UC Berkeley Archaeological X-ray Fluorescence Reports

Title

Energy-Dispersive X-Ray Fluorescence (EDXRF) Analysis of Source Clays and Ceramics from Santa Rita B, Northern Peru

Permalink https://escholarship.org/uc/item/0m52871v

Author Shackley, M. Steven

Publication Date 2007-11-14

Supplemental Material https://escholarship.org/uc/item/0m52871v#supplemental

Phoebe Hearst Museum of Anthropology 103 Kroeber Hall University of California Berkeley, CA 94720-3712

ENERGY-DISPERSIVE X-RAY FLUORESCENCE (EDXRF) ANALYSIS OF SOURCE CLAYS AND CERAMICS FROM SANTA RITA B, NORTHERN PERU

by

M. Steven Shackley, Ph.D. Director

Report Prepared for Pamela Shwartz Department of Anthropology Florida State University

14 November 2007

INTRODUCTION

This analysis reports the non-destructive EDXRF analysis of clay and ceramic samples from northern Peru. No attempt is made to relate the source data to the ceramic samples.

LABORATORY SAMPLING, ANALYSIS AND INSTRUMENTATION

Spectrace/Thermo QuanX

The EDXRF trace element analyses were performed in the Geoarchaeological XRF Laboratory, University of California, Berkeley, using a Spectrace/Thermo[™] QuanX energy dispersive x-ray fluorescence spectrometer. All samples were analyzed whole with no formal preparation. The results presented here are quantitative in that they are derived from "filtered" intensity values ratioed to the appropriate x-ray continuum regions through a least squares fitting formula rather than plotting the proportions of the net intensities in a ternary system (McCarthy and Schamber 1981; Schamber 1977). Or more essentially, these data through the analysis of international rock standards, allow for inter-instrument comparison with a predictable degree of certainty (Hampel 1984). The spectrometer is equipped with an air cooled Rh x-ray target with a 125 micron Be window, an x-ray generator that operates from 4-50 kV/0.02-2.0 mA at 0.02 increments, using an IBM PC based microprocessor and WinTrace[™] reduction software. The xray tube is operated at 30 kV, 0.14 mA, using a 0.05 mm (medium) Pd primary beam filter in an air path at 200 seconds livetime to generate x-ray intensity K\alpha-line data for elements titanium (Ti), manganese (Mn), iron (as Fe^T), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), and thorium (Th). Weight percent iron (Fe₂O₃^T) can be derived by multiplying ppm estimates by 1.4297(10-4). Trace element intensities were converted to concentration estimates by employing a least-squares calibration line established for each element from the analysis of international rock standards certified by the National Institute of Standards and Technology (NIST), the US. Geological

Survey (USGS), Canadian Centre for Mineral and Energy Technology, and the Centre de Recherches Pétrographiques et Géochimiques in France (Govindaraju 1994). Specific standards used for the best fit regression calibration include G-2 (basalt), AGV-1 (andesite), GSP-1, SY-2 (syenite), BHVO-1 (hawaiite), STM-1 (syenite), QLO-1 (quartz latite), RGM-1 (obsidian), W-2 (diabase), BIR-1 (basalt), SDC-1 (mica schist), TLM-1 (tonalite), SCO-1 (shale), all US Geological Survey standards, and BR-N (basalt) from the Centre de Recherches Pétrographiques et Géochimiques in France (Govindaraju 1994).

The data were translated directly into Excel[™] for Windows software. In order to evaluate these quantitative determinations, machine data were compared to measurements of known standards during each run. An analysis of RGM-1 is included in Table 1. Further information on the laboratory instrumentation and source descriptions and data can be found at: http://www.swxrflab.net/ and Shackley (2005). Trace element data exhibited in Table 1 are reported in parts per million (ppm), a quantitative measure by weight.

REFERENCES CITED

Govindaraju, K.

1994 1994 Compilation of Working Values and Sample Description for 383 Geostandards. *Geostandards Newsletter* 18 (special issue).

McCarthy, J.J., and F.H. Schamber

1981 Least-Squares Fit with Digital Filter: A Status Report. In *Energy Dispersive X-ray Spectrometry*, edited by K.F.J. Heinrich, D.E. Newbury, R.L. Myklebust, and C.E. Fiori, pp. 273-296. National Bureau of Standards Special Publication 604, Washington, D.C.

Schamber, F.H.

1977 A Modification of the Linear Least-Squares Fitting Method which Provides Continuum Suppression. In *X-ray Fluorescence Analysis of Environmental Samples*, edited by T.G. Dzubay, pp. 241-257. Ann Arbor Science Publishers.

Shackley, M.S.

2005 *Obsidian: Geology and Archaeology in the North American Southwest*. University of Arizona, Tucson.

Sample	Ti	Mn	Fe	Ni	Cu	Zn	Ga	Rb	Sr	Y	Zr	Nb	Th
PS-1	259 4	123	8153	nd	11	54	18	89	153	4	10	1	6
PS-3	304 9	104	29034	nd	9	22	15	52	31	12	13 5	8	21
PS-4	186 2	132	19148	nd	9	24	14	23 7	97	13	12 7	0	6
PS-5	221 5	298	7038	nd	22	52	16	11 1	67	3	67	3	6
PS-6	686 3	154	8256	5	13	17	31	58	94	32	18 9	21	36
PS-7	742 6	131	4111	nd	5	6	22	32	165	35	45 6	32	23
PS-8	603 2	123	9635	nd	4	5	24	47	104	25	21 4	24	14
PS-9	480 2	120	7171	nd	9	20	18	15 7	201	16	11 9	1	6
PS-10	285 8	124	47943	20	32	32	17	, 59	32	8	87	6	28
PS-11	442 6	208	57683	39	23	78	14	16	5	4	53	0	9
MINA FAROL-266	347 7	104	3570	nd	nd	5	36	2	2	13	19 7	12	29
MINA FAROL-21	453 6	104	4142	nd	12	34	20	2	154	15	, 14 7	12	22
J VICTORIA	296 2	104	2402	nd	18	28	15	2	212 8	3	, 14 8	9	6
SRB-93-9	515 2	327	22884	29	56	17 3	24	93	243	32	21 1	15	17
SRB-616-49	528 8	187 9	50807	46	234 1	18 0	17	81	300	27	29 4	11	21
CHOROBAL-1	636 3	806	59371	39	114	12 9	22	11 3	352	25	24 5	10	24
SRB-629-57	331 9	854	36327	11	39	14 2	21	71	248	18	11	8	6
SRB-609-21	554 1	892	45904	26	24	95	17	43	407	10	17	6	6
CHOROBAL-2	582 4	799	68890	51	45	95	15	53	190	21	15 6	9	15
SRB-625-55	306 7	826	33086	29	62	14 5	17	69	208	22	11	5	10
SRB-929-81	466 9	145 7	54604	42	45	20 9	15	92	313	24	12	8	6
SRB-625-53	151 6	782	4107	nd	22	67	8	9	389	3	21	7	6
SRB-17F-14M-8- 1 ²	754 2	112 1	45822	29	25	13 5	25	64	463	19	23 4	16	14
-2	611 8	121 9	46928	26	139 6	15 9	18	47	605	20	15 4	6	8

Table 2. Elemental concentrations for the clay and archaeological ceramic samples. All measurements in parts per million (ppm).

-3	624	829	52441	21	48	10	22	51	379	12	16	13	6
-4	616	109	40624	27	27	5 11	19	57	447	18	18	14	24
-5	566	9 617	46324	28	33	8 10	18	50	596	19	1 16	9	6
-6	1 534	963	43961	18	26	10	21	54	331	31	9 18	15	6
-7	839	770	56964	25	43	4 11	22	55	339	28	6 18	25	14
-8	0 711	117	52712	22	48	6 11	23	52	465	18	4 19	4	6
-9	7 730	7 169	12753	29	167	8 10	13	59	286	16	8 20	4	6
RGM-1 (standard)	5 123	9 305	9 12808	nd	6	2 5	19	14	101	28	2 21	12	18
RGM-1 (standard)	3 142	323	12857	nd	15	5	17	5 15	98	29	5 21	12	31
	0	-		-	-	-		2		-	1		

 1 nd = no data acquired for this sample, meaning that the data was lower than the error rate at six standard deviations. 2 It was difficult to determine the unique numbers for these samples, and so were supplied.