
UC Berkeley
UC Berkeley Previously Published Works

Title

CherryML: scalable maximum likelihood estimation of phylogenetic models.

Permalink

https://escholarship.org/uc/item/0m63895s

Journal

Nature Methods, 20(8)

Authors

Prillo, Sebastian
Deng, Yun
Boyeau, Pierre
et al.

Publication Date

2023-08-01

DOI

10.1038/s41592-023-01917-9

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0m63895s
https://escholarship.org/uc/item/0m63895s#author
https://escholarship.org
http://www.cdlib.org/

CherryML: Scalable Maximum Likelihood Estimation of
Phylogenetic Models

Sebastian Prillo1, Yun Deng2, Pierre Boyeau1, Xingyu Li1, Po-Yen Chen1, Yun S. Song1,3,*

1Computer Science Division, University of California, Berkeley

2Graduate Group in Computational Biology, University of California, Berkeley

3Department of Statistics, University of California, Berkeley

Abstract

Phylogenetic models of molecular evolution are central to numerous biological applications

spanning diverse timescales, from hundreds of millions of years involving orthologous proteins

to just tens of days relating single cells within an organism. A fundamental problem in these

applications is estimating model parameters, for which maximum likelihood estimation (MLE)

is typically employed. Unfortunately, MLE is a computationally expensive task, in some cases

prohibitively so. To address this challenge, we here introduce CherryML, a broadly applicable

method that achieves several orders of magnitude speedup by using a quantized composite

likelihood over cherries in the trees. The massive speedup offered by our method should enable

researchers to consider more complex and biologically realistic models than previously possible.

Here we demonstrate CherryML’s utility by applying it to estimate a general 400 × 400 rate

matrix for residue-residue coevolution at contact sites in 3D protein structures; we estimate that

using current state-of-the-art methods such as the expectation-maximization algorithm for the

same task would take > 100, 000 times longer.

Introduction

Phylogenetic models of molecular evolution have a plethora of applications in biology.

For example, models of amino acid substitution enable the estimation of gene trees and

protein alignments, among other important applications [1–9]. These models posit that

molecules evolve down a phylogenetic tree according to a continuous-time Markov process

*To whom correspondence should be addressed: yss@berkeley.edu.
Author Contributions
S.P. and Y.S.S. conceived and designed the study. S.P. developed, implemented, and tested the method, with assistance from Y.D.,
P.B., X.L. and P.-Y.C. In particular, P.B. contributed to implementing optimization with PyTorch, while X.L. and P.-Y.C. contributed to
parallelizing the computation of count matrices and the simulations. Y.D. helped with testing the method. S.P. and Y.S.S. analyzed the
coevolution model. S.P. and Y.S.S. wrote the manuscript, and Y.D. made edits. Y.S.S. supervised the project.

Code Availability
Code for reproducing all results in this paper, as well as code implementing the CherryML method for the LG model and for the
coevolution model, is available on GitHub at the repository: https://github.com/songlab-cal/CherryML
The CherryML package allows seamless estimation of rate matrices from MSAs. An end-to-end demonstration on the plant dataset
[26] with train/test splits from the QMaker work [9] is provided in the package’s README.

Competing Interests
The authors declare no competing interests.

HHS Public Access
Author manuscript
Nat Methods. Author manuscript; available in PMC 2023 November 14.

Published in final edited form as:
Nat Methods. 2023 August ; 20(8): 1232–1236. doi:10.1038/s41592-023-01917-9.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/songlab-cal/CherryML

parameterized by one or more rate matrices. These models differ in what kind of molecular

data they describe (e.g., DNA, RNA, amino acid, or codon sequences), the use of site rate

variation (such as invariable sites model, the Γ model, or the probability-distribution-free

model [10,11]), the treatment of indels [12], and the assumption of i.i.d. (independent and

identically distributed) sites [13]. A common aspect of all these models is that maximum

likelihood estimation (MLE) of model parameters is computationally expensive, in some

cases prohibitively so.

The main computational challenge arises from the unobserved ancestral states. A typical

step during MLE involves estimating the rate matrix Q given a set of m multiple sequence

alignments (MSAs) and associated phylogenetic trees, and computing the log-likelihood

alone requires marginalizing out the unobserved ancestral states, which is done with

Felsenstein’s pruning algorithm [14]. If s denotes the state space size (e.g., s = 20 for amino

acids), l the typical sequence length, and n the typical number of sequences per MSA, then

computing the likelihood with Felsenstein’s pruning algorithm has a cost of Ω mn ls2 + s3

for the typical model. This comes from having to compute, for each of the Ω mn edges, (at

least) one matrix exponential of cost Ω s3 , and a recursion step of cost Ω s2 per alignment

site.

MLE for these models is usually performed with either zeroth-order optimization [9] or with

the Expectation-Maximization (EM) algorithm [15,16], both of which require Felsenstein’s

pruning algorithm. As a consequence, full MLE is typically slow and rarely performed

in practice [9]. Instead, researchers choose to utilize generic rate matrices such as the

popular LG matrix [5] – which was estimated more than a decade ago – to perform their

phylogenetic analyses. For more complex models, estimation with current approaches is just

infeasible. For example, learning a general 400 × 400 rate matrix describing the coevolution

of contacting residues in a protein is out of reach with current approaches.

Results

The CherryML method

To overcome the above challenges, we here propose CherryML, a broadly applicable method

to scale up MLE for general phylogenetic models of molecular evolution. CherryML hinges

on two key ideas: composite likelihood and time quantization. We describe these ideas in

turn below and illustrate them in Figure 1a.

The first key idea underlying CherryML is to use a composite likelihood over cherries in the

trees (where a cherry corresponds to a pair of leaves separated by exactly one internal node)

instead of the full likelihood. This means selecting all cherries for each tree and replacing

the full log-likelihood with the sum of log-likelihoods of the cherries. Further, to maximize

the number of paired sequences, we iteratively pick and prune cherries from the tree until at

most one unpaired sequence remains (see Methods for full details). This reduces likelihood

computation to pairs of sequences at a time, which is much simpler than the full likelihood.

In particular, for a time-reversible model, the likelihood of a pair of sequences only depends

on the distance between the nodes in the tree, and does not require marginalizing out

Prillo et al. Page 2

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ancestral states. Maximum composite likelihood estimation (MCLE) enjoys many of the

properties of MLE, such as consistency under weak conditions [17].

The second key idea of CherryML is to quantize time. This means approximating transition

times by one of finitely many values τ1 < τ2 < ⋯ < τb. We choose the τk to be geometrically

spaced and to cover the whole operational range of transition times; thanks to the geometric

spacing, a few hundred values are enough to achieve a quantization error as low as 1% for

all transition times. When time is quantized, the terms in the composite likelihood typically

group together by quantized transition time τk, and the cost of evaluating the likelihood no

longer depends on the dataset size, dramatically speeding up optimization.

CherryML applied to the LG model

We applied the CherryML method to the seminal model of Le and Gascuel (LG) [5],

which assumes that each site in every protein evolves under the same rate matrix Q and

with a site specific rate. As a result, the composite log-likelihood has the functional form

∑k = 1
b Ck, log exp Qτk , where the logarithm is applied entry-wise, and Ck is the frequency

matrix for transitions between states occurring at a quantized time of τk. Hence, the cost

of evaluating the likelihood no longer depends on the dataset size (see Methods for full

details). This objective function can be easily optimized in modern first-order numerical

optimization libraries such as PyTorch [18]. If g denotes the number of iterations of the

first-order optimizer, the computational complexity of the CherryML method applied to the

LG model is then Θ mnllog b + gbs3 . Here Θ mnllog b comes from computing the count

matrices Ck, and Θ gbs3 comes from the first-order optimizer; the Θ mnllog b term will

dominate for large datasets. In contrast, the cost of MLE with traditional methods such as

zeroth-order optimization or EM is Ω gmn ls2 + s3 , and the Ω gmnls2 term will dominate.

Thus, ignoring constants, a back-of-the-envelope calculation reveals that CherryML will

be at least gmnls2
mnllog b = gs2

log b times faster than traditional methods, which is typically a

massive speedup. Indeed, when learning a single-site model using g = 100 iterates and

b = 100 quantization points for CherryML, the speedup is at least (up to constants)

gs2
log b = 100 × 202

log 100 ∈ 103, 104 fold. When learning a coevolution model, the speedup is at

least (up to constants) gs2
log b = 100 × 4002

log 100 ∈ 106, 107 fold. The computational bottleneck

of CherryML is computing the count matrices Ck, and we have developed an efficient

distributed-memory C++ implementation using MPI. (See Methods for the details.)

By using simulated data, we benchmarked the computational runtime and statistical

efficiency of the CherryML optimizer for the aforementioned LG model, and compared

it with the performance of EM, for which we used the implementation in the XRATE

package [16]. The results are summarized in Figure 1b,c, which shows that CherryML is a

thousand times faster than EM when run on 1,024 families with 128 sequences each, taking

24 seconds as compared to 6.5 hours. This comes only at the cost of approximately 50%

loss of statistical efficiency; full plots of the true matrix entries versus the estimated matrix

entries for CherryML and EM are shown in Extended Data Fig. 1. Using data simulated on

Prillo et al. Page 3

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

all 15,051 protein families studied in Yang et al. [19], we found that b ≈ 100 quantization

points were enough to make the error introduced by time quantization negligible, as shown

in Figure 1d.

We next applied CherryML to the Pfam data from Le and Gascuel [5]. We implemented

their end-to-end estimation procedure, replacing the EM optimizer with the CherryML

optimizer. We estimated phylogenetic trees and site-specific rates using FastTree [20], and

then applied CherryML to estimate the 20 × 20 rate matrix Q20. Tree estimation and rate

matrix estimation were iterated 3 times until convergence as typical, starting from the

uninformative uniform rate matrix. We reproduced and extended the results from Figure 4

of Le and Gascuel [5] by adding our re-estimate of the LG rate matrix using our CherryML

optimizer, as well as a re-estimate using the EM optimizer as implemented by the XRATE

package [16], which Le and Gascuel employed. Figure 1e shows that the results obtained

with the CherryML method are comparable to that obtained using EM. In Extended Data

Fig. 2, we show that these three matrices are very close to each other, only noticeably

differing in four of the smallest (harder to estimate) rates. Regarding computational cost,

the end-to-end runtime (including tree estimation) using the EM optimizer was around 13.5

CPU hours: 1.25 CPU hours for tree estimation with FastTree and 12.25 CPU hours for

the EM optimizer. In contrast, the end-to-end runtime using the CherryML optimizer was

around 1.35 CPU hours: 1.25 CPU hours for tree estimation with FastTree and just 0.1

CPU hours (6 minutes) for the CherryML optimizer. This represents an order-of-magnitude

speedup in the end-to-end context, without any noticeable loss of accuracy. We observed

similar trends for the datasets from the QMaker paper [9], as shown in Extended Data Fig. 3

and Extended Data Fig. 4.

CherryML applied to learn a 400 × 400 coevolutionary model

Finally, we applied the CherryML method to estimate a general reversible 400 × 400 rate

matrix Q400 describing the coevolution of contacting sites in a protein. The mathematics of

the model are similar to the LG model except that there is no site rate variation and s =

400 (see Methods for full details). The large size of the state space means that the runtime

of traditional optimization methods such as EM soars. To learn the model, we used all

15, 051 Pfam MSAs from Yang et al. [19] subsampled down to 1,024 sequences each (as

typical); each MSA is associated with structure data which we used to determine contacting

sites. In total, there are approximately 14 million sequences, 3.7 million sites, and 3000

million residues in this dataset. We estimated phylogenetic trees using FastTree [20] and

then applied our CherryML method to estimate Q400. Tree reconstruction was parallelized

and took approximately 1 minute per tree. The CherryML optimizer took only 14 minutes

using 8 CPU cores: 2 minutes for counting transitions and 12 minutes for the PyTorch

optimizer. Extrapolating the results from Figure 1b, as well as based on our theoretical

complexity results (see Methods for the details), we estimated that using EM for this task

would have taken approximately 35 CPU-years – roughly a hundred thousand times slower!

Before analyzing the properties of our estimated rate matrix Q400, we used simulations

to determine whether our method had produced a reliable estimate. To this end, we

simulated data using Q400 for all 15,051 families, and then applied our CherryML method

Prillo et al. Page 4

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to re-estimate Q400. Our method was able to produce accurate estimates of most entries.

Transitions with just one substitution proved the easiest to recover (Figure 2a) – as

expected, since they have higher rates – with a median error of 0.6%. Transitions with two

substitutions were harder to estimate owing to their small rates, but were still well estimated,

particularly those with a higher rate, exhibiting a median error of 15.5% (Figure 2b).

We analyzed our estimated coevolution model Q400 for amino acid pairs in contact and

compared it with an independent model of amino acid evolution. We found that our model

was able to learn the importance of disulfide bonds by assigning a low mutation rate to

CC pairs, approximately 4 times smaller than what is estimated by an independent model

(Figure 2c). Similarly, we found that our coevolution model was able to learn the stability of

certain kinds of residue contacts based on biochemical properties such as charge: our model

assigns a higher observation probability to hydrophobic pairs (Figure 2d). The mutation

rates and stationary distributions of our coevolution model and the independent model are

provided in Extended Data Fig. 5 and Extended Data Fig. 6. Our coevolution model has a

global mutation rate of 1.42, which is much lower than the 2.0 estimated by a model of

independent evolution. A retrospective analysis revealed that sites with more contacts have

a lower mutation rate as estimated by FastTree, consistent with previous findings that more

densely packed sites tend to evolve more slowly [21,22]. The trend is remarkably strong,

as shown in Figure 2e. Finally, our model inferred interesting simultaneous substitutions at

both sites in contact. For example, we observed that the KE ↔ EK transition probability

is substantially higher in the coevolution model than that in the independent model. This

coupled evolution seems mediated by the stability of electrostatic interaction (K is positively

charged, while E is negatively charged) and we found support for it in the original MSAs:

for example, in the family 4kv7_1_A, when sites 165 and 181 contain E and K, 97% of the

time they are either KE or EK, while only 3% of the time they are EE or KK.

Discussion

While our CherryML method streamlines rate matrix estimation given MSAs and trees,

to obtain good trees in the first place, tree estimation given a rate matrix and MSAs

is necessary. These two steps are usually interlocked, resulting in a coordinate ascent

procedure, as done in the LG paper [5], as well as in Figure 1e and Extended Data Fig. 3 of

this article. With the introduction of the CherryML optimization method, tree estimation will

most likely dominate runtime in any end-to-end application where trees are not available

a priori. An important line of work on speeding up the tree estimation step includes

FastMG [23], which proposes cleverly splitting the input MSAs into smaller sub-MSAs

to reconstruct smaller trees, as well as ModelFinder [11] for ultra-fast model selection

and subsequent improved tree inference. A superior method for end-to-end rate matrix

estimation may thus result from combining approaches like FastMG and ModelFinder [11]

with CherryML for rate estimation, which is a promising direction of future research. In the

case of a coevolutionary model, likelihood computation scales quadratically with the number

of single-site states, making tree inference significantly slower than for an independent-sites

model. We believe that ideas in this paper such as time quantization should help to speed up

tree inference in this setting.

Prillo et al. Page 5

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We envision that our CherryML framework will be broadly applicable to enable and scale

up MLE under many models of molecular evolution. The ability to estimate transition

rate matrices at unprecedented speed will transform the way that phylogenetic analysis is

performed. Researchers will be able to estimate context-dependent rate matrices in a matter

of minutes, such as by protein function, family, domain, or structure, which can then be

applied – in place of the generic LG matrix – to estimate more accurate phylogenetic trees

[9,24]. In particular, recent advances in protein modeling, such as AlphaFold [25], have

made such contextual structural information readily available.

Finally, although the CherryML method is most effective for reversible models of evolution

– where it completely solves the problem of marginalizing out ancestral states – it can also

be applied to irreversible models. In this case, the composite likelihood depends on the

two branch lengths t1, t2 of each cherry, which can be quantized separately. For a typical

model like LG [5], the terms in the quantized composite likelihood group together by pairs

of quantized branch lengths τk, τk′ . As a result, EM can be performed in its classical form,

except that now only finitely many ancestral state inferences need to be performed, thereby

dramatically speeding up EM.

Methods

Composite Likelihood over Cherries

The first idea of the CherryML method is to use a composite likelihood over all iteratively

picked cherries of the trees instead of the full likelihood. Note that in a tree without

multifurcations, there is a unique way of iteratively picking cherries until at most one

unpaired sequence remains. Using cherries is motivated by the fact that they do not share

any edges of the tree and are therefore closer to being independent samples than, say, are

randomly chosen pairs of sequences. However, we should remark that the consistency of our

method holds regardless of how the sequences are paired. For example, randomly pairing

all sequences still yields a consistent estimator under weak assumptions [17]. In fact, it is

possible to include a sequence in more than one pair; in other words, the pairs may overlap.

Let D = D1, D2, … , Dm be the multiple sequence alignments and T = T1, T2, … , Tm their

associated phylogenetic trees. Then the log-likelihood of the data can be written as:

l(Q) ≡ log p(D T , Q) = ∑
i = 1

m
log p Di T i, Q . (1)

To obtain a composite likelihood, we select all iteratively picked cherries uj
i, vj

i
1 ≤ j ≤ ci from

each phylogenetic tree T i, where ci is the number of such pairs for T i, and then substitute the

likelihood from Eq. (1) with the composite likelihood over the selected cherries:

lcomp(Q) ≡ ∑
i = 1

m
∑
j = 1

ci

log p Di uj
i Di vj

i , T i, Q , (2)

Prillo et al. Page 6

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where Di w is the row of Di corresponding to leaf w. Cherries are considered in both

directions, meaning that if (a, b) is a cherry then so is (b, a) (hence ci is always even).

We note that in the case of a reversible model, the likelihood term p Di uj
i Di vj

i , T i, Q only

depends on the distance between uj
i and vj

i in the tree T i, so if we denote this distance as tj
i, we

can write, abusing notation slightly, the composite log-likelihood as:

lcomp(Q) ≡ ∑
i = 1

m
∑
j = 1

ci

log p Di uj
i Di vj

i , tj
i, Q . (3)

Quantization of Time

The second idea of the CherryML method is to quantize transition times. Concretely, we

approximate each transition time t by one of the finitely many values τ1 < τ2 < ⋯ < τb.

We choose them to be geometrically spaced and to cover the whole operational range of

transition times. As shown in Figure 1d, around 100 quantization points are enough to

obtain negligible quantization error. We use b = 129 quantization points with a center value

of τ65 = 0.03 and a geometric spacing of 1.1. Thus τ1 ≈ 6 . 7 × 10−5 and τ129 ≈ 13 . 4. This

represents a wide range of transition times. We denote the quantized value of t as q t , which

is chosen to minimize the relative error, that is to say:

q(t) = τk, where k = arg min
1 ≤ k ≤ b

max t, τk − min t, τk

min t, τk
. (4)

Quantization of a transition time t can be performed in time O log b with binary search.

Any transition showcasing a transition time falling outside of the interval τ1, τ129 (because it

is either too small or too large) is discarded and thus dropped from the likelihood Eq. (3).

Using a geometric spacing of 1.1 means that the relative error between successive points

is 10%, and thus the worst quantization error (which happens in between two quantization

points) is roughly 5%. The average quantization error is therefore around 2.5%.

In the case of a time-reversible model, quantizing time means replacing p Di uj
i Di vj

i , tj
i, Q

by p Di uj
i Di vj

i , q tj
i , Q . Concretely, we replace Eq. (3) with:

lcomp, quant(Q) ≡ ∑
i = 1

m
∑
j = 1

ci

log p Di uj
i Di vj

i , q tj
i , Q . (5)

When this is done, the terms in the composite likelihood typically group together by

quantized time τk, and the cost of evaluating the likelihood no longer depends on the dataset

size. We call this the quantized (log-)likelihood. For a model with site rate variation such as

LG, transition times are adjusted by the site rate before quantizing.

Prillo et al. Page 7

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

CherryML for the LG model

The LG model [5] of protein evolution posits that sites in a protein evolve independently

under a scalar multiple of a rate matrix Q of size 20 × 20. The scalar for each site might be

different and is called the site rate. If li denotes the length of the protein in family i, and rk
i

denotes the rate of site k 1 ≤ k ≤ li , then time quantization under the reversible LG model is

performed by replacing p Di uj
i

k Di vj
i

k, T i, Q by p Di uj
i

k Di vj
i

k, q rk
itj

i , Q . In other words, we

obtain the quantized composite log-likelihood:

lcomp, quant(Q) ≡ ∑
i = 1

m
∑
j = 1

ci

∑
k = 1

li

log p Di uj
i

k Di vj
i

k, q rk
itj

i , Q , (6)

where Di w k is site k at the row of Di corresponding to leaf w. Transitions involving gaps

are ignored. For the LG model, the terms of the quantized composite log-likelihood group

together by quantized transition time τk, and so Eq. (6) reduces to the simpler form:

lcomp, quant(Q) ≡ ∑
k = 1

b
Ck, log exp Qτk , (7)

where Ck of size 20 × 20 is the frequency matrix for transitions between states occurring at a

quantized transition time of τk.

CherryML for the Coevolution Model

Our coevolution model posits that a given pair of contacting sites in a protein sequence

evolve together via a reversible 400 × 400 rate matrix Q. Since in a given protein a site

might be in contact with more than one other site, we use a maximal matching to pair up

contacting sites. This way, we obtain pi pairs of sites s1, s2 , … , s2pi − 1, s2pi for family i. The

quantized composite log-likelihood is thus:

lcomp, quant(Q) ≡ ∑
i = 1

m
∑
j = 1

ci

∑
k = 1

pi

log p Di uj
i

s2k − 1, s2k Di vj
i

s2k − 1, s2k , q tj
i , Q , (8)

where Di w k1, k2 is the pair of site k1 and k2 at the row of Di corresponding to leaf w.

Because the order of the two sites does not matter (for example, the transition AL → GI

and the transition LA → IG are equivalent), when forming the composite likelihood we also

augment the site pairs with the reverse pairs s2, s1 , …, s2pi, s2pi − 1 . Transitions involving gaps

are ignored. The log-likelihood Eq. (8) has the same functional form as LG model’s Eq. (7)

except that Q is a 400 × 400 matrix instead of 20 × 20. Just like for the LG model, Eq. (8)

reduces to the simpler form of Eq. (7) where Ck of size 400 × 400 is the frequency matrix for

transitions between pairs of states occurring at a quantized transition time of τk.

Prillo et al. Page 8

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Optimization with PyTorch

Optimization under the LG model and under the coevolution model both require maximizing

a log-likelihood of the form Eq. (7) with respect to a reversible rate matrix Q of size s×s.

We achieve this using first-order optimization in PyTorch [18]. The reversible rate matrix

Q is parameterized by a vector θ ∈ ℝs × 1 and an upper triangular matrix Θ ∈ ℝs × s, as

follows: letting π = SoftMax θ and S = SoftPlus Θ + Θ⊤ , we take the off-diagonal entries

of Q to be Qij = πj
πi

Sij (incidentally, note that with this parameterization, π is the stationary

distribution of Q since πiQij = πjQji holds). The diagonal entries of Q are then uniquely

determined. With this parameterization, optimization of Q translates to unconstrained

optimization of θ and Θ. To ensure that the loss is on the same scale regardless of the

dataset size, we divide the log-likelihood in Eq. (7) by the total number of transitions, that is

to say the sum of all the entries in all the Ck matrices. For this we use the Adam optimizer

[27] with a learning rate of 0.1 and full batch iteration. We train the single-site model for g
= 2000 epochs and the coevolution model for g = 500 epochs, and take the iteration with the

lowest training loss as the final estimate. The matrix exponential layer is part of the PyTorch

API and is based on an optimized Taylor approximation [28]. When benchmarking the

performance of CherryML and EM as seen in Figure 1b,c,e and Extended Data Fig. 3 we use

1 CPU core for CherryML to make sure of a fair comparison of runtime between methods.

Otherwise, we use 2 CPU cores to train the single-site model and 8 CPU cores to train the

coevolution model. We found these to be the optimal number of cores in our architecture;

more CPU cores lead to communication overhead and overall slowdown. Initialization of the

optimizer is described in the next section.

As a final remark, note that optimization of Eq. (7) with respect to an irreversible model is

just as easy, by instead parameterizing S as S = SoftPlus Θ1 + Θ2 where Θ1 , Θ2 ∈ ℝs × s

are upper and lower triangular matrices respectively.

Initialization with JTT-IPW

We initialize θ and Θ using a novel variant of the JTT method [2] that takes into account

branch lengths, which we call JTT with inverse propensity weighting, or JTT-IPW for short.

We observed that using the JTT-IPW initialization sped up convergence by up to an order

of magnitude with respect to random initialization, and we used it when benchmarking both

CherryML and EM.

JTT-IPW is based on the Taylor expansion exp tQ = I + tQ + o t and on the decomposition

Q = diag μ CTP where μ = μ1, … , μs is the vector of mutabilities and CTP is the matrix of

conditional transition probabilities (except that the diagonal is filled with −1). Here diag μ is

the diagonal matrix with the entries of μ in the diagonal.

The JTT-IPW estimator of Q given the frequency matrices C1, … , Cb and the transition

times τ1, … , τb is constructed as follows. First, to ensure that all quantities below are well

defined, we add a small number of pseudocounts ϵ to the data entry-wise: Ck Ck + ϵ where

ϵ = 10−8. Next, to ensure a reversible estimate of Q regardless of what the count matrices

Prillo et al. Page 9

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

are, we symmetrize the count matrices via Ck
1
2 Ck + Ck

⊤ . Now let F = ∑k = 1
b Ck be the total

transition frequency matrix. We first estimate the conditional transition probability matrix

CTP ∈ ℝs × s as follows:

CTPi, j = F i, j

∑k ≠ i F i, k
for i ≠ j . (9)

We set CTPi, i = − 1 such that each row of CTP adds up to zero, as in a rate matrix. Finally,

we estimate the mutability μi of each state using inverse propensity weighting as follows:

μi =
∑k = 1

b 1
τk

∑j ≠ i Ck i, j

∑k = 1
b ∑j Ck i, j

. (10)

Finally, the JTT-IPW estimator of Q is given by:

QJTT−IPW = diag(μ)CTP . (11)

One can verify that QJTT−IPW is a reversible rate matrix by noting that since F i, j = F j, i, then

QJTT−IPW satisfies the detailed balance equation πi QJTT − IPW i, j = πj QJTT − IPW j, i for all states i, j,

where

πi ∝ ∑k ≠ i F i, k ∑k = 1
b ∑p Ck i, p

∑k = 1
b 1

τk
∑p ≠ i Ck i, p

. (12)

The reversibility of QJTT−IPW and the fact that all off-diagonal entries of QJTT−IPW are positive

(thanks to the pseudocounts) ensure that θ, Θ can be solved for. Concretely, we first solve

for the stationary distribution π of QJTT−IPW via an SVD decomposition. Then, we compute

S = π⊤ QJTT−IPW
1
π . From π and S we can compute θ and Θ by taking θi = log πi and

Θi, j = log exp Si, j − 1 1 i < j .

As for the intuition of why JTT-IPW works well as an initialization: as dataset size increases

(in a suitable manner), one can show that CTP converges to the true conditional probability

transition matrix. The mutabilities μ exhibit bias but it tends to 0 as branch lengths tend to 0.

Computing the Count Matrices Ck

The computational bottleneck of the CherryML optimizer is typically computing the count

matrices Ck. However, this is a simple and embarrassingly parallel task, for which we

wrote a fast distributed-memory C++ implementation using MPI. To compute the transition

frequency matrices Ck from the m multiple sequence alignments Di and trees T i using

p MPI ranks, we give each worker i approximately m/p families for which it computes

Prillo et al. Page 10

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the count matrices Ck
i . Once all workers are done, we compute Ck as Ck = ∑i = 1

p Ck
i . Time

quantization is performed with binary search, introducing the log b factor in the O mnl log b
time complexity.

When benchmarking the performance of CherryML and EM as seen in Figure 1b,c,e and

Extended Data Fig. 3 we used 1 CPU core to count transitions for CherryML. Otherwise, we

used 8 CPU cores.

FastTree

We used FastTree [20] to estimate trees. FastTree was compiled to use double-precision

arithmetic with:

gcc -DNO_SSE -DUSE_DOUBLE -03 -finline-functions -funroll-loops

The number of rate categories was set using the -cat argument.

Running XRATE

We used the EM implementation provided by the XRATE package [16], which was used in

the LG paper [5]. We ran XRATE with the following arguments:

-f 3 -mi 0.000001

We set -mininc 0.000001 to ensure that EM converges to a good solution; a more lenient

threshold of 10−5 produces inferior results on our simulated data benchmark of Figure 1c.

We further used -f 3 to require 3 iterations without meeting the convergence threshold to

terminate. XRATE was run with ground truth trees specified in the Stockholm file format

with the #=GF NH identifier. Site rate variation was handled by first splitting each MSA into

one MSA per site rate, and scaling the tree accordingly by the site rate for each sub-MSA

(this is the reduction described in the LG paper [5]).

MSA Preprocessing

We preprocessed the MSAs in the Pfam dataset [19] by subsetting only sites that were

aligned against residues in the reference sequence (which is the sequence for which we have

structure data). In other words, we removed all sites aligned against gaps in the reference

sequence. The length of the resulting MSA is therefore equal to the length of the reference

sequence (which has no gaps).

Protocol for Figure 1b,c

After preprocessing the MSAs from Yang et al. [19] as described above, among all 15,051

families, we selected those with proteins having length between 190 and 230 sites inclusive,

and at least 128 sequences. We then subsampled each MSA down to 128 sequences

uniformly at random, making sure to sample the reference sequence. We then ran FastTree

[20] with the LG matrix and to estimate trees for each family. We did not use site rate

Prillo et al. Page 11

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

variation. Having estimated these realistic-looking trees, we then proceeded to simulate

MSAs for each family. To do this, we simulated each site independently under the LG

matrix. The root state was sampled from the stationary distribution of the LG matrix. Having

simulated MSAs for all families, we then selected a random increasing sequence of family

sets ℱ4 ⊂ ℱ8 ⊂ ⋯ ⊂ ℱ1024 which were used to train CherryML and EM. CherryML and EM

were run with access to the ground truth trees. For CherryML, we formed the composite

log-likelihood as described in CherryML for the Coevolution Model and optimized for Q as

described in Optimization with PyTorch. For EM, we used the XRATE package as described

in Running XRATE. Our simulation scheme ensures that all MSAs are roughly of the same

size, such that doubling the number of families is approximately equal to doubling the

amount of Fisher information, which is important to obtain a reliable estimate of the relative

efficiency of CherryML as compared to EM.

Protocol for Figure 1d

After preprocessing the MSAs from Yang et al. [19] as described in MSA Preprocessing,

for each of the 15,051 families, we subsampled them down to 1,024 sequences uniformly

at random, making sure to sample the reference sequence. We then ran FastTree [20]

with the LG matrix and 4 rate categories to estimate trees for each family as well as

the site-specific rates. Having estimated these realistic-looking trees and site-specific rates,

we then proceeded to simulate MSAs for each family. To do this, we simulated each site

independently under the LG matrix and with the site rates estimated by FastTree. The root

state was sampled from the stationary distribution of the LG matrix. CherryML was run

with access to the ground truth trees and site rates. We formed the composite log-likelihood

as described in CherryML for the Coevolution Model and optimized for Q as described

in Optimization with PyTorch. We explored varying the number of quantization points b
while keeping the center value τ b/2 = 0.03 and the range τ1, τb approximately the same for

all quantization points. For this, we chose the geometric increments 445.79, 21.11, 4.59,

2.14, 1.46, 1.21, 1.1, 1.048, 1.024 for quantization points 3, 5, 9, 17, 33, 65, 129, 257, 513

respectively.

Protocol for Figure 1e

We followed the testing protocol described in the LG paper [5] to evaluate rate matrices.

This means running PhyML [6] with the following arguments:

--nclasses 4 --datatype aa --pinv e --r_seed 0 --bootstrap 0 -f m \

--alpha e --print_site_lnl

The average improvement in per-site log-likelihood over JTT is shown. Thus, we evaluated

the following four rate matrices: JTT [2], WAG [3], LG [5], and LG re-estimated using our

CherryML method. To re-estimate LG using the CherryML method, we first used FastTree

[20] with 4 rate categories as described in FastTree to estimate trees for each family as

well as site-specific rates. The uninformative uniform rate matrix was used in FastTree.

We then formed the composite loglikelihood as described in CherryML for the Coevolution

Model and optimized for Q as described in Optimization with PyTorch. The process was

Prillo et al. Page 12

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

repeated, this time using the estimated Q to estimate trees with FastTree. This can be seen

as coordinate ascent in tree and rate matrix space. The process was repeated 3 times until

convergence, as typical.

Determining Contacting Sites

To train our coevolution model we used the Pfam dataset with structure data from Yang et al.
[19]. A pair of sites was considered a non-trivial contact if (i) the distance between the beta

carbons was less than 8 angstrom, and (ii) the distance in primary sequence was at least 7.

Protocol for Figure 2c,d

After preprocessing the MSAs from Yang et al. [19] as described in MSA Preprocessing,

for each of the 15,051 families, we subsampled them down to 1,024 sequences uniformly

at random, making sure to sample the reference sequence. We then ran FastTree [20] with

the LG matrix and 1 rate category to estimate trees for each family. We determined for

each family which pairs of sites were in non-trivial contact as described in Determining

Contacting Sites. We then used a maximal matching to pair up sites that were in

contact. Finally, we formed the composite log-likelihood as described in CherryML for

the Coevolution Model and optimized for Q as described in Optimization with PyTorch. The

independent model was obtained by training a single-site model on sites with at least one

non-trivial contact, and then taking the product of the chain with itself.

Protocol for Figure 2a,b

After preprocessing the MSAs from Yang et al. [19] as described in MSA Preprocessing,

for each of the 15,051 families, we subsampled them down to 1,024 sequences uniformly

at random, making sure to sample the reference sequence. We then ran FastTree [20] with

the LG matrix and 1 rate category to estimate trees for each family. Having estimated these

realistic-looking trees, we then proceeded to simulate MSAs for each family. To do this, we

first determined for each family which pairs of sites were in non-trivial contact as described

in Determining Contacting Sites. We then used a maximal matching to pair up sites that

are in contact. Sites that are in contact were simulated under the coevolution rate matrix Q
estimated from real data as described in Protocol for Figure 2c,d. The root state was drawn

from the stationary distribution of Q. CherryML was run with access to the ground truth

trees.

Protocol for Figure 2e

After preprocessing the MSAs from Yang et al. [19] as described in MSA Preprocessing,

for each of the 15,051 families, we subsampled them down to 1,024 sequences uniformly at

random, making sure to sample the reference sequence. We then ran FastTree [20] with the

LG matrix and 20 rate categories to estimate trees for each family as well as the site-specific

rates. We determined for each family which pairs of sites were in non-trivial contact as

described in Determining Contacting Sites.

Prillo et al. Page 13

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Extrapolating the Runtime of Traditional Methods for Learning a Coevolution Model

To estimate the time that it would take for traditional methods such as zeroth-order

optimization or EM to estimate a 400 × 400 coevolution rate matrix, we performed the

following extrapolation. From Figure 1b we observe that it takes EM as implemented

by XRATE [16] around 6.5 CPU-hours to learn a single-site model on 1,024 families

with 128 sequences each. Since the runtime of traditional methods scales linearly in the

dataset size, this implies that learning a single-site model on all 15,051 families with

approximately 1,024 sequences each would take on the order of 6 . 5 × 15, 051
1, 024 × 1, 024

128 ≈ 750

CPU-hours. However, runtime scales quadratically in the state space size, which means

that increasing the state space size from s = 20 to s = 20 increases runtime by a

factor of 4002

202 = 400. As a result, we estimate that learning a coevolution model on

all 15,051 families with approximately 1,024 sequences each would take on the order

of 6 . 5 × 15, 051
1, 024 × 1, 024

128 × 4002

202 ≈ 300000 CPU-hours with traditional methods. The latter is

approximately 35 CPU-years.

Protocol for Extended Data Fig. 3

We used the same training procedure as for Figure 1e, except that we started from the more

informative LG rate matrix and thus performed only one additional round of coordinate

ascent in tree and rate matrix space. Held-out log-likelihood evaluation was performed with

FastTree using the discrete Gamma model with 4 rate categories.

Hardware Configuration

We used a node in Berkeley’s Savio cluster with 40 Intel Xeon Skylake 6230 @ 2.1 GHz

cores and 384 GB RAM (which far exceeds our needs).

Prillo et al. Page 14

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Extended Data

Extended Data Fig. 1: Plot of true versus estimated rate matrix entries for Figure 1b,c.
For a select number of families (the multiples of 4), we plot the true versus estimated rate

matrix entries. MRE stands for median relative error; ρ is Spearman’s rank correlation; r
is Pearson correlation. For reference, we also indicate the total number of sequences, sites

and residues in each dataset. As more data become available, estimation accuracy increases

for both methods. Importantly, the loss of statistical efficiency of CherryML with respect

to EM is relatively small (an estimated ≈ 50% as seen in Figure 1c). Interestingly, with

small dataset sizes, the smallest transition rates tend to be underestimated by both methods,

possibly because no (or relatively too few) transitions between these states are observed.

Prillo et al. Page 15

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Extended Data Fig. 2: Plot of rate matrix estimates from Figure 1e.
We see that the entries of the LG rate matrix [5] and re-estimates with CherryML and EM

are quite similar. The only noticeable differences correspond to four of the rarest (and thus

harder to estimate) rates, which are between C and E, and C and K (in both directions). It

is possible that CherryML is underestimating these rates, but since there is no ground truth

and the model may be misspecified (as these are real data estimates), we cannot say with

certainty; bootstrap estimates of variance could partially answer this question. For reference,

the dataset size in terms of number of families, sequences, sites and residues is: 3, 412, ≈
50, 000, ≈ 600, 000 and ≈ 6.5M respectively. In principle, this is roughly comparable in

size to 256 families in the (well-specified) simulations from Figure 1b,c, where both EM

and CherryML are accurate even for small rates, as seen in Extended Data Fig. 1. However,

these direct comparisons of dataset size might overestimate the information content of real

datasets. Indeed, it is possible that the effective amount of information for these small rates

is more comparable to 16 families in the simulations from Figure 1b,c, where CherryML

produces more underestimates than does EM.

Prillo et al. Page 16

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Extended Data Fig. 3: CherryML matches EM accuracy on diverse datasets.
On diverse datasets from the QMaker paper [9], CherryML matches the accuracy of the

EM method. The end-to-end runtime of each approach (including tree estimation) is shown.

The runtime of the CherryML optimizer was in all cases negligible (less than 5 minutes),

therefore end-to-end runtime was dominated by phylogeny reconstruction with FastTree,

which took a few CPU hours depending on the dataset. In contrast, for the EM approach,

the EM optimizer dominated runtime, leading to an overall slowdown of 5-20 fold in end-to-

end runtime compared to the CherryML approach. Since tree estimation is embarrassingly

Prillo et al. Page 17

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

parallel, end-to-end estimation with the CherryML method using 32 CPU cores takes only a

few minutes on all of these datasets. The diversity of the datasets means that LG is no longer

the best fit rate matrix compared to JTT and WAG. In fact, JTT is preferred in three of these

datasets. This highlights the need to estimate new rate matrices for improved phylogenetic

inference in specific applications [9]. Training dataset sizes are included for reference.

Extended Data Fig. 4: Plot of rate matrix estimates from Extended Data Fig. 3.
Similarly to Extended Data Fig. 2, CherryML and EM agree on most rates, except for some

of the smallest (harder to estimate) rates, where CherryML usually reports smaller rates.

It is possible that these are underestimates from CherryML, for instance if the information

Prillo et al. Page 18

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

content for these small rates is similar to 16 families in Extended Data Fig. 1, where

CherryML produces more underestimates compared to EM.

Extended Data Fig. 5: Comparison of mutation rates.
(a) Our 400 × 400 co-evolution model. (b) Independent-sites model.

Extended Data Fig. 6: Comparison of stationary distributions.

Prillo et al. Page 19

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(a) Our 400 × 400 coevolution model. (b) Independent-sites model.

Acknowledgments

Sebastian Prillo would like to acknowledge Alfredo Umfurer for many helpful discussions on software design. We
would like to acknowledge the reviewers for their helpful feedback. We thank Olivier Gascuel for suggesting that
we pair up more sequences beyond the original cherries in the trees, which empirically boosted the statistical
efficiency of the method by around 10%–30% (estimated). We would also like to thank Ian Holmes, John
Huelsenbeck, Neil Thomas and William DeWitt for helpful discussions. This research is supported in part by
an NIH grant R35-GM134922 (Y.S.S.). The funders had no role in study design, data collection and analysis,
decision to publish or preparation of the manuscript.

Data Availability

The LG paper [5] training and testing Pfam datasets consisting of 3,912 and 500 families

respectively are available at: http://www.atgc-montpellier.fr/models/index.php?model=lg

The Pfam dataset with structure data from Yang et al. [19] consisting of 15,051 families is

located at: https://files.ipd.uw.edu/pub/trRosetta/training_set.tar.gz

The QMaker [9] datasets are available at: https://figshare.com/articles/dataset/QMaker-

datasets_zip/9768101

Our simulated datasets used for Figure 1b,c, Figure 1d, and Figure 2a,b are available on

Zenodo at: https://zenodo.org/record/7830072#.ZDnPBuzMKTc

Instructions for how to reproduce all results in this paper using the above datasets can be

found at:

References

[1]. Dayhoff MO and Schwartz RM. Chapter 22: A model of evolutionary change in proteins. In in
Atlas of Protein Sequence and Structure, 1978.

[2]. Jones David T., Taylor William R., and Thornton Janet M.. The rapid generation of mutation
data matrices from protein sequences. Comput. Appl. Biosci, 8(3):275–282, 1992. [PubMed:
1633570]

[3]. Whelan Simon and Goldman Nick. A General Empirical Model of Protein Evolution Derived
from Multiple Protein Families Using a Maximum-Likelihood Approach. Molecular Biology and
Evolution, 18(5):691–699, 05 2001. [PubMed: 11319253]

[4]. Yang Ziheng. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and
Evolution, 24(8):1586–1591, 2007. [PubMed: 17483113]

[5]. Le Si Quang and Gascuel Olivier. An Improved General Amino Acid Replacement Matrix.
Molecular Biology and Evolution, 25(7):1307–1320, 03 2008. [PubMed: 18367465]

[6]. Guindon Stéphane, Dufayard Jean-François, Lefort Vincent, Anisimova Maria, Hordijk Wim, and
Gascuel Olivier. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies:
Assessing the Performance of PhyML 3.0. Systematic Biology, 59(3):307–321, 05 2010.
[PubMed: 20525638]

[7]. Bouckaert Remco, Vaughan Timothy G, Barido-Sottani Joëlle, Duchêne Sebastián, Fourment
Mathieu, Gavryushkina Alexandra, Heled Joseph, Jones Graham, Kühnert Denise, De Maio
Nicola, et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis.
PLoS Computational Biology, 15(4):e1006650, 2019. [PubMed: 30958812]

[8]. Minh Bui Quang, Schmidt Heiko A, Chernomor Olga, Schrempf Dominik, Woodhams Michael
D, von Haeseler Arndt, and Lanfear Robert. IQ-TREE 2: New Models and Efficient Methods for

Prillo et al. Page 20

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.atgc-montpellier.fr/models/index.php?model=lg
https://files.ipd.uw.edu/pub/trRosetta/training_set.tar.gz
https://figshare.com/articles/dataset/QMaker-datasets_zip/9768101
https://figshare.com/articles/dataset/QMaker-datasets_zip/9768101
https://zenodo.org/record/7830072#.ZDnPBuzMKTc

Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5):1530–1534,
02 2020. [PubMed: 32011700]

[9]. Minh Bui Quang, Dang Cuong Cao, Vinh Le Sy, and Lanfear Robert. QMaker: Fast and Accurate
Method to Estimate Empirical Models of Protein Evolution. Systematic Biology, 70(5):1046–
1060, 02 2021. [PubMed: 33616668]

[10]. Yang Ziheng. Maximum likelihood phylogenetic estimation from dna sequences with variable
rates over sites: approximate methods. Journal of Molecular Evolution, 39(3):306–314, 1994.
[PubMed: 7932792]

[11]. Kalyaanamoorthy Subha, Minh Bui Quang, Wong Thomas K. F., von Haeseler Arndt, and
Jermiin Lars S.. Modelfinder: fast model selection for accurate phylogenetic estimates. Nature
Methods, 14(6):587–589, Jun 2017. [PubMed: 28481363]

[12]. Holmes Ian. A Model of Indel Evolution by Finite-State, Continuous-Time Machines. Genetics,
216(4):1187–1204, 12 2020. [PubMed: 33020189]

[13]. Yeang Chen-Hsiang and Haussler David. Detecting coevolution in and among protein domains.
PLOS Computational Biology, 3(11):1–13, 11 2007.

[14]. Felsenstein Joseph. Maximum Likelihood and Minimum-Steps Methods for Estimating
Evolutionary Trees from Data on Discrete Characters. Systematic Biology, 22(3):240–249, 09
1973.

[15]. Siepel Adam and Haussler David. Phylogenetic Estimation of Context-Dependent Substitution
Rates by Maximum Likelihood. Molecular Biology and Evolution, 21(3):468–488, 03 2004.
[PubMed: 14660683]

[16]. Klosterman Peter S., Uzilov Andrew V., Bendaña Yuri R., Bradley Robert K., Chao Sharon,
Kosiol Carolin, Goldman Nick, and Holmes Ian. Xrate: a fast prototyping, training and
annotation tool for phylo-grammars. BMC Bioinformatics, 7(1):428, 2006. [PubMed: 17018148]

[17]. Varin Cristiano, Reid Nancy, and Firth David. An overview of composite likelihood methods.
Statistica Sinica, 21(1):5–42, 2011.

[18]. Paszke Adam, Gross Sam, Chintala Soumith, Chanan Gregory, Yang Edward, Devito Zachary,
Lin Zeming, Desmaison Alban, Antiga Luca, and Lerer Adam. Automatic differentiation in
pytorch. In Advances in Neural Information Processing Systems 30, 2017.

[19]. Yang Jianyi, Anishchenko Ivan, Park Hahnbeom, Peng Zhenling, Ovchinnikov Sergey, and
Baker David. Improved protein structure prediction using predicted interresidue orientations.
Proceedings of the National Academy of Sciences, 117(3):1496–1503, 2020.

[20]. Price Morgan N., Dehal Paramvir S., and Arkin Adam P.. Fasttree 2 – approximately maximum-
likelihood trees for large alignments. PLoS ONE, 5(3):e9490, Mar 2010. [PubMed: 20224823]

[21]. Franzosa Eric A and Xia Yu. Structural determinants of protein evolution are context-sensitive
at the residue level. Molecular Biology and Evolution, 26(10):2387–2395, 2009. [PubMed:
19597162]

[22]. Echave Julian, Spielman Stephanie J, and Wilke Claus O. Causes of evolutionary rate variation
among protein sites. Nature Reviews Genetics, 17(2):109–121, 2016.

[23]. Dang Cuong, Vinh Le, Gascuel Olivier, Hazes Bart, and Le Quang. Fastmg: a simple, fast, and
accurate maximum likelihood procedure to estimate amino acid replacement rate matrices from
large data sets. BMC bioinformatics, 15:341, 10 2014. [PubMed: 25344302]

[24]. Canh Nguyen Duc, Dang Cuong Cao, Vinh Le Sy, Minh Bui Quang, and Hoang Diep Thi.
pqmaker: empirically estimating amino acid substitution models in a parallel environment. In
2020 12th International Conference on Knowledge and Systems Engineering (KSE), pages 324–
329, 2020.

[25]. Jumper John M., Evans Richard, Pritzel Alexander, Green Tim, Figurnov Michael, Ronneberger
Olaf, Tunyasuvunakool Kathryn, Bates Russ, Zídek Augustin, Potapenko Anna, Bridgland
Alex, Meyer Clemens, Kohl Simon A A, Ballard Andy, Cowie Andrew, Romera-Paredes
Bernardino, Nikolov Stanislav, Jain Rishub, Adler Jonas, Back Trevor, Petersen Stig, Reiman
David A., Clancy Ellen, Zielinski Michal, Steinegger Martin, Pacholska Michalina, Berghammer
Tamas, Bodenstein Sebastian, Silver David, Vinyals Oriol, Senior Andrew W., Kavukcuoglu
Koray, Kohli Pushmeet, and Hassabis Demis. Highly accurate protein structure prediction with
AlphaFold. Nature, 596:583–589, 2021. [PubMed: 34265844]

Prillo et al. Page 21

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[26]. Ran Jinhua, Shen Ting-Ting, Wang Ming-Ming, and Wang Xiao-Quan. Phylogenomics resolves
the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution
between gnetales and angiosperms. Proceedings of the Royal Society B: Biological Sciences,
285:20181012, 06 2018.

[27]. Kingma Diederik P and Ba Jimmy. Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations (ICLR), 2015.

[28]. Bader Philipp, Blanes Sergio, and Casas Fernando. Computing the matrix exponential with an
optimized taylor polynomial approximation. Mathematics, 7(12), 2019.

Prillo et al. Page 22

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1: CherryML method applied to the LG model.
(a) Sketch of the CherryML method as applied to a reversible model: transitions between

all iteratively picked cherries are treated as independent observations and quantized; here

the quantization grid is {1, 1.5, 2.25, 3.38, 5.06}. (b) Runtime and (c) median estimation

error as a function of sample size for our CherryML optimizer and the classical EM

optimizer. The empirical loss of statistical efficiency for CherryML is relatively small (≈
50%) while being a thousand times faster when applied to 1,024 families. Each family

has 128 sequences. (d) On a large simulated dataset, time quantization error becomes

negligible with as few as ≈ 100 quantization points. Distribution of relative error and

median shown. (e) Using the evaluation protocol of the LG paper [5], we verified that

using the CherryML optimizer produces comparable likelihoods to EM on held-out families.

Here “LG rate matrix” stands for the rate matrix originally published in the LG paper [5],

whereas “LG w/ CherryML (re-estimated)” and “LG w/ EM (re-estimated)” correspond

to our re-implementation of the inference pipeline in the LG paper [5] while using either

CherryML or EM for optimization.

Prillo et al. Page 23

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2: CherryML method applied to learn a 400 ×400 coevolution model.
Using simulated coevolution data from 15,051 Pfam families each subsampled down to

1024 sequences, we verified that our method is able to accurately estimate co-transition

rates for (a) single-site transitions (such as IL ↔ IA), and (b) the more challenging joint

transitions (such as KE ↔ EK). The left plot is a scatter plot which reveals outliers, while

the right plot is a density plot which shows that there are few outliers. (c) Mutation rates

of the coevolution model differ from that of the independent-sites model, and recapitulate

known biology such as the importance of disulfide bonds by assigning a significantly lower

Prillo et al. Page 24

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

mutation rate to CC pairs. Residues are ordered by the hydropathy index. (d) Stationary

distribution of the coevolution model differs from that of the independent-sites model,

and recapitulates favorable residue pairings, such as hydrophobic amino acid pairs and

electrostatically interacting pairs. (e) The more contacts a site has, the lower its mutation rate

as estimated by FastTree [20].

Prillo et al. Page 25

Nat Methods. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	Introduction
	Results
	The CherryML method
	CherryML applied to the LG model
	CherryML applied to learn a 400 × 400 coevolutionary model

	Discussion
	Methods
	Composite Likelihood over Cherries
	Quantization of Time
	CherryML for the LG model
	CherryML for the Coevolution Model
	Optimization with PyTorch
	Initialization with JTT-IPW
	Computing the Count Matrices Ck
	FastTree
	Running XRATE
	MSA Preprocessing
	Protocol for Figure 1b,c
	Protocol for Figure 1d
	Protocol for Figure 1e
	Determining Contacting Sites
	Protocol for Figure 2c,d
	Protocol for Figure 2a,b
	Protocol for Figure 2e
	Extrapolating the Runtime of Traditional Methods for Learning a Coevolution Model
	Protocol for Extended Data Fig. 3
	Hardware Configuration

	Extended Data
	Extended Data Fig. 1:
	Extended Data Fig. 2:
	Extended Data Fig. 3:
	Extended Data Fig. 4:
	Extended Data Fig. 5:
	Extended Data Fig. 6:
	References
	Figure 1:
	Figure 2:

