant and (iii) calculates the normalized fitness value for each gene

along with a t-statistic value (t-score). The following parameters were applied during the fitness cal-

culations: (i) only insertion mutants located within the central region of genes (10%–90%) were con-

sidered, (ii) barcodes with less than three reads in the T0 were ignored and (iii) genes with less than

30 counts across all barcodes in T0 were ignored. For each library, the pipeline uses a table where

each barcode is mapped to a location in the genome. The Arkin lab (Physical Biosciences Division,

Lawrence Berkeley National Laboratory, Berkeley, California, USA) kindly provided the TnSeq table

for the E. coli library and we generated a TnSeq table for P. psychrophila strain JB418. The different

scripts used for this analysis originate from (Wetmore et al., 2015) and are publicly available on

https://bitbucket.org/berkeleylab/feba.
We calculated E. coli and P. psychrophila JB418 genes fitnesses at T = 24 hr (Day1), 48 hr (Day2)

and 72 hr (Day3) in the following conditions: growth alone, growth with H. alvei, growth with G. can-

didum, growth with P. camemberti and growth with the community.
First, strain fitness for each insertion mutant that met the criteria described above is calculated as

the log2 of the ratio of the insertion mutant’s abundance at the time of the harvest (number of reads

of the associated barcode) and its abundance in the T0 sample. Un-normalized gene fitness is then

calculated as the weighted average of strain fitness of all the insertion mutants of a gene. Un-normal-

ized fitness values are then normalized, first by subtracting the smoothed median of the un-normal-

ized fitness values. This is performed to account for changes in gene copy number along the

chromosome as genes close to the replication fork might have multiple copies in diving cells. Then,

the final normalization step relies on the assumption that disruption of most of the genes leads to lit-

tle to no fitness effect. This normalization is performed by subtracting the mode of the gene fitness.

Thus, most of the genes are expected to have a fitness of 0. Genes whose disruption is deleterious

will have a negative fitness and genes whose disruption is beneficial a positive fitness. A t-score is

calculated along with each gene fitness to evaluate how reliably different from zero the gene fitness

is. The t-score is a moderated t-statistic calculated as the ratio of the gene fitness and its standard

deviation. More details can be found in Wetmore et al., 2015.
In this study, all our experiments and genes fitness values met the quality requirements to be fur-

ther analyzed (Figure 1—figure supplement 7).
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Keio collection mutant competition assays for RB-TnSeq validation
We used mutants from the Keio collection to validate the genes identified by RB-TnSeq as having a

significant fitness in E. coli growth alone on CCA (see list in Figure 1—figure supplement 5). Each

mutant was grown in a competition assay with the non-kanamycin resistant wild-type (Keio ME9062

–(Baba et al., 2006)). 1000 cells of a specific mutant were inoculated with 1000 cells of the wild type

(WT) on the surface of the same cheese plug in a 96 well plate containing 10% CCA, pH7. The num-

ber of the mutant cells and the WT cells were calculated at T0 and day one after harvesting and

homogenizing the cheese plug, plating serial dilutions and counting CFUs. Experimental fitness of

each mutant was calculated as the log2 of the ratio of the mutant abundance (mutant CFUs divided

by total CFUs (WT +mutant)) after 24 hr and its abundance at T0.

RNASeq and differential expression analysis
RNASeq library preparation
Libraries were prepared in duplicate for the following conditions: E. coli growth alone, with H. alvei,

with G. candidum, with P. camemberti and with the community for T = 24 hr, 48 hr and 72 hr. RNA

samples from the E. coli BarSeq experiment were used to produce the RNASeq library.
Each library was prepared as follows. First, RNA samples were treated with DNAse using the ‘Rig-

orous DNAse treatment’ for the Turbo DNA-free kit (AMBION, Life Technologies, Waltham, MA)

and RNA concentration was measured by nucleic acid quantification in Epoch Microplate Spectro-

photometer (BioTek, Winooski, VT). Then, transfer RNAs and 5S RNA were removed using the MEG-

Aclear Kit Purification for Large Scale Transcription Reactions (AMBION, Life Technologies) following

manufacturer instructions. Absence of tRNA and 5S RNA was verified by running 100 ng of RNA on

a 1.5% agarose gel and RNA concentration was quantified by nucleic acid quantification in Epoch

Microplate Spectrophotometer. Also, presence of trace amounts of genomic DNA was assessed by

PCR using universal bacterial 16S PCR primers (Forward primer: AGAGTTTGATCCTGGCTCAG,

Reverse Primer: GGTTACCTTGTTACGACTT). The PCR was performed in a final volume of 20 mL: 10

mL of Q5 polymerase master mix (New England Biolabs), 0.5 mL of forward primer 10 uM, 0.5 mL of

reverse primer 10 uM and 5 mL of non-diluted RNA. PCR products were run on a 1.7% agarose gel

and if genomic DNA was amplified, another DNAse treatment was performed as well as a new verifi-

cation of absence of genomic DNA. Ribosomal RNA depletion was performed using the Ribo-Zero

rRNA removal kit by Illumina (Illumina, San Diego, CA). According to manufacturer instructions; we

used 1 mL of RiboGuard RNAse Inhibitor in each sample as suggested and followed instructions for

1–2.5 ug of RNA input and we used a 2:1 mix of bacterial Ribo-Zero Removal solution and yeast

Ribo-Zero Removal solution. rRNA depleted samples were recovered in 10 mL after ethanol precipi-

tation. Concentrations after ribodepletion were measured using Qubit RNA HS Assay Kits (Invitro-

gen). The RNASeq library was produced using the NEBNextUltraTM RNA Library Prep Kit for

Illumina for purified mRNA or ribosome depleted RNA. We prepared a library with fragments size of

300 nucleotides and used the 10 uM NEBNext Multiplex Oligos for Illumina (Set 1, NEB #E7335) lot

0091412 and the NEBNext multiplex Oligos for Illumina (Set 2, NEB #E7500) lot 0071412. We per-

formed PCR product purification with 0.8X Agencourt AMPure XP Beads instead of 0.9X. Library

samples were quantified with Qubit DNA HS Assay Kits before the quality and fragment size were

validated by TapeStation (HiSensD1000 ScreenTape). Library samples were pooled at a concentra-

tion of 15 nM each and were sequenced on HiSeq4000 (50 bp, single-end).

Differential expression analysis
RNASeq reads were mapped to the concatenated genome of Escherichia coli K12 BW25113

(Grenier et al., 2014) and H. alvei using Geneious version R9 9.1.3 (http://www.geneious.com,

[Kearse et al., 2012]). Only the reads that uniquely mapped to a single location on the E. coli

genome section were conserved. E. coli and H. alvei genome are divergent enough so 50 nucleotide

reads potentially originating from H. alvei mRNA would not map to the E. coli genome and few

reads from E. coli would map on the H. alvei genome.
E. coli expression analysis was performed using the following R packages: Rsamtool (R package

version 1.30.0), GenomeInfoDb (R package version 1.14.0.), GenomicFeatures (Lawrence et al.,

2013), GenomicAlignments, GenomicRanges (Lawrence et al., 2013) and DESeq2 (Love et al.,

2015). We followed the workflow described by Love et al. and performed the differential expression
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analysis using the package DESeq2. Differentially expressed genes between two conditions were

selected with an adjusted p-value lower than 1% (Benjamini-Hochberg correction for multiple test-

ing) and an absolute log2 of fold change equal to or greater than 1.

KEGG pathway enrichment analysis
Functional enrichment analysis was performed using the R package clusterProfiler (Yu et al., 2012).

We used the latest version of the package org.EcK12.eg.db for E. coli annotations (R package ver-

sion 3.5.0.). We used Benjamini-Hochberg for multiple comparison correction and only the KEGG

pathways enriched with an adjusted p-value lower than 5% were considered.
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Figure 1—figure supplement 1. Pipeline of RB-TnSeq experiment using the E. coli Keio M9 library: from experimental set-up to normalized gene

fitness and t-score calculation. Calculation of gene fitness from the Illumina sequencing files was performed using the Perl script BarSeqTest.pl from

(Wetmore et al., 2015). The detailed description of the pipeline can be found in (Wetmore et al., 2015).
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Figure 1—figure supplement 2. Quantification of free amino acids in CCA. Free amino acid characterization and quantification have been carried out

by the Proteomics and Mass Spectrometry Facility of the Donald Danforth Plant Science Center and each analysis has been performed in triplicate.

Samples were prepared as recommended by the Proteomics and Mass Spectrometry Facility of the Donald Danforth Plant Science Center instructions.

For free amino acid analysis, 150 mg CCA was frozen in liquid nitrogen and ground in the presence of 600 mL of water:chloroform:methanol (3:5:12 v/v).

Tubes were then centrifuged at full speed for two minutes and supernatant was recovered in a new 2 mL eppendorf tube. A second extraction with 600

uL of water:chloroform:methanol was performed followed by a two minute centrifugation at maximum speed. Supernatant was then recovered and

combined with the previous supernatant in a 2 mL eppendorf tube. Then 300 uL of chloroform and 450 uL of water were added before centrifugation at

full speed for two minutes. The upper phase was recovered and transferred to a new tube. Samples were dried in a speedvac overnight and stored at

!20˚C. The total concentration of free amino acids in CCA is 75.3 nmol/mL. Analysis of total amino acids was also performed by the Proteomics and

Mass Spectrometry Facility of the Donald Danforth Plant Science Center. It highlights that free aminos are a very small fraction of total amino acid

whose concentration is 16.5 ± 2.97 mmol/mL (six times less than the LB concentration measured by Sezonov et al. (2007)). Ala: alanine, Gly: glycine, Ile:

isoleucine, Leu: leucine, Pro: proline, Val: valine, Phe: phenylalanine, Trp: tryptophan, Tyr: tyrosine, Asp: aspartate, Glu: glutamate, Arg: arginine, His:

histidine, Lys: lysine, Ser: serine, Thr: threonine, Cys: cysteine, Met: methionine, Asn: asparagine, Gln: glutamine.

DOI: https://doi.org/10.7554/eLife.37072.005

Morin et al. eLife 2018;7:e37072. DOI: https://doi.org/10.7554/eLife.37072 4 of 17

Research article Microbiology and Infectious Disease



 

 41 

 

!"#$#%&%'()*+,-.

//0#$#%&%'()*+,-.

!"
#$

%&
'(!

"#
$)

!"
#$

&$
'(!

"#
%)

!"
#$

&*
(!
"#
&)

!"
#$

&%
'(!

"#
')

!"
##

+,
'((

")
*+,
(-

#!
).
/
(#
0"

#)

Figure 1—figure supplement 3. Comparison of individual growth of enterobactin biosynthesis mutants on LB and CCA. 5% tetrazolium solution (100

uL/L of medium) was added to the media to color colonies and make them visible on CCA. We selected 4 mutants of enterobactin biosynthesis from

the Keio collection. 5 mL of each mutant culture was spotted on either LB-tetrazolium or CCA-tetrazolium and grown at room temperature for 3 days.

The wild-type strain JW0024 was used as a control.

DOI: https://doi.org/10.7554/eLife.37072.006
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Figure 1—figure supplement 4. RB-TnSeq experiments using the P. psychrophila JB418 library. (A) We grew P. psychrophila JB418 alone, in pairwise

conditions with H. alvei, G. candidum or P. camemberti and with the full community on CCA. (B) Using the transposon library of P. psychrophila JB418

generated in the laboratory, we identified genes with negative fitness at 1, 2 and 3 days of growth. In each volcanoplot, data from the three timepoints

have been grouped. We identified 179 genes important for P. psychrophila JB418, 152 genes important for growth with H. alvei, 176 genes with G.

candidum, 164 with P. camemberti and 156 genes important for growth with the community (Source data 5). (C) We annotated P. psychrophila JB418

using KEGG KOALA Blast (Kanehisa et al., 2016). 98 of the 179 genes important for growth alone were attributed a KEGG annotation. To compare the

relative importance of functions for growth alone observed for P. psychrophila JB418 and for E. coli we represented, per KEGG module, the ratio

between the number of hits for the module and the number of genes with KEGG annotation. (D) For P. psychrophila JB418, we then compared the

genes with negative fitness for growth alone and the genes with negative fitness for growth in pairwise. We identified three categories: (i) the core

negative fitness: genes with negative fitness for growth alone and all the pairwise conditions, (ii): Pairwise-induced negative fitness: genes with negative

fitness in at least one pairwise condition but no negative fitness alone and, (iii): pairwise-alleviated: genes with negative fitness in growth alone and no

negative fitness in at least one pairwise condition. (E) We further investigated the KEGG functions associated with the core negative fitness, pairwise-

induced negative fitness and pairwise alleviated negative fitness. (F) We then compared the community-induced negative fitness and community-

alleviated negative fitness for P. psychrophila JB418 with the pairwise-induced and pairwise-alleviated negative fitness.

DOI: https://doi.org/10.7554/eLife.37072.007
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Figure 1—figure supplement 5. Competitive assays of 25 mutants of the Keio collection (Baba et al., 2006). Competition assays between single

knockouts and the wild-type strain have been carried out for 25 strains associated with genes identified as important for E. coli growth using RB-TnSeq

(Significant fitness lower than -1 after 1 day of growth). * highlights fitness values different from 0 with a confidence higher than 95%. The competitive

assays were performed in at least triplicates. SEM stands for: standard deviation of the mean: SEM ¼ s
ffiffi

n
p , where sis the standard deviation and nthe

number of replicates. Then, z" score ¼ 0"!

SEM
where !is the experimental fitness value (average of the replicates).

DOI: https://doi.org/10.7554/eLife.37072.009
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Figure 1—figure supplement 6. Map of the JB418_ECP1 transposon library generated in P. psychrophila JB418. We built a barcoded-transposon

library in the cheese isolate P. psychrophila JB418. 272,329 insertions were mapped to the genome and 143,491 barcodes were located in the central

region of a gene. The median of number of insertion mutants per gene is 18, similar to E. coli’s library. 4811 genes have at least one insertion in the

Figure 1—figure supplement 6 continued on next page
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Figure 1—figure supplement 6 continued

central part of the gene, thus the library covers 83% of P. psychrophila JB418 genome. On the chromosome and the plasmids, each bar represents the

number of insertions per kb.

DOI: https://doi.org/10.7554/eLife.37072.010
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Figure 1—figure supplement 7. Quality assessment of all RB-TnSeq experiments. For each RB-TnSeq experiment different parameters are calculated

to assess the quality of each RB-TnSeq experiment. If all quality parameters are met, then the gene fitness values can be further analyzed. These

parameters include: (i) median gene has at least 50 counts (gMed !50), (ii) the median of the absolute difference in fitness between the two halves of

the gene is less or equal to 0.5 (mad12 "0.5), (iii) the Spearman correlation in fitness between the two halves of the gene is at least 0.1 (cor12 !0.1), (iv)

the correlation between gene GC content and fitness is less or equal to 0.2 (gccor "0.2), (v) the Spearman correlation of adjacent genes on different

Figure 1—figure supplement 7 continued on next page
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Figure 1—figure supplement 7 continued

insertion mutants is not greater than 0.25 (adjcor !0.25), and (vi): the sample is not a T0 sample. More details about these metrics can be found in the

supplementary material of Wetmore et al. 2015. All of our RB-TnSeq experiments met the required criteria (quality-test = TRUE).

DOI: https://doi.org/10.7554/eLife.37072.011
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Figure 2—figure supplement 1. E. coli and community member growth curves alone, in pairwise conditions or during community growth. Each graph

represents the growth over time of E. coli, H. alvei, G. candidum, or P. camemberti alone, in pairwise growth or with the community. Assays have been

performed in triplicates. Dunnett’s tests have been performed for each species at day three to compare the number of CFUs of that species in

interactive conditions versus growth alone. * adjusted p-value!5%.

DOI: https://doi.org/10.7554/eLife.37072.014
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Figure 4—figure supplement 1. RNASeq analysis of E. coli gene expression during growth alone and in pairwise conditions. We used RNASeq to

investigate E. coli gene expression at three timepoints (1, 2 and 3 days) during growth on CCA alone, in pairwise conditions (with H. alvei, G. candidum

or P. camemberti) and with the community. (A) We carried out a principal component analysis on the rlog transformed expression data (Love et al.,

2015). (B) For each pairwise condition, we identified up and downregulated genes compared to alone at each timepoint. Then, for each pairwise

condition, we pooled together upregulated genes at any timepoint and did the same for downregulated genes. Comparing the up or downregulated

genes in the different pairwise conditions, we observe overlapping as well as specific responses depending on the partner.

DOI: https://doi.org/10.7554/eLife.37072.020
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CHAPTER 3: The Genetic Basis of Diverse Bacterial-Fungal 

Interactions  

3.1 Chapter Summary 

Chapter 2 described how we used pre-existing tools to identify genes impacting bacterial 

fitness in a 3-member model cheese community. Chapter 3 describes the work that followed this 

initial study. In the process of completing the eLife manuscript, we realized that the available 

RB-TnSeq analysis tools did not fully enable the desired analyses. Namely, we wanted to 

quantitatively compare gene fitness values between alone and interactive conditions in order to 

statistically group genes into categories of those having or not having a differential fitness in the 

presence of a growth partner. In the eLife paper, we were able to make hypotheses based on 

comparing lists of genes that were significant in each condition, but for genes significant in 

multiple conditions, we had no power to say whether the gene fitness values across these 

conditions were the same or different. One of the goals following this paper was thus to develop 

a set of computational tools to accomplish this. 

The second goal of the succeeding work was to delve into the genetic basis of bacterial-

fungal interactions across a diverse set of interaction partners. Previous work in cheese rind 

communities had shown that fungi impact bacterial growth (Wolfe et al. 2014), bacterial 

dispersal (Zhang et al. 2018), and bacterial community composition (Kastman et al. 2016), 

suggesting that cheese is a powerful model system for studying bacterial-fungal interactions. We 

therefore aimed to use RB-TnSeq to investigate fungal impacts on bacteria using a range of 

cheese-associated fungal species (both yeasts and filamentous fungi). 

These two goals were accomplished in the Nature Microbiology paper presented in 

Section 3.2, on which I am first author. In this work, we characterized bacterial-fungal 
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interactions across 16 bacterial-fungal pairs. Fungal partners included 8 cheese-associated fungi, 

and bacterial partners included E. coli and a cheese-associated Pseudomonas psychrophila. We 

collaborated with other labs to enable the use of a combination of RB-TnSeq, RNA-Seq, 

metabolomics (Sanchez lab, University of Illinois at Chicago), bacterial cytological profiling 

(Pogliano lab, University of California San Diego), and fungal genetics (Keller lab, University of 

Wisconsin-Madison) to identify key themes in these interactions. These themes included fungal 

provision of access to iron, competition for biotin, and fungal production of antimicrobial 

molecules. This paper also describes a custom R computational pipeline designed for 

quantitative comparison of multiple RB-TnSeq conditions. 
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3.2 Characterization of Bacterial-Fungal Interactions using RB-TnSeq 

 

ARTICLES
https://doi.org/10.1038/s41564-020-00800-z

1Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA. 2Department of Pharmaceutical Sciences, College of Pharmacy, 
University of Illinois at Chicago, Chicago, IL, USA. 3Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, 
WI, USA. 4Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA. 5Food Research Institute, University of Wisconsin–Madison, 
Madison, WI, USA. 6Department of Biology, Tufts University, Medford, MA, USA. 7Center for Microbiome Innovation, Jacobs School of Engineering, 
University of California, San Diego, La Jolla, CA, USA. ✉e-mail: rjdutton@ucsd.edu

Despite growing awareness that fungi have an immense capac-
ity to affect ecosystems, fungi are frequently overlooked in 
microbiome studies1,2. Recently, fungi and other microeu-

karyotes have received increased attention in sequencing-based 
studies3–6, and there is growing interest in exploring the roles that 
fungi and bacterial–fungal interactions play in environmental and 
host-associated microbiomes7–10. While specific interaction mecha-
nisms have been elucidated for pairwise bacterial–fungal asso-
ciations, including important pathogenic bacteria and fungi11–14, 
analysing a greater diversity of bacterial–fungal interactions could 
lead to a better ability to predict when and how these interac-
tions contribute to microbiome diversity and function. However, a 
broader characterization of bacterial–fungal interactions has been 
challenging given the complexity of many microbiomes.

Cheese rind biofilms have been developed as experimentally 
tractable systems to study microbiomes. These multi-kingdom bio-
films form on the surface of cheese during the ageing process. Prior 
work using this system has demonstrated that fungi can affect bac-
terial growth15. For example, fungi were shown to cross-feed amino 
acids to bacteria when grown on a cheese-based medium16. Fungal 
hyphal networks can also alter the composition of a rind micro-
biome community by providing a means of dispersal for certain  
community members17.

Here, we combined the high-throughput genetic screening 
method random barcode transposon-site sequencing (RB-TnSeq)18 
with RNA sequencing (RNA-seq), bacterial cytological profiling and 
metabolomics to investigate bacterial–fungal interactions. Building 
on existing tools, we created a customized computational RB-TnSeq18 
pipeline that enabled us to specifically examine the differences in bac-
terial growth alone versus in the presence of a fungal partner to high-
light pathways that are important during interactions. We examined  

pairwise combinations of eight fungal species isolated from cheese 
rinds (two yeasts and six filamentous fungi) and two bacteria, 
Pseudomonas psychrophila strain (str.) JB418 and Escherichia coli K12.

We observed broad changes in bacterial mutant fitness in the 
presence of fungi compared to growth alone. A consistent impact 
across fungal species was the alleviation of the requirement by  
E. coli for its own siderophore, enterobactin. Further genetic analysis 
suggested that this alleviation is due to the uptake of siderophores 
produced by filamentous fungi. We observed similar alleviation 
when E. coli was grown with soil and skin fungi, which suggests 
that fungal siderophores may affect bacterial growth in other sys-
tems. In addition, we found evidence to indicate that fungi increase 
the need for biotin biosynthesis in both E. coli and P. psychrophila. 
Furthermore, multiple lines of evidence suggested that several fila-
mentous fungal species produce antimicrobials. Deletion of laeA, a 
gene encoding a global regulator of fungal specialized metabolite 
production, led to a large decrease in the number of affected path-
ways in bacteria, which suggests that specialized metabolites play an 
important role in bacterial–fungal interactions.

Results
Characterization of bacterial genes with differential fitness in 
the presence of fungal partners. We selected a panel of eight fungi 
commonly found in cheese rind microbiomes, all of which belong to 
the phylum Ascomycota (Fig. 1). They include two yeasts, Candida 
sp. str. 135E and Debaryomyces sp. str. 135B, and six filamentous 
fungi, Penicillium sp. str. 12, Penicillium sp. str. SAM3, Penicillium 
sp. str. RS17, Fusarium sp. str. 554A, Scopulariopsis sp. str. JB370 
and Scopulariopsis sp. str. 165-5. These genera are also found in  
the human gut mycobiome19, in soil microbiomes20, in other  
agricultural microbiomes21 and in marine environments22.

Bacterial–fungal interactions revealed by 
genome-wide analysis of bacterial mutant fitness
Emily C. Pierce! !1, Manon Morin! !1, Jessica C. Little! !2, Roland B. Liu1, Joanna Tannous! !3, 
Nancy P. Keller! !3,4,5, Kit Pogliano1, Benjamin E. Wolfe6, Laura M. Sanchez! !2 and Rachel J. Dutton! !1,7 ✉

Microbial interactions are expected to be major determinants of microbiome structure and function. Although fungi are  
found in diverse microbiomes, their interactions with bacteria remain largely uncharacterized. In this work, we characterize 
interactions in 16 different bacterial–fungal pairs, examining the impacts of 8 different fungi isolated from cheese rind microbi-
omes on 2 bacteria (Escherichia coli and a cheese-isolated Pseudomonas psychrophila). Using random barcode transposon-site 
sequencing with an analysis pipeline that allows statistical comparisons between different conditions, we observed that fungal 
partners caused widespread changes in the fitness of bacterial mutants compared to growth alone. We found that all fungal 
species modulated the availability of iron and biotin to bacterial species, which suggests that these may be conserved drivers 
of bacterial–fungal interactions. Species-specific interactions were also uncovered, a subset of which suggested fungal antibi-
otic production. Changes in both conserved and species-specific interactions resulted from the deletion of a global regulator 
of fungal specialized metabolite production. This work highlights the potential for broad impacts of fungi on bacterial species 
within microbiomes.

NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology
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The selected bacterial interaction partners were two species of 
Gammaproteobacteria, P. psychrophila str. JB418 and E. coli K12 
BW25113. Proteobacteria are common inhabitants of cheese rind 
communities and are responsive to the presence of fungi in experi-
mental community conditions15 (Supplementary Figs. 1 and 2).  
P. psychrophila str. JB418 was originally isolated from a cheese rind. 
E. coli K12 was selected as a bacterial partner to take advantage 
of the genetic resources available for this organism. Furthermore, 
E. coli can be a causative agent of foodborne illness in cheese and 
other foods23,24.

Using a pooled library of barcoded transposon-insertion 
mutants, RB-TnSeq18 generates a fitness value for each gene that 
reflects the importance of a gene for survival in the experimental 
condition. A negative fitness value indicates that disruption of a 
given gene leads to decreased growth relative to a wild-type (WT) 
strain, whereas a positive value indicates enhanced growth, with 
values further from 0 indicating stronger effects of gene disruption. 
To identify bacterial mutants with a significantly different fitness 
value in the presence of a fungal partner compared to growth alone, 
pooled P. psychrophila16 or E. coli18 RB-TnSeq mutant libraries were 
grown for 7 days on solid cheese curd agar (CCA) plates25 either 
alone or mixed with one of the eight fungal species. As sporulation 
is associated with production of many fungal specialized metabo-
lites, we selected the 7-day time point to capture interactions related 
to these metabolites26. A custom computational pipeline allowed 
us to quantitatively compare fitness values between conditions 
(Extended Data Fig. 1 and Supplementary Method 1; https://github.
com/DuttonLab/RB-TnSeq-Microbial-interactions). The difference 
between these fitness values is hereafter referred to as ‘interaction 
fitness’ (Fig. 2 and Extended Data Fig. 2). In some cases, the pres-
ence of a fungus increased the fitness of a mutant (positive interac-
tion fitness), whereas in others, the fitness of a mutant decreased 
(negative interaction fitness) (Supplementary Tables 1 and 2).

In total, we found 731 E. coli and 1,606 P. psychrophila genes 
whose disruption led to a change in fitness in the presence of at 

least one of the fungal partners (Supplementary Tables 3 and 4). 
This represents an average of 216 ± 50 E. coli genes per fungal con-
dition and 576 ± 122 P. psychrophila genes per fungal condition that 
have an interaction fitness. For E. coli, interaction fitness values 
ranged from −5.66 to 5.71, and for P. psychrophila, −6.18 to 5.74, 
which highlights the large positive and negative impacts of fungi 
on bacteria.

To assess the degree of conservation of these fitness effects, we 
identified homologous genes between E. coli and P. psychrophila 
(Supplementary Tables 5 and 6 and Extended Data Fig. 3). The set of 
88 genes with interaction fitness for both E. coli and P. psychrophila  
in the same set of fungal conditions was enriched for genes in 
amino acid biosynthesis, including isoleucine/valine biosynthesis. 
The isoleucine/valine biosynthesis genes have a negative interac-
tion fitness with both bacteria, which suggests that fungi may be 
competing for amino acids available from cheese (Supplementary 
Table 7). We have previously seen16 that these genes are important 
for E. coli growth alone on cheese, which suggests that these amino 
acids may be limited in this medium.

To assess the specificity of fungal impacts on bacteria, we 
evaluated the intersections of gene sets across the entire set of 
fungal interaction conditions (Fig. 3a, Extended Data Fig. 4 
and Supplementary Tables 8 and 9). Around 21% (n = 152) of 
the interaction-related genes for E. coli and 32% (n = 508) for  
P. psychrophila were common to at least four out of the eight fungal 
interaction conditions (Fig. 3b). In addition to conserved effects, 
we observed a large number of fungal species-specific effects. 
For E. coli, 45% of the genes with interaction fitness were specific 
to a single fungus (n = 329), whereas for P. psychrophila, it was 
37% (n = 599). For both E. coli and P. psychrophila, growth with 
Penicillium sp. str. 12 and Penicillium sp. str. SAM3 resulted in a 
large number of the same genes with significant interaction fitness 
(n = 83 and n = 318, respectively; Fig. 3b). These species also clus-
tered away from the other fungi in a principal component analysis 
(Extended Data Fig. 5).

Candida sp. str. 135E 

Penicillium sp. str. RS17

Scopulariopsis sp. str. JB370

Penicillium sp. str. 12

Debaryomyces sp. str. 135B

Fusarium sp. str. 554A

Penicillium sp. str. SAM3

Scopulariopsis sp. str. 165-5

Eurotiomycetes

Sordariomycetes

0.04

1

1

1

0.98

1

Saccharomycetes

Fig. 1 | Fungal interaction partners span the phylogenetic and morphological diversity of the cheese ecosystem. A phylogenetic tree based on the large 
subunit ribosomal RNA of the cheese fungi used as interaction partners in this study. The tree was built using Bayesian phylogenetic inference with 
MrBayes68 and the Jukes and Cantor substitution model98. Branch labels display posterior probability values.
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Penicillium sp. str. 12 and Penicillium sp. str. SAM3 induce 
bacterial envelope stress. We used the following combination 
of methods to identify potential mechanisms underlying bacte-
rial–fungal interactions: categorization of clusters of orthologous 
genes (COG), analysis of functional enrichment and analysis of the  

conservation of the effect across fungal species (Fig. 3c, 
Supplementary Tables 10 and 11 and Extended Data Fig. 6). 
Penicillium sp. str. 12 and Penicillium sp. str. SAM3 consistently 
shared effects on bacterial mutant fitness, as seen by their large 
number of network connections (Fig. 3a). The gene sets affected 
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Fig. 2 | Comparison of bacterial gene fitness with fungi against growth alone and identification of bacterial genes with significant interaction fitness 
across fungal partners. a,b, Gene fitness values for E. coli (a) and P. psychrophila (b) were calculated for each gene during growth with a fungal partner 
(x axis) and during growth alone (y axis). Each point represents a gene, with coloured points indicating genes with a significant difference between gene 
fitness during growth alone versus with a fungal partner identified by a two-sided t-test and an adjusted P value lower than 5% using Benjamini–Hochberg 
correction for multiple comparison testing75. This difference is hereafter referred to as ‘interaction fitness’. Exact P values are provided in Supplementary 
Tables 1 and 2. The coloured numbers in the lower right-hand corner indicate how many genes have either positive (blue) or negative (orange) interaction 
fitness. Positive interaction fitness indicates that a gene fitness value is significantly higher in the presence of the fungal partner compared to growth alone 
while negative interaction fitness indicates a lower fitness value in the presence of the fungal partner. Nonsignificant points are plotted smaller to aid in the 
visualization of significant genes. Genes not included in the t-test are labelled as not tested.
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by these fungi suggest that these two fungal species are creating 
bacterial envelope stress, potentially through the production of 
antibiotic molecules, as they include drug efflux pumps, envelope 
stress response systems, penicillin-binding proteins and lipopoly-
saccharide/peptidoglycan biosynthesis genes (Supplementary 
Table 12). For example, disruption of the multidrug efflux pump 
MdtK resulted in a decreased fitness specifically in the presence 
of these two fungi (gene fitness alone = 0.34, with Penicillium sp.  
str. 12 = −2.49, with Penicillium sp. str. SAM3 = −1.92).

We performed bacterial cytological profiling (BCP)27, a 
microscopy-based method used to predict the mechanism of action 
for antibiotics, on WT or ΔmdtK E. coli grown alone or in a mixed 
biofilm with Penicillium sp. str. 12 or Penicillium sp. str. SAM3. 
Microscopy analysis showed a strong change in cell morphology 
for both WT and ΔmdtK E. coli when grown with Penicillium com-
pared to growth alone (Fig. 4a). When cultured with these fungi,  
E. coli cells were significantly more round, which is consistent with a 
reduction in cell wall integrity (Fig. 4b). ΔmdtK cells were strongly 
affected and were spheroplasted, which is indicative of the com-
plete loss of structural integrity. Control experiments with known 
antibiotic compounds showed that this effect is similar to that of 
antibiotics that target cell wall biosynthesis, such as mecillinam and 
amoxicillin (Fig. 4 and Extended Data Fig. 7).

Previous studies have shown that fungal specialized metabolite 
production in other ascomycete fungi is controlled by the global 
regulator LaeA28,29. To test the contribution of this gene to the poten-
tial antibiotic activity observed, we generated a ΔlaeA mutant in 
Penicillium sp. str. 12. WT E. coli cells were significantly less round 
when grown with Penicillium sp. str. 12 ΔlaeA, which suggests that 
loss of this global regulator has potentially decreased fungal anti-
biotic production (Fig. 4). Neither of these two fungal strains are 
known producers of penicillin, and an analysis of the Penicillium 
sp. str. 12 draft genome failed to detect penicillin biosynthesis gene 
clusters30. However, both fungi were causing consistent morpho-
logical and genetic effects that suggest that these fungi induce cell 
envelope stress similar to that seen with β-lactam antibiotics.

Fungi increase the bacterial need for biotin biosynthesis.  
P. psychrophila RB-TnSeq data showed that the disruption of genes 
associated with biotin biosynthesis (bioB, bioD, bioF, bioA, bioH 
and bioC) results in a negative interaction fitness with most fungi 
(average fitness alone = 0.08, average fitness across fungi = –2.97) 
(Fig. 3c). This gene set represents all genes needed to synthesize 
biotin from pimeloyl-CoA. Biotin is present in our CCA medium 
at 73 nmol mg−1 and represents an essential cofactor for enzymes 
involved in key cellular functions such as amino acid metabolism 
and lipid synthesis31. In E. coli, biotin biosynthesis genes exhibited 
a neutral fitness alone and did not show interaction fitness in our 
RB-TnSeq experiments. However, RNA-seq of WT E. coli grown 

either alone or in the presence of Penicillium sp. str. 12, a predicted 
biotin prototroph, showed that bioA, bioB, bioC, bioD and bioF were 
all significantly upregulated in the presence of Penicillium sp. str. 12, 
with an average fold change of 4.4 (Supplementary Table 13). This 
highlights an increased need for bacterial biotin synthesis in both  
P. psychrophila and E. coli, which suggests that there is competi-
tion for available biotin in the medium or that bacteria have higher  
biotin requirements in the presence of these fungi.

Fungi increase iron availability for bacterial partners. Because 
cheese is an iron-limited environment (with free iron levels  
of approximately 3 ppm32), microbial species require iron che-
lators such as siderophores to grow16,32,33. Our RB-TnSeq fit-
ness data revealed that E. coli mutants that are defective in the 
transport of its siderophore, enterobactin, grow poorly in the  
alone condition (fitness < –4). However, the presence of any fun-
gal partner significantly improved the growth of mutants in the 
fep operon (fepC, fepG, fepA and fepB), which encodes entero-
bactin transport functions (average positive interaction fitness  
of 3.11) (Fig. 3c, Fig. 5a and Supplementary Table 10). The posi-
tive effect of fungi on growth was further supported by com-
petitive mutant fitness assays with isolated enterobactin uptake 
mutants (Fig. 5b).

Although siderophore production and uptake have not been 
previously characterized in P. psychrophila str. JB418, three putative 
iron-related genes have an effect similar to that seen with E. coli fep 
genes (having a fitness defect alone, but a positive interaction fitness 
with any fungus): Ga0212129_113525, Ga0212129_115698 and 
Ga0212129_114260. These genes are annotated as iron-complex 
outer membrane receptor protein, as putative iron-dependent 
peroxidase and as uncharacterized iron-regulated membrane pro-
tein, respectively. Immediately upstream of Ga0212129_114260, 
we found a ferric enterobactin receptor (FepA) and the PfeR–PfeS 
two-component regulatory system required for the ferric entero-
bactin receptor34. Although pyochelin and pyoverdine are two 
well-known Pseudomonas siderophores35, antiSMASH did not pre-
dict these siderophores in P. psychrophila.

RNA-seq analysis of WT E. coli revealed 34 genes (out of a total 
of 348 significantly upregulated genes) involved in iron acquisition 
that were specifically upregulated in the presence of Penicillium 
sp. str. 12 (Supplementary Table 14). We observed upregulation 
of enterobactin biosynthesis and uptake (ent- and fep-associated 
genes), which suggests that even in the presence of fungi, E. coli still 
produces and utilizes its native siderophore (Fig. 5c). In addition 
to the enterobactin uptake system, E. coli possesses the Fhu sys-
tem, which enables the uptake of hydroxamate-type siderophores, 
including those produced by fungi, such as ferrichrome and copro-
gen36,37. Notably, our RNA-seq data showed upregulation of fhuA 
(which encodes an outer membrane receptor for ferrichrome) 

Fig. 3 | Cross-comparison and functional characterization of bacterial genes with interaction fitness in the presence of fungi. a, Network of E. coli (left) 
or P. psychrophila (right) genes with an interaction fitness based on RB-TnSeq. Each orange node represents a fungal partner and is labelled as follows: 
fungal partner (number of genes with interaction fitness; number of genes with interaction fitness unique to this condition). Each green node represents a 
bacterial gene. Green nodes are shaded by the number of fungal conditions in which this gene has an interaction fitness, as shown in the legend below, and 
are sized by the average strength of interaction fitness across partners. b, UpSet99 plots showing the intersections of E. coli (left) or P. psychrophila (right) 
gene sets with interaction fitness across fungal partners. These UpSet plots are conceptually similar to Venn diagrams. The connected circles indicate 
which fungal conditions are included in the intersection, and the size of the intersection (the number of genes that have an interaction fitness in all the 
highlighted conditions) is displayed in the main bar chart. The horizontal bar chart displays the number of genes with significant interaction fitness per 
fungal condition. Intersections with fewer than five genes are not shown for E. coli and fewer than ten genes are not shown for P. psychrophila. For example, 
in the E. coli panel, 17 genes have an interaction fitness with all partners (all fungi circles are connected), while 16 other genes have an interaction fitness 
with Penicillium sp. str. 12 and with Penicillium sp. str. SAM3 (only Penicillium sp. str. 12 and Penicillium sp. str. SAM3 circles are connected). Intersections 
are green colour-coded based on the number of fungal partners sharing the interaction as in Fig. 3a. c, Comparison of E. coli (left) or P. psychrophila (right) 
gene fitness values alone compared to fitness values with a fungal partner, coloured by COG category and sized by the conservation of effect among fungal 
partners (one to eight fungal species). Genes that are discussed further in the main text related to E. coli enterobactin uptake and P. psychrophila biotin 
biosynthesis are labelled.
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and fhuE (which encodes an outer membrane receptor for copro-
gen) in the presence of Penicillium, which suggests that this fungus  
may alleviate the growth defects seen in the fep mutants through  
the provision of hydroxamate-type siderophores taken up by  
the Fhu system.

All filamentous fungi in this study, but not yeast, produce sid-
erophores detectable by the chrome azurol S (CAS) assay (Extended 
Data Fig. 8). In addition, liquid chromatography–mass spectrom-
etry (LC–MS and LC–MS/MS) showed evidence of the hydroxa-
mate fungal siderophores coprogen and ferrichrome in Fusarium 
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and Penicillium species (Fig. 5d). Although not detected in these 
extracts, Scopulariopsis sp. str. JB370 is predicted to make dimeth-
ylcoprogen based on an antiSMASH analysis of the draft genome38.

To confirm that hydroxamate siderophores could rescue  
fep mutants via the Fhu pathway, we verified that purified copro-
gen and ferrichrome rescued the growth defect of ΔfepA or ΔfepC 
mutants grown on CCA (Fig. 5e). As expected, fhuA or fhuE 
mutants alone did not show a growth defect on CCA, probably 
because the enterobactin system is intact. Thus, to specifically 

examine whether these genes are required for the uptake of the 
purified siderophores, we constructed fhuA or fhuE mutants in 
an enterobactin-uptake-defective background (ΔfepC or ΔfepA). 
The combined loss of enterobactin uptake and fhuA eliminated 
the alleviation seen with ferrichrome, whereas loss of either fhuA 
or fhuE in the ΔfepA background seemed to eliminate the alle-
viation seen with coprogen (Fig. 5e). This suggests that E. coli 
requires fhuA for ferrichrome uptake, and both fhuA and fhuE for 
coprogen uptake.
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Fig. 4 | BCP of E. coli grown with Penicillium sp. str. SAM3, Penicillium sp. str. 12 or ΔlaeA Penicillium sp. str. 12 on CCA plates. a, The phenotype of E. coli 
grown with these fungi is similar to that seen when E. coli is exposed to antibiotics targeting cell wall biosynthesis. This effect is more dramatic in E. coli 
lacking the mdtK multidrug efflux pump. Representative fields of deconvoluted images are displayed. DAPI dye stains DNA and FM4-64 dye stains bacterial 
membranes. Scale bars, 2!µm. b, Quantification of microscopy results. The major and minor axes of individual cells were measured (all cells in the image for 
multiple images), and the ratio of these measurements was used as an indicator of cell roundness. Each empty circle represents an individual cell (from left to 
right, n!=!110, 53, 121, 136, 181, 144, 153, 79, 70 and 73 cells examined from one independent experiment per condition). The filled circle displays the mean, and 
the thick bar extending from the mean displays the standard deviation. WT E. coli has a ratio of about 3, and the cells become rounder as the ratio approaches 
1. Asterisks indicate significantly different roundness in the presence of a fungus relative to growth alone or significantly different roundness in the presence 
of WT Penicillium sp. str. 12 relative to ΔlaeA Penicillium sp. str. 12 (unpaired two-sample Wilcoxon test P!<!0.05). Exact P values are as follows: E. coli–
Penicillium SAM3 versus E. coli alone!=!3.05!×!10−13; E. coli–Penicillium 12 versus E. coli alone!=!3.55!×!10−28; E. coli–Penicillium 12 versus E. coli–ΔlaeA Penicillium 
12!=!5.21!×!10−37; ΔmdtK E. coli–Penicillium SAM3 versus ΔmdtK E. coli alone!=!4.13!×!10−25; ΔmdtK E. coli–Penicillium 12 versus ΔmdtK E. coli alone!=!1.14!×!10−41; 
ΔmdtK E. coli–ΔlaeA Penicillium 12 versus ΔmdtK E. coli alone!=!2.68!×!10−13; ΔmdtK E. coli–Penicillium 12 versus ΔmdtK E. coli–ΔlaeA Penicillium 12!=!1.16!×!10−7.
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We next examined whether the presence of fungal species 
changed the growth of strains defective in siderophore uptake  
(Fig. 5f and Extended Data Fig. 9). Growth of the ΔfepA and  
ΔfepC mutants was restored closest to the filamentous fungi, but 
not when grown near yeasts. For filamentous fungi, this effect was 
dependent on either fhuA or fhuE. Thus, E. coli is likely to use and 
benefit from fungal hydroxamate siderophores produced by fila-
mentous fungi that are taken up by the Fhu system independently 
of the enterobactin uptake system.

Because iron limitation is a common challenge across many 
environments, we wanted to examine whether fungal species from 
other ecosystems could also be producing siderophores that are 
accessible to neighbouring bacterial species. We performed simi-
lar assays with Aspergillus fumigatus, a soil-dwelling filamentous 
ascomycete, and Malassezia pachydermatis, a basidiomycete yeast 
that is a commensal resident on animal skin. Our results suggested 
that A. fumigatus produces a siderophore capable of being imported 
through FhuA (Fig. 5f). We saw a similar effect using M. pachyder-
matis, which suggests that bacteria are able to utilize siderophores 
from a yeast species using the Fhu system (Fig. 5f). We performed 
an antiSMASH38 analysis on a previously published genome of this 
M. pachydermatis strain and were able to identify a nonribosomal 
peptide synthetase (NRPS) biosynthetic gene cluster containing  
a ferrichrome peptide synthetase38,39. In summary, our results  
suggest that cheese-associated filamentous fungi, and select fungi 
from other environments, can reduce bacterial dependence on their 
own siderophores.

Loss of a fungal secondary metabolite regulator alters the profile 
of interaction fitness. The cases above show that bacterial gene fit-
ness is affected by the production of fungal specialized metabolites, 
including siderophores and potentially antibiotics. To determine 
the extent to which the global regulator LaeA is responsible for 
fungal-induced changes in bacterial fitness, we performed RB-TnSeq 
experiments with the Penicillium sp. str. 12 ΔlaeA mutant. Despite 
comparable fungal growth between WT and ΔlaeA, we saw only 65 
E. coli genes with interaction fitness when grown with ΔlaeA com-
pared with 204 with WT, which suggests that many of the fitness 
effects we saw may be due to fungal specialized metabolite produc-
tion (Fig. 6a and Extended Data Fig. 10).

Given that siderophore production in other fungi is controlled 
by LaeA, we would expect that E. coli enterobactin uptake mutants 
would not have positive interaction fitness with the ΔlaeA mutant. 
Indeed, we no longer saw a positive interaction fitness for fes, fepA, 
fepB, fepC, fepD and fepG genes when E. coli was grown with ΔlaeA 
Penicillium sp. str. 12 (Supplementary Table 15). Additionally, we 
saw a negative interaction fitness for the hydroxamate siderophore 

transport genes fhuB and fhuC with WT Penicillium sp. str. 12 
but not with ΔlaeA. Liquid CAS assays demonstrated that ΔlaeA 
Penicillium sp. str. 12 produced fewer siderophores than WT on 
cheese medium (Fig. 6b). Overall, these results demonstrate that 
loss of the LaeA regulator decreases siderophore production in 
Penicillium sp. str. 12 and abolishes the positive interaction effect 
seen for fep genes grown with WT fungus.

We next examined whether there were changes in the fitness of 
genes related to responses to antibiotics. A number of genes involved in 
cell envelope maintenance showed a negative interaction fitness with 
WT but not ΔlaeA Penicillium sp. str. 12 (Supplementary Table 12).  
These genes included dacA, which encodes penicillin-binding pro-
tein 5. Loss of this gene can increase the susceptibility of E. coli 
to β-lactam antibiotics40. Mutants in the gene encoding the MdtK 
efflux protein had improved fitness with ΔlaeA relative to WT 
Penicillium sp. str. 12. As seen in our BCP analysis, maintenance 
of cell envelope integrity is important for E. coli growing with WT 
Penicillium sp. str. 12, but less so in the absence of LaeA.

RNA-seq results showed that 14% of the Penicillium sp. str. 12 
genome was differentially expressed between WT and ΔlaeA (Fig. 6c  
and Supplementary Table 16). This is consistent with previous find-
ings in A. fumigatus that LaeA influenced the expression of around 
10% of the fungal genome41. Gene Ontology (GO) term enrichment 
analysis identified a number of specialized metabolite biosynthesis 
pathways overrepresented in the genes that were more expressed in 
the WT strain (Supplementary Table 17). Of the biosynthetic gene 
clusters predicted by the antiSMASH38 analysis, 11 were downregu-
lated in ΔlaeA, including 1 terpene cluster, 2 type I polyketide syn-
thase clusters and 8 NRPS clusters. Consistent with our findings 
of decreased siderophore production in ΔlaeA, one NRPS cluster  
contained four genes with homology to sidD, sidF, sidH and sitT; 
these genes are associated with siderophore biosynthesis and  
transport in Aspergillus42.

LC–MS comparison of WT and ΔlaeA Penicillium sp. str. 
12 showed differential production of many metabolites, 94 
of which showed a greater than tenfold change between the  
two (Supplementary Table 18). Of these, 93 were less abundant in 
the ΔlaeA mutant, which is consistent with the loss of secondary 
metabolite production in the ΔlaeA mutant (Fig. 6d). Cyclopenol, 
a biosynthetic intermediate for viridicatol43, was the only molecule 
reported to have antibiotic activity identified in the LC–MS data;  
it was produced by the WT Penicillium sp. str. 12 in more than  
tenfold higher quantity than ΔlaeA. However, further work is 
needed to determine whether this molecule is related to the anti-
bacterial activity seen in BCP. In summary, these data highlight 
an important diminution of specialized metabolite production in  
the ΔlaeA strain.

Fig. 5 | Utilization of fungal siderophores by E. coli. a, RB-TnSeq fitness values for fep operon genes in alone or with fungi conditions showing an increase 
in fitness in the presence of fungal species. Fitness values are not shown for nonsignificant differences from alone condition. Error bars show the standard 
deviation of fitness values from the mean. b, Colony-forming units of WT E. coli and Δfep mutants after 7 days of 1:1 competitive growth on CCA, pH!7. 
Competitions between the two E. coli strains were performed with either no fungus present (alone) or with Penicillium sp. str. 12 or Scopulariopsis sp. str. 
JB370 (Scop. JB370). n!=!4 biologically independent experiments, and error bars show the standard deviation from the mean (black circle). Asterisks 
indicate significantly different growth in the presence of a fungus relative to growth without the fungus (alone) based on a two-sided two-sample t-test 
P!<!0.05. Exact P values associated with asterisks are as follows (from left to right): 0.001, 0.007, 0.034, 0.022, 0.0001 and 0.0006. c, E. coli iron-related 
genes upregulated in the presence of Penicillium sp. str. 12. Significance cut-off was made at abs(log2[fold change]) >1.5 and adjusted P!<!0.05. Differential 
expression analysis was performed using the default function DESeq87, which performs a Wald test with Benjamini–Hochberg75 correction for multiple 
comparison testing. Exact P values are available in Supplementary Table 14. The schematic on the right displays key proteins involved in siderophore 
uptake in E. coli. These proteins are coloured based on the upregulation of their corresponding genes. Fes and FhuF aid in removal of iron from siderophores 
inside the cell. d, Fungal siderophores identified by MS. The inset in the left box shows the node that represents the desferrichrome fragmentation pattern 
depicted, while the network on the right represents coprogen-related molecules. Coprogen B and ferrichrome were found by matching fragmentation 
patterns to library spectra. Both identifications were confirmed using retention time and fragmentation matching to a purchased standard. e, Visual assays 
of Δfep mutant growth with purified siderophores coprogen and ferrichrome. f, Visual assays of E. coli mutant growth at varying distances from pre-cultured 
cheese fungi, A. fumigatus (soil, human pathogen) and M. pachydermatis (skin commensal). For e and f, growth was performed on CCA. Tetrazolium 
chloride, a red indicator of cellular respiration, was added to the medium to visualize colony growth on the opaque CCA.
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Discussion
Fungi have the potential to strongly affect bacterial neighbours in 
diverse systems, from soil to polymicrobial infections44–48. We com-
bined the high-throughput genetic screen RB-TnSeq with BCP, 

RNA-seq and metabolomics to identify a diversity of bacterial genes 
involved in, and the associated fungal contributors to, bacterial–
fungal interactions in our system. This study provides new insight 
into the wide range of fungal impacts on bacteria that can occur 
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place between bacteria and filamentous fungi growing in a biofilm 
and that this exchange can have impacts on the competitive fitness 
of bacteria. Our data suggest that cheese-associated yeast species 
may alleviate bacterial iron limitation through a different mecha-
nism, as we did not detect siderophore production by these species.

Owing to the importance of iron in bacterial physiology and 
the prevalence of fungi in microbial ecosystems, we expect that 
iron-based bacterial–fungal interactions are important in other 
microbiomes. For example, growth of non-siderophore-producing 
mutants of soil-dwelling Streptomyces coelicolor was restored by the 
presence of siderophores from airborne contaminant Penicillium52. 
Moreover, many filamentous fungi outside the genera studied 
here can produce siderophores53. In addition to filamentous fungi,  
we showed that the basidiomycete skin yeast M. pachyderma-
tis alleviated bacterial iron limitation. Human skin microbiome 
yeasts Malassezia restricta and Malassezia globosa have previously 
been found to possess genes for siderophore biosynthesis54,55. 
Fungal growth may also be affected by inter-kingdom siderophore 
exchange, as some fungal species have evolved mechanisms of  
utilizing bacterial siderophores while others are inhibited by  
bacterial siderophores56–58.

FhuE and FhuA receptors are widespread in Proteobacteria, 
further suggesting that inter-kingdom siderophore exchange could 
play an important role in diverse systems. Hydroxamate sidero-
phore uptake systems have also been identified in Gram-positive 
bacterial pathogens59,60. Additionally, hydroxamate siderophore 
uptake systems affect bacterial fitness, as shown in a murine infec-
tion model61. Bacteroides fragilis, a human gut symbiont, is able to 
use ferrichrome to grow in iron-limiting conditions, and fhu genes 
are expressed by E. coli in colonic mucus62,63. Fermented foods are 
known to contain fungal siderophores, which could be a source of 
fungal siderophores in the gut in addition to potential siderophore 
production by gut-resident species64,65.

We anticipated that by looking for fungal impacts on E. coli, we 
could leverage the genetic information available for this species. 
However, even in this well-characterized organism, 38% of genes 
identified as having interaction fitness are annotated as hypotheti-
cal, uncharacterized or putative. For P. psychrophila, 27% of genes 
with interaction fitness are hypothetical proteins. Similarly, the 
chemical identity and ecological relevance of most of the specialized 
metabolites we identified in our Penicillium species are unknown. 
This highlights that many genes and molecules involved in inter-
species interactions are yet to be characterized, and that studying 
microbes in the context of their interactions with other species, and 
not just in monoculture, provides an avenue for uncovering new 
areas of biology.

Methods
Source information for strains and libraries. Source information for strains and 
libraries used in this study is provided in Supplementary Table 19.

Sequencing of the fungal ribosomal RNA gene. Genomic DNA (gDNA) was 
extracted using phenol–chloroform (pH 8) from cultures of the eight cheese 
fungal species used in this study. For each extraction, 125 µl of 425–600-µm 
acid-washed beads and 125 µl of 150–212-µm acid-washed beads were poured 
into a screw-capped 2-ml tube. A total of 500 µl of 2× buffer B (200 mM NaCl, 
20 mM EDTA) and 210 µl of SDS 20% were added to the tube containing fungal 
material and 500 µl of phenol−chloroform (pH 8). Cells were lysed by vortexing 
the tubes for 2 min at maximum speed. Aqueous and organic phases were 
separated by centrifugation at 4 °C, 8,000 r.p.m. for 3 min, and 450 µl of the aqueous 
phase (upper phase) was recovered in a 1.5-ml Eppendorf tube. Sodium acetate 
(3 M, 45 µl) and ice-cold isopropanol (450 µl) were added before incubating the 
tubes at −80 °C for 10 min. The tubes were then centrifuged for 5 min at 4 °C at 
13,000 r.p.m. The pellet was then washed in 750 µl of 70% ice-cold ethanol and 
resuspended in 50 µl of DNase/RNase-free water. Following DNA extraction, 
LROR (ACCCGCTGAACTTAAGC) and LR6 (CGCCAGTTCTGCTTACC)66 
primers were used to amplify the large subunit of the ribosomal RNA, and for 
Penicillium species, Bt2a (GGTAACCAAATCGGTGCTGCTTTC) and Bt2b 
(ACCCTCAGTGTAGTGACCCTTGGC)67 primers were used to amplify the 

β-tubulin gene. PCR was performed in a final volume of 50 µl (25 µl of Q5 
polymerase master mix (New England Biolabs), 2.5 µl of the forward primer at 
10 µM, 2.5 µl of the reverse primer at 10 µM, 100 ng of gDNA, and water) using the 
following PCR programmes: (1) for LSU: 98 °C for 30 s, then 35 cycles of 98 °C for 
10 s, 52 °C for 30 s, followed by 72 °C for 1.5 min, and finally 72 °C for 5 min; (2) 
for β-tubulin: 98 °C for 30 s, then 35 cycles of 98 °C for 10 s; 57 °C for 30 s, followed 
by 72 °C for 1 min, and finally, 72 °C for 5 min. PCR products were purified using 
a QIAquick PCR purification kit (Qiagen) and sequenced using the forward 
and reverse primers by Eton Bioscience. Consensus sequences from forward 
and reverse sequencing reactions of the LROR/LR6 PCR product were aligned 
using Geneious v.R9 9.1.8 (http://www.geneious.com). The MrBayes68 plugin for 
Geneious was used to build the phylogenetic tree with the following parameters: 
Substitution model- JC69; Rate variation- gamma; Outgroup- Fusarium sp. str. 
554A; Gamma categories-4; Chain Length- 1100000; Subsampling freq- 200; 
Heated chains-4; Burn-in length- 100000; Heated chain temp- 0.2; Random  
seed-1160; Unconstrained branch lengths- 1, 0.1, 1, 1. FigTree v.1.4.4 was used  
for visualization (https://github.com/rambaut/figtree/releases).

Bacterial–fungal growth assays. To approximate a 1:1 ratio of bacteria and 
fungi based on cell size, we inoculated 60,000 bacterial cells alone or with 6,000 
fungal spores per well on 10% CCA medium25 adjusted to pH 7 in a 96-well plate. 
Each bacterial or bacterial–fungal assay was done in triplicate. After 7 days of 
growth at room temperature, the entire well was collected and homogenized in 
1×PBS–Tween 0.05% before dilution and plating on LB medium with 20 µg ml−1 
cycloheximide (for bacterial counts) or plate count agar supplemented with 0.1% 
milk and 1% salt (PCAMS) with 50 µg ml−1 chloramphenicol (for fungal spore 
counts). Counts were done at inoculation and after collection. Final growth counts 
were then compared between the co-culture condition relative to growth alone to 
identify interaction effects. Significant growth effects were determined based on 
Dunnett’s test69, P < 0.05. Plots were made using the R package ggplot (v.2 3.2.1)70.

Microbial culturing for LC–MS/MS extraction. All fungal cultures were grown on 
PCAMS. Plates were kept at room temperature and spores were collected at 7 days 
of growth (or after sporulation was observed) for subsequent experiments. Spores 
collected from fungi were normalized to an optical density at 600 nm (OD600) of 0.1 
in PBS for a working stock.

Extraction of cultures. Three biological replicates of each condition were plated 
(distinct samples) and extracted from solid agar. For extraction from solid agar 
plates, 5 µl of fungal working stock was spotted onto 10% CCA medium adjusted to 
pH 7. Following 7 days of growth, agar was removed from the Petri dish and placed 
into 50-ml Falcon tubes. Acetonitrile (10 ml) was added to each tube and all were 
sonicated for 30 min. All Falcon tubes were centrifuged, and liquid was removed 
from the solid agar pieces and transferred to 15-ml Falcon tubes. The 15-ml Falcon 
tubes containing liquid were then centrifuged and liquid was again removed from 
any residual solid debris and transferred to glass scintillation vials. These liquid 
extractions were then dried in vacuo. Dried extracts were weighed and diluted  
with methanol to obtain 1 mg ml−1 solutions, which were stored at −20 °C until 
analysis via LC–MS/MS.

LC–MS/MS data collection. High-resolution LC–MS and LC−MS/MS data were 
collected on a Bruker impact II qTOF in positive mode with the detection window 
set from 50 to 1,500 Da on a 2.1 × 150-mm C18 Cortecs UPLC column with a 
flow rate of 0.5 ml min−1 for a gradient of 10–100% acetonitrile with 0.1% formic 
acid over 16 min. For each sample, 10 μl of a 1 mg ml−1 solution was injected. The 
electrospray ionization conditions were set with the capillary voltage at 4.5 kV. 
For MS2, dynamic exclusion was used, and the top nine precursor ions from each 
MS1 scan were subjected to collision energies scaled according to the mass and 
charge state for a total of nine data-dependent MS2 events per MS1. MS2 data for 
pooled biological replicates have been deposited under MassIVE accession number 
MSV000085070. MS1 and MS2 data for ΔlaeA and WT Penicillium sp. str. 12 have 
been deposited under MassIVE accession number MSV000085054 and were 
collected under identical conditions on a Bruker compact qTOF.

Molecular networking. For all extractions, all precursor m/z values that were 
found in solvent and agar controls (based on both retention time and mass 
tolerance) were removed before input into Global Natural Products Social 
molecular networking (GNPS) using the BLANKA algorithm71. A molecular 
network (https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=464b331ef9d54de995
7d23b4f9b9db14) was created using the online workflow in GNPS. The data were 
filtered by removing all MS/MS peaks within ±17 Da of the precursor m/z. MS/
MS spectra were window filtered by choosing only the top six peaks in the ±50-Da 
window throughout the spectrum. The data were then clustered with MS-Cluster 
with a parent mass tolerance of 0.02 Da and a MS/MS fragment ion tolerance of 
0.02 Da to create consensus spectra. Furthermore, consensus spectra that contained 
fewer than two spectra were discarded. A network was then created whereby edges 
were filtered to have a cosine score above 0.7 and more than six matched peaks. 
Further edges between two nodes were kept in the network only if each of the 
nodes appeared in each other’s respective top ten most similar nodes. The spectra 
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in the network were then searched against the spectral libraries of the GNPS.  
The library spectra were filtered in the same manner as the input data. All matches 
kept between network spectra and library spectra were required to have a score 
above 0.7 and at least six matched peaks. Solvent and agar control files were also 
loaded into the networks to perform removal based on fragmentation patterns.  
All nodes with precursor masses less than 200 Da were also removed. The extensive 
background and low m/z Da value removal was done to more accurately reflect 
the metabolomic profiles of fungal genera in an attempt to represent only true 
metabolites. The Dereplicator algorithm72,73 was used to annotate MS/MS spectra. 
The molecular networks were visualized using Cytoscape software74.

RB-TnSeq assays. All RB-TnSeq assays were performed on 10% CCA medium 
adjusted to pH 7. Before inoculation, one aliquot of each library was thawed and 
inoculated into 25 ml of liquid LB with kanamycin (50 µg ml−1). This is the same 
medium used for creating the initial library and is expected to be nonselective. 
Once the culture reached mid-log phase (OD = 0.6–0.8), 5 ml of that pre-culture 
was pelleted and stored at −80 °C for the T0 reference in the fitness analysis. 
The remaining cells were used to inoculate the fitness assay conditions. For each 
RB-TnSeq fitness assay, we aimed to inoculate 7,000,000 cells of the bacterial 
library (on average 50 cells per insertion mutant). For fitness assays including a 
fungal partner, 700,000 fungal cells were inoculated based on spore counts. We 
inoculated ten times more bacterial cells than fungal spores to approximate a 1:1 
volume ratio of bacteria:fungi, as fungal cells are approximately ten times larger 
than bacterial cells. Pre-cultured cells were washed in 1×PBS–Tween 0.05%,  
mixed with appropriate volumes of quantified fungal spore stocks, and then 
inoculated by spreading evenly on a 100-mm Petri dish containing 10% CCA 
medium, pH 7. For each condition, assays were performed in triplicate (three 
distinct samples). After 7 days, each plate was flooded with 1.5 ml of 1×PBS–Tween 
0.05% and cells were scraped off, taking care not to disturb the CCA. The liquid 
was then transferred into a 1.5-ml microcentrifuge tube and cells were pelleted 
by centrifugation. After removing the supernatant, the cells were washed in 1 ml 
of RNAprotect solution (Qiagen), pelleted and stored at −80 °C until gDNA 
extraction. gDNA was extracted with phenol–chloroform (pH 8) using the same 
protocol used for fungal gDNA extraction described above. Samples were stored  
at −80 °C until further analysis.

After gDNA extraction, extracts containing Penicillium sp. str. 12 DNA were 
purified using a OneStep PCR Inhibitor Removal kit (Zymo Research). Then, the 
98 °C BarSeq PCR protocol as previously described in Wetmore et al.18 was used  
to amplify only the barcoded region of the transposons. PCR was performed in  
a final volume of 50 µl with the following content: 25 µl of Q5 polymerase master 
mix (New England Biolabs), 10 µl of GC enhancer buffer (New England Biolabs), 
2.5 µl of the common reverse primer (BarSeq_P1 – Wetmore et al.18) at 10 µM, 
2.5 µl of a forward primer from the 96 forward primers (BarSeq_P2_ITXXX) at 
10 µM and either 200 ng of gDNA for growth-alone conditions or 2 µg of gDNA  
for fungal interaction conditions. For E. coli analysis, we performed 84 PCR 
assays (T0 sample and 28 collected samples in triplicate) involving 28 different 
multiplexing indices. For P. psychrophila str. JB418 analysis, we performed 84 PCR 
assays (T0 sample and 28 collected samples in triplicate) involving 28 different 
multiplexing indices. We used the following PCR programme: (1) 98 °C for 4 min; 
(2) 30 cycles of 98 °C for 30 s, 55 °C for 30 s and 72 °C for 30 s; and (3) 72 °C for 
5 min. After the PCR, for both E. coli and P. psychrophila, 10 µl of each of the PCR 
products was pooled together to create the BarSeq sequencing library, and 200 µl 
of the pooled library was purified using a MinElute purification kit (Qiagen). 
The final elution of the BarSeq library was performed in 30 µl of DNase- and 
RNase-free water. The BarSeq libraries were then quantified using a Qubit dsDNA 
HS assay kit (Invitrogen) and sequenced on a HiSeq4000 (75 bp, single-end reads) 
by the IGM Genomics Center at the University of California, San Diego. The 
sequencing depth for each condition varied between 6.1 and 11.7 million reads for 
E. coli and 5.8 and 13.3 million reads for P. psychrophila.

RB-TnSeq data processing. Custom R scripts were used to determine the average 
fitness scores for each gene across three RB-TnSeq assay replicates. These scripts 
are available at https://github.com/DuttonLab/RB-TnSeq-Microbial-interactions. 
The Readme document provides an in-depth explanation of all the data processing 
steps performed in these scripts. Insertion mutants that did not have a sufficient 
T0 count (3) in each condition or that were not centrally inserted (10–90% of gene) 
were removed from the analysis. Counts as determined using the scripts described 
by Wetmore et al.18 were then normalized using a set of five reference genes 
(glgP, acnA, modE, leuA and idnK in E. coli (average of 52 strains each) and the 
respective closest protein BLAST matches Ga0212129_11488, Ga0212129_114557, 
Ga0212129_111416, Ga0212129_112128 and Ga0212129_112491 (average of 74 
strains each) in P. psychrophila) to be able to compare across conditions and to 
account for differences in sequencing depth. These genes have an absolute fitness 
effect of <0.6 in all conditions for all replicates in any condition based on a former 
fitness determination developed by Wetmore et al.18. Strain fitness (fs) was then 
calculated per insertion mutant as the log2 of the ratio of the normalized counts in 
the condition and the normalized counts in the T0 sample (equation (1)).

fs ¼ log2ð
Cc
Ct0

Þ ð1Þ

with Cc representing normalized counts in condition C and Ct0 representing 
normalized counts in T0.

Gene fitness and variance were next calculated by averaging insertion mutants 
within a gene. These values were then normalized based on the position of the 
gene along the chromosome using a smoothed median on a window of 251 genes 
as described in Wetmore et al.18. These steps were all done on individual replicates. 
For all conditions, replicates were highly correlated, with an averaged Pearson 
correlation coefficient of 0.85 for E. coli and 0.84 for P. psychrophila. Next, the 
average gene fitness (fg) (equation (2)) and associated standard deviation (σg) 
(equation (3)) were calculated using the inverse of variance weighted average of the 
fitness values across the three different replicates.

fg ¼
Pn

i¼1 wi ´ fgiPn
i¼1 wi

ð2Þ

σg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð n
n# 1

Þ´ ð

Pn
i¼1 wi ´ fg # fwg

" #2

Pn
i¼1 wi

Þ

vuut ð3Þ

With wi representing the inverse of the gene fitness variance for each replicate, 
n the number of replicates and fwg

I
 the weighted gene fitness average across the  

n replicates.
Final fitness values were then compared between fungal interaction 

conditions and bacteria alone conditions using two-sided t-tests (when the 
equality of variance was verified by Fisher test) and correction for multiple 
comparison (Benjamini–Hochberg method75). Comparisons associated with an 
adjusted P value lower than 5% were considered a significant interaction fitness 
(alphaF parameter=0.002 and alphaT parameter=0.05 in Script3_2conditions_
FitnessComparison.Rmd code). The overall pipeline is described in Extended 
Data Fig. 1, and Supplementary Method 1 provides an example for a complete run. 
Networks of fitness values were visualized in Cytoscape (v.3.5.1)74, and principal 
component analysis plots were made using the R packages ggplot2 (v.3.2.1)70 and 
ggfortify (v.0.4.7)76. COG category mapping of E. coli and P. psychrophila protein 
sequences was done using eggNOG-mapper (v.2)77.

Functional enrichment analysis of bacterial gene sets. ClusterProfiler78 was 
used for GO functional enrichment analysis of bacterial gene sets with a false 
discovery rate P value adjustment cut-off of 0.1. For E. coli, the E. coli K12 
database (org.EcK12.eg.db)79 was used. For P. psychrophila, a custom annotation 
database was created using eggNOG-mapper v.2 (ref. 77) GO assignments using 
AnnotationForge80 in R.

Bacterial cytological profiling. Approximately 7,000,000 WT E. coli K12  
strain BW25113 or Keio collection mdtK mutant cells81 were inoculated alone  
or co-inoculated with 700,000 Penicillium sp. str. 12, Penicillium sp. str. 12  
ΔlaeA or Penicillium sp. str. SAM3 spores on 10% CCA pH 7. After 7 days of  
growth, 1 ml of T-Base buffer was added to the surface of the biofilms, and 
biofilms were scraped into the buffer. For co-culture conditions, the sample  
was filtered through a 0.5-µm filter to specifically remove fungal material.  
A total of 2 µl of concentrated dye mix (1 µl of 1 mg ml−1 FM4-64, 1 µl of 2 mg ml−1 
4,6-diamidino-2-phenylindole (DAPI) in 48 µl of T-Base) was added to 20 µl 
of filtrate. The dye filtrate mix was spotted onto agarose–LB pads (1% agarose, 
20% LB liquid medium, 80% ddH2O) and imaged by fluorescence and phase 
contrast microscopy using an Applied Precision Deltavision Spectris imaging 
system with an Olympus UPLFLN100XO2PH objective. Control compound 
references on CCA medium were obtained by spotting and drying 30 µl of 5-, 10-, 
25- and 100-times minimum inhibitory concentration dilutions of antibiotics 
onto quadrants on CCA medium pH 7 plates and then spread-plating 200 µl 
of log-phase (OD of 0.1) E. coli cultures. After 2 days of growth, cells near the 
edge of the zone of inhibition on appropriate dilution spots were resuspended 
in 10 µl of prediluted dye mix (1 µl 1 mg ml−1 FM4-64, 1 µl 2 mg ml−1 DAPI in 
998 µl of T-Base) and spotted onto agarose–LB pads and imaged as described 
above. Resulting images were deconvoluted using Deltavision SoftWorx 
software (Applied Precision), analysed using Fiji82 and assembled in Adobe 
Photoshop (Adobe). Brightness was altered linearly in Fiji to aid visualization. 
For quantification of cell roundness, we defined the cell major axis as the longest 
possible line along the cell, and the cell minor axis was measured as the longest 
possible line orthogonal to the cell major axis. Cell measurements were obtained 
via the measure tool in Fiji82, and single-cell major and minor axes measurements 
were collated. The pixel to micron ratio was set as 15.6 as per the microscope 
specifications. The major/minor axis ratio was calculated for all cells in the field. 
The number of fields was chosen to ensure measurement of at least 50 cells for 
each experimental condition. Individual ratio values for each cell were plotted 
via the R package ggplot2 (v.3.2.1)70, and differences in major/minor ratios in the 
presence of a fungus relative to growth alone or with WT Penicillium sp. str. 12 
relative to ΔlaeA Penicillium sp. str. 12 were determined based on an unpaired 
two-sample Wilcoxon test P < 0.05.
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CCA medium biotin quantification. Biotin quantification of CCA medium was 
performed on three replicate samples by Creative Proteomics as follows: 100 mg 
of each sample was homogenized in water (10 μl mg− 1) for 1 min three times with 
the aid of 5-mm metal balls on a MM400 mill mixer. Methanol (10 μl mg− 1) was 
then added. Water-soluble vitamins were extracted by vortex mixing for 2 min and 
sonication in a water batch for 5 min. After centrifugation, the clear supernatants 
were cleaned up by solid-phase extraction on a Strata-X (60 mg ml− 1) cartridge. The 
eluted fractions containing water-soluble vitamins were collected, pooled and then 
dried under a gentle nitrogen gas flow in a nitrogen evaporator. The residues were 
dissolved in 200 μl of 10% methanol. Aliquots (20 μl) were injected to run on a 
UPLC–MRM/MS with the use of a C18 UPLC column and with (+) ion detection 
and (− ) ion detection. Calibration curves were prepared by injection of serially 
diluted mixed standard solutions of water-soluble vitamins. Concentrations of 
detected vitamins were calculated by interpolating the linear calibration curves.

Δfep mutant competitive growth assays. Approximately 60,000 bacterial cells  
(a 1:1 ratio of WT cells and ΔfepA, ΔfepC or ΔfepG Keio collection81 mutant cells) 
were inoculated either alone (no fungus) or co-inoculated with approximately 
6,000 Penicillium sp. str. 12 or Scopulariopsis sp. str. JB370 spores on 10% CCA 
pH 7 in a 96-well plate in four replicates each (four distinct samples). After 7 days 
of growth, the entire well was collected and homogenized in 1×PBS–Tween 0.05% 
before dilution and plating on LB with 20 µg ml− 1 cycloheximide (total bacterial 
counts) or with 20 µg ml− 1 cycloheximide and 50 µg ml− 1 kanamycin (bacterial 
mutant counts). Final growth counts were then compared in fungal co-culture 
conditions relative to bacterial growth alone to identify interaction effects. 
Significant growth effects were determined by significantly different growth in the 
presence of a fungus relative to growth alone based on a two-sided two-sample 
t-test P < 0.05. Plots made using the R package ggplot2 (v.3.2.1)70.

Siderophore detection with CAS assays. The following methods were adapted 
from those described by Schwyn and Neilands83 and Payne84. All glassware, caps 
and stir bars were cleaned with 6 M HCl and rinsed with deionized water. Plastic 
spatulas and doubly deionized water were used for solution preparation. A 2 mM 
CAS stock solution was prepared and stored in the dark at room temperature, 
and a 1 mM FeCl3 stock solution was prepared. Piperazine buffer was prepared 
by dissolving 4.3095 g of anhydrous piperazine in 30 ml of water and adding 5 M 
HCl until the pH reached 5.635. To prepare the CAS reagent, 1.1202 ml of 0.05 M 
hexadecyltrimethylammonium bromide (HDTMA) was added to 50 ml of water. 
Then, 1.5 ml of 1 mM FeCl3 stock solution was mixed with 7.5 ml of 2 mM CAS 
solution and added to the HDTMA solution. Last, the piperazine buffer was  
added to the solution and stirred. The resulting CAS assay solution was stored 
in the dark at room temperature. A 0.2 M shuttle solution was prepared with 
5-sulfosalicylic acid dihydrate in water. The shuttle solution was stored in the  
dark at room temperature.

For detection of siderophore presence, fungal species were inoculated in 
triplicate into liquid 2% CCA pH 7, and cultures were grown at room temperature 
for 12 days. For filamentous fungi, cultures were left standing without shaking. 
After 12 days, supernatants were filtered through a 0.22-µm filter. Before use, the 
CAS assay solution was vortexed until all precipitates were resuspended. CAS assay 
incubations were performed in the dark at room temperature. For each fungal 
supernatant or CCA filtrate, 100 µl of CAS assay solution was added to 100 µl of 
supernatant. The resulting solution was mixed by pipetting and incubated for 
15 min. After incubation, 2 µl of shuttle solution was added to the solution and 
mixed by pipetting. The solution was incubated for an additional 30 min. Sample 
absorbance of 630-nm light was measured in a 96-well plate using an Epoch 2 plate 
reader (BioTek).

For CAS assay comparisons of relative siderophore production in WT and 
ΔlaeA Penicillium sp. str. 12, 200,000 spores of WT or ΔlaeA were inoculated in 
triplicate in 3 ml of liquid 2% CCA pH 7. After 7 days of growth at room temperature 
without shaking, the biomass of the fungal mat was removed from the top of the 
culture and the entire supernatant was filtered through a 0.22-µm filter. Total filtrate 
was measured. Fungal mats were dried in a 60 °C drying oven for 2 days before being 
weighed. Filtrates were concentrated 3× in a SpeedVac Vacuum Concentrator and 
100 µl of three replicates each of WT, ΔlaeA and 2% liquid CCA were added to 100 µl 
of CAS solution, and CAS assays were performed as described above. Following 
CAS measurements, the percentage siderophore units were normalized to the entire 
volume of 1× filtrate and expressed as per mg of dried fungal biomass.

RNA-seq and differential expression analysis of E. coli with Penicillium  
sp. str. 12. Approximately 7,000,000 E. coli cells were inoculated in triplicate  
(three distinct samples) either alone or with approximately 700,000 Penicillium sp. 
str. 12 spores on 10% CCA pH 7 in standard petri dishes. After 3 days, the biofilms 
were collected for RNA extraction and washed with 1 ml of RNAprotect. RNA was 
extracted by a phenol–chloroform extraction (pH 8) using the same extraction 
protocol as for gDNA. Extractions were then purified using a OneStep PCR 
Inhibitor Removal kit (Zymo Research).

Sequencing libraries were prepared as follows: RNA samples were treated 
with DNase using the ‘Rigorous DNase treatment’ for the Turbo DNA-free kit 
(Ambion, Life Technologies), and the RNA concentration was measured by nucleic 

acid quantification in an Epoch microplate spectrophotometer (BioTek). Transfer 
RNAs and 5S RNA were then removed using a MEGAclear kit Purification for 
Large Scale Transcription Reactions (Ambion, Life Technologies) following the 
manufacturer’s instructions. Absence of tRNA and 5S RNA was verified by running 
100 ng of RNA on a 1.5% agarose gel, and the RNA concentration was quantified 
by nucleic acid quantification in an Epoch microplate spectrophotometer. Also, 
the presence of gDNA was assessed by PCR using universal bacterial 16S PCR 
primers (forward primer: AGAGTTTGATCCTGGCTCAG; reverse primer: 
GGTTACCTTGTTACGACTT). The PCR was performed in a final volume of 
20 µl (10 µl of Q5 polymerase master mix (New England Biolabs), 0.5 µl of forward 
primer 10 µM, 0.5 µl of reverse primer 10 µM and 5 µl of non-diluted RNA). PCR 
products were run on a 1.7% agarose gel and if gDNA was amplified, another 
DNase treatment was performed as well as a new verification of absence of gDNA.

Ribosomal RNA depletion was performed using a RiboMinus Transcriptome 
Isolation kit (yeast and bacteria) for the E. coli alone samples and using 
both a RiboMinus Transcriptome Isolation kit (yeast and bacteria) and a 
RiboMinus Eukaryote kit v.2 for the mixed E. coli–Penicillium sp. str. 12 samples 
(ThermoFisher Scientific). For the E. coli alone samples, each sample was 
divided into two for treatment and then repooled for RNA recovery with ethanol 
precipitation. For the E. coli–Penicillium sp. str. 12 samples, an equal volume of 
the eukaryotic probe and RiboMinus Bacterial Probe Mix were used to deplete 
both bacterial and fungal ribosomal RNA, and RNA was recovered by ethanol 
precipitation. Concentrations after ribosomal RNA depletion were measured 
using Qubit RNA HS Assay kits (Invitrogen). The RNA-seq library was produced 
using a NEBNext Ultra RNA Library Prep kit for Illumina for purified mRNA 
or ribosome-depleted RNA. We prepared a library with a fragment size of 300 
nucleotides and used the 10 µM NEBNext Multiplex Oligos for Illumina (Set 1, 
NEB E7335, lot 0091412) and the NEBNext multiplex Oligos for Illumina (Set 2,  
NEB E7500, lot 0071412). We performed PCR product purification with 0.8× 
Agencourt AMPure XP Beads. Library samples were quantified using Qubit DNA 
HS Assay kits before the quality and fragment size were validated by TapeStation 
(HiSensD1000 ScreenTape). Library samples were pooled at a concentration of 
15 nM each and were sequenced on a HiSeq4000 (50 bp, single-end). TapeStation 
assays and sequencing were performed by the IGM Genomics Center at the 
University of California, San Diego.

Following sequencing, reads were mapped to the concatenated genome of  
E. coli K12 BW25113 (ref. 85) and Penicillium sp. str. 12 using Geneious v.R9 9.1.8 
(http://www.geneious.com). Only the reads that uniquely mapped to a single 
location on the E. coli genome section were kept. E. coli expression analysis 
was performed using the following R packages: Rsamtools (R package v.2.0.3), 
GenomeInfoDb (R package v.1.20.0), GenomicFeatures86 (R package v.1.36.4), 
GenomicAlignments86 (R package v.1.20.1), GenomicRanges86 (R package v.1.36.1) 
and DESeq2 (ref. 87) (R package v.1.20.1). We followed the workflow described by 
Love et al. 2014 (ref. 87) and performed the differential expression analysis using the 
package DESeq2. Differentially expressed genes between conditions were selected 
using an adjusted P value lower than 5% (Benjamini–Hochberg correction for 
multiple testing75) and an absolute log2 fold change equal to or greater than 1.5.

Construction of E. coli mutants and visual interaction assays. Visual assays for 
purified hydroxamate siderophore stimulation. Antibiotic assay discs (Whatman) 
were placed on CCA medium pH 7 with 0.005% tetrazolium chloride (an indicator 
of cellular respiration) and 20 µl of water, or 10 µM coprogen or ferrichrome 
(EMC Microcollections) solutions (in water) were slowly pipetted onto the disc 
and allowed to absorb. Aliquots (2.5 µl) of 37 °C overnight LB cultures of E. coli 
K12 BW25113 WT, ΔfepA, ΔfepC, ΔfhuE, ΔfhuA, ΔfepAΔfhuE, ΔfepCΔfhuE 
or ΔfepAΔfhuA mutants81 were spotted next to the discs. Double mutants were 
constructed as described below. Plates were left at room temperature until 
development of red colour resulting from tetrazolium chloride, an indicator  
of respiration.

Visual assays for fungal stimulation of bacterial mutants. Fungal spores were 
inoculated on CCA pH 7 with 0.005% tetrazolium chloride. After fungal 
pre-culturing at room temperature (cheese fungal isolates) or 30 °C (A. fumigatus 
and M. pachydermatis), 2.5 µl of E. coli overnight cultures grown in LB medium at 
37 °C were spotted at increasing distances from the fungal front. Plates were left at 
room temperature until red colour developed. The A. fumigatus isolate AF293 was 
received from N. Keller, University of Wisconsin–Madison. M. pachydermatis was 
originally isolated from the ear of a dog in Sweden (ATCC14522 from ATCC).

Creation of ΔfepAΔfhuE and ΔfepCΔfhuE. Chemically competent cells for 
ΔfepA or ΔfepC mutants were created. An overnight culture of ΔfepA or ΔfepC 
mutants was diluted 1:100 and grown at 37 °C until OD of 0.4–0.6. The culture 
was placed on ice for 20 min and then centrifuged at 4 °C for 10 min at 6,000 r.p.m. 
to collect the cells. The supernatant was removed, and cells were resuspended 
in half the previous volume of pre-cooled 0.1 M CaCl2. After incubating on ice 
for 30 min, centrifugation was repeated, and supernatant was removed before 
resuspension in one-quarter of the original volume of pre-cooled 0.1 M CaCl2/15% 
glycerol. Cells were aliquoted and stored at − 80 °C until transformation. These 
cells were transformed with the pKD46 plasmid88, recovered at 30 °C, and plated 
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on LB plates with 100 µg ml−1 ampicillin and grown at 30 °C. Overnight cultures 
were started from individual colonies for the creation of electrocompetent cells. 
Overnight cultures of ΔfepC-pkD46 or ΔfepA-pkD46 were diluted 1:100 in fresh 
LB with 100 µg ml−1 ampicillin and grown at 30 °C until an OD of 0.1. A total 
of 20 µl of fresh 1 M l-arabinose was added, and growth was continued at 30 °C 
until OD 0.4–0.6. Cells were then chilled on ice for 15 min and then centrifuged 
for 10 min at 4,000 r.c.f. at 4 °C. Cells were resuspended in 1 ml of ice water and 
centrifuged for 10 min at 4,000 r.c.f. at 4 °C. Cells were resuspended in 0.5 ml of 
ice water and centrifuged for 10 min at 4,000 r.c.f. at 4 °C. Cells were resuspended 
in 50 µl of ice water and kept on ice until transformation. The chloramphenicol 
resistance cassette was amplified from the pKD3 plasmid88 using the following 
custom primers: F hu Ec atF ( CA GA TG GC TG CC TT TT TT AC AG GT GT TA TT CA-
GA AT TG AT AC GT GC CGGTAATGGCGCGCCTTACGCCCC) and FhuEcatR 
( CC TC CT CC GG CA TG AG CC TG AC GA CA AC AT AA AC CA AG AG AT TT CA AA-
TGCTGGGCCAACTTTTGGCGAA). The following PCR conditions were used: 
(1) 98 °C for 30 s; (2) 30 cycles of 98 °C for 10 s, 70 °C for 20 s and 72 °C for 3 s; and 
(3) 72 °C for 5 min. Amplification was performed on 4 ng of pKD3 plasmid using 
Q5 High-Fidelity 2× Master Mix (New England Biolabs). The PCR product was 
digested for 1 h with the restriction enzymes DpnI and ClaI at 37 °C and then the 
PCR product was run on a 1% agarose gel. The PCR product was extracted using a 
QIAquick Gel Extraction kit (Qiagen) and then dialysed for 4 h with TE buffer.  
A total of 1.5 µl of dialysed PCR product was used to transform the 
electrocompetent ΔfepC-pkD46 or ΔfepA-pkD46 cells. After 2 h of recovery in 
SOC medium with 1 mM arabinose at 37 °C, the transformants was plated on LB 
with 50 mg ml−1 kanamycin and chloramphenicol. Transformants were confirmed 
to be ΔfhuE with Eton Bioscience sequencing of the chloramphenicol cassette.

Creation of ΔfepAΔfhuA. Creation was done as for ΔfepAΔfhuE, except 
that the chloramphenicol resistance cassette was amplified from pKD3 
(ref. 88) using FhuAcatF (ATCATTCTCGTTTACGTTATCATTCACTTT 
ACATCAGAGATATACCAATGAATGGCGCGCCTTACGCCCCAATGG 
CGCGCCTTACGCCCC) and FhuA ca tR ( GC AC GG AA AT CC GT GC CC-
CA AA AG AG AA AT TA GA AA CG GA AG GT TG CG GT CT GG GC CA AC-
TTTTGGCGAACTGGGCCAACTTTTGGCGAA) custom primers.

Penicillium sp. str. 12 genome sequencing, assembly and annotation. gDNA was 
extracted from Penicillium sp. str. 12 using the gDNA extraction protocol described 
above. High molecular weight DNA (average 16 kilobases) was sequenced on an 
Oxford Nanopore MinION with a R.9.5 flow cell using 1D2 sequencing adaptors 
from kit SQK-LSK308 (Oxford Nanopore Technologies). Raw data were base 
called using guppy 3.3.0 (Oxford Nanopore Technologies) (guppy_basecaller 
-config dna_r9.5_450bps.cfg -fast5_out) for 1D base calls and these were used to 
also obtain higher accuracy 1D2 base calls (guppy_basecaller_1d2 -i 1Dbasecall/
workspace/ -config dba_r9.5_450bps_1d2_raw.cfg -index_file 1Dbasecall/
sequencing_summary.txt). These reads were assembled by canu 1.8 (ref. 89)  
and polished by racon 1.4.3 (ref. 90) four times and by pilon 1.23 (ref. 91) once.  
The final assembly is 38 Mbp and consists of 52 contigs.

Penicillium sp. str. 12 genome annotations were obtained by combining 
genomic and transcriptomic information from RNA-seq. To obtain the gene 
expression profile of Penicillium sp. str. 12, approximately 700,000 WT Penicillium 
sp. str. 12 spores were inoculated in triplicate on 10% CCA pH 7 in standard petri 
dishes. After 3 days, the biofilms were collected for RNA extraction and washed 
with 1 ml of RNAprotect. RNA was extracted and RNA-seq libraries were prepared 
as described above with the following modification: ribosomal RNA depletion 
was performed using a RiboMinus Eukaryote kit v1, and RNA was recovered 
by ethanol precipitation. After sequencing, the RNA-seq reads from these 
Penicillium sp. str. 12 alone cultures were concatenated with RNA-seq reads from 
the previously described E. coli–Penicillium sp. str. 12 co-culture conditions that 
uniquely mapped to a single location on the Penicillium sp. str. 12 genome. The full 
set of transcriptomic reads was then used as input into the FunGAP annotation 
pipeline and 77 million of these reads were mapped92. This pipeline predicted 
13,261 protein-coding genes in the Penicillium sp. str. 12 genome. Interproscan93 
was used within the FunGAP pipeline for function prediction of genes. This Whole 
Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under 
the accession JAASRZ000000000. The version described in this paper is version 
JAASRZ010000000.

Creation and confirmation of Penicillium sp. str. 12 laeA deletion mutant. 
The deletion cassette design strategy involved knocking out laeA in Penicillium 
sp. str. 12, whereby the isolate was first screened for hygromycin and 
phleomycin resistance. Penicillium sp. str. 12 showed a confirmed sensitivity 
to both antibiotics. A three-round PCR deletion strategy was used to replace 
the laeA open reading frame (ORF) with the hph gene, whose expression 
confers selection on hygromycin94. A schematic representation of the laeA 
gene replacement with the hph gene is depicted in Supplementary Fig. 3. 
The deletion cassette (5′flank- hph- 3′flank) was constructed using three 
sequential PCR reactions. In the first PCR round, about 1 kilobase of the 
genome sequence flanking either the 5′ or 3′ end of the laeA ORF was amplified 
using the primer sets P12_KOlaeA_5′F (CTCCGTTGGGCCCTCAC) and 5′R 

(GCAATTTAACTGTGATAAACTACCGCATTAAAGCTGTTGATATCGGC 
AATCAATCAATG) or P12_KOlaeA_3′F (GGTGGGCCTTGACATGTGCAGCC 
GGTGGAGCGGCGCCTGGTGAATCCTACCCACATGG) and 3′R (CGTTGG 
GAGGAAAAGCTTCTGCG), respectively. The hph gene was amplified from  
plasmid pUCH2-8 using primers hph_F (AGCTTTAATGCGGTAGTTTATCA 
CAG) and hph_R (CTCCACCGGCTGCACATGTC). A second PCR reaction was 
performed to assemble the three individual fragments from the first round of PCR 
by homologous recombination. The deletion cassettes were finally amplified using 
the nested primer set P12_KOlaeA_NestedF (CAGACGGTCCGCATCCCG) and 
P12_KOlaeA_NestedR (GGTCCAGGTGCAGTAGTACTG).

To generate the deletion strains, a protoplast-mediated transformation 
protocol was employed. Briefly, 109 fresh spores were cultured in 500 ml of 
liquid minimal medium for 12 h at 25 °C and 280 r.p.m. Newly born hyphae were 
collected by centrifugation at 8,000 r.p.m. for 15 min and hydrolysed in a mixture 
of 30 mg Lysing Enzyme from Trichoderma (Sigma-Aldrich) and 20 mg Yatalase 
(Fisher Scientific) in 10 ml of osmotic medium (1.2 M MgSO4, 10 mM NaPB, 
pH 5.8). The quality of the protoplasts was monitored under the microscope after 
4 h of shaking at 28 °C and 80 r.p.m. The protoplast mixture was later overlaid 
with 10 ml of trapping buffer (0.6 M sorbitol, 100 mM Tris-HCl pH 7.0) and 
centrifuged for 15 min at 4 °C and 5,000 r.p.m. Protoplasts were collected from the 
interface, overlaid with an equal volume of STC (1.2 M sorbitol, 10 mM Tris-HCL 
pH 7.5,10 mM CaCl2) and decanted by centrifugation at 6,000 r.p.m. for 8 min. 
The protoplast pellet was resuspended in 500 µl STC and used for transformation. 
After 5 days of incubation at 25 °C, colonies grown on stabilized minimal medium 
plates supplemented with hygromycin were subjected to a second round of 
selection on hygromycin plates. In total, 25 hygromycin-resistant transformants 
were isolated after a rapid screening procedure on stabilized minimal medium 
supplemented with hygromycin. Single-spored transformants were later tested  
for proper homologous recombination at the ORF locus by PCR and Southern 
blot analysis.

The correct replacement of laeA with the hph gene was first verified 
by PCR analysis of gDNA from the transformant strains using the primer 
set P12_laeA_F (CACAATGGCTGAACACTCTCGG) and P12_laeA_R 
(GGGATATGGAGCATCGAAGTTGC) that amplify the laeA ORF. About 12%  
(3 out of 25) of the monoconidial lines generated from primary transformants  
of Penicillium sp. str. 12 were PCR-positive for the absence of the laeA ORF.  
The positive deletion strains were further checked for a single insertion  
of the deletion cassette by Southern blot analysis and revealed single-site 
integration of the deletion cassette in one transformant (Supplementary  
Fig. 3). Probes corresponding to the 5′ and 3′ flanks of the laeA gene in  
each strain were labelled using [α32P] dCTP (PerkinElmer) following the 
manufacturer’s instructions.

RNA-seq analysis of WT and ΔlaeA Penicillium sp. str. 12. To characterize the 
effect of the laeA deletion on the Penicillium sp. str. 12 gene expression profile, 
we performed RNA-seq analysis for ΔlaeA Penicillium sp. str. 12. As for WT 
Penicillium sp. str. 12, 700,000 ΔlaeA Penicillium sp. str. 12 spores were inoculated 
in triplicate (three distinct samples) on 10% CCA pH 7 in standard petri dishes, 
and biofilms were collected after 3 days. Collection, RNA extraction and library 
preparation were performed identically to that for WT Penicillium sp. str. 12. Then, 
Penicillium sp. str. 12 and ΔlaeA differential expression analysis was performed 
as described for E. coli–Penicillium sp. str. 12 above. To look for enrichment 
of functions in the set of differentially expressed genes, we input the protein 
sequences of the genes into the gene-list enrichment function of KOBAS 3.0  
(ref. 95). Sequences were searched against the GO database96,97 using A. fumigatus 
as a reference for GO assignment before conducting a hypergeometric test with 
Benjamini–Hochberg correction. Functions with a corrected P < 0.05 were 
considered enriched.

WT and ΔlaeA Penicillium sp. str. 12 growth assays. For radial growth assays, 
2,000 WT or ΔlaeA Penicillium sp. str. 12 fungal spores were inoculated as spots 
in triplicate on 10% CCA pH 7 either alone or with 20,000 E. coli cells. The radius 
of fungal growth was measured after 7 days. For spore counting assays, we aimed 
to inoculate 6,000 WT or ΔlaeA Penicillium sp. str. 12 fungal spores per well on 
10% CCA pH 7 in a 96-well plate either alone or co-inoculated with 60,000 E. coli 
cells. Each assay was done in triplicate. After 7 days of growth, the entire well was 
collected and homogenized in 1× PBS–Tween 0.05% before dilution and plating on 
PCAMS with 50 µg ml−1 chloramphenicol (for fungal spore counts).

Availability of biological materials. All unique materials, including the described 
fungal strains isolated from cheese, the P. psychrophila JB418 strain and the 
RB-TnSeq library, the Penicillium sp. str. 12 laeA deletion mutant and the  
E. coli siderophore-uptake double mutants, are readily available from the authors 
upon request. The E. coli RB-TnSeq library and Keio strains can be requested 
from the groups that created these resources (PMID references are provided in 
Supplementary Table 19).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Data availability
Sequence data that support the findings of this study (RB-TnSeq and RNA-seq) 
have been deposited in the NCBI SRA database with SRA accession codes 
SRR11514793–SRR11514872 and BioProject code PRJNA624168. MS data are 
available in the MassIVE database under accession numbers MSV000085070 and 
MSV000085054. The GNPS molecular network is available at https://gnps.ucsd.
edu/ProteoSAFe/status.jsp?task=464b331ef9d54de9957d23b4f9b9db14. The  
E. coli annotation database used for GO functional enrichment is available at  
http://bioconductor.org/packages/release/data/annotation/html/org.EcK12.eg.db.
html. The Whole Genome Shotgun project for Penicillium sp. str. 12, including 
reads, genome assembly and annotation has been deposited at DDBJ/ENA/
GenBank under the accession JAASRZ000000000 in BioProject PRJNA612335 
(BioSample SAMN14369290 and SRA SRR11536435). In addition to these sources, 
the data used to create Figs. 2, 3, 5 and 6 are available in the Supplementary Tables 
provided with the paper. Uncropped Southern blots associated with Supplementary 
Fig. 3 are provided with the manuscript as Supplementary Data. Source data are 
provided with this paper.

Code availability
The R scripts developed for processing RB-TnSeq data described in this manuscript 
are available at https://github.com/DuttonLab/RB-TnSeq-Microbial-interactions 
along with usage instructions. The perl scripts needed for initial processing of 
RB-TnSeq data published in Wetmore et al.18 are available at https://bitbucket.org/
berkeleylab/feba/src/master/.
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Extended Data Fig. 1 | RB-TnSeq R data processing pipeline for gene fitness comparison across multiple conditions. The pipeline is divided into  
three main scripts. Script 1 calculates the normalized gene fitness for each replicate of an RB-TnSeq experiment. This script has to be run for each  
replicate independently. Then, the .Rdata files from Script 1 are loaded in Script 2. Script 2 calculates for each RB-TnSeq condition the average gene  
fitness across replicates (inverse-variance weighted average). Finally, Script 3 compares gene fitness values of each RB-TnSeq condition against a  
chosen reference condition.
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Extended Data Fig. 2 | RB-TnSeq assay for fungal impacts on bacterial gene fitness. Characterized pooled bacterial mutant libraries were grown in a 
biofilm either alone or with a fungal partner. After seven days of growth, mutant abundances were compared to the starting library abundances for each 
condition. Changes in barcode abundances were used to calculate gene fitness values. Genes with fitness values that differed significantly between 
co-culture and alone conditions (significant interaction fitness) were identified as potentially relevant to fungal interaction.
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Extended Data Fig. 3 | Comparison of E. coli and P. psychrophila interaction fitness values for the 874 genes found in both bacteria. BLAST comparison 
(e-value cutoff of 1e-2) of protein sequences from P. psychrophila to those from E. coli and comparison of eggNOG gene assignments were used to find the 
best cross-species gene match for all genes with significant interaction fitness for at least one of the two bacterial species. A match was found for 874 
genes. For each fungal condition, the fitness value of these genes with E. coli is on the x-axis and with P. psychrophila on the y-axis. In each condition, the 
genes are colored according to whether they have significant interaction fitness in the condition for E. coli (red), P. psychrophila (blue), both (purple), or 
neither (white).
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Extended Data Fig. 4 | Network of E. coli (left) or P. psychrophila (right) genes with positive and negative RB-TnSeq interaction fitness. Each purple node 
represents a fungal partner and is labeled as follows: fungal partner (number of genes with interaction fitness; number of genes with interaction fitness 
unique to this condition). Each blue or orange node represents a bacterial gene. Nodes are colored by whether the average interaction fitness is positive 
(blue) or negative (orange) as shown in the legend below and are sized by average strength of interaction fitness across partners.
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Extended Data Fig. 5 | Principal Component A nalysis of RB-TnSeq data. Analysis was done on the fitness values in each fungal condition for all E. coli (left) 
or P. psychrophila (right) genes with an interaction fitness in at least one fungal condition. Each colored circle represents a fungal condition.
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Extended Data Fig. 6 | Clusters of Orthologous Genes (COG) categories of genes with interaction fitness. Charts display the number of genes with 
interaction fitness that fall into each COG category for E. coli (left) or P. psychrophila (right).
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Extended Data Fig. 7 | Bacterial Cytological Profiling of ΔtolC E.coli treated with known antibiotic compounds on cheese curd agar. DAPI dye stains DNA 
and FM4-64 dye stains bacterial membranes. SYTOX green stains nucleic acids but cannot penetrate live cells. Scale bars represent 2!µm. Testing of each 
antibiotic at four concentrations was performed once, and cells from the edges of zones of clearing were imaged for at least 5 fields from each condition to 
ensure consistency in phenotype.
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Extended Data Fig. 8 | Siderophore production by filamentous fungi. Liquid CAS assay was performed on filtered and concentrated fungal supernatants 
from three replicates grown in 2% liquid cheese pH 7 for 12 days. Row A) 1-3: Liquid cheese control 4-6: Penicillium SAM3. Row B) 1-3: Debaryomyces 135B 
4-6: Penicillium #12. Row C) 1-3: Candida 135E. 4-6: Penicillium RS17. Row D) 1-3: Scopulariopsis 165-5 Row E) 1-3: Scopulariopsis JB370. Row F) 1-3: Fusarium 
554A. % Siderophore units calculated as [(Ar - As)/(Ar)]*100, where Ar is the absorbance of the cheese curd agar supernatant blank and As is the 
absorbance of the sample. N=3 biologically independent samples, error bars show standard deviation and black point is the mean.
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Extended Data Fig. 9 | Fitness defect of Δfep mutants on iron-limiting CCA . Visual assays of E. coli mutant growth spotted alone on CCA pH 7 
supplemented with tetrazolium chloride, an indicator of respiration.
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Extended Data Fig. 10 | Comparison of Penicillium sp. str. 12 WT and laeA deletion mutant growth on CCA. Radial growth assay, including quantification, 
of Penicillium sp. str. 12 WT and laeA deletion mutant grown alone or with E. coli on CCA pH 7 (N=3 biologically independent experiments, error bars show 
standard deviation and black point is the mean). Spore counts from Penicillium sp. str. 12 WT and laeA deletion mutant grown alone or with E. coli for 7 days 
on CCA are also shown (N=3 biologically independent samples, error bars show standard deviation and black point is the mean).

NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology



 

 77 

 

Supplementary Method 1:

Illustration of the analytical pipeline of RB-TnSeq
analysis and identification of interaction fitness

This document provides examples of the different steps of the computational analysis of RB-TnSeq data and identification of interaction

fitness. They rely on 3 principal custom R scripts.

Script 1 (Script1_GeneFitness_Replicate.Rmd): Calculates gene fitness for of one replicate of a set of RB-TnSeq experiments of the same

library and relying on the same T0 sample. Therefore, this script has to be run independently for each replicate of RB-TnSeq experiment

using the same T0. In this exemple, we use 5 RB-TnSeq experiments (Condition 1 to 5) sharing the same T0 and performed in triplicate.

While this script has to be run for each replicate independently, here, we only display the run for the first replicate to illustrate the script.

Script 2 (Script2_Averaging_Replicates.Rmd): Averages gene fitness values across replicates.

To run this script, you need the output of Script 1 for each replicate of the experiment. Then the script combines all the replicates of the 5

example conditions.

Note: Even if we only display the Script 1 run for the first replicate, we also run Script 1 for the second and third replicate of this example as

required to run Script 2.

Script 3 (Script3_2conditions_Fitness_Comparison.Rmd): Performs the gene fitness comparisons between a given reference condition and

the other conditions and identifies interaction fitness.

Here, we used the run that compared the final gene fitness of Conditions 2 to 5 to gene fitness of reference condition, Condition 1 

STEP 1:Gene fitness values and associated variance for 1
replicate of a set of RB-TnSeq experiments (Same T0)

Script: Script1_GeneFitness_Replicate.Rmd
That script processes the raw counts data from the allpoolcounts.tab file generated by the perl script BarSeqTest.pl (Wetmore et al., 2015).

This script processes 1 biological replicate This script produces a final file containing normalized gene fitness and associated fitness

variance. Plots are generated during data processing to visually follow data transformation. 

Example description

This run illustrates the first step of RB-TnSeq analysis to identify interaction fitness. This is the run for the first replicate of an example

comprised of 5 RB-TnSeq experiments using the E. coli RB-TnSeq library. 

Run

Packages and functions

rm(list=ls())

# Step 1: Packages

library(ggplot2)

library(dplyr)

## 

## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':

## 

##     filter, lag

## The following objects are masked from 'package:base':

## 

##     intersect, setdiff, setequal, union

1
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library(tidyr)

library(gridExtra)

## 

## Attaching package: 'gridExtra'

## The following object is masked from 'package:dplyr':

## 

##     combine

# Step 2: Sourcing functions required in that script

source("Data_prep_viz10KB.R")

source("Ref_counts_CorrandNorm.R")

source("Gene_fitness.R")

source("Loc_smoothmed_norm.R")

Input data and parameters set up

# Step 3: Parameters set up and data import

 #Different parameters have to be defined by the user:

  # org_locId: depending on your genome annotations, the locus_Id may be numerics or characters

  # cdnb: number of analyzed conditions (including T0) 

  # scaffold: Set up the chromosome scaffold (for plot purposes only)

  # Indicate the locusId of the gene you will use as a reference to normalize counts

org_locId="Num"   # "Num" if numeric , "Char" if characters

cdnb=6

scaffoldX=7023  

ref=c(17490,15396,14886,14220,18293) # here you write the locusId of your reference gene CAREFUL, depending 

on the locusId Type, it might be a numeric  or character 

 # You need to import the table containing the number of counts per barcodes in each condition (allpoolcount

s.tab transformed as a csv file - make sure to keep all columns)

 # The first 7 columns of your table should be: barcodes, rbarcode, scaffold, strand, pos, locusId and f, th

en each column should be a condition ==> THIS IS IMPORTANT THAT THE FIRST 7 COLUMNS ARE NOT COUNTS

 # ALSO COLUMN 8 MUST BE NAMED T0

 # THE CONDITIONS MUST HAVE THE SAME NAME IN EACH REPLICATE

 # You also need to import the genes.GC (as a .txt file) file used to run the perl script TestBarSeq.pl (Wet

more et al., 2015). 

Data_original=read.csv("Ex_Run_R1.csv")  # import your allpoolcounts file

genes.tab <- readr::read_delim("genes.GC.txt", 

                               "\t", escape_double = FALSE, trim_ws = TRUE)  # import your gene.GC file

## Parsed with column specification:

## cols(

##   locusId = col_double(),

##   sysName = col_character(),

##   type = col_double(),

##   scaffoldId = col_double(),

##   begin = col_double(),

##   end = col_double(),

##   strand = col_character(),

##   name = col_character(),

##   desc = col_character(),

##   GC = col_double(),

##   nTA = col_double()

## )

Original data visualization
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# Step 4: Data pre-visualization

 # Before processing the data we represent, for each condition (T0 included) the number of counts per 10kB a

nd the distribution of number of counts per insertion mutant

Data=Data_original

    # Number of counts per 10kB

Data_prep=Data_prep_viz10KB(Data,cdnb,scaffoldX)    # format the data for vizualisation as counts per 10kB

dat_format <- data.frame(Data_prep[ncol(Data_prep)], stack(Data_prep[1:cdnb]))

colnames(dat_format)=c("Rank","Counts","Cdt")

plot1=ggplot(dat_format, aes(x=Rank,y=Counts,col=Cdt)) + geom_point(shape=19) +

  theme(axis.text.x = element_text(size=5),axis.text.y = element_text(size=5)) + 

  ggtitle("Counts per 10kb interval") +

  facet_grid(Cdt ~ .) + labs(x = "Chromosome position (10kB)", y="Counts per 10kb interval")

#Note:if a couple of outliers points prevent from accuretely observing the number of counts per 10kB, you ca

n change y=Counts to y=log10(Counts)

# Distribution of number of counts per insertion mutant

Data_distr=gather(Data,"Cond","Counts",T0:ncol(Data))

plot1a=ggplot(Data_distr, aes(x=Counts,col=Cond)) + geom_density() + 

  theme(axis.text.x = element_text(size=5),axis.text.y = element_text(size=5)) +

  ggtitle("Distribution of counts per insertion mutant") +

  facet_grid(Cond ~ .) + labs(x = "Counts per insertion mutant")

grid.arrange(plot1, plot1a, nrow=2)   

 

Selection of insertion mutants, followed by counts correction and normalization

Selection: raw counts have to be processed prior to fitness calculation. Insertion mutants in intergenic regions and that are located outside

of the ORF (f<0.1 and f>0.9) are filtered out. Also, any mutants with a low abundance in the T0 condition are filtered out.

Count correction: a pseudocount of .1 is added to all counts to avoid counts of 0

Normalization: corrected counts are normalized by the average number of reads per insertion mutant calculated using a set of reference

genes associated with neutral fitness in all tested conditions
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# Step 5: Count correction before fitness calculation

 # A pseudocount of .1 is added to each count to avoid counts of 0

 # Insertions mutants that are outside of the ORF (f<0.1 and f>0.9) are filtered out

 # Insertion mutants that do not pass the T0 count threshold (before correction relative to reference ; Coun

ts<3.1) are filtered out

 # Counts are normalized using at least one reference gene (no fitness effect in all tested conditions) - Th

e reference are used to calculate the average number of read per insertion mutant which is in turn used for 

normalization

 # Data are visualized again after correction (Number of corrected counts per 10kb and Distribution of corre

cted counts)

  # The function Data_counts_CorrandNorm perform all the aformentioned modifications

Data_ref_corrected=Ref_counts_CorrandNorm(Data, ref, cdnb)

  # Number of corrected counts per 10kB

Dat_viz=Data_prep_viz10KB(Data_ref_corrected,cdnb,scaffoldX)

dat_format <- data.frame(Dat_viz[ncol(Dat_viz)], stack(Dat_viz[1:cdnb]))

colnames(dat_format)=c("Rank","Counts","Cdt")

plot2=ggplot(dat_format, aes(x=Rank,y=Counts,col=Cdt)) + geom_point(shape=19) + 

  theme(axis.text.x = element_text(size=5),axis.text.y = element_text(size=5)) + ggtitle("Corrected counts p

er 10kb interval") +

  facet_grid(Cdt ~ .) + labs(x = "Chromosome position (10kB)", y="Counts per 10kb interval")

#Note:if a couple of outliers points prevent from accuretely observing the number of counts per 10kB, you ca

n change y=Counts to y=log10(Counts)

  # Distribution of number of counts per insertion mutant

Data_distr=gather(Data_ref_corrected,"Cond","Counts",T0:ncol(Data_ref_corrected))

plot2a=ggplot(Data_distr, aes(x=Counts,col=Cond)) + geom_density() + 

  theme(axis.text.x = element_text(size=5),axis.text.y = element_text(size=5)) +

  ggtitle("Distribution of corrected counts per insertion mutant") +

  facet_grid(Cond ~ .) + labs(x = "Counts per insertion mutant after correction and normalization")

grid.arrange(plot2, plot2a, nrow=2)  

Calculation of gene fitness values
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A gene fitness value is calculated as the average of the fitness values of associated insertion mutants. The fitness of insertion mutants is

the log2 of the ratio of the insertion mutant’s normalized counts in a given condition and at T0.

# Step 6: Calculation of gene fitness

 # Calculation of the strain fitness (fitness for each insertion with central insertion as the log2 of the r

atio of the corrected counts in the condition and the corrected counts in the T0)

 # Calculation of gene fitness values along with associated variance (average of all the insertion mutants f

itness in that gene)

 # Vizualization of the gene fitness values (along the chromose (plot3) or as a distribution (plot4))

Data_for_fit=Data_ref_corrected

cdnbF=(cdnb-1)   # number of conditions for which we will get a fitness values (=everything but T0)

# The following function returns a list containing 3 tables: "Strain fitness": strain fitness values, "Gene_

fitness": unnormalized gene fitness values and "Gene_fitness_variance": variance assocaited with gene fitnes

s values 

Raw_values=Gene_fitness(Data_for_fit,cdnbF,genes.tab,org_locId)  

Table_GeneFitness_Raw=Raw_values[[2]]  # We extract the table with the unnormalized fitness values for data 

vizualisation

 #We format the data to vizualise them 

dat_format <- data.frame(Table_GeneFitness_Raw[1], Table_GeneFitness_Raw[(ncol(Table_GeneFitness_Raw)-1):nco

l(Table_GeneFitness_Raw)], stack(Table_GeneFitness_Raw[2:(2+cdnbF-1)]))

colnames(dat_format)=c("locusId","sysName","begin","RawFitness","Cdt")

plot3=ggplot(dat_format, aes(x=begin,y=RawFitness,col=Cdt)) + geom_point(shape=19) + 

  theme(axis.text.x = element_text(size=5),axis.text.y = element_text(size=5)) + ggtitle("Unnormalized gene 

fitness") +

  facet_grid(Cdt ~ .) + labs(x = "Chromosome position", y="Fitness value")

plot4=ggplot(dat_format, aes(x=RawFitness,col=Cdt)) + geom_density(aes(fill=Cdt)) + 

  theme(axis.text.x = element_text(size=5),axis.text.y = element_text(size=5))+ ggtitle("Distribution of gen

e unnormalized fitness values") +

  facet_grid(Cdt ~ .) + labs(x = "Fitness value", y="Density")

grid.arrange(plot3, plot4, ncol=1)

 

Chromosome position normalization of gene fitness values

As described in Wetmore et al., 2015, gene fitness values are normalized based on the gene location on the chromosome using the

smoothed median.
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# Step 7: Gene fitness normalization

 # Normalize gene fitness based on the position of the gene on the chromosome (smooth median normalization ;

Wetmore et al., 2015)

 # Data visualization like Step 6

Data_to_norm=Table_GeneFitness_Raw

Data_norm_loc=Loc_smoothmed_norm(Data_to_norm,genes.tab,cdnbF,org_locId)  # we obtain the gene fitness value

s normalized by the smoothed median ==> normalization for gene location

 # Data visualization

dat_format <- data.frame(Data_norm_loc[1:4], stack(Data_norm_loc[5:ncol(Data_norm_loc)]))

colnames(dat_format)=c("locusId","sysName","begin","scaffold","NormFitness","Cdt")

dat_format$begin=as.numeric(dat_format$begin)

dat_format$NormFitness=as.numeric(dat_format$NormFitness)

plot5=ggplot(dat_format, aes(x=begin, y=NormFitness, col=Cdt)) + geom_point(shape=19)+

  theme(axis.text.x = element_text(size=5),axis.text.y = element_text(size=5)) + ggtitle("Normalized gene fi

tness values (smoothed median)") +

  facet_grid(Cdt ~ .) + labs(x = "Chromosome position (10kB)", y="Fitness value")

plot6=ggplot(dat_format, aes(x=NormFitness, col=Cdt)) + geom_density(aes(fill=Cdt)) +

  theme(axis.text.x = element_text(size=5),axis.text.y = element_text(size=5)) + ggtitle("Distribution norma

lized gene fitness values (smoothed median)") + facet_grid(Cdt ~ .) + labs(y = "Density", x="Fitness value")

grid.arrange(plot5, plot6, ncol=1)

 

Saving data
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# Step 8: Data formating and save

  # Data formating

Data_Fitness_Replicate=dat_format

Table_GeneFitness_VAR=Raw_values[[3]]

Data_Fitness_VAR=data.frame(Table_GeneFitness_VAR[1],

                            stack(Table_GeneFitness_VAR[2:ncol(Table_GeneFitness_VAR)]))

colnames(Data_Fitness_VAR)=c("locusId","Fitness_Variance","Cdt")

if (org_locId=="Num"){

  Data_Fitness_Replicate$locusId=as.numeric(Data_Fitness_Replicate$locusId)

}

All_data_Replicate=left_join(Data_Fitness_Replicate,Data_Fitness_VAR,by=c("locusId","Cdt"))

All_data_Replicate=All_data_Replicate[c(1,2,3,4,6,5,7)]

save(All_data_Replicate, Data_norm_loc,

     Raw_values, Data_ref_corrected, Data_original, genes.tab,

     file="Ex_Run_R1.RData")

STEP 2 :Gene fitness calculation: averaging across
replicates

Script: Script2_Averaging_Replicates.Rmd
That second part of the analysis averages gene fitness across replicates. If all studied conditions have the same T0 sample, it requires for

each replicate the .RData files generated in the first part of the analysis “Script1_GeneFitness_Replicate.Rmd”. If studied conditions have a

different T0 sample, it requires the output of the script Multiple_T0s.R Before averaging replicates, we perform a quick analysis of

correlation between replicates of the same condition. It produces a final file containing final normalized gene fitness and associated fitness

variance across replicates. Plots are generated during data processing to visually follow data transformation.

Example description

This run illustrates the second step of RB-TnSeq analysis to identify interaction fitness. This is the run for averaging fitness values for all the

replicates of the 5 conditions RB-TnSeq example. 

Run

Packages and functions

rm(list=ls())

library(dplyr)

library(ggplot2)

library(ggrepel)

library(DescTools)

library(gridExtra)

source("Correlation_Rep.R")

source("Weighted_average.R")

Data upload and parameters set up
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# Step1: Parameters set up and Data import

 # Import .Rdata files generated for each replicate in Script1_GeneFitness_Replicate.Rmd

 # Isolate and rename All_data_Replicate just after loading to avoid overwritting.

 # Note: if conditions have different T0s and have been processed independently in "Gene_Fitness_Replicate.R

", Step 1 is replaced by running the script: "Multiple_T0s.R"

  # Parameter set up

org_locId="Num"   # "Num" if numeric , "Char" if characters

multiT=FALSE  # Switch to TRUE if you used different T0s for a set of conditions and have to run Multiple_T0

to generate the table containing all replicates.

if (multiT==FALSE){

  load("Ex_Run_R1.Rdata") #load the .Rdata file from Gene_Fitness_Replicate.R for replicate 1

  Replicate1=All_data_Replicate

  load("Ex_Run_R2.Rdata") #load the .Rdata file from Gene_Fitness_Replicate.R for replicate 2

  Replicate2=All_data_Replicate

  load("Ex_Run_R3.Rdata") #load the .Rdata file from Gene_Fitness_Replicate.R for replicate 3

  Replicate3=All_data_Replicate

  # We bind all replicates together and add a column "Rep" to identify were it is coming from

  Replicate1$Rep="R1"

  Replicate2$Rep="R2"

  Replicate3$Rep="R3"

  AllReplicate=rbind(Replicate1,Replicate2,Replicate3)

  head(AllReplicate, n=5)

}

##   locusId sysName begin scaffold        Cdt NormFitness Fitness_Variance Rep

## 1   14146   b0001   190     7023 Condition1 -0.10763776      0.004234506  R1

## 2   14147   b0002   337     7023 Condition1 -0.39564492      0.158219137  R1

## 3   14148   b0003  2801     7023 Condition1 -0.60484100      0.198116180  R1

## 4   14149   b0004  3734     7023 Condition1 -1.37486386      0.416450536  R1

## 5   14150   b0005  5234     7023 Condition1  0.06967739      0.054488610  R1

if (multiT==TRUE){

  load(".Rdata")    #Generated in Multiple_T0s.R

  genes.tab <- readr::read_delim("genes.GC.txt", 

                               "\t", escape_double = FALSE, trim_ws = TRUE)  # import your gene.GC file

}

Side de by side Replicate visualization

# Step 2: Replicates visualization 

  # Plots for fitness values or variance distribution in each condition and replicate

plot1_fit=ggplot(AllReplicate, aes(x=NormFitness,col=Cdt))+geom_density(aes(fill=Cdt)) + theme_light()+

  ggtitle("Distribution of gene fitness values") + facet_grid(Rep ~ Cdt) + labs(x = "Gene fitness value", y=

"Density")

plot1_var=ggplot(AllReplicate, aes(x=Fitness_Variance,col=Cdt))+geom_density(aes(fill=Cdt)) + theme_light()+

  ggtitle("Distribution of variance") + facet_grid(Rep ~ Cdt) + labs(x = "Variance associated with fitness v

alues", y="Density")

grid.arrange(plot1_fit, plot1_var, ncol=1)

## Warning: Removed 2145 rows containing non-finite values (stat_density).
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Replicates correlation analysis

Note for this example: while the script generates plots for each correlation analysis (Pearson, Spearman and Lin), here we only display the

plot for the Pearson correlation

# Step 3: Replicate correlation calculation and visualization (for gene fitness values)

  # Determines the correlation between each replicate, stores them in a matrix 

  # Visualizes correlation in two different ways: (i)  usual correlation plots and (ii) distribution of corr

elation across all conditions and replicates

  # Calculation of correlation for all pairs of replicate (and each condition) + plots

Correlation_table_fit=Correlation_Rep(AllReplicate) # Calculates different correlation coefficient + save pl

ots

## Warning: `data_frame()` is deprecated, use `tibble()`.

## This warning is displayed once per session.

Correlation_table_fit

## # A tibble: 15 x 5

##    Cond       Comp     P_Rsquared S_Rsquared L_Rsquared

##    <chr>      <chr>         <dbl>      <dbl>      <dbl>

##  1 Condition1 R2 vs R1      0.798      0.591      0.797

##  2 Condition1 R3 vs R1      0.768      0.572      0.763

##  3 Condition1 R3 vs R2      0.764      0.553      0.762

##  4 Condition2 R2 vs R1      0.866      0.696      0.865

##  5 Condition2 R3 vs R1      0.883      0.689      0.881

##  6 Condition2 R3 vs R2      0.873      0.711      0.873

##  7 Condition3 R2 vs R1      0.879      0.704      0.878

##  8 Condition3 R3 vs R1      0.882      0.703      0.881

##  9 Condition3 R3 vs R2      0.894      0.725      0.894

## 10 Condition4 R2 vs R1      0.836      0.669      0.835

## 11 Condition4 R3 vs R1      0.865      0.667      0.865

## 12 Condition4 R3 vs R2      0.846      0.687      0.845

## 13 Condition5 R2 vs R1      0.883      0.704      0.883

## 14 Condition5 R3 vs R1      0.837      0.652      0.836

## 15 Condition5 R3 vs R2      0.868      0.676      0.864
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plot_allPcor_fit=ggplot(Correlation_table_fit, aes(x=Cond,y=P_Rsquared)) + geom_point(size=2, aes(col=Comp))

+

  theme_light() + labs(y = "Pearson Correlation coefficient", x="Condition") + ylim(0,1) +  ggtitle("Replica

te correlation: Pearson coefficient")

plot_allScor_fit=ggplot(Correlation_table_fit, aes(x=Cond,y=P_Rsquared)) + geom_point(size=2, aes(col=Comp))

+

  theme_light() + labs(y = "Spearman Correlation coefficient", x="Condition") + ylim(0,1) + ggtitle("Replica

te correlation: Spearman coefficient")

plot_allLcor_fit=ggplot(Correlation_table_fit, aes(x=Cond,y=P_Rsquared)) + geom_point(size=2, aes(col=Comp))

+

  theme_light() + labs(y = "Lin's Correlation coefficient", x="Condition") + ylim(0,1) + ggtitle("Replicate 

correlation: Lin coefficient")

grid.arrange(plot_allPcor_fit, nrow=1)

 

Averaging replicates

Gene fitness values are averaged across replicates using the inverse-variance weighted average. Associated squared standard error (var)

and associated standard deviations are also calculated. 

Note for this example: while the script generates plots for the average gene fitness, a plot for gene fitness variance and a plot for gene

fitness standard deviation, here we only display the plot for the average fitness

# Step 4: Weighted average of gene fitness across replicate

 # Averages gene fitness values across replicates for each condition

 # Visualizes fitness values distrbutions, squared standard error (var) ditributions and standard deviation 

distributions

Average_fitness=Weighted_average(AllReplicate, org_locId)

plot2_fit=ggplot(Average_fitness, aes(x=WeightedFit,col=Cdt))+geom_density(aes(fill=Cdt)) + theme_light()+

  ggtitle("Distribution of average fitness values across replicates") + facet_grid(Cdt ~ .) + labs(x = "Gene

fitness values", y="Density")

plot2_var=ggplot(Average_fitness, aes(x=WeightedVar,col=Cdt))+geom_density(aes(fill=Cdt)) + theme_light()+

  ggtitle("Distribution of squared standard error") + facet_grid(Cdt ~ .) + labs(x = "Squared standard error

associated with fitness values", y="Density")

plot2_sd=ggplot(Average_fitness, aes(x=Weightedsdev,col=Cdt))+geom_density(aes(fill=Cdt)) + theme_light()+

  ggtitle("Distribution of standard deviation") + facet_grid(Cdt ~ .) + labs(x = "Standard deviation associa

ted with fitness values", y="Density")

grid.arrange(plot2_fit, ncol=1)
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Saving data

# Step5: Saving data

if(org_locId=="Num"){

  Final_gene_Fitness=left_join(genes.tab,Average_fitness, by=c("locusId")) %>% select(-c(type,strand,GC,nTA)

)

  Final_gene_Fitness=na.omit(Final_gene_Fitness)

}

if(org_locId=="Char"){

  Average_fitness$locusId=as.character(Average_fitness$locusId)  # the locusId in the Mean table are factors

, we need to turn then into charcater for the left_join

  Final_gene_Fitness=left_join(genes.tab,Average_fitness, by=c("locusId")) %>% select(-c(type,strand,GC,nTA)

)

  Final_gene_Fitness$name="No_name"   #replace the NA by something else, otherwise the next NAomit removes e

verything

  Final_gene_Fitness=na.omit(Final_gene_Fitness)

}

write.csv(Final_gene_Fitness,"All_Fitness_Values_Exemple.csv")

save(Final_gene_Fitness, Average_fitness, genes.tab,

     Correlation_table_fit,AllReplicate, file="All_Fitness_Values_Exemple.RData")

STEP 3: Comparison of fitness values and identification of
interaction fitness

Script: Script3_2condidtions_FitnessComparison.Rmd
Compares gene fitness values of all conditions against a chosen reference condition. Appends a “Category” to each compared gene to

indicate if fitness values are significantly different or not based on chosen statistical criteria.

Example description

This run illustrates the third step of RB-TnSeq analysis to identify interaction fitness. This is the run that compares gene fitness values for E.

coli growth in Conditions 2 to 5 versus Condition 1. 

Run 11
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Run

Packages and functions

rm(list=ls())

# Package and functions upload

library(ggplot2)

library(dplyr)

library(tidyr)

library(gridExtra)

source("Category_definition.R")

source("Comparison_test.R")

Data upload and parameters set up

# Step 1: Data import and parameters settings

  # Import the .Rdata file generated in Averaging_replicates.R

  # Set up org_locId

  # Set up your condition of reference (has to be one of your conditions)

  # Set up your alpha value for the T-test

  # Set up whether you want to performed correction for multiple comparison testing and screen on adjusted-p

value

load("All_Fitness_Values_Exemple.RData")   # here you upload the .RData ouput of Averaging_replicates.R

Data_Fitness=Final_gene_Fitness

org_locId="Num"  # Again, you set up your organisms whether "Ecoli" if the locusId are in numeric form or "P

seudo" if the locusId are in character form

Condition1="Condition1"  #here you write the name of one of the 2 conditions you want to compare. Make sure 

it is the same name than previously used

alphaF=0.002    #here you choose any alpha you want for the Fisher test (Test for equal variance) You can ch

oose 0.05 or 0.002. 

alphaT=0.05   #here you choose any alpha you want. Just be aware that it is where you can control the amount

of false discovery you allow

multi=1    # here you decide if you want to correct for multiple comparison (method=fdr) multi = 0 ==> no co

rrection; multi=1 correction

2 conditions comparison against a chosen reference condition (Condition 1)

In the following plots: “Sig” means that gene fitness values are significantly different for that gene between the compared conditions,

“Not_Sig” means that fitness values are not significantly different, and “Not_tested” means that the comparison has not been performed for

that gene due to unequal variances
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# Step 2: Run the comparison for all conditions against the reference one

  # Each conditions that is not the reference is going to be tested against the refence one after the other 

using a for loop embedding the comparison function

Table_all=data.frame() # creates a table to eventually store the data

List_plots=list(0,0,0,0,0,0,0) # creates a list to store comparison of plots for each comparison in the "for

loop" . 

                               # needs to have as many spots in the list than you have comparison

Conditions=as.vector(unique(Data_Fitness$Cdt))

Conditions=Conditions[Conditions!=Condition1]# generates a vector with all the conditions to compare against

the reference one

for (i in 1:length(Conditions)){

  Cdt=Conditions[i]

  Condition2=paste(Cdt)  

  Test1=Comparison_test(Data_Fitness,Condition1, Condition2, alphaT, alphaF, org_locId, multi)   

  #You obtain a list

  #list[[1]]= the table containing all the genes tested + fitness + variance values in both conditions + Fca

lc (Fisher value calculates for the test of variance + Tcalc (Tscore value for the student test))

  # and the category column indicates if the difference of fitness is significant (Sig), if it is not (Not_S

ig) or if the student was not performed because of unequal variances (Not_tested)

  #list[[2]]=the scatter plot representing the data

  

  Table_all=rbind(Table_all, Test1[[1]])

  List_plots[[i]]= Test1[[2]]

}

#Visualize all the scatter plots

grid.arrange(List_plots[[1]],List_plots[[2]],List_plots[[3]],List_plots[[4]], nrow=2,ncol=2)

write.csv(Table_all, "Comparison_Ecoli_versusAlone.csv")

save(Table_all, List_plots, file="Comparison_Ecoli_versusAlone.RData")
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Supplementary Figure 1: Impacts of fungal species on bacterial growth after 7 days of co-culture on 

cheese curd agar, pH 7. CFU: colony forming units. N=3 biologically independent samples, error bars show 

standard deviation and black point is the mean. Asterisks represent a significant difference in bacterial growth in 

the presence of the fungal partner relative to alone (two-sided Dunnett’s test, p-value <0.05). Exact p-values 

associated with asterisks (from left to right): 0.008, 0.002, 0.002, 0.02.
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Supplementary Figure 2: Impacts of bacterial species on fungal growth after 7 days of co-culture on cheese 

curd agar, pH 7. For filamentous fungi, spore counts were used as a proxy for fungal CFUs. N=3 biologically 

independent samples, error bars show standard deviation and black point is the mean. Asterisks represent a 

significant difference in fungal growth in the presence of the bacterial partner relative to alone (two-sided Dunnett’s 

test, p-value <0.05). Exact p-values associated with asterisks (from left to right, top to bottom): 0.004, 0.022, 0.004, 

7.6e-05, 0.002, 0.00043, 0.013, 0.002, 6.2e-05.
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Supplementary Figure 3. Deletion of laeA gene in Penicillium sp. str. #12. a, Schematic representation of the 

genetic construct for laeA deletion in Penicillium sp. str. #12. The hph gene confers resistance to hygromycin. The 

positions of the restriction enzyme cutting sites are shown on the map. b, Southern blot analyses of genomic DNA 

from the WT and the ΔlaeA strains. Ten micrograms of total DNA from each strain was digested with the 

appropriate enzymes and subjected to Southern blot analysis using respectively the 5’ flank fragment (orange) 

and the 3’fragment (grey) as probes. The 1 kilobase DNA ladder from New England Biolabs was used to 

determine the size of the expected bands. The blot images were cropped to place the confirmed mutant adjacent 

to the WT strain. Black lines were added to the blot images to indicate where the cropping occurred. The blot 

images were also cropped on the top (around the wells) and bottom without interfering with the DNA ladder bands. 

The transformants that were confirmed to not have the correct insertion were not included in the figure. For the 3’ 

blot image, an aligned overlay of the gel image and the blot was made allowing a clear visualization of the DNA 

ladder. Southern blots to confirm the ΔlaeA strain were only performed once.

16
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CHAPTER 4: Further Work on Intermicrobial Interactions  

4.1 Chapter Summary  

Our initial work on bacterial-fungal interactions revealed a number of genes of unknown 

function that were involved in microbial interactions. In this chapter, three projects inspired by 

the work in Chapters 2 and 3 are discussed. In section 4.2 The Potential Role of yjjZ in Iron 

Uptake, we investigate an E. coli gene of unknown function. Preliminary work suggests that this 

gene may play a role in the uptake of hydroxamate-type siderophores. Section 4.3 Fungal Major 

Royal Jelly Protein summarizes initial work on a fungal protein implicated in bacterial-fungal 

interactions that potentially has antibiotic activity. Then, in section 4.4 Bacterial-bacterial 

Interactions, we apply the RB-TnSeq methods used to study bacterial-fungal interactions to 

investigate genes that are important for bacteria to grow with other bacterial species. Using 

pairwise combinations of bacterial RB-TnSeq libraries, we are able to get information on both 

perspectives of the interspecies interaction.  

 

4.2 The Potential Role of yjjZ in Iron Uptake 

Introduction 

Despite advances in microbial genome sequencing, the function of many microbial genes 

remains a mystery. Even in the well-studied model organism Escherichia coli, 34.6% of genes 

lack experimental evidence of function (Ghatak et al. 2019). Our work in a three-member model 

Brie rind community indicated many unannotated genes in microbial interactions (Morin, Pierce, 

and Dutton 2018). Our investigation of genes relevant to bacterial-fungal interactions also 

highlighted 276 E. coli genes whose functions are annotated as hypothetical or unknown (Pierce 

et al. 2020). It is possible that the function of these genes may not have been previously 



 

 95 

elucidated due to the common practice of studying bacteria in isolation rather than in interactive 

contexts.  

As we had previously seen that access to iron is key to microbial growth on cheese, we 

wanted to further investigate unknown genes that might be related to iron uptake. One of these 

unknown genes was Fur-regulated DUF1435 domain-containing inner membrane protein yjjZ. 

Although this gene did not have significant RB-TnSeq interaction fitness, RNA-Seq showed that 

this gene was upregulated by E. coli in the presence of a filamentous fungus, suggesting that it 

may be important for bacterial-fungal interactions. It has been suggested that yjjZ encodes a 

small RNA (Chen et al. 2002). The only functional information available for this gene is that 

decreased expression of yjjZ led to increased tolerance to n-butanol, although it is unclear what 

role yjjZ might play in this tolerance (Otoupal and Chatterjee 2018). Based on its Fur regulation 

and our previous findings that iron plays a major role in bacterial-fungal interactions, we 

hypothesized that yjjZ might be involved in iron uptake (Figure 4.2-1a) (Pierce et al. 2020). 

Here, we begin to investigate the function of yjjZ. 

 

Results 

YjjZ co-localizes with fhuF and GGDEF genes in genomes throughout the 

Enterobacteriaceae family. BLAST analysis of YjjZ (78 amino acids) showed that orthologs of 

this gene are present across the Enterobacteriaceae (Figure 4.2-1b) (Dehal et al. 2010). In E. coli, 

yjjZ is located next to fhuF, a membrane-associated protein that aids in the removal of iron from 

ferrichrome and coprogen, two siderophores produced by some fungi, including cheese 

filamentous fungi. We previously observed that fungal production of ferrichrome and coprogen 

impacted the fitness of E. coli mutants in siderophore biosynthesis, and that fhuF was 
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upregulated in co-culture conditions (in addition to yjjZ) (Pierce et al. 2020). YjjZ orthologs in 

Salmonella, Citrobacter, Enterobacter, Klebsiella, and Cronobacter are also located very close 

to fhuF orthologs (Figure 4.2-1b). In many species, yjjZ is located next to a diguanylate cyclase 

domain (GGDEF)-containing protein. Diguanylate cyclases regulate levels of cyclic di-GMP, a 

second messenger that regulates bacterial cell surface adhesiveness (D’Argenio and Miller 

2004). Analysis of the yjjZ protein sequence shows three predicted transmembrane domains 

(Figure 4.2-1c). 

Deletion of yjjZ impairs the ability of E. coli to use coprogen and ferrichrome. To 

survive in iron-limiting environments, E. coli normally excretes the siderophore enterobactin to 

harvest iron. Enterobactin uptake relies on the Fep system in E. coli. Loss of this system results 

in no E. coli growth on iron-limiting cheese curd agar (CCA) (Figure 3.2-5). Growth of ▵fep 

mutants can be rescued by ferrichrome and coprogen, whereas ▵fep ▵fhu double mutants cannot 

be rescued by these siderophores (Pierce et al. 2020). Consistent with the proposed role of yjjZ in 

hydroxamate siderophore uptake, deletion mutants of yjjZ in an enterobactin uptake-deficient 

(▵fep) background have diminished or no growth on CCA and cannot be rescued by these fungal 

siderophores (Figure 4.2-1d).  

 

Discussion 

Many genes in bacteria, even in well-studied organisms, do not have a known function. 

Based off of our previous work investigating bacterial-fungal interactions, we identified yjjZ as a 

candidate unknown gene for further study. Previous data and the genomic location of this gene 

indicated that yjjZ may be related to siderophore uptake. Growth assays with a yjjZ mutant in an 



 

 97 

enterobactin-deficient background supports this hypothesis. YjjZ, in combination with a GGDEF 

protein, may play sensing/signaling role in hydroxamate siderophore uptake. However, further 

work is needed to determine the role of yjjZ.  

 

Methods 

RNA-Seq of E. coli with Penicillium sp. str. 12. This experiment and related methods 

are described in Pierce et al. 2020 (Pierce et al. 2020). The volcano plot was created in R using 

packages ggplot2 3.2.1 (Wickham 2009) and ggrepel 0.8.1 (Slowikowski 2018).  

Analysis of yjjZ orthologs. MicrobesOnline (Dehal et al. 2010) was used to construct a 

Gene Tree for yjjZ using the full protein sequence and a clustering at 50% identity. The resulting 

tree image was edited in Inkscape 0.92.2.  

Analysis of yjjZ protein domains. The InterPro 82.0 webserver 

(https://www.ebi.ac.uk/interpro/) was used to analyze protein domains. 

Construction of ▵fep▵yjjZ double mutants. Overnight cultures of ΔfepC-pkD46 or 

ΔfepA-pkD46 E. coli (Pierce et al. 2020) were diluted 1:100 in fresh LB-100 μg/mL ampicillin 

and grown at 30 °C until an OD of 0.1. 20 μL of fresh 1 M L-arabinose were added, and growth 

was continued at 30 °C until OD 0.4-0.6. Cells were then chilled on ice for 15 minutes and then 

centrifuged for ten minutes at 4000 rcf 4 °C. Cells were resuspended in 1 mL of ice water and 

centrifuged for ten minutes at 4000 rcf at 4 °C. Cells were resuspended in 0.5 mL of ice water 

and centrifuged for ten minutes at 4000 rcf 4 °C. Cells were resuspended in 50 μL of ice water 

and kept on ice until transformation. The chloramphenicol resistance cassette was amplified from 
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the pKD3 plasmid using the following custom primers: Yjjz_catF 

(ATTATCATATGATATTGGTTATCATTATCAATGAAAGAGATGAAATCGTGTAGGCTG

GAGCTGCTTC) and Yjjz_catR 

(CGCACCAATTATCTTTACTTCCTTTCTTGTTTCTTCCTTGATTTTATGGGAATTAGCC

ATGGTCC) and the following PCR conditions (i) 98 °C - 30 sec, (ii) 30 cycles of: 98 °C – 10 s; 

70 °C – 20 s; 72 °C – 30 s, (iii) 72 °C – 5 min. Amplification was performed on 4 ng of pKD3 

plasmid using Q5 High-Fidelity 2X Master Mix (New England Biolabs). The PCR product was 

digested for 1 hour with the restriction enzymes DpnI and ClaI at 37 °C and then the PCR 

product was run on a 1% agarose gel. The PCR product was extracted using the QIAquick Gel 

Extraction Kit (Qiagen) and then dialyzed overnight with TE buffer. 1.5 μL of dialyzed PCR 

product was used to transform the electrocompetent ΔfepC-pkD46 or ΔfepA-pkD46 cells. After 2 

hours of recovery in SOC medium with 1 mM arabinose at 37 °C, the transformation was plated 

on LB with 50 mg/mL kanamycin and chloramphenicol. Transformants were confirmed to be 

ΔyjjZ with Eton Bioscience Inc. sequencing of the chloramphenicol cassette. 

Tetrazolium growth assays with ΔfepΔyjjZ double mutants. Antibiotic assay discs 

(Whatman) were placed on CCA medium pH 7 with 0.005% tetrazolium chloride (an indicator 

of cellular respiration) and 10 μL of water, or 10 mM coprogen, enterobactin, or ferrichrome 

(EMC Microcollections) solutions (in water) were slowly pipetted onto the disc and allowed to 

absorb. Aliquots (2.5 μL) of 37 °C overnight LB cultures of E. coli K12 BW25113 WT, ΔfepA, 

ΔfepC, ΔfhuE, ΔfhuA (Baba et al. 2006), ΔfepAΔfhuE, ΔfepAΔfhuA, ΔfepAΔyjjZ, and 

ΔfepCΔyjjZ mutants were spotted next to the discs. Plates were left at room temperature until 

development of red color resulting from tetrazolium chloride. 
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Figure 
 

 
Figure 4.2-1. YjjZ may play a role in siderophore uptake in E. coli. a, Differential expression 
of E. coli grown with Penicillium sp. str. 12 relative to E. coli grown alone after 3 days of growth 
on CCA. Genes related to iron use with a log2 fold change (FC) of >1.5 or <−1.5 and adjusted 
P<0.05 are highlighted in red and yjjZ is boxed in red. b, Orthologs of yjjZ in other bacteria 
shown in their genomic context. YjjZ, fhuF, and GGDEF-domain containing genes are 
highlighted. c, Protein domain predictions of YjjZ. d, Visual assays of growth of iron uptake and 
yjjZ mutants with purified siderophores coprogen, ferrichrome, and enterobactin on CCA 
containing tetrazolium chloride, a red indicator of cellular respiration. 
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4.3 Fungal Major Royal Jelly Protein 

Introduction 

Royal jelly, a mix of proteins, sugars, lipids, vitamins, and salts, is a nurse honeybee 

secretion fed to bee larvae. Royal jelly is about 15% protein, the majority of which is made up of 

a family of nine major royal jelly proteins (MRJPs) (Buttstedt, Moritz, and Erler 2014). MRJPs 

are part of a yellow-like gene family found in insect species, bacteria, and fungi, but not in other 

eukaryotes. Analysis of yellow-like genes across genomes has led to the hypothesis that the 

presence of these genes in eukaryotes is the result of horizontal transfer from bacteria (Ferguson 

et al. 2011).  

Although yellow genes are found across insects, the role of these genes is unknown in 

most species. In Drosophila melanogaster, the yellow gene impacts male mating success through 

changes in melanization of sex combs (Massey et al. 2019). Royal jelly has a variety of roles in 

honeybees (Apis mellifera), including impacts on caste differentiation. Only larvae that are fed 

royal jelly throughout development become queens, while worker bees are given royal jelly for a 

short time (Buttstedt et al. 2016). MRJP protein not only has interesting roles in bee 

development, but also has been researched for potential pharmacological activities (Nakaya et al. 

2007; Kashima et al. 2014) , including antibiotic activity (Brudzynski, Sjaarda, and Lannigan 

2015; Vezeteu et al. 2017). 

Interestingly, MRJP has been shown to be upregulated in bees following bacterial 

challenge (Scharlaken et al., 2008). Additionally, the peptide jellein processed from the C-

terminus of the bee MRJP1 has antibiotic activity similar to that seen with beta-lactam antibiotics 

(Brudzynski and Sjaarda, 2015). There has also been a report that full-length MRJP1 from bees 

inhibits the growth of bacteria relevant to larval diseases (Vezeteu et al. 2017). Previously, we 

had noticed that a fungal MRJP was among the highly upregulated genes in our E. coli/ 
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Penicillium sp. str. 12 co-culture RNA-Seq experiment (Figure 4.3-1a). This fungal species had 

also been shown to have beta-lactam-like antibiotic activity against E. coli (Pierce et al. 2020). 

Here, we begin to investigate the potential role of Penicillium MRJP as an antibiotic. 

 

Results 

Bacterial cytological profiling (BCP) with MRJP peptides. Alignment of honeybee 

and Penicillium sp. str. 12 MRJP protein sequences showed some homology in the antibiotic 

peptide region at the C-terminus of the protein (Figure 4.3-1b). We ordered synthetic peptides of 

bee jellein and the aligned region from Penicillium sp. str. #12 to see if this peptide may be 

related to the activity seen with Penicillium sp. str. 12. Bacillus subtilis was used as a target 

bacterium due to a previous report that jellein activity was more evident in this bacterium than E. 

coli (Brudzynski and Sjaarda 2015). Preliminary BCP experiments with the bee and fungal 

peptide suggest that they may have antibiotic activity related to cell wall damage (Figure 4.2-1c). 

Mass spectrometry to identify fungal MRJP peptides. To identify if the fungal peptide 

we synthesized was actually found in co-cultures of E. coli and Penicillium sp. str.12, we 

submitted supernatants of co-cultures on CCA for mass spectrometry analysis. This analysis was 

designed to look for peptides less than or equal to ten amino acids. However, we were not able to 

detect this peptide in Penicillium sp. str. 12 samples, perhaps because of high protein background 

in CCA, or because the peptide is either not processed or is longer than 10 amino acids.  

Penicillium MRJP expression. As we have previously seen that Penicillium sp. str. 12 

produces a large array of specialized metabolites, making it potentially harder to narrow down an 

active molecule, we decided to look for MRJP in Penicillium camemberti SAM3, a close relative 

of Penicillium sp. str. 12 that has been domesticated as an industrial starter for cheese 
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production. This strain had similar results to Penicillium sp. str. 12 in BCP and RB-TnSeq assays 

(Pierce et al. 2020). Although a MRJP gene was present in a publicly available P. camemberti 

genome, no genome existed for Penicillium camemberti SAM3. To determine if this strain 

possesses a MRJP gene, we sequenced the genome of this strain using a combination of long and 

short-read sequencing. The final assembly was 66 contigs and 36.5 Mb, in the size range of other 

Penicillium genomes (Figure 4.2-1d). BLAST of known Penicillium MRJP genes to this genome 

identified a single MRJP gene in Penicillium camemberti SAM3.  

High protein background of CCA had previously made it difficult to identify MRJP 

peptides with mass spectrometry. In order to use a less complex medium for mass spectrometry, 

we first needed to confirm expression of Penicillium MRJP on other media. We grew 

Penicillium camemberti SAM3 on CCA, M9, and LB alone or with E. coli and used RT-PCR to 

look for MRJP expression. MRJP appears to be expressed on all three media, with or without E. 

coli present (Figure 4.2-1e).  

Next steps. As P. camemberti SAM3 MRJP is expressed on less complex media, we will 

redo mass spectrometry analysis on CCA, M9, and LB looking for both full-length protein and 

short peptides. We will also heterologously express P. camemberti SAM3 MRJP in E. coli using 

vectors available from Matt Daugherty’s lab at UCSD and coordinate with Chinmay Kalluraya 

from his lab to look into the horizontal gene transfer history of this gene. Nancy Keller’s lab at 

UW Madison is also in the process of creating a MRJP deletion mutant in Penicillium sp. str. 12. 

 

Discussion 

 MRJP, part of an ancient family of yellow proteins found in insects, is also found in 

cheese rind fungi. This protein is interesting not only for its potential antibiotic activity, but also 
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because it appears to have undergone two separate horizontal transfer events. Here, we have 

completed preliminary experiments to characterize MRJP in two cheese-associated Penicillium 

species. Follow-up mass spectrometry experiments on less complex media and heterologous 

expression experiments will further help us to identify the role of MRJP in microbial interactions 

in cheese rind communities and to determine if MRJP is related to the beta-lactam-like antibiotic 

activity previously observed in these fungi. 

 

Methods 

RNA-Seq of E. coli with Penicillium sp. str. 12. This experiment and related methods 

are described in Pierce et al. 2020 (Pierce et al. 2020). The volcano plot was created in R using 

package ggplot2 3.2.1(Wickham 2009). 

Alignment of MRJPs. Protein alignment of A. mellifera (NCBI NP_001011579.1), 

Penicillium sp. str. 12 (GenBank KAF4769554.1), and P. camemberti str. SAM3 (contig 9 

2251321-2252411) was performed with Geneious v.R9 9.1.8 (http://www.geneious.com). 

BCP with MRJP peptides. The following custom peptides were synthesized (5-9 mg, 

>95% purity) by Thermo Fisher Scientific: jellein-TPFKISIHL, Penicillium sp. str. 12 C-term- 

NPSPIDHA. BCP was performed with 120 μg/ml−1 of peptide in an LB liquid culture of Bacillus 

subtilis PY79. After 30 minutes, 1.5 μL dye mix (1 μL of 1 mg ml−1 FM4-64, 1 μL of 200 μg 

ml−1 4,6-diamidino-2-phenylindole (DAPI), 2 μL of 20 mM Sytox Green, in 46 μL of T-Base) 

was added to 6 μL of culture and cells were imaged as described below.  

For the fungal co-culture assay, approximately 7,000,000 B. subtilis PY79 cells were 

inoculated alone or co-inoculated with 700,000 Penicillium sp. str. 12 spores on 10% CCA pH 7. 

After 3 days of growth, 1 ml of T-Base buffer was added to the surface of the biofilms, and 
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biofilms were scraped into the buffer. For co-culture conditions, the sample was filtered through 

a 0.5-μm filter to specifically remove fungal material. A total of 2 μL of concentrated dye mix (1 

μL of 1 mg ml−1 FM4-64, 1 μL of 200 μg ml−1 4,6-diamidino-2-phenylindole (DAPI), 2 μL of 20 

mM Sytox Green, in 46 μL of T-Base) was added to 20 μL of filtrate. The dye-filtrate mix was 

spotted onto agarose–LB pads (1% agarose, 20% LB liquid medium, 80% ddH2O) and imaged 

by fluorescence and phase contrast microscopy using an Applied Precision Deltavision Spectris 

imaging system with an Olympus UPLFLN100XO2PH objective. Resulting images were 

deconvoluted using Deltavision SoftWorx software (Applied Precision), analyzed using Fiji and 

assembled in Adobe Photoshop (Adobe). Brightness was altered linearly in Fiji to aid 

visualization. 

Sequencing of Penicillium SAM3 genome. P. camemberti SAM3 was grown in LB 

medium for 7 days at room temperature without shaking. The fungal mat floating on the surface 

was removed and ground in liquid nitrogen. Genomic DNA was then extracted from P. 

camemberti SAM3 using phenol–chloroform (pH 8). 125 μL of 425–600-μm acid-washed beads 

and 125 μL of 150–212-μm acid-washed beads were poured into a screw-capped 2-ml tube. A 

total of 500 μL of 2X buffer B (200 mM NaCl, 20 mM EDTA) and 210 μL of SDS 20% were 

added to the tube containing fungal material and 500 μL of phenol−chloroform (pH 8). Cells 

were lysed by vortexing the tubes for 2 min at maximum speed. Aqueous and organic phases 

were separated by centrifugation at 4 °C, 8,000 r.p.m. for 3 min, and 450 μL of the aqueous 

phase (upper phase) was recovered in a 1.5-ml Eppendorf tube. Sodium acetate (3 M, 45 μL) and 

ice-cold isopropanol (450 μL) were added before incubating the tubes at −80 °C for 10 min. The 

tubes were then centrifuged for 5 min at 4 °C at 13,000 r.p.m. The pellet was then washed in 750 

μL of 70% ice-cold ethanol and resuspended in 50 μL of DNase/RNase-free water. High 
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molecular weight DNA (average 17 Kb) was then sequenced on four Flongle flow cells (Oxford 

Nanopore Technologies) using library preparation kit SQK-LSK309. Genomic DNA was also 

sequenced on Illumina iSeq for error correction (5 million PE reads). Raw Nanopore data were 

basecalled using guppy 4.0.15 (Oxford Nanopore Technologies) (guppy_basecaller -c 

dna_r9.4.1_450bps_hac.cfg) for 1D base calls. These reads were assembled by flye 2.8.1 

(Kolmogorov et al. 2019) and polished by racon 1.4.3 (Vaser et al. 2017) four times and by 

DIAMOND 0.9.23 (Arumugam et al. 2019). 

 Penicillium MRJP RT-PCR. Approximately 700,000 P. camemberti SAM3 cells were 

inoculated in duplicate (two distinct samples) either alone or with approximately 7,000,000 E. 

coli cells on 10% CCA pH 7, M9, or LB in standard petri dishes. Approximately 700,000 

Penicillium sp. str. 12 cells were inoculated in duplicate (two distinct samples) either alone or 

with approximately 7,000,000 E. coli cells on 10% CCA pH 7. After 3 days at room temperature, 

the biofilms were collected in 1XPBS–Tween 0.05% for RNA extraction and resuspended in 300 

μL of RNAprotect before storage at -80 °C prior to extraction. RNA was extracted by a phenol–

chloroform extraction (pH 4.5) using the same extraction protocol as for gDNA described above, 

but samples were kept on ice when possible. RNA samples were treated with DNase using the 

‘Rigorous DNase treatment’ for the Turbo DNA-free kit (Ambion, Life Technologies). Transfer 

RNAs and 5S RNA were then removed using a MEGAclear kit Purification for Large Scale 

Transcription Reactions (Ambion, Life Technologies) following the manufacturer’s instructions. 

The presence of gDNA was assessed by PCR using universal bacterial 16S primers for samples 

with E. coli (forward primer: AGAGTTTGATCCTGGCTCAG; reverse primer: 

GGTTACCTTGTTACGACTT) and Bt2a (GGTAACCAAATCGGTGCTGCTTTC) and Bt2b 

(ACCCTCAGTGTAGTGACCCTTGGC) primers for fungal samples. The PCR was performed 
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in a final volume of 25 μL (12.5 μL of Q5 polymerase master mix (New England Biolabs), 1 μL 

of forward primer 10 μM, 1μl of reverse primer 10 μM and 1 μL of non-diluted RNA) with an 

annealing temperature of 57 °C, extension time of 45 seconds, and 35 cycles. PCR products were 

run on a 1.7% agarose gel and if gDNA was amplified, another DNase treatment was performed 

as well as a new verification of absence of gDNA. For RT-PCR, OneTaq One-Step Reaction Mix 

(New England BioLabs) was used (12.5 μL 2X reaction mix, 1 μL enzyme mix, 1 μL forward 

primer, 1 μL reverse primer, 100 ng RNA, water to 25 μL final volume) with the following 

conditions: (1) 48 °C for 30 min; (2) 94 °C for 1 min; (3) 40 cycles of 94 °C for 15 s, 58 °C for 

30 s, 68 °C for 1 min; (4) 68 °C for 5 min. For Penicillium sp. str. 12 samples, pen12mrjpR 

(CACTCGATAGCGGCATCAAGG) and pen12mrjpF (GCTCAAGGAGACGTGACCAAG) 

primers were used to amplify MRJP cDNA. For P. camemberti SAM3 samples, sammrjpF 

(GAGCACGATGACCGTCTGAC) and sammrjpR (CAAGGCGACGACCGATTTGTG) 

primers were used to amplify MRJP cDNA.  
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Figure 

 

Figure 4.3-1. Characterization of Penicillium major royal jelly protein. a, MRJP is 
upregulated by Penicillium sp. str. 12 with a log2FC of ~ 4 when co-cultured with E. coli. b, 
Alignment of honeybee, Penicillium sp. str. 12, and P. camemberti SAM3 MRJP protein 
sequences. The last 16 amino acids at the C-terminus of the protein are shown. c, BCP assays of 
MRJP peptides with B. subtilis PY79 in liquid LB and of B. subtilis PY79 growing alone or 
mixed with Penicillium sp. str. 12 on cheese curd agar for three days. Teal color indicates 
damage to membrane integrity. d, Assembly graph of P. camemberti SAM3 genome assembly 
and assembly statistics. e, RT-PCR results looking at expression of MRJP of P. camemberti 
SAM3 (CCA pH 7, LB, or M9) and Penicillium sp. str. 12 (CCA pH 7) alone or co-cultured with 
E. coli. “No RT” indicates a control PCR reaction in which no reverse transcriptase was 
included. Results are shown for duplicate samples. 
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4.4 Bacterial-bacterial Interactions on Cheese 

 

Introduction 

Bacteria in cheese rind communities not only interact with fungi, but also with their 

bacterial neighbors. Bacteria have developed numerous strategies to cooperate and compete with 

each other, including motility, excretion of antibiotic compounds, disruption of competitors’ 

signaling, and sequestration and cross-feeding of limited nutrients (Hibbing et al. 2010). They 

can also directly inject toxic molecules into other bacteria using type VI secretion systems 

(Russell, Peterson, and Mougous 2014). 

To look at bacterial-bacterial interactions, RB-TnSeq experiments were done with 

bacterial libraries alone or with pairwise combinations of E. coli, P. psychrophila (cheese 

isolate), and H. alvei (cheese isolate) libraries on CCA. Because we can get RB-TnSeq 

information from both bacteria in the pairwise combination, we can see both perspectives of the 

interaction. These experiments provide preliminary information on genes important for bacterial 

fitness when growing with other bacteria. 

 

Results 

Genes with interaction fitness in bacterial-bacterial interactions. BarSeq (Wetmore et 

al. 2015) results from pairwise combinations of three bacterial libraries or from these libraries 

growing alone were analyzed using the pipeline previously developed for bacterial-fungal 

interactions to identify genes relevant to interactions (positive interaction fitness- gene has higher 

fitness with a partner than in growth alone; negative interaction fitness- gene has lower fitness 

with a partner than in growth alone) (Pierce et al. 2020). For E. coli, 70 genes have interaction 

fitness (IF) with H. alvei (max IF 1.4; min IF -1.3) and 84 genes have interaction fitness with P. 
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psychrophila (max IF 4.2; min IF -3.3). For H. alvei, 232 genes have interaction fitness with P. 

psychrophila (max IF 2.5; min IF -3.0) and 127 genes have interaction with E. coli (max IF 2.2; 

min IF -1.2). For P. psychrophila, 87 genes have interaction fitness with H. alvei (max IF 5.6; 

min IF -1.2) and 47 genes have interaction fitness with E. coli (max IF 4.4; min IF -2.1) (Figure 

4.4-1a). For both cheese bacteria, there appear to be fewer impacts with E. coli than with the 

other cheese bacterium.  

Bacterial-bacterial interactions are associated with amino acid metabolism, 

inorganic ion metabolism, and genes of unknown function. Genes with interaction fitness 

were classified into COG functional categories (Figure 4.4-1b). As we saw in the bacterial-

fungal interaction data, all three bacteria have many genes of unknown function that have 

interaction fitness, again suggesting that unknown genes may have functions relevant to 

community contexts. For H. alvei, genes associated with nucleotide transport and metabolism 

seem to be mostly associated with positive interaction fitness with both partners, suggesting that 

H. alvei may benefit from nucleotide cross-feeding. Purine cross-feeding from 

Rhodopseudomonas palustris to E. coli has previously been observed in a synthetic bacterial 

mutualism (LaSarre et al. 2020). We see that purF, purL, and purD genes in H. alvei are among 

the genes with strongest positive interaction fitness with P. psychrophila (Figure 4.4-2). 

 For all three bacteria, amino acid metabolism is relatively highly represented (Figure 

4.4-1b, Figure 4.4-2). However, for H. alvei, these genes are associated with positive interaction 

fitness, whereas for E. coli, most amino acid genes have negative interaction fitness (Figure 4.4-

1b). For E. coli, his operon (histidine biosynthesis) genes have a negative interaction with P. 

psychrophila and H. alvei. P. psychrophila his genes have positive interaction fitness with H. 

alvei, whereas H. alvei his genes have negative interaction fitness with P. psychrophila. These 
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data suggest that histidine competition may play an important role in growth on CCA and that P. 

psychrophila may outcompete H. alvei for histidine. 

 As we saw in our previous work on bacterial-fungal interactions, access to iron is 

important for bacteria growing on iron-limiting CCA. E. coli fep genes related to uptake of its 

siderophore enterobactin have a positive fitness with both bacteria, suggesting that they may be 

pirating siderophores from the other species. For P. psychrophila, fecA and fecR have strong 

positive interaction fitness with both bacteria. These genes are part of an iron starvation response 

related to ferric citrate transport. In the presence of H. alvei, P. psychrophila’s fhuE gene, which 

encodes a receptor for desferrioxamine uptake, has negative interaction fitness. AntiSMASH 

analysis predicts that H. alvei makes desferrioxamine, suggesting that the ability of P. 

psychrophila to use desferrioxamine produced by H. alvei provides a fitness advantage. 

Next steps. To complement the RB-TnSeq data for these experiments, RNA-Seq 

experiments were done with the same conditions. These data will be integrated with the RB-

TnSeq data to narrow down target genes for future mechanistic follow-up. 

 

Discussion 

 In this section, we applied techniques previously developed for investigating bacterial-

fungal interactions to investigate bacterial-bacterial interactions using RB-TnSeq. Initial results 

suggest that amino acid metabolism, access to iron, and genes of unknown function are among 

the main gene functions involved in bacterial-bacterial interactions. Follow-up experiments using 

RNA-Seq with these interaction partners will aid in the selection of gene candidates for 

mechanistic studies. 
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Methods 

Bacterial-bacterial BarSeq. All RB-TnSeq assays were performed on 10% CCA 

medium adjusted to pH 7. Before inoculation, one aliquot of each library was thawed and 

inoculated into 25 ml of liquid LB with kanamycin (50 μg ml−1). This is the same medium used 

for creating the initial library and is expected to be nonselective. Once the culture reached mid-

log phase (OD = 0.6–0.8), 5 ml of that pre-culture was pelleted and stored at −80 °C for the T0 

reference in the fitness analysis. The remaining cells were used to inoculate the fitness assay 

conditions. For each BarSeq fitness assay, we aimed to inoculate 20,000,000 cells of each 

bacterial library. Libraries were inoculated alone or pairwise with one of the other bacterial 

libraries by spreading evenly on a 100-mm Petri dish. For each condition, assays were performed 

in triplicate (three distinct samples). After 3 days, each plate was flooded with 1.5 ml of 1×PBS–

Tween 0.05% and cells were scraped off, taking care not to disturb the CCA. The liquid was then 

transferred into a 1.5-ml microcentrifuge tube and cells were pelleted by centrifugation before 

being stored at −80 °C until gDNA extraction. gDNA was extracted with phenol–chloroform (pH 

8) as described in Pierce et al. 2020 (Pierce et al. 2020). Samples were stored at −80 °C until 

further analysis. The 98 °C BarSeq PCR protocol as previously described in Wetmore et al. 

(Wetmore et al. 2015) was used to amplify only the barcoded region of the transposons. PCR 

was performed in a final volume of 50 μL with the following content: 25 μL of Q5 polymerase 

master mix (New England Biolabs), 10 μL of GC enhancer buffer (New England Biolabs), 2.5 

μL of the common reverse primer (BarSeq_P1 – Wetmore et al.18) at 10 μM, 2.5 μL of a 

forward primer from the 96 forward primers (BarSeq_P2_ITXXX) at 10 μM, and either 200 ng 

of gDNA for growth-alone conditions or 400 ng of gDNA for pairwise interaction conditions. 

We used the following PCR program: (1) 98 °C for 4 min; (2) 30 cycles of 98 °C for 30 s, 55 °C 
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for 30 s and 72 °C for 30 s; and (3) 72 °C for 5 min. After the PCR, 10 μL of each of the PCR 

products for conditions with a single species was pooled together to create the BarSeq 

sequencing library, and 200 μL of the pooled library was purified using a MinElute purification 

kit (Qiagen). The final elution of the BarSeq library was performed in 30 μL of DNase- and 

RNase-free water. The BarSeq libraries were then quantified using a Qubit dsDNA HS assay kit 

(Invitrogen) and sequenced on a HiSeq4000 (75 bp, single-end reads) by the IGM Genomics 

Center at the University of California, San Diego. The sequencing depth for each condition 

varied between 5.9 and 9.1 million reads for alone conditions and 17.5 and 28.2 for pairwise 

conditions. Wetmore et al. scripts (Wetmore et al. 2015) were used to count barcodes in each 

condition prior to processing with custom R scripts, as in Pierce et al. 2020 (Pierce et al. 2020). 

COG category mapping of protein sequences was done using eggNOG-mapper (v.2) (Huerta-

Cepas et al. 2019) and visualized using R package ggplot2 (v.3.2.1)(Wickham 2009). 
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Figures 

  

Figure 4.4-1. Comparison of bacterial gene fitness with a bacterial partner against growth 
alone and functional distribution of bacterial genes with significant interaction fitness. a, 
Gene fitness values were calculated for each gene during growth with a bacterial partner (x axis) 
and during growth alone (y axis). Each point represents a gene, with colored points indicating 
genes with a significant difference between gene fitness during growth alone versus with a 
partner identified by a two-sided t-test and an adjusted P value lower than 5% using Benjamini–
Hochberg correction for multiple comparison testing. This difference is referred to as ‘interaction 
fitness’. The colored numbers in the lower right-hand corner indicate how many genes have 
either positive (blue) or negative (orange) interaction fitness. Genes not included in the t-test are 
labeled as not tested. b, Number of genes with significant interaction fitness for each bacterium 
per COG functional category, colored by positive (blue) or negative (orange) interaction fitness. 
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Figure 4.4-2. Functional comparison of bacterial gene fitness values alone compared to 
fitness values with a bacterial partner. Genes are colored by COG category and genes with 
strong interaction fitness or genes that may be of further interest are labeled.  
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CHAPTER 5: Conclusion 

5.1 Future Directions 

            
Pursuing genes of unknown function. One of the most interesting findings from the 

works discussed here was the implication of many unknown bacterial genes in interactions with 

other bacteria and with fungi. Many of these genes are from the model organism E. coli and have 

homologs in other bacterial species. Because much of microbiology research has been done with 

species growing in isolation, genes needed for growth with other species may not have been well 

explored, despite being key to bacterial life in natural environments. Because E. coli is extremely 

genetically tractable, it should be possible to explore the function of these genes in synthetic 

communities. Future work should take advantage of the rare ability that the cheese rind model 

provides to study gene function in community contexts. 

One non-standard approach to further investigate the role of genes of unknown function 

would be to use interaction RB-TnSeq. In this technique, a second mutation in the gene of 

interest is added to all RB-TnSeq library members, enabling the determination of genetic 

interactions between this gene and the rest of the genome. This technique has previously been 

used in a cyanobacterium to find pathways related to a c-di-AMP cyclase but has so far to our 

knowledge not been applied to E. coli (Rubin et al. 2018). As there is already an existing E. coli 

RB-TnSeq library, and we already have the tools for making E. coli targeted knockouts, this 

approach should be technically feasible and could help us to determine processes related to genes 

with no known function. Although this process is not high-throughput as it requires individual 

mutant creation in the library background, genes could be prioritized based on RB-TnSeq data 

(e.g. fitness strength), whether we see the gene highlighted in other data sets (e.g. RNA-Seq), 
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and likelihood of interesting findings (e.g. homologs in pathogenic or otherwise important 

bacteria, encodes a protein that interacts with other proteins of interest).  

Deeper characterization of fungi and fungal contributions to microbiomes. Due to 

limitations of genetic tools and knowledge for fungal species, especially filamentous fungi, most 

of the work described here on bacterial-fungal interactions was based on the bacterial 

perspective. However, we saw that many fungal impacts on bacteria were due to specialized 

metabolite production. While we did preliminary work to sequence the genomes of these fungi 

and catalog the metabolites produced by the fungi described here, the vast majority of these 

metabolites are unknown or of unknown ecological relevance. The huge array of undescribed 

cheese-associated fungal metabolites observed represents a rich source of potential future study, 

especially for the relatively unstudied Scopulariopsis molds. 

We have also observed antibiotic activity not only in the two Penicillium species 

described above, but also in Penicillium sp. str. RS17 and in Scopulariopsis sp. str. JB370. 

Specialized metabolite analysis did not reveal any known antibiotics. Although attempts were 

made to isolate bioactive molecules, continued fractionation of extracts resulted in loss of 

activity, suggesting that the activity seen may be unstable or the result of multiple compounds 

acting in concert. Nevertheless, cheese fungal species, especially species that have not previously 

received much attention, could be an interesting source of novel antibiotics. 

Fungi are undoubtedly very important players in the development and function of cheese 

rind and other microbiomes. To truly take advantage of the cheese rind model system, a system 

in which we can test hypotheses in community contexts, further work should be done on the 

development of genetic tools for cheese-associated fungal species. Further work on the 

annotation of fungal genomes, development of reliable dual RNA-Seq protocols, and 
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development of tools for in-house fungal mutant creation would all be advantageous for the 

further development of the cheese rind model. 

Study of interactions in community contexts and cross-system comparisons of 

mechanisms of interaction. Much of the literature on intermicrobial interactions is descriptive 

rather than mechanistic and is solely based on net growth impacts or based on correlation 

patterns. When mechanistic studies are done, they are frequently done looking at an interaction 

between only two specific species, usually model or pathogenic organisms. One important future 

direction for studying intermicrobial interactions will be finding a way to bridge the gap between 

specific and theoretical studies. As studying each possible combination of species across all 

systems is not technically reasonable, higher level trends of how interactions impact 

microbiomes would ideally be found. Across many systems and for both interbacterial and 

interkingdom interactions, it is possible to see common intermicrobial interaction themes, such 

as cross-feeding, antagonism, and interactions related to pH. However, it is unclear how 

translatable findings are for similar organisms found in different systems. In this work, we 

focused on Ascomycete fungi and proteobacteria from cheese rind microbiomes. Future work 

should attempt to look at patterns of interaction mechanisms across different systems and with a 

more diverse range of organisms. 

It will also be important to examine how these interactions change in multispecies 

communities and how relevant pairwise interactions are in more complex systems. We have 

previously seen evidence of higher order interactions in the Brie rind model system (Morin, 

Pierce, and Dutton 2018). However, this is a very simple three-member community. Future work 

should look at how the interactions found here change in the context of other species, whether 
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new interactions emerge, and whether these interactions have functional consequences in the 

cheese rind. 

  

5.2 Concluding remarks 

         Using a combination of the high-throughput genetic screen RB-TnSeq, transcriptomics, 

metabolomics, and bacterial cytological profiling, we have investigated intermicrobial 

interactions between species associated with cheese rind microbiomes. To do this, we created 

and characterized barcoded transposon mutant libraries in two cheese-associated bacteria and 

developed an analytical pipeline for interpreting RB-TnSeq data relevant to microbial 

interactions. This pipeline can also be used for any two-condition comparison of fitness data. The 

development of these tools provides a foundation for mechanistic studies in the cheese rind 

model system. Using these tools, we have investigated both bacterial-bacterial and bacterial-

fungal interactions. In addition to revealing several specific mechanisms of interaction, these 

works highlight a large number of uncharacterized genes and metabolites relevant to 

intermicrobial interactions, opening up new avenues of study that will enhance understanding of 

diverse microbial systems. 
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