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ARTICLE

Gene expression variation in the brains of harvester
ant foragers is associated with collective behavior
Daniel Ari Friedman1, Ryan Alexander York1, Austin Travis Hilliard1 & Deborah M. Gordon 1✉

Natural selection on collective behavior acts on variation among colonies in behavior that is

associated with reproductive success. In the red harvester ant (Pogonomyrmex barbatus),

variation among colonies in the collective regulation of foraging in response to humidity is

associated with colony reproductive success. We used RNA-seq to examine gene expression

in the brains of foragers in a natural setting. We find that colonies differ in the expression of

neurophysiologically-relevant genes in forager brains, and a fraction of these gene expression

differences are associated with two colony traits: sensitivity of foraging activity to humidity,

and forager brain dopamine to serotonin ratio. Loci that were correlated with colony beha-

vioral differences were enriched in neurotransmitter receptor signaling & metabolic functions,

tended to be more central to coexpression networks, and are evolving under higher protein-

coding sequence constraint. Natural selection may shape colony foraging behavior through

variation in gene expression.
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The collective behavior of a social insect colony arises from
the responses of individuals to interactions with others and
with the environment1,2. Behavioral differences among

colonies drive ecologically important variation in reproductive
success3–5, and thus evolution in populations of colonies6–8.
Colonies are reproductive individuals, so selection acts on colony
behavior. Genomic variation among colonies, the raw material for
selection9, may be reflected in differences among colonies in
worker gene expression and neurophysiology5,10–14.

The biogenic amine neurotransmitters such as dopamine and
serotonin influence ant worker behavior through their role in
modulating sensory sensitivity to stimuli15–18. Dopaminergic
neural circuitry is important in the regulation of foraging activity
in ants and other insects19–21, as well as in the integration of
water- and thirst-related stimuli22,23. In ants, biogenic amine
neurophysiology has primarily been studied in controlled indoor
conditions, to investigate why groups of nestmates differ in task
performance or reproductive status13,21,24–28. Here, we extend
these studies to consider how differences among colonies in
forager neurophysiology are associated with variation in colony
behavior in natural conditions.

Colonies of the red harvester ant (Pogonomyrmex barbatus)
forage for seeds in the desert of the Southwest USA where water
stress is an important ecological constraint9. Foraging requires a
tradeoff between the gain of nutrition and water from seeds, and
the costs of water loss by foragers exposed to desiccating condi-
tions29. This tradeoff is regulated by olfactory interactions inside
the nest between outgoing and returning foragers30,31. The rate of
interaction with returning foragers provides outgoing foragers
with feedback on food availability32, which they integrate with
their recent experience of outside conditions33,34. Colonies of P.
barbatus differ in the regulation of foraging in response to dry
conditions, and these differences persist over years in successive
cohorts of foragers within a colony9,35,36. As with other social
insect species, neurophysiological differences among P. barbatus
foragers associated with biogenic amine neurotransmitter sig-
naling pathways28 may influence their sensitivity to interactions,
and thus how the colony regulates foraging activity as conditions
change. Manipulative experiments in the field show that hydrated
foragers go on significantly more foraging trips than unhydrated
nestmates, and that an increase in forager brain dopamine level
also increases foraging activity28,37. The reproductive success of a
P. barbatus colony, in offspring colonies, is associated with how
the colony regulates foraging in dry conditions, and colonies
resemble their mothers in how they regulate foraging activity in
dry conditions9. This indicates that natural selection is acting on
the collective regulation of foraging activity in P. barbatus2.

Here, we ask how gene expression in individual forager brains is
associated with phenotypic variation across colonies in a natural
setting. To characterize behavioral and physiological variation, we
collected actively foraging ants from nine P. barbatus colonies that
varied in two traits: (1) sensitivity of foraging activity to humidity,
measured as the decrease in foraging trips made by the colony per
percentage reduction in humidity, and (2) average forager brain
dopamine-to-serotonin ratio (DA:5HT)28. In these colonies, there
was no correlation at the phenotypic level between colony sensi-
tivity of foraging activity to humidity and average forager brain
DA:5HT28, suggesting there may be other sources of molecular
variation, apart from those that influence neurotransmitter titer,
associated with behavioral variation. To characterize this molecular
variation, we used RNA-seq to profile gene expression in the brains
of individual foragers (Methods, N= 85 brains from N= 9 colo-
nies), and then used supervised and unsupervised statistical
approaches to discover transcriptomic patterns within and among
colonies (Methods), their association with colony phenotypes, and
evolutionary constraints on those patterns.

We test four primary hypotheses. First, we hypothesized that
transcriptomic variation among the foragers would reflect a sig-
nature of colony identity, owing to shared genetic variation,
maternal effects, and colony environment. Second, we hypothe-
sized that the expression patterns of functionally relevant subsets
of genes would be associated with variation in colony-level traits.
Third, we hypothesized that coexpression networks would be
enriched in neurophysiologically relevant functions and be
associated with colony trait variation. Fourth, we hypothesized
that genes with trait-associated expression, or high coexpression
module centrality, would show unique patterns of evolutionary
constraint, indicating an association between transcriptional
regulation and selection pressure.

Taken together, our analyses show that the gene expression
profiles of forager brains strongly vary among colonies of red
harvester ants, and may reflect functional differences in neuro-
physiology among colonies that are related to neurotransmitter
signaling and metabolism. We found that forager brain gene
expression patterns were more similar among nestmates than non-
nestmates. There was also substantial expression variability within a
colony, perhaps owing to individual experience or temporal poly-
ethism. We found that across the genome, expression patterns were
correlated, both positively and negatively, with colony traits, and
that genes more correlated with colony traits were enriched in
various functional categories related to neural signaling. Neuro-
transmitter receptors as a category were significantly correlated in
their expression pattern with colony sensitivity of foraging activity
to humidity. Gene coexpression analysis identified 11 modules of
loci with coordinated expression patterns across colonies. Coex-
pression modules identified from contemporary transcriptomic data
were functionally enriched, had expression significantly correlated
with colony traits, were differentially utilized among colonies, and
had significantly divergent patterns of coding sequence constraint
compared with the rest of the genome. These transcriptomic results
show that gene expression and coexpression variation among
colonies, especially related to biogenic amine signaling pathways,
are associated with differences among colonies in behavior. Loci
with expression patterns more central to coexpression modules are
more correlated with trait variation among colonies, and also sig-
nificantly diverge from the genomic background in protein-coding
sequence constraint, suggesting a distinct evolutionary role for loci
with colony-specific and behaviorally associated expression
patterns.

Results
Colony variation in forager brain gene expression. First, we
found that colony-specific factors influence forager tran-
scriptomes. There is also considerable transcriptomic variation
among nestmates. To characterize colony differences from the
transcriptomic data, we used dimensional reduction techniques.
Principal component analysis (PCA) showed clear stratification
by colony along the first three PC axes (Fig. 1b), as well as
considerable statistical variation among individuals within colo-
nies (Supplementary Fig. 1). Linear discriminant analysis showed
transcriptomic differentiation among colonies along several
principal component dimensions (Fig. 1c). A distance-based
network analysis also demonstrated clustering by colony; samples
most similar to one another tended to be nestmates (Methods,
Supplementary Fig. 2). These results support the notion that
aspects of individual’s transcriptomes are colony-specific, poten-
tially driven by biological factors such as genetic diversity,
microenvironment, or colony traits.

Gene expression association with colony trait variation. Next,
we explored the extent to which the gene expression variation
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among colonies was associated with two colony traits: colony
sensitivity of foraging activity to humidity and colony average
forager brain DA:5HT (Fig. 2a, c, Supplementary Table 1). Phe-
notypes were quantified at the colony level (N= 9 colonies),
whereas gene expression was profiled at the single-forager level
(N= 8–10 foragers per colony, N= 85 libraries total). First, we
quantified how gene expression variation within and among
colonies was linearly associated with colony-level phenotypic
variation. Expression-trait correlation values calculated with

colony average expression levels were consistent with correlation
values that take nestmate variation expression into account
(Supplementary Fig. 3a, b, p < 0.00001, Pearson r= 0.926 with
R2= 0.858 for colony sensitivity of foraging activity to humidity;
p < 0.00001, Pearson r= 0.878 with R2= 0.77 for colony average
DA:5HT). For both traits, the genome-wide correlation coeffi-
cients were roughly symmetric and centered around zero (Sup-
plementary Fig. 3c, d). Many genes showed colony-specific
expression patterns (e.g., with F statistics showing greater
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Fig. 1 Colony variation in collective behavior, physiology, and forager brain gene expression. a Colony traits for the nine colonies profiled in this study.
The top Y axis reflects colony sensitivity of foraging activity to humidity, in units of the number fewer foraging trips made per degree decrease in daily
humidity (Methods). The bottom Y axis is forager brain dopamine-to-serotonin ratio (Methods), a measure of colony variation in neurophysiology. Bars are
group means ± s.e.m. b The axes are the first three principal components of the single-forager brain transcriptome, capturing 37% of variation among
samples. Each point is a single-forager brain transcriptomic sample, the point of the color represents colony. c Linear Discriminant Analysis on first 30 PCA
dimensions (77% of variation). A point is a single-forager brain transcriptomic sample, the point of the color represents colony.
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Fig. 2 Gene expression correlations with colony behavior and physiological traits. The distribution of correlation coefficients are shown transcriptome-
wide a, c and for candidate loci lists b, d, between colony traits and forager brain gene expression (N= 85). a Histogram of correlation coefficients between
the expression of each gene in the P. barbatus transcriptome and sensitivity of foraging activity to humidity. b Expression correlation with colony sensitivity
of foraging activity to humidity for the different candidate loci categories (**P < 0.001; one-sample t test). c Transcriptome-wide expression correlations
with colony average forager brain dopamine-to-serotonin ratio. Bar color reflects the top (blue) 50% of correlation values used for the omnibus gene
ontology enrichment test. The bottom 50% is not highlighted since no significant enrichments were detected. d Correlation with forager brain dopamine-
to-serotonin ratio (DA:5HT) for the different candidate locus groups. (no tests with P < 0.01; one sample t test).
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variation among colonies than within colonies). However, only a
fraction of genes with colony-specific expression variation have
linear associations with trait variation among colonies. To sum-
marize the extent to which expression at each locus was asso-
ciated with the two colony traits under study, we used the derive a
summary coefficient for trait correlation. This value, which ran-
ged from ~−0.5 to 0.5 (Fig. 2a, b), captures how the expression of
each gene is linearly associated with variation among colonies in
the two traits.

Functional analysis of trait-associated expression patterns.
Gene ontology (GO) enrichment analyses indicated that loci that
were increasingly correlated with the sensitivity of foraging
activity to humidity were enriched for involvement in
signal transduction (GO:0007165), protein kinase activity
(GO:0004672), transmembrane receptor signaling (GO:0004888),
and postsynaptic membrane localization (GO:0045211) (Supple-
mentary File 1). Loci with expression increasingly correlated with
the DA:5HT in forager brains were enriched in GO terms related
to odorant binding (GO:0005549) and olfactory receptor activity
(GO:0004984) (Supplementary File 2). There were no sig-
nificantly enriched GO terms for genes with expression negatively
correlated with colony average DA:5HT in forager brains.

We complemented the transcriptome-wide tests for
expression-trait correlations with interrogations of gene lists
known to be important for insect behavior: metabolic enzymes,
biogenic amine SLC-family transporters, and G-protein coupled
receptors of neurotransmitters (GPCRs)16,38,39 (Methods). We
calculated the correlation of each candidate gene with the
sensitivity of foraging activity to humidity and average forager
brain DA:5HT, and then asked whether the average correlation of
each list of loci was significantly different from zero for either of
the two colony traits. The expression of biogenic amine receptors
as a list was significantly positively correlated with sensitivity of
foraging activity to humidity (Fig. 2b, two-sided one-sample t test
for mean ≠ 0, df= 12, t= 4.62, p= 0.00059). No categories
displayed an overall correlation with average forager brain
DA:5HT (Fig. 2d, all tests are two-sided one-sample t test for
mean ≠ 0: metabolic loci, df= 7, t=−0.212, p= 0.84; receptors,
df= 12, t= 1.46, p= 0.17; transporters, df= 10, t= 0.59, p=
0.57). There were several interesting single-locus expression
correlations from candidate gene lists that did not show an overall
correlation, though no locus was a statistical outlier (scatterplots
in Fig. 2b, d). First, though metabolic enzymes as a group did not
differ from 0 in their average correlation with sensitivity of
foraging activity to humidity, the expression of tyrosine
hydroxylase (LOC105423652) was the candidate enzyme posi-
tively correlated with colony sensitivity to humidity (Pearson
r2= 0.18, N= 85). Tyrosine hydroxylase is the rate-limiting
enzyme in dopamine biosynthesis in animals40 and previous
experiments in P. barbatus showed that an increase in forager
brain dopamine led to an increase in foraging activity28. Second,
although on average the category of transporters had near-zero
correlation with average forager brain DA:5HT, the transporter
with the highest positive correlation to this ratio was the P.
barbatus homolog of the white (LOC105432124) locus (Pearson
r2= 0.382, N= 85). In Drosophila melanogaster, white loss of
function flies have reduced head dopamine levels41 and altered
social behavior42. This could imply a conserved role for white
across insects; perhaps, increased transporter expression results in
increased (relative) brain dopamine titers via altered neuronal
efflux of dopamine or related metabolites.

Functional analysis of gene coexpression networks. To test the
third hypothesis, that gene coexpression networks would be

associated with functional roles and colony trait variation, we used
Weighted Gene Coexpression Network Analysis (WGCNA)43.
There were 11 modules of loci with expression significantly cor-
related with both sensitivity of foraging activity to humidity and
average forager brain DA:5HT (Supplementary Table 2). The
coexpression modules were enriched for a variety of neurophy-
siological processes (Supplementary File 3: 261 enrichments
summed over the 11 modules). We asked whether these gene
expression modules were differentially utilized across colonies and
associated with the two colony traits (Fig. 3a) (Methods)8,44. There
was evidence that the modules captured a shared transcriptomic
architecture: the extent to which a module’s expression was cor-
related with sensitivity of foraging activity to humidity was sig-
nificantly associated with forager brain DA:5HT (N= 11, Pearson
R2= 0.436, p= 0.027).

Gene coexpression network use and colony traits. Differences
among colonies in the utilization of functionally coherent coex-
pression modules were associated with differences among colo-
nies in behavior. We computed the first principal component of
each coexpression module to summarize within-module varia-
bility (a.k.a., module “eigengenes” (MEs)), and compared the
expression of modules among colonies (Supplementary Fig. 4).
Overall, loci more central to coexpression modules were more
correlated with colony traits (e.g., Fig. 3b, Supplementary Fig. 5).
In all 7 of the 11 modules with a significant regression, loci with
higher module centrality have a significantly higher correlation
with sensitivity of foraging activity to humidity (Supplementary
Fig. 6). Some of the largest differences in coexpression module
use mapped well to the two colony traits. For example, the
expression of the “black” and “green” MEs were significantly
increased in colony D27, a colony with high sensitivity of foraging
activity to humidity, relative to colonies D24 and D30, which
have lower sensitivity of foraging activity to humidity (Supple-
mentary Fig. 5). Interestingly, loci in these modules had the
strongest average expression correlations to colony sensitivity of
foraging activity to humidity (Supplementary Table 2), and were
enriched in GO terms including GPCR activity and cyclic
nucleotide-related signaling pathways (Supplementary File 3).
This suggests that colony differences In behavior are strongly
associated with differential utilization of functionally enriched
coexpression networks. Further work is needed to investigate this.

Evolutionary patterns and trait-associated expression. At last,
we used phylogenetic comparative methods to test the hypothesis
that genes with trait-associated expression or high coexpression
module centrality would show unique patterns of evolutionary
constraint. We tested how forager brain gene expression patterns
were associated with the genomic signature of protein-coding
sequence constraint over evolutionary time (~ 10–120 million
years), as measured by the dN/dS statistic44–47 (Methods). We
first tested the relationship between dN/dS and the extent to
which a gene had trait-associated expression patterns. The results
show that genes more correlated with colony sensitivity of fora-
ging activity to humidity, and with forager brain dopamine to
serotonin, are evolving under increased coding sequence con-
straint (GLM, p < 0.00001 for both traits (Supplementary File 4).
This result held even after accounting for the effect of known
factors that influence dN/dS, such as expression level and varia-
bility (Supplementary File 4).

It appears that loci more central to coexpression modules, and
more correlated with colony traits, are evolving under stronger
protein sequence constraints than the rest of the genome. Genes
in coexpression modules had significantly lower dN/dS than those
not in coexpression modules (p= 1e-14, Supplementary Fig. 6),
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suggesting that genes with more coordinated transcriptional
patterns are evolving under increased protein sequence con-
straints. Further, gene coexpression modules differed significantly
in average dN/dS values, both from one another and from the
genomic background: 5 of the 11 coexpression modules consisted
of loci evolving under significantly decreased coding sequence
constraint, whereas one module consisted of loci that are evolving
under significantly increased coding sequence constraint (two-
sided one-sample t test, p < 0.005, Supplementary Table 2,
Supplementary Fig. 7). Across coexpression modules, coding
sequence constraint was correlated with the extent to which the
module was associated with sensitivity of foraging activity to
humidity (R2= 0.799, p < 0.0001, N= 11, blue line in Fig. 3b), but
not the ratio of dopamine to serotonin in forager brains (p > 0.2,
N= 11). Within modules, genes that are more central to modules
tend to have stronger correlations with colony behavioral traits

(Fig. 3d, Supplementary Fig. 8, ANOVA, n= 7,085 loci, p < 3e-42;
linear regression p= 1.5e-18, GLM p < 1e-5, Supplementary
File 4). The positive association between coexpression centrality
and degree of coding sequence constraint persists even after
accounting for locus-level descriptors such as expression level
(average transcripts per million for the locus) and degree of
variability among colonies (the variance in expression among all
samples) (ANOVA, p < 2.2e-16, Supplementary Fig. 9, Supple-
mentary Fig. 10, Supplementary File 4). For almost all modules,
when compared separately with most species, there is a negative
relationship between coexpression centrality and dN/dS (Supple-
mentary Fig. 10). This indicates a positive association between
centrality in a coexpression module and the degree of protein-
coding sequence conservation over evolutionary time. A similar
relationship between gene-level coexpression module centrality
and coding sequence constraint has been observed in honey
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bees48, other ant species45, and some plant species49. Loci under
tighter transcriptional regulation may be under increased
sequence constraint owing to multi-tissue pleiotropy48 or
increased deleterious effects of dysfunction in regulatory genes
rather than secretory proteins50. Consistent with this, we have
found evidence of increased sequence constraint on highly
expressed genes, and genes more central to coexpression
networks.

Discussion
Here we used RNA sequencing on red harvester ant forager
brains and found that colonies have distinct gene expression
signatures, and that nestmates resemble one another in brain
expression patterns. Genes with expression increasingly asso-
ciated with colony collective behavioral and physiological traits
were enriched in functional terms related to neural signaling.
Genes with expression patterns more central to coexpression
modules tended to be more correlated with colony traits and also
evolving under increased coding sequence constraint.

Here, we considered the association between single-forager
brain gene expression and variation among colonies. We did not
measure behavioral variation among nestmates within a colony,
which might be associated with age or experience. It would be
interesting to learn how such variation within a colony in the
brain gene expression of workers, as well as differences among
workers in behavior, is associated with colony traits. We con-
sidered the transcriptome of the whole brain, which is a complex
tissue composed of many heterogeneous cell types, and our
results confirm that natural behavioral variation among colonies
is linked to broad-scale differences in brain physiology. More-
pronounced physiological variation among colonies would
probably be detected if biogenic amine levels were quantified at
the brain-region scale, or if gene expression patterns were
quantified at the single-cell scale51. It would be interesting to
examine the association between variation in the traits measured
here and colony fitness, and relatedness among colonies, as in
previous work9,52. However, we do not have fitness estimates for
this set of colonies. This type of analysis could elucidate the
relationship between colony success and molecular variation, for
example, by finding expression-modulating genetic variants that
show signatures of selective sweeps, or evidence of shared colony
microenvironment.

By expanding the scope of evolutionary transcriptomics
beyond reproductive and behavioral differences among
nestmates7,53, we found that contemporary transcriptomic var-
iation among ant colonies in a natural setting are enriched in loci
related to biogenic amine signaling and metabolism. Variation
among colonies in worker neurophysiology may underlie ecolo-
gically important variation among colonies in collective behavior,
and thus influence colony reproductive success, through altera-
tions to worker sensitivity to interactions or environmental
conditions15,18. Loci with expression patterns correlated with
colony variation in behavior appear to be evolving under
increased protein-coding sequence constraint, suggesting that ant
colony behavior can evolve through non-coding and epistatic
changes to the genome, as well as through coding sequence
changes at longer time scales. Gene expression differences among
colonies of P. barbatus could be influenced by heritable factors,
and thus could reflect the raw material shaped by past and cur-
rent selection acting on colony behavior.

Methods
RNA sequencing. Foragers were collected from nine P. barbatus colonies near the
site of a long-term study of this species in Rodeo, New Mexico52. The same
colonies were used in previous behavioral observations and pharmacological
experiments28. In previous work, we measured for each colony (1) the sensitivity of

foraging activity to humidity as the reduction in foraging trips made per day per %
decrease in daily relative humidity, and (2) average forager brain DA:5HT ratio,
measured with high-performance liquid chromatography28,54. Foragers were
identified when leaving the nest mound walking in a straight line, carrying nothing,
in a direction used by other foragers that day28. Ants were collected by aspiration
and placed directly into liquid nitrogen. Foragers were collected from all colonies
within 2 hours on the same morning (9/4/2017). The same collection of ants was
used for gene expression quantification in this analysis as for the measurements of
forager brain DA:5HT from these colonies28.

For RNA sequencing, single-forager brains were dissected out in a fresh buffer
of cold RNAlater and placed into Trizol on dry ice55. Total RNA was extracted
from whole forager brains, and RNA-seq libraries were prepared by Novogene
using the following protocol. From each single brain, <1 µg of RNA was used for
cDNA library construction using the NEBNext Ultra RNA Library Prep Kit for
Illumina (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the
manufacturer’s protocol. rRNA was removed using the Ribo-Zero kit. The mRNA
was fragmented randomly by adding fragmentation buffer, then cDNA was
synthesized by using mRNA template and random hexamers primer, after which a
custom second-strand synthesis buffer (Illumina), dNTPs, RNase H and DNA
polymerase I were added to initiate the second-strand synthesis. Next, after a series
of terminal repair, ligation, and sequencing adaptor ligation reactions, the double-
stranded cDNA library was completed through size selection and PCR enrichment.
The resulting 250–350 bp insert libraries were quantified using a Qubit 2.0
fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR.
Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an
Illumina HiSeq 4000 Platform (Illumina, San Diego, CA, USA) using a paired-end
150 run (2 × 150 bases). Around 20M raw reads were generated from each library.
Sequencing outcomes per library are available in file “NovogenePbarSeqQC.xlsx”.
Ten brains from each of the nine colonies were sent for sequencing. Five samples
were discarded before the library preparation phase, resulting in n= 85 high-
quality single-forager brain transcriptomes.

Bioinformatics. The P. barbatus genome and transcriptomic resources were
downloaded from NCBI (GenBank accession: GCF_000187915.156). Previous
brain-specific RNA-seq data were used to improve gene models in this NCBI
assembly28 (Bioproject: PRJNA277638).

Candidate gene lists were constructed for three categories of P. barbatus
neurotransmitter-related loci: metabolic enzymes, GPCR receptors, and
transporters. The list of candidate biogenic amine receptors was found by querying
dopamine, histamine, octopamine, tyramine, and serotonin receptors from
Drosophila against the P. barbatus proteome. The list of transporters was generated
by finding all P. barbatus homologs of neurotransmitter receptors identified in
Drosophila57. In all cases, the Drosophila melanogaster protein sequence was used
as a BLASTP query against the P. barbatus genome and an E value cutoff of 0.01
was used. The list of biogenic amine metabolic enzymes was generated by finding
all P. barbatus homologs of the canonical invertebrate biogenic amine-metabolizing
enzymes16,38,39. To avoid user bias in the construction of candidate gene lists, the
lists were finalized before calculating associations with colony traits, and all
relevant genes from recent review papers were used as queries against the
P. barbatus proteome.

RNA-seq read quality was assessed using MultiQC58. Adapter sequences were
removed using cutadapt59 with standard settings. Reads were aligned to the P.
barbatus transcriptome using STAR60 allowing for two sequence mismatches per
read (to accommodate potential genetic divergence between the sampled
populations and the reference). Gene-level counts were extracted using Rsubread61

and the P. barbatus annotation GCF_000187915.1_Pbar_UMD_V03_genomic.
gff56. Raw counts were converted to transcripts per million (TPM) for downstream
analyses. We controlled for potential sequencing batch effects in R with ComBat62,
using sequencing run, RNA concentration (via qubit measurement), and library
number as potential effects. Gene expression characteristics such as overall
expression level and extent of variability among samples are known to be associated
with distinct evolutionary patterns. For use in downstream analyses, for each locus
we calculated the median expression level (Median TPM), and expression
variability (Standard deviation among all samples).

PCA and linear discriminant analysis (LDA) were carried out in Orange 3.20
(workflow available). A PCA was calculated on an expression matrix where
columns correspond to samples, rows correspond to loci in the P. barbatus
transcriptome, and cell values were expression values in TPM. Thirty principal
component dimensions were retained for the LDA, with colony used as a
stratifying factor.

We tested for correlations of gene expression level with two measures of colony
traits, described above: (1) sensitivity of foraging activity to humidity, and (2)
forager brain DA:5HT. Correlations were calculated in two different ways: a
measure of a colony trait with colony average expression regression (N= 9 points),
and a measure of a colony trait with per-sample expression level (N= 85 points).
The coefficients of expression-trait correlations were in good agreement in the two
methods (Supplementary Fig. 3, p < 0.0001 for both traits). We performed
downstream quantitative analysis with the N= 85 single-brain level regression
slope estimates, because correlation coefficients calculated with the single-forager
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expression levels had more accurate estimates of slope and variance owing to the
larger sample size, and better captured the subset of genes that had stable linear
expression patterns associated with colony trait variation (Supplementary Fig. 3).

GO term analysis used an omnibus p value approach to find functional
enrichment of loci that were correlated with traits. First, for each gene we obtained
associated GO terms using GO FEAT63. To derive an omnibus p value for GO term
enrichment, we calculated gene set enrichment statistics for the top 50–99% of the loci
with expression correlated to colony traits using a Fisher’s exact test, then repeated the
test by restricting the set of associated loci with increased stringency by 5% steps (e.g.,
top 50% of loci, then top 45%, top 40%, etc.) and combined the resulting p values
using Fisher’s method. We used a cutoff of post-correction omnibus p value of < 0.05
for GO term enrichment and did not consider GO term enrichments when a given
gene set had fewer than 10 annotated sequences. The resulting omnibus p values
should reflect gene sets that are consistently enriched in the tails of the colony trait
correlation distributions at varying levels of stringency, as opposed to single cutoffs as
is commonly used. This process should thus filter out potential false-positive
associations and highlight GO terms that strongly vary with colony traits.

WGCNA analysis
Data pre-processing and batch correction. All data pre-processing and coexpression
network analysis was done in R64. Raw TPM values were processed to remove
genes with no variance across samples, low median expression (TPM < 0.5), or no
expression in more than one-third of the samples. Next, gene expression values
were log-transformed, then outlier genes and samples were removed in an iterative
process, as described previously43,65,66. In brief, gene expression values more than
three standard deviations (SD) from the mean for that gene across all samples were
masked out, and samples with a mean inter-sample correlation more than two SD
from the overall mean were removed. This process was repeated until no more
expression values or samples exceeded these thresholds, and resulted in the
removal of 33 samples and 775 genes, leaving 11,641 genes across 52 samples
representing six colonies (D19: n= 8; D24: n= 10; D25: n= 10; D27: n= 9; D29:
n= 8; D30: n= 7) for further analysis. Samples were quantile normalized, then the
effects of the sequencing run on average gene expression were corrected using
ComBat62, with colony as a biological covariate.

Network construction. WGCNA was performed as described, in the R WGCNA
library43,65–67. Signed Pearson correlations were computed for all gene–gene pairs
to generate a symmetric correlation matrix, which was transformed using a power
function ((1+correlation)/2)β) to form the adjacency matrix of network connection
strengths. β was determined empirically using the scale-free topology criterion
(signed network: β= 1268). Next, a topological overlap (TO) matrix was computed
based on the adjacency matrix and average linkage hierarchical clustering was
performed using 1–TO as the distance metric69. Modules were defined using a
dynamic tree cutting algorithm to prune the resulting dendrogram70, and labeled
by arbitrary colors underneath the dendrogram. To study module composition,
MEs were defined as the first principal component of each module, effectively
summarizing the expression variability within modules. MEs were used to quan-
titatively relate gene coexpression patterns to phenotypic traits and construct ME
correlation networks to study higher-order relationships among the modules.
Eigengene-based connectivity (kME) was defined as a gene’s correlation with the
ME, quantifying the extent to which its expression profile conformed to the largest
source of variability within the module.

Enrichment for densely interconnected modules. An iterative filtering process was
performed to enrich the final network with modules composed only of the most
densely interconnected genes43,66,70. First, the soft threshold for constructing a
signed weighted coexpression network was determined with the scale-free topology
criterion applied to all genes. Then, a preliminary network was constructed using
default module definition (dynamic tree cutting) settings, except for a minimum
module size of n = 80 genes, to ensure suitable power for downstream module
enrichment tests. The average TO within each module was defined as the module
density, which was then compared with the density of 10,000 pseudo-modules of
the same size that were generated by randomly selecting genes from the network. A
p value for the density of each module was defined as the number of pseudo-
module densities greater than the actual density, divided by 10,000. Genes in
modules with p > 0.01 and gray background genes were removed. The network was
rebuilt with the remaining genes, and the process was iterated until all modules
passed the density test and there were no more gray genes, leaving 7085 genes in
the final network. To confirm the efficacy of the additional filtering for ensuring
module robustness, we computed module quality statistics using the WGCNA
function modulePreservation70. Typical module preservation statistics were used to
evaluate the preservation of modules in test networks created by randomly per-
muting the actual gene module assignments. These statistics were interpreted as
indicators of module density and separability (distinctness of modules from others
in the network), i.e., module quality. Averaged across many permutations of the
original data, module quality statistics were indicative of module robustness and
reproducibility. Summary scores of Z > 10 were interpreted as strong evidence of
densely interconnected, distinct, reproducible modules, and modul Z scores ranged
from 11.23 (green module) to 63.48 (pink module). Modules ranged in size from
108 to 2182 genes (median= 355 genes).

dN/dS estimation and analysis. dN/dS is a summary statistic that quantifies the
degree to which each protein-coding genomic locus is constrained by purifying
selection acting on its translated sequence. A low dN/dS value represents a strong
history of purifying selection, or high sequence constraint, whereas a high dN/dS
value can represent either relaxed selection or positive selection for a novel trait.
The dN/dS values were calculated using the “orthologr” package71,72. Orthologs
were computed between the predicted proteome of P. barbatus and six other
species: the honey bee Apis mellifera73, plus five ant species: Harpegnathos salta-
tor74, Ooceraea biroi75, Monomorium pharaonis45, Linepithema humile76, and
Camponotus floridanus74. Homologs were identified with a reciprocal best BLAST
hit approach at a cutoff E value of 1E-5. dN/dS was calculated with the method of
Comeron77. For each species, every non-missing dN/dS value was then recoded as
its decile value (e.g., lowest 10% of dN/dS values recode to 1, highest 10% of dN/dS
values recode to 10). The decile transformation facilitates comparisons across
species of various evolutionary distances71,72.

For analyses involving the relationships between gene expression, dN/dS, and
WGCNA module centrality, a subset of 5186 loci with an estimated dN/dS was
constructed from the list of 7085 loci included in any of the 11 modules. For
analyses involving raw TPM expression level as a predictor, we performed all
regressions on all 5186 loci, as well as the subset of 5138 genes that were in the
lower 99% of expression percentiles and lower 99% of expression variability.

We used a generalized linear model to consider how coexpression centrality and
correlation with colony traits were associated with evolutionary coding sequencing
constraint (dN/dS) after accounting for the covariates of expression level (Median
TPM), and expression variability (standard deviation among all n= 85 samples).
Full results for the models are provided in Supplementary File 4).

Statistics and reproducibility. Statistical analysis was performed with the specific
methods described in sections above. Nine colonies were chosen for RNA
sequencing because these were the colonies with behavioral and physiological trait
data. From each colony, we created RNA-seq libraries from 10 single-forager
brains. The sequencing company (Novogene) completed library construction and
sequencing for 85 of the 90 libraries. All biological samples were consumed in the
RNA-seq library preparation process, and thus are no longer available. To ensure
bioinformatic accuracy and reproducibility, all RNA-seq data were used for
downstream analysis, except when samples or loci were pruned for specific tests
and following standard protocols. RNA-seq data from each nestmate brains was
considered as a biological replicate with respect to tests for colony variation in gene
expression, and as an individual sample (with colony as sample metadata) for tests
involving gene coexpression.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data are available on the Stanford Digital Repository at the Stanford Libraries, at the
following persistent url: https://purl.stanford.edu/td277vn9006. Data for all Figures are
included in the SDR archival site. Raw RNA-seq reads are available at BioSample:
SUB5744886.

Code availability
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