UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Tacit Programming Knowledge

Permalink
https://escholarship.org/uc/item/0m67h8xw|

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 4(0)

Authors
Solowsy, Elliot
Ehrlleh, Kate

Publication Date
1982

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/0m67h8xw
https://escholarship.org
http://www.cdlib.org/

Tacit Programming Knowledge

Elliot Soloway
Kate Ehrlich

Cognition and Programming Project
Computer Science Dept.
Yale University
New Haven, Ct. 08520

1. Introduction

! The goals of the Cognition and Programming Project at Yale
University are:

¢ empirically explore the issues surrounding programming

» what does am expert programmer know, and how
does this compare to what a novice does (and
doesn't) know [Soloway et al, 1982a, Ehrlich £
Soloway, 1982],

» what makes a programming language construct
"cognitively appropriate” — aand caa we design such
constructs [Soloway et al., 1981a]

» what is the relationship betweea aigebra knmowledge
and programming knowledge [Erblich et al,
1982, Soloway et al., 1982|

¢ build Al based comp eavi ts which can aid the
novice programmer in learning to program [Soloway et al,
1981b, Soloway et al., 1982b).

In this short paper, we will describe some techniques we employ to
investigate the first issue: what do programmers know.

2. Programming Plans: The Tacit Knowledge in

Programming

A pumber of researchers have replicated the chess experiments of
deGroot [deGroot, 1965] and Chase & Simoa [Chase and Simon, 1073|
in the domain of programming; consistent with those earlier
experiments with master and non-master chess players, it appears
that expert programmers also have more knowledge which is more
highly chunked tham novice programmers [Shaeidermaa,
1976, Adelson, 1981, McKeithen, Reitmaa, Rueter aad Hirtle, 1981|,

Building on this work, our goal is to identily the specifie
knowledge which expert programmers appear to have and use. The
problem is that experts are oftem unaware of using this sort of
knowledge — hence the term taeit knowledge. Collins [Collins,
1978, Larkin [Larkin et al., 1980, Rissland [Rissland, 1978|, ete. have
argued for the importance of tacit knowledge in various domains; oar
objective is to identily the tacit knowledge in programming.

To this end, we have developed a first order theory of the
programming koowledge underiying simple looping programs which
we [eel experts have and use. Knowledge in this theory is encoded in
terms of plans: stereotypic chunks of knowledge. For example, we
posit that there are control flow plans and variable plans; in Figure 1,
we would suggest that the body of the program is aa implementation
of the Running Total Loop Plan: new values are successively
generated, in this case by a Read, and are added to a Running Total
Variable, Sum. Also, there s Counter Variable, Conat, which keeps
track of the number of numbers gemerated. Cur approach to
programming plans is similar in spint to that of Rich [Rich, 1980| and
Waters [Waters, 1979].

Problem FResd s 2 sebt of iategers and priat owt their average Stop

readieg nesbers when the number 39999 o3 seen Oo MOT .eciude the
99999 in Lhe average

"This work was supported in part by the Mational Science Foundation, uader NSF
Grast SED-81-12403.

PROCRAM BiveAlpha(INPUT/ OUTRUT)
VAR Count. Sum MNumber INTEGER,
Average REAL

I
| BEGIN
I

e ———if Sum ™ Sy ¢ NEEbEP, (€€ ————
|

I Cosat o Cosst = |, €4¢

I

——eett Readin (Number)

BEGIN
Countar Variable Plas
Commt = 0.
Resning Total Variable | Plan
Sum = 0, I
(|
Runaing ———=t¢ Readin (Number), (I
Total I [
Loop ———iq WHILE Wember <> 39093 0O |]
Plas | |
[
11
I
I

END.
Average = Sum [/ Comwnt,
Writein (Average)
END

Figure 1: Examples of Plans

How does one go about testing a theory of this sort? Simply
asking programmers whether or not they use the Running Total Loop
Plan would not be too illuminating: the claim is that they are oftea
unaware of having and using this type of knmowledge. Below we
describe techniques which we have found useful in this regard.

3. The Fill-in-the-blank Technique

The first technique we have used draws om work done in exploring
the reality of scripts in text understanding. For example Bower, Black
and Turner found that, in respomse to questions about a3 story,
subjects would “fill in® from their "script” knowledge, information
which was not explicitly given in the text. Similar in flavor, we give
programmers a program in which a line of code has been left out, and
ask them to fill it in. We purposely do not tell the subjects what the
program is supposed to do; our objective is to have subjects use their
experience with previous programming problems in order to recognize
what line of code is most appropriate in the particular situation. If
subjects dida't have plam structures, we would expect the answers
they give to be arbitrary, and thus vary wildly from subject to
subject. As we discuss below, the answers which novices give
typically do vary significantly, while the answers which advanced
programmers give do in [fact exhibit a significant degree of
consistency.

We also add an extra twist to the above design in order to more
precisely home in on plaa knowledge. We create two versions of the
test program; in the first ion, the inf ion needed to (il in the
blank line & more or less unambigious, while the second version
contains eonflieting information. For example, the programs in
Figures 2 and 3 are both i ded to prod the 3q root of
N. Sinee N is in a loop which will repeat 10 times, 10 values will be
printed out. The question is: how should N be set? The technique
will be to compare the performance of programmers on the program
which does not comtain the plan conflict (Figure 2), with their
performance on the program which does contain the conflict (Figure
3).

149

Please complets Lhe program (mgment givea below by filling in the blask line
(indicated by & box). Fill in the blaak with & line of Pascal code which in
your opinion best pletes the progr

program VicletAlphallnpes/. Output),
var N real
I integer
begin
for [= | o 10 de
begin

|

PN €0 them N = -N
writeta { Sqruih))
(* Sqrt 13 2 buiit=1n
function which returss the
square root of 1LS argusests)
ead
end

Figure 31 Problem VioletAlpha:
The influence of a single Plaa

In the program in Figure 2, N is a New Valae Variable, since its
function 1 merely to hold successive values. The plan for this type of
variable does not present aa overnding constraint oa how it should be
set in the blank line: a Read(N) or a N := N + SomeValue would
both be acceptable. However, context does provide a strong
constramt. Notice the If test preceding the Sqrt(N) instantiates the
*quard a portion of a program [rom improper daia” plaa by
protecting the Sqrt from negative integers (the Sqrt function caa oaly
wortk on positive integers). This test specifies aa important
constraint: N shouid take on values that could possibly be negative,
otherwise the If test would be totally superflucus. Thus, N should

fra given below by (ing in the blank fine

the
[‘Illnudlﬂah-}. ﬁlu&hﬂu&vﬂnhihﬂnﬁi“:l
your opinion best the

program VioletBeta(Inpats. Outpet).

var 1 real
I imceger
beyin

N =00
for [=1 to 10 de
begin

ifN <0 cham N » -0
writeln (Sqru(m)),
(* Sqre o3 2 bwilt=1n
fusction which reterns Lhe
square root of (L3 argeseate)

Figure 3: Problem VioletBeta:
A conflict between Plans

not be set via am assignment statement Lo some simple function of N
and /or the index variable I, e.g., N:smN+], N:mml, N:==N+1. Rather,
by setting N via a Read statement, negative values have the
possibility of entering the program. This argument i based oa a
principle of tacit communmication which states: includs omiy
necessary code in a program. By including a test for negative
values, am experienced programmer is informing the reader that it is
possible that such numbers could be generated; if such sumbers couid
not possibly enter the program, thea the ineclusoa of this test would
violate this unwritten rule of communication.

The blank live in the program in Figure 2 is strategically placed:
we wanted to explore the degree to which programmers are seasitive
to the contextual relationship which obtains b the guard plan
and the initialization aspect of New Value Variable Plaa.

Program VioletBeta in Figure] is exactly the same as that in
Figure 2 except that now N is given a value of 0 before the loop.
Previously the New Value Variable Plan was neutral with respect to
how N should be set. However, since N was initialized via am
assignment stalement Lo 0, the general rule of relating initialization to
update should come into play, and direct that N be updated via an
assignment. On the other hand, the If test, which realizes the "guard
plan® and protects the square root operatiom, still sets up the

150

expectation that N will be read in. If N will be set via a Read in the
loop, the setting of N to 0 initially is superfluous. Thus, ia Program
VioletBeta we have purposely created a situation in which two plans
are in conflict: the New Value Variable Plan expects N to be updated
via an assignment, since it was initialized via an assignment, but the
guard plan on the Sqrt operation expects that N will updated via a
Read, so as to permit negative values to enter the program.

We felt that novices, with their limited experience, would be more
sensitive to the constraint that obtains between a variable's
initialization and update, as compared to the coastraint that obtains
between a guard plan and a variable's update. Hence, we predicted
that the proportion of movices who Read in the value of N would
decline when there was a conflict between plans. On the other hand,
we feit that more advanced programmers would have had sufficient
experience in both, and know when each is most appropriate, e.g.,
nop-novices would realize that the test for a negative N should take
precedence over the initialization of N to 0, since the "guarding” of
the input is usually very important to the correct rumning of the
program. Thus, we predicted that non-novices would fill in the blank
with Read(N) equally often in both versions of the problem.

WOV ICES NON-w0VICES
ALPHA BETA ALPHA BETA
no w0
conflict comflict confliet coafiict
| | I Category 1 I 1 I
| & | 30 | Set N vin Resd I 20 | 2¢ |
| 1 I I 1 I
W] ey ——
| | I Category 2 | I I
| T 1 15 | Set Movimassigeennt | 4 | 4 |
| I I 1

chi=squered = 5 20 p < 0 05 chi=squared € | N §

Table 1t Filkin-the-blank Responses

The respomses of novices and non-novices om these programs,
shown in Table 1, support our predictions. Nom-novices chose Lo set
N via a Read in the non—conflict case (VioletAlpha), and abo chose to
set N via a Read in the conflict case (Beta). This is consistent with
our hypothesis that non-novices could use comtextual information
— the guard plaa iat — to override the variable plas
constraint im the coaflict case. [n contrast, novices chose Read
significantly less oftem im the conflict case thaa i the nom-coaflict
case (chi-squareds= 520, p < 0.05). This is consistent with oar
hypothesis that novices were more influenced by the familiar variable
plam constraint tham by the less familiar, contextual guward plaa
constraunt.

4. Reading Time Studies
We also wanted Lo see how reading time was efTected by the no
conflict/conflict situations. Thus, we carmied out studies which
tracked the time a programmer started reading the program to the
time he began to fill in the blank. For the programs im Figures 2 and
3, we found that novice programmers took effectively the same
amount of time to respond ia Program VioletAlpha as in Program
VioletBeta (see Table 2). In contrast, while the advanced
ded quicker tham the novices om Program
Vtolemlphx. they took significandy longer tham the novices to
respond to Program VioletBeta. We feel these data also support our
hypothesis that Program VioletBets contamed 3 conflict between
plans, to which oaly the advanced programmers were sensitive, while
there was no similar conflict in Program VioletAlpha

Aigha Bata

I |

I 109 | 150 | Movices

I | I s
mem—as. |

1 I 1

I 72 1 183 | wos-sovices
| I 1 pe 25

S—
Mean Feading Times
[r Seconds

Table 2: Reading Times Study

5. Concluding Remarks

Tapping into the tacit kmowledge which programmers seem to
have and use is a complex task. The basis for our experimesntal
methods rests squarely om our, albeit preliminary, theory of
programming knowledge. That is, we needed the theory in order to
cteate the programs which serve as our stimulus materials. We are
currently working oam extending that theory to more compilex
programming problems and constructions.

We are also carrying out filkin-the-blank studies and reading time
studies with wnplan-like programs, and programs which contain bugs.
One objective is these studies is to explore the exteamt to which
programs can be perturbed and still have people recognize the correct
underlying intentions.

A loager range goal is the development ol measures ol program
complexity based not just on features of the program text itsell, bat
rather on the cogmitive demands which the program makes oa the
programmer. Black and Sebrechts [Black & Sebrechts, 1981] have
argued quite p ively that of program complexity based
om I [(e ber of operations, lemgth of vanable
names) canmot be effective measures, in the same way that the old
measures of reading complexity, based also on textual features, were
not effective measures. Such measures caam captare oaly "surface”
infor i In contrast, effective measures must be based o the
types and oumber of inferences which a programmer must make in
order to understand the program. By cataloging the types of
inferences which programmers do make, we have taken a first step in
this enterprise.

Acknowiedgements
We would like to thank Chuck Rich for his help in developing the
stimulus materials used in this experiment, John Leddo for rumming
the reading time study, and Joost Breuker and Valerie Abbott for
their help in analyzing the data

References

Adelson, B. Problem Solving and the Development of Abstract
Categories in Programming Languages. Memory and
Cognition, 1981, 9, 422-433.

Black, J.B. & Sebrechts, M.M. Facilitating human-computer
communication. Applied Paycholinguistics, 1981, 2,
149-178.

Chase, W.C. and Simon, H. Perception in Chess. Cognitive
Paychology, 1973, 4, 55-81.

Collins, A. Ezplicating the Tacit Knowledge in Teaching and

Learning. Technical Report 3889, Bolt Beranek and
Newman, Cambnidge, Maass., 1978,

151

deGroot, A.D. Thought and Choice in Chess. Paris: Mouton
and Company 1065.

Ehbrlich, K., Soloway, E. An Empirical [nvestigation of the
Tacst Plan Knowledge in Programming. Technical
Report 82-30, Dept. of Computer Science, Yale
University, 1982.

Ehrlich, K., Soloway, E., Abbott, V. Styles of Thinking: From
Algebra Word Problems to Programming Via
Procedurality. Cognitive Science Society, Univ. of
Michigan, Mich., 1982.

Larkin, J., McDermott, J., Simon, D. and Simon H. Expert and
Novice Performance in Solving Physics Problems. Seience,
1980, 208, 140-156.

McKeithen, K.B., Reitman, J.S., Rueter, H.H., Hirtle, S.C.
Knowledge Organization and Skill Differences in
Computer Programmers. Cognitive Psychology, 1981, 185,
307-325.

Rich, C. A Library of Plans with Applications to Automated
Analyass. Technical Report 204, MIT Al Lab, 1980.

Rissland, E. Understanding Understanding Mathematics.
Cognitive Science, 1978, 2(4), .

Shneiderman, B. Exploratory Experiments in Programmer
Behavior. [nternational Journal of Computer and
In formation Sciences, 1976, 5,2, 123-143.

Soloway, E., Lochhead, J., Clement, J. Does Computer
Programming Enhance Problem Solving Ability! Some
Positive Evidence on Algebra Word Problems. In R.
Seidel, R. Anderson, B. Hunter (Eds.), Computer Literacy,
New York, NY: Academic Press, 1982.

Soloway, E., Bonar, J. and Ehrlich, K. Cognitive Factors in
Programming: An Empirical Study of Looping
Constructs. Technical Report 81-10, Department of
Computer Science, University of Massachusetts , 1081.

Soloway, E., Woolf, B., Barth, P., and Rubin, E. MENO-II:
Catching Run-Time Errors in Novice's Pascal Programa.
International Joint Conference om Artificial Intelligence,
Vancouver, B.C., 1981.

Soloway, E., Ehrlich, K., Bonar, J., Greenspan, J. What Do
Novices Know About Programming! In Directions in
Human-Computer Interactions, B. Shneiderman and A.
Badre, Eds., Ablex, Inc. in press.

Soloway, E., Rubin, E., Wooll, B., Bonar, J. MENO-II: A Al-
CAl Programming Tutor. Proceedings of the ADCIS
Conference, Vancouver, B.C., in press.

Waters, R.C. A Method for Analyring Loop Programs. JEEE
Trans. om Sofiware Engineering, May 1079, SE-5,
237-247.

	cogsci_1982_149-151

