
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Equivalence between Kuznetsov components of cubic fourfolds and Gushel-Mukai fourfolds

Permalink
https://escholarship.org/uc/item/0m94p8c7

Author
Chen, Qingjing

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0m94p8c7
https://escholarship.org
http://www.cdlib.org/


University of California
Santa Barbara

Equivalence between Kuznetsov components of
cubic fourfolds and Gushel-Mukai fourfolds

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy
in

Mathematics

by

Qingjing Chen

Committee in charge:

Professor Xiaolei Zhao, Chair
Professor Birge Huisgen-Zimmermann
Professor David Morrison

June 2023



The Dissertation of Qingjing Chen is approved.

Professor Birge Huisgen-Zimmermann

Professor David Morrison

Professor Xiaolei Zhao, Committee Chair

May 2023



Acknowledgements

I want to express my sincere gratitude and appreciation to my doctoral advisor

Xiaolei Zhao, for his constant support with advices, smart ideas and for having

encouraged me in moments I needed. I would also like to thank my doctoral

committee as a whole for their time, consideration and feedback.

I want to thank Zhiyuan Li for hosting my visit in SCMS, Qizheng Yin for

my visit in BICMR and Alex Perry for my visit in University of Michigan. They

have provided me very warm hospitality and I also want to thank them for many

interesting and inspiring discussions.

I am much indebted to Laura Pertusi, who shared many helpful ideas and

answered, with great patience, my questions.

I owe Xianzhe Dai, Guofang Wei, Mihai Putinar, Darren Long, Daryl Cooper

and Adebisi Agboola for very insightful courses and discussions that radically

shifted my understanding of certain areas of mathematics. In the same vein, I

would like to thank Yang Qiu, Ethan Robinett, Ashwin Trisal, Junrong Yan for

introducing me to their research and for listening to mine.

I want to thank the staffs in our department, especially Medina Price, for their

constant help. They have created a very warm and inclusive environment.

Bai, you are special, thank you for being there and always listen to me.

Lastly, I want to thank my parents and grandparents, thank you for all that

you do for me.

I was partially supported by the grant NSF FRG DMS-2052665.

iii



Curriculum Vitæ
Qingjing Chen

Education

2010 - 2014 B.Sc. (Hons) in Mathematical sciences, Nanyang Techonological
University.

2017 - 2018 M.A. in Mathematics, University of California, Santa Barbara.
2018 - present Ph.D. in Mathematics (Expected), University of California,

Santa Barbara.

Reserch Interests
I am mainly interested in algebraic geometry; more specifically,
in areas like derived category of varieties, Bridgeland stability
and moduli spaces, hyperkahler geometry, etc.

Seminar Talks

Fall 2019 Moduli of sheaves via Quiver Representation, Reading seminar
on moduli of sheaves, UC Santa Barbara.

Fall 2020 Homological Projective Duality, Learning seminar on algebraic
geometry, UC Santa Barbara.

Summer 2021 Weil II, Learning seminar on algebraic geometry, UC Santa
Barbara.

Summer 2022 Hodge numbers are not derived invariant in positive characteristic,
Preprint Seminar, UC Santa Barbara.

Winter 2022 Kuznetsov components of some Fano fourfolds, Algebra seminar,
Michigan State University.

Visiting Positions

Dec. 2020 - Feb. 2021 Shanghai Center for Mathematical Sciences, invited by
Professor Ziyuan Li.

Mar. 2021 - Aug. 2021 Beijing International Center for Mathematical Research,
invited by Professor Qizheng Yin.

Aug. 2022 - Dec. 2022 University of Michigan, invited by Professor Alexander
Perry.

Fellowships and Awards

2018 Raymond L. Wilder Award for outstanding achievement as
a first-year graduate student, UC Santa Barbara.

2021 NSF FRG DMS-2052665 (paritally supported)

iv



2022 Outstanding Teaching Assistant Award, UC Santa Barbara.
2022 Graduate Division Dissertation Fellowship, UC Santa Barbara.

Teaching Experiences

MATH 34A, Calculus for Social Science.
MATH 4A, Linear Algebra with Applications.
MATH 4B, Differential Equations.
MATH 8, Transition to Higher Math.
MATH 6A, Vector Calculus I.
MATH 108A, Linear Algebra.
MATH 122A, Complex Analysis.

v



Abstract

Equivalence between Kuznetsov components of cubic fourfolds and

Gushel-Mukai fourfolds

by

Qingjing Chen

There are two ways that certain Fano fourfolds (for example, cubic fourfolds

and Gushel-Mukai fourfolds) can be associated with K3 surfaces. On the one

hand, we can associate a K3 surface to the fourfold Hodge-theoretically, meaning

the middle cohomology of the fourfold contains the middle cohomology of the K3

as a sub-Hodge structure; on the other hand, we can homologically associate a

K3 to the fourfold, which is to require the Kuznetsov component of the fourfolds

to be equivalent to the bounded derived of the K3. Conjecturally, one expect

such K3 associations detect rationality of the fourfolds. It has been proved that

for cubic fourfolds, these two types of K3 associations are equivalent, whereas for

Gushel-Mukai fourfolds, Hodge-association of a K3 strictly implies homological

association of a K3. We continue this line of study, instead of comparing fourfolds-

K3 association we consider fourfolds-fourfolds association. We prove that, at least

for a generic Gushel-Mukai fourfold in the Hodge-special loci, if it admits Hodge-

associated cubic fourfolds, then it admits a homological-associated one, and vice

versa.
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Chapter 1

Introduction

An algebraic variety is said to be rational if it is birationally equivalent to a

projective space, in other words these are the varieties that can be parametrized by

rational maps. Studying the rationality of a variety is one of the major endeavors

in algebraic geometry. Being vastly open for general algebraic varieties, it is

natural to first narrow down the scope of investigation to smooth hypersurfaces in

projective spaces. The rationality of hyperplane is trivial and is also completely

known for quadrics, a smooth quadirc hypersurface X ⊂ Pn is rational if and

only if X has a k-rational point, where k is the base field. Now if we just

move one degree higher, namely to smooth cubic hypersurfaces, the situation

immediately becomes much more intriguing. Using only elementary techniques,

it is proved in early days that smooth cubic curves in P2 are not rational, and

smooth cubic surfaces in P3 are rational. Rationality of smooth cubic hypersurface

in P4 (known as cubic threefolds) remains untill 1972 when Clemens and Griffiths

([CG72]) proved the irrationality, by studying the intermediate Jacobians of cubic

threefolds. Rationality of cubic hypersurfaces in P5 (known as cubic fourfolds) still

remains open and is on the forefront of current research. Besides hypersurfaces

in projective spaces, the rationality of more general Fano varieties, for example

those given by suitable complete intersections in Grassmannians, like Gushel-

Mukai varieties (see Definition 3.1.1), have also received much attentions.

1



Motivated by the investigation of irrationality of cubic threefolds by Clemens

and Griffiths, it is expected that the rationality of certain Fano fourfolds, like

cubic fourfolds and Gushel-Mukai fourfolds should be intricately related to some

geometrically associated K3 surfaces. We give a brief account of associated K3

surfaces for these two kinds of fourfolds. It turns out that there are two ways one

can associate a K3 surface to our fourfolds: one on the level of Hodge theory and

the other on the level of derived category. We refer the reader to Section 3 & 4

for many details that we have to skip for the moment.

Cubic fourfolds A cubic fourfold is a smooth algebraic hypersurface of degree

3 in P5. It is possible to associate a K3 surface to a cubic fourfold Hodge-

theoretically. In [Has00], Hassett introduced the notion of a Hodge-special cubic

fourfold, which is a cubic fourfold X containing an algebraic surface T ⊂ X not

homologous to the square h2X of the hyperplane class. The rank 2 sublattice

⟨h2X , T ⟩ ⊂ H2,2(X;Z) is called a labelling on X. Special cubic fourfolds are

parameterized by a countable union of irreducible divisors Cd in the moduli space

C of smooth cubic fourfolds, indexed by the discriminant d of the labelling on the

fourfolds. It can be shown that we must have d > 6 with d ≡ 0 or 2 (mod 6).

The orthogonal complement of a labelling on X in H4(X;Z) is called the non-

special cohomology of the labelled cubic fourfold; it is a sublattice of H4(X;Z)

with signature (19, 2) and carries a K3-type Hodge structure, so we can ask when

this is in fact Hodge isometric to the (sign-reversed) primitive middle cohomology

of an actual polarized K3 surface. Hassett proved that this happens exactly when

the cubic fourfold is in the divisor Cd (meaning it has a labelling with discriminant
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d) with the integer d satisfying the following numerical condition

(∗∗)′ d is not divisible by 4, 9

and the only odd primes dividing d are ≡ 0 or 1 (mod 3).

In this case, the cubic fourfold is said to be Hodge-associated to a K3 surface.

It is also conjectured by Hassett that the rational cubic fourfolds are exactly those

admitting Hodge-associated K3 surfaces. Rationality of cubic fourfolds in Cd for

the first few values of d satisfying (∗∗)′ has been confirmed. Cubic fourfolds in C14

are known to be rational for a long time, it is in fact due to Fano (see [Fan43]);

cubic fourfolds in C26, C38 and C42 are recently proved to be rational by Russo and

Staglian?([RS19a] and [RS19b]) using classical projectve geometric arguments.

We would like to point out that although cubic fourfolds not in divisor Cd are

believed to be irrational, not a single provable example has been found at the

moment this thesis is written!

We can also associate cubic fourfolds with K3 surfaces on the level of derived

category. The bounded derived category Db(X) of a cubic fourfold X always

contains a special admissible subcategory AX , called the Kuznetsov component of

X, defined as the right orthogonal of some exceptional sequences in Db(X). The

Kuznetsov components are often referred to as noncommutative K3 surfaces (or K3

categories), for they have the same Serre functor as the bounded derived categories

of a K3 surfaces (shifting the degree by 2). When AX is derived equivalent to

the bounded derived category Db(S) of some K3 surface S, we say that X is

homological-associated to the K3 surface S. It is conjectured by Kuznetsov in

[Kuz15] that X is rational if and only if X is homological-associated to a K3

surface.
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Now we have two rationality conjectures of cubic fourfolds based on two

notions of associating K3 surfaces, we should expect that these two notions to

be equivalent. It is indeed the case for cubic fourfolds. This was first proved by

Addinton and Thomas in [AT14], at least for cubic fourfolds general in the divisors

Cd, making use of some deformation theory of complexes (the fact that they are

only able to prove this for general fourfolds in divisors is due to the limitation

of deformation theory). Following the work of Bayer, Lahoz, Macrì, Nuer, Perry

and Stellari in [BLM+19], making use of Bridgeland stability conditions on the

Kuznetsov components of cubic fourfolds (see [BLMS17]), it is possible to bypass

this deformation argument and conclude that these two notions of associating K3

surfaces are equivalent for all cubic fourfolds.

Unfortunately, the equivalence of K3 association for cubic fourfolds is deceptive.

Actually we should not expect these two notions of associating K3 surfaces being

equivalent in more general situations, as shown by the case of Gushel-Mukai

fourfolds.

Gushel-Mukai fourfolds A Gushel-Mukai fourfold is the smooth 4-dimensional

intersection

X = CGr(2, V5) ∩ P8 ∩Q.

This intersection happens in P10, where CGr(2, V5) is the projective cone over

Gr(2, V5) ⊂ P9 in its PlÃŒcker embedding, P8 a linear subspace of P10 and Q a

quadric hypersurface in P8. Since X is smooth, it does not contain the vertex ν

of the cone CGr(2, 5). Hence the projection from ν defines a regular map

γX : X −→ Gr(2, 5),

called the Gushel map. Gushel-Mukai fourfolds are the only smooth Fano fourfolds

of degree 10 and index 2 ([DK18a]); to be more precise, if (X,H) is a smooth
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polarized fourfold such that H4 = 10 with canonical bunlde KX = −2H and

Picard group Pic(X) = ZH, then X is necessarily a Gushel-Mukai fourfold with

the polarization H given by the restriction of the hyperplane class on P10.

Hodge-special Gushel-Mukai fourfolds are introduced, in a similar philosophy

as Hassett, by Debarre, Iliev and Manivel in [DIM14]. These are Gushel-Mukai

fourfoldsX such that H2,2(X;Z) contains a class not contained in γ∗XH4(Gr(2, 5);Z);

the rank 3 sublattice of H2,2(X;Z) generated by this class and γ∗XH4(Gr(2, 5);Z) is

also called a labelling on X. Similar to the case of cubic fourfolds, it can be shown

that such fourfolds are parameterized by a countable union of hypersurfaces GMd

in the moduli space GM of Gushel-Mukai fourfolds with d being the discriminant

of the labelling, and we must have d > 8 and d ≡ 0, 2 or 4 (mod 8). Depending

on the value of d, GMd is either irreducible or is the union of two irreducible

divisors. The orthogonal complement of a labelling on X is once again called

the non-special cohomology and is a sublattice of H4(X;Z) of signature (19, 2).

A Hodge special Gushel-Mukai fourfold whose non-special cohomology is Hodge

isometric to the (sign-reversed) primitive middle cohomology of a polarized K3

surface S is said to be Hodge-associated with the K3 surface S. The Gushel-Mukai

fourfold Hodge-associated with K3 surfaces are exactly those in the divisor GMd

with d satisfying the numerical condition:

(∗∗) d is not divisible by 8 and the only odd primes dividing d are ≡ 1 (mod 4).

We can also conjecture about the rationality of Gushel-Mukai fourfolds with

Hodge-associated K3 and this is already established for fourfolds in GM10 and

GM20; the case for d = 10 is discussed in [DIM14] and the case for d = 20 is

studied by Hoff and Staglian?([HS20]). Once again, no examples of Gushel-Mukai

fourfolds have been proved to be irrational, although conjecturally one would like
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to say that very general Gushel-Mukai fourfolds (those not in any of the special

divisors Gd’s) should be irrational.

On the other hand, the bounded derived category Db(X) of a Gushel-Mukai

fourfold X also contains a Kuznetsov component AX , once again a K3 category.

When AX is derived equivalent to the bounded derived category of an actual K3

surface S, we also say that X is homological-associated to S. However, unlike

the case of cubic fourfolds, homological and Hodge-theoretic associations of K3

surfaces are not equivalent for Gushel-Mukai fourfolds. In fact, by the results in

[Pert17], [BLM+19] and [PPZ19], we can conclude that if a Gushel-Mukai fourfold

X has a Hodge-associated K3 surface then it must have a homological-associated

one; the converse, however, is shown to be false by explicit counterexample in

[Pert17]. It is an interesting question to ask if Gushel-Mukai fourfolds with

homological-associated K3 which have no Hodge-associated ones are irrational.

We give some more details about the “fourfold-K3” associations to illustrate

some ideas that will persist in our work. Following [BLMS17], [BLM+19] and

[PPZ19], we know that a cubic fourfold or a Gushel-Mukai fourfold X has a

homological-associated K3 if and only if H̃
1,1
(AX ;Z) contains a hyperbolic plane.

Here H̃(AX ;Z) is a weight-2 Hodge structure that can be associated to the K3

category AX ; we call it the Mukai lattice of AX and it generalizes the usual

Mukai Hodge structure of K3 surfaces. On the other hand, we will see later

that the data of a labelling on X is equivalent to the data of some rank 3

sublattice of H̃
1,1
(AX ;Z) (necessarily of the same discriminant as the labelling).

Therefore the condition of X being Hodge-associated to a K3 is equivalent to that

H̃
1,1
(AX ;Z) containing some rank 3 sublattice with discriminant d (satisfying

(∗∗) if X is Gushel-Mukai fourfold or (∗∗)′ if X is a cubic fourfold). Hence the

comparison between these two notions of “fourfolds-K3” associations is reduced to

comparing two conditions about sublattices of H̃
1,1
(AX ;Z), which can be carried

6



out by purely lattice theoretic computations (see [AT14, Theorem 3.1] and [Pert17,

Theorem 3.6]). For cubic fourfolds, these two are equivalent and therefore Hodge-

theoretic and homological association of K3 are equivalent for cubic fourfolds.

Whereas for Gushel-Mukai fourfolds, H̃
1,1
(AX ;Z) containing the aforementioned

rank 3 sublattice always implies it containing a hyperbolic plane but not vice

versa, therefore we only conclude that a Gushel-Mukai fourfold admitting Hodge-

associated K3 also admits homological-associated one.

Now we have seen that, motivated by rationality question, Fano fourfolds

with associated K3 surfaces have received much attention. However there is a

lack of spotlight on “fourfolds-fourfolds” associations. To be more precise here,

we can talk about homological or Hodge-association between cubic fourfolds and

Gushel Mukai fourfolds, which simply means their Kuznetsov components being

equivalent, or their non-special cohomologies being Hodge isometric. We do have

the following numerical condition on d

(†)

(a)either d ≡ 2 or 20 (mod 24)

and the only odd primes dividing d are ≡ ±1 (mod 12);

(b)or d ≡ 12 or 66 (mod 72)

and the only primes≥5 dividing d are ≡ ±1 (mod 12).

which is given in [DIM14], telling us that a general Gushel-Mukai fourfolds in

GMd will be Hodge-associated to some cubic fourfold in Cd; yet we do not know

much about the relation between homological and Hodge-associations in this case.

Suggested by the case of “fourfolds-K3” comparison, we expect Hodge-association

implies homological-association in the “fourfolds-fourfolds” comparison as well.

We find out that this is indeed the case for fourfolds general in divisors.

Theorem 1.0.1. Let d > 8 be an interger satisfying the numerical condition (†).

There is a non-empty Zariski open subset Ud of GMd such that Gushel-Mukai

7



fourfolds in Ud admit homological-associated ones; there is a non-empty Zariski

open subset Vd ⊂ Cd such that cubic fourfolds in Vd admit homological-associated

Gushel-Mukai fourfolds.

Notations and Conventions. Throughout we work over C, the field of

complex numbers, and by a variety we always mean a (not necessarily irreducible)

reduced separated finite type scheme over C. The set of C-points on a variety can

be naturally given the structure of a complex analytic space. When it is clear from

the context, we will not stress whether we are using analytic or Zariski topology.

The bounded derived category of coherent sheaves on a smooth projective variety

X is denoted by Db(X). When X is not necessarily smooth (for example, X being

the total space of a smooth family over a singular base), we also need to consider

the triangulated category DPerf (X) of perfect complexes on X. We use a single

capital Latin character, for example E instead of E•, to denote an object (which

is a complex) in Db(X) or DPerf (X). We also employ the common practice of

writing a derived functor in the form of their underived counterpart whenever

possible, for example for a proper morphism f : X −→ Y , we denote the derived

pushforward Rf∗ simply by f∗. Whenever we have a product X × Y , we denote

by πX : X × Y −→ X and πY : X × Y −→ Y the two projection maps.

8



Chapter 2

Preliminaries

2.1 Basics of Lattice Theory

Definition 2.1.1. A lattice is a pair (L, b) consisting of a free abelian group L of

finite rank and a non-degenerate symmetric bilinear form b : L × L → Q (called

intersection form). The lattice (L, b) is integral if b(x, y) ∈ Z for all x, y ∈ L.

Suppose rank(L) = n and {e1, . . . , en} is a basis of L, the matrix B =

(b(ei, ej)) ∈ Mn(Q) is called the intersection matrix of the lattice (L, b). The

followings are immediate consequences of the definition:

• The number of positive eigenvalues r+ of B does not depend on the choice

of the basis, the signature of (L, b), written sign(L), is the pair of integers

(r+, r−), where r− := rank(L)−r+ and is necessarily the number of negative

eigenvalues of B. The lattice (L, b) is said to be positive-definite if r+ =

rank(L) and negative-definite if r− = rank(L). It is indefinite if both r+ > 0

and r− > 0.

• The lattice (L, b) is integral if and only if its intersection matrix B (in any

basis) is an integral matrix.

• The determinant det(B) of the intersection matrix B does not depend on the

choice of the basis and is called the discriminant of the lattice (L, b), denoted

9



by disc(L, b). Note the the discriminant of a positive-definite lattice must be

positive. An integral lattice (L, b) is called unimodular if disc(L, b) = ±1.

We often omit the intersection form b from the notation if it is understood from

the context, and we wrtie b(x, y) simply as x · y, and b(x, x) as x2. Given two

lattices L1 and L2, L1⊕L2 will always mean the orthogonal direct sum, meaning,

if bi is the bilinear form on Li, i = 1, 2, the bilinear form b on L1 ⊕ L2 is given by

b((x1, x2), (y1, y2)) = b1(x1, y1) + b2(x2, y2). We can always multiply the bilinear

form b on a lattice L by a nonzero scalar λ ∈ Q, we write the resulting lattice as

L(λ) (We sometimes write L(−1) as −L).

Definition 2.1.2. An integral lattice L is called even if x2 is an even integer for

all x ∈ L, otherwise it is called odd (so an odd lattice L is one such that x2 is an

odd integer for some x ∈ L).

From now on, by a lattice, we will always mean an integral lattice. In fact, the

only reason we want to allow the intersection form to take value in Q is because

the intersection form on the dual lattice of an integral lattice (see later) takes

value in Q rather than Z.

Example. Let us introduce some examples that will be used later on. Up to

isometry (see Definition 2.1.3), we can always describe a lattice by its intersection

matrix in some basis.

1. We let Im,n be the lattice whose underlying group is Zm+n and its intersection

matrix with respect to the standard basis given by

 Im 0

0 −In

 .

10



2. The hyperbolic plane U is the rank 2 lattice with intersection matrix

 0 1

1 0

,

it is an even unimodular lattice.

3. The lattice E8 is the rank 8 positive-definite even unimodular lattice with

intersection matrix



2 0 −1

0 2 0 −1

−1 0 2 −1

−1 −1 2 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 2



.

Up to isometry, this is the only positive-definite even unimodular lattice of

rank 8.

4. We let A1 be the rank 1 lattice with intersection matrix (2) and A2 the rank

2 lattice with intersection matrix

 2 −1

−1 2

. Both are positive-definite.

As suggested by the notation, A1, A2 and E8 are the root lattices of the root

systems A1, A2 and E8 respectively.

Definition 2.1.3. (1) An embedding of lattices ϕ : (L, b) → (L′, b′) is an injective

group homomorphism ϕ : L→ L′ such that ϕ∗b′ = b (meaning b(x, y) = b′(ϕ(x), ϕ(y))

for all x, y ∈M), in this case we say L is a sublattice of L′. If in addition L′/ϕ(L) is

a free abelian group, we call ϕ a primitive embedding and L a primitive sublattice

of L′.

11



(2) If ϕ : M → L is a bijective embedding of lattices, then ϕ is called an

isometry, in this case M and L are said to be isometric. We denote by O(L) the

group of isometries from the lattice L to itself.

(3) Two lattice embeddings ϕ : M → L and ϕ′ : M → L′ of M are said to be

isomorphic if there is an isometry f : L→ L′ such that ϕ′ = f ◦ ϕ.

If M is a sublattice of L, we often identify M with its image in L (so it is

literally a subset of L) if the embedding map ϕ : M → L is irrelevant in the

situation.

The classification of indefinite unimodular lattice up to isometry is well-known

(see [Mil73] or [Ser73]):

Theorem 2.1.4. Let L be an indefinite unimodular lattice with signature (r+, r−):

(1) If L is odd, then L is isometric to Ir+,r−;

(2) If L is even , then we necessarily have r+ − r− ≡ 0 (mod 8) and L is

isometric to U r− ⊕ E
r+−r−

8
8 if r+ ≥ r−, or isometric to U r+ ⊕ E8(−1)

r−−r+
8 if

r+ ≤ r−.

In order to study the structures of lattices not necessarily unimodular, one

need to consider the so called discriminant form. We start with introducing the

discriminant group of the lattice, which measures how far the lattice is from being

unimodular. Given a lattice (L, b), we denote by bQ the Q-linear extension of the

intersection form b to the vector space L⊗Z Q. Note that L embeds into L⊗Z Q

via the map x 7→ x⊗ 1.

Definition 2.1.5. Let (L, b) be an integral lattice, we define its dual lattice

(L∗, b∗), where the underlying abelian group is given by

L∗ = {y ∈ L⊗Z Q : bQ(x, y) ∈ Z ∀x ∈ L}

12



The symmetric pairing b∗ is defined to be the restriction of bQ to the subgroup

L∗.

It is cleat that the image of the natural embedding L ↪→ L⊗Z Q is contained

in L∗, hence we can make the following

Definition 2.1.6. The finite group AL := L∗/L is called the discriminant group

of L.

Clearly L is unimodular if and only if AL = 0 and more generally one can show

that |disc(L)| = |AL|. The discriminant form is the bilinear form on AL naturally

induced by the bilinear form on L:

Definition 2.1.7. Let (L, b) be a lattice, b∗ the bilinear form (which is Q-

valued) on the dual lattice L∗ and AL the discriminant group of L, we define

the discriminant form

bL : AL × AL → Q/Z

by bL(x + L, y + L) = b∗(x, y) + Z for x, y ∈ L∗; this is well-defined since

by definition if x or y ∈ L, then b∗(x, y) ∈ Z. The quadratic form associated

to the bilinear form bL is denoted by qL. When L is even, qL takes value in

Q/2Z. We denote by O(AL, qL), or simply O(AL) the group of automorphims of

AL preserving the discriminant form qL.

The discriminant form and signature determine the genus of an even lattice.

Two lattices are said to be in the same genus if they have isometric p–adic

extensions for all p. In favorable cases, the genus of an indefinite even lattice

contains only one isometry class and therefore in theses cases discrimnant form

and signature uniquely determine the lattice up to isometry. We state two special

cases that will be used later on:
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Proposition 2.1.8. ([Nik79, Corollary 1.13.3 & 1.13.4]). (1) An even indefinite

lattice L is uniquely determined by its signature and discriminant form up to

isometry provided that rankL ≥ ℓ(AL) + 2. (The length of a finite abelian group

S, denoted by ℓ(S), is defined to be the cardinality of the minimal generator of S,

or equivalently, the number of invariant factors of S.)

(2) Let L be an even indefinite lattice with signature (r+, r−), M be an even

lattice with signature (r+ − 1, r− − 1). If there is an isomorphism AM ≃ AL

identifying qM with qL, then L is isometric to U ⊕M .

Besides classification problem, discriminant form of a lattice M also play

important roles in addressing the questions of existence and uniqueness of primitive

embedding of M into some unimodular lattice, as well as the relation to the

orthogonal complement.

Definition 2.1.9. Let M be a sublattice of L, the orthogonal complement of M

in L, denoted by M⊥ (or by(M⊥)L if we want to emphasize that the orthogonal

complement is taken in L), is the sublattice of L defined by

M⊥ = {x ∈ L : (x, y) = 0 ∀y ∈M}.

The followings are straightforward consequences of the definitions.

1. M⊥ is necessarily primitive, in fact, a sublattice M of L is primitive if and

only if (M⊥)⊥ =M ;

2. L is an overlattice of M ⊕M⊥ (meaning M ⊕M⊥ is a sublattice of L and

L/(M ⊕M⊥) is finite).

3. Any isometry of L to itself preserving M will also preserve M⊥.

Remark 2.1.10. Given a sublattice M ↪→ L, one cannot conclude that L ≃

M ⊕M⊥, but there is one important exception: suppose the lattice L contains
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a hyperbolic plane U (not necessarily primitive), then L is given by U ⊕ U⊥. In

fact, let e, f be the standard basis elements of U , then given any x ∈ L, we can

write x = x0 + x′, where x0 = (e · x)f + (f · x)e ∈ U and x′ = x− x0 ∈ U⊥.

Given an isometry ϕ : (L, b) → (L′, b′) of lattices, it naturally induces an

isometry of dual lattices (L∗, b∗) → (L′∗, b′∗), which in turn induces an isomorphism

between the discriminant groups ϕ̄ : AL → AL′ satisfying ϕ̄∗bL′ = bL (where bL

and bL′ are the discriminant bilinear forms on L and L′ resp.). The passage from

ϕ to ϕ̄ is certainly functorial. In particular we have a group homomorphism

O(L, b) → O(AL, qL), ϕ 7→ ϕ̄.

Theorem 2.1.11. ([Nik79, Proposition 1.6.1]). (1) Given a primitive embedding

of a lattice M into a unimodular lattice L, it induces canonically a commutative

diagram of finite abelian groups

L/(M ⊕M⊥)

AM AM⊥

∼= ∼=

µ

∼=

(2.1.1)

with all arrows being isomorphisms such that µ∗bM⊥ = −bM . (In particular, we

will have ℓ(AM) = ℓ(AM⊥) and disc(M) = ±disc(M⊥).)

(2) Conversely let M and K be lattices such that there is an isomorphism

γ : AM → AK satisfying γ∗bK = −bM , then there exists a primitive embedding of

M into a unimodular lattice L together with an isometry ϕ : M⊥ → K such that

γ = ϕ̄ ◦ µ.

(3) Given two isomorphisms γ1, γ2 : AM → AK such that γ∗i bK = −bM , i =

1, 2, which determine primitive embeddings fi : M ↪→ Li together with isometries

ϕi : (M
⊥)Li

→ K, i = 1, 2, as in (2), suppose we also have an isometry ψ ∈ O(M),
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then there is an isometry Ψ: L1 → L2 making the following diagram commutes

L1 L2

M M

Ψ

f1

ψ

f2
(2.1.2)

if and only if there is an isometry φ ∈ O(K) making the following diagram

commutes
AK AK

AM AM

φ̄

γ1

ψ̄

γ2 (2.1.3)

In this case, we necessarily have the following commutative diagram

K K

(M⊥)L1 (M⊥)L2

φ

ϕ1

Ψ

ϕ2 (2.1.4)

Remark. In (3) of the previous proposition, the isometry Ψ is in fact uniquely

determined by the data ψ ∈ O(M), φ ∈ O(K) and ϕi : AM→̃AK , i = 1, 2. Indeed

these data uniquely determine the values of Ψ on M⊕(M⊥)L1 by the commutative

diagrams (2.1.2) and (2.1.4) in (3), but this sublattice has finite index in L1.

Moreover, if we put ψ = idM and φ = idK , (3) says that the primitive embedding

ofM into some unimodular lattice determined by some isomorphism γ : AM → AK

with γ∗bK = −bM as in (2) is unique up to isomorphism.

We will use this theorem in the forms of the following two corollaries.

Corollary 2.1.12. Let M ↪→ L and N ↪→ L′ be primitive embeddings of lattices

into unimodular lattices.

(a) If there is an isometry M⊥ ≃ N⊥, then we have isomorphism of discriminant

forms (AM , bM) ≃ (AN , bN), and in particular we will have disc(M) = ±disc(N).

(b) Conversely, if M⊥ and N⊥ are even indefinite lattices of the same signature
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and rank(M⊥) ≥ ℓ(AM)+2, then an isomorphism (AM , bM) ≃ (AN , bN) gives rise

to an isometry M⊥ ≃ N⊥.

Proof. By (1) of Theorem 2.1.11, there is an isomorphism (AM , bM) ≃ (AN , bN)

if and only if there is an isomorphism (AM⊥ , bM⊥) ≃ (AN⊥ , bN⊥), the latter is

induced by isometris M⊥ ≃ N⊥; hence (a) is clear.

(b) follows from Theorem ?? (1) and the fact that ℓ(AM⊥) = ℓ(AM).

Corollary 2.1.13. Let M ↪→ L be a primitive embedding of lattices where L

is unimodular. Every isometry of M which induce trivial action on AM is the

restriction of a unique isometry of L which restricts to identity on M⊥.

Proof. Apply (3) of Theorem 2.1.11 to K = M⊥ and γ1 = γ2 = µ : AM → AM⊥ .

Suppose ψ ∈ O(M) induces identity map ψ̄ = idAM
on AM , then we can take

φ = idK to be identity map, then diagram (2.1.3) commutes; hence there is a

(necessarily unique) isometry Ψ ∈ O(L) such that Ψ|M = ψ and Ψ|M⊥ = id

We will also need the following

Theorem 2.1.14. [Nik79. Theorem 1.14.4]. Let M be an even lattice with

signature (t+, t−), and L be an even unimodular lattice of signature (s+, s−).

Suppose we have

(i) t+ < s+,

(ii) t− < s−,

(iii) ℓ(AM) ≤ rank(L)− rank(M)− 2.

Then there exists a unique primitive embedding (up to isomorphism) of M in

L.

We will primarily use this theorem in the following way: let M be a primitive

sublattice of an even unimodular lattice L satisfying (i)–(iii) above. Suppose

that M ′ is another sublattice of L and there is an isometry φ : M → M ′, then
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there exists an isometry φ̃ : L → L of lattices such that the following diagram

commutes:

M M ′

L L

φ

φ̃

(2.1.5)

2.2 Fourier-Mukai transform

For a thorough discussion of Fourier-Mukai transform, the reader is referred

to the textbook [Huy06], we only collect a few points that will be used later on.

Let us begin with the definition of Fourier-Mukai transform

Definition 2.2.1. LetX and Y be smooth projective vaireties, and we let πX : X×

Y → X and πY : X × Y → Y be the projection maps. The Fourier-Mukai

transform with kernel P ∈ Db(X × Y ) is the exact functor ΦP : Db(X) → Db(Y )

defined by

ΦP (E) = πY ∗(P ⊗ π∗
XE).

Let ΦP : Db(X) −→ Db(Y ) be a Fourier-Mukai transform, then both its left and

right adjoint exist and are Fourier-Mukai transforms themselves. In fact suppose

dimX = m and dimY = n and we let τ : Y ×X → X × Y be the isomorphism

interchanging the two factors, then

PR := τ ∗(P∨ ⊗ π∗
XωX [m]) ∈ Db(Y ×X)

is the kernel for the right-adjoint of ΦP , and

PL := τ ∗(P∨ ⊗ π∗
Y ωY [n]) = PR ⊗ π∗

Xω
−1
X ⊗ π∗

Y ωY [n−m]

is the kernel for the left adjoint of ΦP .
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Given two Fourier-Mukai transforms ΦP : Db(X) → Db(Y ) and ΦQ : Db(Y ) −→

Db(Z), their composition ΦQ◦ΦP is still a Fourier-Mukai transform. In fact, define

the convolution by

Q ∗ P = πXZ∗(π
∗
Y ZQ⊗ π∗

XY P ) ∈ Db(X × Z),

we have ΦQ ◦ ΦP = ΦQ∗P .

We now discuss how the Fourier-Mukai transforms naturally induce maps

between algebraic K-groups and between singular cohomologies of the varieties.

Let W be a smooth projective varieties, recall that its algebraic K-group

Kalg(W ) is defined as the Grothendieck group on Coh(W ), the abelian category

of coherent sheaves on W . Since W is smooth projective, coherent sheaves on W

admit resolution by finite complexes of locally free sheaves, therefore we can take a

generator of Kalg(W ) the class of locally free sheaves onW . This allows us to define

a natural ring structure on Kalg(W ) given by linear extending tensor product

on locally free sheaves; similarly, extending linearly the operation of dualizing a

locally free sheaf onW , we obtain a dualization on Kalg(W ). Morphism of varieties

f : W → V naturally induces a pullback map f ∗ : Kalg(V ) → Kalg(W ), which

is a ring homomorphism; there is also a pushforward f! defined for any proper

morphism f : W → V , given by f!([E]) =
∑

(−1)i[Rif∗(E)] for any coherent

sheaf E on W .

Let e ∈ Kalg(X × Y ), we can define the K-theoretic Fourier-Mukai transform

with kernel e to be the group homomorphism ΦK
e : Kalg(X) → Kalg(Y ) by

ΦK
e (f) = πY !(e · (π∗

Xf)).

For any object F ∈ Db(W ), we can assign its class [F ] ∈ Kalg(W ) given

by [F ] =
∑

(−1)i[F i] =
∑

(−1)i[Hi(F )], it is straightforward to check that the
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operations of pullback, proper pushforward and dualization are compatible with

the assignment [·] : Db(W ) → Kalg(W ).

• [π∗E] = π∗[E] for any morphism f between smooth projective varieties;

• [π∗E] = π![E] for a proper morphism f (since we have assumed our varieties

to be projective, all morphisms between them are necessarily proper);

• [E∨] = [E]∨ (E∨ := RHom(E,OW ) is the derived dual of the object E ∈

Db(W )).

Therefore, the Fourier-Mukai transform on the level of derived categories is compatible

with the Fourier-Mukai transform on the level of algebraic K-theory That is to

say, for any object E ∈ Db(X × Y ) the following diagram commutes

Db(X) Db(Y )

Kalg(X) Kalg(Y )

[·]

ΦE

[·]
ΦK

[E]

. (2.2.1)

We will consider singular cohomologies of varieties. Let e ∈ H∗(X ×Y ;Q), we

can define the cohomological Fourier-Mukai transform ΦH
e : H∗(X;Q) → H∗(Y ;Q)

to be the group homomorphism

ΦH
e (f) = πY ∗(e · (π∗

Xf)).

Here πY ∗ : H∗(X × Y ;Q) → H∗(Y ;Q) is the Gysin-homomorphism associated

to πY . The usual passage from K-theory to cohomology is achieved by the

Chern character map, but due to the presence of a twisting by Todd class in the

Grothendieck-Riemann-Roch formula, we need to use Mukai vector to relate the

Fourier-Mukai transform on the level K-theory to that on the level of cohomology:

Definition 2.2.2. Let W be a smooth projective variety. The Mukai vector
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v : Kalg(W ) → H∗(W ;Q) is given by

v(·) = ch(·)
√
td(W ).

Here ch(·) is the Chern character map Kalg(W ) → H∗(W ;Q) and td(W )

denotes the Todd class of W .

By the Grothendieck-Riemann-Roch formula, it is straightforward to check

that for any class e ∈ Kalg(X × Y ), the following diagram commutes

Kalg(X) Kalg(Y )

H∗(X,Q) H∗(Y,Q)

v

ΦK
e

v

ΦH
v(e)

. (2.2.2)

From now on, we will write the induced map ΦK
[P ] and ΦH

v(P ) simply as ΦK
P and

ΦH
P respectively. It should be mentioned that the passage from ΦP to ΦK

P and ΦH
P

are functorial, for example if P ∈ Db(X × Y ) and Q ∈ Db(Y × Z), then the map

between K-theories induced byΦQ ◦ ΦP = ΦQ∗P is given by ΦK
Q ◦ ΦK

P .

We need to discuss how Fourier-Mukai transforms interact with some natural

pairing defined on Db(W ), Kalg(W ) and H∗(W ;Q):

We can equip Db(W ) with a Euler pairing, give by χ(E,F ) =
∑

(−1)iexti(E,F ).

Similarly an Euler pairing on Kalg(W ) is give by χ(e, f) = π!(e
∨ · f), where

π : W −→ {pt} is the map to a point; it is a bilinear pairing and can be

computed using the Hirzebruch-Riemann-Roch formula. Clearly the assignment

[ ] : Db(W ) −→ Kalg(W ) preserves the Eular pairings on both sides. For H∗(W ;Q),

we need to consider the so called Mukai pairing:

Definition 2.2.3. Let v =
∑
vj ∈

⊕
Hj(W ;Q), we let

v∨ :=
∑√

−1
j
vj ∈ H∗(W ;Q)
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The Mukai pairing on H∗(W ;Q) is the bilinear form

(v, v′) :=

∫
W

(v∨ · v′) · exp(c1(W )

2
)

It should be noted that a priori neither the Euler pairing nor the Mukai pairing

need to be symmetric. An important case when they are both symmetric is when

W is an even dimensional Calabi-Yau manifold (for example when W is a K3

surface).

The Mukai vector v : Kalg(W ) → H∗(W ;Q) also preserves the bilinear pairings

on both sides, meaning

χ(e, f) = (v(e), v(f))

which is a easy consequence of Hirzebruch-Riemann-Roch formula.

When the Fourier-Mukai transform ΦP : Db(X)−̃→Db(Y ) is an equivalence, it

is a straightforward computation to check that the induced isomorphisms

ΦK
P : Kalg(X)−̃→Kalg(Y )

ΦH
P : H∗(X;Q)−̃→H∗(Y ;Q)

are isometric with respect to these bilinear pairings.

We summarize these discussions in the form of the following

Proposition 2.2.4. Let X and Y be smooth projective varieties and consider

Fourier-Mukai transform ΦP : Db(X) −→ Db(Y ) associated to some P ∈ Db(X ×

Y ), then the following diagram commutes

Db(X) Kalg(X) H∗(X,Q)

Db(Y ) Kalg(Y ) H∗(Y,Q)

[ ]

ΦP

v

ΦK
P ΦH

P

[ ] v

. (2.2.3)
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Moreover, the horizontal maps preserve various pairings on these spaces, and

that is also the case for the vertical maps when ΦP is an equivalence.

At last we state a criterion for the existence of first order deformation of

Fourier-Mukai transform along some first order deformations of the varieties. To

be more precise about what we mean by deforming a Fourier-Mukai transform, let

A1 = C[t]/(t2) and X1 → A1 and Y1 → A1 be first order deformations of smooth

projective varieties X and Y (so, for example, X1 → A1 is a flat proper morphism

of schemes such that X1 ×A1 SpecC ≃ X). Suppose we have a Fourier-Mukai

transform ΦP : Db(X) → Db(Y ) defined by some kernel P ∈ Db(X × Y ), we seek

for an object P1 ∈ DPerf (X1 ×A1 Y1) whose derived restriction to X ×Y is P . We

can think of the Fourier-Mukai transform ΦP1 : DPerf (X1) → DPerf (Y1) as a first

order deformation of ΦP : Db(X) → Db(Y ).

The statement of the criterion involves the so called Atiyah class of a complex.

Definition 2.2.5. Let W be a smooth projective variety and F ∈ Db(W ) be a

complex, the Atiyah class At(F ) ∈ Ext1W (F, F ⊗ ΩW ) of F is defined to be the

extension class corresponding the exact triangle

F ⊗ ΩW → ΦO2∆W
(F ) → F

induced by the obvious short exact sequence of Fourier-Mukai kernels

0 → ∆∗ΩW → O2∆W
→ O∆W

→ 0

where 2∆W is the subscheme of W ×W defined by the square I2
∆ of the ideal

sheaf of the diagonal ∆W ⊂ W ×W . The extension class

AtW ∈ Ext1W×W (O∆W
,∆∗ΩW )
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given by the above short exact sequence is called the universal Atiyah class.

Now the criterion for the existence of first order deformation of Fourier-Mukai

kernel is given by the following

Theorem 2.2.6. ([HMS09, Theorem 3.1] or [HT10, Corollary 3.4]) Let κX ∈

H1(TX) and κY ∈ H1(TY ) be the Kodaira-Spencer classes corresponding to the

first order deformations X1 → A1 and Y1 → A1 of X and Y respectively, and we

let P ∈ Db(X × Y ), then there exists a complex P1 ∈ DPerf (X1 ×A1 Y1) whose

derived restriction to X × Y is isomorphic to P if and only if

(κX , κY ) ◦ At(P ) = 0 ∈ Ext2X×Y (P, P ).

Remark. In fact, according to [HT10], the statement of the theorem should be

valid if X and Y are defined over some complex Artinian space A. In this case the

product X × Y is to be interpreted as X ×A Y and P ∈ DPerf (X ×A Y ) a perfect

complex. The two Kodaira-Spencer classes are to be interpreted as relative over

A, meaning κX ∈ H1(TX/A) and κY ∈ H1(TY/A).

Digression on Topological K-theory

Topological K-theory is a subject of algebraic topology, we only use it to define

a topological invariants for our K3 categories (see definition in 4.1), so we will only

give a very brief account. For more detail on topological K-theory, the reader is

referred to [AH61] and [AH62].

Let W be a finite CW complex, it has a topological K-theory Ktop(W ) =

K0(W )⊕ K1(W ), where

1. K0(W ) := K(W ) is the Grothendieck group of topological C-vector bundles

on W ;

2. K1(W ) := K̃(S(W+)), where W+ is the disjoint union W ⊔ {x0}, S(−)
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is the toplogical suspension and K̃(−) is the kernal of the map K(−) →

K(base point) = Z induced by inclusion of the base point.

Similar to algebraic K-theory, K0(W ) becomes a commutative ring by extending

tensor product between topological vector bundles; this ring structure extends

to a Z2–graded commutative ring structure on Ktop(W ) (i.e. K0(W ) · K1(W ) ⊂

K1(W ),K1(W ) ·K1(W ) ⊂ K0(W ) and ab = (−1)ijba if a ∈ Ki(W ) and b ∈ Kj(W )

). Any continous map f : W → V induces a Z2–graded ring homomorphism

f ∗ : Ktop(V ) → Ktop(W ).

Apart from the natural pullback induced by continuous maps, topological

K-theory has pushforward in some specific setting. Let f : W → V be a

proper morphism between smooth projective varieties, viewed as a holomorphic

map between compact complex manifolds, then there is a pushforward map f! :

Ktop(W ) → Ktop(V ) which is a Z2–graded abelian group homomorphism. This

pushforward map is compatible with the pushforward f! : Kalg(W ) → Kalg(V )

between algebraic K-groups defined earlier via the natural inclusion Kalg(·) ↪→

Ktop(·) ([AH62]). Therefore, we can also define a ( topological K-theoretic )

Fourier-Mukai transform Ktop(X) → Ktop(Y ) associated to any element e ∈

Ktop(X × Y ) ( by the same formula as in the case of algebraic K-theory ) which

restricts to the algebraic K-theoretic Fourier-Mukai transform by the inclusion

Kalg(·) ↪→ Ktop(·).

Given ΦP : Db(X) −→ Db(Y ) a Fourier-Mukai transform, we can think of the

class [P ] as an element of Ktop(X×Y ) via the inclusion Kalg(X×Y ) ↪→ Ktop(X×Y )

and hence we get a induced map Φ
Ktop

P : Ktop(X) −→ Ktop(Y ).

One can also define a Euler pairing χ on Ktop(W ) similarly as in the case

of Kalg(W ), which restricts to the Euler pairings on Kalg(W ) discussed earlier.

When ΦP is a Fourier-Mukai equivalence, the induced isomorphism Φ
Ktop

P is also

isometric with respect to Euler pairing.
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There is also a Chern character map ch : Ktop(W ) → H∗(W ;Q) defined on the

topological K-theory satisfying the following properties:

Theorem 2.2.7. (1) ch : Ktop(W )⊗Q → H∗(W ;Q) is a Z2-graded isomorphism

(2) If H∗(W,Z) is torsion free, then ch : Ktop(W ) → H∗(W ;Q) is an injection

and Ktop(W ) is necessarily torsion free

Using this, we can also define the Mukai vector v : Ktop(W ) −→ H∗(W ;Q) on

topological K-group by v(·) = ch(·)
√
td(W ) as well, which restricts to the Mukai

vector defined on algebraic K-groups when W is an algebraic variety.

The Mukai vector v : Ktop(W ) −→ H∗(W ;Q) on topological K-group also

preserves the bilinear pairings on both sides (Euler pairing on Ktop(W ) and Mukai

pairing on H∗(W ;Q))

Lastly, we observe that because
√
td(W ) is an invertible element contained in

Heven(W ;Q), both statements in Theorem 2.2.7 hold true if we replace the Chern

character by the Mukai vector v.

2.3 Hochschild (co)homology

For a more comprehensive discussion of Hochschild (co)homologies of algebraic

varieties, please see the expository articles [Căl03] and [Căl05]. For our purposes,

we are mostly interested in the interaction between Hochschild (co)homologies

and Fourier-Mukai transforms.

Let W be a smooth projective variety and we let ∆ : W → W ×W be the

diagonal morphism, O∆ := ∆∗OW be the structure sheaf of the diagonal, ωW be

the canonical bundle of W and S∆ ∈ Db(W ×W ) be the object ∆∗ωW [dimW ] (

therefore S−1
∆ means ∆∗ω

−1
W [− dimW ] )

Definition 2.3.1. The Hochschild cohomology HHi(W ) of W is defined as the
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vector space

ExtiW×W (O∆,O∆).

Its Hochschild homology HHj(W ) is defined as the vector space

Ext−jW×W (S−1
∆ ,O∆)

Under the Yoneda pairing, The Hochschild cohomology HH∗(W ) is naturally

a graded commutative algebra and the Hochschild cohomology HH∗(W ) a graded

module over HH∗(W ).

Let ΦP : Db(X) −→ Db(Y ) be a Fourier-Mukai transform between smooth

projective varieties, we now describe its induced map on Hochschild homology

ΦHH∗
P : HH∗(X) −→ HH∗(Y ):

The convolution of Fourier-Mukai kernels give us functors

Db(X ×X)
P∗−→ Db(X × Y )

∗PR−→ Db(Y × Y ).

Direct computation gives

(P ∗ O∆X
) ∗ PR = P ∗ PR

and

(P ∗∆X∗ω
−1
X ) ∗ PR = P ∗ PL ⊗ π∗

1ω
−1
Y [m− n].

Therefore there is an induced map

HH∗(X) = Extm−∗
X×X(∆X∗ω

−1
X ,O∆X

)

→ Extn−∗
Y×Y (P ∗ PL ⊗ π∗

1ω
−1
Y , P ∗ PR)

→ Extn−∗
Y×Y (O∆Y

⊗ π∗
1ω

−1
Y ,O∆Y

) = HH∗(Y )
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Where the last map is given by composing with the morphisms

O∆Y

η−→ P ∗ PL, P ∗ PR
ϵ−→ O∆Y

.

inducing the unit and counit in the adjunction. This is the desired induced

map

ΦHH∗
P : HH∗(X) → HH∗(Y ).

When ΦP is an equivalence, we also have an induced isomorphism

ΦHH∗

P : HH∗(Y )−̃→HH∗(X)

between the Hochschild cohomologies:

If ΦP is an exact equivalence, then PR is the Fourier-Mukai kernel of the inverse

Φ−1
P . Therefore

Db(X ×X)
∗P−→ Db(X × Y )

gives an isomorphism

Ext∗X×Y (P, P )
PR∗−→ Ext∗X×X(O∆X

,O∆X
)

with inverse given by

Ext∗X×X(O∆X
,O∆X

)
∗P−→ Ext∗X×Y (P, P )

Similarly we have isomorphism

Ext∗X×X(O∆Y
,O∆Y

)
P∗−→ Ext∗X×Y (P, P )
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The composition

Ext∗Y×Y (O∆Y
,O∆Y

)
P∗−→ Ext∗X×Y (P, P )

PR∗−→ Ext∗X×X(O∆X
,O∆X

)

is the desired isomorphism ΦHH∗
P : HH∗(Y )−̃→HH∗(X).

The Hochschild structure (HH∗(W ),HH∗(W )) associated to a smooth projective

variety W is closely related to the harmonic structure on W , which consists of the

spaces

HTi(W ) :=
⊕
p+q=i

Hp(

q∧
TW )

HΩj(W ) :=
⊕
q−p=j

Hp(Ωq
W )

Similar to the Hochschild structure, HT∗(W ) is naturally a graded ring and

HΩ∗(W ) a graded module over HT∗(W ):

• To define the graded ring structure on HT∗(W ), we can identify Hp(
∧q TW )

with the Dolbeault cohomology space H0,p

∂̄
(
∧q TW ), therefore the map

A0,p(

q∧
TW )⊗A0,p′(

q′∧
TW ) −→ A0,p+p′(

q+q′∧
TW )

(ω ⊗ s, ω′ ⊗ s′) 7−→ (ω ∧ ω′)⊗ (s ∧ s′)

naturally induces a map HTi(W )⊗HT i′(W ) → HT i+i′(W ), turning HT∗(W )

into a graded commutative algebra;

• The graded HT∗(W )-module structure on HΩ∗(W ) can be defined in the

following way: we identify Hp(Ωq
W ) with the Dolbeault space H0,p

∂̄
(Ωq

W ) and
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consider the map

A0,p(Ωq
W )⊗A0,p′(

q′∧
TW ) −→ A0,p+p′(

q−q′∧
TW )

(ω ⊗ η, ω′ ⊗ s′) 7−→ (ω ∧ ω′)⊗ (s′⌟η)

which induces a map HT i(W )⊗ HΩj(W ) → HΩj−i(W ).

[Swa96] assets that the Hochschild-Kostant-Rosenberg isomorphism holds for any

quasi-projective varieties, that is to say, we have isomorphisms between graded

vector spaces

IHKR : HH∗(W )
∼=−→ HT∗(W ),

IHKR : HH∗(W )
∼=−→ HΩ∗(W ).

Unfortunately these isomorphisms have some deficiencies. On the one hand,

(IHKR, IHKR) : (HH∗(W ),HH∗(W )) → (HT∗(W ),HΩ∗(W )) does not preserve the

ring-module structure on both sides we discussed above. On the other hand, the

usual Hodge decomposition theorem allows us embed HΩ∗(W ) as a subspace of the

singular cohomology H∗(W ;C), therefore we can ask whether the cohomological

Fourier-Mukai ΦH
P restricts, via HH∗(·)

IHKR−→ HΩ∗(·) ⊂ H(·;C), to the induced map

ΦHH∗
P ; the answer is negative in general.

It turns out that the solution to both problems is to consider a twisted version

of the HKR isomorphims, due to Kontsevich, they are given by the following

isomorphisms of graded vector space

IK : HH∗(W )
IHKR

−→ HT∗(W )
⌟
√
td(W )

−1

−→ HT∗(W )

IK : HH∗(W )
IHKR−→ HΩ∗(W )

∧
√
td(W )
−→ HΩ∗(W )
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and satisfy

Theorem 2.3.2. (1) ( [CRV12] ) The following ring-module map

(IK , IK) : (HH∗(W ),HH∗(W )) → (HT∗(W ),HΩ∗(W ))

is an isomorphism of ring-module structures, meaning IK : HH∗(W ) → HT∗(W )

is a ring isomorphism and the following diagram commutes

HH i(W )⊗HHj(W ) HHj−i(W )

HT i(W )⊗HΩj(W ) HΩj−i(W )

IK⊗IK IK . (2.3.1)

(2) ( [MS09, Theorem 1.2] ). Let ΦP : Db(X) → Db(Y ) be a Fourier-Mukai

transform, then the following diagram commutes:

HH∗(X) HΩ∗(X) ⊂ H∗(X;C)

HH∗(Y ) HΩ∗(Y ) ⊂ H∗(Y ;C)

ΦHH∗
P

IK

ΦH
v(P )

IK

. (2.3.2)
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Chapter 3

Hodge theory of Gushel-Mukai and
Cubic Fourfold

3.1 Gushel-Mukai fourfolds

Definition 3.1.1. For n ∈ {2, 3, 4, 5, 6}, a Gushel Mukai variety X of dimension

n (or Gushel-Mukai n-fold) is defined to be a smooth dimensionally transversal

intersection

X = CGr(2, V5) ∩ P(W ) ∩Q,

where CGr(2, V5) ⊂ P(C ⊕
∧2 V5) is the projective cone of Gr(2, V5) in P(

∧2 V5)

under the PlÃŒcker embedding; P(W ) ⊂ P(C ⊕
∧2 V5) is a linear section of

dimension n+ 4 and Q is a quadric hypersurface in P(W ).

A Gushel-Mukai variety is naturally polarized by the restriction H of the

hyperplane class on P(W ). Gushel-Mukai varietyX of dimension n is characterized

by the following properties:

1. Hn = 10

2. −KX = (n− 2)H

3. Pic(X) = ZH when n > 2; if n = 2 then (X,H) is a Brill-Noether general

K3 surface.
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Any smooth projective polarized variety of dimension 2 ≤ n ≤ 6 satisfying (1)-(3)

above is necessarily a Gushel-Mukai variety (see [Gus82] and [Muk89], also see

[DK18a] for a more general statement for not necessarily smooth Gushel-Mukai

varieties).

The intersection CGr(2, V5) ∩ P(W ) ∩ Q that defines X does not contain the

vertex of the cone since we assumed that X is smooth. Therefore the projection

from the vertex defines a regular morphism of varieties

γX : X −→ Gr(2, V5)

called the Gushel map.

To discuss the moduli space of Gushel-Mukai varieties, we first define the

appropriate moduli functor:

A family of (polarized) Gushel-Mukai varieties of dimension n over a C-scheme

S is a pair (πX : X −→ S,H), where πX : X −→ S is a smooth and proper

morphism of relative dimension n and H ∈ PicX/S(S) is a πX -ample divisor class,

such that for every geometric point s of S, the pair (Xs,Hs) is a smooth polarized

Gushel-Mukai variety of dimension n.

A morphism of families of Gushel-Mukai varieties is defined in the usual way.

The assignment to every scheme S the groupoid GMn(S) of families of Gushel-

Mukai n-folds over S gives us a category GMn fibered in groupoids, over the

category of C-schemes. We have the following

Proposition 3.1.2. ([KP18, Proposition A.2]). For n ∈ {2, . . . , 6}, the fibered

category GMn is a smooth and irreducible Delign-Mumford stack of finite type

over C. It has dimension 25− (5− n)(6− n)/2.

We are interested in the case n = 4, in this case we denote by GM the

coarse moduli space of GM4 and we will fix once and for all an etale presentation
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G −→ GM4 by some smooth C-scheme G, there is a family of Gushel-Mukai

fourfold XU −→ G determined by the map G −→ GM4. By construction all

(polarized) Gushel-Mukai fourfold appears as a fiber of the family XU , hence G is

a smooth parameter space parametrizing all Gushel-Mukai fourfold. By ause of

language, we will call the family XU → G the universal family of Gushel-Mukai

fourfolds. Note that the natural map G → GM is an open map.

3.2 Period map and period domain

In this subsection we give a brief summary of the Hodge theory of Gushel-

Mukai fourfolds and cubic fourfolds.

•Gushel-Mukai fourfolds

Let X be a Gushel-Mukai fourfold, its Hodge diamond is

1

0 0

0 1 0

0 0 0 0

0 1 22 1 0

. (3.2.1)

The middle cohomology H4(X;Z), equipped with the intersection pairing, is

an odd unimodular lattice of signature (22, 2). Therefore it is isometric to I22,2.

The cohomology H4(Gr(2, 5);Z) embeds in H4(X;Z) as a rank 2 positive-definite

primitive sublattice via the pullback γ∗X by the Gushel map γX : X → Gr(2, 5); it

has intersection matrix  2 2

2 4


with respect to the basis {σ1,1|X , σ2|X}, where σ1,1 and σ2 are the Schubert cycles
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generating H4(Gr(2, 5);Z). The sublattice

H4(X;Z)00 := {x ∈ H4(X;Z) : x · γ∗XH4(Gr(2, 5);Z) = 0}

is called the vanishing cohomology of X. Now to discuss period map and period

domain for Gushel-Mukai fourfolds, one needs to choose some isometry of lattices

I22,2→̃H4(X;Z) so that the Hodge structures on H4(X;Z) can be parameterized

by points in the period domain. The subgroup γ∗XH4(Gr(2, 5);Z) serves as a

lattice polarization of X and is fixed by the monodromy action (in any family of

Gushel-Mukai fourfolds), therefore we need to fix this subgroup of I22,2:

Let (e1, . . . , e22, f1, f2) be the standard basis of I22,2, we fix the following

distinguished rank 2 sublattice ΛG = ⟨u, v⟩ of I22,2 where u = e1 + e2 and

v = e1+· · ·+e22−3f1−3f2; note that it has intersection matrix

 2 2

2 4

. It can

be shown ([DIM14, Proposition 5.1]) that the orthogonal complement Λ := Λ⊥
G is

an even lattice with signature (20, 2) and is isometric to

E2
8 ⊕ U2 ⊕ A2

1. (3.2.2)

Definition 3.2.1. A marking on X is an isometry of lattices f : I22,2−̃→H4(X;Z)

satisfying the condition f(u) = σ1,1|X and f(v) = σ2|X .

Any marking f onX necessarily maps the even sublattice Λ of I22,2 isometrically

onto the vanishing cohomology H4(X,Z)00. Consider the 20-dimensional complex

manifold

{v ∈ P(Λ⊗ C)|v · v = 0, v · v̄ < 0}.

The group

Õ(Λ) = {g ∈ O(I22,2) : g|ΛG
= id}
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acts properly discontinously ([Huy16, Chapter6, Remark1.10]) on Ω(Λ) , the

quotient D := Õ(Λ)\Ω(Λ) is called the period domain of Gushel-Mukai fourfolds.

By a theorem of Baily and Borel ([BB66]), D is an irreducible quasi-projective

variety.

Remark. We abuse the notation by confusing points in projective space with the

vector spanning this point as a 1-dimensional subspace.

There is a period map

℘ : GM −→ D,

which sends a fourfold X ∈ GM to the Õ(Λ)-orbit of the point f−1H3,1(X) ∈

Ω(Λ), where f is any marking on X. Notice that a different choice of marking

induces an isometry of I22,2 fixing ΛG, hence ℘ is well-defined. The argument of

[Has00, Proposition 2.2.2] can be applied in this case and we can conclude that ℘,

a prior only holomorphic, is in fact algebraically defined. Moreover, by [DK18b,

Corollary 6.3], we can conclude that ℘ is a dominant morphism with irreducible

fibers.

Remark 3.2.2. Local behavior of the period map is encoded by parallel transports

of the local system of H4(X,Z). We let π : X → ∆ be a smooth family of

Gushel-Mukai fourfolds over a complex disc ∆ ⊂ G , then any choice of marking

f0 : I22,2−̃→H4(X0;Z) determines a unique lifting ∆ −→ Ω(Λ) of the map ∆ ⊂

G ℘−→ D = Õ(Λ)\Ω(Λ). In fact, if we let pt : H4(Xt;Z)−̃→H4(X0;Z) be the

parallel transport operator from t to 0 for the local system R4π∗Z, which is path-

independent since ∆ is a disc, then the map

∆ −→ Ω(Λ)

t 7−→ f−1
0 ptH3,1(Xt)

is the unique lifting of ∆ ℘−→ Õ(Λ)\Ω(Λ) sending 0 ∈ ∆ to f−1
0 H3,1(X0) ∈ Ω(Λ).
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•Cubic fourfolds

Let Y be a Cubic fourfold, its Hodge diamond is

1

0 0

0 1 0

0 0 0 0

0 1 21 1 0

. (3.2.3)

The middle cohomology H4(Y ;Z) is an odd unimodular lattice with signature

(21, 2) and hence isomorphic to I21,2. Let hY ∈ H2(Y ;Z) be the hyperplane class,

the primitive cohomology is given by H4(Y ;Z)0 = ⟨h2Y ⟩⊥. Once again, we need to

fix a distinguished element δ ∈ I21,2 with δ2 = 3. We choose it in the following

way:

It is known that I21,2 is isometric to

E⊕2
8 ⊕ U⊕2 ⊕ I3,0.

We let (ϵ1, ϵ2, ϵ3) be the standard basis of I3,0 and take δ = ϵ1 + ϵ2 + ϵ3. The

orthogonal complement Λ′ := ⟨δ⟩⊥ is an even lattice of signature (20, 2) isometric

to

E2
8 ⊕ U2 ⊕ A2,

where A2 can be taken as the orthogonal complement of δ in I3,0 and is spanned

by ϵ1 − ϵ2 and ϵ2 − ϵ3. Similar to the case of Gushel-Mukai fourfolds, an isometry

of lattices f ′ : I21,2−̃→H4(Y ;Z) sending the distinguished element δ to square of

the hyperplane class h2Y is called a marking on Y . Under any marking, the lattice

Λ′ is mapped isometrically onto the primitive cohomology H4(Y ;Z)0
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Similarly we consider the 20-dimensional complex manifold

{v ∈ P(Λ′ ⊗ C)|v · v = 0, v · v̄ < 0},

the group Õ(Λ′) = {g ∈ O(I21,2) : g(δ) = δ} acts properly discontinously on Ω′;

the quotient D′ := Õ(Λ′)\Ω(Λ′) is the period domain of cubic fourfolds. By the

same theorem of Baily and Borel, D′ is an irreducible quasi-projective variety. Let

C be the coarse moduli space of smooth cubic fourfolds ([Laz10]), we also have a

well-defined period map

℘′ : C → D′

sending any cubic fourfold Y to the Õ(Λ′)-orbit of the point f ′−1(H3,1(Y )) ∈ Ω(Λ′),

where f ′ is any marking on Y . Moreover, by the Torelli theorem for cubic fourfold

([Vois86]), the period map ℘′ is an open immersion of analytic spaces; in fact it

embeds C as a Zariski dense open subset of D′ ([Has00, Proposition 2.2.2]).

3.3 Hodge special fourfolds

Definition 3.3.1. A Gushel-Mukai fourfold X is Hodge special if H2,2(X;Z)

contains a rank 3 primitive sublatticeK containing γ∗XH4(Gr(2, 5),Z); the sublattice

K will be called a labelling on X, we denote this sublattice by Kd if we want to

emphasize that K has discriminant d; its orthogonal complement K⊥ is called

the non-special cohomology of X. Similarly, a cubic fourfold Y is Hodge special if

H2,2(Y ;Z) contains a rank 2 primitive sublattice K ′ containing the square of the

hyperplane class h2Y . Again K ′ is called a labelling on Y , we write K ′
d to mean

that K ′ has discriminant d; K ′⊥ is called the non-special cohomology of Y .

Sometimes we abuse the language and say “X has discriminant d”, this just

means that X has a labelling with discriminant d. It turns out that Hodge special

38



Gushel-Mukai fourfolds and Cubic fourfolds are parameterized by countable unions

of hypersurfaces in their moduli spaces, indexed by the discriminants. We ellaborate

this phenomenon:

•Gushel-Mukai fourfolds

Let Ld be a rank 3 positive definite primitive sublattice of I22,2 of discriminant d

containing the distinguished sublattice ΛG. By [DIM14, Lemma 6.1], such lattices

must have descriminant d > 0 and d ≡ 0, 2, 4 (mod8). Consider the hypersurface

Ω(L⊥
d ) = P(L⊥

d ⊗ C) ∩ Ω(Λ)

in Ω(Λ). Let DLd
be the image of Ω(L⊥

d ) in D under the quotient map Ω(Λ) → D.

By [DIM14, Proposition 6.2], we have:

1. when d ≡ 0 ( mod4 ), the set of rank 3 primitive sublattices Ld ⊂ I22,2

containing ΛG form a single Õ(Λ)-orbit; consequentlyDLd
is an irreducible

divisor depending only on the integer d, hence we can denote Dd := DLd

2. when d ≡ 2 ( mod8), the set of rank 3 primitive sublattices Ld ⊂ I22,2

containing ΛG is the union of two Õ(Λ)-orbits, interchanged by some involution

rD ∈ Õ(Λ); thereforeDLd
can be one of two irreducible divisors, we put Dd

to be the union of them.

Now for any marking f : I22,2 → H4(X;Z), we have f(Ld) ⊂ H2,2(X;Z) (hence

defining a labelling with discriminant d on X) if and only if f−1(H3,1(X)) ⊂ L⊥
d ⊗

C. Therefore the hypersurface GMd := ℘−1(Dd) ⊂ GM parametrizes all special

Gushel-Mukai fourfolds admitting labelling with discriminant d . By [DIM14,

Theorem 8.1], GMd is non-empty when d > 8, in fact im℘ ∩ Dd is a dense open

subset of Dd for all d > 8. We would like to point out that in [DIM14], it is
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conjectured that the image of the period map ℘ is exactly the complement of

D2 ∪ D4 ∪ D8.

Remark. It turns out that GMd is also irreducible when d ≡ 0 (mod 4) and is the

union of two irreducible hypersurfaces when d ≡ 2 (mod 8). Recall that the period

map ℘ : GM −→ D has irreducible fibers, hence the restriction ℘ : GMd −→ Dd is

an open map to an irreducible (or union of two irreducible) variety with irreducible

fibers. By standard general topology, GMd is either an irreducible or union of

two irreducible hypersurfaces in GM.

•Cubic fourfolds

Let Nd be a rank 2 positive definite primitive sublattice of I21,2 of discriminant

d containing the distinguished element δ. By [Has00, Theorem 1.0.1], we must

have d > 0 and d ≡ 0, 2 (mod6). Consider the hypersurface

Ω(N⊥
d ) = P(N⊥

d ⊗ C) ∩ Ω(Λ′)

in Ω(Λ′). Let D′
d be the image of Ω(N⊥

d ) in D′under the quotient map Ω(Λ′) → D′.

By [Has00, Thereom 3.1.2 and Proposition 3.2.4], the set of all such sublattices Nd

with a fixed discriminant form a single Õ(Λ′)-orbit, therefore D′
d depend only on

the discriminant d and is an irreducible divisor in D′. Similar to the case of Gushel-

Mukai fourfolds, for any marking f : I21,2 → H4(Y,Z) , f(Nd) ⊂ H2,2(Y,Z) if and

only if f−1(H3,1(Y )) ⊂ N⊥
d ⊗ C; therefore Cd := C ∩ D′

d is the irreducible divisor

in the moduli space C parametrizing special cubic fourfolds with discriminant d .

Moreover by [Has00, Theorem 1.0.1], Cd is nonempty when d > 6. In fact it can

be shown that the image of the period map ℘′ : C → D′ is exactly the complement

of D′
2 ∪ D′

6 (see [Laz10] and [Loo09]).
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3.4 Hodge-association

Observe that the non-special cohomologies of both special Gushel-Mukai and

cubic fourfolds have signature (19, 2), and both carry polarized Hodge structures

induced from that on the middle cohomologies, hence we can make the following

Definition 3.4.1. A labelled Gushel-Mukai fourfold (X,Kd) and a polarized K3

surface (S, ℓ) are said to be Hodge-associated if there is a Hodge isometry (up

to a shift of weight) K⊥
d ≃ H2

prim(S,Z)(−1). Similarly, a labelled cubic fourfold

(Y,K ′
d) and a polarized K3 surface (S, ℓ) are said to be Hodge-associated if there

is a Hodge isometry K ′⊥
d ≃ H2

prim(S,Z)(−1).

Notice that in both cases, the degree ℓ2 of the polarized K3 surface S is

necessarily equal to d (Corollary 2.1.12(a)). Hodge-association between fourfolds

and K3 surfaces are characterized by some numerical conditions on the discriminant

d.

Proposition 3.4.2. ([DIM14], Proposition 6.5). A labelled Gushel Mukai fourfold

(X,Kd) is Hodge-associated to some K3 surface if and only if d satisfies the

following numerical condition

(∗∗) d is not divisible by 8

and the only odd primes dividing d are ≡ 1 (mod 4).

. ([Has00], Theorem 1.0.2). A labelled cubic fourfold (Y,K ′
d) is Hodge-associated
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to some K3 surface if and only if d satisfies the following numerical condition

(∗∗)′ d is not divisible by 4, 9

and the only odd primes dividing d are ≡ 0 or 1 (mod 3).

.

We are primarily interested in the comparison between Gushel-Mukai fourfolds

and cubic fourfolds.

Definition 3.4.3. A labelled Gushel-Mukai fourfold (X,Kd) and a labelled cubic

fourfold (Y,K ′
d) are said to be Hodge-associated if there is a Hodge isometry

between their non-special cohomologies K⊥
d ≃ K ′⊥

d .

Hodge-association between Gushel-Mukai and cubic fourfolds is also determined

by some numerical condition on the discriminants:

Proposition 3.4.4. ([DIM14], Proposition 6.6). Let (X,Kd) be a labelled Gushel-

Mukai fourfold generic in the divisor Gd, there is labelled cubic fourfold (Y,K ′
d)

(necessarily of the same discriminant) together with a Hodge isometry K⊥
d ≃ K ′⊥

d

between non-special cohomologies if and only if d satisfies the following numerical

condition:

(†)

(a)either d ≡ 2 or 20 (mod 24)

and the only odd primes dividing d are ≡ ±1 (mod 12);

(b)or d ≡ 12 or 66 (mod 72)

and the only primes≥5 dividing d are ≡ ±1 (mod 12).

It may seem as a surprise at a first glance that the Hodge-association between

special fourfolds and K3 surfaces as well as between the special fourfolds are
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characterized only by the discriminants of the labellings. In fact both Propositions

3.4.2 and 3.4.4 boil down to some lattice theoretic (hence numerical) arguments,

together with the fact that the period maps are dominant. To elaborate this, we

give the proof of Proposition 3.4.4.

We first prove the following lattice theoretic statement:

Lemma 3.4.5. Let Ld ⊂ I22,2 be any rank 3 positive definite primitive sublattice

containing the distinguished sublattice ΛG and Nd ⊂ I21,2 any positive definite

primitive sublattice containing the distinguished element δ. Then there is an

isometry of lattices L⊥
d ≃ N⊥

d (they necessarily have the same discriminant) if

and only if d satisfies the numerical condition (†).

Proof. First of all, recall that in order for the sublattices Ld and Nd to exist at the

first place we must have d ≡ 0, 2, 4 (mod 8) and simultaneously d ≡ 0, 2 (mod 6),

this means d = 24d′ + e with e ∈ {0, 2, 8, 12, 18, 20}.

By Corollary 2.1.12(a), if L⊥
d is isometric toN⊥

d , then there exists an isomorphism

(ALd
, qLd

) ≃ (ANd
, qNd

) of the discriminant forms. The discriminant groups are

computed in both cases:

(1) For ALd
([DIM14, Proposition 6.5]):

–ALd
≃ (Z/2Z)2 × (Z/(d/4)Z) when d ≡ 0 (mod 8),

–ALd
≃ Z/dZ when d ≡ 2 (mod 8), the isomorphism can be chosen so that

bLd
(1, 1) = d+8

2d
(mod Z),

–ALd
≃ Z/dZ when d ≡ 4 (mod 8), then isomorphism may be chosen so that

bLd
(1, 1) =

d+ 2

2d
(mod Z).

(2) For AL′
d

([H1, Proposition 3.2.5]):

–ANd
≃ (Z/3Z) × (Z/(d/3)Z) when d ≡ 0 (mod 6), the isomorphism can be

chosen so that bNd
(1, 1) = 3−2d

3d
(mod 2Z),

43



–ANd
≃ Z/dZ when d ≡ 2 (mod 6), then isomorphism can be chosen so that

bNd
(1, 1) = 1−2d

3d
(mod 2Z).

Comparing the two list, we can exclude e = 0 or 8; furthermore, if e = 12

or 18, we need d/3 coprime to 3, this forces d′ ̸≡ 1 (mod 3) when e = 12 and

d′ ̸≡ 0 (mod 3) when e = 18. In all these cases, the disciminant group is isomorphic

to Z/dZ.

When e = 2, then d ≡ 2 (mod8) and d ≡ 2 (mod 6), therefore the discriminant

form are conjugate if and only of d+8
2d

≡ n2 1−2d
3d

(mod Z) where n is some integer

prime to d, which is in turn equivalent, since 3 is invertible modulo d in this case,

to that d
2
+12 ≡ 3d+8

2
≡ n2 (mod d). This is equivalent to saying that 12d′+13is a

square in Z/dZ; in view of the decomposition Z/dZ ≃ (Z/(12d′ + 1)Z)× (Z/2Z),

12d′ + 13 is a square in Z/dZ if and only if 3 is a square in Z/(12d′ + 1)Z, which

by quadratic reciprocity, equivalent to that the only odd primes dividing d are

≡ ±1 (mod 12).

When e = 20, then d ≡ 4 (mod 8) and d ≡ 2 (mod 6), therefore the

discriminant form are conjugate if and only if d+2
2d

≡ n2 1−2d
3d

(mod Z) for some

integer n prime to d, which is equivalent to d
2
+ 3 ≡ n2 (mod d), but this is once

again equivalent to that 12d′ + 13 is a square in Z/dZ. Hence we get the same

condition as in the previous case.

When e = 12, then d ≡ 4 (mod 8) and d ≡ 0 (mod 6), therefore we need

d+2
2d

≡ n2 3−2d
3d

(mod Z) for some integer n prime to d, which is equivalent to

12d′ + 7 ≡ n2(−16d′ − 5) (mod d). This condition is equivalent to:

i) 12d′ + 7 ≡ n2(−16d′ − 5) (mod 3) and

ii) 12d′ + 7 ≡ n2(−16d′ − 5) (mod 4) and

iii) 12d′ + 7 ≡ n2(−16d′ − 5) (mod 2d′ + 1).

i) is equivalent to 1−d′ being a nonzero square modulo 3, which is equivalent to

that 3|d′. ii) is a tautology. iii). is equivalent to 1 ≡ 3n2 (mod 2d′+1), which is in
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turn equivalent to say that 3 is square modulo d/12, hence by quadratic reciprocity

again it is equivalent to that any odd primes of d/12 is ≡ ±1 (mod 12). Combining

all these, and recall that in case we have 9 ̸ |d, the desired condition is equivalent

to

d ≡ 12 (mod 72) and the only primes≥5 dividing d are ≡ ±1 (mod 12).

Lastly, when e = 18, then d ≡ 2 (mod 8) and d ≡ 0 (mod 6), therefore we

need d+8
2d

≡ n2 3−2d
3d

(mod Z) for some integer n prime to d, which is equivalent to

12d′ + 13 ≡ n2(−16d′ − 9) (mod d). Following an argument similar to the last

case, one eventually conclude that this is equivalent to

d ≡ 66 (mod 72) and the only primes≥5 dividing d are ≡ ±1 (mod 12).

For the converse, the above computation above shows that when d satisfies the

condition (†), we have isomorphism of discriminant forms (ALd
, qLd

) ≃ (ANd
, qNd

).

Moreover, L⊥
d and N⊥

d are even indefinite lattice with rank 21, the discriminant

group of Ld (resp. Nd) has length at most 2; thus by Corollary 2.1.12 (b), L⊥
d is

isometric to N⊥
d .

Proof of Proposition 3.4.4. Let (X,Kd) be a labelled Gushel-Mukai fourfold, choose

any marking f : I22,2 → H4(X,Z), then Ld := f−1Kd is a primitive rank 3

sublattice of I22,2 containing ΛG and f−1H3,1(X) ∈ Ω(L⊥
d ); if furthermore d

satisfies the condition (†), then by the above Lemma there is an isometry of lattices

µ : L⊥
d → N⊥

d where Nd is any rank 2 primitive sublattice of I21,2 containing

δ; we will still denote by µ the induced isomorphism Ω(L⊥
d ) ≃ Ω(N⊥

d ). Now

since (X,Kd) is generic in Gd, we may assume that µ(f−1H3,1(X)) ∈ Ω(N⊥
d ) is

in the image of the period map for cubic fourfolds, that is to say there exists

a cubic fourfold Y and a marking f ′ : I21,2 → H4(Y,Z) such that f ′−1H3,1(Y ) =
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µ(f−1H3,1(X)). Then K ′
d = f ′(Nd) ⊂ H2,2(Y,Z) is a labelling on Y and

f ′µf−1 : K⊥
d →̃K ′⊥

d

is a Hodge isometry of non-special cohomologies. Conversely, if (X,Kd) and

(Y,K ′
d) are labelled Gushel-Mukai and cubic fourfold respectively, then choose any

markings f for X and f ′ for Y , then we have isometry of the lattices (f−1Kd)
⊥ ≃

(f ′−1Nd)
⊥, hence by the Lemma again, d must satisfy the condition (†).

3.5 Cubic fourfolds in Cd with associated K3 form

a Zariski dense subset

In this subsection we prove that in each Hassett divisor Cd parameterizing

special cubic fourfolds, those with Hodge-associated K3 surfaces form a Zariski

dense subset of Cd. The proof is based on some studies by Yang & Yu ([YY20]

and [YY23]) concerning the intersection of the Hassett divisors Cd in C. Let’s

first introduce a notation, for any positive definite primitive sublattice M ⊂ I21,2

containing the distinguished element δ, we consider the submanifold of Ω(Λ′):

Ω(M⊥) := P(M⊥ ⊗ C) ∩ Ω(Λ′),

define D′
M to be image of Ω(M⊥) in the period domain D′ under the period map

℘′ : C −→ D′. We consider the subvariety CM ⊂ C given by ℘′−1(D′
M), which is

a closed irreducible subvariety of C of codimension rank(M) − 1 (The argument

for the irreducibility of the Hassett divisors Cd applies in this case and gives us

the irreducibilty of CM , see [Has00, Theorem 3.1.2]). For example, if Nd ⊂ I21,2

is a rank 2 positive-definite primitive sublattice of discriminant d containing the
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distinguished element δ, then the irreducible hypersurface CNd
is nothing but the

Hassett divisor Cd.

The following is a consequence of the definition

Lemma 3.5.1. Let M and N be positive definite primitive sublattices of I21,2

containing δ, then D′
M ⊂ D′

N if and only if there is a primitive embedding ψ :

N ↪→M such that ψ(δ) = δ.

Proof. If there is a primitive embedding N ↪→M fixing the distinguished element

δ, then it is clear that D′
M ⊂ D′

N .

For the converse, we first prove that it is always possible to find a point

v ∈ Ω(M⊥) such that v⊥ ∩ I21,2 =M :

Given any v ∈ Ω(M⊥) we must have v⊥ ∩ I21,2 ⊇ M . If v⊥ ∩ I21,2 ⫌ M , then

we can find a nonzero lattice point x ∈ v⊥ ∩ I21,2 such that x ⊥M ; we consider a

linear combination

w = v −
(
µ2x2

2v · v̄

)
v̄ + µx

for some nonzero real number µ. Note that x2 > 0 since x is necessarily contained

in a positive definite subspace of I21,2 ⊗ R. Now it is straightforward to check:

1) w · w = −µ2x2

v·v̄ v · v̄ + µ2x2 = 0;

2) w · w̄ = v · v̄ +
(
µ4

4
+ µ2

)
x2, hence we can choose µ sufficiently small so

that w · w̄ < 0;

3) for any y ∈M , we have y · v = y · v̄ = y · x = 0 hence y ·w = y · v − µ2x2

2v·v̄ y ·

v̄ + µy · x = 0.

So we have constructed a new element w ∈ Ω(M⊥) with w⊥ ∩ I21,2 ⊇ M . We

now show that w⊥ ∩ I21,2 ⫋ v⊥ ∩ I21,2:

Given any z ∈ w⊥ ∩ I21,2, we have

z · w = z · v − µ2x2

2v · v̄
z · v̄ + µz · x = 0,
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in particular z · v− µ2x2

2v·v̄ z · v̄ must have zero imaginary part (µz · x is real since we

choose µ to be real); but z · v and z · v̄ are complex conjugate to each other, so if

z ·v ̸= 0 we must have µ2x2

2v·v̄ = 1 which is not possible (x2 > 0 while v · v̄ < 0). Thus

we must have z ·v = 0, namely z ∈ v⊥∩I21,2. Lastly, we notice that x·w = −µx2 ̸=

0, hence x ̸∈ w⊥ ∩ I21,2 . This shows that w⊥ ∩ I21,2 ⫋ v⊥ ∩ I21,2. Also notice that

w⊥∩ I21,2 is a primitive sublattice of v⊥∩ I21,2, hence w⊥∩ I21,2 ⫋ v⊥∩ I21,2 imlies

that rank of w⊥ ∩ I21,2 is strictly smaller than of v⊥ ∩ I21,2.

Therefore, by induction on the rank of v⊥ ∩ I21,2, we can always find a v ∈

Ω(M⊥) such that v⊥ ∩ I21,2 = M . Now the Õ(Λ′)-orbit of this v is a point in

D′
M , hence a point in D′

N ; meaning there is an isometry g ∈ Õ(Λ′) such that

g(v)⊥ ∩ I21,2 ⊃ N . Thus ψ = g−1|N : N −→M is a primitive embedding mapping

δ to δ.

The following is a useful criterion for the non-emptiness of CM

Lemma 3.5.2. ([YY20], Lemma 6). The subvariety CM defined by the positive

definite primitive sublattice M ⊂ I21,2 containing δ is non-empty if and only if

there is no r ∈M such that r2 = 2 (i.e., M does not represent 2).

Proof. Since CM = ℘′−1(D′
M), it is non-empty if and only if D′

M ⊈ D′
2 ∪ D′

6

(we know that D′
2 ∪ D′

6 is the complement of the image of ℘′). Recall that the

rank 2 positive-definite primitive sublattices Nd ⊂ I21,2 of a fixed discriminant

d form a single Õ(Λ′)-orbit, hence we can put D′
2 = D′

N2
and D′

6 = D′
N6

where

N2 =

 3 1

1 1

 and N6 =

 3 0

0 2

; more explicitly we can take N2 = ⟨δ, ϵ1⟩

and N6 = ⟨δ, ϵ1 − ϵ2⟩ (recall that ϵ1, ϵ2, ϵ3 is the standard basis of I3,0).

By the last lemma, D′
M ⊂ D′

2 ∪ D′
6 if and only if M ⊃ N2 or M ⊃ N6.

If M ⊃ N2 or M ⊃ N6, then M represents 2, since both N2 and N6 do.

Conversely, if r ∈ M such that r2 = 2, then the intersection matrix of K = ⟨δ, r⟩
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is given by  3 a

a 2


where a = δ · r. Since K is positive definite, we must have a2 < 6 and thus

a = 0, 1, 2. We cannot have a = 1, otherwise we will have (δ − 3r) · δ = 0 hence

(δ−3r) ∈ Λ′ but meanwhile (δ−3r)2 = 15, contradicting that Λ′ is even. If a = 0,

then K is isometric to N6; if a = 2, then ⟨δ, δ − r⟩ is isometric to N2.

Combining the previous two lemmas we have

Proposition 3.5.3. ([YY23], Lemma 7.1). Let Mi, i = 1, 2 be two positive definite

primitive sublattices of I21,2 of rank(Mi) ≥ 2 containing the distinguished element

δ such that CMi
̸= ∅. Then CM1 ⊂ CM2 if and only of there exists a primitive

embedding ϕ : M2 ↪→M1 such that ϕ(δ) = δ.

We also have the following statement about the intersection of two Hassett

divisors.

Proposition 3.5.4. ([YY20], Theorem 7). Given any two Hassett divisors Cd1 and

Cd2 parameterizing special cubic fourfolds with discriminant d1 and d2 respectively,

their intersection Cd1 ∩ Cd2 is non-empty; one of the irreducible component of

Cd1 ∩ Cd2 is necessarily given by the irreducible subvariety CM for some rank 3

positive definite primitive sublattice M ⊂ I21,2 containing δ, with disc(M) = d1d2
3

or d1d2−1
3

depending on the values of d1 and d2.

Proof. Recall that d1, d2 > 6 and ≡ 0 or 2 (mod 6), so we divide the proof into

three cases. Let’s only discuss the case d1 ≡ d2 ≡ 0 (mod 6). The other two

cases are completely similar and covered in detail in ([YY20]). We let (g1, h1)

and (g2, h2) be the standard basis of the two copies of hyperbolic plane U ⊂ I21,2.
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Suppose d1 = 6n1 and d2 = 6n2 and n1, n2 ≥ 2. Consider the rank 3 lattice

M = ⟨δ, g1 + n1h1, g2 + n2h2⟩ ⊂ I21,2

It is straightforward to check thatM is a primitive sublattice and has intersection

matrix 
3 0 0

0 2n1 0

0 0 2n2


In addition, given any nonzero r = xδ + y(g1 + n1h1) + z(g2 + n2h2) ∈M , we

have

r2 = 3x2 + 2n1y
2 + 2n2z

2 ≥ 3

since n1, n2 ≥ 2 and at least one of the integers x, y, z is nonzero. Hence by

Lemma 3.5.2 CM is nonempty and is an irreducible subvariety of C of codimension

2. Moreover, M contains primitive sublattice ⟨δ, gi + nihi⟩ with discriminant di,

i = 1, 2, hence by Lemma 3.5.3, CM ⊂ Cd1 ∩ Cd2 ; it is necessarily one of the

irreducible components of Cd1 ∩ Cd2 .

The case of d1 ≡ d2 ≡ 2 (mod 6) will give us a rank 3 lattice with discriminant

(d1d2 − 1)/3.

Proposition 3.5.5. Let {d0, d1, d2, . . . } be an infinite collection of integers> 6

and each di ≡ 0, 2 (mod 6). Then
⋃
n≥1(Cd0 ∩ Cdn) is a dense subset of Cd0 in

Zariski topology.

Proof. Assume on the contrary there is a Zariski closed subset V ⊂ Cd0 such that

V ⊃
⋃
n≥1

(Cd0 ∩ Cdn).

One of the irreducible component of V must contain infinitely many Cdn , hence we
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may assume V is an irreducible hypersurface in Cd0 . By Proposition 3.5.4, one of

the irreducible components of Cd0 ∩ Cdn is given by the hypersurface in Cd0 of the

form CMn for some rank 3 primitive lattice Mn with discriminant given by either

d0dn/3 or (d0dn − 1)/3. But then we are forced to have

V = CM1 = CM2 = CM3 = · · ·

This is a contradiction by Proposition 3.5.3.

In particular, the union ⋃
d′

(Cd ∩ Cd′),

where d′ run over all natural numbers satisfying (∗∗)′ is Zariski dense in Cd. Recall

that cubic fourfolds in each Cd′ has Hodge-associated K3 surfaces, this shows that

in each Cd, cubic fourfolds with Hodge-associated K3 form a Zariski dense subset.

3.6 Non-special cohomologies in family of fourfolds

The construction we do in this subsection is essential for what comes later, so

we include more details. First we need to make sense of a “continuous family of

labellings on a family of fourfolds”. We do this for Gushel-Mukai fourfolds first.

Fix a primitive rank 3 positive definite sublattice Ld ⊂ I22,2 of discriminant d,

containing the distinguished sublattice ΛG, and consider the subgroup H(Ld) ⊂

Õ(Λ) given by

H(Ld) := {g ∈ Õ(Λ)|g|Ld
= id}.

Define the quotient space Dlab
Ld

:= H(Ld)\Ω(L⊥
d ), which is a quasi-projective

normal variety by Baily and Borel again. We also define GlabLd
:= Dlab

Ld
×D G. By

definition a typical element of GlabLd
is a pair (X, [ω]H(Ld)) consisting of a Gushel-
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Mukai fourfold X and the H(Ld)-orbit [ω]H(Ld) of some point ω ∈ Ω(L⊥
d ) such

that its Õ(Λ)-orbit [ω]Õ(Λ) = ℘(X) ∈ Dd. Equivalently, we can think of it as

a pair (X, [f ]H(Ld)) where f : I22,2 → H4(X,Z) is a marking on X and [f ]H(Ld)

its H(Ld)-orbit (the group H(Ld) acts on the set of all markings on X by the

restriction of the action of Õ(Λ)) such that [f−1H3,1(X)]H(Ld) = [ω]H(Ld) ∈ Dlab
Ld

.

Therefore the element (X, [ω]H(Ld)) determines a well-defined labelling K[ω] :=

f(Ld) ⊂ H2,2(X,Z) on X.

Let π : X lab → GlabLd
be the pullback of the universal family XU of Gushel-Mukai

fourfolds by the map GlabLd
→ G. The fiber of X lab over the point (X, [ω]) ∈ GlabLd

is

just the fourfold X and we can think of the sublattices K[ω] as giving a continuous

family of labellings on the fibers of X lab; we denote by K⊥ the local system of

non-special cohomologies on the family X lab → GlabLd
, meaning the stalk of K⊥

at the point (X, [ω]) is just the non-special cohomology K⊥
[ω] determined by the

labelling K[ω] on X. We have the following

Lemma 3.6.1. The inclusion maps K⊥ ⊂ (R4π∗Z)00 ⊂ R4π∗Z are inclusions of

variations of Hodge structures.

Here, (R4π∗Z)00 denotes the local system of vanishing cohomologies.

Proof. The inclusion maps restricts to identity map on H3,1 of each fibers, so

we only need to show that these are inclusions of local systems. It is clear that

(R4π∗Z)00 ⊂ R4π∗Z is an inclusion of local systems. Now we only need to show

that K⊥ ⊂ R4π∗Z is an inclusion of local systems, meaning, the parallel transports

of R4π∗Z restricts to that of K⊥. The statement is local, hence we consider instead

a family π : X −→ ∆ of Gushel-Mukai fourfolds, being the restriction of X lab to

some complex disc ∆ ⊂ G. So each point t ∈ ∆ can be considered as a pair

(Xt, [ωt]), where Xt is just the fiber of X at t and [ωt] is an H(Ld)-orbit of some

period point ωt ∈ Ω(L⊥
d ). Fix a choice of ω0 we can think of t 7→ ωt as a map
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∆ −→ Ω(L⊥
d ) lifting the period map ∆ −→ Dlab

Ld
= H(Ld)\Ω(L⊥

d ), therefore we

have a commutative diagram

Ω(L⊥
d ) Ω(Λ)

∆ Dlab
Ld

D

ωt (3.6.1)

But then by the discussion in Remark 3.2.2, we must have ωt = f−1
0 ptH3,1(Xt),

where f0 : I22,2 → H4(X0,Z) is some suitable marking on X0 such that ω0 =

f−1
0 H3,1(X0) and pt : H4(Xt,Z) → H4(X0,Z) is the parallel transport operator

for the local system R4π∗Z on ∆. From there, we see that the labelling Kωt

on Xt is given by p−1
t f0(Ld), hence pt maps K⊥

ωt
= p−1

t f0(L
⊥
d ) isometrically onto

K⊥
ω0

= f0(L
⊥
d ).

Similar construction can be performed for cubic fourfolds. We fix a primitive

rank 2 positive definite sublattice Nd ⊂ I21,2 of discriminant d, containing the

distinguished element δ, and consider the subgroup H(Nd) := {g ∈ Õ(Λ′)|g|Nd
=

id} and define Dlab
Nd

:= H(Nd)\Ω(N⊥
d ), which is again a quasi-projective normal

variety. Define ClabNd
:= Dlab

Nd
×D′ C, just as in the case of Gushel-Mukai fourfolds,

each point of ClabNd
may be identified with a pair (Y, [ω′]) where [ω′] is the H(Nd)-

orbit of some point ω′ ∈ Ω(N⊥
d ) and it induces a well-defined labelling K[ω′] ⊂

H2,2(Y,Z) on Y . There is also a family of cubic fourfolds π′ : Y lab → ClabNd
.

Although we don’t have a universal family to pullback since C is only a coarse

moduli space, nevertheless ClabNd
still carries a smooth family of cubic fourfolds,

which can be obtained by gluing local deformations via local Torelli theorem

for cubic fourfolds (cf. [AT14, Proposition 5.2]). The fiber of Y lab at the point

(Y, [ω′]) is just the fourfold Y and K[ω′] gives us continuous family of labellings on

the fibers of Y lab. If we denote by K′⊥ the local system of non-special cohomologies

and (R4π′
∗Z)0 the local system of primitive cohomologies, then K′⊥ ⊂ (R4π′

∗Z)0 ⊂
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R4π′
∗Z are inclusions of variation of Hodge structures.

Now if the integer d satisfies the numerical condition (†) as in Proposition

3.4.4, then there is an isometry of lattices µ : L⊥
d −→ N⊥

d by Lemma 3.4.5. It

turns out that this isometry extends to a map from GlabLd
to ClabNd

which identifies

the variation of Hodge structures (at least locally) on the local systems of non-

special cohomologies:

Proposition 3.6.2. The isometry of lattices µ : L⊥
d −̃→N⊥

d induces a rational map

ν : GlabLd
99K ClabNd

,

which is generically a smooth submersion. Moreover, given any point

t0 = (X0, [ω0]) ∈ GlabLd

and put

ν(t0) = (Y, [µ(ω0)]) ∈ ClabNd
,

there is a Hodge isometry ϕ0 : K
⊥
[ω0]

−̃→K⊥
[µ(ω0)]

between non-special cohomologies

which remains Hodge isometries under parallel transport; more precisely, if

pγ : K
⊥
[ωt]−̃→K⊥

[ω0]

is the parallel transport of K⊥ along a path γ from t = (Xt, [ωt]) to t0 and

p′ν(γ) : K
⊥
[µ(ωt)]−̃→K⊥

[µ(ω0)]

the parallel transport of K′⊥ along the image path ν(γ), then

p′−1
ν(γ)ϕ0pγ : K

⊥
[ωt]−̃→K⊥

[µ(ωt)]
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is still a Hodge isometry.

Proof. Since both Ld andNd are primitive sublattices (of I22,2 and I21,2 respectively),

so we have (L⊥
d )

⊥ = Ld and (N⊥
d )

⊥ = Nd, hence by Corollary 2.1.13, H(Ld) acts on

Ω(L⊥
d ) by self-isometries of L⊥

d inducing identity on the discriminant group AL⊥
d
,

and similarly for the action of H(Nd) on Ω(N⊥
d ); thus the isometry µ : L⊥

d ≃ N⊥
d

induces an isomorphism of varieties Dlab
Ld

≃ Dlab
Nd

. The period map ℘ : G → D of

Gushel-Mukai fourfolds is a dominant smooth submersion and the period map ℘′

of cubic fourfold embeds C as a Zariski dense open subset of D′, hence

ν : GlabLd

℘−→ Dlab
Ld

≃ Dlab
Nd

℘′−1

−→ ClabNd

can be defined on some Zariski open U subset of GlabLd
and is a smooth submersion

on that (The period map ℘ : G −→ D is a smooth submersion).

For the second part, let f0 : I22,2 −→ H4(X0,Z) be a marking on X0 such that

f−1
0 H3,1(X0) = ω0 ( or equivalently K[ω0] = f0(Ld) ) and f ′

0 : I21,2 −→ H4(Yν(0),Z)

be a marking on Yν(0) such that f ′−1
0 H3,1(Yν(0)) = µ(ω0) ( or equivalently K[µ(ω0)] =

f ′
0(Nd) ),

ϕ0 : K
⊥
[ω0]

= f0(L
⊥
d )

f−1
0∼= L⊥

d

µ∼= N⊥
d

f ′0∼= f ′
0(N

⊥
d ) = K⊥

[µ(ω0)]

is a Hodge isomtery. To check that ϕ0 remains Hodge isometry under parallel

transport (which is a local statement), we consider t = (Xt, [ωt]) in some analytic

neighborhood ∆ of t0 ∈ T , let pt : H4(Xt,Z)−̃→H4(X0,Z) be parallel transport

along some path from t to 0 inside ∆, and p′ν(t) : H4(Yν(t),Z)−̃→H4(Yν(0),Z) from

ν(t) to ν(0) inside ∆′ := ν(∆) (assuming ∆ and ∆′ are contractible so these

parallel transport operators are path-independent). Then we have the following
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commutative diagram
t f−1

0 ptH3,1(Xt)

∆ Ω(L⊥
d )

∆′ Ω(N⊥
d )

s f ′−1
0 p′sH

3,1(Ys)

ν

ωt

µ

ω′
s

(3.6.2)

which shows that the composition

p′−1
ν(t)ϕ0pt : K

⊥
ωt

= p−1
t f0(L

⊥
d )

∼= L⊥
d

µ∼= N⊥
d
∼= p′−1

ν(t)f
′
0(N

⊥
d ) = K⊥

µ(ωt)

maps H3,1(Xt) into H3,1(Yν(t)), hence a Hodge isometry.

Remark 3.6.3. Later on we will consider deformations over smooth spaces, which

requires us to lift the above rational map to some smooth coverings of GlabLd
and

ClabNd
. To do so, observe that H(Ld) is arithmetically defined, hence by [Huy16,

Chapter 6], we can find a torsion free subgroup Γ ⊂ H(Ld) of finite index and

the quotient Dlab
Ld

:= Γ\Ω(L⊥
d ) will be a smooth quasi-projective variery, and there

is a finite covering Dlab
Ld

−→ Dlab
Ld

; so if we put GlabLd
:= Dlab

Ld
×D G, it is a smooth

finite covering GlabLd
−→ GlabLd

, and we define ClabNd
in a similar fashion. Then when

d satisfies (†), the rational map ν lifts to a rational map ν : GlabLd
99K ClabNd

which is

still generically a smooth submersion. The statements of Lemma 3.6.1 and 3.6.2

hold true if we replace GlabLd
and ClabNd

by GlabLd
and ClabNd

respectively, with the families

of fourfolds replaced by their pullbacks to these smooth base.
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Chapter 4

K3 Category and Mukai Lattice

4.1 K3 category and Kuznetsov components

Definition 4.1.1. We define a K3 category to be an admissible subcategory T

of the bounded derived category of some smooth projective variety such that the

Serre functor ST of T is given by [2] (shifting by 2).

The most basic example of a K3 category is the bounded derived category

Db(S) of a K3 surface S. More nontrivial examples of K3 categories can be

constructed as the so called Kuznetsov components of the bounded derived categories

of some Fano fourfolds. To define it, let us first recall the notion of an exceptional

sequence:

Let W be a smooth projective variety, an ordered collection of objects

(E1, E2, · · · , Em) ⊂ Db(W )

is called an exceptional sequence if


RHom(Ei, Ei) = C[0],

RHom(Ei, Ej) = 0, for all i > j.

Definition 4.1.2. Let W be a smooth projective variety and let (E1, E2, · · · , Em)

57



be an exceptional sequence in Db(W ), then the right orthogonal complement

AW := ⟨E1, E2, · · · , Em⟩⊥,

which is an admissible subcategory of Db(W ), is called the Kuznetsov component

of W .

From now on, W will always be a Gushel-Mukai fourfold or a cubic fourfold. In

this case, Db(W ) naturally contains some exceptional sequences ([Kuz10], [KP18]).

• If W is a Gushel-Mukai fourfold, then

(OW ,U∨
W ,OW (1),U∨

W (1)) (4.1.1)

is an exceptional sequence in Db(W ). Here UW is the pullback to W of the

tautological (sub)bundle on Gr(2, 5) by the Gushel map γW : W → Gr(2, 5).

• If W is a cubic fourfold, then

(OW ,OW (1),OW (2)) (4.1.2)

is an exceptional sequence in Db(W ).

In both cases, the Kuznetsov components AW have Serre functor given by [2], i.e.

they are K3 categories. Hence we can make the following definitions.

Definition 4.1.3. . Let W be a Gushel-Mukai fourfold or a cubic fourfold, we

say that W is homological-associated to the K3 surface S if there is an exact

equivalence AW ≃ Db(S).

Similarly if X is a Gushel-Mukai fourfold and Y a cubic fourfold, we say that

X is homological-associated to Y is there is an exact equivalence AX ≃ AY .

The followings are some explicit examples of homological associations:
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• If X is a Gushel-Mukai forufold containing a quintic del pezzo surface, AX ≃

Db(S) for some K3 surface ([KP18, Theorem 1.2]).

• If Y is a Pfaffian cubic fourfold, then AY ≃ Db(S) for some K3 surface S

(essentially due to [Kuz06, Theorem 2]).

In both cases, the K3 surfaces can be concretely constructed by some classical

projective geometric argument.

• [KP18, Theorem 1.3]. If X is a generic Gushel-Mukai fourfold containing a

plane of type Gr(2, 3), then there is a cubic fourfold Y such that AX ≃ AY .

The cubic fourfold Y can be obtained by performing some birational changes

on X.

Later in this section, we will see that homological association between fourfolds

and K3 surfaces is closely related to their Hodge associations and exists in much

greater abundance. For the moment, we will content ourselves to just point out the

fact that all the exact equivalences involved in defining homological associations

are of Fourier-Mukai type. For the “fourfold-K3 association”, this just follows

from a well-known result due to Orlov [Or03], which states that the fully-faithful

exact functor Db(S) → Db(W ) which identifies Db(S) with AW ⊂ Db(W ) must

be a Fourier-Mukai transform. For “fourfolds-fourfolds association”, we first need

to make sense what is meant by a Fourier-Mukai transform between admissible

subcategories:

Definition 4.1.4. Let W and W ′ be any two smooth projective varieties, suppose

we have admissible subcategories T ι
↪→ Db(W ) and T ′ ι′

↪→ Db(W ′). An exact

functor Φ: T → T ′ is of Fourier-Mukai type if there is a Fourier-Mukai transform

ΦP : Db(W ) → Db(W ′) such that

ΦP = ι′ ◦ Φ ◦ δ
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where δ : Db(W ) → T is the left adjoint of the inclusion functor ι.

Exact equivalences between Kuznetsov components are of Fourier-Mukai type,

this is due to the following recent result:

Theorem 4.1.5. ([LPZ22], Theorem 1.3). Let W and W ′ be Gushel-Mukai

fourfolds or cubic fourfolds, then any fully faithful exact functor AW −→ AW ′

is of Fourier-Mukai type.

4.2 Mukai Lattices of K3 surfaces

The Mukai lattice is first introduced by Mukai for ordinary K3 surfaces, we

briefly review the construction.

Let S be a K3 surface, its Mukai lattice H̃(S,Z) is the weight-2 integral Hodge

structure whose underlying abelian group is the full singular chomology group

H∗(S,Z) = H0(S,Z)⊕ H2(S,Z)⊕ H4(S,Z)

with Hodge decomposition given by

H̃
2,0
(S) = H2,0(S)

H̃
1,1
(S) = H0,0(S)⊕ H1,1(S)⊕ H2,2(S)

H̃
0,2
(S) = H0,2(S)

The intersection pairing on H̃(S,Z) is given by the Mukai pairing :

(c, c′) =
w

S

(c0c
′
4 − c2c

′
2 + c4c

′
0)

It is well-known that the middle cohomology H2(S,Z), under the usual intersection

paring
r
S
c2c

′
2, is isometric to the abstract lattice U3⊕E8(−1)2; therefore, H̃(S,Z),
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under the Mukai pairing, is given by U4 ⊕ E2
8 . The Mukai vector

v : Ktop(S) → H̃(S,Z)

is an isomorphism (over Z) for K3 surfaces, and hence an isometry of lattices

(when Ktop(S) is equipped with the Euler pairing).

The Mukai Hodge structure allows us to formulate the Torelli theorem for

derived equivalence between K3 surfaces. Given any exact equivalence

Φ : Db(S) → Db(S ′)

between derived categories of K3 surfaces (which is necessarily of Fourier-Mukai

type), it induces an isomorphism on cohomologies:

ΦH : H∗(S,Q) → H∗(S ′,Q).

It turns out that for K3 surfaces, ΦH maps H∗(S,Z) isomorphically onto H∗(S ′,Z)

and it is straightforwad to check that it induces a Hodge isomtery H̃(S,Z) →

H̃(S ′,Z) between the Mukai lattices.

The converse is also true under certain circumstances. To elaborate on this,

first of all the Mukai lattice H̃(S,Z) of K3 surface S has signature (20, 4), thus we

can talk about an orientation on its four negative directions, which is defined to

be a choice of an orientation on a negative-definite 4-dimesional vector subspace

of H̃(S,R); two such oriented subspaces V1 and V2 are considered to give rise

to the same orientation on the negative directions of H̃(S,Z) if the vector space

isomorphism given by natural inclusion followed by orthogonal projection

V1 ↪→ H̃(S,R) → V2
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is orientation preserving. Given any Kähler class α ∈ H1,1(S) and fix a generator

σ of H2,0(S) ≃ C, the 4-dimensional subspace of H̃(S,R) spanned by the classes

Re(σ), Im(σ), 1−α2

2
and α is negative-definite, therefore it determines an orientation

on the negative directions of H̃(S,Z); since the Kähler cone of S is connected and

rescaling σ won’t change the orientation on the plane spanned by Re(σ) and Im(σ),

this orientation is independent of the choice of Kähler class α and the generator

σ, and we choose it to be the natural orientation on the four negative directions

of H̃(S,Z). It should be clear what is meant by an isometry H̃(S,Z) ≃ H̃(S ′,Z)

to preserve the natural orientation.

Theorem 4.2.1. ([Huy06], Corollary 10.13). Suppose ϕ : H̃(S,Z) → H̃(S ′,Z) is a

Hodge isometry respecting the natural orientation on the four negative directions,

then there exists an exact equivalence Φ: Db(S) → Db(S ′) with ΦH = ϕ.

4.3 Mukai Lattices of K3 categories

We wish to define a similar weight-2 integral Hodge structure for the K3

category AW . Suggested by the situation for ordinary K3 surfaces, we make

use of the topological K-theory and Mukai vectors. H∗(W,Z) is torsion free, thus

Ktop(W ) is also torsion free and the Mukai vector v : Ktop(W ) −→ H∗(W,Q) is

injective and induces an isomorphism of C-vector spaces.

Definition 4.3.1. The Mukai lattice H̃(AW ,Z) for the Kuznetsov components

AW is the lattice on the free abelian group (it is torsion free because Ktop(W ) is)

Ktop(AW ) := {κ ∈ Ktop(W )| χ([Ei], κ), i = 1, . . . ,m}

endowed with the Euler pairing ( we will soon find out that the Euler pairing on

Ktop(AW ) is indeed symmetric ), where {E1, . . . , Em} is the exceptional sequence
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(4.1.1) for Gushel-Mukai fourfold and (4.1.2) for cubic fourfold. We define the

Mukai Hodge structure on H̃(AW ,Z) to be the following weight-2 Hodge structure

given by:

H̃
2,0
(AW ) := v−1(H3,1(W )),

H̃
1,1
(AW ) := v−1(

4⊕
p=0

Hp,p(W )),

H̃
0,2
(AW ) := v−1(H1,3(W )).

We also denote H̃
1,1
(AW ,Z) := Ktop(AW ) ∩ H̃

1,1
(AW ).

Observe that the Mukai vector v(Ei) of the exceptional objects are all of

Hodge-type, consequently H̃
2,0
(AW ) is the one dimensional subspace of Ktop(W )⊗

C that is mapped isomorphically onto H3,1(W ) by v. In particular, the Mukai

Hodge structure is K3 type.

Similar to the case of usual K3 surfaces, an equivalence of Kuznetsov components

should induce a Hodge isometry of Mukai lattices.

Proposition 4.3.2. ([Huy17]) (1) Let W be a Gushel-Mukai fourfold or a cubic

fourfold, any exact equivalence AW ≃ Db(S), where S is a K3 surface, induces a

Hodge isometry

H̃(AW ,Z) ≃ H̃(S,Z).

(2) Let W and W ′ be Gushel-Mukai or cubic fourfolds, any exact equivlance

AW ≃ A′
W between the Kuznetsov components induces a Hodge isometry

H̃(AW ,Z) ≃ H̃(AW ′ ,Z).

Proof. We give a brief account of (2), (1) is completely similar. Given an exact
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equivalence Φ: AW −̃→A′
W , we know that it must be of Fourier-Mukai type,

meaning there is a Fourier-Mukai transform ΦP : Db(W ) −→ Db(W ′) which factors

as

Db(W ) → AW
Φ→ AW ′ ↪→ Db(W ′).

Then it is straightforward to check that the induced map ΦK
P : Ktop(W ) −→

Ktop(W
′) brings Ktop(AW ) isometrically onto Ktop(AW ′), hence we have an isometry

of lattice H̃(AW ,Z) ≃ H̃(AW ′ ,Z). To see that it is an Hodge isometry we only need

to show that ΦK
P brings H̃

2,0
(AW ) = v−1H3,1(W ) into H̃

2,0
(AW ′) = v−1H3,1(W ′),

but this simply follows from that ΦK
P is compatible, via v, with ΦH

P , and ΦH
P maps

H3,1(W ) into H3,1(W ′).

We know that there exists Gushel-Mukai (resp. cubic) fourfolds homological-

associated to K3 surfaces, and that all Gushel-Mukai (resp. cubic) fourfolds are

deformation equivalent, therefore we have

Corollary 4.3.3. Let W be an arbitrary Gushel-Mukai or cubic fourfold, H̃(AW ,Z)

is isometric to the abstract lattice U4 ⊕ E2
8 . (in particular, the Euler pairing on

Ktop(AW ) happens to be symmetric).

Remark. We are using the fact that Ktop(AW ) is a deformation invariant, in fact

it can be shown that the parallel transports of Ktop(W ) when W vary in a family

preserves the subgroup Ktop(AW ). We will discuss this in more detail in the next

subsection.

There is a copy of hyperbolic plane U primitively contained in H̃
1,1
(S,Z), hence

by the previous Proposition again if the fourfold W is homological-associated to

a K3 surface, then H̃
1,1
(AW ,Z) necessarily contains a copy of U . This turns out

to be a sufficient condition for homological association with K3 surfaces:
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Theorem 4.3.4. ([BLM+19] amd [PPZ19]). Let W be a Gushel-Mukai fourfold

or a cubic fourfold, if H̃
1,1
(AW ,Z) contains primitive sublattice isometric to U ,

then there exists a K3 surface S such that AW ≃ Db(S).

This theorem allows us to compare Hodge association and homological association

between the fourfolds and K3 surfaces. Notice that it essentially says that a

fourfold W being homological-associated to a K3 surface is detected by its Mukai

lattice H̃(AW ,Z), hence to compare to Hodge association, it is desirable to reinterpret

the condition for a fourfold W being Hodge-special using its Mukai lattice.

In order to do so, we notice that H̃
1,1
(AW ,Z) always contain some special rank

2 sublattice ([AT14] and [Pert17]):

• If X is a cubic fourfold, we take λ1 = pr([Oline(1)]) and λ2 = pr([Oline(2)])

where pr is the projection map from Ktop(X) into Ktop(AX), and compute

the Euler pairing one has ⟨λ1, λ2⟩ =

 −2 1

1 −2

 = −A2. Notice that

⟨λ1, λ2⟩ is a primitive sublattice of H̃
1,1
(AX ,Z).

• If Y is a Gushel-Mukai fourfold, there also exists some special classes κ1, κ2 ∈

H̃
1,1
(AY ,Z) ( We avoid giving their definitions here, since they are somewhat

involved ) and we have ⟨κ1, κ2⟩ =

 −2 0

0 −2

 = −A⊕2
1 .

Proposition 4.3.5. (1) For a Gushel-Mukai fourfold X ([Pert17], Proposition

3.2) the Mukai vector v : Ktop(AX) → H∗(X,Z) induces a Hodge isometry (up to

a shift of bidegree)

⟨κ1, κ2⟩⊥ ≃ H4(X,Z)00.

Moreover it maps the sublattice

⟨κ1, κ2, ζ1, · · · , ζn⟩⊥
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isometrically onto the sublattice

⟨γ∗Xσ1,1, γ∗Xσ2, c2(ζ1), · · · , c2(ζn)⟩⊥

for any objects ζ1, · · · , ζn in Ktop(AX).

Moreover, c2 induces an isomorphism of groups

c̄2 :
H̃(AX ,Z)
⟨κ1, κ2⟩

−→ H4(X,Z)
⟨γ∗Xσ1,1, γ∗Xσ2⟩

identifying H̃
1,1

(AX ,Z)
⟨κ1,κ2⟩ with H2,2(X,Z)

⟨γ∗Xσ1,1,γ
∗
Xσ2⟩

.

(2) For a cubic fourfold Y ([AT14], Propostion 2.3 & Proposition 2.4) the

Mukai vector v : Ktop(AY ) → H∗(Y,Z) induces a Hodge isometry

⟨λ1, λ2⟩⊥ ≃ H4(Y,Z)0

Which maps ⟨λ1, λ2, ξ1, · · · , ξn⟩⊥ isometrically onto ⟨h2, c2(ξ1), · · · , c2(ξn)⟩⊥for

any objects ξ1, · · · , ξn in Ktop(AY ).

Moreover, c2 induces an isomorphism of groups

c̄2 :
H̃(AY ,Z)
⟨λ1, λ2⟩

−→ H4(Y,Z)
⟨h2⟩

identifying H̃
1,1

(AY ,Z)
⟨λ1,λ2⟩ with H2,2(Y,Z)

⟨h2⟩ .

One of the main take away of the Proposition is that the inverse of the Mukai

vector gives us an inclusion of Hodge structures v−1 : H4(X,Z)00 ↪→ H̃(AX ,Z)

(and v−1 : H4(Y,Z)0 ↪→ H̃(AY ,Z) for cubic fourfold Y ), hence we can translate

the data of a labelling on a fourfold X to its Mukai lattice:

Corollary 4.3.6. A labelling Kd ⊂ H2,2(X,Z) on a Gushel-Mukai fourfold X is

equivalent to a non-degenerate rank 3 primitive sublattice Md ⊂ H̃
1,1
(AX ,Z) of
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signature (1, 2) containing κ1 and κ2, the non-special cohomology K⊥
d ⊂ H4(X,Z)00

can be identified, by the Mukai vector, with the sublattice M⊥
d ⊂ H̃(AX ,Z).

Similarly, a labelling K ′
d ⊂ H2,2(Y,Z) on cubic fourfold Y is equivalent to a

non-degenerate rank 3 primitive sublattice M ′
d ⊂ H̃

1,1
(AY ,Z) of signature (1, 2)

containing λ1, λ2 and the non-speical cohomology is identified with M ′⊥
d ⊂ H̃(AY ,Z)

by Mukai vector.

Now the situation is clear: suppose we have a Gushel-Mukai or a cubic fourfold

W , on the one hand from the discussion above we know that W being Hodge-

associated to a K3 surface is equivalent to that H̃
1,1
(AW ,Z) containing certain rank

3 sublattice with disriminant d satisfying the numerical conditions in Proposition

3.4.2; on the other hand, Theorem 4.3.4 tells us that W being homological-

associated to some K3 surface if and only if H̃
1,1
(AW ,Z) contains a copy of U .

Therefore, comparing Hodge and homological asscociation between fourfolds and

K3 surfaces is reduced to a purely lattice theoretic questions, and along this line

we have

Theorem 4.3.7. (1) ([AT14, Theorem 3.1]). Let Y be a cubic fourfold, H̃
1,1
(AY ,Z)

contains a primitive sublattice M ′
d of discriminant d satisfying the numerical

condition (∗∗)′ as in Proposition 3.4.2 if and only if contains a copy of hyperbolic

plane U .

(2) ([Pert17, Theorem 3.6]). Let X be a Gushel-Mukai fourfold, if H̃
1,1
(AX ,Z)

contains a primitive sublattice Md of discriminant d satisfying the numerical

condition (∗∗) as in Propostion 3.4.2, then H̃
1,1
(AX ,Z) contains a copy of U ;

the converse holds if in addition we assume one of the following:

• H2,2(X,Z) has rank 3, or

• There is an element τ in the hyperbolic plane such that the sublattice ⟨κ1, κ2, τ⟩

has discriminant d ≡ 2 or 4 (mod 8).
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In particular we know that a cubic fourfold is homological-associated to K3

if and only if it has a Hodge theoretically associated one. For a Gushel-Mukai

fourfold, it is homological-associated to a K3 surface if it is Hodge-associated to

one, the converse holds at least for Gushel-Mukai fourfolds very general in divisors.

Remark. There exists Gushel-Mukai fourfolds with homological-associated K3

which cannot have Hodge-associated K3 (see [Pert17, 3.3]), therefore homological

association of a K3 to Gushel-Mukai does not imply Hodge-theoretic association

of a K3 in general.

Before proceeding, we make the following important observation that under

the embedding given by the inverse of Mukai vectors, any Hodge isometry between

non-special cohomologies extends to a Hodge isometry between Mukai lattices.

Proposition 4.3.8. Let (X,Kd) be a special Gushel-Mukai fourfold and (Y,K ′
d)

be a special cubic fourfold, then any Hodge isometry ϕ : K⊥
d → K ′⊥

d extends to a

Hodge isometry ϕ̃ : H̃(AX ,Z) → H̃(AY ,Z), in the sense that the following diagram

commutes

Kd K ′
d

H̃(AX ,Z) H̃(AY ,Z)

ϕ

v−1 v−1

ϕ̃

(4.3.1)

Proof. Because the Mukai vector v identifies H̃
2,0
(AX) with H3,1(X) and H̃

2,0
(AY )

with H3,1(Y ), any isometry of lattices H̃(AX ,Z) ≃ H̃(AY ,Z) extending a Hodge

isometry K⊥
d ≃ K ′⊥

d via v−1 will map H̃
2,0
(AX) into H̃

2,0
(AY ), therefore is already

a Hodge isometry. Thus we only need to show that there is a isometry of lattices ϕ̃ :

H̃(AX ,Z)
∼−→ H̃(AY ,Z) making the above diagram commutes. Now by corollary

4.3.3, both H̃(AX ,Z) and H̃(AY ,Z) are isometric to the even unimodular lattice

U4 ⊕ E2
8 . So, we are reduced to show that an isometry K⊥

d ≃ K ′⊥
d extends, via
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some primitive embeddings K⊥
d , K

′⊥
d ↪→ U4 ⊕ E2

8 , to an isometry of U4 ⊕ E2
8 .

This is where the of Nikulin (Theorem 2.1.14) comes in, notice that both K⊥
d and

K ′⊥
d are even (there are sublattices of even lattices) and K⊥

d ≃ K ′⊥
d implies that d

satisfies the condition (†), therefore we must gave d ≡ 2 (mod 8), then by the proof

of Proposition 3.4.4, we know that AK⊥
d
≃ AKd

≃ Z/dZ, hence ℓ(AK⊥
d
) = 1, thus

by Theorem 2.1.14 there is an isometry of lattice H̃(AX ,Z) ≃ H̃(AY ,Z) extending

K⊥
d ≃ K ′⊥

d .

Remark 4.3.9. It should be noted that the Hodge isomtery ϕ̃ extending ϕ : K⊥
d ≃

K ′⊥
d as in the last Proposition need not be unique. Indeed, using the notation as

in the discussion after Proposition 4.3.5, the orthogonal complement of K⊥
d inside

H̃(AX ,Z) is the primitive sublattice Md of signature (1, 2), we can change the sign

of ϕ̃ on this sublattice, the result is still an isometry extending ϕ. The ability of

doing so will be important to us at the end.

4.4 Mukai lattices in family of fourfolds

We only lay out the detail in the case of Gushel-Mukai fourfolds, the case

of cubic fourfolds follows similarly. Let π : X −→ T be a smooth family of

Gushel-Mukai fourfolds, denote by Ktop the local system of topological K-groups

on the fibers of π and P̃γ : Ktop(X1)−̃→Ktop(X2) be the parallel transport operator

along some continuous path γ in T , we first observe that P̃γ maps Ktop(AX1)

into Ktop(AX2). To make sense of this, at least locally (assuming T is affine for

example), Db(X ) has a semi-orthogonal decomposition which restricts to each fiber

Xt := π−1(t) to the defining semi-orthogonal decomposition ([Kuz11])

⟨AXt ,OXt ,U∨
Xt
,OXt(1),U∨

Xt
(1)⟩
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of the Kuznetsov component AXt . Therefore the elements [OXt ], [U∨
Xt
], [OXt(1)],

[U∨
Xt
(1)], whose right orthogonal respect to the Euler pairing defines Ktop(AXt),

are restriction of classes in Ktop(X ).

We will always denote by M the local system of Mukai lattices on the fibers of

any given family of Gushel-Mukai fourfolds; and by M′ the local system of Mukai

lattices on the fibers of any given family of cubic fourfolds. We will never need

to deal with Mukai lattices for two different families of Gushel-Mukai (or cubic)

fourfolds at the same time, so this shouldn’t cause any confusion. Both M,M′

are local subsystems of the local systems of topological K-groups.

Proposition 4.3.5 gives us an embedding of Hodge structures v−1 : H4(X,Z)00 ↪→

H̃(AX ,Z) for any Gushel-Mukai fourfold X. Our first goal is to show that this

extends to an inclusion of variation of Hodge structures (R4π∗Z)00 ↪→ M when

we have a family of Gushel-Mukai fourfolds π : X −→ T .

First we observe that if we let Pγ : H4(X1,Z)−̃→H4(X2,Z) be the parallel

transport for the local system R4π∗Z of singular cohomologies along some path γ

and P̃γ be the parallel transport operator for the local system Ktop of topological

K-groups, then the following diagram commutes

H4(X1,C) H4(X2,C)

Ktop(X1) Ktop(X2)

Pγ

P̃γ

v v (4.4.1)

where the vertical maps v are Mukai vectors. This is simply because that

both parallel transport operators are induced by a diffeomorphism X1 ≃ X2 and

the Mukai vector is clearly functorial under diffeomorphisms. Together with the

fact that (R4π∗Z)00 ⊂ R4π∗Z is an inclusion of local systems we have proved the

following

Proposition 4.4.1. If π : X −→ T is a family of Gushel-Mukai fourfolds, then
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the inverse of Mukai vector defines an embedding of variations of Hodge structures

(R4π∗Z)00 ↪→ M. Similarly if π′ : Y −→ S is a family of cubic fourfolds, then the

inverse of Mukai vector defines an embedding of variations of Hodge structures

(R4π′
∗Z)0 ↪→ M′.

Recall that in 3.6 we defined the family π : X lab −→ GlabLd
of labelled Gushel-

Mukai fourfolds and the family π′ : Y lab −→ ClabL′
d

of labelled cubic fourfolds,

also recall that in this case we have inclusion of variations of Hodge structures

K⊥ ⊂ (R4π∗Z)00 and K′⊥ ⊂ (R4π′
∗Z)0 respectively. Hence on these families of

fourfolds we have

Corollary 4.4.2. For the family π : X lab −→ GlabLd
of labelled Gushel-Mukai

fourfolds, the inverse of Mukai vector determines an embedding of variation of

Hodge structures K⊥ ↪→ M. Similar, for the family π′ : Y lab −→ ClabL′
d

of labelled

cubic fourfolds the inverse of Mukai vector gives an embedding of variation of

Hodge structures K′⊥ ↪→ M′.

In particular, we know that the parallel transports of Mukai lattices restrict

to the parallel transports of non-special cohomologies on these families of labelled

fourfolds.

Now Proposition 3.6.2 tells us that if the discriminant d satisfies the numerical

condition (†) then we have an isometry of lattices µ : L⊥
d −→ N⊥

d inducing

a rational map ν : GlabLd
99K ClabNd

, and at each point t = (X, [ω]) ∈ GlabLd
and

ν(t) = (Y, [µ(ω)]) ∈ ClabNd
we have a Hodge isometry ϕ : K⊥

[ω]

∼−→ K⊥
[µ(ω)], which, by

Proposition 4.3.8, extends to a Hodge isometry ϕ̃ : H̃(AX ,Z) ≃ H̃(AY ,Z). Recall

that ϕ remains a Hodge isometry under parallel translations, we now show that

this is also the case for ϕ̃.

Proposition 4.4.3. Let ϕ̃ : H̃(AX0 ,Z)
∼−→ H̃(AYν(0) ,Z) be a Hodge isometry

extending the Hodge isometry ϕ0 : K⊥
[ω0]

∼−→ K⊥
[µ(ω0)]

as in Propostion 4.3.8. Let
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γ be any continuous path in (a suitable open subset of) GlabLd
from (Xt, [ωt]) to

(X0, [ω0]) and ν(γ) the image path in ClabLd
from (Yν(t), [µ(ωt)]) to (Yν(0), [µ(ω0)]),

and let P̃γ and P̃ ′
ν(γ) be the parallel transport along these paths for the local systems

of Mukai lattices, then

P̃ ′−1
ν(γ)ϕ̃0P̃γ : H̃(AXt ,Z)

∼−→ H̃(AYν(t) ,Z)

is still a Hodge isometry.

Proof. Since parallel transports for the local system of Mukai lattices restricts to

that of the local system of non-special cohomologies (Proposition 4.4.2), we see

that P̃ ′−1
ν(γ)ϕ̃0P̃γ is an isometry of lattice extending the Hodge isometry p′−1

ν(γ)ϕ0pγ :

K⊥
[ωt]

∼−→ K⊥
[µ(ωt)]

, hence by the fact that the Mukai vector v identifies H3,1 with

H̃
2,0

again, P̃ ′−1
ν(γ)ϕ̃0P̃γ must be a Hodge isometry.

Remark 4.4.4. Everything discussed in this subsection remains true if we replace

the base spaces GlabLd
by GlabLd

and ClabNd
by ClabNd

respectively.
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Chapter 5

Comparing Hodge- and
homological-association between
fourfolds

In this section, we compare Hodge-association and homological-association between

Gushel-Mukai and cubic fourfolds, which is our Theorem 1.0.1.

As we have seen in 4.3, the comparison between Hodge and homological

association of K3 surfaces to our fourfolds has being well-understood; it essentially

reduces to the problem of comparing two lattice theoretic conditions on H̃
1,1
(AW ,Z).

Unfortunately, this strategy breaks down when implemented to comparing Hodge

and homological association between Gushel-Mukai and cubic fourfolds. The

difficulty is that there is no lattice theoretic condition on H̃
1,1
(AX ,Z) (X being

a Gushel-Mukai fourfold) which implies that AX ≃ AY for some cubic fourfold

Y , or vice versa. Therefore we retreat to the argument used by Addington &

Thomas in [AT14], which develops a way to deform Fourier-Mukai equivalence.

We state this deformation result, in the following form due to Huybrechts (see

[Huy17, Proposition 5.1])\.

Theorem 5.0.1. Let π : X −→ T be a smooth family of Gushel-Mukai fourfolds

and π′ : Y −→ S be a smooth family of cubic fourfolds, and there is a smooth

submersion f : T −→ S between the base spaces. Assume Φ : AX0−̃→AYf(0)
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is a Fourier-Mukai equivalence between the Kuznetsov components and let ϕ0 :

H̃(AX0 ,Z)−̃→H̃(AYf(0) ,Z) be the induced Hodge isometry on the Mukai lattices.

Suppose ϕ remains a Hodge isometry ϕt : H̃(AXt ,Z)−̃→H̃(AYf(t) ,Z) under parallel

transport for all t ∈ T . Then there is a Zariski open subset U ⊂ T such that for

all t ∈ U , there is a Fourier-Mukai equivalence Φt : AXt −→ AYf(t).

We will explain the proof of this Theorem in 5.2, let us first use this to give a

proof of Theorem 1.0.1.

5.1 Proof of Theorem 1.0.1

In this subsection, we prove

Theorem 5.1.1. (Theorem 1.0.1) Let d > 8 be an interger satisfying the numerical

condition (†). There is a non-empty Zariski open subset Ud of Gd such that Gushel-

Mukai fourfolds in Ud admit homological-associated cubic fourfolds; there is a

non-empty Zariski open subset Vd ⊂ Cd such that cubic fourfolds in Vd admit

homological-associated Gushel-Mukai fourfolds.

Proof. Let T ⊂ GlabLd
be the domain of ν and T ′ = ν(T ) ⊂ ClabLd

. Let X −→ T

be the family of labelled Gushel-Mukai fourfolds given by the restriction of the

family π : X lab −→ GlabLd
and Y −→ T ′ be the family of labelled cubic fourfolds

given by the restriction of π′ : Y lab → ClabLd
. By our discussion in 3.6 and 4.4,

we know that any point t ∈ T can be viewed as a pair (X, [ω]) where X is the

fiber Xt and [ω] ∈ Dlab
Ld

gives rise a to labelling K[ω] on X and ν(t) is given by

(Y, [µ(ω)]) with Y the unique cubic fourfold determined by [µ(ω)] ∈ Dlab
L′
d

and is

the fiber Yf(t), [µ(ω)] determines a labelling K[µ(ω)] on Y and there is a Hodge

isometry ϕ : K⊥
[ω]

∼−→ K⊥
[µ(ω)] between the non-special cohomologies that extends

to a Hodge isometry ϕ̃ : H̃(AX ,Z)
∼−→ H̃(AY ,Z) between Mukai lattices which,

under parallel transports, remains a Hodge isometry. So we only need to show, for
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suitable choices of the point t = (X, [ω]), the Hodge isometry ϕ is induced by an

exact equivalence, then by Theorem 5.0.1, this equivalence deforms to a Zariski

open subset U ⊂ GlabLd
. Then we just let Ud be the image of U under the covering

map GlabLd
−→ Gd and let Vd be the image of ν(U) ⊂ ClabLd

under ClabLd
−→ Cd.

It turns out that in order for the Hodge isometry ϕ̃ : H̃(AX ,Z)
∼−→ H̃(AY ,Z)

to be induced by an exact equivalence, it is sufficient that AY is exact equivalent to

Db(S ′) for some K3 surface S ′, meaning Y homological-associated to S ′. To see this

we let ∆′ : AY
∼−→ Db(S ′) be an exact equivalence, recall that it induces a Hodge

isometry δ′ : H̃(AY ,Z)
∼−→ H̃(S ′,Z). Now the composition δ′ϕ̃ : H̃(AX ,Z)

∼−→

H̃(S ′,Z) is a Hodge isometry and it shows that H̃
1,1
(AX ,Z) contains a copy of U ,

therefore by Theorem 4.3.4 there is an exact equivalence ∆ : AX
∼−→ Db(S) for

some K3 surface S with an induced Hodge isometry δ : H̃(AX ,Z)
∼−→ H̃(S,Z).

Hence we have Hodge isometry δ′ϕ̃δ−1 : H̃(S,Z) ∼−→ H̃(S ′,Z) between Mukai

lattices of K3 surfaces, we now show that we can assume it preserves the natural

orientation on the four negative directions.

If δ′ϕ̃δ−1 does not preserve the natural orientation, we perform the following

modification on ϕ̃: recall that ϕ̃ restricts to the Hodge isometry ϕ : K⊥
[ω]

∼−→

K⊥
[µ(ω)] between the non-special cohomologies. By Corollary 4.3.6, the orthogonal

complement of K⊥
[ω] inside H̃(AX ,Z) is given by a certain rank 3 sublattice M ,

it turns out that the hyperbolic plane U contained in H̃
1,1
(AX ,Z) in this case

can be constructed inside M (see the proof of Theorem 3.1 of [AT14]). This

shows that H̃(AX ,Z) can be written as U ⊕ U⊥ (H̃(AX ,Z) agrees with U ⊕ U⊥

by Proposition 2.1.8 (2)) with the sublattice K⊥
[ω] contained in U⊥. Now we

can modify ϕ̃ by changing its sign on the copy of U in H̃(AX ,Z), the resulting

isometry still restricts to ϕ on K⊥
[ω]. This changes the sign of ϕ̃ on exactly one

negative direction.
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Hence by Theorem 4.2.1, δ′ϕ̃δ−1 is induced by some derived equivalence

Ψ : Db(S)−̃→Db(S ′).

Then we see that ϕ̃ is induced by ∆′−1Ψ∆ : AX−̃→AY .

Lastly, to see that we can choose the point t so that the resulting cubic fourfold

Y has homological associated K3, we notice that the image of T ′ in Cd under the

map ClabNd
−→ Cd is a Zariski open subset of Cd, which, by Proposition 3.5.5,

contains a Hodge-associated, therefore homological-associated K3 surface. This

shows that we can choose t ∈ T at the beginning such that the resulting cubic

fourfold Y corresponding to the point ν(t) has a homological-associated K3.

5.2 Deformation of equivalence of categories

We dedicate this subsection to the proof of Theorem 5.0.1. This result is

first proved by Addington & Thomas (see [AT14]) for the case of deforming an

exact functor Db(S) −→ Db(Y ) where S is a K3 surface and Y a cubic fourfold,

the version for deforming equivalence between Kuznetsov compoents is due to

Huybrecht ([Huy17]). We will skip some details which will be verbatim repetition

of discussions in [AT14] and [Huy17], but we will point out the details of some

key steps.

First of all, we can pullback the family π′ : Y −→ S by the map f , so

we will assume that both families are defined on the same base space T and

f is the identity map. By the assumption, the compostion Db(X0) → AX0

Φ→

AY0 ↪→ Db(Y0) is given by a Fourier-Mukai transform ΦP0 for some kernel P0 ∈

Db(X0 × Y0). As in [Huy17, Theorem 5.1], the condition that a Fourier-Mukai

transform Db(Xt) −→ Db(Yt) factor through an equivalence AXt ≃ AYt is a Zariski

open condition, therefore it is sufficient to deform the functor ΦP , which amounts
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to deform the Fourier-Mukai kernel P0. This is achieved in two steps, first we make

use of Theorem 2.2.6 to show that under our hypothesis on the induced Hodge

isometry on Mukai lattices there is no obstruction to first order deformation of P0

(along the appropriate first order deformation of X0 and Y0), then we can handle

extension to higher orders by a so called T 1-lifting argument,

•First order

For simplicity, we set X = X0, Y = Y0 and P = P0. Let κX ∈ H1(TX) and

κY ∈ H1(TY ) be the Kodaira-Spencer classes given by some fixed tangent vector

v ∈ T0T , we aim at proving (κX , κY ) ◦ At(P ) = 0 (Theorem 2.2.6).

Lemma 5.2.1. The following diagram commutes

HH2(X) HH2(Y )

HH0(X) HH0(Y )

κX⌟

ΦHH∗
P

∼=

κY ⌟

ΦHH∗
P

(5.2.1)

Before proving this, we need to explain why ΦHH∗
P : HH2(X) → HH2(Y ) is an

isomorphism. In fact, it is possible to define Hochschild homologies for admissible

subcategories of bounded derived categories of smooth projective varieties which

behaves functorailly and they are additive in semi-orthogonal decomposition (see

[MS19]). Then ΦHH∗
P factors as

HH2(X) ↠ HH2(AX)
ΦHH∗
−→∼= HH2(AY ) ↪→ HH2(Y )

with ΦHH∗ being an isomorphism since Φ is an equivalence; furthermore, subcategory

generated by an exceptional object is equivalent to that of a point, hence it has

trivial HH2, therefore both the projections (left or right adjoint of the inclusion

functor) HH2(X) ↠ HH2(AX) and the inclusions HH2(AY ) ↪→ HH2(Y ) are

isomorphisms.

77



Proof. Recall from 2.3, we have the twisted HKR isomorphism IK : HH∗−̃→HΩ∗

which is compatible with the maps induced by Fourier-Mukai transfomations.

Meanwhile in our case, we have HΩ2(X) = H3,1(X) ∼= C and HΩ2(Y ) = H3,1(Y ) ∼=

C. Hence we only need to prove the following diagram commutes:

H3,1(X) H3,1(Y )

⊕
Hp,p(X)

⊕
Hp,p(Y )

κX⌟

ΦH
P

∼=
κY ⌟

ΦH
P

(5.2.2)

Our hypothesis that ϕ0 remains Hodge isomtery under parallel transport implies,

at least in some (analytic) neighborhood of 0 ∈ T , M ≃ M′ as variation of Hodge

structures; by Griffith transversality and the fact that (R4π∗Z)00 (resp. (R4π′
∗Z)0)

is embedded a sub-variation of Hodge structures of M (resp. M′), we have the

following commutative diagram:

H3,1(X) H3,1(Y )

H2,2(X)00 H2,2(Y )0

H̃
1,1
(AX) H̃

1,1
(AY )

κX⌟

ΦH
P

∼=
κY ⌟

v−1 v−1

ϕ0

(5.2.3)

Now recall that ϕ0 is given by the restriction of the map ΦK
P : Ktop(X) →

Ktop(Y ) to Ktop(AX); we also know that ΦK
P and ΦH

P are compatible via Mukai

vector v. Hence we also have the commutative diagram:

H̃
1,1
(AX) H̃

1,1
(AY )

⊕
Hp,p(X)

⊕
Hp,p(Y )

ϕ0

v v

ΦH
P

(5.2.4)

Combine the last two diagrams, we’re done.

In order to effectively compute the obstruction class (κX , κY )◦At(P ), we need
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to split the Atiyah class At(P ):

The direct sum split ΩX×Y = π∗
XΩX ⊕ π∗

YΩY induces a split Ext1(P, P ⊗

ΩX×Y ) ≃ Ext1(P, P ⊗ π∗
XΩX)⊕Ext1(P, P ⊗ π∗

YΩY ), hence we can write At(P ) =

(AtX(P ), AtY (P )) for AtX(P ) ∈ Ext1(P, P ⊗ π∗
XΩX) and AtY (P ) ∈ Ext1(P, P ⊗

π∗
YΩY ), they are called the partial Atiyah classes.

Lemma 5.2.2. [AT14, Lemma 7.2 & 7.3]). AtX(P ) corresponds to the exact

triangle

P ∗ (∆X∗ΩX) −→ P ∗ O2∆X
−→ P ∗ O∆X

AtY (P ) corresponds to the exact triangle

(∆Y ∗ΩY ) ∗ P −→ O2∆Y
∗ P −→ O∆Y

∗ P

Remark. Notice that we indeed have P ∗ (∆X∗ΩX) ≃ P ⊗π∗
XΩX and P ∗O∆X

≃ P

as objects of Db(X × Y ) and (∆Y ∗ΩY ) ∗ P ≃ P ⊗ π∗
YΩY and O∆Y

∗ P ≃ P as

objects of Db(X × Y ).

Observe that under the spliting At(P ) = (AtX(P ), AtY (P )), we have

(κX , κY ) ◦ At(P ) = π∗
XκX ◦ AtX(P ) + π∗

Y κY ◦ AtY (P ).

So we are reduced to prove that π∗
XκX ◦ AtX(P ) = −π∗

Y κY ◦ AtY (P ). To do so,

we need to analyze the splitting of the Atiyah class

At(O∆X
) ∈ Ext1(O∆X

,O∆X
⊗ ΩX×X)

into its partial classes. We write At(O∆X
) = (At1(O∆X

), At2(O∆X
)) where

Ati(O∆X
) ∈ Ext1(O∆X

,O∆X
⊗ π∗

iΩX), i = 1, 2,
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are the partial classes ofAt(O∆X
). It turns out that under the natural identification

O∆X
⊗π∗

1ΩX ≃ O∆X
⊗π∗

2ΩX ≃ ∆X∗ΩX , we have At1(O∆X
) = AtX = −At2(O∆X

)

where AtX ∈ Ext1(O∆X
,∆X∗ΩX) is the universal Atiyah class of X ([AT14,

Corollary 7.5]). The same holds true on Y .

The next observation we can make is that ([AT14, Proof of Theorem 7.1])

Lemma 5.2.3. Under the twisted HKR isomorphism IK : HH2(X) → HT 2(X),

the class π∗
1κX ◦ At1(O∆X

) ∈ Ext2(O∆X
,O∆X

) = HH2(X) is mapped to κX ∈

H1(TX) ⊂ HT 2(X). Similarly, IK : HH2(Y ) → HT 2(Y ) maps −π∗
2κY ◦At2(O∆Y

) =

π∗
1κY ◦ At1(O∆Y

) to κY .

Combining Lemma 5.2.1, 5.2.2 and 5.2.3, we claim the existence of the following

commutative diagram (recall notations in 2.3):

Ext−2
X×Y (P ∗ S−1

∆X
, P ) Ext−2

X×Y (S
−1
∆Y

∗ P, P )

HH2(X) HH2(Y )

Ext0X×Y (P ∗ S−1
∆X
, P ) Ext0X×Y (S

−1
∆Y

∗ P, P )

HH0(X) HH0(Y )

π∗
XκX◦AtX(P ) −π∗

Y κY ◦AtY (P )

ΦHH∗
P

P∗

π∗
1κX◦At1(O∆X

)

∗P

−π∗
2κY ◦At2(O∆Y

)

P∗

ΦHH∗
P

∗P

(5.2.5)

The front square being commutative follows from Lemma 5.2.1 and 5.2.3; the

left and right squares are commutative by Lemma 5.2.2; the top and bottom

squares exist and are commutative for the simple reason that the map ΦHH∗
P :

HHj(X) → HHj(Y ) factor through (see the description of ΦHH∗
P in 2.3)

P∗ : HHj(X) = Ext−jX×X(S
−1
∆X
,O∆X

) −→ Ext−jX×Y (P ∗ S−1
∆X
, P )
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So we are left with the commutativity of the rear square, we only need to

show that both HH2(X)
P∗−→ Ext−2

X×Y (P ∗S−1
∆X
, P ) and HH2(Y )

∗P−→ Ext−2
X×Y (S

−1
∆Y

∗

P, P ) are isomorphisms. In fact, as we mentioned before, it is possible to define

Hochschild homology of the Kuznetsov components, it turns out that (see [Kuz09,

Lemma 7.4]) Ext−2
X×Y (P∗S−1

∆X
, P ) ≃ HH2(AX) and Ext−2

X×Y (S
−1
∆Y

∗P, P ) ≃ HH2(AY )

are nothing but just HH2 of the Kuznetsov components, moreover the maps

P∗ and ∗P play the role of projections HH2(X) ↠ HH2(AX) and HH2(Y ) ↠

HH2(AY ), which, as remarked earilier, are isomorphims.

Hence the rear square is commutative, but that translates to π∗
XκX ◦AtX(P ) =

−π∗
Y κY ◦AtY (P ) as classes in Ext2X×Y (P, P ). This completes the first order step.

Remark 5.2.4. We should point out that everything discussed in this step remains

valid if we X and Y are defined, instead, over some complex Artinian space

A, and the product X × Y is understood to be the fiber product over A. The

Kodaira Spencer classes κX and κY are to be interpreted as relative classes over

A, meaning κX ∈ H1(TX/A) for example, and they dictates some “side-way” first

order deformations X1 −→ A × A1 and Y1 −→ A × A1 of our A-schemes X and

Y . Both lemma 5.2.2 and 5.2.3 carry over with no change, therefore if we insist

the commutativity of the diagram

HH2(X) HH2(Y )

HH0(X) HH0(Y )

κX⌟

ΦHH∗
P

∼=
κY ⌟

ΦHH∗
P

(5.2.6)

as in Lemma 5.2.1. Then we will still have (κX , κY ) ◦At(P ) = 0 and therefore

the complex P ∈ DPerf (X×Y ) deforms “side-way” to a complex P̃ ∈ DPerf (X1×A×A1

Y1) (see the Remark after Theorem 2.2.6) .

•Higher order

We will be brief in this part and refer all the details to [AT14, 7.2]. Consider
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the following Artinian spaces

An = SpecC[t]/(tn+1)

Bn = An × A1 = SpecC[x, y]/(xn+1, y2)

and we consider the map pn : Bn −→ An given by t 7−→ x + y, and let

ιn : An −→ An+1 and jn : An −→ Bn be the natural inclusions.

An−1 An

Bn−1 Bn

An An+1

jn−1

ιn−1

ιn−1

jn

ιn
ιn×id

pn−1 pn

ιn

(5.2.7)

Now suppose we have a smooth family An+1 −→ An+1, which base change to

An −→ An by ιn and Bn −→ Bn by pn. We want to extend a perfect complex

Pn ∈ DPerf (An) to Pn+1 ∈ DPerf (An) so that ι∗nPn+1 = Pn. The T 1-lifting for

complexes of sheaves asserts the following

Proposition 5.2.5. ([AT14 Proposition 7.6]). Suppose there exists a complex

P̃n+1 ∈ DPerf (Bn)

such that j∗nP̃n+1 = Pn (P̃n+1 is a “side way” first order deformation of Pn)

and also satisfies

(ιn−1 × id)∗P̃n+1 = p∗n−1Pn

Then there exists Pn+1 ∈ DPerf (An) such that ι∗nPn+1 = Pn.

In our case, we consider a formal curve A∞ := SpecC[[t]] −→ T centered at

0 ∈ T , let X∞ −→ A∞ and Y∞ −→ A∞ the base change to A∞ of the families

X and Y and we denote Xn and Yn their restriction to An, the tangent vector
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v of the formal curve determines, for each n, a relative Kodaira Spencer class

κXn ∈ H1(TXn/An) and κYn ∈ H1(TYn/An) (including the case n = ∞). For n = 0,

we have a complex P0 ∈ Db(X0×Y0) inducing some Fourier-Mukai transform ΦP0 .

As in [AT14], we can consider some natural identifications

H∗
dR(X∞/A∞) ∼= H∗(X0)⊗ C[[t]], H∗

dR(Y∞/A∞) ∼= H∗(Y0)⊗ C[[t]]

This will give us the commutative diagram

H4
dR(X∞/A∞) H4

dR(Y∞/A∞)

H2
dR(X∞/A∞) H2

dR(Y∞/A∞)

κX∞

ΦH
P0

⊗1C[[t]]

κY∞

ΦH
P0

⊗1C[[t]]

(5.2.8)

Suppose now we have constructed inductively a complex Pj ∈ DPerf (Xj×Aj
Yj)

for all 1 ≤ j ≤ n such that Pj restricts to Pj−1, then the above diagram commutes

implies that

HH2(Xn/An) HH2(Yn/An)

HH0(Xn/An) HH0(Yn/An)

κXn

ΦHH∗
Pn

κYn

ΦHH∗
Pn

(5.2.9)

is commutative. Thus, as we discussed in Remark 5.2.4, Pn deforms to a

complex P̃n+1 ∈ DPerf (X
(1)
n ×An×A1 Y

(1)
n ), where X(1)

n and Y (1)
n are the “side-way”

first order deformations of Xn and Yn over An × A1 given by κXn and κYn .

Meanwhile, one has Ext1Xn×AnYn
(Pn, Pn) = 0 (Ext1Xn×AnYn

(Pn, Pn) computes the

first Hochschild cohomology of a family of K3 categories over An, which vanishes),

this implies the side-way extension P̃n+1 is unique (One heuristic way to convince

us this is that the condition

Ext1Xn×AnYn
(Pn, Pn) = 0
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says that Pn is rigid on the An-schemeXn×AnYn, thus ifXn and Yn undergo trivial

deformation, meaning κXn and κYn = 0, P̃n+1 must be the trivial deformation

of Pn as well). Now notice that both (ιn−1 × id)∗P̃n+1 and p∗n−1Pn restricts to

Pn−1 by jn−1 : An−1 ↪→ Bn−1, hence by uniqueness they must be the same. Thus

Proposition 5.2.5 applies and gives us a Pn+1 ∈ DPerf (Xn+1 ×An+1 Yn+1) which

restricts to Pn.

This proves that the complex P0 can be unobstructedly deformed in any

tangent direction v ∈ T0T , by standard deformation theory P0 can be deformed to

the formal neighborhood Ẑ := SpecÔT,0 to give us a complex PẐ ∈ DPerf (X×ẐY).

The rest follows from the existence of a locally finitely presented Artin stack S

parametrizing complexes with no negative self-Exts in the fibers of X ×T Y −→

T . Since having no negative self-Exts is an open condition satisfied by P0,

the complex PẐ defines a classifying map (Ẑ, 0) −→ (S, P0). Once again since

Ext1X0×Y0(P0, P0) = 0, i.e. P0 is rigid, and is an open condition, this classifying

map is in fact the formal neighborhood of P0 in S. Now since S is locally finitely

presented, we can find a smooth pointed scheme (Z, 0) mapping to (S, P0) taking

the formal neighborhood of 0 ∈ Z isomorphically onto Ẑ. Shrink Z if necessary,

we can ensure that the map (Z, 0) −→ (T, 0) is an open immersion and gives the

desired Zariski neighborhood of 0 in T over which P0 deforms.
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