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Scalable semidefinite programming approach to

variational embedding for quantum many-body problems

Yuehaw Khoo and Michael Lindsey

June 8, 2021

Abstract

In quantum embedding theories, a quantum many-body system is divided into localized
clusters of sites which are treated with an accurate ‘high-level’ theory and glued together self-
consistently by a less accurate ‘low-level’ theory at the global scale. The recently introduced
variational embedding approach for quantum many-body problems combines the insights of
semidefinite relaxation and quantum embedding theory to provide a lower bound on the ground-
state energy that improves as the cluster size is increased. The variational embedding method is
formulated as a semidefinite program (SDP), which can suffer from poor computational scaling
when treated with black-box solvers. We exploit the interpretation of this SDP as an embedding
method to develop an algorithm which alternates parallelizable local updates of the high-level
quantities with updates that enforce the low-level global constraints. Moreover, we show how
translation invariance in lattice systems can be exploited to reduce the complexity of projecting
a key matrix to the positive semidefinite cone.

1 Introduction

The problem of determining the ground state of a quantum many-body system has wide-ranging
applications in physics, chemistry, and materials science. This problem can be viewed as the problem
of determinining the lowest eigenvalue of a Hermitian operator on a Hilbert space whose dimension
grows exponentially with the size of the system or the number of particles, such as electrons in the
case of electronic structure. Here we highlight two relevant categories of approaches to taming this
curse of dimensionality.

The first category is that of semidefinite relaxations, which rephrase the aforementioned energy
minimization problem as an optimization problem in terms of a reduced set of physical observables,
almost always a semidefinite program (SDP). In principle these observables satisfy representability
constraints, i.e., constraints that ensure that they can be recovered from a bona fide quantum
many-body state. However, only a subset of representability constraints can be efficiently enforced,
yielding tractable optimization problems that provide lower bounds on the ground-state energy.
Such approaches include the 2-RDM theories [24, 22, 4, 23, 34, 20, 1, 25, 7], as well as methods that
may be classified as quantum marginal relaxations such as [19, 26, 9, 13].

Meanwhile, quantum embedding theories take the perspective of dividing a system into local clus-
ters, small enough to be treated with a highly accurate or exact method referred to as the ‘high-level’
method. Local problems are then stitched together via a reduced set of global quantities or a less-
accurate ‘low-level’ method that operates on the global scale, and the local and global perspectives
are constrained to be compatible via some self-consistency condition. Such approaches include dy-
namical mean-field theory (DMFT) [12, 18] and density matrix embedding theory (DMET) [16, 17],
as well as variants such as the energy-weighted DMET (EwDMET) [10, 11] which in a certain sense
interpolates between DMFT and DMET [28].

Recently, variational embedding [21] was introduced as a semidefinite relaxation which is also a
quantum embedding method. Like other relaxations such as [19, 26, 9, 13], the key optimization
variables are quantum marginals for local clusters, but variational embedding additionally includes
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global constraints which tighten the relaxation and accommodate the treatment of, e.g., long-range
interactions.

1.1 Contribution

As an SDP, variational embedding can be solved with black-box methods, as is done in [21], but
scalability calls for a solver that is specially adapted to the problem. In this work, we introduce a
scalable solver for this SDP which takes advantage of the embedding interpretation of the approach.
The aforementioned global constraint is dualized to reduce the problem to a simpler relaxation
(similar to those of [19, 26, 9, 13]) in which the global constraints have been exchanged for effective
contributions to relevant Hamiltonian operators at the local scale. This problem can then be solved in
a fashion in which effective problems for the key variables (the two-cluster marginals) are completely
decoupled and can be solved in parallel, with dual variable optimization enforcing the self-consistency
of these problems. Furthermore, translation invariance of a lattice system can be used to significantly
speed up the running time.

Our approach is based on augmented Lagrangian methods (see for example [3, 29, 30]), which have
been used for solving large-scale SDP problems. In particular, ADMM-type approaches can allow for
sub-problems to be solved in parallel. Approaches such as [29] apply ADMM to the dual problem,
whereas in [33] the primal problem is solved. Our approach differs in that the local constraints are
kept in their primal form while the global positive semidefinite constraint that couples the local
variables is taken into account via the introduction a dual variable. Consequently, each iteration
involves the solution of many decoupled effective problems, preserving the flavor of a quantum
embedding theory.

1.2 Outline

In Section 2 we provide relevant background on the ground-state eigenvalue problem, examples of
interest, and the two-marginal relaxation for variational embedding introduced in [21]. (In Appendix
A, additional background is provided for the context of fermionic systems.) In Section 3, we describe
our optimization approach to this problem, which is an SDP. The section begins with an idealized
scheme of projected gradient ascent on the dual variable to the aforementioned global constraint.
In order to implement such a scheme, it is necessary to solve an effective problem in terms of the
primal variables. In Section 3.1, we introduce an ADMM-type approach to this problem, and in
Section 3.2 we integrate this approach with dual ascent to define our practical scheme. In Section
3.3 we explain how translation-invariance can be exploited, and in Section 3.4 we include a detailed
discussion of the computational scaling. Finally in Section 4 we present numerical experiments on
several model systems of quantum spins and fermions.
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2 Preliminaries

In this section we review the formulation of variational embedding for quantum spins, following [21].
In Appendix A, we review the case of fermions (also following [21]), which requires a bit more care
but nonetheless yields a semidefinite program of identical form after suitable manipulations.

2.1 The ground-state eigenvalue problem

We consider a model with M sites, indexed i = 1, . . . ,M , each endowed with a classical local state
space Xi (which shall be discrete). These in turn yields local quantum state spaces Qi = C|Xi|. The
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global quantum state space (i.e., the space of wavefunctions) is then given by

Q :=

M⊗

i=1

Qi ≃ C
|X |,

where X :=
∏M

i=1Xi is the global classical state space, so quantum states (wavefunctions) correspond
to complex-valued functions on the classical state space. Let Hi (resp. Hij) denote Hermitian

operators Qi → Qi (resp. Qij → Qij), and let Ĥi (resp. Ĥij) denote the corresponding operators
Q → Q obtained by tensoring Hi by the identity operator on all sites k 6= i (resp. k 6= i, j). We
consider pairwise Hamiltonian Ĥ : Q → Q of the form

Ĥ =
∑

i

Ĥi +
∑

i<j

Ĥij ,

and our interest is in determining the ground-state energy, i.e., the lowest eigenvalue, of Ĥ . We
denote this eigenvalue by E0, which is defined variationally by

E0 = inf
{

Φ∗ĤΦ : Φ ∈ Q, Φ∗Φ = 1
}

. (2.1)

Now we review some examples of interest. First consider the case of quantum spin- 12 systems,
i.e., the case Xi = {−1, 1}. To construct operators on Q, one first starts with the Pauli matrices

σx =

(
0 1
1 0

)

, σy =

(
0 −i
i 0

)

, σz =

(
1 0
0 −1

)

,

which (together with the identity I2) form a basis for the real vector space of Hermitian operators

on C2. We let σ
x/y/z
i denote the operator Q → Q obtained by tensoring σx/y/z on the i-th site with

I2 on all other sites. Then in terms of these operators we can define the transverse-field Ising (TFI)
Hamiltonian and the anti-ferromagnetic Heisenberg (AFH) Hamiltonian by

ĤTFI = −h
∑

i

σx
i −

∑

i∼j

σz
i σ

z
j (2.2)

ĤAFH =
∑

i∼j

[
σx
i σ

x
j + σ

y
i σ

y
j + σz

i σ
z
j

]
, (2.3)

h is a scalar paramater and summation over i ∼ j indicates summation over pairs of indices that are
adjacent within some graph defined on the index set {1, . . . ,M}, often a rectangular lattice in some
dimension. These problems have been considered as prototypical quantum many-body problems,
e.g., in [5], as well as models for the study of quantum phase transitions, as in [27].

2.2 The two-marginal relaxation

In [21], the optimization problem (2.1) is reformulated as an optimization over the density operator
ρ, which (for nondegenerate ground states) corresponds at optmality to Φ0Φ

∗
0 where Φ0 is the

ground state eigenvector, i.e., the optimizer of (2.1). This optimization is in turn relaxed as a
computationally tractable optimization over the quantum two-marginals

ρij = Tr{i,j}c [ρ], i < j,

which are defined as partial traces of ρ, analogous to classical marginals. Indeed, recall [21] that for
any subset S ⊂ {1, . . . ,M}, the partial trace ρS = TrSc [ρ] may be defined as the unique operator
on

⊗

i∈S Qi such that Tr[AρS ] = Tr[Âρ] for all operators A on
⊗

i∈S Qi (lifted to operators Â on Q
by tensoring with the identity on Sc). In particular, ρij is an operator on Qi ⊗Qj , and moreover it
is positive semidefinite with unit trace (following from the same properties for ρ).
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Then the two-marginal relaxation of [21] reads in terms of the two marginals (and the analogously-
defined one-marginals, which can be obtained from the two-marginals by further partial trace) as

the following semidefinite program, whose optimal value we denote by E
(2)
0 :

minimize
{ρi}, {ρij}i<j

∑

i

Tr [Hiρi] +
∑

i<j

Tr [Hijρij ] (2.4)

subject to ρij � 0, 1 ≤ i < j ≤M, (2.5)

ρi = Tr{2}[ρij ], ρj = Tr{1}[ρij ], 1 ≤ i < j ≤M, (2.6)

Tr[ρi] = 1, i = 1, . . . ,M, (2.7)

G[{ρi}, {ρij}i≤j] � 0. (2.8)

Here G = G[{ρi}, {ρij}i≤j ] is an operator defined linearly in terms of the one- and two-marginals,
subordinate to the specification of an arbitrary collection {Oi,α : α = 1, . . . , ni} of linear operators
Qi → Qi at each site i = 1, . . . ,M . In specific, G is specified blockwise, with blocks Gij for
1 ≤ i, j,≤M of size ni × nj defined by

(Gij)αβ =







Tr
[

O
†
i,αOi,β ρi

]

i = j

Tr
[(

O
†
i,α ⊗Oj,β

)

ρij

]

i 6= j.

The choice of operators only matters up to span{Oi,α : α = 1, . . . , ni}, and in our numerical
experiments we shall consider the complete operator collection spanning all linear maps Qi → Qi.
The last constraint (2.8) is called the global semidefinite constraint.

2.2.1 Classical marginal relaxation

To motivate the relaxation (2.4) further, we examine the problem of finding the lowest energy state
of a classical energy function of a pairwise form. (This can be viewed as a special case of the more
general quantum ground-state problem by taking the Hij to be diagonal operators.) More concretely,
for xi ∈ Xi, i = 1, . . . ,M , define an energy function

E(x1, . . . , xM ) =
∑

i<j

Eij(xi, xj), (2.9)

and observe that the minimizer of E can be determined via the linear program

argmin
µ∈Π(X )

∑

(x1,...,xM )∈X
E(x1, . . . , xM )µ(x1, . . . , xM ), (2.10)

where Π(X ) is the space of probability measures on X . Indeed, the optimizer is a δ-function sup-
ported on the minimizer of E (provided that it is unique). Exploiting the pairwise structure of E,
we have

argmin
{µij}i<j repr.

∑

i<j

∑

xi,xj∈X
Eij(xi, xj)µij(xi, xj) (2.11)

where the two-marginal variables {µij}i<j are constrained to be jointly representable, i.e., to be
derivable as the two-marginals of a high-dimensional measure µ. Enforcing this constraint demands
exponential complexity, so various convex relaxation approaches have been proposed, where only cer-
tain necessary conditions for the {µij}i<j are kept; see, for instance, [32] for a review. In particular,
the analogous convex relaxation to (2.4) is

minimize
{µi}, {µij}i<j

∑

i<j

Tr [Eijµij ] (2.12)

subject to µij ≥ 0, 1 ≤ i < j ≤M, (2.13)

µi = µij1, µj = µ⊤
ij1, 1 ≤ i < j ≤M, (2.14)
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µ⊤
i 1 = 1, i = 1, . . . ,M, (2.15)








diag(µ1) µ12 · · · µ1M

µ21

...
. . .

...
µM1 · · · diag(µM )







� 0, (2.16)

where 1 is an all-one vector of appropriate size. Here (2.13) and (2.15) are standard constraints
for any discrete probability distributions, and (2.14) are constraints that enforces ‘local consistency’
[32] among the {µij}i<j . The global semidefinite constraint (2.16) is discussed in [15] and [6] in the
contexts of multi-marginal optimal transport and energy minimization, respectively.

2.3 Cluster relaxation

Given a quantum spin model as above and a decomposition of the sites {1, . . . ,M} as a disjoint

union
⋃M ′

i′=1 Ci′ of clusters Ci′ , we may define X ′
i′ :=

∏

i∈Ci′
Ci′ to be the classical state space for

the i′-th cluster. One see that any Hamiltonian that is pairwise with respect to sites is pairwise with
respect to clusters, so by viewing our clusters as sites and applying the above formalism, we obtain
a tighter relaxation [21].

2.4 Partial duality

In [21] it was shown that (2.4) admits the minimax formalization (obtained via dualization of the
global semidefinite constraint (2.8))

E
(2)
0 = sup

X�0
F [X ], (2.17)

where

F [X ] := inf







∑

i

Tr (Hi[Xii]ρi) +
∑

i<j

Tr (Hij [Xij ]ρij) : {ρi}, {ρij}i<j satisfy (2.5)-(2.7)






.

(2.18)
Here Xij denote the blocks of X , and the ‘effective’ Hamiltonian terms Hi[Xii] and Hij [Xij ] are
defined linearly in terms of X via

Hi[Xii] := Hi −
ni∑

α,β=1

(Xii)αβO
†
i,αOi,β , Hij [Xij ] := Hi −





ni∑

α=1

nj∑

β=1

(Xij)αβ

(

O
†
i,α ⊗Oi,β

)

+ h.c.



 ,

(2.19)
where ‘h.c.’ denotes the Hermitian conjugate term.

This partial dual formulation can be obtained from (2.4) by exchanging the global semidefinite
constraint (2.8) for an extra term

−Tr[X G[{ρi}, {ρij}i≤j ]]

in the Lagrangian, where X � 0 is a dual variable with respect to which the Lagrangian is to
be maximized. Then (2.19) is recovered by breaking this additional term into a blockwise sum,
collecting terms, and minimizing over the primal variables, subject to the remaining constraints.

Since X and G are dual variables [21] we have that

∇XF [X ] = −G[{ρi}, {ρij}i<j ], (2.20)

where {ρi}, {ρij}i<j are the minimizers of the infimum in (2.18).
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3 Optimization approach

In order to solve the two-marginal relaxation (2.4), our point of departure is the partial dual for-
mulation (2.17). For simplicity we consider the case in which the Hamiltonian and all variables are
purely real, and we let Π�0 be defined by

Π�0(C) := min
S�0
‖S − C‖2F , (3.1)

for a symmetric matrix A, i.e. the Euclidean projection (in Frobenius norm) of a symmetric matrix
onto the set of real symmetric positive semidefinite matrices (equivalent to setting all negative
eigenvalues of the argument to zero). As an idealized scheme, we can imagine performing projected
gradient ascent on (2.17), which is implemented by Algorithm 1.

Algorithm 1 Exact projected gradient ascent

Require: ε > 0, X � 0
1: while not converged do

2: Set ({ρi}, {ρij}i<j) to be the minimizer in (2.18), holding X fixed
3: X ← Π�0 (X + εG[{ρi}, {ρij}i<j ])
4: end while

The focus of this section is in the development of algorithm for step 2 for a general Hamiltonian,
and we also study the case in the presence of translational invariance. In practice, we will not
fully converge a solution to step 2 of Algorithm 1, resulting in an inexact projected gradient ascent
scheme. However, in order to motivate our practical scheme, we will first discuss how to solve step
2 exactly for fixed X .

3.1 Details for step 2 in algorithm 1

We rephrase step 2 as the following optimization problem:

minimize
{ρi}, {ρij}i<j

∑

i

Tr [H ′
iρi] +

∑

i<j

Tr
[
H ′

ijρij
]

(3.2)

subject to ρij � 0, 1 ≤ i < j ≤M,

ρi = A1[ρij ], ρj = A2[ρij ], 1 ≤ i < j ≤M,

Tr[ρi] = 1, i = 1, . . . ,M,

where H ′
i := Hi[Xii], H

′
ij := Hij [Xij ], and X is fixed for the duration of this subsection. Moreover,

for simplicity we have assumed that m := |Xi| is constant, and A1, A2 are defined to be the linear
operators Tr{2} and Tr{1}, respectively. Hence A1, A2 can be realized as sparse matrices of size
m2 × m4 We then formulate an equivalent optimization problem via the introduction of dummy
variables ρ̃ij and the inclusion of augmented Lagrangian terms in the objective:

minimize
{ρi}, {ρij ,ρ̃ij}i<j

∑

i

Tr [H ′
iρi] +

∑

i<j

Tr
[
H ′

ijρij
]

+
∑

i<j

(µ

2
‖ρij − ρ̃ij‖2F +

ν

2
‖ρi −A1[ρij ]‖2F +

ν

2
‖ρj −A2[ρij ]‖2F

)

(3.3)

subject to ρ̃ij � 0, 1 ≤ i < j ≤M,

Λij : ρij = ρ̃ij , 1 ≤ i < j ≤M, (3.4)

Λ
(1)
ij : ρi = A1[ρij ], Λ

(2)
ij : ρj = A2[ρij ], 1 ≤ i < j ≤M, (3.5)

Tr[ρi] = 1, i = 1, . . . ,M,

where µ, ν > 0 are constant parameters, and Λij ,Λ
(1)
ij ,Λ

(2)
ij ∈ End(Qi⊗Qj) are the dual variables for

the associated constraints in (3.4) and (3.5). Let f [{ρi}, {ρij , ρ̃ij}i<j ] denote the objective function
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(3.3), yielding the Lagrangian

L
(

{ρi}, {ρij , ρ̃ij}i<j ; {Λij,Λ
(1)
ij ,Λ

(2)
ij }i<j

)

:= f [{ρi}, {ρij , ρ̃ij}i<j ] +
∑

i<j

(

〈Λij , ρ̃ij − ρij〉F +
〈

Λ
(1)
ij , A1[ρij ]− ρi

〉

F
+
〈

Λ
(2)
ij , A2[ρij ]− ρj

〉

F

)

,

(3.6)
with domain specified by the (undualized) primal constraints ρ̃ij � 0 and Tr[ρi] = 1. Here 〈 · , · 〉F
indicates the Frobenius inner product. Then the Augmented Lagrangian method [2] for (3.2) is
implemented by Algorithm 2.

Algorithm 2 Augmented Lagrangian method for (3.2)

Require: µ, ν > 0, {H ′
i}, {H ′

ij ,Λij ,Λ
(1)
ij ,Λ

(2)
ij }i<j

1: while not converged do

2: {ρi}, {ρij, ρ̃ij}i<j ← argmin
{ρi},{ρij ,ρ̃ij}i<j

L
(

{ρi}, {ρij , ρ̃ij}i<j ; {Λij,Λ
(1)
ij ,Λ

(2)
ij }i<j

)

3: for each pair i < j do

4: Λij ← Λij + µ (ρ̃ij − ρij)
5: Λ

(1)
ij ← Λ

(1)
ij + ν(A1[ρij ]− ρi)

6: Λ
(2)
ij ← Λ

(2)
ij + ν(A2[ρij ]− ρj)

7: end for

8: end while

In practice, it is difficult to solve step 2 of Algorithm 2 exactly. Therefore, instead of optimizing
{ρi}, {ρij, ρ̃ij}i<j jointly, we consider an ADMM-type [3] substitute, namely Algorithm 3. Notice

Algorithm 3 Pseudo-code for ADMM-type method for (3.2)

Require: µ, ν > 0, {H ′
i, ρi}, {H ′

ij , ρ̃ij ,Λij ,Λ
(1)
ij ,Λ

(2)
ij }i<j

1: while not converged do

2: {ρij}i<j ← argmin
{ρij}i<j

L
(

{ρi}, {ρij , ρ̃ij}i<j ; {Λij ,Λ
(1)
ij ,Λ

(2)
ij }i<j

)

3: {ρi}, {ρ̃ij}i<j ← argmin
{ρi},{ρ̃ij}i<j

L
(

{ρi}, {ρij , ρ̃ij}i<j ; {Λij ,Λ
(1)
ij ,Λ

(2)
ij }i<j

)

4: for each pair i < j do

5: Λij ← Λij + µ (ρ̃ij − ρij)
6: Λ

(1)
ij ← Λ

(1)
ij + ν(A1[ρij ]− ρi)

7: Λ
(2)
ij ← Λ

(2)
ij + ν(A2[ρij ]− ρj)

8: end for

9: end while

that in step 2 of Algorithm 3 , the ρij are all determined independently as the solutions of decoupled
optimization problems

ρij ← argmin
ρij

{

〈
H ′

ij , ρij
〉

F
+
µ

2
‖ρij − ρ̃ij‖2F +

ν

2
‖A1[ρij ]− ρi‖2F +

ν

2
‖A2[ρij ]− ρj‖2F

− 〈Λij , ρij〉F +
〈

Λ
(1)
ij , A1[ρij ]

〉

F
+
〈

Λ
(2)
ij , A2[ρij ]

〉

F

}

.

After suitable manipulation of the objective (neglecting constant terms), we obtain

1

2
〈ρij , (µ+ νA∗

1A1 + νA∗
2A2) ρij〉F −

〈

µρ̃ij +A∗
1

[

νρi − Λ
(1)
ij

]

+A∗
2

[

νρj − Λ
(2)
ij

]

+ Λij −H ′
ij , ρij

〉

F
,

7



which can be exactly optimized via the update

ρij ← (µ+ νA∗
1A1 + νA∗

2A2)
−1

(

µρ̃ij +A∗
1

[

νρi − Λ
(1)
ij

]

+A∗
2

[

νρj − Λ
(2)
ij

]

+ Λij −H ′
ij

)

. (3.7)

Meanwhile, in step 3, the ρi and the ρ̃ij can all be updated via decoupled optimization problems.
In particular, we find that

ρ̃ij ← argmin
ρ̃ij�0

{
‖ρ̃ij − (ρij − µ−1Λij)‖2

}
= Π�0

(
ρij − µ−1Λij

)
. (3.8)

Finally we turn to the ρi update. Collecting the relevant terms we have that

ρi ← argmin
ρi : Tr[ρi]=1






〈H ′

i, ρi〉F +
∑

j>i

(ν

2
‖ρi −A1[ρij ]‖2F −

〈

Λ
(1)
ij , ρi

〉

F

)

+
∑

j<i

(ν

2
‖ρi −A2[ρji]‖2F −

〈

Λ
(2)
ji , ρi

〉

F

)






.

Observe that the objective may be rewritten as

(M − 1)ν

2
‖ρi‖2F −

〈
∑

j>i

(

νA1[ρij ] + Λ
(1)
ij

)

+
∑

j<i

(

νA2[ρji] + Λ
(2)
ji

)

−H ′
i , ρi

〉

F

,

which we must minimize subject to Tr [ρi] = 1. This is simply a constrained least squares problem,
the solution of which yields the update

ρi ←
1

ν(M − 1)




∑

j>i

(

νA1[ρij ] + Λ
(1)
ij

)

+
∑

j<i

(

νA2[ρji] + Λ
(2)
ji

)

−H ′
i



+ zIm, (3.9)

where z is a Lagrange multiplier chosen to satisfy the constraint.
Then via (3.7), (3.8), and (3.9), we can rewrite Algorithm 3 concretely as the equivalent Algorithm

4. Observe that all of the for-loops in Algorithm 4 can be run in parallel.

Algorithm 4 Details of the ADMM-type method for (3.2)

Require: µ, ν > 0, {H ′
i, ρi}, {H ′

ij , ρ̃ij ,Λij ,Λ
(1)
ij ,Λ

(2)
ij }i<j

1: while not converged do

2: for each pair i < j do

3: ρij ← (µ+ νA∗
1A1 + νA∗

2A2)
−1

(

µρ̃ij +A∗
1

[

νρi − Λ
(1)
ij

]

+A∗
2

[

νρj − Λ
(2)
ij

]

+ Λij −H ′
ij

)

4: end for

5: for each pair i < j do

6: ρ̃ij ← Π�0

(
ρij − µ−1Λij

)

7: end for

8: for each i do

9: ρ′i ← 1
ν(M−1)

(
∑

j>i

(

νA1[ρij ] + Λ
(1)
ij

)

+
∑

j<i

(

νA2[ρji] + Λ
(2)
ji

)

−H ′
i

)

10: z ← m−1(1− Tr[ρ′i])
11: ρi ← ρ′i + zIm
12: end for

13: for each pair i < j do

14: Λij ← Λij + µ (ρ̃ij − ρij)
15: Λ

(1)
ij ← Λ

(1)
ij + ν(A1[ρij ]− ρi)

16: Λ
(2)
ij ← Λ

(2)
ij + ν(A2[ρij ]− ρj)

17: end for

18: end while
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3.2 Practical scheme

Now we return to the full Algorithm 1 where we optimize X via an idealized gradient ascent. Instead
of exactly implementing step 2 of Algorithm 1, we replace it with a single iteration of Algorithm 4,
yielding our practical approach Algorithm 5 for solving the two-marginal relaxation (2.4).

Algorithm 5 Practical ADMM / projected dual gradient ascent method for (2.4)

Require: ε, µ, ν > 0, X � 0, {ρi}, {ρ̃ij ,Λij ,Λ
(1)
ij ,Λ

(2)
ij }i<j

1: while not converged do

2: for each i do

3: H ′
i ← Hi[Xii]

4: end for

5: for each pair i < j do

6: H ′
ij ← Hij [Xij ]

7: end for

8: for each pair i < j do

9: ρij ← (µ+ νA∗
1A1 + νA∗

2A2)
−1

(

µρ̃ij +A∗
1

[

νρi − Λ
(1)
ij

]

+A∗
2

[

νρj − Λ
(2)
ij

]

+ Λij −H ′
ij

)

10: end for

11: for each pair i < j do

12: ρ̃ij ← Π�0

(
ρij − µ−1Λij

)

13: end for

14: for each i do

15: ρ′i ← 1
ν(M−1)

(
∑

j>i

(

νA1[ρij ] + Λ
(1)
ij

)

+
∑

j<i

(

νA2[ρji] + Λ
(2)
ji

)

−H ′
i

)

16: z ← m−1(1− Tr[ρ′i])
17: ρi ← ρ′i + zIm
18: end for

19: for each pair i < j do

20: Λij ← Λij + µ (ρ̃ij − ρij)
21: Λ

(1)
ij ← Λ

(1)
ij + ν(A1[ρij ]− ρi)

22: Λ
(2)
ij ← Λ

(2)
ij + ν(A2[ρij ]− ρj)

23: end for

24: X ← Π�0 (X + εG[{ρi}, {ρij}i<j ])
25: end while

3.3 Exploiting translation-invariance

One of the most expensive step in Algorithm 5 is step 24, where a projection to the positive semidefi-
nite cone is required. We now discuss how translation-invariance of a lattice system can be exploited
algorithmically in the solution of the two-marginal relaxation (2.4). It is convenient in this section
to adopt zero-indexing for the site, i.e., to index the sites by the multi-index i = (i1, . . . , id) where
d is the lattice dimension and ip = 0, . . . ,M − 1. Then we assume translation-invariance in that

Ĥi = Ĥ0 for all i and Ĥij = Ĥ0,j−i for all i < j. The symmetries ρi = ρ0 and ρij = ρ0,j−i are in turn
guaranteed to be satisfied by some optimizer of (2.4) [21].

Then we can implement Algorithm 5 (whose iterations preserve this symmetry) without any
reference to variables besides ρ0 and the ρ0,j. The main challenge is the implementation of step
24 of Algorithm 5. Given ρ0 and the ρ0,j, we can only compute the top row X ′

0,j of X ′ := X +
εG[{ρi}, {ρij}i<j ]. However, by translation invariance, the rest of X ′ is determined by the property
that X ′

i,j = X ′
0,j−i. (In the case d = 1, X ′ is a block-circulant matrix, though a more general term

is lacking for the case of arbitrary d.) Via translation invariance, X ′ is block-diagonalized by the
block-discrete Fourier transform. More precisely, one can write X ′ as X ′ = (F⊗I)X̂ ′(F∗⊗I), where
F indicates the appropriate d-dimensional discrete Fourier transform matrix, I the identity matrix
of the appropriate block size, ⊗ the Kronecker product, and X̂ ′ a block-diagonal matrix. Hence to

9



compute the projection Π�0[X
′] we first compute the diagonal block X̂ ′

k of X̂ ′ as

X̂ ′
k =

1√
Md

M−1∑

j1,...,jd=0

exp

(

−ι2πj · k
M

)

X ′
0,j.

Note that the blocks X̂ ′
k (concatenated into a block row) can be viewed as the entrywise discrete

Fourier transform of the first block row of X ′, hence can be computed simultaneously via FFT. Then

project Yk := Π�0

[

X̂ ′
k

]

for all k, and set

X0,j ←
1√
Md

M−1∑

j1,...,jd=0

exp

(

ι
2πj · k
M

)

Yk.

The final pseudocode for the translation-invariant setting is given in Algorithm 6.

Algorithm 6 Translation-invariant ADMM / projected dual gradient ascent method for (2.4)

Require: ε, µ, ν > 0, (X0,j) , ρ0, {ρ̃0,j,Λ0,j,Λ
(1)
0,j ,Λ

(2)
0,j}j6=0

1: while not converged do

2: H ′
0 ← H0[X0,0]

3: for each j 6= 0 do

4: H ′
0,j ← H0,j[X0,j]

5: end for

6: for each j 6= 0 do

7: ρ0,j ← (µ+ νA∗
1A1 + νA∗

2A2)
−1

(

µρ̃0,j +A∗
1

[

νρ0 − Λ
(1)
0,j

]

+A∗
2

[

νρ0 − Λ
(2)
0,j

]

+ Λ0,j −H ′
0,j

)

8: end for

9: for each j 6= 0 do

10: ρ̃0,j ← Π�0

(
ρ0,j − µ−1Λ0,j

)

11: end for

12: ρ′0 ← 1
ν(M−1)

(
∑

j6=0

(

νA1[ρ0,j] + Λ
(1)
0,j

)

−H ′
0

)

13: z ← m−1(1− Tr[ρ′0])
14: ρ0 ← ρ′0 + zIm
15: for each j 6= 0 do

16: Λ0,j ← Λ0,j + µ (ρ̃0,j − ρ0,j)
17: Λ

(1)
0,j ← Λ

(1)
0,j + ν(A1[ρ0,j]− ρ0)

18: Λ
(2)
0,j ← Λ

(2)
0,j + ν(A2[ρ0,j]− ρ0)

19: end for

20: X ′
0,0 ← X0,0 + εG0,0 [ρ0]

21: for each j 6= 0 do

22: X ′
0,j ← X0,j + εG0,j [ρ0,j]

23: end for

24: for each k do

25: X̂ ′
k = 1√

Md

∑

j exp
(

−ι2πj·kM

)

X ′
0,j

26: Yk ← Π�0

[

X̂ ′
k

]

27: end for

28: for each j do

29: X0,j ← 1√
Md

∑

j exp
(

ι2πj·kM

)

Yk

30: end for

31: end while
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3.4 Discussion of scaling

In Algorithm 5, observe that the for-loops run over M(M − 1) pairs i < j, and the scaling bot-
tleneck among these loops is the projection ρ̃ij ← Π�0

(
ρij − µ−1Λij

)
occuring in step 12. Since

this step requires full diagonalization of a matrix of size m2 × m2, for which the cost is O(m6).
Meanwhile, suppose for simplicity that ni = m2, corresponding to the complete choice of operator
collection {Oα,i : α = ni} for each site. Then the size of G and X is Mm2 ×Mm2. Hence step 24,
which involves a complete diagonalization of a matrix of this size, costs O(m6M3), dominating the
O(m6M2) cost of the for-loops. If our sites are in fact supersites, each formed from clusters of L
sites in an underlying spin- 12 model, then m = 2L. Therefore the scaling is O(26LM3) per iteration,
where L is the cluster size and M is the number of clusters.

Meanwhile, in the translation-invariant setting of Algorithm 6, the for-loops run only over O(M)
sites, so—neglecting the update for X—the asymptotic cost per iteration is O(m6M). Meanwhile,
the construction of the X̂ ′

k in terms of the X0,j can be achieved in time O(m4M logM) via FFT.
(Note that we simply treat the lattice dimension d as constant.) The cost of each projection of step 26
is O(m6) via full diagonalization, and forming the X0,j in terms of the Yk also costs O(dm4M logM)
in total via FFT. Hence the cost of updating X (i.e., steps 20 through 29) is O(m4M logM+m6M).
Hence the total cost per iteration of Algorithm 6, under the assumption that the sites are supersites
each composed of L spin- 12 sites, is O(24LM logM + 26LM), where L is the cluster size and M is
the number of clusters.

The exponential scaling in the cluster size is unavoidable in our formulation due to the exact
treatment of reduced density operators on the clusters (i.e., the cluster marginals). In this work
we consider clusters of size no larger than size L = 4. Future work will investigate the possibility
of treating larger clusters by introducing further relaxation and/or compression of the optimization
variables to avoid exponential scaling in the cluster size.

As a final comment, observe that every for-loop in Algorithms 5 and 6 can be run fully in parallel.

4 Numerical experiments

The numerical experiments were implemented in MATLAB following Algorithm 6. (We shall consider
only translation-invariant Hamiltonians.) We present results for the transverse-field Ising (TFI)
model (2.2), the anti-ferromagnetic Heisenberg (AFH) model (2.3), the spinless fermion (SF) model
(A.1), and the long-range spinless fermion (LRSF) model (A.2). Note that Algorithm 6 can be
applied in the fermionic case mutatis mutandi to the problem (A.3). Throughout we fix the value
of the algorithmic parameters to be µ = ν = 10, ε = 2 (i.e., we do not tune them specifically

to different problems). The dual variables {Λij ,Λ
(1)
ij ,Λ

(2)
ij }i6=j are all initialized to be zero, and

the primal density operator variables {ρi}, {ρ̃ij}i6=j are all initialized as multiples of the identity
with unit trace. X is initialized as the identity. We run Algorithm 6 for 10,000 iterations. (The
convergence behavior will be studied in detail below.)

First we consider the TFI model on a periodic 20× 1 lattice, which is small enough to be solved
by exact diagonalization of (2.2). We benchmark the per-site energy error of the two-marginal
relaxation with clusters of size 1 × 1, 2 × 1, and 4 × 1. (In these cases the semidefinite matrix
variables ρij are each of size 4, 16, and 256, respectively; refer to Section 3.4 for further discussion of
scaling.). The results are shown in Figure 4.1. Observe that the approximations yield lower bounds
for the energy as the theory requires, and these lower bounds become tighter as the cluster size is
increased. In the same figure we also consider the TFI model on a periodic 4 × 4 lattice. Here we
benchmark the energy error of the two-marginal relaxation with clusters of size 1 × 1, 2 × 1, and
2× 2.

We perform completely analogous experiments for the AFH model with similar conclusions. The
results are shown in Tables 1 and 2.

We also benchmark the SF and LRSF models on a 20× 1 periodic lattice, with results pictured
in Figure 4.2. Note that the fermionic relaxations are exact for U = 0, as guaranteed in [21].

Next we consider the TFI model on a periodic 100 × 1 lattice for h = 0.5, 1, 1.5. This problem is
too large to solve by exact diagonalization. We report the relaxation energy for several cluster sizes
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Figure 4.1: Relaxation error per site for the TFI model on 20×1 and 4×4 periodic lattices, pictured
left and right respectively. Several cluster sizes are considered according to the legends. Note that
the relaxation is exact at h = 0 (not pictured).

1× 1 clusters 2× 1 clusters 4× 1 clusters
0.5383 0.0521 0.0034

Table 1: Relaxation error per site for the AFH model on a 20× 1 periodic lattice for various cluster
sizes.

1× 1 clusters 2× 1 clusters 2× 2 clusters
0.6634 0.1851 0.0034

Table 2: Relaxation error per site for the AFH model on a 4× 4 periodic lattice for various cluster
sizes.
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Figure 4.2: Relaxation error for the (short-range) spinless fermion (A.1) and long-range spinless
fermion (A.2) models on a 20×1 periodic lattice, pictured left and right respectively. Several cluster
sizes are considered according to the legends. Note that the relaxation is exact at U = 0 (not
pictured).
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1× 1 clusters 2× 1 clusters 4× 1 clusters
h = 0.5 −1.0763 −1.0648 −1.0636
h = 1 −1.3084 −1.2829 −1.2761
h = 1.5 −1.6835 −1.6724 −1.6720

Table 3: Relaxation energy per site for the TFI model with h = 0.5, 1, 1.5 on a 100 × 1 periodic
lattice for various cluster sizes.
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Figure 4.3: Per-site iteration-over-iteration energy change for 100 × 1 periodic TFI model with
h = 0.5, 1, 1.5 and several cluster sizes (top row). Per-cluster feasibility error (4.1) for same problems
(bottom row).

in Table 3.
We track convergence behavior of Algorithm 6 on these same problems. We use two differ-

ent quantities to track convergence. The first is the per-site primal objective (i.e., energy) change
between subsequent iterations. The second is the per-cluster feasibility error for the equality con-
straints, defined as

√
1

M − 1

∑

j6=0

(‖A1[ρ0,j]− ρ0‖2F + ‖A2[ρ0,j]− ρ0‖2F + ‖ρ0,j − ρ̃0,j‖2F). (4.1)

We plot these quantities as functions of the iteration count in Figure 4.3. It is possible that tuning
the parameters µ, ν, ε to a specific problem and specific choice of clusters could yield smoother
convergence profiles. However, even using our fixed choice for all problems, we achieve convergence
of the per-site energy within 10−6 (which is dominated by the relaxation error itself) in a number
of iterations that does not seem to grow with the cluster size.

Then we fix clusters of size 2× 1 and vary the system size of the TFI model with h = 0.5, 1, 1.5,
to investigate the effect of system size on convergence. The results are shown in Figure 4.4. The
system size does not appear to have any obvious detrimental effect on the convergence rate.
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Figure 4.4: Per-site iteration-over-iteration energy change for periodic TFI models of different sizes
with h = 0.5, 1, 1.5 and fixed 2× 1 cluster size (top row). Per-cluster feasibility error (4.1) for same
problems (bottom row).
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20× 1 lattice 40× 1 lattice 60× 1 lattice 80× 1 lattice 100× 1 lattice
h = 0.5 −1.064851 −1.064795 −1.064786 −1.064779 −1.064776
h = 1 −1.283534 −1.283083 −1.283003 −1.282975 −1.282949
h = 1.5 −1.672407 −1.672394 −1.672393 −1.672393 −1.672394

Table 4: Relaxation energy per site for TFI models of several sizes with h = 0.5, 1, 1.5 and clusters
of fixed size 2× 1.

To conclude, we report the relaxation energies obtained from these last experiments in Table 4.
We observe that the relaxation energy approaches a limiting value in this thermodynamic limit, i.e.,
limit of infinite volume.

A Fermions

In this appendix we present the relevant background on fermionic many-body systems, following [21].

A.1 Background

Fermionic many-body problems in second quantization are specified in terms of the creation operators
a
†
1, . . . , a

†
M and their Hermitian adjoints, the annihilation operators ai, which can be viewed as

operators on a vector space of dimension 2M called the Fock space F . The key properties of these
operators are the canonical anticommutation relations

{ai, a†j} = δij , {ai, aj} = {a†i , a
†
j} = 0,

where { · , · } denotes the anticommutator. In terms of these operators we also define the number

operators n̂i := a
†
iai, and the total number operator by N̂ :=

∑M
i=1 n̂i.

One can identify the Fock space with a quantum spin- 12 state space, i.e., identify F ≃⊗M
C2 ≃

C2M , via the correspondence

a
†
i  σz ⊗ · · · ⊗ σz

︸ ︷︷ ︸

i−1 factors

⊗
(

0 0
1 0

)

⊗ I2 ⊗ · · · ⊗ I2,

known as the Jordan-Wigner transformation (JWT). This transformation is unnatural in the sense
that it depends on the ordering of the states. More precisely, permuting the states before the JWT
is not equivalent to permuting the tensor factors after the JWT. Moreover, a fermionic operator
such as a†iaj involving only two sites corresponds in general to a quantum spin operator involving
potentially many more sites; hence the pairwise fermionic Hamiltonians that we consider below
cannot be viewed in general as pairwise spin- 12 Hamiltonians.

Next we define the notion of a pairwise fermionic Hamiltonian, and then we provide some ex-
amples. Unfortunately we cannot simply treat clusters of sites as ‘supersites’ without breaking the
fermionic structure, so we approach the cluster framework directly, writing {1, . . . ,M} as a disjoint

union of clusters
⋃Nc

γ=1 Cγ specified by the user. We let

A := 〈1, a1, . . . , aM , a†1, . . . , a†M 〉

denote the star-algebra generated by the creation and annihilation operators subject to the canonical
anticommutation relations {ai, a†j} = δij , {ai, aj} = {a†i , a

†
j} = 0, and similarly, we let

AC :=
〈

{1} ∪ {ai, a†i : i ∈ C}
〉

denote the subalgebra corresponding to a subset C ⊂ {1, . . . ,M}. Then we consider pairwise
Hamiltonians Ĥ ∈ A of the form

Ĥ =
∑

γ

Ĥγ +
∑

γ<δ

Ĥγδ,
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where Ĥγ ∈ ACγ
and Ĥγδ ∈ ACγ∪Cδ

are Hermitian operators. We are interested in the ground-state
energy

E0 = inf
{

〈ψ|Ĥ |ψ〉 : |ψ〉 ∈ F , 〈ψ|ψ〉 = 1
}

.

For particle-number conserving Hamiltonians (i.e., Hamiltonians that commute with N̂), one may
also consider the N -particle ground-state energy defined as

E0(N) = inf
{

〈ψ|Ĥ |ψ〉 : |ψ〉 ∈ F , 〈ψ|ψ〉 = 1, 〈ψ|N̂ |ψ〉 = N
}

,

though note that this is formally equivalent to the unconstrained ground-state energy E0 after sub-
tracting µN̂ from the Hamiltonian, where the Lagrange multiplier µ is called the chemical potential.

A.2 Examples

In this work we shall consider the half-filled lattice of spinless fermions [35] specified by the Hamil-
tonian

Ĥ =
∑

i∼j

[

−a†iaj − a
†
jai + U

(

n̂i −
1

2

)(

n̂j −
1

2

)]

, (A.1)

where U is a scalar parameter (the ‘interaction strength’) and the notion of adjacency i ∼ j is defined
relative to a graph (usually a rectangular lattice) on the sites {1, . . . ,M}. This operator is pairwise
relative to any cluster decomposition. One can also consider an analogous model with long-range
Coulomb interaction

Ĥ =
∑

i∼j

[

−a†iaj − a
†
jai

]

+ U
∑

i6=j

1

d(i, j)

(

n̂i −
1

2

)(

n̂j −
1

2

)

, (A.2)

where d(i, j) is the Euclidean distance between sites i and j on the lattice.
As outlined in [21], one can also consider spinful systems such as the Hubbard model [14], as

well as quantum chemistry Hamiltonians arising from electronic structure problems after a suitable
choice of basis [31], e.g., the recently developed discontinuous Galerkin basis [8].

A.3 The two-marginal relaxation

In order to realize the two-marginal relaxation as a concrete semidefinite program, it is necessary
to choose a JWT for each pair of clusters as follows. (Note that there will be no need to consider
any global JWT.) For 1 ≤ γ ≤ Nc, let Lγ := |Cγ |, and let κγ : Cγ → {1, . . . , Lγ} be a bijection
specifying an ordering for the sites in the γ-th cluster. For 1 ≤ γ < δ ≤ Nc, let Lγδ := |Cγ |+ |Cδ|,
and let κγδ : Cγ ∪ Cδ → {1, . . . , Lγδ} be the bijection specifying an ordering for the sites in the
(γ, δ)-th pair of clusters, uniquely specified by the conditions that κγδ|Cγ

= κγ , κγδ|Cδ
= κδ, and

κγδ(Cγ) < κγδ(Cδ). These orderings fix algebra isomorphisms Jγ : ACγ
→ End

(
⊗Lγ

i=1 C
2
)

and

Jγδ : ACγ∪Cδ
→ End

(
⊗Lγδ

i=1 C
2
)

via the appropriate JWTs. Then the two-marginal relaxation is

given concretely by

minimize
{ργ}, {ργδ}γ<δ

∑

γ

Tr
[

Jγ
(

Ĥγ

)

ργ

]

+
∑

γ<δ

Tr
[

Jγδ
(

Ĥγδ

)

ργδ

]

, (A.3)

subject to ργδ � 0, 1 ≤ γ < δ ≤ Nc,

ργ = Trκγδ(Cδ)[ργδ], ρδ = Trκγδ(Cγ)[ργδ], 1 ≤ γ < δ ≤ Nc,

Tr[ργ ] = 1, γ = 1, . . . , Nc,

G [{ργ}, {ργδ}γ<δ] � 0,
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where G is specified blockwise subordinate to a collection {Âγ,α : α = 1, . . . , nγ} ⊂ ACγ
of operators

on each cluster via

(Gγδ)αβ =







Tr

([

Jγ
(

Âγ,α

)]† [
Jγ

(

Âγ,β

)]

ργ

)

, γ = δ

Tr

([

Jγδ
(

Âγ,α

)]† [
Jγδ

(

Âδ,β

)]

ργδ

)

, γ 6= δ.

Hence after the appropriate Jordan-Wignerized operators are formed, (A.3) is of identical form to
(2.4).
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