
UC Davis
UC Davis Previously Published Works

Title
Genetic analysis of sinonasal undifferentiated carcinoma discovers recurrent SWI/SNF 
alterations and a novel PGAP3-SRPK1 fusion gene

Permalink
https://escholarship.org/uc/item/0m83k60z

Journal
BMC Cancer, 21(1)

ISSN
1471-2407

Authors
Heft Neal, Molly E
Birkeland, Andrew C
Bhangale, Apurva D
et al.

Publication Date
2021-12-01

DOI
10.1186/s12885-021-08370-x

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0m83k60z
https://escholarship.org/uc/item/0m83k60z#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


RESEARCH Open Access

Genetic analysis of sinonasal
undifferentiated carcinoma discovers
recurrent SWI/SNF alterations and a novel
PGAP3-SRPK1 fusion gene
Molly E. Heft Neal1†, Andrew C. Birkeland1†, Apurva D. Bhangale1, Jingyi Zhai2, Aditi Kulkarni1, Susan K. Foltin1,
Brittany M. Jewell1, Megan L. Ludwig1,3, Lisa Pinatti1,4, Hui Jiang2,5, Jonathan B. McHugh5,6, Lawence Marentette1,5,
Erin L. McKean1,5 and J. Chad Brenner1,3,5,7*

Abstract

Background: Sinonasal Undifferentiated Carcinoma (SNUC) is a rare and aggressive skull base tumor with poor
survival and limited treatment options. To date, targeted sequencing studies have identified IDH2 and SMARCB1 as
potential driver alterations, but the molecular alterations found in SMARCB1 wild type tumors are unknown.

Methods: We evaluated survival outcomes in a cohort of 46 SNUC patients treated at an NCI designated cancer
center and identify clinical and disease variables associated with survival on Kaplan-Meier and Cox multivariate
survival analysis. We performed exome sequencing to characterize a series of SNUC tumors (n = 5) and cell line
(MDA8788–6) to identify high confidence mutations, copy number alterations, microsatellite instability, and fusions.
Knockdown studies using siRNA were utilized for validation of a novel PGAP3-SRPK1 gene fusion.

Results: Overall survival analysis revealed no significant difference in outcomes between patients treated with
surgery +/− CRT and CRT alone. Tobacco use was the only significant predictor of survival. We also confirmed
previously published findings on IDH and SMARC family mutations and identified novel recurrent aberrations in the
JAK/STAT and PI3K pathways. We also validated a novel PGAP3-SRPK1 gene fusion in the SNUC cell line, and show
that knockdown of the fusion is negatively associated with EGFR, E2F and MYC signaling.

Conclusion: Collectively, these data demonstrate recurrent alterations in the SWI/SNF family as well as IDH, JAK/
STAT, and PI3K pathways and discover a novel fusion gene (PGAP3-SRPK1). These data aim to improve
understanding of possible driver mutations and guide future therapeutic strategies for this disease.
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Background
Sinonasal Undifferentiated Carcinoma (SNUC) is a
highly aggressive disease involving the anterior skull
base, nasal cavity and paranasal sinuses. It is a rare
tumor, with only a few hundred cases in the literature
[1]. Patients usually present at an advanced stage, and
have poor outcomes [2, 3], with two-year overall survival
rates as low as 25% in some cohorts [1, 4–9]. Validated
prognostic factors are limited to traditional clinical
variables (overall stage, high grade, and poor differenti-
ation), and no additional data on possible informative
biomarkers is currently in clinical use [10]. Current
treatment modalities including surgery, radiation, and
systemic chemotherapy alone or in combination with
radiation (CRT) have poor outcomes and carry signifi-
cant toxicity to patients [11–13]. A recent study reveals
improved survival with chemoselection paradigms, with
five-year disease free survival rates of 59% in the total
cohort and rates as high as 81% in responders [14].
However, despite these promising results, patients who
did not show initial response to induction chemother-
apy had a 0 and 39% five-year DSS when treated with
CRT and surgery +/− CRT respectively. These results
indicate the urgent need for novel therapeutics particu-
larly for this subset of patients with aggressive disease.
Importantly, there have been no novel or targeted
agents introduced for SNUC treatment since its initial
identification, which is partially due to a limited investi-
gation into the underlying genetics defining SNUC
pathogenesis.
To date, only a few case reports describing muta-

tions associated with disease pathogenesis have been
published. The most commonly reported mutations
include IDH2 and SMARCB1 which have been identi-
fied in small case series via traditional sequencing
approaches or targeted sequencing panels [15–17].
There have been additional case reports of potentially
actionable mutations in isolated SNUCs including
ERBB2 and FGFR1 [18, 19], but previous efforts have
been limited in their scope of sequencing [4] and
currently there have been no comprehensive whole
exome or genome sequencing studies performed on
SNUCs.
As such, this rare, devastating disease has limited

treatment options currently available and characterizing
genomic profiles of SNUCs may have significant benefit
for the future development of rational therapeutic strat-
egies. By understanding the genomic architecture behind
this disease process, we may also begin to identify prog-
nostic biomarkers that help identify the patients that fail
current treatment paradigms. Here, we provide survival
data from 46 patients treated at our tertiary referral cen-
ter and report the first whole exome sequences profiling
the mutational landscape of SNUCs.

Materials and methods
Patient population
A single-institution retrospective case series informed by
a prospectively maintained database of patients with
SNUC was performed. The study was approved by the
University of Michigan Institutional Review Board
(HUM00080561). Patients with a history of sinonasal
undifferentiated carcinoma treated at the University of
Michigan were included in the clinical dataset (n = 46).
Pathology descriptions for the cohort are listed in
Supplemental Table 1a. Inclusion criteria for genomic,
copy number and transcriptome analysis is as follows: 1)
Patients with sinonasal undifferentiated carcinoma as
confirmed by our board-certified pathologist (J.B.M.); 2)
Blocks maintained in the University of Michigan path-
ology archive; 3) Sufficient DNA or RNA yield for next
generation sequencing. Additionally, a prospective pa-
tient was consented to our University of Michigan IRB-
approved MiOTOseq precision medicine program
(HUM00085888) as described [20]. In total, there were 5
patients who met inclusion criteria for analysis, and
demographics are shown in Supplemental Table 1b.

Survival analysis statistics
Survival was calculated using Kaplan-Meier analysis and
outcomes were compared using Log-rank analysis.
Multivariate cox regression analysis was performed using
Backward Wald method with an inclusion of variables
with p-values < 0.1. Statistical analysis was performed
using SPSS v26 (IBM, Armonk, NY). Kaplan-Meier
curves were created using Prism v8 (Graphpad, San
Diego, CA).

Cell line
The patient derived SNUC cell line, MDA8788–6, was
generously provided by MD Anderson. Generation of
this cell line was previously described by Takahashi et.al
[21]. Cells were cultured in a humidified incubator at
37 °C with 5% (vol/vol) CO2 in DMEM with 10% FBS,
1X Pen/Strep, 1X NEAA. Cells were genotyped to con-
firm the STR profile of the cell line (Supplemental
Table 2) as previously described [22].

DNA isolation
DNA was isolated from formalin fixed, paraffin-
embedded (FFPE) samples following the manufacturer’s
protocol for AllPrep DNA/RNA FFPE kit (Qiagen,
Hilden, Germany) as previously described [23, 24].
Tumor and adjacent normal regions were identified on
H&E stained slides and aligned to tissue paraffin blocks.
An 18-gauge sterile needle was used to core 2–4 samples
from each region. Deparaffinization was performed using
the xylene/ethanol method with the only modification
being that samples were digested using proteinase K at
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56 °C for 20–24min. DNA isolation was then completed
using the Allprep Isolation kit (Qiagen, Hilden, DE)
following manufacturer protocol. Each sample was an-
alyzed using a Nanodrop spectrophotometer for purity
(260:230 and 260:280 ratios) and concentration was
determined using 1uL of sample with the Qubit 2.0
Fluorometer and measured with a bioanalyzer as de-
scribed [25]. DNA extraction for MDA8788–6 cell line
was performed using Wizard® Genomic DNA Purification
Kit (Promega, Madison, WI).

DNA sequencing
Genomic DNA from each tumor and adjacent normal
specimen was submitted for sequencing to the University
of Michigan’s DNA sequencing core for exome sequencing
using both the DNA TruSeq Exome Library Preparation kit
(Illumina, Catalogue number FC-150-100x; SNUC2,
SNUC5, SNUC8, SNUC10) and the Roche NimbleGen V3
capture kit (SNUC1). DNA from the MDA 8788–6 cell line
was sequenced as described [26]. Libraries were prepared
according to the manufacturer’s instructions. Libraries were
then paired end sequenced to 125 nucleotides as part of
pool with an average of 4 samples per lane on an Illumina
HiSEQ4000 yielding an average depth of greater than 90x
per sample.

Exome variant calling
Quality of the sequencing reads was assessed using
FastQC v.0.11.5. Because the reads had adapter contam-
ination as well as a high k-mer content at the start of
the reads, trim galore v0.4.4 was used to remove
adapters and trim reads. Reads were aligned to the hg19
reference genome using BWA v0.7.1. Mapping was
followed by marking duplicates using PicardTools v1.79.
Base quality score recalibration was done using GATK
v3.6 and this was the last step in preparing the reads for
variant calling. Samtools v1.2 was used to create pileup
files for each tumor-normal pair. Varscan v2.4.1 was
used to call variants from these mpileup files using the
somatic mode of the variant caller. Goldex Helix Varseq
v1.4.6 was used to annotate variants. All variants in the
introns and intergenic regions were filtered out. Variants
with more than 5 reads supporting the alternate allele in
the tumor samples were considered as true positives.

Copy number analysis
Aberration Detection in Tumor Exome (ADTEx) v.2.0
was used to make copy number estimation calls from
the pre-processed tumor-normal BAM files which were
also used for variant calling. A state from 0 to 4 was
assigned by the software based on its estimated copy
number. State 0 corresponds to a homozygous deletion,
1 corresponds to a heterozygous deletion. A normal

copy number is denoted by state 2. States 3 and 4 repre-
sent a gain and amplification respectively.

Microsatellite instability (MSI) detection
MSIsensor was used to detect somatic MSI loci from the
tumor-normal sample pairs as described previously [27].
The software assigns a status to each sample pair based
on an instability score calculated based on a threshold of
more or less than 3.5% of called microsatellites having
alterations. We present this score as well as the overall
percentage of microsatellite alterations for each tumor-
normal pair.

Sanger sequencing
Excess DNA from above was used to validate mutation
calls in novel genes. Primers were designed using MIT-
primer3 to amplify a small region surrounding the
nominated single nucleotide variants (SNVs) as de-
scribed in Supplemental Table 3. Polymerase chain reac-
tions (PCRs) were optimized for each primer pair on cell
line genomic DNA and then used to amplify the regions
from tumor and adjacent normal DNA using Platinum
Taq DNA High Fidelity polymerase (ThermoFisher,
Waltham, MA). PCRs products were then visualized on
an eGel (Invitrogen, Waltham, MA) and purified using
the a PCR purification kit (Qiagen, Valenica, CA) as
described [28] and submitted for Sanger sequencing
at the University of Michigan’s DNA sequencing core.
Results were visualized using the LaserGene software
suite.

Cell line RNA sequencing and analysis
Total RNA from the MDA8788–6 sample underwent
standard QC and was submitted for RNA sequencing to
the University’s DNA sequencing core as previously
described [26, 29]. Briefly, the Illumina Stranded RNA-
seq kit was used and libraries were sequenced on an
Illumina HiSEQ4000 using 75 nt paired end approach.
Quality of the RNA sequencing reads was determined
using FastQC v0.11.5 and we did not identify any quality
issues. We then used a two-step alignment protocol of
Star v2.5.3a to map the reads and genome index files
were first generated using the reference human genome
and annotated transcriptome files. In the second step,
we then used the index files to guide read mapping.
Samtools v1.9 and Picard v2.4.1 were used to retain only
uniquely mapped reads and FPKM was computed using
Cufflinks v2.2.1 with default parameters, with the excep-
tion of modifying “--max-bundle-frags” to 100,000,000.
This modification was made to avoid raising of the
HIDATA flag at loci that have more fragments than the
pre-set threshold for every locus.
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Fusion gene analysis
FusionCatcher (v1.00) is a software package designed to
look for gene fusions, translocations and rearrangement
events using paired end RNA-Seq data and was used to
identify novel gene fusions in the MDA8788–6 cell line.

Linked read sequencing
High molecular weight DNA was isolated from the
SNUC cell line by lysing 1.5 million cells overnight at
37° with lysis buffer (10 mM Tris-HCl, 400 mM NaCl, 2
mM EDTA), 10% SDS, and a proteinase K solution (1
mg/mL Proteinase K, 1% SDS, 2 mM EDTA). Following
overnight lysis, DNA was salted out of the solution with
5M NaCl for 1 h at 4° and precipitated with ice cold
ethanol for 5 h at − 20 °C. High molecular weight DNA
was eluted in TE buffer; the quality and integrity of the
DNA was assessed using the Tapestation Genomic DNA
ScreenTape kit (Agilent). The DNA was submitted to
the University’s DNA sequencing core for 10x based
linked read library generation and sequencing on an
Illumina NovaSeq6000 with 300 nt paired end run.
Samples were de-multiplexed and FastQ files with
matched index files were generated using Long Ranger
Version 2.2.2. Data was visualized using Loupe software
package, Version2.1.1 (2.4).

Fusion gene knockdown
All siRNA including ON-TARGETplus Non-targeting
Control siRNA, ON-TARGETplus GAPDH Control
siRNA, and a custom siRNA targeting the PGAP3-
SRPK1 fusion site were purchased through Dharmacon
(Lafayette, CO). Each siRNA was reconstituted at a
concentration of 1 nmol/50 uL in 1X siRNA buffer
(DHarmacon, Lafayette, CO). MDA8788–6 cells were
plated at a concentration of 250,000 cell per well in 3
mL growth media. The following day all media was re-
moved and cells were starved in 1 mL of serum DMEM
for 3 h. Each siRNA was prepared by adding 400uL of
OPTI-MEM (Gibco, Waltham, Massachusetts) with
24uL of siRNA and left to equilibrate for 5 min. Separ-
ately, 24uL of oligofectamine (Invitrogen, Carlsbad, CA)
was added to 96uL of OPTI-MEM. After 5 minutes the
two mixtures are added together and allowed to equili-
brate at room temperature for 20 min. Cell were then
treated with 250uL of siRNA mixture containing buffer
only, Non-targeting siRNA, PGAP3-SRPK1 fusion
siRNA, or GAPDH siRNA. After 3 h 2.5 mL of growth
medium was added to each well. The following day cells
were harvested in 700uL of QIAzol Lysis Reagent
(Qiagen, Valencia, CA) and proceeded directly to RNA
extraction or stored at minus 80 °C for future extraction.
RNA extraction was performed using RNeasy Mini Kit
(Qiagen, Valenica, CA) per manufacturer’s instructions.
RNA sequencing of the fusion knockdown was also

performed as above. Briefly, extracted total RNA from
MDA8788–6 NT siRNA and PGAP3-SRPK1 fusion
siRNA were submitted to the University’s DNA sequen-
cing core and processed as above (Illumina Stranded
RNAseq kit was used and libraries were sequenced on
an Illumina NovaSEQ6000 using 300 cycle paired end
approach).

Quantitative polymerase chain reaction (qPCR)
Confirmation of successful siRNA knockdown and valid-
ation of RNAseq findings were performed with qPCR.
Following RNA extraction, cDNA synthesis was performed
using SuperScript™ III First-Strand Synthesis System
(Invitrogen, Carlsbad, CA) and qPCR was performed using
QuantiTect SYBR Green PCR Kit (Qiagen, Valencia, CA)
and run on QuantStudio5 (Applied Biosystems, Foster City
CA). Targets included SRPK1, PGAP3-SPRK1 fusion, GAPD
H, HSDL2, CCND1, FOXO4, Beta-Actin, HRPT, and RPL-
19; primer sequences are listed in Supplemental Table 4.
Analysis was performed using the 2ΔΔ-Ct method [30].

Results
Survival analysis
Forty-six patients were included in the survival analysis.
The median age at diagnosis 53 years with a range from
19 to 87 years. Median follow up time was 28months
(range < 1month – 23 years). Two patients (4.3%) were
treated with surgery alone, 21 patients (44%) with sur-
gery in addition to adjuvant radiation, chemotherapy, or
both (CRT) and 23 patients (49%) with CRT alone.
Twenty-five patients (53%) had persistent or recurrent
disease after treatment. The median time to recurrence
was 2.8 months. Of these 64% were locoregional recur-
rence or persistence while 32% were distant failures.
Five-year overall survival was 42% (95% CI 27–56%) and
5-year disease specific survival was 46% (95% CI 30–
61%) as seen in Fig. 1a. There was no significant differ-
ence in 5-year DSS when stratifying by use of surgery
+/− CRT and CRT alone (50% [95% CI 27–69%] vs. 49%
[95% CI 25–68%], p = 0.85), Fig. 1b. Multivariate analysis
was performed using backward Wald cox regression.
Variables included in the model were T-stage, nodal dis-
ease, tobacco use and treatment type (surgery +−/ CRT
vs. CRT alone). Only tobacco use was found to be sig-
nificantly associated with decreased survival (HR 5.1
[95% CI 1.7–15], p = 0.004).

Exome sequencing of SNUC tumors
We were able to isolate high quality DNA that met our
quality control standards for sequencing from 5 retro-
spective SNUC and matched normal samples that were
advanced for full exome sequencing. Within our 5 sam-
ple cohort, we had 2 patients that died within 2 years of
diagnosis and 3 patients that survived for more than 5
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years after diagnosis (Table 1). Using these tumor and
adjacent normal DNA samples, we sequenced exomes to
an average depth of 256,352,493 yielding an average of
218,566,135 uniquely mapped reads in each sample, for
an average coverage of >100X per tumor (Supplemental
Table 5).
Using this data, we first generated copy number calls

for broad genomic regions and assessed the global view
of the copy number variation in Circos plots (Fig. 2a,
Supplemental Tables 6A-E). These plots demonstrated
that 3/5 tumors showed a much higher level of copy
number variation as compared to the other samples with
frequent high level amplifications in chromosomes 4, 17,
19 and 22. Genes with copy gain or amplifications in
multiple tumors included: CD300C which plays a role in
innate immunity and antigen presentation via MHC
class I and is a negative regulator of CD4 and CD8 T
cells [31], JAK3, E2F4 and GLI1, which have canonical
and non-cannonical roles in tumor cell proliferation

respectively [32, 33], MDM2 which targets p53 for deg-
radation [34], and MLL2 which may play a role in
epithelial-mesenchymal transition (EMT) [35]. We also
identified copy gains in ERBB2 in 3/5 samples (Fig. 2b)
suggesting a potential role of ERBB2 function in a subset
of SNUCs, which has been previously noted [18]. More-
over, we also identified copy number losses in SMARC
family genes (SMARCA1, SMARCA2, SMARCA5, SMAR
CB1, SMARCC1 and SMARCE1) in numerous samples
consistent with previous reports of the recurrence of
alterations to this gene family in SNUC [16]. Focal
amplifications were identified in WEE1, FGFR3 and
MAPK15 while focal copy losses were identified in FAT1
and SMARCA2 (Fig. 2c).
Analysis of SNV data revealed an average of 23.6

(range of 5–63) high confidence non-synonymous
somatic alterations per tumor (Supplemental Figure 1).
Oncoplots for recurrently altered as well as targetable or
cancer-relevant genes are shown in Fig. 3a and an

Fig. 1 Kaplan-Meier Survival Curves. A) Five-year disease specific survival (DSS) and overall survival (OS) for SNUC cohort. B) Five-year DSS
stratifying by the use of surgery with or without chemotherapy and radiation (CRT) compared to CRT alone
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extended list of the mutations with functional annotations
and pathogenicity scores is shown in (Supplementary
Tables 7, 8, 9). From this analysis, we identified a mutation
in IDH2 (p.Arg172Gly), which is a gene previously associ-
ated with SNUC [15, 17], as well as new mutation disrupt-
ing SMARCAL1 (p.Thr742Met; Fig. 3b, c) suggesting
alternative pathways may be implicated in tumorigenesis
in these samples. Further, we identified potentially target-
able alterations including an ALK p.Gly872Ser (Fig. 3d).
We also identified two different ABC transporter genes,

ABCA10 (p.Glu507Ter) and ABCB7 (p.Glu342Gln), sug-
gesting a general pathway for drug resistance that may ex-
plain why some tumors respond poorly to chemotherapy.
Finally, we characterized microsatellite instability in each

of the tumors using the MSIsensor software package, which
assigns an instability score to each tumor/normal pair.
These data revealed an average of 16.4 somatic sites and a
median % of 4.99 (range 0.72–6.95). Two of the SNUC
samples were found to be microsatellite stable while three
were found to be unstable (Supplemental Table 10).

Table 1 Patient and tumor characteristics

Sample
ID

Tobacco Use (Current,
Former, Never)

Site TNM
Classification

Initial
Treatment

Died of
Disease (Y/N)

Survival
Months

Histology

SNUC1 Never Nasal
Cavity

T4bN0M0 Surgery,
Adjuvant RT

N 144

SNUC2 Former Maxillary
Sinus

T3N0M0 CRT Y < 1

SNUC5 Never Nasal
Cavity

T3N0M0 Surgery,
Adjuvant CRT

N 125

SNUC8 Never Ethmoid
Sinus

T4bN0M0 Surgery,
Adjuvant CRT

N 130

SNUC10 Never Nasal
Cavity

T4bN0M0 Surgery,
Adjuvant CRT

Y 3
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Exome and RNAseq analysis of SNUC cell line (MDA8788–6)
Our colleagues recently derived the first SNUC cell line,
MDA8788–6, and we performed exome sequencing on
this cell line model with subsequent SNV annotation
using our previously established informatics pipelines for
head and neck cell lines without available matched nor-
mal DNA. This sequencing yielded 225,772,526 reads, of
which 99.7% uniquely mapped to the genome yielding

an average coverage of >100X (Supplemental Table 11).
As no matched normal was available, joint calling was
completed with our UM-SCC cell lines as described [26,
29], and filtering to retain only heterozygous calls and
remove any SNV previously reported in dbSNP, yielded
563 potential single nucleotide variants, of which 182
were categorized as missense, frameshift or stopgains
(Supplemental Table 12). Similar filtering for insertion/

Fig. 2 Copy Number Variation (CNV) Analysis. A) Circos Plots depicting copy number variation for each sample. For patients who died of disease, 2/2
had increased copy number variations, compared to only 1/3 in the group of patients who did not die of disease. B) Heatmap depicting copy number
for key genes; 1- copy loss, 2 –copy neutral, 3- copy gain, and 4 – amplification. C) Manhattan plots for highlighted genes with focal copy alterations
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deletion calls yielded 779 potential INDELs, of which 39
were categorized as frameshift INDELs (Supplemental
Table 13). Among these alterations, we identified
KMT2B S421P and NOTCH1 T2483 missense muta-
tions, which may have an important role in pathogenesis
of this tumor model given the previously established role
of these genes in tumorigenesis.

Next, we performed paired end RNA sequencing to
discover potential gene fusions in the cell line using the
FusionCatcher algorithm. This analysis called 107 poten-
tial gene fusions in the cell line to a variety of known
oncogenes and previously described fusion genes from
other cancers (Supplemental Table 14). We focused
validation studies on inframe gene fusions, with at least

Fig. 3 A) Oncoplot depicting high confidence non-synonymous somatic alterations in key genes in five SNUC samples. Sanger Sequencing
Validation of Single Nucleotide Variations. B) IDH2 p.Arg172Gly in SNUC1. C) SMARCAL1 p.Thr742Met in SNUC5. D) ALK p.Gly872Ser
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10 supporting reads that spanned the fusion junction.
Importantly, we were able to validate the presence of a
novel fusion between PGAP3 exon 2 and SRPK1 exon 13
(Fig. 4a). The resulting fusion gene creates an in-frame
fusion gene predicted to encode a 244 amino acid, with
predicted isoelectric point (pI) of 5.87 and molecular
weight of 27.6 kDa protein (Supplemental Figure 2) [36,
37]. The resulting fusion protein is predicted to retain
the SRPK1 protein kinase domain, which normally regu-
lates constitutive and alternative pre-mRNA splicing ma-
chinery through phosphorylation of SR proteins [38].

To then test the hypothesis that large scale structural
rearrangements drove fusion formation, we performed
10X linked read genome sequencing on high molecular
weight DNA isolated from the MDA8788–6 cell line.
We obtained 848,842,686 total reads and averaged 36.9x
coverage, with 96.1% of the DNA molecules of > 20 kb
in length and 58% greater than 100 kb (Supplemental
Table 15). Long ranger pipeline analysis phased 99.2% of
SNPs resulting in a maximum phase block of 47.9 MB
(Fig. 4b). The analysis identified 888 large structural
variant calls in the genome. Contrary to our hypothesis,

Fig. 4 PGAP3-SRPK1 fusion gene and linked read genome sequencing. A) Schematic representation of the novel PGAP4-SRPK1 fusion gene. Exon 2
of PGAP3 is fused to exon 13 of SPRK1. B) Phase map summarizing linked read sequencing data as reported by the LongRanger and Loupe
Analysis pipeline. C) Linked read matrix map showing high density coverage of linked reads over the SRPK1 locus. Dark brown indicates >30x
coverage. D, E) Linear view of linked read data highlighting structural variations (indicated with colored lines, with horizontal bars indicating the
direction of each paired read), for SRPK1 (D) and PGAP3 (E). Read coverage is shown on the bottom, ranging from white/yellow = zero reads to
dark red = 26 reads
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there were no structural rearrangements around PGAP3
or SRPK1 identified (Fig. 4c-e) suggesting that the fusion
is formed at the RNA level, possibly by trans-splicing
events. However, we did identify structural alterations
involving ZNF546 and AXL (Chr19:40,490,000 and
Chr19:41,760,000, 1.27MB duplication, quality score
1000) as well as CREB3L2 and BRAF (Chr7:137,630,000
and Chr7:140,490,000, 2.86MB duplication) suggesting a
potential role for these oncogenes in pathogenesis of this
SNUC model (Supplemental Figure 3).
Finally, to test for potential functional roles of the

PGAP3-SRPK1 fusion, we performed siRNA-mediated
knockdown of the fusion transcript and submitted
RNA for complete transcriptome sequencing. This

data demonstrated that knockdown of PGAP3-SRPK1
fusion results in significantly decreased HSDL2,
NAGK, and CCND1 RNA expression and a modest
increase in LINC01006 and FOXO4 suggesting
PGAP3-SRPK-1 may play a role in regulation of these
genes (Fig. 5a). In fact, we identified 122 genes that
were > 2-fold upregulated and 112 genes > 2-fold
downregulated in the knockdown relative to control.
Further, gene set enrichment analysis of the differen-
tially expressed rank list found enrichment of
KOBAYASHI_EGFR_SIGNALING_24HR_DN, HALL
MARK_E2F_TARGETS, and HALLMARK_MYC_
TARGETS_V1 pathways (Fig. 5b, Supplemental
Table 16). Collectively, this RNA sequencing data

Fig. 5 RNAseq and gene set enrichment analysis (GHSEA) results for PGAP3-SRPK1 fusion knockdown. A) qPCR of MD8788–6 treated with PGAP3-
SRPK1 siRNA compared to NT siRNA. Results are quantified as log2 fold change of NT siRNA samples. Results demonstrate knockdown of PGAP3/
SRPK1 mRNA without changes in WT SRPK1 expression and confirm RNAseq results showing decreases in HSDL2 and CCDN1 and a small
increase in FOXO4 with PGAP3-SRPK1 knockdown (n = 2 replicates). B) GSEA results demonstrating a negative correlation with
KOBAYASHI_EGFR_SIGNALING_24HR_DN, HALLMARK_E2F_TARGETS, and HALLMARK_MYC_TARGETS_V1 pathways in samples with
PGAP3-SRPK1 knockdown
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analysis suggests that the gene fusion has a pivotal
role in the hallmark signaling pathways.

Discussion
Here we report survival outcomes for a cohort of 46
SNUC patients treated with CRT or surgery +/− CRT.
Survival analysis from our cohort is congruent with
previous reports of low survival rates [1, 4–9] and shows
little differences in survival when stratifying by treatment
modality. Multivariate analysis revealed that only to-
bacco use was an independent predictor of poor out-
comes in our cohort. The lack of robust clinical
predictors highlights the need for more in-depth under-
standing of molecular markers that may predict treat-
ment outcomes.
In this study, we confirm the presence of previously

noted alterations in IDH2, SMARC family members,
and ERBB2 from initial targeted sequencing studies.
Previous studies have noted high rates of IDH2 muta-
tions ranging from 55 to 84% [15, 17, 39] and have
identified R172X as a hotspot location. While only 1/
5 of our samples contained an IDH mutation, this did
occur at the R172 codon. Similarly, prior studies have
cited loss of SMARCB1 in 33–43% of SNUC samples
and have demonstrated worse outcomes in these pa-
tients [40, 41]. Notably, while we did not find a high
frequency of SMARCB1 mutations, we did identified
copy number alterations in SMARCB1 in addition to
other SMARC family members. These data suggest
that deregulation of the SWI/SNF nucleosome remod-
eling complex (consisting of known tumor suppres-
sors SMARCB1, SMARCA4, PBRM1, ARID1B, and
ARID2), through one of its many components, is a
critical step in disease progression in SNUCs [42].
SMARCB1 has been implicated in numerous other
solid cancers as a tumor suppressor gene, including
sarcomas, carcinomas and rhabdoid tumors of varying
sites [43]. It appears to have tumor suppressor func-
tions in inhibiting cell cycle and proliferation via the
p16-Rb-E2F and Wnt/Beta-catenin pathways, among
others [43]. SMARCA2 function and expression may
also play a critical role in response to specific tar-
geted therapies (particularly with EZH2 inhibition) in
tumors with SWI/SNF dysregulation [44], suggesting a
potential role for EZH2 inhibitors in SNUCs. The re-
mainder of our samples however lacked the trad-
itional SMARCB1 or IDH mutations implying
diversity in SNUC tumorigenesis and suggesting the
importance of identifying novel alterations within
these SNUC tumors.
Previous isolated reports of SNUCs have identified

overexpression or amplification of growth factor re-
ceptors [18, 19, 45] and in this study, we have identi-
fied genetic alterations in ERBB2 and FGFR family

growth factor receptor genes as well as ALK, suggest-
ing potential targetable option in SNUCs. In a previ-
ous study of a SNUC cell line, high ERBB2
expression was identified with a notable response to
ERBB2 inhibition [18]. FGFR3 alterations have been
implicated in head and neck cancer and in vitro and
in vivo studies suggest a promising role for FGF inhib-
ition in head and neck tumors [46–48]. Further, a recent
publication by Takahashi et al. identified a 34 gene
signature differentiating responders from non-
responders after induction chemotherapy [49]. Critical
pathways highlighted in this work included PI3K and
JAK/STAT. Our work similarly identified alteration
within PIK3CG as well as recurrent alterations within
the JAK/STAT pathway. Given the diverse, but poten-
tially actionable set of alterations that our data de-
fined, these results suggest a role for in depth
molecular analysis of this rare disease in order to gain
insight into molecular alterations that may drive dis-
covery of future therapeutics, and potentially guide
individual patient treatment options.
Finally, this study identifies a novel fusion of PGAP3-

SRPK. SRPK1 has been previously characterized to drive
cell proliferation, migration, and invasion in colorectal
and gastric cancers [50–53] suggesting that the fusion
protein may have oncogenic consequences in the SNUC
cell line. CNV analysis additionally revealed copy gain in
one tumor in the SPRK1 gene. Knockdown of the
PGAP3-SRPK1 fusion gene resulted in changes in
expression of CCND1, FOXO4 and most significantly a
decrease in HSDL2 and NAGK suggesting a functional
role for this novel fusion gene. Unfortunately, insuffi-
cient RNA prevented evaluation of SNUC tissues for
presence of the fusion. This is the first study to date to
suggest a role of SRPK-1 in sinonasal undifferentiated
carcinoma.
Limitations in interpretation of the novel PGAP3-

SRPK1 gene fusion do exist. For example these results
may represent a trans-splicing event such as that de-
scribed by Li et al. In this paper, the authors demon-
strate the presence of chimeric JAZF1-JJAZ RNA in
normal endometrial tissue lacking the JAZF1-JJAZ fusion
[54]. Given we have not yet performed protein validation
of the PGAP-SRPK-1 fusion it is possible that this repre-
sents chimeric RNA that occurred in a trans-splicing
event. Further it is also possible that a DNA rearrange-
ment was missed by our sequencing. We had on aver-
age > 20 reads covering the PGAP3 and SRPK1 genes
(read coverage of each gene is depicted in Fig. 4d and e),
with a slight gap in read coverage between exon 1 and 2
of PGAP3 that corresponds to the potential breakpoint
in that gene, so it is possible that the linked read analysis
missed the DNA breakpoint because of low sequence
ability, or other library specific issues.
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Conclusion
Given the rarity of this tumor, it will be challenging to
characterize a large cohort of patients. Nevertheless, we
believe this initial analysis of five SNUCs represents a
valuable preliminary guideline of the mutational landscape
of SNUCs and identifies multiple recurring mutations and
pathway alterations. These may be of particular interest
both as prognostic biomarkers in larger cohort studies, and
as potentially targetable therapeutic options. Consequently,
the alterations identified here represent promising targets
for future SNUC studies and support a potential pathogenic
role in other cancers. Due to both the infrequency and
highly aggressive nature SNUC, our hope is this study will
serve as primer to advance therapeutic concepts developed
for other malignancies against these pathways into future
SNUC therapies.
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