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Abstract

The ability to process social information is a critical compo-
nent of children’s early language and cognitive development.
However, as children reach their first birthday, they begin to
locomote themselves, dramatically affecting their visual ac-
cess to this information. How do these postural and locomotor
changes affect children’s access to the social information rele-
vant for word-learning? Here, we explore this question by us-
ing head-mounted cameras to record 36 infants’ (8-16 months
of age) egocentric visual perspective and use computer vision
algorithms to estimate the proportion of faces and hands in in-
fants’ environments. We find that infants’ posture and orienta-
tion to their caregiver modulates their access to social informa-
tion, confirming previous work that suggests motoric develop-
ments play a significant role in the emergence of children’s lin-
guistic and social capacities. We suggest that the combined use
of head-mounted cameras and the application of new computer
vision techniques is a promising avenue for understanding the
statistics of infants’ visual and linguistic experience.

Keywords: social cognition; face-perception; infancy; loco-
motion; head-cameras; deep learning

Introduction
From early infancy, children are deeply engaged in learning
from others. Even newborns tend to prefer to look at faces
with direct vs. averted gaze (Farroni, Csibra, Simion, & John-
son, 2002) and young infants follow overt gaze shifts (Gre-
debäck, Fikke, & Melinder, 2010). Further, when infants at-
tend to video stimuli, they tend to look mostly at faces at the
expense of other visual information – though older infants
start to look towards people’s hands and the actions they are
performing (Frank, Vul, & Saxe, 2012).

Then, however, their view of the world radically changes
(Adolph & Berger, 2006). Infants’ motor abilities improve
dramatically near the end of the first year of life, allowing
them to locomote independently. These motor changes have
significant consequences for what children see. For example,
during spontaneous play in a laboratory playroom, toddlers
are more likely to look at the floor while crawling than while
walking (Franchak, Kretch, Soska, & Adolph, 2011); in gen-
eral, walking infants tend to have full visual access to their
environment and the people in it, while crawling infants do
not (Kretch, Franchak, & Adolph, 2014).

These motor improvements lead to developmental cas-
cades that impact children’s emerging social, cognitive, and
linguistic abilities in various ways. For example, postural
changes impact how children interact with their mothers:
walking (vs. crawling) infants make different kinds of object-
related bids for attention from their mothers, tend to hear
more action directed statements (e.g., “open it”), and tend to
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explore their surroundings more (Karasik, Tamis-LeMonda,
& Adolph, 2014; Thurman & Corbetta, 2017). In an obser-
vational study, Walle & Campos (2014) found that children
who were able to walk had both higher receptive and produc-
tive vocabularies. Thus, children’s ability to independently
locomote may change their ability to access social informa-
tion (e.g., faces, gaze) and in turn accelerate their learning.

Recent technological developments allow for testing of
this hypothesis by documenting the experiences of infants
and children from their own perspective. By using head-
mounted cameras, researchers have begun to record the visual
experiences of infants and children – which even for walk-
ing children are extremely different from the adult perspec-
tive (and not easily predicted by our own adult intuitions)
(Clerkin, Hart, Rehg, Yu, & Smith, 2017; Franchak et al.,
2011; Yoshida & Smith, 2008). Children’s views tend to be
more restricted and dominated by objects and hands (Yoshida
& Smith, 2008), and computational and empirical work sug-
gests that this restricted viewpoint may be more effective
for learning objects and their labels than the comparable
adult perspective (Bambach, Crandall, Smith, & Yu, 2017;
Yurovsky, Smith, & Yu, 2013). This perspective changes over
the first two years of life, as visual input transitions from pri-
marily containing close up views of faces to capturing views
of hands paired with the objects they are acting on (Fausey,
Jayaraman, & Smith, 2016).

Here, we directly examine whether postural and locomo-
tor developments change the availability of social informa-
tion – the presence of faces and hands. We recorded the vi-
sual experience of a group of infants in three age ranges (8,
12, and 16 months) using head-mounted cameras during a
brief laboratory free-play session; children’s posture and ori-
entation relative to their caregiver were also recorded from
a third-person perspective and hand-annotated. Recent work
directly examined how postural developments change access
to social information in 12 month-olds in a similar paradigm,
finding support for the motoric hypothesis (Franchak, Kretch,
& Adolph, 2017). Here we replicate and extend their main
finding using novel computer vision techniques to allow for
video analysis at scale. In particular, we capitalize on recent
improvements in face and pose detection algorithms (Cao, Si-
mon, Wei, & Sheikh, 2017; K. Zhang, Zhang, Li, & Qiao,
2016) to analyze the frequencies of faces and hands (using
wrists as a proxy for the latter) in the child’s visual environ-
ment, both overall and relative to naming events by their care-
givers. We predicted that there would be differential access
to social information based on children’s postural develop-
ments: crawling infants would see fewer faces because they
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would primarily be looking at the ground, while walking tod-
dlers would have access to a richer visual landscape, thus pro-
viding children with greater access to the social information
in their environment.

Methods
Participants Our final sample consisted of 36 infants and
children, with 12 participants in three age groups: 8 months
(6 F), 12 months (7 F), and 16 months (6 F). Participants
were recruited from the surrounding community via state
birth records, had no documented disabilities, and were re-
ported to hear at least 80% English at home. Demographics
and exclusion rates are given in the table below.

Group N % incl. Avg age Avg video length (min)
8 mo. 12 0.46 8.71 14.41

12 mo. 12 0.40 12.62 12.71
16 mo. 12 0.31 16.29 15.10

To obtain this final sample, we tested 95 children, exclud-
ing 59 children for the following reasons: 20 for technical
issues related to the headcam, 15 for failing to wear the head-
cam, 10 for fewer than 4 minutes of headcam footage, 5 for
having multiple adults present, 5 for missing Communicative
Development Inventory (CDI) data, 2 for missing scene cam-
era footage, 1 for fussiness, and one for sample symmetry. All
inclusion decisions were made independent of the results of
subsequent analyses. Some of these data were also analyzed
in Frank, Simmons, Yurovsky, & Pusiol (2013).

Figure 1: Vertical field of view for two different headcam
configurations (we used the lower in our current study).

Head-mounted camera We used a small, head-mounted
camera (“headcam”) that was constructed from a MD80
model camera attached to a soft elastic headband. Videos
captured by the headcam were 720x480 pixels with 25 frames
per second.1 A fisheye lens was attached to the camera to in-
crease the view angle from 32◦ horizontal by 24◦ vertical to
64◦ horizontal by 46◦ vertical (see Figure 1, above).

Even with the fish-eye lens, the vertical field of view of the
camera is still considerably reduced compared to the child’s

1Detailed instructions for creating this headcam can be found
at http://babieslearninglanguage.blogspot.com/2013/10/
how-to-make-babycam.html.

field of view, which spans around 100–120◦ in the vertical
dimension by 6-7 months of age (Cummings, Van Hof-Van
Duin, Mayer, Hansen, & Fulton, 1988; Mayer, Fulton, &
Cummings, 1988). As we were primarily interested in the
presence of faces in the child’s field of view, we chose to ori-
ent the camera upwards to capture the entirety of the child’s
upper visual field where the child is likely to see adult faces,
understanding that this decision limited our ability to detect
hands (especially those of the child, which are typically found
at the bottom of the visual field).

Procedure All parents signed consent documents while
children were fitted with the headcam. If the child was unin-
terested in wearing the headcam or tried to take it off, the ex-
perimenter presented engaging toys to try to draw the child’s
focus away from the headcam. When the child was com-
fortable wearing the headcam, the child and caregiver were
shown to a playroom for the free-play session. Parents were
shown a box containing three pairs of novel and familiar ob-
jects (e.g., a ball and a microfiber duster, named a “zem”),
and were instructed to play with the object pairs with their
child one at a time, “as they typically would.” All parents
confirmed that their child had not previously seen the novel
toys and were instructed to use the novel labels to refer to the
toys. The experimenter then left the playroom for approxi-
mately 15 minutes, during which a tripod-mounted camera in
the corner of the room recorded the session and the headcam
captured video from the child’s perspective.

Data Processing and Annotation Headcam videos were
trimmed such that they excluded the instruction phase when
the experimenter was in the room and were automatically
synchronized with the tripod-mounted videos using FinalCut
Pro Software. These sessions yielded 507 minutes (almost
a million frames) of video, with an average video length of
14.07 minutes (min = 4.53, max = 19.35).

Posture and Orientation Annotation We created cus-
tom annotations to describe the child’s physical posture
(e.g. standing) and the orientation of the child relative to the
caregiver (e.g. far away). The child’s posture was catego-
rized as being held/carried, prone (crawling or lying), sit-
ting, or standing. The caregiver’s orientation was character-
ized as being close, far, or behind the child (independent of
distance). For the first two annotations (close/far from the
child), the caregiver could either be to the front or side of the
child. All annotations were made by a trained coder using the
OpenSHAPA/Datavyu software (Adolph, Gilmore, Freeman,
Sanderson, & Millman, 2012). Times when the child was out
of view of the tripod camera were marked as uncodable and
were excluded from these annotations.

Face and Hand Detection

We used three face detection systems to measure infants’ ac-
cess to faces. The first of these is the most commonly-used
and widely available face detection algorithm: Viola-Jones.
We used this algorithm as a benchmark for performance, as

2413

http://babieslearninglanguage.blogspot.com/2013/10/how-to-make-babycam.html
http://babieslearninglanguage.blogspot.com/2013/10/how-to-make-babycam.html


while it can achieve impressive accuracy in some situations,
it is notoriously bad at dealing with occluded faces (Scheirer,
Anthony, Nakayama, & Cox, 2014). We next tested the per-
formance of two face detectors that both made use of recently
developed Convolutional Neural Networks (CNNs) to extract
face information. The first algorithm was specifically opti-
mized for face detection, and the second algorithm was opti-
mized to extract information about the position of 18 different
body parts. For the second algorithm (OpenPose; Cao et al.,
2017), we used the agent’s nose (one of the body parts de-
tected) to operationalize the presence of faces, as any half of
a face necessarily contains a nose.

The OpenPose detector also provided us with the location
of an agent’s wrists, which we used as a proxy for hands for
two reasons. First, as we did not capture children’s entire
visual field, the presence of a wrist is likely often indicative of
the presence of a hand within the field of view. Second, hands
are often occluded by objects when caregivers are interacting
with children, yet still visually accessible by the child and
part of their joint interaction.

Algorithms The first face detection system made use of
a series of Haar feature-based cascade classifiers (Viola &
Jones, 2004) applied to each individual frame. The second
algorithm (based on work by K. Zhang et al. (2016)) uses
multi-task cascaded convolutional neural networks (MTC-
NNs) for joint face detection and alignment, built to per-
form well in real-world environments where varying illu-
minations and occlusions are present. We used a Tensor-
flow implementation of this algorithm avaliable at https:
//github.com/davidsandberg/facenet.

The CNN-based pose detector (OpenPose; Cao et
al., 2017; Simon, Joo, Matthews, & Sheikh, 2017;
Wei, Ramakrishna, Kanade, & Sheikh, 2016) pro-
vided the locations of 18 body parts (ears, nose,
wrists, etc.) and is available at https://github.com/
CMU-Perceptual-Computing-Lab/openpose. The system
uses a CNN for initial anatomical detection and subsequently
applies part affinity fields (PAFs) for part association, produc-
ing a series of body part candidates. The candidates are then
matched to a single individual and finally assembled into a
pose; here, we only made use of the body parts relevant to the
face and hands (nose and wrists).

Detector evaluation To evaluate face detector perfor-
mance, we hand-labeled a “gold set” of labeled frames. To ac-
count for the relatively rare appearance of faces in the dataset,
we hand-labeled two types of samples: a sample containing
a high density of faces (half reported by MTCNN, half by
OpenPose) and a random sample from the remaining frames.
Each sample was comprised of an equal number of frames
taken from each child’s video. For wrist detections, the “gold
set” was constructed in the same manner, except frames with
a high density of wrists came only from detections made by
OpenPose. Faces were classified as present if at least half of
the face was showing; wrists were classified as present if any

part of the wrist was showing. Precision (hits / hits + false
alarms), recall (hits / hits + misses), and F-score (harmonic
mean of precision and recall) were calculated for all detec-
tors and are reported in Table 1.

For face detection, MTCNN outperformed OpenPose
when taking into account only the composite F-score (0.89
MTCNN vs. 0.83 OpenPose). Although MTCNN and
OpenPose performed comparably with the random sample,
MTCNN performed better on the high density sample (specif-
ically looking at precision), suggesting that OpenPose gen-
erated more false positives than MTCNN. ViolaJones per-
formed quite poorly relative to the other detectors, especially
with respect to the random sample. We thus use MTCNN
detections in the following analyses. For wrist detection,
OpenPose performed moderately well (F = 0.74) with rela-
tively high precision but low recall on the randomly sampled
frames (see Table 1). We thus analyze wrist detections, with
the caveat that we are likely underestimating the proportion
of hands in the dataset.

Algorithm Sample Type P R F
MTCNN-Faces High density 0.89 0.92 0.90
MTCNN-Faces Random 0.94 0.62 0.75

OpenPose-Faces High density 0.78 0.93 0.84
OpenPose-Faces Random 0.72 0.80 0.76

ViolaJones-Faces High density 0.96 0.44 0.60
ViolaJones-Faces Random 0.44 0.38 0.41
OpenPose-Wrists High density 0.66 1.00 0.79
OpenPose-Wrists Random 0.88 0.29 0.43

Table 1: Detector performance on both high density samples
(where proportion of targets detected was high) and random
samples (where frames were randomly selected). P, R, and F
denote precision, recall, and F-score, respectively. Scores in
bold are the highest F-scores for each sample type.

Results
Changes in Posture and Orientation
The proportion of time infants spent sitting decreased with
age, and the proportion of time infants spent standing in-
creased with age. Both 8-month-olds and 12-month-olds
spent equivalent amounts of time lying/crawling, which was
markedly decreased in the 16-month-olds, who spent most of
their time sitting or standing (see Figure 3). We also observed
changes in children’s orientation relative to their caregivers:
the 8-month-olds spent more time with their caregiver behind
them supporting their sitting positions (see Figure 3).

Changes in Access to Faces and Hands
We examined the proportion of face and hand detections
across age (see Figure 4). We observed a slight U-shaped
function in face detections, such that 12-month-olds appeared
to have visual access to slightly fewer faces than 8 or 16-
month-olds; conversely, hand detections perhaps appeared to
generally increase with age.
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12 months8 months 16 months Failures

Figure 2: Example face and pose detections made by OpenPose (top row) and MTCNN (bottom row) from a child in each age
group. The last column features a false positive from OpenPose and a false negative from MTCNN.
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Figure 3: Proportion of time that infants in each age group
spent in each posture/orientation relative to their caregiver.

Age related effects were much smaller than postural and
locomotor changes on children’s visual access to faces and
hands. Children’s posture was a major factor both in how
many faces and hands they saw during the play session. In-
fants who were sitting saw more faces than infants who were
lying down or being carried, while infants who were standing
saw the most faces (Figure 5, upper panel); this same pattern
was also true for hand detections. Children’s orientation also
impacted their visual access to faces and hands: children who
were far away from their caregiver were more likely to see
faces/hands than children who were close to their caregiver
(Figure 5, lower panel).

To formalize these observations, we fit two generalized lin-
ear mixed-effect models for the proportion of faces and the
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Figure 4: Proportion of faces detected by the MTCNN model
(left) and wrists detected by the OpenPose model (right) as a
function of child’s age. Larger dots indicate children who had
longer play sessions and thus for whom there was more data.

proportion of hands infants saw in each posture and orienta-
tion, with participant’s age, orientation, and posture as fixed
effects and with random slopes for infants’ orientation. Ran-
dom slopes for posture or interactions between our fixed ef-
fects caused the models to fail to converge.

A summary of the coefficients of the models can be found
in Table 2. While infants’ posture and orientation signifi-
cantly impacted the proportion of faces and hands that infants
saw, age was not a significant predictor in either model. Thus,
these results suggest that infants’ visual access to social infor-
mation is modulated by their posture and orientation, which
is in turn a function of their general locomotor development.

Access to Faces and Hands During Labeling Events

Finally, we explored how face and hand detections changed
during object labeling events as a function of infants’ pos-
ture and orientation. We analyzed a four-second window
around each labeling event (e.g., “Look at the [zem]!”); these
labeling events were hand-annotated and synchronized with
the frame-by-frame face/hand detections. We found that in-
fants’ posture and orientations modulated their visual access
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Figure 5: Proportion of face / wrist detections by children’s age, posture (top panel), and orientation (bottom panel).

Estimate Std. Error z value Pr(>|z|)
Faces

Intercept -5.96 0.29 -20.77 0.000
Close 2.15 0.28 7.54 0.000

Far 2.63 0.31 8.42 0.000
Sit 1.14 0.02 60.67 0.000

Stand 1.53 0.02 71.34 0.000
Age 0.19 0.17 1.11 0.268

Hands
Intercept -4.29 0.16 -26.10 0.000

Close 0.87 0.17 5.28 0.000
Far 1.78 0.27 6.60 0.000
Sit 0.63 0.02 30.97 0.000

Stand 0.44 0.02 19.32 0.000
Age 0.15 0.10 1.50 0.134

Table 2: Model coefficients from generalized linear models
predicting the proportion of faces (upper panel) and hands
(lower panel) seen by children.

to faces and hands during labeling events; infants who were
sitting or standing were more likely to have visual access to
this social information (see Figure 6). However, we did not
find that infants saw particularly more faces or hands during
naming events relative to baseline (avg. difference in propor-
tion of hands, 8 m.o. = 0.012, 12 m.o. = 0.012, 16 m.o. =
0.013; avg. difference in proportion of faces, 8 m.o. = 0.003,
12 m.o. = 0.01, 16 m.o. = 0.018).

General Discussion
We used a head-mounted camera to explore how children’s
postural and locomotor development affects their visual ac-
cess to social information, here operationalized as the pres-
ence of the faces and hands of their caregiver. Children’s
posture and orientation towards their caregiver changed sys-
tematically across age, and both of these factors influenced

the proportion of faces and hands in the child’s visual field.
Though our cameras were oriented to capture face informa-
tion, we nonetheless saw an influence of orientation and pos-
ture on visual access to hands. Motor development appears to
modulate how infants experience their visual world and the
social information in it.
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Figure 6: Proportion of face and hand detections around a
naming instance (’Look, a Zem’; +/- 2 seconds around each
utterance) as a function of infants’ posture. Error bars repre-
sent non-parametric bootstrapped 95 % confidence intervals.

We created a situation in which the context of interaction
was tightly controlled, but as children grow and change, the
activities in which they engage with their caregivers also vary,
leading to differences in the distribution of contexts they ex-
perience. Thus, more work is needed to understand how our
results relate to children’s home experiences (Fausey et al.,
2016). The ability to walk is part of a cascade of changes
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in children’s experience, and our study captures only a cross-
sectional slice of this broader, multifaceted trajectory.

Understanding these changes has been a persistent chal-
lenge for developmental psychology, but the field of computer
vision has advanced dramatically in recent years, creating a
new generation of algorithmic tools. These tools deal bet-
ter with noisier, more complicated datasets and extract richer
information than previous systems. We hope that these new
tools can be leveraged to understand the changing infant per-
spective on the visual world and the implications of these
changes for linguistic, cognitive, and social development.
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