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CherryML: Scalable Maximum Likelihood Estimation of 
Phylogenetic Models

Sebastian Prillo1, Yun Deng2, Pierre Boyeau1, Xingyu Li1, Po-Yen Chen1, Yun S. Song1,3,*

1Computer Science Division, University of California, Berkeley

2Graduate Group in Computational Biology, University of California, Berkeley

3Department of Statistics, University of California, Berkeley

Abstract

Phylogenetic models of molecular evolution are central to numerous biological applications 

spanning diverse timescales, from hundreds of millions of years involving orthologous proteins 

to just tens of days relating single cells within an organism. A fundamental problem in these 

applications is estimating model parameters, for which maximum likelihood estimation (MLE) 

is typically employed. Unfortunately, MLE is a computationally expensive task, in some cases 

prohibitively so. To address this challenge, we here introduce CherryML, a broadly applicable 

method that achieves several orders of magnitude speedup by using a quantized composite 

likelihood over cherries in the trees. The massive speedup offered by our method should enable 

researchers to consider more complex and biologically realistic models than previously possible. 

Here we demonstrate CherryML’s utility by applying it to estimate a general 400 × 400 rate 

matrix for residue-residue coevolution at contact sites in 3D protein structures; we estimate that 

using current state-of-the-art methods such as the expectation-maximization algorithm for the 

same task would take > 100, 000 times longer.

Introduction

Phylogenetic models of molecular evolution have a plethora of applications in biology. 

For example, models of amino acid substitution enable the estimation of gene trees and 

protein alignments, among other important applications [1–9]. These models posit that 

molecules evolve down a phylogenetic tree according to a continuous-time Markov process 
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parameterized by one or more rate matrices. These models differ in what kind of molecular 

data they describe (e.g., DNA, RNA, amino acid, or codon sequences), the use of site rate 

variation (such as invariable sites model, the Γ model, or the probability-distribution-free 

model [10,11]), the treatment of indels [12], and the assumption of i.i.d. (independent and 

identically distributed) sites [13]. A common aspect of all these models is that maximum 

likelihood estimation (MLE) of model parameters is computationally expensive, in some 

cases prohibitively so.

The main computational challenge arises from the unobserved ancestral states. A typical 

step during MLE involves estimating the rate matrix Q given a set of m multiple sequence 

alignments (MSAs) and associated phylogenetic trees, and computing the log-likelihood 

alone requires marginalizing out the unobserved ancestral states, which is done with 

Felsenstein’s pruning algorithm [14]. If s denotes the state space size (e.g., s = 20 for amino 

acids), l the typical sequence length, and n the typical number of sequences per MSA, then 

computing the likelihood with Felsenstein’s pruning algorithm has a cost of Ω mn ls2 + s3

for the typical model. This comes from having to compute, for each of the Ω mn  edges, (at 

least) one matrix exponential of cost Ω s3 , and a recursion step of cost Ω s2  per alignment 

site.

MLE for these models is usually performed with either zeroth-order optimization [9] or with 

the Expectation-Maximization (EM) algorithm [15,16], both of which require Felsenstein’s 

pruning algorithm. As a consequence, full MLE is typically slow and rarely performed 

in practice [9]. Instead, researchers choose to utilize generic rate matrices such as the 

popular LG matrix [5] – which was estimated more than a decade ago – to perform their 

phylogenetic analyses. For more complex models, estimation with current approaches is just 

infeasible. For example, learning a general 400 × 400 rate matrix describing the coevolution 

of contacting residues in a protein is out of reach with current approaches.

Results

The CherryML method

To overcome the above challenges, we here propose CherryML, a broadly applicable method 

to scale up MLE for general phylogenetic models of molecular evolution. CherryML hinges 

on two key ideas: composite likelihood and time quantization. We describe these ideas in 

turn below and illustrate them in Figure 1a.

The first key idea underlying CherryML is to use a composite likelihood over cherries in the 

trees (where a cherry corresponds to a pair of leaves separated by exactly one internal node) 

instead of the full likelihood. This means selecting all cherries for each tree and replacing 

the full log-likelihood with the sum of log-likelihoods of the cherries. Further, to maximize 

the number of paired sequences, we iteratively pick and prune cherries from the tree until at 

most one unpaired sequence remains (see Methods for full details). This reduces likelihood 

computation to pairs of sequences at a time, which is much simpler than the full likelihood. 

In particular, for a time-reversible model, the likelihood of a pair of sequences only depends 

on the distance between the nodes in the tree, and does not require marginalizing out 
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ancestral states. Maximum composite likelihood estimation (MCLE) enjoys many of the 

properties of MLE, such as consistency under weak conditions [17].

The second key idea of CherryML is to quantize time. This means approximating transition 

times by one of finitely many values τ1 < τ2 < ⋯ < τb. We choose the τk to be geometrically 

spaced and to cover the whole operational range of transition times; thanks to the geometric 

spacing, a few hundred values are enough to achieve a quantization error as low as 1% for 

all transition times. When time is quantized, the terms in the composite likelihood typically 

group together by quantized transition time τk, and the cost of evaluating the likelihood no 

longer depends on the dataset size, dramatically speeding up optimization.

CherryML applied to the LG model

We applied the CherryML method to the seminal model of Le and Gascuel (LG) [5], 

which assumes that each site in every protein evolves under the same rate matrix Q and 

with a site specific rate. As a result, the composite log-likelihood has the functional form 

∑k = 1
b Ck, log exp Qτk , where the logarithm is applied entry-wise, and Ck is the frequency 

matrix for transitions between states occurring at a quantized time of τk. Hence, the cost 

of evaluating the likelihood no longer depends on the dataset size (see Methods for full 

details). This objective function can be easily optimized in modern first-order numerical 

optimization libraries such as PyTorch [18]. If g denotes the number of iterations of the 

first-order optimizer, the computational complexity of the CherryML method applied to the 

LG model is then Θ mnllog b + gbs3 . Here Θ mnllog b  comes from computing the count 

matrices Ck, and Θ gbs3  comes from the first-order optimizer; the Θ mnllog b  term will 

dominate for large datasets. In contrast, the cost of MLE with traditional methods such as 

zeroth-order optimization or EM is Ω gmn ls2 + s3 , and the Ω gmnls2  term will dominate. 

Thus, ignoring constants, a back-of-the-envelope calculation reveals that CherryML will 

be at least gmnls2
mnllog b = gs2

log b  times faster than traditional methods, which is typically a 

massive speedup. Indeed, when learning a single-site model using g = 100 iterates and 

b = 100 quantization points for CherryML, the speedup is at least (up to constants) 

gs2
log b = 100 × 202

log 100 ∈ 103, 104  fold. When learning a coevolution model, the speedup is at 

least (up to constants) gs2
log b = 100 × 4002

log 100 ∈ 106, 107  fold. The computational bottleneck 

of CherryML is computing the count matrices Ck, and we have developed an efficient 

distributed-memory C++ implementation using MPI. (See Methods for the details.)

By using simulated data, we benchmarked the computational runtime and statistical 

efficiency of the CherryML optimizer for the aforementioned LG model, and compared 

it with the performance of EM, for which we used the implementation in the XRATE 

package [16]. The results are summarized in Figure 1b,c, which shows that CherryML is a 

thousand times faster than EM when run on 1,024 families with 128 sequences each, taking 

24 seconds as compared to 6.5 hours. This comes only at the cost of approximately 50% 

loss of statistical efficiency; full plots of the true matrix entries versus the estimated matrix 

entries for CherryML and EM are shown in Extended Data Fig. 1. Using data simulated on 
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all 15,051 protein families studied in Yang et al. [19], we found that b ≈ 100 quantization 

points were enough to make the error introduced by time quantization negligible, as shown 

in Figure 1d.

We next applied CherryML to the Pfam data from Le and Gascuel [5]. We implemented 

their end-to-end estimation procedure, replacing the EM optimizer with the CherryML 

optimizer. We estimated phylogenetic trees and site-specific rates using FastTree [20], and 

then applied CherryML to estimate the 20 × 20 rate matrix Q20. Tree estimation and rate 

matrix estimation were iterated 3 times until convergence as typical, starting from the 

uninformative uniform rate matrix. We reproduced and extended the results from Figure 4 

of Le and Gascuel [5] by adding our re-estimate of the LG rate matrix using our CherryML 

optimizer, as well as a re-estimate using the EM optimizer as implemented by the XRATE 

package [16], which Le and Gascuel employed. Figure 1e shows that the results obtained 

with the CherryML method are comparable to that obtained using EM. In Extended Data 

Fig. 2, we show that these three matrices are very close to each other, only noticeably 

differing in four of the smallest (harder to estimate) rates. Regarding computational cost, 

the end-to-end runtime (including tree estimation) using the EM optimizer was around 13.5 

CPU hours: 1.25 CPU hours for tree estimation with FastTree and 12.25 CPU hours for 

the EM optimizer. In contrast, the end-to-end runtime using the CherryML optimizer was 

around 1.35 CPU hours: 1.25 CPU hours for tree estimation with FastTree and just 0.1 

CPU hours (6 minutes) for the CherryML optimizer. This represents an order-of-magnitude 

speedup in the end-to-end context, without any noticeable loss of accuracy. We observed 

similar trends for the datasets from the QMaker paper [9], as shown in Extended Data Fig. 3 

and Extended Data Fig. 4.

CherryML applied to learn a 400 × 400 coevolutionary model

Finally, we applied the CherryML method to estimate a general reversible 400 × 400 rate 

matrix Q400 describing the coevolution of contacting sites in a protein. The mathematics of 

the model are similar to the LG model except that there is no site rate variation and s = 

400 (see Methods for full details). The large size of the state space means that the runtime 

of traditional optimization methods such as EM soars. To learn the model, we used all 

15, 051 Pfam MSAs from Yang et al. [19] subsampled down to 1,024 sequences each (as 

typical); each MSA is associated with structure data which we used to determine contacting 

sites. In total, there are approximately 14 million sequences, 3.7 million sites, and 3000 

million residues in this dataset. We estimated phylogenetic trees using FastTree [20] and 

then applied our CherryML method to estimate Q400. Tree reconstruction was parallelized 

and took approximately 1 minute per tree. The CherryML optimizer took only 14 minutes 

using 8 CPU cores: 2 minutes for counting transitions and 12 minutes for the PyTorch 

optimizer. Extrapolating the results from Figure 1b, as well as based on our theoretical 

complexity results (see Methods for the details), we estimated that using EM for this task 

would have taken approximately 35 CPU-years – roughly a hundred thousand times slower!

Before analyzing the properties of our estimated rate matrix Q400, we used simulations 

to determine whether our method had produced a reliable estimate. To this end, we 

simulated data using Q400 for all 15,051 families, and then applied our CherryML method 
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to re-estimate Q400. Our method was able to produce accurate estimates of most entries. 

Transitions with just one substitution proved the easiest to recover (Figure 2a) – as 

expected, since they have higher rates – with a median error of 0.6%. Transitions with two 

substitutions were harder to estimate owing to their small rates, but were still well estimated, 

particularly those with a higher rate, exhibiting a median error of 15.5% (Figure 2b).

We analyzed our estimated coevolution model Q400 for amino acid pairs in contact and 

compared it with an independent model of amino acid evolution. We found that our model 

was able to learn the importance of disulfide bonds by assigning a low mutation rate to 

CC pairs, approximately 4 times smaller than what is estimated by an independent model 

(Figure 2c). Similarly, we found that our coevolution model was able to learn the stability of 

certain kinds of residue contacts based on biochemical properties such as charge: our model 

assigns a higher observation probability to hydrophobic pairs (Figure 2d). The mutation 

rates and stationary distributions of our coevolution model and the independent model are 

provided in Extended Data Fig. 5 and Extended Data Fig. 6. Our coevolution model has a 

global mutation rate of 1.42, which is much lower than the 2.0 estimated by a model of 

independent evolution. A retrospective analysis revealed that sites with more contacts have 

a lower mutation rate as estimated by FastTree, consistent with previous findings that more 

densely packed sites tend to evolve more slowly [21,22]. The trend is remarkably strong, 

as shown in Figure 2e. Finally, our model inferred interesting simultaneous substitutions at 

both sites in contact. For example, we observed that the KE ↔ EK transition probability 

is substantially higher in the coevolution model than that in the independent model. This 

coupled evolution seems mediated by the stability of electrostatic interaction (K is positively 

charged, while E is negatively charged) and we found support for it in the original MSAs: 

for example, in the family 4kv7_1_A, when sites 165 and 181 contain E and K, 97% of the 

time they are either KE or EK, while only 3% of the time they are EE or KK.

Discussion

While our CherryML method streamlines rate matrix estimation given MSAs and trees, 

to obtain good trees in the first place, tree estimation given a rate matrix and MSAs 

is necessary. These two steps are usually interlocked, resulting in a coordinate ascent 

procedure, as done in the LG paper [5], as well as in Figure 1e and Extended Data Fig. 3 of 

this article. With the introduction of the CherryML optimization method, tree estimation will 

most likely dominate runtime in any end-to-end application where trees are not available 

a priori. An important line of work on speeding up the tree estimation step includes 

FastMG [23], which proposes cleverly splitting the input MSAs into smaller sub-MSAs 

to reconstruct smaller trees, as well as ModelFinder [11] for ultra-fast model selection 

and subsequent improved tree inference. A superior method for end-to-end rate matrix 

estimation may thus result from combining approaches like FastMG and ModelFinder [11] 

with CherryML for rate estimation, which is a promising direction of future research. In the 

case of a coevolutionary model, likelihood computation scales quadratically with the number 

of single-site states, making tree inference significantly slower than for an independent-sites 

model. We believe that ideas in this paper such as time quantization should help to speed up 

tree inference in this setting.
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We envision that our CherryML framework will be broadly applicable to enable and scale 

up MLE under many models of molecular evolution. The ability to estimate transition 

rate matrices at unprecedented speed will transform the way that phylogenetic analysis is 

performed. Researchers will be able to estimate context-dependent rate matrices in a matter 

of minutes, such as by protein function, family, domain, or structure, which can then be 

applied – in place of the generic LG matrix – to estimate more accurate phylogenetic trees 

[9,24]. In particular, recent advances in protein modeling, such as AlphaFold [25], have 

made such contextual structural information readily available.

Finally, although the CherryML method is most effective for reversible models of evolution 

– where it completely solves the problem of marginalizing out ancestral states – it can also 

be applied to irreversible models. In this case, the composite likelihood depends on the 

two branch lengths t1, t2 of each cherry, which can be quantized separately. For a typical 

model like LG [5], the terms in the quantized composite likelihood group together by pairs 

of quantized branch lengths τk, τk′ . As a result, EM can be performed in its classical form, 

except that now only finitely many ancestral state inferences need to be performed, thereby 

dramatically speeding up EM.

Methods

Composite Likelihood over Cherries

The first idea of the CherryML method is to use a composite likelihood over all iteratively 

picked cherries of the trees instead of the full likelihood. Note that in a tree without 

multifurcations, there is a unique way of iteratively picking cherries until at most one 

unpaired sequence remains. Using cherries is motivated by the fact that they do not share 

any edges of the tree and are therefore closer to being independent samples than, say, are 

randomly chosen pairs of sequences. However, we should remark that the consistency of our 

method holds regardless of how the sequences are paired. For example, randomly pairing 

all sequences still yields a consistent estimator under weak assumptions [17]. In fact, it is 

possible to include a sequence in more than one pair; in other words, the pairs may overlap.

Let D = D1, D2, … , Dm  be the multiple sequence alignments and T = T1, T2, … , Tm  their 

associated phylogenetic trees. Then the log-likelihood of the data can be written as:

l(Q) ≡ log p(D T , Q) = ∑
i = 1

m
log p Di T i, Q . (1)

To obtain a composite likelihood, we select all iteratively picked cherries uj
i, vj

i
1 ≤ j ≤ ci from 

each phylogenetic tree T i, where ci is the number of such pairs for T i, and then substitute the 

likelihood from Eq. (1) with the composite likelihood over the selected cherries:

lcomp(Q) ≡ ∑
i = 1

m
∑
j = 1

ci

log p Di uj
i Di vj

i , T i, Q , (2)
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where Di w  is the row of Di corresponding to leaf w. Cherries are considered in both 

directions, meaning that if (a, b) is a cherry then so is (b, a) (hence ci is always even). 

We note that in the case of a reversible model, the likelihood term p Di uj
i Di vj

i , T i, Q  only 

depends on the distance between uj
i and vj

i in the tree T i, so if we denote this distance as tj
i, we 

can write, abusing notation slightly, the composite log-likelihood as:

lcomp(Q) ≡ ∑
i = 1

m
∑
j = 1

ci

log p Di uj
i Di vj

i , tj
i, Q . (3)

Quantization of Time

The second idea of the CherryML method is to quantize transition times. Concretely, we 

approximate each transition time t by one of the finitely many values τ1 < τ2 < ⋯ < τb. 

We choose them to be geometrically spaced and to cover the whole operational range of 

transition times. As shown in Figure 1d, around 100 quantization points are enough to 

obtain negligible quantization error. We use b = 129 quantization points with a center value 

of τ65 = 0.03 and a geometric spacing of 1.1. Thus τ1 ≈ 6 . 7 × 10−5 and τ129 ≈ 13 . 4. This 

represents a wide range of transition times. We denote the quantized value of t as q t , which 

is chosen to minimize the relative error, that is to say:

q(t) = τk, where k = arg min
1 ≤ k ≤ b

max t, τk − min t, τk

min t, τk
. (4)

Quantization of a transition time t can be performed in time O log b  with binary search. 

Any transition showcasing a transition time falling outside of the interval τ1, τ129  (because it 

is either too small or too large) is discarded and thus dropped from the likelihood Eq. (3). 

Using a geometric spacing of 1.1 means that the relative error between successive points 

is 10%, and thus the worst quantization error (which happens in between two quantization 

points) is roughly 5%. The average quantization error is therefore around 2.5%.

In the case of a time-reversible model, quantizing time means replacing p Di uj
i Di vj

i , tj
i, Q

by p Di uj
i Di vj

i , q tj
i , Q . Concretely, we replace Eq. (3) with:

lcomp, quant(Q) ≡ ∑
i = 1

m
∑
j = 1

ci

log p Di uj
i Di vj

i , q tj
i , Q . (5)

When this is done, the terms in the composite likelihood typically group together by 

quantized time τk, and the cost of evaluating the likelihood no longer depends on the dataset 

size. We call this the quantized (log-)likelihood. For a model with site rate variation such as 

LG, transition times are adjusted by the site rate before quantizing.
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CherryML for the LG model

The LG model [5] of protein evolution posits that sites in a protein evolve independently 

under a scalar multiple of a rate matrix Q of size 20 × 20. The scalar for each site might be 

different and is called the site rate. If li denotes the length of the protein in family i, and rk
i

denotes the rate of site k 1 ≤ k ≤ li , then time quantization under the reversible LG model is 

performed by replacing p Di uj
i

k Di vj
i

k, T i, Q  by p Di uj
i

k Di vj
i

k, q rk
itj

i , Q . In other words, we 

obtain the quantized composite log-likelihood:

lcomp, quant(Q) ≡ ∑
i = 1

m
∑
j = 1

ci

∑
k = 1

li

log p Di uj
i

k Di vj
i

k, q rk
itj

i , Q , (6)

where Di w k is site k at the row of Di corresponding to leaf w. Transitions involving gaps 

are ignored. For the LG model, the terms of the quantized composite log-likelihood group 

together by quantized transition time τk, and so Eq. (6) reduces to the simpler form:

lcomp, quant(Q) ≡ ∑
k = 1

b
Ck, log exp Qτk , (7)

where Ck of size 20 × 20 is the frequency matrix for transitions between states occurring at a 

quantized transition time of τk.

CherryML for the Coevolution Model

Our coevolution model posits that a given pair of contacting sites in a protein sequence 

evolve together via a reversible 400 × 400 rate matrix Q. Since in a given protein a site 

might be in contact with more than one other site, we use a maximal matching to pair up 

contacting sites. This way, we obtain pi pairs of sites s1, s2 , … , s2pi − 1, s2pi  for family i. The 

quantized composite log-likelihood is thus:

lcomp, quant(Q) ≡ ∑
i = 1

m
∑
j = 1

ci

∑
k = 1

pi

log p Di uj
i

s2k − 1, s2k Di vj
i

s2k − 1, s2k , q tj
i , Q , (8)

where Di w k1, k2  is the pair of site k1 and k2 at the row of Di corresponding to leaf w. 

Because the order of the two sites does not matter (for example, the transition AL → GI 

and the transition LA → IG are equivalent), when forming the composite likelihood we also 

augment the site pairs with the reverse pairs s2, s1 , …, s2pi, s2pi − 1 . Transitions involving gaps 

are ignored. The log-likelihood Eq. (8) has the same functional form as LG model’s Eq. (7) 

except that Q is a 400 × 400 matrix instead of 20 × 20. Just like for the LG model, Eq. (8) 

reduces to the simpler form of Eq. (7) where Ck of size 400 × 400 is the frequency matrix for 

transitions between pairs of states occurring at a quantized transition time of τk.
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Optimization with PyTorch

Optimization under the LG model and under the coevolution model both require maximizing 

a log-likelihood of the form Eq. (7) with respect to a reversible rate matrix Q of size s×s. 

We achieve this using first-order optimization in PyTorch [18]. The reversible rate matrix 

Q is parameterized by a vector θ ∈ ℝs × 1 and an upper triangular matrix Θ ∈ ℝs × s, as 

follows: letting π = SoftMax θ  and S = SoftPlus Θ + Θ⊤ , we take the off-diagonal entries 

of Q to be Qij = πj
πi

Sij (incidentally, note that with this parameterization, π is the stationary 

distribution of Q since πiQij = πjQji holds). The diagonal entries of Q are then uniquely 

determined. With this parameterization, optimization of Q translates to unconstrained 

optimization of θ and Θ. To ensure that the loss is on the same scale regardless of the 

dataset size, we divide the log-likelihood in Eq. (7) by the total number of transitions, that is 

to say the sum of all the entries in all the Ck matrices. For this we use the Adam optimizer 

[27] with a learning rate of 0.1 and full batch iteration. We train the single-site model for g 
= 2000 epochs and the coevolution model for g = 500 epochs, and take the iteration with the 

lowest training loss as the final estimate. The matrix exponential layer is part of the PyTorch 

API and is based on an optimized Taylor approximation [28]. When benchmarking the 

performance of CherryML and EM as seen in Figure 1b,c,e and Extended Data Fig. 3 we use 

1 CPU core for CherryML to make sure of a fair comparison of runtime between methods. 

Otherwise, we use 2 CPU cores to train the single-site model and 8 CPU cores to train the 

coevolution model. We found these to be the optimal number of cores in our architecture; 

more CPU cores lead to communication overhead and overall slowdown. Initialization of the 

optimizer is described in the next section.

As a final remark, note that optimization of Eq. (7) with respect to an irreversible model is 

just as easy, by instead parameterizing S as S = SoftPlus Θ1 + Θ2  where Θ1 , Θ2 ∈ ℝs × s

are upper and lower triangular matrices respectively.

Initialization with JTT-IPW

We initialize θ and Θ using a novel variant of the JTT method [2] that takes into account 

branch lengths, which we call JTT with inverse propensity weighting, or JTT-IPW for short. 

We observed that using the JTT-IPW initialization sped up convergence by up to an order 

of magnitude with respect to random initialization, and we used it when benchmarking both 

CherryML and EM.

JTT-IPW is based on the Taylor expansion exp tQ = I + tQ + o t  and on the decomposition 

Q = diag μ  CTP where μ = μ1, … , μs  is the vector of mutabilities and CTP is the matrix of 

conditional transition probabilities (except that the diagonal is filled with −1). Here diag μ  is 

the diagonal matrix with the entries of μ in the diagonal.

The JTT-IPW estimator of Q given the frequency matrices C1, … , Cb  and the transition 

times τ1, … , τb  is constructed as follows. First, to ensure that all quantities below are well 

defined, we add a small number of pseudocounts ϵ to the data entry-wise: Ck Ck + ϵ where 

ϵ = 10−8. Next, to ensure a reversible estimate of Q regardless of what the count matrices 
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are, we symmetrize the count matrices via Ck
1
2 Ck + Ck

⊤ . Now let F = ∑k = 1
b Ck be the total 

transition frequency matrix. We first estimate the conditional transition probability matrix 

CTP ∈ ℝs × s as follows:

CTPi, j = F i, j

∑k ≠ i F i, k
for i ≠ j . (9)

We set CTPi, i = − 1 such that each row of CTP adds up to zero, as in a rate matrix. Finally, 

we estimate the mutability μi of each state using inverse propensity weighting as follows:

μi =
∑k = 1

b 1
τk

∑j ≠ i Ck i, j

∑k = 1
b ∑j Ck i, j

. (10)

Finally, the JTT-IPW estimator of Q is given by:

QJTT−IPW = diag(μ)CTP . (11)

One can verify that QJTT−IPW is a reversible rate matrix by noting that since F i, j = F j, i, then 

QJTT−IPW satisfies the detailed balance equation πi QJTT − IPW i, j = πj QJTT − IPW j, i for all states i, j, 

where

πi ∝ ∑k ≠ i F i, k ∑k = 1
b ∑p Ck i, p

∑k = 1
b 1

τk
∑p ≠ i Ck i, p

. (12)

The reversibility of QJTT−IPW and the fact that all off-diagonal entries of QJTT−IPW are positive 

(thanks to the pseudocounts) ensure that θ, Θ can be solved for. Concretely, we first solve 

for the stationary distribution π of QJTT−IPW via an SVD decomposition. Then, we compute 

S = π⊤ QJTT−IPW
1
π . From π and S we can compute θ and Θ by taking θi = log πi  and 

Θi, j = log exp Si, j − 1 1 i < j .

As for the intuition of why JTT-IPW works well as an initialization: as dataset size increases 

(in a suitable manner), one can show that CTP converges to the true conditional probability 

transition matrix. The mutabilities μ exhibit bias but it tends to 0 as branch lengths tend to 0.

Computing the Count Matrices Ck

The computational bottleneck of the CherryML optimizer is typically computing the count 

matrices Ck. However, this is a simple and embarrassingly parallel task, for which we 

wrote a fast distributed-memory C++ implementation using MPI. To compute the transition 

frequency matrices Ck from the m multiple sequence alignments Di and trees T i using 

p MPI ranks, we give each worker i approximately m/p families for which it computes 
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the count matrices Ck
i . Once all workers are done, we compute Ck as Ck = ∑i = 1

p Ck
i . Time 

quantization is performed with binary search, introducing the log b factor in the O mnl log b
time complexity.

When benchmarking the performance of CherryML and EM as seen in Figure 1b,c,e and 

Extended Data Fig. 3 we used 1 CPU core to count transitions for CherryML. Otherwise, we 

used 8 CPU cores.

FastTree

We used FastTree [20] to estimate trees. FastTree was compiled to use double-precision 

arithmetic with:

gcc -DNO_SSE -DUSE_DOUBLE -03 -finline-functions -funroll-loops

The number of rate categories was set using the -cat argument.

Running XRATE

We used the EM implementation provided by the XRATE package [16], which was used in 

the LG paper [5]. We ran XRATE with the following arguments:

-f 3 -mi 0.000001

We set -mininc 0.000001 to ensure that EM converges to a good solution; a more lenient 

threshold of 10−5 produces inferior results on our simulated data benchmark of Figure 1c. 

We further used -f 3 to require 3 iterations without meeting the convergence threshold to 

terminate. XRATE was run with ground truth trees specified in the Stockholm file format 

with the #=GF NH identifier. Site rate variation was handled by first splitting each MSA into 

one MSA per site rate, and scaling the tree accordingly by the site rate for each sub-MSA 

(this is the reduction described in the LG paper [5]).

MSA Preprocessing

We preprocessed the MSAs in the Pfam dataset [19] by subsetting only sites that were 

aligned against residues in the reference sequence (which is the sequence for which we have 

structure data). In other words, we removed all sites aligned against gaps in the reference 

sequence. The length of the resulting MSA is therefore equal to the length of the reference 

sequence (which has no gaps).

Protocol for Figure 1b,c

After preprocessing the MSAs from Yang et al. [19] as described above, among all 15,051 

families, we selected those with proteins having length between 190 and 230 sites inclusive, 

and at least 128 sequences. We then subsampled each MSA down to 128 sequences 

uniformly at random, making sure to sample the reference sequence. We then ran FastTree 

[20] with the LG matrix and to estimate trees for each family. We did not use site rate 
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variation. Having estimated these realistic-looking trees, we then proceeded to simulate 

MSAs for each family. To do this, we simulated each site independently under the LG 

matrix. The root state was sampled from the stationary distribution of the LG matrix. Having 

simulated MSAs for all families, we then selected a random increasing sequence of family 

sets ℱ4 ⊂ ℱ8 ⊂ ⋯ ⊂ ℱ1024 which were used to train CherryML and EM. CherryML and EM 

were run with access to the ground truth trees. For CherryML, we formed the composite 

log-likelihood as described in CherryML for the Coevolution Model and optimized for Q as 

described in Optimization with PyTorch. For EM, we used the XRATE package as described 

in Running XRATE. Our simulation scheme ensures that all MSAs are roughly of the same 

size, such that doubling the number of families is approximately equal to doubling the 

amount of Fisher information, which is important to obtain a reliable estimate of the relative 

efficiency of CherryML as compared to EM.

Protocol for Figure 1d

After preprocessing the MSAs from Yang et al. [19] as described in MSA Preprocessing, 

for each of the 15,051 families, we subsampled them down to 1,024 sequences uniformly 

at random, making sure to sample the reference sequence. We then ran FastTree [20] 

with the LG matrix and 4 rate categories to estimate trees for each family as well as 

the site-specific rates. Having estimated these realistic-looking trees and site-specific rates, 

we then proceeded to simulate MSAs for each family. To do this, we simulated each site 

independently under the LG matrix and with the site rates estimated by FastTree. The root 

state was sampled from the stationary distribution of the LG matrix. CherryML was run 

with access to the ground truth trees and site rates. We formed the composite log-likelihood 

as described in CherryML for the Coevolution Model and optimized for Q as described 

in Optimization with PyTorch. We explored varying the number of quantization points b 
while keeping the center value τ b/2 = 0.03 and the range τ1, τb  approximately the same for 

all quantization points. For this, we chose the geometric increments 445.79, 21.11, 4.59, 

2.14, 1.46, 1.21, 1.1, 1.048, 1.024 for quantization points 3, 5, 9, 17, 33, 65, 129, 257, 513 

respectively.

Protocol for Figure 1e

We followed the testing protocol described in the LG paper [5] to evaluate rate matrices. 

This means running PhyML [6] with the following arguments:

--nclasses 4 --datatype aa --pinv e --r_seed 0 --bootstrap 0 -f m \

--alpha e --print_site_lnl

The average improvement in per-site log-likelihood over JTT is shown. Thus, we evaluated 

the following four rate matrices: JTT [2], WAG [3], LG [5], and LG re-estimated using our 

CherryML method. To re-estimate LG using the CherryML method, we first used FastTree 

[20] with 4 rate categories as described in FastTree to estimate trees for each family as 

well as site-specific rates. The uninformative uniform rate matrix was used in FastTree. 

We then formed the composite loglikelihood as described in CherryML for the Coevolution 

Model and optimized for Q as described in Optimization with PyTorch. The process was 
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repeated, this time using the estimated Q to estimate trees with FastTree. This can be seen 

as coordinate ascent in tree and rate matrix space. The process was repeated 3 times until 

convergence, as typical.

Determining Contacting Sites

To train our coevolution model we used the Pfam dataset with structure data from Yang et al. 
[19]. A pair of sites was considered a non-trivial contact if (i) the distance between the beta 

carbons was less than 8 angstrom, and (ii) the distance in primary sequence was at least 7.

Protocol for Figure 2c,d

After preprocessing the MSAs from Yang et al. [19] as described in MSA Preprocessing, 

for each of the 15,051 families, we subsampled them down to 1,024 sequences uniformly 

at random, making sure to sample the reference sequence. We then ran FastTree [20] with 

the LG matrix and 1 rate category to estimate trees for each family. We determined for 

each family which pairs of sites were in non-trivial contact as described in Determining 

Contacting Sites. We then used a maximal matching to pair up sites that were in 

contact. Finally, we formed the composite log-likelihood as described in CherryML for 

the Coevolution Model and optimized for Q as described in Optimization with PyTorch. The 

independent model was obtained by training a single-site model on sites with at least one 

non-trivial contact, and then taking the product of the chain with itself.

Protocol for Figure 2a,b

After preprocessing the MSAs from Yang et al. [19] as described in MSA Preprocessing, 

for each of the 15,051 families, we subsampled them down to 1,024 sequences uniformly 

at random, making sure to sample the reference sequence. We then ran FastTree [20] with 

the LG matrix and 1 rate category to estimate trees for each family. Having estimated these 

realistic-looking trees, we then proceeded to simulate MSAs for each family. To do this, we 

first determined for each family which pairs of sites were in non-trivial contact as described 

in Determining Contacting Sites. We then used a maximal matching to pair up sites that 

are in contact. Sites that are in contact were simulated under the coevolution rate matrix Q 
estimated from real data as described in Protocol for Figure 2c,d. The root state was drawn 

from the stationary distribution of Q. CherryML was run with access to the ground truth 

trees.

Protocol for Figure 2e

After preprocessing the MSAs from Yang et al. [19] as described in MSA Preprocessing, 

for each of the 15,051 families, we subsampled them down to 1,024 sequences uniformly at 

random, making sure to sample the reference sequence. We then ran FastTree [20] with the 

LG matrix and 20 rate categories to estimate trees for each family as well as the site-specific 

rates. We determined for each family which pairs of sites were in non-trivial contact as 

described in Determining Contacting Sites.
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Extrapolating the Runtime of Traditional Methods for Learning a Coevolution Model

To estimate the time that it would take for traditional methods such as zeroth-order 

optimization or EM to estimate a 400 × 400 coevolution rate matrix, we performed the 

following extrapolation. From Figure 1b we observe that it takes EM as implemented 

by XRATE [16] around 6.5 CPU-hours to learn a single-site model on 1,024 families 

with 128 sequences each. Since the runtime of traditional methods scales linearly in the 

dataset size, this implies that learning a single-site model on all 15,051 families with 

approximately 1,024 sequences each would take on the order of 6 . 5 × 15, 051
1, 024 × 1, 024

128 ≈ 750

CPU-hours. However, runtime scales quadratically in the state space size, which means 

that increasing the state space size from s = 20 to s = 20 increases runtime by a 

factor of 4002

202 = 400. As a result, we estimate that learning a coevolution model on 

all 15,051 families with approximately 1,024 sequences each would take on the order 

of 6 . 5 × 15, 051
1, 024 × 1, 024

128 × 4002

202 ≈ 300000 CPU-hours with traditional methods. The latter is 

approximately 35 CPU-years.

Protocol for Extended Data Fig. 3

We used the same training procedure as for Figure 1e, except that we started from the more 

informative LG rate matrix and thus performed only one additional round of coordinate 

ascent in tree and rate matrix space. Held-out log-likelihood evaluation was performed with 

FastTree using the discrete Gamma model with 4 rate categories.

Hardware Configuration

We used a node in Berkeley’s Savio cluster with 40 Intel Xeon Skylake 6230 @ 2.1 GHz 

cores and 384 GB RAM (which far exceeds our needs).
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Extended Data

Extended Data Fig. 1: Plot of true versus estimated rate matrix entries for Figure 1b,c.
For a select number of families (the multiples of 4), we plot the true versus estimated rate 

matrix entries. MRE stands for median relative error; ρ is Spearman’s rank correlation; r
is Pearson correlation. For reference, we also indicate the total number of sequences, sites 

and residues in each dataset. As more data become available, estimation accuracy increases 

for both methods. Importantly, the loss of statistical efficiency of CherryML with respect 

to EM is relatively small (an estimated ≈ 50% as seen in Figure 1c). Interestingly, with 

small dataset sizes, the smallest transition rates tend to be underestimated by both methods, 

possibly because no (or relatively too few) transitions between these states are observed.
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Extended Data Fig. 2: Plot of rate matrix estimates from Figure 1e.
We see that the entries of the LG rate matrix [5] and re-estimates with CherryML and EM 

are quite similar. The only noticeable differences correspond to four of the rarest (and thus 

harder to estimate) rates, which are between C and E, and C and K (in both directions). It 

is possible that CherryML is underestimating these rates, but since there is no ground truth 

and the model may be misspecified (as these are real data estimates), we cannot say with 

certainty; bootstrap estimates of variance could partially answer this question. For reference, 

the dataset size in terms of number of families, sequences, sites and residues is: 3, 412, ≈ 
50, 000, ≈ 600, 000 and ≈ 6.5M respectively. In principle, this is roughly comparable in 

size to 256 families in the (well-specified) simulations from Figure 1b,c, where both EM 

and CherryML are accurate even for small rates, as seen in Extended Data Fig. 1. However, 

these direct comparisons of dataset size might overestimate the information content of real 

datasets. Indeed, it is possible that the effective amount of information for these small rates 

is more comparable to 16 families in the simulations from Figure 1b,c, where CherryML 

produces more underestimates than does EM.
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Extended Data Fig. 3: CherryML matches EM accuracy on diverse datasets.
On diverse datasets from the QMaker paper [9], CherryML matches the accuracy of the 

EM method. The end-to-end runtime of each approach (including tree estimation) is shown. 

The runtime of the CherryML optimizer was in all cases negligible (less than 5 minutes), 

therefore end-to-end runtime was dominated by phylogeny reconstruction with FastTree, 

which took a few CPU hours depending on the dataset. In contrast, for the EM approach, 

the EM optimizer dominated runtime, leading to an overall slowdown of 5-20 fold in end-to-

end runtime compared to the CherryML approach. Since tree estimation is embarrassingly 
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parallel, end-to-end estimation with the CherryML method using 32 CPU cores takes only a 

few minutes on all of these datasets. The diversity of the datasets means that LG is no longer 

the best fit rate matrix compared to JTT and WAG. In fact, JTT is preferred in three of these 

datasets. This highlights the need to estimate new rate matrices for improved phylogenetic 

inference in specific applications [9]. Training dataset sizes are included for reference.

Extended Data Fig. 4: Plot of rate matrix estimates from Extended Data Fig. 3.
Similarly to Extended Data Fig. 2, CherryML and EM agree on most rates, except for some 

of the smallest (harder to estimate) rates, where CherryML usually reports smaller rates. 

It is possible that these are underestimates from CherryML, for instance if the information 
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content for these small rates is similar to 16 families in Extended Data Fig. 1, where 

CherryML produces more underestimates compared to EM.

Extended Data Fig. 5: Comparison of mutation rates.
(a) Our 400 × 400 co-evolution model. (b) Independent-sites model.

Extended Data Fig. 6: Comparison of stationary distributions.
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(a) Our 400 × 400 coevolution model. (b) Independent-sites model.
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Figure 1: CherryML method applied to the LG model.
(a) Sketch of the CherryML method as applied to a reversible model: transitions between 

all iteratively picked cherries are treated as independent observations and quantized; here 

the quantization grid is {1, 1.5, 2.25, 3.38, 5.06}. (b) Runtime and (c) median estimation 

error as a function of sample size for our CherryML optimizer and the classical EM 

optimizer. The empirical loss of statistical efficiency for CherryML is relatively small (≈ 
50%) while being a thousand times faster when applied to 1,024 families. Each family 

has 128 sequences. (d) On a large simulated dataset, time quantization error becomes 

negligible with as few as ≈ 100 quantization points. Distribution of relative error and 

median shown. (e) Using the evaluation protocol of the LG paper [5], we verified that 

using the CherryML optimizer produces comparable likelihoods to EM on held-out families. 

Here “LG rate matrix” stands for the rate matrix originally published in the LG paper [5], 

whereas “LG w/ CherryML (re-estimated)” and “LG w/ EM (re-estimated)” correspond 

to our re-implementation of the inference pipeline in the LG paper [5] while using either 

CherryML or EM for optimization.
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Figure 2: CherryML method applied to learn a 400 ×400 coevolution model.
Using simulated coevolution data from 15,051 Pfam families each subsampled down to 

1024 sequences, we verified that our method is able to accurately estimate co-transition 

rates for (a) single-site transitions (such as IL ↔ IA), and (b) the more challenging joint 

transitions (such as KE ↔ EK). The left plot is a scatter plot which reveals outliers, while 

the right plot is a density plot which shows that there are few outliers. (c) Mutation rates 

of the coevolution model differ from that of the independent-sites model, and recapitulate 

known biology such as the importance of disulfide bonds by assigning a significantly lower 
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mutation rate to CC pairs. Residues are ordered by the hydropathy index. (d) Stationary 

distribution of the coevolution model differs from that of the independent-sites model, 

and recapitulates favorable residue pairings, such as hydrophobic amino acid pairs and 

electrostatically interacting pairs. (e) The more contacts a site has, the lower its mutation rate 

as estimated by FastTree [20].
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