
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Efficient Learning in Heterogeneous Internet of Things Ecosystems

Permalink
https://escholarship.org/uc/item/0mb185ht

Author
Kim, Yeseong

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0mb185ht
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Efficient Learning in Heterogeneous Internet of Things Ecosystems

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Yeseong Kim

Committee in charge:

Professor Tajana Simunic Rosing, Chair
Professor Chung-Kuan Cheng
Professor Ryan Kastner
Professor Farinaz Koushanfar
Professor Dean Tullsen

2020

Copyright

Yeseong Kim, 2020

All rights reserved.

The dissertation of Yeseong Kim is approved, and it is ac-

ceptable in quality and form for publication on microfilm and

electronically:

Chair

University of California San Diego

2020

iii

DEDICATION

To my wife, Jeeyoon,

my dauther, Olivia Daon,

and my family, Youngju, Haeja, Arie, and Evie.

iv

EPIGRAPH

O give thanks unto the Lord; for he is good:

because his mercy endureth for ever.

— Psalm 118:1

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xi

Acknowledgements . xii

Vita . xiv

Abstract of the Dissertation . xviii

Chapter 1 Introduction . 1
1.1 Cross-Platform Energy Prediction and Task Allocation 4
1.2 Efficient Learning Based on HD Computing 5
1.3 Collaborative Learning with HD Computing 6
1.4 Beyond Classical Learning: DNA Pattern Matching using HD Com-

puting . 7

Chapter 2 Intelligent Cross-Platform Task Characterization and Allocation 9
2.1 Introduction . 10
2.2 Related Work . 12
2.3 Overview of P4 . 14
2.4 Automated System Modeling . 15

2.4.1 Full-System Power Modeling 15
2.4.2 Cross-Platform Application Phase Recognition 19

2.5 Cross-Platform Prediction . 21
2.5.1 Phase-Based Training Data Generation 22
2.5.2 Cross-Platform Prediction Model Training 24
2.5.3 Online Prediction . 26

2.6 Cross-Platform Management for ML tasks 28
2.6.1 Cross-Platform Management Framework 28
2.6.2 Application Task Extraction 30
2.6.3 Task Allocation Case Study 31

2.7 Experimental Setup . 32
2.7.1 Benchmarks . 33

vi

2.7.2 Model Training Parameters 34
2.7.3 Overhead . 35

2.8 Evaluation of P4 Models . 36
2.8.1 Full-System Power Estimation 36
2.8.2 Cross-Platform Prediction 41

2.9 Evaluation of Model-Based ML Task Allocation 43
2.9.1 Energy Use Optimization 44
2.9.2 Energy Cost Reduction . 45

2.10 Conclusion . 46

Chapter 3 Hyperdimensional Computing for Efficient Learning in IoT Systems . . . 48
3.1 Introduction . 49
3.2 Related Work . 51
3.3 HD Computing Primitives . 52
3.4 HD-Based Classification . 54

3.4.1 Design Overview . 54
3.4.2 Sensor Data Encoding . 55
3.4.3 Model Training . 56
3.4.4 Model-Based Inference . 58

3.5 Evaluation . 59
3.5.1 Experimental Setup . 59
3.5.2 Classification Accuracy . 61
3.5.3 Efficiency Comparison . 61

3.6 Conclusion . 63

Chapter 4 Collaborative Learning with Hyperdimensional Computing 64
4.1 Introduction . 65
4.2 Motivational Scenario . 68
4.3 Related Work . 69
4.4 Secure Learning in HD Space . 71

4.4.1 Security Model . 71
4.4.2 Proposed Framework . 71
4.4.3 Secure Key Generation and Distribution 72

4.5 SecureHD Encoding and Decoding 74
4.5.1 Encoding in HD Space . 75
4.5.2 Decoding in HD Space . 78

4.6 Collaborative Learning in HD Space 82
4.6.1 Hierarchical Learning Approach 82
4.6.2 HD Model-Based Inference 85

4.7 Evaluation . 85
4.7.1 Experimental Setup . 85
4.7.2 Encoding and Decoding Performance 86
4.7.3 Evaluation of SecureHD Learning 87

vii

4.7.4 Data Recovery Trade-offs 89
4.7.5 Metadata Recovery Trade-offs 92

4.8 Conclusion . 93

Chapter 5 HD Computing Beyond Classical Learning: DNA Pattern Matching . . . 94
5.1 Introduction . 95
5.2 Related Work . 96
5.3 GenieHD Overview . 97
5.4 DNA Pattern Matching Using HD Computing 98

5.4.1 DNA Sequence Encoding 99
5.4.2 Pattern Matching . 102

5.5 Hardware Acceleration Design . 105
5.5.1 Acceleration Architecture 105
5.5.2 Implementation on Parallel Computing Platforms 107

5.6 Evaluation . 108
5.6.1 Experimental Setup . 108
5.6.2 Efficiency Comparison . 109
5.6.3 Pattern Matching for Multiple Queries 110
5.6.4 Dimensionality Exploitation 112

5.7 Conclusion . 113

Chapter 6 Summary and Future Work . 114
6.1 Thesis Summary . 115
6.2 Future Directions . 117

6.2.1 Efficient Cognitive Processing with HD Computing 117
6.2.2 Software Infrastructure for HD Computing 118

Bibliography . 119

viii

LIST OF FIGURES

Figure 1.1: Computing Nodes on Heterogeneous IoT Systems 2

Figure 2.1: An overview of P4 framework . 14
Figure 2.2: Power and performance with PMC events for Linpack benchmark on Intel

SR1560SF server at maximum frequency 20
Figure 2.3: Application phases for multi-threaded bzip2 benchmark independently iden-

tified for Intel SR1560SF and Sun X4270 servers at the maximum frequency 21
Figure 2.4: Cross-platform phase matching (Intel SR1560SF to SUN X4270, splash2x.lu cb) 22
Figure 2.5: Identified phases of four benchmarks running for 60 seconds (IntelH, IntelM

and IntelL: Intel server running at highest, medium, and lowest frequency
settings. SunH, DellH, and A15H: Sun server, Dell server, and ARM Cortex-
15 processor running at highest frequency.) 23

Figure 2.6: Cumulative distribution of instructions for two clusters 24
Figure 2.7: Feed-forward neural networks for online prediction 27
Figure 2.8: Overview of model-driven management on Spark environment 28
Figure 2.9: Task group identification for two Spark applications 31
Figure 2.10: Cumulative distribution of execution times for two task groups 31
Figure 2.11: Cross-platform NN model configurations 35
Figure 2.12: Overhead of model-driven management 36
Figure 2.13: Processor power estimation errors (Intel SR1560SF) 37
Figure 2.14: Power estimation error of subcomponents (Intel SR1560SF) 38
Figure 2.15: Runtime subcomponent power estimation (Intel SR1560SF) 38
Figure 2.16: Average error of single-machine supply power estimation. ARM A15 and

A7 represents respectively either Cortex A15 or A7 processor 40
Figure 2.17: Summary of time-variant power prediction accuracy 40
Figure 2.18: Time-variant power level prediction for four heterogeneous platform combi-

nations . 41
Figure 2.19: Cross-platform energy prediction accuracy. The error for each case shown in

(a) is the average error cross-validated for all benchmark applications. . . . 43
Figure 2.20: Summary of energy use optimization . 44
Figure 2.21: Energy breakdown comparison between Spark default and model-driven policy 45
Figure 2.22: Summary of cluster-level energy cost reduction 46
Figure 2.23: Energy breakdown over different price ratios between clusters 46

Figure 3.1: Overview of HD-Based Classification (Example: Human Activity Recognition) 54
Figure 3.2: Encoding of Sensor Measurements . 57
Figure 3.3: Accuracy Comparison for Different Modeling Methods 60
Figure 3.4: Efficiency Comparison for Training and Inference 61

Figure 4.1: Motivational scenario . 68

ix

Figure 4.2: Execution time of homomorphic encryption and decryption over MNIST
dataset . 69

Figure 4.3: Overview of SecureHD . 70
Figure 4.4: MPC-based key generation . 72
Figure 4.5: Illustration of SecureHD encoding and decoding procedures 73
Figure 4.6: Value extraction example . 76
Figure 4.7: Iterative error correction procedure . 79
Figure 4.8: Relationship between the number of metavector injections and segment size 81
Figure 4.9: Illustration of the classification in SecureHD 82
Figure 4.10: Comparison of SecureHD efficiency to homomorphic algorithm in encoding

and decoding . 85
Figure 4.11: SecureHD classification accuracy . 90
Figure 4.12: Scalability of SecureHD classification . 90
Figure 4.13: Data recovery accuracy of SecureHD . 91
Figure 4.14: Example of image recovery . 91
Figure 4.15: Data recovery rate for different settings of metavector injection 93

Figure 5.1: Overview of GenieHD . 98
Figure 5.2: Illustration of Encoding. For (a), (b), and (c), the window size is 6. (d)

illustrates the reference encoding steps described in Algorithm 2. 101
Figure 5.3: Similarity Computation in Pattern Matching. (a) and (b) are computed using

Equation 5.2. The histograms shown in (c) and (d) are obtained by testing
1,000 patterns for each of the existing and non-existing cases when R is
encoded for a random DNA sequence using D = 100,000 and P = 5,000. . 103

Figure 5.4: Hardware Acceleration Design. The dotted boxes in (a) show the hypervector
components required for the computation in the first stage of the reference
encoding. Recall that t is the index of the iteration. 105

Figure 5.5: Performance and Energy Comparison of GenieHD for State-of-the-art Meth-
ods. All results are compared and normalized to Bowtie2. 110

Figure 5.6: Scalability of GenieHD. (a) shows the execution time breakdown to process
the single query and reference. (b)-(d) shows how the speedup changes as
increasing the number of queries for a reference. 111

Figure 5.7: Accuracy Loss over Dimension Size . 112

x

LIST OF TABLES

Table 2.1: Comprehensive system models built on P4 15
Table 2.2: Selected PMC events for processor power estimation (epmc) 17
Table 2.3: Evaluated heterogeneous platforms . 33
Table 2.4: Overhead of P4 models . 35

Table 3.1: Evaluated Dataset (F: the number of features, K: the number of activity
classes, Ntrain: the number of samples in the training dataset, Ntest : the number
of samples in the testing dataset) . 60

Table 4.1: Datasets (n: feature size, K: number of classes) 87
Table 4.2: Overhead for key generation and distribution 87

Table 5.1: Evaluated DNA Sequence Datasets . 109
Table 5.2: GenieHD-ASIC Designs under Loss . 113

xi

ACKNOWLEDGEMENTS

I would like to first thank my advisor, Prof. Tajana Rosing for her encouragement, support

and guidance during my Ph.D. I am extremely grateful for her understanding in all aspects of

my life, both research and life. I would like to also thank my committee members, Prof. Dean

Tullsen, Prof. Ryan Kastner, Prof. CK Cheng, and Prof. Farinaz Koushanfar for their feedback

and discussions related to this Ph.D. work. A special thanks to Prof. Jihong Kim for his guidance

and encouraging me to pursue a Ph.D. I learned many skills that helped me perform well in my

research under his guidance.

I would like to thank all my lab colleges in SEELab for their active collaboration, help,

and all the good memories. I would also like to give special thanks to Pietro Mercati, Mohsen

Imani, and Saransh Gupta. I want to sincerely thank all support from Intel, my previous manager,

Michael Kishinevski, and my supervisors, Ankit More, Emily Shriver, and Mahesh Ketkar. My

research was made possible by funding from National Science Foundation (NSF) Grant 1527034,

1619261, 1730158, 1826967, 1911095, Intel Corporation, CRISP, one of six centers in JUMP, an

SRC program sponsored by DARPA, and SRC-Global Research Collaboration grant.

Most importantly, I owe so much to my wife, Jeeyoon, my daughter, Olivia Daon, my

parents and all my family. I would like to thank them for their endless love and support every day.

I could overcome all the difficulties thanks to their understanding, patience, and love.

Chapters 2 contains material from “P4: Phase-Based Power/Performance Prediction of

Heterogeneous Systems via Neural Networks”, by Yeseong Kim, Pietro Mercati, Ankit More,

Emily Shriver, and Tajana S. Rosing, which appears in International Conference on Computer-

Aided Design, November 2017. The dissertation author was the primary investigator and author

of this paper.

Chapters 3 contains material from “Efficient Human Activity Recognition Using Hyperdi-

mensional Computing”, by Yeseong Kim, Mohsen Imani, and Tajana S. Rosing, which appears in

IEEE Conference on Internet of Things, October 2018. The dissertation author was the primary

xii

investigator and author of this paper.

Chapters 4 contains material from “A Framework for Collaborative Learning in Secure

High-Dimensional Space”, by Mohsen Imani, Yeseong Kim, Sadegh Riazi, John Merssely, Patrick

Liu, Farinaz Koushanfar and Tajana S. Rosing, which appears in IEEE Cloud Computing, July

2019. The dissertation author was the primary investigator and author of this paper.

Chapters 5 contains material from “GenieHD: Efficient DNA Pattern Matching Accelerator

Using Hyperdimensional Computing”, by Yeseong Kim, Mohsen Imani, Niema Moshiri and

Tajana Rosing, which appears in IEEE/ACM Design Automation and Test in Europe Conference,

March 2020. The dissertation author was the primary investigator and author of this paper.

xiii

VITA

2011 B. S. in Computer Science and Engineering Cum Laude, Seoul National
University, Korea

2020 Ph. D. in Computer Science (Computer Engineering), University of Cali-
fornia San Diego, US

PUBLICATIONS

Yeseong Kim, Mohsen Imani, Niema Moshiri and Tajana Rosing, “GenieHD: Efficient DNA Pat-
tern Matching Accelerator Using Hyperdimensional Computing”, IEEE/ACM Design Automation
and Test in Europe Conference (DATE), Mar 2020

Mohsen Imani, Mohammad Samragh, Yeseong Kim, Saransh Gupta, Farinaz Koushanfar, Ta-
jana Rosing, “Deep Learning Acceleration with Neuron-to-Memory Transformation”, IEEE
International Symposium on High-Performance Computer Architecture (HPCA), Feb 2020

Mohsen Imani, Yeseong Kim, Sadegh Riazi, John Merssely, Patrick Liu, Farinaz Koushanfar and
Tajana S. Rosing, “A Framework for Collaborative Learning in Secure High-Dimensional Space”,
IEEE Cloud Computing (CLOUD), Jul 2019 (M. Imani and Y. Kim contributed equally)

Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana S. Rosing, “FloatPIM: In-Memory
Acceleration of Deep Neural Network Training with High Precision”, International Symposium
on Computer Architecture (ISCA), Jun 2019

Joonseop Sim, Saransh Gupta, Mohsen Imani, Yeseong Kim, and Tajana S. Rosing, “UPIM :
Unipolar Switching Logic for High Density Processing-in-Memory Applications”, ACM Great
lakes symposium on VLSI (GLSVLSI), May 2019

Anthony Thomas, Yunhui Guo, Yeseong Kim, Baris Aksanli, Arun Kumar, and Tajana S. Rosing,
“Hierarchical and Distributed Machine Learning Inference Beyond the Edge”, IEEE International
Conference on Networking, Sensing and Control (ICNSC), May 2019

Dongwon Park, Ilgweon Kang, Yeseong Kim, Sicun Gao, Bill Lin, and Chung-Kuan Cheng,
“ROAD : Routability Analysis and Diagnosis Framework Based on SAT Techniques”, Interna-
tional Symposium on Physical Design (ISPD), Apr 2019

Joonseop Sim, Minsu Kim, Yeseong Kim, Saransh Gupta, Behnam Khaleghi, Tajana Rosing,
“MAPIM: Mat Parallelism for High Performance Processing in Non-volatile Memory Architec-
ture”, International Symposium on Quality Electronic Design (ISQED), Mar 2019

Yeseong Kim, Ankit More, Emily Shriver, and Tajana S. Rosing, “Application Performance Pre-
diction and Optimization Under Cache Allocation Technology”, IEEE/ACM Design Automation
and Test in Europe Conference (DATE), Mar 2019

xiv

Yeseong Kim, Mohsen Imani, and Tajana S. Rosing, “Image Recognition Accelerator Design
Using In-Memory Processing”, IEEE MICRO, IEEE Computer Society, Jan/Feb 2019

Mohsen Imani, Yeseong Kim, Thomas Worley, Saransh Gupta, and Tajana S. Rosing, “HDCluster:
An Accurate Clustering Using Brain-Inspired High-Dimensional Computing”, IEEE/ACM Design
Automation and Test in Europe Conference (DATE), Mar 2019

Minxuan Zhou, Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana S. Rosing, “GRAM:
Graph Processing in a ReRAM-based Computational Memory”, IEEE Asia and South Pacific
Design Automation Conference (ASP-DAC), Jan 2019

Yeseong Kim, Mohsen Imani, and Tajana S. Rosing, “Efficient Human Activity Recognition
Using Hyperdimensional Computing”, IEEE Conference on Internet of Things (IoT), Oct 2018

Joonseop Sim, Mohsen Imani, Woojin Choi, Yeseong Kim, and Tajana S. Rosing, “LUPIS:
Latch-up Based Ultra Efficient Processing in-Memory System”, 2018 International Symposium
on Quality Electronic Design (ISQED), March 2018

Yeseong Kim, Pietro Mercati, Ankit More, Emily Shriver, and Tajana S. Rosing, “P4: Phase-
Based Power/Performance Prediction of Heterogeneous Systems via Neural Networks”, 2017
International Conference on Computer-Aided Design (ICCAD), November 2017

Yeseong Kim, Mohsen Imani, and Tajana S. Rosing, “ORCHARD: Visual Object Recognition
Accelerator Based on Approximate In-Memory Processing”, 2017 International Conference on
Computer-Aided Design (ICCAD), November 2017

Mohsen Imani, Yeseong Kim, and Tajana S. Rosing, “Brain-Inspired Hyperdimensional Com-
puting: An Efficient Classifier for Embedded Devices”, 2017 International Conference on
Computer-Aided Design (ICCAD), November 2017

Mohsen Imani, Yeseong Kim, and Tajana S. Rosing, “NNgine: Ultra-Efficient Nearest Neighbor
Accelerator Based on In-Memory Computing”, IEEE International Conference on Rebooting
Computing (ICRC), November 2017

Joonseop Sim, Mohsen Imani, Yeseong Kim, and Tajana S. Rosing, “Enabling Efficient System
Design Using Vertical Nanowire Transistor Current Mode Logic”, 25th IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), October 2017

Mohsen Imani, Daniel Peroni, Yeseong Kim, Abbas Rahimi, and Tajana S. Rosing, “Efficient
Neural Network Acceleration on GPGPU using Content Addressable Memory”, 20th Design
Automation and Test in Europe (DATE), March 2017

Mohsen Imani, Yeseong Kim, and Tajana S. Rosing, “MPIM: Multi-Purpose In-Memory Pro-
cessing Using Configurable Resistive Memory”, 22nd Asia and South Pacific Design Automation
Conference (ASPDAC), January 2017

xv

Wanlin Cui, Yeseong Kim, and Tajana S. Rosing, “Cross-Platform Machine Learning Characteri-
zation for Task Allocation in IoT Ecosystems”, 7th IEEE Annual Computing and Communication
Workshop and Conference (CCWC), January 2017 (Best Paper)

Mohsen Imani, Yeseong Kim, Abbas Rahimi and Tajana S. Rosing, “Acam: Approximate
computing based on adaptive associative memory with online learning”, 2016 International
Symposium on Low Power Electronics and Design (ISLPED), August 2016

Mohsen Imani, Abbas Rahimi, Yeseong Kim and Tajana S. Rosing, “A Low-Power Hybrid
Magnetic Cache Architecture Exploiting Narrow-Width Values”, 5th Non-Volatile Memory
Systems and Applications Symposium (NVMSA), August 2016

Mohsen Imani, Yeseong Kim, Abbas Rahimi and Tajana S. Rosing, “Associative Memory with
Online Learning for Approximate Computing”, IEEE/ACM Design Automation Conference
(DAC), June 2016

Yeseong Kim, Boyeong Jeon, and Jihong Kim, “A Personalized Network Activity-Aware Ap-
proach to Reducing Radio Energy Consumption of Smartphones”, IEEE Transaction on Mobile
Computing (IEEE TMC), March 2016

Shruti Patil, Yeseong Kim, Kunal Korgaonkar, Ibrahim Awwal, and Tajana S. Rosing, “Char-
acterization of User’s Behavior Variations for Design of Replayable Mobile Workloads”, 7th
EAI International Conference on Mobile Computing, Applications and Services (MobiCASE),
November 2015

Yeseong Kim, Francesco Paterna, Sameer Tilak, and Tajana S. Rosing, “Smartphone Analysis and
Optimization based on User Activity Recognition”, 2015 International Conference on Computer-
Aided Design (ICCAD), November 2015

Yeseong Kim, Mohsen Imani, Shruti Patil, and Tajana S. Rosing, “CAUSE: Critical Applica-
tion Usage-Aware Memory System using Non-volatile Memory for Mobile Devices”, 2015
International Conference on Computer-Aided Design (ICCAD), November 2015

Wook Song, Yeseong Kim, Hakbong Kim, Jehun Lim, and Jihong Kim, “Personalized Opti-
mization for Andriod Smartphones”, ACM Transaction on Embedded Computing Systems (ACM
TECS), January 2014

Yeseong Kim, Qingqing Zhang, Nosub Sung, and Jihong Kim, “A Mobile Network Emulation
Environment for Repeatable Performance Evaluations of Smartphones”, Journal of Korean
Institute of Information Scientists and Engineers : Computer Practices (KIISE), December 2013

Yeseong Kim, Qingqing Zhang, Nosub Sung, and Jihong Kim, “A Mobile Network Emulation
Environment for Repeatable Smartphone Performance Evaluations”, 2012 Korea Computer
Congress (KCC), June 2013 (Best Presentation Paper)

xvi

Yeseong Kim, Wook Song, and Jihong Kim, “A Personalized Network Tail Energy Optimization
Technique Based on Smartphone Network Usage Behavior”, Journal of Korean Institute of
Information Scientists and Engineers : Computer Systems and Theory (KIISE), December 2012

Yeseong Kim, Wook Song, and Jihong Kim, “A Smartphone Network Energy Optimization
Technique Using Personalized Network Usage Behavior”, 2012 Korea Computer Congress
(KCC), June 2012 (Best Paper)

Yeseong Kim, Jongwook Choi, Sungjin Lee, and Jihong Kim, “A Fast File Search Technique
Using Direct Access of Metadata Area”, 2011 Korea Computer Congress (KCC), June 2011

xvii

ABSTRACT OF THE DISSERTATION

Efficient Learning in Heterogeneous Internet of Things Ecosystems

by

Yeseong Kim

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California San Diego, 2020

Professor Tajana Simunic Rosing, Chair

The Internet of Things (IoT) is a growing network of heterogeneous devices, combining

various sensing and computing nodes at different scales, which creates a large volume of data.

Many IoT applications use machine learning (ML) algorithms to analyze the data. The high

computational complexity of ML workloads poses significant computational challenges to IoT

computing platforms, which tend to be less-powerful and resource-constrained devices. Transmit-

ting such large volumes of data to the cloud also causes various issues such as scalability, security,

and privacy. In this dissertation, we propose efficient solutions to perform ML tasks while

decreasing power consumption and improving performance. We first leverage the heterogeneous

and interconnected nature of the IoT systems, where IoT applications run on many different

xviii

architectures (e.g., X86 server or ARM-based edge device) while communicating with each other.

We present a cross-platform power and performance prediction technique for intelligent task

allocation. The proposed technique estimates the time-variant energy consumption with only 7%

error across completely different architectures, enabling the intelligent task allocation that saves

the energy consumption of 16.5% for state-of-the-art ML workloads.

We next show how to further advance the learning procedures towards real-time and

online processing by distributing such learning tasks onto the hierarchy of IoT devices. Our

solution leverages brain-inspired high-dimensional (HD) computing to derive a new class of

learning algorithms that can easily run on IoT devices while providing high accuracy comparable

to the state-of-the-arts. We present that the HD-based learning algorithms can cover various

real-world problems from conventional classification to other cognitive tasks beyond classical

MLs such as DNA pattern matching. We demonstrate that the HD-based learning can enable

secure, collaborative learning by efficiently distributing a large volume of learning tasks into

heterogeneous computing nodes. We have implemented the proposed learning solution on various

platforms while offering superior computing efficiency. For example, our solution achieves w

486× and 7× performance improvements for each of the training and inference phases on a

low-power ARM processor, as compared to state-of-the-art deep learning.

xix

Chapter 1

Introduction

Interconnected devices in the “Internet of Things” (IoT) are generating an ever increasing

amount of data. In the year 2020, it is expected that about 1.7 megabytes of new information are

being created every second for each human on the planet [1]. IoT applications collect the large

amounts of data from various devices and apply machine learning (ML) algorithms to transform

that data into actionable knowledge. As a result, running ML algorithms requires significant

computational power and storage, resulting in systems that stream most or all the data to the cloud

for analysis. However, transmitting all data to the cloud leads to scalability, security and privacy

concerns [2, 3]. A promising solution is to distribute the learning tasks onto the IoT hierarchy,

however effective learning in the IoT environements is still an open question.

Figure 1.1 shows an illustration of the computing nodes in typical heterogeneous IoT

systems, which has various sensors (on things) and intermediate computing devices (on gateways)

beyond traditional servers (on cloud). We highlight the main technical challenges in the IoT

systems as follows.

• Heterogeneity of computing platforms: The emergence of IoT increases the complexity

and heterogeneity of computing systems. In the IoT systems, applications, including ML

workloads, can run potentially on any device – from the resource-constrained sensory

1

Figure 1.1: Computing Nodes on Heterogeneous IoT Systems

devices to powerful servers, which normally have different architectures. There is already a

high degree of heterogeneity even in the datacenter servers, e.g., from legacy to brand-new

architectures. The state-of-the-art solutions only estimate average power and performance,

not their instantaneous behavior [4]. This makes workload balancing and task allocation

difficult.

• Complexity of ML algorithms: Training ML models requires a large cluster of application-

specific integrated chips (ASIC), e.g., deep learning on Google TPU [5], or is very slow on

traditional systems. Distributing the training to devices with heterogeneous data is very

difficult due to large communication and computational overhead.

• Limited computing power and resource: IoT edge devices often do not have sufficient

resources to support heavy workloads of start-of-the-art ML in real-time. For example, many

IoT devices use low-power processors such as ARM cores and Intel ATOM architectures,

which have limited computing speed and capability. They also often use batteries as their

primary energy source. There is a pressing need for alternative learning paradigms which

can be run directly on IoT devices for both training and inference, thus enabling real-time

and adaptive learning.

• Variety of learning data: IoT applications deal with varying types of data generated by

2

many different sensors. One example is bioinformatics workloads that handle a large size

of nucleotide sequences with high runtime and computation costs. We need a holistic

approach that efficiently process the variety of learning data [6].

In this dissertation, we propose efficient learning solutions for IoT systems. Our approach

covers architecture, application, and IoT hierarchy levels. At the architecture level, we propose

a power/performance prediction technique to enable the task allocation across the heteroge-

neous IoT platforms. The core technology is a cross-machine power/performance prediction

technique. The technique extracts key profiles of target applications running on heterogeneous

computing architectures and builds prediction models which accurately estimate time-variant

power/performance of workloads across different machines and platforms. To ensure the gener-

ality of the technique and sufficient coverage of various ML algorithms, the proposed models

were developed and verified with diverse industry-standard benchmark applications including

SPEC, PARSEC, SPLASH, NERSC, Intel BigDL, and SparkBench. We demonstrate that the

proposed technique can enable intelligent task allocation for ML tasks while improving the energy

efficiency and costs by 16% over the state-of-the-art distributed computing framework.

Next, at the application level, we design a new class of learning procedures in order to

achieve real-time performance with high energy efficiency on IoT devices. We utilize hyper-

dimensional (also called as high-dimensional) computing, in short HD computing [7], which

is a computing strategy that more closely models the ultimate efficient learning machine: the

human brain. HD computing mimics several desirable properties of the human brain, including:

robustness to noise and hardware failure and single-pass fast learning. These features make HD

computing a promising solution for IoT devices with limited storage, battery, and resources. In

this dissertation, We can design light-weight algorithms that learn with data by mapping sensor

inputs to high-dimensional vectors. We show that the HD-based learning algorithm can solve

diverse classification problems in practice with high quality comparable to the state-of-the-art

deep learning models.

3

At the hierarchy level, we enable an HD computing-based collaborative learning frame-

work which efficiently distribute a large volume of learning tasks into heterogeneous computing

nodes. Our evaluation show that we can achieve superior computing efficiency with the proposed

HD-based learning. For example, we achieve 486× and 7× speedup as compared to the deep

learning for training and inference, respectively, when running on a low-power ARM processor.

We also show that HD computing can address other challenging tasks beyond classical ML

problems. As an example, we focus on a bioinformatics problem of DNA pattern matching.

In the rest of this chapter, we discuss the contributions and related work of this thesis in

more details.

1.1 Cross-Platform Energy Prediction and Task Allocation

The emergence of Internet of Things increases the heterogeneity of computing platforms.

Migrating workload between various platforms is one way to improve both energy efficiency and

performance. Recent cloud systems not only utilize x86-class processors but also employs a large

array of low-power ARM processors [8]. With the emergence of edge computing, task allocation

decisions of learning procedures also need to be made across different scales of devices, e.g.,

high-performance servers vs. mobile devices [9].

Effective task allocation and migration requires accurate estimates of its costs and benefits.

To date, these estimates rely on analyzing power and performance relationship to system events

by domain experts and computer architects. Most previous research work focused on estimation

problems of power and performance only for individual machines [10, 11, 12]. Besides, predicting

the costs across different architectures has not been accurate for time-series prediction and requires

application source code for instrumentation [4].

To enable the intelligent task allocation, we propose P4, a new Phase-based Power

and Performance Prediction framework which identifies application power and performance

4

across heterogeneous computing platforms. P4 utilizes machine learning techniques to automate

power and performance modeling procedures for various system components, while identifying

key system events such as the best-suitable performance counters. It then extracts machine-

independent application phases by characterizing computing platforms with a set of benchmarks.

Given the application phases, it builds neural network-based models which identify the costs and

benefits if an arbitrary program procedure were running on a completely different computing

platform without ever having to run it on there. We integrate the models trained in P4 with

state-of-the-art ML tasks running on a distributed computing environments, Apache Spark, to

serve diverse optimization goals, e.g., energy demand and energy costs in hierarchical systems.

We evaluate the proposed framework on four commercial heterogeneous platforms, rang-

ing from X86 servers to mobile ARM-based architecture, with 154 industry-standard benchmarks.

Our experimental results show that P4 can predict the power, performance and energy changes

with only 6.8%, 5.6%, and 6.1% error, respectively, even for completely different architectures

from the ones applications ran on. The model-based framework effectively allocates ML tasks

and achieves energy saving of 16.5% and energy cost reduction of 16.8%. This is presented in

Chapter 2.

1.2 Efficient Learning Based on HD Computing

A key task of many IoT applications is to understand underlying context and react to

the environment based on sensed data. Machine learning is widely used for this. However,

they are often overcomplex to run on less-powerful IoT devices although it is appropriately

allocated as we discuss in Chapter 2. A key focus of the dissertation is to develop an alternative

approach which efficiently supports the learning tasks using brain-inspired HD computing. HD

computing is based on a short-term human memory model, Sparse distributed memory, emerged

from theoretical neuroscience [13]. It leverages the understanding that the human brain operates

5

on high dimensional representations of data originated from the large size of brain circuits [14].

It thereby models the human memory using points of a high-dimensional space, that is, with

hypervectors. The hyperspace typically refers to tens of thousand dimensions. HD computing

incorporates important functionalities of the human memory model with vector operations which

are useful to design a new class of efficient learning solutions. HD computing-based learning

is also robust to noises, computationally tractable, and mathematically rigorous in describing

human cognition.

We show how the HD computing can be applied to learning problems in IoT systems

while improving the accuracy and efficiency. To verify the idea for practical IoT applications,

we evaluate the developed learning algorithm using three human activity recognition datasets

collected from the sensor data of mobile/embedded devices. We present that the proposed design

achieves the speedup of the model training and inference by up to 486x and 7x as compared to

the state-of-the-art neural network training [15]. This is presented in Chapter 3.

1.3 Collaborative Learning with HD Computing

As the amount of data generated by the Internet of the Things (IoT) devices keeps

increasing, many applications offload computation to the cloud. However, this often entails risks

due to security and privacy concerns. Encryption and decryption methods have been proposed

and used in practice, e.g., Homomorphic Encryption [16], but they add an already significant

computational burden. We utilize the HD-based learning algorithm presented in Chapter 3 to

build a collaborative and secure learning solution. In Chapter 4, we present SecureHD, which

encodes original data into secure, high-dimensional vectors, while the training is performed with

the encoded vectors. Thus, applications can send their data to the cloud with no security concerns,

while the cloud can classify the data without additional decryption. We also show how SecureHD

can recover the encoded data in a lossless manner.

6

In our evaluation, our proposed SecureHD framework can perform the encoding and

decoding tasks 145.6× and 6.8× faster than a state-of-the-art encryption/decryption library

running on the contemporary CPU [17]. In addition, our learning method achieves high accuracy

of 95% on average for diverse practical classification tasks including cloud-scale datasets.

1.4 Beyond Classical Learning: DNA Pattern Matching using

HD Computing

IoT applications handle varying data types collected from diverse sensors and devices.

Although many of them can be collected as the feature vectors which most classical ML algorithms

consider, there are many other IoT data which cannot be easily mapped [6]. We examine the

potential of HD computing for the wider range of learning tasks by focusing on a key procedure of

bioinformatics problem – DNA pattern matching. Acceleration of bioinformatics applications is a

key procedure to enable personalized IoT-based healthcare [18] and on-site disease detection [19].

Although previous research proposed various accelerator designs on GPU [20] and FPGA [21],

the increasing volume of the DNA data exacerbates the runtime and power consumption of the

DNA pattern matching.

We present GenieHD in Chapter 5, which efficiently parallelizes the DNA pattern matching

task using the idea of HD computing. We transform inherent sequential processes of the DNA

pattern matching to highly-parallelizable computation tasks. The proposed technique first encodes

the whole genome sequence and target DNA pattern into high-dimensional vectors. Once encoded,

a light-weight operation on the high-dimensional vectors can identify if the target pattern exists

in the whole sequence. We also design an accelerator which effectively parallelizes the HD-

based DNA pattern matching while significantly reducing the number of memory accesses. The

architecture can be implemented on various parallel computing platforms to meet target system

requirements, e.g., FPGA or ASIC. We evaluate GenieHD on practical large-size DNA datasets

7

such as human and Escherichia Coli genomes. Our evaluation shows that GenieHD significantly

accelerates the DNA matching procedure, e.g., 44.4× speedup and 54.1× higher energy efficiency

as compared to a state-of-the-art FPGA-based design [21].

8

Chapter 2

Intelligent Cross-Platform Task

Characterization and Allocation

9

2.1 Introduction

With the emergence of the IoT, application tasks can run on many heterogeneous com-

puting nodes (e.g., X86 Xeon server vs. ARM-based mobile device) and at varying operating

conditions (e.g., CPU frequency and sleep states) [22]. In these computing ecosystems consisting

of heterogeneous devices, dynamic management and task mapping of learning applications to

meet diverse objectives cannot be done without accurate estimates of the performance/power

costs and benefits [23].

Prior work has been conducted to build power and performance models targeting a single

machine [24, 11, 12]. A basic assumption of the existing modeling techniques is that the power

level is proportional to the workload intensity, such as the amount of computation and memory

accesses. Despite much research over the last decades, predicting power consumption across

multiple heterogeneous machines still remains a difficult problem since application behavior

significantly varies as a function of CPU architecture, platform design, and runtime conditions.

For example, given a C program, architecture differences, e.g., x86 (CISC) and ARM (RISC),

generate incompatible instructions which require significantly different cycles and hardware

usage. In our experiments, power consumption to run the same application also varies more than

100x between the two CPU architectures.

In this chapter, we propose a novel characterization framework called P4 (Phase-based

Power and Performance Prediction) for the intelligent task allocation of ML tasks. P4 identifies (i)

machine-independent application behavior at a fine granularity and (ii) cross-platform models that

characterize power and performance relationships. We utilize application phases to characterize

the fine-grained system behavior on different platforms. The application phase is defined as an

execution period which homogeneous system usage behavior is observed.

P4 first identifies the same application phases across different platforms using a set of

benchmark applications offline, and trains neural networks models which capture per-phase

10

power, performance and energy characteristics across machines. The characterization procedures

are fully automated with machine learning process. It allows performing the characterization

procedures for various computing platforms without significant system-to-system tuning.

We deploy the cross-platform modeling technique in a practical distributed ML computing

framework, running on Apache Spark [25]. With all components implemented in a single place,

we can optimize energy usage and energy costs of a hierarchy of computing nodes running ML

tasks.

To summarize, we make following contributions:

• P4 automatically creates power and performance models of various hardware (HW)

components including processor, memory, fan, disk, and networking devices. During

the model training, P4 automatically identifies key system events, e.g., Performance

Monitoring Counters (PMC), based on a feature selection method [26]. It eliminates the

manual event selection procedure that the earlier work have relied on knowledge of domain

experts [10, 24, 11, 12, 27].

• P4 recognizes the cross-platform application phases using the key system events as

the machine-independent workload profiles. The recognition tasks is performed in a

non-intrusive way, unlike earlier work [28, 4, 29, 30] that depends on either source code or

binary instrumentation.

• With the application phases, we present how to train neural network models that

generalize the cross-platform workload characteristics for each phase. The neural

network models accurately predict how much power, performance, and energy that an

application would have if it were executed on a platform that is completely different from

the one it is currently running on.

• We integrate the cross-platform models trained by P4 with Apache Spark framework

to enable predictive task allocation and energy optimization of state-of-the-art ML

11

procedures. At runtime, the framework performs a model-based decision where to allocate

a Spark task for optimized energy usage and costs, even when the task has not been seen

during the offline characterization.

We evaluate the proposed technique on four completely different platforms/architectures

(e.g., x86 Xeon E5440 vs. x86 Westmere vs. ARM Cortex A15) and scales (e.g., servers vs.

mobiles) with 154 industry-standard benchmarks. The experimental results show that P4 can

provide accurate power estimates of HW components and total systems only with less than 7.5%

error, while automatically identifying the application phases across computing machines. P4

also predicts time-variant power, performance, and energy consumption with only 6.8%, 5.6%

and 6.1% error across different machines including cross-architecture cases. The predictive task

allocation technique integrated with Spark achieves energy saving of 16.5% and energy cost

reduction of 16.8%.

2.2 Related Work

System power modeling: Most power models in literature assume linear relationship

between power and system events [10, 27, 31, 32, 33, 12] as also summarized in the following

surveys [11, 12]. A number of publications have explored estimates of power consumption

when a machine changes C and P power states, rarely change for different power states in a

single machine, and developed a linear regression model to estimate power and performance.

Similar techniques have been proposed for frequency changes [34] and for cores in heterogeneous

multicore systems [35]. Due to increasing complexity and heterogeneity of architectures [36],

the cross-platform workload behavior cannot be estimated by only relying on the assumption

of the linearity between the PMC events to the power consumption, and thus it requires a more

sophisticated approach to get the desired level of accuracy.

Application phase analysis: A promising way to better understand the workload be-

12

havior across architectures is to exploit fine-grained application phases. Different sections of a

program execution show distinct power characteristics [29, 37]. The phase detection technique

presented in [38] identified the application status by tracking function calls of Java mobile appli-

cations to design a phase-driven power management which applies different CPU frequencies to

improve the energy efficiency. Work in [39] inferred the phases from system events of mobile

device subcomponents, such as CPU and GPS to detect abnormal power consumption. Another

work modeled the phases of HPC applications based on MPI-specific APIs to automatically

generate parallel benchmarks [40]. Based on their phase identification algorithm, they developed

phase-aware power management mechanism for multicore systems. Work in [41] proposed

a thread scheduling technique which finds stable phases based on performance counters and

migrates threads when a stable phase is finished to reduce long memory latencies. Work in [28, 4]

recently showed that the phase information is useful to predict cross-platform power levels. They

proposed a technique which identifies the phases during compile time at the level of basic blocks.

Energy management for distributed systems: The management techniques for dis-

tributed systems have been also developed for diverse optimization purposes, e.g., peak power

management for data centers [42], resource scheduling based on application classification [43],

and management with renewable energy source [44]. Many of these techniques utilizes energy

estimates as the key variable of the management techniques, where the estimates are assumed

to be available from different sources [45], e.g., CPU speed-based approximation in virtual

machines [46], Hadoop/Spark logs [47] and application-specific analysis [48].

In this chapter, unlike the previous work that rely on a priori knowledge of applications

such as the previous system traces and offline analysis for program basic blocks, we focus on

how to accurately estimate fine-grained power and energy across machines in an automated, non-

instrusive way for arbitrary applications. Our technique accomplishes this goal by recognizing

cross-platform application phases based on key system events which are available on the existing

system architectures. We also show how the fine-grained prediction can be used to improve the

13

Figure 2.1: An overview of P4 framework

energy efficiency for a practical distributed computing environment.

2.3 Overview of P4

Figure 2.1 shows an overview of our proposed P4 framework. The framework characterizes

power/performance tradeoffs of each machine of interest, and develops models to estimate

power consumption of the machine and application phases observed in the benchmarks. It then

formulates the model for prediction of power consumption and performance across different

HW configurations. The offline characterization is done by running a set of benchmarks while

collecting PMC data and measuring the power consumption on the multiple HW platforms of

interest. Table 2.1 summarizes the models automatically built in P4 during the offline stage.

The first characterization step is full-system power modeling (Section 2.4.1) which takes

power measurements of HW components and various system events as inputs. P4 automatically

selects strongly power-related events among all collected events and builds a single-machine

power estimation model for each platform. The selected events are used as key parameters for the

further learning stages, i.e., application phase extraction and cross-platform prediction modeling.

The application phase extraction module identifies application phases from the selected events by

utilizing an automated unsupervised clustering procedure (Section 2.4.2). The goal of the cross-

platform prediction is to train power/performance prediction models that are later used online.

14

Table 2.1: Comprehensive system models built on P4

Single-Machine Power Model
Subcomponent Key Metrics Machine Learning for Automation Model Notation
Processor Performance monitoring counters (epmc) Lasso with linear regression estimator Pprocessor
Memory Memory bandwidth (ebandwidth) Second-order polynomial regression Pmem
Disk Number of accessed sectors (ediskIO) Isotonic regression Pdisk
Network Number of packets (enetworkIO) Isotonic regression Pnetwork
Fan (only for x86 servers) Fan speed (eRPM) Third-order polynomial regression Pf an
Total System All subcomponet events N/A Psystem

Cross-Platform Prediction Model
Types Key Metrics Machine Learning for Automation Model Notation
Phase All subcomponent events k-Means++ Cphase
Performance All subcomponent events Neural networks NNper f
Power All subcomponent events Neural networks NNpower
Energy All subcomponent events Neural networks NNenergy

P4 utilizes the phases as a basic unit to understand cross-platform relationships of application

tasks. Since the application phases are identified for a single machine in the first step, we further

identify the same phases across platforms through a phase matching procedure. Then, we can

relate per-phase event behavior between platforms, and generalize the relationship by training

neural network (NN) models (Section 2.5), which are designed to predict cross-platform power

and performance behaviors. Combining the neural network models with the power estimation

model, we can predict cross-machine power, performance, and energy consumption of arbitrary

programs at runtime. In Section 2.6, we show how to integrate the models trained by P4 with a

distributed computing Apache Spark environment for online management.

2.4 Automated System Modeling

2.4.1 Full-System Power Modeling

The proposed framework builds the estimation models for system components such as

processor, memory, disk and fans. In this section, we discuss the challenge of the modeling

procedure and describe which machine learning technique is suitable to automatically and

accurately capture the power consumption for each component.

15

CPU: Many prior work have used a linear regression model for the CPU power mod-

eling based on the observation that there is a linear relationship between the processor power

consumption and a set of performance counters [49, 34]. In the past, system engineers would

select the right PMCs for the models by leveraging domain knowledge. However, increasing

system heterogeneity makes this manual event selection difficult. For example, modern computing

systems have more than a hundred PMC events, but only a few can be collected at the same time

due to the limited number of hardware counters and monitoring overhead. Thus, a key challenge

is how to select the minimum number of the power-related performance counters among all

available.

The P4 framework fully automates the PMC selection procedure by using Lasso statistical

analysis (Least Absolute Shrinkage and Selection Operator) [26]. The Lasso method exploits

l1-regularization to perform feature selection while building a regression model. Let eapp j
pmc =

〈eapp j
1,ti ,eapp j

2,ti , . . . ,eapp j
k,ti 〉 be a vector for k PMC events e at a time interval i for an application j,

called an event vector. Then, the collected data for a computing platform CA can be represented

by a set of event vectors, DCA = {V app0
t0 ,V app0

t1 , . . . , V appN
tL }. For a general event vector epmc =

〈e1,t ′ ,e2,t ′ , . . . , ek,t ′ 〉, a linear power model for CA is represented by

Pprocessor(ei,t ′) =
k

∑
i=1

βiei,t ′ +β0 (2.1)

where βi is the coefficient correspondent to each event and β0 is the intercept. The linear

regression finds the parameters using least square solutions. Unlike standard linear regression, the

coefficients of less power-related events are set to zero by Lasso, and thus we can automatically

exclude them and build the power model by only using the selected events. Table 2.2 shows the

list of PMC events which are selected by the Lasso method in the P4 framework. For three tested

servers Lasso selected 12 PMCs, while for ARM it selected 11. We evaluate the accuracy of

selected performance counters on the event-based power estimation in Section 2.8.1.

16

Table 2.2: Selected PMC events for processor power estimation (epmc)

Availablity
Event Description x86 ARM
CLOCK CYCLES Clock cycles • •
INSTRUCTIONS Instructions • •
RS UOPS DISPATCHED Micro operations dispatched •
FP COMP OPS EXE Floating point operations •
BR INSTS Branch instructions retired • •
BR MISSS Branch instructions missed • •
L1-DCACHE LOADS L1 data cache loaded • •
L1-DCACHE STORES L1 data cache stored • •
LLC REFERENCES Last level cache referenced • •
LLC MISSES Last level cache missed • •
BUS CYCLE Bus cycles • •
RESOURCE STALLS Resource stalls •
DP SPEC Speculative integer operations •
UNALIGNED LDST SPEC Speculative ld/st operations •

Memory: Capturing detailed accesses of the memory subsystem involves high monitor-

ing overheads. Instead, we capture high-level memory activities by using an event, BUS TRANS MEM,

in addition to the events selected for the processor. This event counts all microarchitecture-level

activities initiated on the memory bus, thus having high correlations to the memory bandwidth

utilization [50]. We evaluated different regression techniques with the event as the input, and

found that it has non-linear relationship to the power consumption. P4 in particular exploits

the second-order non-linear regression model for the memory bandwidth utilization, ebandwidth,

denoting by Pmem(ebandwidth).

Disk and Network: The relationship between power and IO devices (e.g., networking

and disk) has been commonly described by either stateful models [24] or linear regression

models [27]. The stateful model can account the power consumption accurately, however it was

not an appropriate solution for our automated modeling process, since the internal states of the

disk (e.g., idle and multiple active states depending on IO traffics) are usually not exposed to the

software level. On the other hand, although the linear regression-based method could be performed

without those knowledge, we observe that the model is often underfit when multiple states exist.

17

To automate the modeling procedure without having the knowledge of the internal states, P4

exploits Isotonic regression [51]. The Isotonic regression automatically generates a piece-wise

regression model without specifying breakpoints. We have implemented an IO monitoring tool

to collect the amount of traffics from sysfs interface in the operating system with negligible

monitoring overhead. The key metrics for the disk and network components are the number of

sectors read or written, ediskIO, and the number of transferred packets, enetworkIO, respectively.

With the collected data, the P4 framework identifies where the best breakpoint happens indicating

the different states according to the amount of the traffic, and in turn creates the piece-wise linear

regression model for each state, denoting by Pdisk(ediskIO) and Pnetwork(enetworkIO).

Fan: In server systems, the fan subsystems also contribute a significant portion of the

power consumption [52]. The power consumption is highly related to the fan speed, usually

represented by revolutions per minute (RPM). This event can be monitored from a side-band

processor which controls the fan speed. In our environment, we measure the fan speed using

Intelligent Platform Management Interface (IPMI) protocol. We adopt a third-order polynomial

regression model, Pf an(eRPM), which takes the fan RPM as the input.

Once creating all the power models for each subcomponent, we can combine each model

to estimate the total power consumption of a system with the measurement of the supply power,

Psystem, as follows:

Psystem = Pprocessor(epmc)+Pmem(ebandwidth)+

Pdisk(ediskIO)+Pnetwork(enetworkIO)+

Pf an(eRPM)+C

where C is the power consumed by the rest of the systems. In our experiment, since P4 models all

18

the major subcomponents whose power have substantive power dynamics in the entire systems, C

is estimated as a constant value for each machine.

2.4.2 Cross-Platform Application Phase Recognition

In order to associate the total power estimates with actual application workloads running

on the system, we build another model which explains how a program interacts with the systems

in a high level. The application phase extraction module is responsible to identify application

phases, i.e., clusters of homogeneous system usage behavior. With this model, P4 regards an

application execution as a sequence of multiple application phases.

To better explain the concept of the phases, Figure 2.2 shows power measurements and

two representative PMC events for a Linpack benchmark [53] running on Intel SR1560SF server.

As shown in the figure, the power consumption and PMC events have similar patterns of changes

over time, e.g., (A,C) and (B,D). In addition, similar performance characteristic, e.g., the number

of instructions for an interval (INSTRUCTIONS), is observed for each labeled period. By extracting

the application phases, P4 identifies that the workloads executed from 10 to 50 seconds are the

sequence of the four phases.

P4 automatically relates the similar event behaviors to different application phases with

k-means++ clustering algorithm1 [54]. The phase extraction procedure uses the set of event

vectors DCl , as the input data set of the k-means algorithm. Then, the algorithm assigns a cluster

index ρi, j to each vector V app j
ti ∈DCl , where 0≤ ρi, j < k. This algorithm requires two parameters,

the number of clusters k, and the initial center of each cluster. We determine the best k using

kNeedle algorithm [55] while the initial cluster centers using the k-means++ approach [54].

Based on the application phases characterized for each machine, P4 identifies cross-

platform workload characterization. Figure 2.3 shows an example of the power levels and

identified phases where each phase is denoted by different colors. In this experiment, a multi-
1We also tested other clustering algorithms such as DBSCAN and hierarchical clustering, and chose the k-Means since it identified the

phases for most benchmarks sufficiently compared to the other algorithms.

19

Figure 2.2: Power and performance with PMC events for Linpack benchmark on Intel
SR1560SF server at maximum frequency

threaded bzip2 benchmark was executed on two different servers, Intel SR1560SF and Sun X4270.

We observe that, when running the same application, the pattern of the identified phases are very

similar across machines. The bzip2 execution is divided to three periods in a very similar fashion

for the two platforms, i.e., A, B, and C for the Intel server and A’, B’, and C’ for the Sun server.

It means that the high-level workload characteristics are independent on the running platform –

e.g., a compute-intensive phase in a platform is likely to be compute-intensive in another platform

as well. Thus, if we can identify which phases are the same across platforms, it is possible to

automatically relate the workloads of a black-box application without having the source code for

instrumentation.

The proposed framework identifies the relationship by associating the application phases

extracted on a single machine with machine-independent phases on other platforms. This is

done with a modified k-means algorithm which tasks the application phases identified while

running on a single machine. Figure 2.4 illustrates the cross-platform phase matching procedure.

Let Vappp
CA

= {υρ1,p, . . . ,υρk,p} be a set of cluster centers for the phases obtained for appp on a

20

Figure 2.3: Application phases for multi-threaded bzip2 benchmark independently identified
for Intel SR1560SF and Sun X4270 servers at the maximum frequency

platform CA. Also, let Dappp
CB

(⊂ DCB) be the dataset of appp executed on another platform CB. To

identify the clusters of Dappp
CB

while keeping the identified phase indexes, we apply the k-means

algorithm again with the initial cluster centers Vappp
CA

. Then, the k cluster centers are moved with

the k-means procedure so that each phase is adjusted and fit into the new application dataset. The

clusters newly identified for all benchmarks on CB represent how each cluster on CA behaves on a

different platform CB.

2.5 Cross-Platform Prediction

We build multi-layer neural network (NN) models to predict the power, performance and

energy of applications across machines. Using the power estimation models and the application

phase model identified for a single machine, the neural network models learn per-phase PMC

event behavior relationship across different machines and settings. Once all models are learned,

P4 can predict the power consumption of different architectures at runtime without actually

21

Figure 2.4: Cross-platform phase matching (Intel SR1560SF to SUN X4270, splash2x.lu cb)

running the applications on the architectures. We first describe how to utilize the application

phases to capture cross-platform event behaviors in Section 2.5.1. We then show the details of

our prediction modeling technique for general applications in Section 2.5.2. Then, we present

how the models can perform online predictions in Section 2.5.3.

2.5.1 Phase-Based Training Data Generation

We utilize the application phase as a basic unit to understand event behavior changes

across machines and train the cross-platform prediction NN models. Figure 2.5 presents a

qualitative comparison of the cross-platform phase behavior for four benchmarks with different

colors denoting different clusters (phases). The IntelH (Intel server running at the highest

frequency) is used as the reference platform to detect the baseline phases. The phases of the

top two benchmarks, spec.bzip2 and spec.gcc, are from single-threaded benchmarks, while the

bottom are of multi-threaded ones. The comparison includes different frequencies, i.e. IntelH

vs. IntelL (Intel server at the lowest frequency), various platforms, i.e. IntelH vs. SunH, and

completely different CPU architectures, i.e. IntelH vs. A15H. The result shows that the phase

recognition and matching techniques accurately recognize the phases across different platform

22

Figure 2.5: Identified phases of four benchmarks running for 60 seconds (IntelH, IntelM and
IntelL: Intel server running at highest, medium, and lowest frequency settings. SunH, DellH,
and A15H: Sun server, Dell server, and ARM Cortex-15 processor running at highest frequency.)

configurations. For example, the spec.bzip2 benchmark has a dominant phase, denoted with red

color, and an intermediate phase of pink color. The pink color is relatively short on A15H, since

the benchmark terminates before completing this phase. Similar findings are also observed for

parsec.blackscholes in the multi-threaded case. P4 identifies the cross-platform phases accurately

for more complex benchmarks, e.g., spec.gcc and parsec.facesim.

Since the phases represents the same workloads across machines, we can utilize the phases

to capture the event changes between platforms for the prediction model training. Figure 2.6

shows the cumulative distribution function (CDF) graphs of the INSTRUCTIONS event for two

representative clusters, running on the Intel Xeon E5440 processor at 2.8 GHz frequency and the

ARM Cortex A15 at 1.8 GHz frequency. The results show that the per-cluster event distributions

have non-linear relationship between different platforms. In addition, although different clusters

for each platform could have very different trends, the events in the same cluster behave very

similarly across platforms.

We use the per-phase distribution patterns as the dataset to train the neural network model.

Let V appp,CA
t be an event vector in a computing platform CA for a benchmark appp. In the cluster

distribution of each event of CA, we take a percentile of eappp,CA
i,t of V appp,CA

t . Then, we identify

23

Figure 2.6: Cumulative distribution of instructions for two clusters

êi,t , which is the event value at the same percentile in the CB’s distribution for the same benchmark.

For example, in Figure 2.6, the two arrows respectively describe the estimation of INSTRUCTIONS

at the 0.2 percentile for Cluster 1 and the 0.5 percentile for Cluster 2. By computing this procedure

for all the events, we create an event vector V̂t
appp,CB in CB where each element of the vector is

êi,t .

2.5.2 Cross-Platform Prediction Model Training

Once the cross-platform phases are identified, we train three NN models for cross-machine

power, performance and energy prediction, respectively.

Power prediction model: The first model is called NNpower which infers the key events

across platforms to predict the time-variant power levels. The NNpower has multiple layers and

the output layer which corresponds to the performance counters of the predicted platform. We

train the NNpower model using the per-phase event distributions across machines discussed in

Section 2.5.1, i.e., using V app j,CA
t as the input and V̂t

app j,CB as the output. Some events are

available only for CB, e.g., UNALIGNED LDST SPEC of the ARM processor. In that case, êi,t is

computed by averaging the event value of the samples that other common events are selected.

Since the output layer of this model produces the estimated events on another platform, we

24

connect the output layer to the single-machine power prediction regression model of CB, PCB
system.

It then estimates the power consumption on the machine CB with the event prediction results of

NNpower.

Performance prediction model: The second NN model, called NNper f , has a similar

structure to NNpower, but identifies how many instructions will be executed on a computing

platform CB using PMC events observed on another platform CA. Let T appp
CA

and T appp
CB

be the

execution time of a benchmark that runs on each platform, CA and CB. When the events are

sampled at the interval of Isample, P4 collects NCA =
TCA

Isample
and NCB =

TCB
Isample

respectively for each

platform. If the benchmark executes monotonous workloads during their executions, a sample

collected on CA corresponds to the cumulative sum of R samples on CB, where R =
NCB
NCA

. We

use this estimation for the samples in each phase, since the identified phase represents such

homogeneous workload.

Let us recall V app j,CA
t and V̂t

app j,CB which are calculated with the per-phase event distribu-

tions. From V̂t
app j,CB , we extract the estimated number of instructions on CB, say Înst

CB
t . Then,

Nper f is trained with V app j,CA
t as the input and R · Înst

CB
t as the output, where R is the ratio of the

samples for the phase between the two platforms.

Energy prediction model: The two aforementioned models perform detailed sample-

by-sample predictions in millisecond-level granularity. To efficiently predict cross-platform

energy consumption for a longer time horizon, e.g., in second/minute-level granularity, we train

another model, called NNenergy. Let Eapp j,CA
Pi

be a set of multiple event vectors corresponding a

phase Pi for a benchmark app j. P4 adds the event values for each metric in Eapp j,CA
Pi

to create a

cumulative event vector, V app j,CA
Pi

, while calculating its total execution time. Once we perform

the accumulation procedure for all the benchmark applications and phases, we obtain multiple

cumulative event vectors, VCA(∈ V app j,CA
Pi

), with the execution times as the input variables of

the training dataset. To train the model with diverse combinations of phase sequences, P4 also

creates another set of training inputs by randomly selecting an event vector from VCA and adding

25

it with V app j,CA
Pi

in order. The output variable of the training dataset is the energy consumed on

CB for the same phase. Then, the NNenergy model performs the energy prediction for CB with a

sequence of samples monitored on CA.

2.5.3 Online Prediction

P4 utilizes the three NN models online in two fashions: i) time-variant power level

prediction and ii) per-task energy prediction.

Time-variant power level prediction: The time-variant power consumption is predicted

at runtime using NNpower, NNper f and the single-machine power estimation model described

in 2.4.1. The predicted event vector, V̂t
app j,CB , is used as an input of the regression model since

the NNper f predicts how events will behave on a different platform for the same application. The

execution time for a sampling period on a different platform, τCB , can be predicted by using that

on the current platform (τCA), NNper f which estimates the number of instructions executed on CB

(ICB), and an output neuron of NNpower which produces the speed in Instructions Per Sampling

interval (IPS) on CB (IPSCB) with the following equation2:

τCB = τCA×
ICB

IPSCB

(2.2)

Figure 2.7a illustrates the online prediction procedure as a feed-forward network for a

platform pair, CA and CB. Once the PMC events are collected as event vectors for an interval τCA

on CA, the sampled event vector is input into the two neural networks. The number of instructions

of CB, i.e., ICB , identified by NNper f , is delivered to the execution time conversion function, π,

which computes τCB based on Equation 2.2. When P4 predicts power consumption for different

frequencies on the same platform, the NNper f is not activated since the number of instructions

required to run the workload is the same regardless of frequency they are run at. Thus, the IPS of

2Due to the space limitation, we do not include the detailed proof steps. It can be derived from τCi × IPSCi = ICi

and ICA = IPSCA in a straight-forward way.

26

Figure 2.7: Feed-forward neural networks for online prediction

CA is provided to the execution time conversion function. At the same time, the power is predicted

using the regression-based power estimation model where the input of the regression model is

given as the output of the NNpower.

Per-task energy prediction: The energy prediction model, NNenergy, is trained to predict

with the accumulated event values, unlike NNpower and NNper f built with per-sample basis. For

this case, P4 keep adding the monitored events online, and performs the prediction whenever it is

needed. In our experiments, this model requires more layers and neurons for accurately estimates,

as it internally combines two different prediction goals as well as the single-machine power

prediction model. However, it predicts the energy for multiple collected samples at once, resulting

in lower computation overhead than the time-variant power level prediction. In Section 2.7, we

discuss the model complexity and runtime overheads of the online prediction in detail.

27

Figure 2.8: Overview of model-driven management on Spark environment

2.6 Cross-Platform Management for ML tasks

The proposed P4 framework can be utilized for diverse cross-platform analysis and man-

agement problems. In this section, we present such a predictive management framework which

automatically allocates tasks over hierarchical systems on a distributed computing environment,

Apache Spark.

2.6.1 Cross-Platform Management Framework

Figure 2.8 shows the overview of the P4-based task management framework integrated

with Spark which distributes tasks of state-of-the-art learning algorithms. We modified the

Spark scheduler to track the task life cycle and change scheduling decisions as a function of our

modeling framework. The Spark scheduler communicates with a daemon, called master daemon,

which decides the best task allocation based on the energy predictions. The prediction results

across machines are offered by slave daemon which runs on Spark slave nodes while collecting

the key events at runtime.

28

Modified Spark scheduler: An application running on the Spark framework initiates

parallelizable functions. The Spark framework is responsible to perform each function in the

distributed fashion. To this end, a directed acyclic graph (DAG) scheduler interprets the function

into multiple stages which have to be sequentially executed, and execute the Spark tasks for each

stage on the slave nodes. The default Spark scheduling policy is a randomized round-robin to

provide a fair task distribution across the slave machines in terms of the number of tasks.

In our design, we modify two parts of the Spark Scheduler. First, when a task is allocated

to a node, we track the start/end of each task with other required information (e.g., allocated node).

The monitored information are send to the master daemon running on the same machine. Second,

during the task allocation decision, the scheduler asks to the master daemon if the prediction

results are available for the allocated task. When the prediction has been made for the target task,

instead of using the randomized policy, we assign the task into the optimal machine, e.g., the

slave which is expected to consume the lowest energy.

Master daemon: The master daemon relays the task life cycle sent by the modified

scheduler to the slave nodes. Once the task is finished, it collects the cross-platform energy

prediction results from the slave nodes, and then computes the priority of the slave machines for

the task based on a cost function, e.g., energy consumption or energy price. When the scheduler

requests the prediction information for the task, it looks up the computed priorities to select the

most efficient machine among all the slave which have not been assigned with any other tasks.

Slave daemon: The slave daemon is responsible to provide cross-machine prediction

results to the master daemon. The three prediction models, NNpower, NNper f , and NNenergy can

be used for the management; in this work, we use the NNenergy model to predict the entire energy

consumption for each task. It monitors the key events of the running tasks in the background, and

calculates the accumulated event vector using the task life cycle which is provided by the master

daemon. It then performs the energy prediction using the NNenergy model with the event vector.

The energy prediction results are sent to the master daemon so that it can update the priorities for

29

the next task run as a closed-loop control.

2.6.2 Application Task Extraction

Since traditional benchmark suites such as SPEC2006 [56] and PARSEC [57] run the

same tasks for every run, we can easily obtain the event traces for multiple machines by executing

them on each platform of interest. In contrast, the ML applications running on distributed systems

such as Apache Spark [25] are automatically parallelized across machines, and as the result, each

machine has different amounts of workloads to run.

To perform the prediction for the paralleled task in Spark, in short Spark task, we monitor

the task distribution traces to extract when/where each task is started and finished. Since the Spark

task is the minimal execution unit initiated by a user-defined function call, we can regard them as

a single workload like an application of the traditional benchmark suite. An remained issue is

that the workload behavior can be affected by the input data of the distributed tasks. Figure 2.9

shows the execution time according to the input size for two Spark benchmarks. The plots show

that, although the execution times may vary for different input sizes, the tasks which have the

similar input size exhibit very similar behaviors.

P4 identifies the same tasks across machines based on this finding. We first group all the

tasks into multiple task groups by using DBScan clustering algorithm [58] with the input sizes,

and then calculate the distribution of the execution time for the task groups. Figure 2.10 shows

the execution time distributions for task groups of two benchmarks as examples. The results show

that each task group has an unique pattern in their distributions, even though the task groups may

have different characteristics each other. We exploit the percentile-based method discussed in

Section 2.5 to extract the most similar workload pairs for each task group. The workload pairs

are in turn regarded as the cross-machine application runs in the prediction procedure.

30

Figure 2.9: Task group identification for two Spark applications

Figure 2.10: Cumulative distribution of execution times for two task groups

2.6.3 Task Allocation Case Study

The proposed management framework eventually decides the task allocation with the cost

function. In this section, we describe two general cost functions in the hierarchical setting, i)

total energy use and ii) cluster-level energy cost. It is beyond the scope of this dissertation, but

it is worth noting that the cost function can be combined with other well-known control knobs

existing on the individual machine, e.g., dynamic voltage and frequency scaling (DVFS).

Energy Use Optimization: In this case, we prioritize the worker machine whose

predicted energy is less than others. Since a set of the same task is usually distributed to different

slaves, the master daemon may have multiple prediction results for each machine and task.

Thus, we calculate the cost function as the average energy predicted. Then, we add it with

31

the communication energy cost which is estimated using the Pnetwork model with the network

bandwidth and data size of the task. It is because the cross-machine prediction results only

account the energy use of the slaves without considering the cost on the master side to distribute

the data. Eventually, the scheduler allocates the task on the machine which consumes the least

energy for both computation and communication in total. This policy is effective when the

scheduler has multiple choices of the slave machines in allocating a task.

Energy Cost Reduction: Modern data centers may be deployed with multiple clusters

located at different places [59]. Each cluster typically have long-term power contracts, and

are charged market prices when exceeding the contract. The overages can be five times more

expensive than the contracted price [60]. In addition, the clusters may have asymmetric energy

pricing due to the contracts and energy source [61]. For this case, we compute the second cost

function by multiplying the energy price, e.g., price per Wh, with the server energy prediction

which is estimated in the same way to the one described above. This policy allocates more tasks

into cheaper clusters, as long as the slave machines belonging to it are available.

2.7 Experimental Setup

The proposed P4 framework has been implemented using Python 2.7 with Scikit-learn

0.17.1 library for the statistical analysis [62]. We also use the Tensorflow framework [63] to

process the neural network models on GPGPU. The offline modeling procedure has been run

on a system that has Intel i7-6700k quad-core CPU and Nvidia GTX 1080 Ti. We conducted

the measurements on three servers and a mobile platform: Intel SR1560SF, Sun X4270, Dell

PowerEdge R810, and Odroid XU3. Table 2.3 summarizes the specifications of each platform.

For the distributed workload evaluation, we deployed the Spark framework on a hierarchy of

the servers using Docker [64] and Weave [65] that run Apache Spark 2.0 [25] and Hadoop

environment 2.7.3 [66]. Each cluster is separated with a network switch whose bandwidth is

32

Table 2.3: Evaluated heterogeneous platforms

Type Model Hardware component description

Server
Intel
SR1560SF

Intel Xeon E5440
1.99GHz ∼ 2.83GHz
L1 cache sizes: 64KB, DRAM size: 8GB

Server
Sun Fire
X4270

Intel Xeon E5500
1.6GHz ∼ 2.93 GHz
L1 cache sizes: 64KB, DRAM size: 24GB

Server
Dell
PowerEdge
R810

Intel E7 4870 Westmere
2.39 GHz ∼ 1.06 GHz
L1 cache sizes: 32KB, DRAM size: 128GB

Mobile
Odroid
XU3
(ARM)

Exynos5422 ARM big.LITTLE
Cortex-A15 big: 1.4 GHz ∼ 1.0 GHz,
Cortex-A7 LITTLE: 2.0 GHz ∼ 1.2 GHz
L1 cache sizes: 32KB, DRAM size: 2GB

100Mbps, while the intra-cluster bandwidth is 1Gbps.

For the server systems, we measure the supply power using the HIOKI 3334 power meter,

while the power consumption of Odroid XU3 is measured by reading the embedded sensors on

each core. The server systems have also been instrumented to measure power consumption of

subcomponents by reading voltage drop of two 0.1Ω shunt resistors. All the power measurements

are sampled at a rate of 100 ms.

The experimental results for the estimation and prediction are cross-validated using the

“leave-one-out” strategy to evaluate each benchmark by separating the tested program from the

training set. We pick a benchmark for testing the online identification stage while all other

benchmarks are used to build the models in the offline learning stage. This cross-validation was

performed for all benchmarks. The accuracy of the estimation and the prediction is evaluated

using Mean Absolute Percentage Error (MAPE) [67].

2.7.1 Benchmarks

Computing-variety benchmarks: We use industry-standard benchmarks which repre-

sent a wide range of computing workloads. Benchmarks are executed on each platform with

33

varying number of threads and at various processor frequencies. For each platform, we execute

the benchmarks at three processor frequency levels, i.e., lowest (L), medium (M) and highest

(H). The benchmark set has both single-machine benchmarks and distributed benchmarks. The

single-machine benchmarks includes SPEC2006 [56], PARSEC/SPLASH2x [57] with native

inputs, NERSC datacenter benchmarks [68], and Linpack [53], which has been used for TOP500

runs [69]. The distributed benchmarks are run on Spark environments, and includes IBM Spark-

Bench 2.0 [70], which has machine learning, graph computation, SQL, and streaming workload,

and Intel BigDL [71] which runs popular deep learning models. To execute the same workload

on the low-power ARM machine, we cross-compiled SPEC2006 suite and PARSEC benchmarks.

Due to the ISA difference and library dependencies, the other benchmark suites could not be

ported to the Odroid ARM processor. In total, we could execute 154 benchmarks on the three

server platforms, and 88 benchmarks on the ARM platform.

IO benchmarks: The aforementioned benchmarks are useful to test target systems with

diverse types of computing workloads. However, we observe that they typically represent limited

variety in IO usage. To train accurate models for the disk and network, we use IOZone [72] and

iperf [73] to create a synthetic mix for various disk and networking usage patterns, along with

TPC-H [74] benchmark which is a business-oriented DB benchmark.

All the benchmark applications were run on each target system for more than 3 hours in

total, while collecting the performance counter events using perf tool and the system IO events

through sysfs at a rate of 250ms sampling interval.

2.7.2 Model Training Parameters

The neural network models for the cross-machine prediction have tunable hyperparameters

that affect the model accuracy and computation overhead. We trained the models with the standard

ML practice of grid search along with cross-validation. Figure 2.11a summarizes the parameters

used for each model. The first layer of each model uses the hyperbolic tangent activation function

34

Figure 2.11: Cross-platform NN model configurations

to convert the event values to nonlinear hyperplanes; the last layer uses the linear activation

function which combines multiple neuron outputs predicted by ReLu to perform the desired

regression tasks. As discussed in Section 2.5.3, the NNenergy model needs more complex structure

and higher training epochs. Figure 2.11b shows the training loss change of NNenergy training

procedure. Since the loss converges after 5000 epochs, we train for 10000 epochs to evaluate

with the sufficiently learned model.

2.7.3 Overhead

Table 2.4 shows the overhead to process the models supported in the P4 framework. We

report the average process time of each event vector for the online stage and the model training

time of each platform pair for the offline stage. In the online stage, P4 computes the feed forward

network and only requires selected event counters. The runtime overhead to process each event

vector is less than 676 µs. Compared to the PMC sampling rate of 250 ms, the runtime overhead

Table 2.4: Overhead of P4 models

Psystem Cphase NNper f NNpower NNenergy
Online 1.8 µs N/A 88 µs 34 µs 252 µs
Offline 4.6 s 161 s 27.7 s 24.5 s 36.9 m

35

Figure 2.12: Overhead of model-driven management

is negligible. Most overhead of the offline learning stage comes from the benchmark execution. In

our evaluation, the offline learning stage was performed for 270 minutes including the benchmark

application execution. Since the learning happens only once for each machine at offline, the

overhead of the modeling stage is negligible.

We also evaluate the overhead when integrating P4 with the Spark framework for the

management described in Section 2.6. Figure 2.12 shows the histograms of the execution time

overhead for the master and slave daemon. The master daemon obtains and reorders the machine

priorities for each task with a minimal overhead of 0.27ms on average. It also takes 3.9 ms to

update the machine priorities in a separated thread at background. For the slave overhead, the

runtime overhead to make each prediction is 0.7ms, including the system event monitoring. The

CPU utilization of the slave daemon is always less than 0.1%.

2.8 Evaluation of P4 Models

2.8.1 Full-System Power Estimation

The learning procedure of P4 trains the power estimation models for each system compo-

nent and the system total power by monitoring the key system events. In this section, we evaluate

36

Figure 2.13: Processor power estimation errors (Intel SR1560SF)

each power model described in Section 2.5.2.

CPU: The Pprocessor model is built by the Lasso method that performs the automated

event selection with building a regression model. We compare it against linear regression which

state-of-the-art methods have used. The linear regression method uses 10 additional performance

counters, including TLB misses, thermal trip, SSE execution, and snoop-related events, on top

of the event counters that P4 selected. We also compare the results with two state-of-the-art

processor models published in Su et al. [49] and Lee et al. [34]. The models exploit 8 and 3

events, respectively, selected based on the domain knowledge of their architecture.

Figure 2.13 shows the comparison of estimation accuracy for processor power of the Intel

server for the single thread and the multi threads cases running at the highest frequency. Because

of the limited space, we show 19 representative benchmarks and the average error for all tested

benchmarks. The results show that Lasso estimates processor power accurately with 4.3% error

on average, even though Lasso is using only a subset of available performance counters. The

37

Figure 2.14: Power estimation error of subcomponents (Intel SR1560SF)

Figure 2.15: Runtime subcomponent power estimation (Intel SR1560SF)

Lasso estimation error is similar to the linear regression (LR) model, which uses 22 events, with

only 0.2% difference. Lasso model has better accuracy than the two published models, since P4

automatically selects strongly power-related events for the given target platforms. In addition, it

shows comparable results to the NN-based model. Thus, we conclude that the events statistically

selected by P4 provide very accurate power estimates without the need for domain knowledge as

was done by Su et al. [49] and Lee et al. [34].

Subcomponents: As discussed in 2.4.1, the P4 framework also creates the power

models specialized for each system subcomponent, such as memory, disk, network and fans,

38

using different automated modeling strategies beyond the linear regression. Figure 2.14a shows

the power estimation error for the memory compoment. The results show that the Pmem model

accurately identifies the memory subcompoments with less than 6.5% error in MAPE. In contrast,

the linear regression-based power model performs the inaccurate prediction for most benchmarks

since it could not capture the non-linear relationship to the memory bandwidth utilization.

Figure 2.14b reports the estimation error of Pdisk for the disk power consumption as

compared to the linear regression-based model [27] and second-order polynomial regression

method (2nd-Poly.) We trained the models using the IO benchmarks explained in Section 2.7.1.

The Pdisk model utilizes Isotonic regression method to automatically identify the internal disk

states which can be changed with the disk IO. The results show that, the proposed model

outperforms the other stateless regression models. The estimation error is 3.77% for HDD and

2.01% for SSD on average for all the benchmarks. In our evaluation, the Isotonic modeling

method also accurately identifies the networking power model. The key event is identified as

ethernet connection, as the network consumes 2W while ethernet is connected to the network for

packet transfer, i.e., in case of enetworkIO > 0. However, network bandwidth utilization does not

have an observable effect on its power usage of the tested machines.

Figure 2.15 shows the runtime power estimation results for the memory, HDD, and fan

subcomponents. The proposed compoment models accurately estimates the power of the major

subcompoments by only monitoring the relevant key events. For example, Pmem performs accurate

estimates that follow the high power fluctuation of the memory component during the benchmark

execution, and Pdisk automatically identifies the low-power state unlike the LR and 2nd-Poly

model. Pf an also accurately estimates the fan power consumption with 0.8% error for diverse fan

speeds controlled by IPMI.

System Supply Power: Figure 2.16 summarizes the power estimation error of Psystem

for the tested platforms. For this evaluation, we use the computing-variety benchmarks described

in 2.7.1, and report the average error of the MAPE values cross-validated for each benchmark

39

Figure 2.16: Average error of single-machine supply power estimation. ARM A15 and A7
represents respectively either Cortex A15 or A7 processor

Figure 2.17: Summary of time-variant power prediction accuracy

application. The result shows that P4 accurately estimates the total power consumption for

different target platforms. The power estimates of multicore and higher frequency cases are more

challenging due to the larger fluctuations in power levels. Nevertheless, P4 estimates power with

5.4%, 3.23%, 4.98%, 4.28%, and 7.5% of average error for the Intel, Sun and Dell servers, Cortex

A15, and Cortex A7 respectively. The error on Cortex A7 is a bit higher than others, since the

processor has relatively low static power, making it highly sensitive even to small errors. However,

even for the worst case benchmark, the model can estimate within 13% of error.

40

Figure 2.18: Time-variant power level prediction for four heterogeneous platform combinations

2.8.2 Cross-Platform Prediction

One of our key contributions is the generalized power prediction capability across het-

erogeneous computing platforms and system configurations. In the followings, we evaluate the

cross-machine prediction scenarios discussed in Section 2.5.3, i) detailed time-variant power

levels using NNpower and NNper f , and ii) the task energy using NNenergy.

Time-variant power level prediction: Figure 2.17 reports the prediction results for

the six different cases. In the evaluation, we observed that our methodology can accurately

predict performance and power consumption. P4 gets 5.2% error on average for predicting

time-varying power consumption on servers for multi-threading benchmarks. Similarly, when

comparing completely different architectures for multi-threading benchmarks, P4 gets 7.2% and

6.8% error on average, for A15H-to-IntelH and IntelH-to-A15H cases respectively. Note that,

for in this case the number of threads is also different, i.e., 8 on Intel vs. 4 on ARM A15, as

well as their frequency levels. When predicting power consumption for the big-LITTLE example

(A7-to-A15), the error is 6.9%. We also compute the performance prediction error with the IPS

metric. The results show that the average error is less than 6% for even the most challenging

41

cross-architectural prediction cases such as A15H-to-IntelH and IntelH-to-A15H. Thus, P4 can

accurately predict the power and performance for the complex combinations, including changes

in the number of threads, CPU frequencies, platforms (mobile to server), and CPU architectures

(x86 to ARM).

Figure 2.18 shows how the proposed P4 predicts power consumption using the online

prediction network described in Section 2.5.3. The results show four heterogeneous platform

combinations, (a) two different-architecture, Intel x86 to ARM Cortex A15, (b) a cross-server

case from IntelH to SunH, (c) a big-to-LITTLE example in moving from A7 to A15, and (d)

a frequency change from IntelH to IntelL, for four representative multi-threaded benchmarks.

The results show that based on the trained neural networks, P4 can accurately predict power

changes over time for all the heterogeneous platform combinations. The execution time for

each benchmark is also predicted for each of the platforms. For example, the prediction of

parsec.canneal of the 60 seconds on Cortex A15 is made with the events for 18.5 seconds

observed on IntelH. This means that P4 can predict both instantaneous power and performance

changes using monitored events.

Task energy prediction: P4 also performs the cross-machine energy prediction for a

long-term interval with a single NN structure. To evaluate the task energy prediction in a practical

scenario, we used a distributed Spark environment deployed with six servers in which two for

each of the Intel, Sun, and Dell servers are included. Figure 2.19a shows the average prediction

errors of the Spark benchmark applications for all the 30 cross-machine cases. The result shows

that the NNenergy model accurately predicts energy for Spark tasks with 6.1% error on average

for the 30 combinations. We also compare the prediction results to the linear regression models

which are trained with the same dataset used in the NNenergy modeling. When predicting the

cross-machine energy consumption across the same machine settings (e.g., ‘Dell1-to-Dell2’ and

‘Intel1-to-Intel2’), the error of the linear regression model is 8.3% error on average. However, the

linear regression model presents the relatively high error to predict across completely different

42

Figure 2.19: Cross-platform energy prediction accuracy. The error for each case shown in (a) is
the average error cross-validated for all benchmark applications.

machines (e.g., ‘Dell1-to-Intel1’ and ‘Sun1-to-Dell1’), showing the average error of 13.0% and

the worst-case error of 29.8%. In contrast, the deep learing-based model, NNenergy, provides stable

prediction for both the same machine setting and different machine cases with 5.3% and 6.3%

error, respectively. Figure 2.19b shows the detailed evaluation results for a representative case of

‘Dell1-to-Intel1’. The results show that the NNenergy model accurately predicts all the benchmark

applications by capturing the non-linear relationship between the events and cross-machine energy

consumption, while the linear regression model often fails to provide accurate cross-machine

energy estimates.

2.9 Evaluation of Model-Based ML Task Allocation

In this section, we evaluate the predictive management framework for the ML task

allocation described in Section 2.6. The evaluation have been done on the hierarchy of six servers

running Apache Spark. This experimental hierarchical systems has two clusters, where each

cluster has three servers, i.e., one each of Intel SR1560SF, Sun Fire X4270, Dell PowerEdge R810.

In followings, we evaluate two case studies for the task allocation discussed in Section 2.6.3, i)

energy use optimization and ii) energy cost reduction.

43

Figure 2.20: Summary of energy use optimization

2.9.1 Energy Use Optimization

In this case study, the policy in the management framework allocates tasks into the

machine whose is predicted to use minimal energy. We compute how much energy can be saved

by the model-based management policy as compared to the default policy which chooses a

random machine to allocate a task. For this evaluation, we define the number of parallelized tasks

for each benchmark application as ω. Since we have six servers, the optimization policy has a

chance to save the energy when ω < 6. We vary ω < 6 from 2 to 5 for each benchmark.

Figure 2.20 shows the evaluation results for different Spark benchmarks. The model-

based management policy saves energy by 16.5% when P = 3, i.e., when allocating each of

three tasks among one of six servers. When P is small, there is more chance to choose more

energy-efficient machines against the default randomization policy, resulting in the higher energy

saving. Figure 2.23 compares the breakdown of the energy consumption for each server. The

results show that it achieves high energy efficiency by utilizing the energy-efficient servers. For

example, since Intel and Sun servers processed more tasks, since they are likely to be more

energy-efficient for many applications in our setting. In contrast, in the default policy, each server

44

Figure 2.21: Energy breakdown comparison between Spark default and model-driven policy

executes the similar amount of tasks, since it randomly distributes them to all machines.

2.9.2 Energy Cost Reduction

In this evaluation, to understand how the policy balances Spark tasks, we vary the energy

costs of the two geographically distributed clusters, the cluster 1 (C1) and cluster 2 (C2). We

define the price ratio, F = $BC2/$BC1, where $BC1 and $BC2 are the energy cost (price per Wh)

for each cluster, respectively. We compare the estimated energy bill of the model-based policy

with the Spark default policy for different F values. For the experiments, the number of paralleled

tasks (ω) is set to 3, i.e., the half of the servers can be utilized.

Figure 2.22 shows the summary of evaluation for energy cost reduction. The price-aware

policy successfully allocates the jobs between the two clusters by considering the local price

differences. Our estimate shows energy savings of 16.8% (F=0.5) and 12.5% (F=2), i.e., the

energy price of one cluster is two times more expensive than of the other cluster. Figure 2.23

shows the breakdown of the server energy for different price ratios. The results show that it

allocates more tasks to the cluster that has lower energy prices. For example, with a high F value,

the energy price of C1 is much cheaper than the C2, resulting in allocating more tasks to C1.

45

Figure 2.22: Summary of cluster-level energy cost reduction

Figure 2.23: Energy breakdown over different price ratios between clusters

2.10 Conclusion

In this chapter, we propose P4, which characterizes the diverse workload for heterogeneous

computing ecosystems and accurately predicts power and performance across different CPU

architectures and computing platform configurations. Our technique automatically selects the

event counters strongly related to the power consumption and extracts application phases which

represent the groups of similar system usage behavior without a priori knowledge. Then, it

automatically trains neural networks to predict power and performance across different platforms

46

at runtime with negligible overhead. In our evaluation conducted on four heterogeneous computing

platforms, we showed that our framework successfully recognizes the distinct application power

states, and accurately predicts power consumption with less than 7.2% of error for all diverse

configuration changes, including frequency levels, platforms, and CPU architectures. Based on

the prediction technique, we also propose a predictive management technique which performs

intelligent task allocation for ML workloads. Our evaluation results show that we can save energy

and cost by 16%. In the next chapter, we present how we can further advance the efficiency of

learning by designing a new class of ML algorithms.

This chapter contains material from “P4: Phase-Based Power/Performance Prediction of

Heterogeneous Systems via Neural Networks”, by Yeseong Kim, Pietro Mercati, Ankit More,

Emily Shriver, and Tajana S. Rosing, which appears in International Conference on Computer-

Aided Design, November 2017. The dissertation author was the primary investigator and author

of this paper.

47

Chapter 3

Hyperdimensional Computing for Efficient

Learning in IoT Systems

48

3.1 Introduction

In the previous chapter, we presented how we can improve the efficiency of the state-of-

the-art learning algorithms by intelligently predicting their resource usage and carefully allocating

their tasks. Our predictive management framework primarily aims to distribute the tasks to

clusters of powerful machines since the focus is on the allocation of computationally-expensive

ML algorithms. However, the emergence of the IoT raises several other issues. The amount

of data created by billions of distributed devices adds a significant computation burden to the

centralized cloud. In addition, sending the sensitive user information may pose privacy and

security concerns. An alternative solution is to run these tasks in a more localized way, e.g.,

on the IoT gateways at the edge [9, 75]. The local IoT devices typically have less computing

resources than the cloud servers and run on low-power processors, such as ARM or Intel Atom.

Today, ML algorithms are too complex to be trained on IoT devices [76, 77, 78]. We need a new

ML technique that can be efficiently processed even on the embedded devices.

To achieve this goal, we have developed a new methodology which can efficiently perform

learning tasks based on hyperdimensional (HD) computing. HD computing is recently developed

as an alternative computing method inspired by the human brain [79]. It represents the brain’s

memory using data encoded into vectors of large dimensionality, called hypervectors. Earlier

works show that HD computing can offer high efficiency for many classification tasks, e.g., voice

recognition [80] and language identification [81]. HD computing is in particular suitable for

sensor-based classification tasks like human activity recognition in IoT devices since it is robust

against most hardware failure mechanisms and thrives on noisy and incomplete data that the IoT

sensors often provide [82].

In this chapter, we describe how the HD computing can be applied to solve the classi-

fication problems, focusing on human activity recognition as an example of IoT applications.

Human-aware system design has been widely investigated to offer high interactivity and enhanced

49

efficiency under limited device resources on IoT environment. Earlier researchers recognized

that understanding human behavior is an important task to accomplish such goals. For example,

diverse techniques exploited human activities and contexts as key control knobs of various system

managements including mobile systems [83] and smart homes [84]. Human activity recognition

such as motion detection is a key part of these techniques. Machine learning (ML) techniques are

often used to automatically identify the activities from various information, where devices in the

loop need to collect the data using sensors, e.g., accelerometers and GPS.

Our approach encodes the collected sensor samples with hypervectors, and combines the

samples for each class into a single hypervector using robust algebra in HD space. Once the

modeling is completed, we identify the human activity class for a newly observed data encoded

with a hypervector. To this end, we match the most similar hypervector in the model to the

sample. We design different variants of the HD computing-based classification method for higher

efficiency and classification accuracy. In this chapter, we present two key approaches, hypervector

retraining and hypervector binarization. The hypervector retraining refines the models to achieve

higher classification accuracy. Unlike previous work [85], during the retraining step, we exploit

non-binarized hypervectors to get higher accuracy. The hypervector binarization then converts

the trained hypervectors back to hypervectors of bitstreams, making the HD computation more

suitable for less-powerful IoT devices.

In our evaluation, we compare our approach with the state-of-the-art ML solutions. Our

experimental results show that the proposed method can provide high accuracy and computing

efficiency for popular human activity recognition problems. For example, as compared to the

neural networks-based modeling [63], the HD-computing method is 486x faster when running on

x86 processor. In addition, our design improves the performance of HD model-based inference

tasks by up to 7x on a low-power ARM processor as compared to the deep learning model, while

providing comparable classification accuracy.

50

3.2 Related Work

The hyperdimensional (HD) computing was first introduced in the field of neuroscience [79].

Prior researchers recognized that HD computing is effective for pattern-based cognitive tasks,

and showed diverse applications, such as language recognition [81], text classification [86], the

prediction from multimodal sensor fusion [87, 88], and speech recognition [80]. The work in [89]

showed that bio signal sensory data can be represented with hyperdimensional data. Some work

have also presented that HD tasks can be efficiently performed with diverse computing devices.

For example, the hardware accelerator design has been proposed to efficiently compute binarized

hypervectors. Some works also presented new memory architectures that perform HD operations

inside memory arrays [90, 82]. Digital circuits for HD computing have been also designed, e.g.,

computation of Hamming distance distance search [82].

In this chapter, we focus on an example problem: “how the human activity recognition

problem can be effectively mapped using HD computing.” In addition, we show how the HD

computing can be further optimized for IoT devices. Prior researchers have been investigated to

understand and identify human activities and contexts. For example, the work in [91] showed a

monitoring framework for human activity recognition which collects data from inertial measure-

ment units (IMU). Some works have shown that daily activities can be captured by the sensors

equipped in smartphone systems [92, 93]. Another line of research has focused on how to exploit

the human activity and context information for diverse problems. For example, prior research

has shown that understanding user’s behavior and exploiting the behavioral characteristics can

be used to improve system efficiency. In this context, earlier work proposed diverse system

optimization techniques by identifying user behaviors and interactions for mobile systems [83]

and smart homes [84]. Prior work often utilized ML techniques to identify the activities, while

relying on computing capability of clouds through offloading, e.g., [94]. However, due to the

massive data stream created in the IoT systems, more light-weight alternatives are considered as

51

a key requirement in the system design.

3.3 HD Computing Primitives

In this section, we discuss the primitives for HD computing.

Data type: Unlike conventional computing methods, the basic data type of the HD

computing is the hypervector which often has many elements, e.g., more than one thousand. We

denote the dimensionality of the hypervector using D. For example, collected data are converted

to hypervectors for future HD procedures, e.g., classification tasks. In the earlier HD work, e.g.,

[80], each element of hypervector is assumed to be a bit. In contrast, since the hypervector

containing numbers may include diverse information, some recent HD applications choose this

data type to implement [95]. We call these two different types as binary hypervector and non-

binary hypervector. An element of a binary hypervector can be either 0 or 1. For the non-binary

hypervector, the elements can have any real number.

Property of hypervectors: An important characteristic used in HD computing is the

orthogonality of hypervectors. Let us assume that there are two hypervectors, A and B. The

non-binary hypervectors are defined to be orthogonal if the cosine similarity of A and B is zero.

For binary hypervectors, we can define the orthogonality by mapping the hypervector element of

0 to -1. Since a hypervector has a large number of elements, we can easily find many pairs of two

orthogonal hypervectors by randomly selecting their elements. For example, let us assume that

we randomly choose elements of two non-binary hypervectors, A and B, among -1 and 1. In the

cosine similarity computation, the element-wise multiplication make each element to either -1 or

1 with 50% chance, and the summation of all elements are very close to zero, i.e., near orthogonal.

In contrast, if two hypervectors are computed somehow to be similar, the cosine similarity has a

high value.

52

HD arithmetic operations: HD arithmetic operations enable to associate multiple

hypervectors. In this chapter, we utilize three major operations.

• Binding: Two hypervectors A and B are combined into a hypervector. We denote this

operation with A×B. For the binary hypervectors, the element-wise XORing accomplishes

this procedure; the element-wise multiplication is used for non-binary hypervectors. The

binding operation preserves orthogonality of hypervectors. For example, when we have

three hypervectors randomly created, say X , Y , and Z, the hypervector X is still near-

orthogonal to the binding of the rests, Y ×Z.

• Bundling: This operation is denoted with the + symbol. The component-wise addition

implements the bundling for non-binary hypervectors. Since the bundling for two binary

hypervector yields a non-binary hypervector, a majority function is applied afterward.

For example, when n binary hypervectors are bundled, we first apply the elements-wise

addition, and make each element whose value is greater than n/2 to 0; 1 for the other case.

We denote this operation by [A0 +A1 + · · ·+An]. The bundling operation preserves the

similarity with the combined hypervectors. For example, for two hypervectors A and B, the

cosine similarity between A and A+B is cos(π/4), i.e., greater than zero.

• Detaching: This is a counter operation of the bundling for non-binary hypervectors. The

component-wise subtraction implements this operation, and we denote it using the −

symbol. This makes the cosine similarity between two operand hypervectors either smaller

or negative.

Associative search: The binary and non-binary hypervectors respectively use Hamming

distance and cosine distance as their distance metrics. For simplicity, we denote the distance

metric, which is appropriate for each case, by δ(A,B). When we have multiple hypervectors,

the associative search is used to find the most similar hypervectors using the distance metric.

53

Figure 3.1: Overview of HD-Based Classification (Example: Human Activity Recognition)

For example, when we have m hypervectors, H1, · · · ,Hm, the associative search for another

hypervector A looks for a hypervector, Hi, whose δ(Hi,A) is the highest.

3.4 HD-Based Classification

3.4.1 Design Overview

Figure 3.1 describes our design that performs classification tasks, such as human activity

recognition, based on HD computing. We collect multiple raw data from the external sensors in

IoT devices, e.g., IMUs of wireless embedded devices and accelerometers in smartphones. Instead

of using real numbers, we convert each collected sample, which includes multiple measurements,

to a hypervector. We call this step by encoding. With the encoded hypervectors and its original

activity (label), e.g., walking, running, and standing, we train the hypervector model. To classify K

classes, the trained model includes K hypervectors for each class. The training procedure consists

of three parts, one-shot learning, retraining, and model binarization. In the one-shot learning,

54

our design reads and process the hypervectors for each sample one by one. Then, the retraining

refines the hypervector models considering the samples again with multiple iterations. In the next

step, we update the model to the binarized hypervectors for performance improvements. With the

trained model, we perform the inference of the class. The goal of the inference procedure is to

classify a collected sample with an unknown label into an activity class. Our design accomplishes

the inference by performing the associative search with the model hypervectors.

3.4.2 Sensor Data Encoding

To enable HD computing, we encode the collected raw data to hypervectors. Let us

assume that a sample collected at a time includes F values, i.e., S = 〈v1, · · · ,vF〉, where each vi is

different raw values that each sensor measures. To find the patterns of sample hypervectors for

each human activity, the encoding procedure considers the impact of i) the value for each sensor

measurement and ii) differences of all the sensors in the system.

The first step of the encoding is to convert a measurement value, vi, into a hypervector.

As discussed in the background section, the similarity between two hypervectors, A and B, is

determined with a metric, i.e., δ(A,B). Thus, we encode each value so that the corresponding

hypervector keeps the relative difference across the measurement values of different samples

under the distance metric. To this end, we utilize the measurement range of each sensor. For

example, if a sensor produces a value in a range of [Vmin,Vmax], the minimum and maximum

values correspond to two hypervectors, Lmin and Lmax, where Lmin and Lmax are orthogonal to

each other.

We represent any measurement value using the two hypervectors. Lmin with D dimension

is first created by randomly choosing its elements. Using the Lmin, we create another hypervector,

say L1, by flipping D/2Q elements, where Q is a configurable value. We repeat this procedure

by Q times to decide L1,L2, · · · ,LQ, e.g., flipping elements of L1 creates L2. Note that LQ is

orthogonal to Lmin, thus LQ = Lmax. We call these created hypervectors as level hypervectors. A

55

level hypervector corresponds with each measurement value by considering the relative difference

of the measurement values. To this end, where the measurement range is quantized to Q levels,

and each quantized subrange is mapped to a level hypervector.

In the second step of the encoding, we combine different sensor values of a sample

to represent it with a single hypervector. To distinguish different sensors in the hypervector

representation, we utilize another set of hypervectors, B1, · · · ,BF , called base hypervectors,

whose elements are randomly chosen for the orthogonality. Let assume that each vi value

corresponds to a level hypervector, Li. The encoded hypervector for the sample is computed by:

H = L1×B1 + · · ·+LF ×BF .

Since the Bi hypervectors are orthogonal, even though we use the same set of the level

hypervectors for different sensors, our training step still distinguishes the impact of different

sensors within the encoded hypervector. All of the random hypervectors, i.e., Lmin and Bi, are

required to be created only once and exploited for the entire recognition procedure. Note that the

elements of the encoded hypervectors, say sample hypervectors, are 0 or 1 if using the binary

hypervectors; -1 or 1 for the non-binary hypervector case.

3.4.3 Model Training

In this procedure, our design trains the model by combining the sample hypervectors.

The goal is to learn the patterns of sensor values which exist within a class. Let assume that the

training dataset includes N samples, and each sample is encoded with N hypervectors, H1, · · · ,HN .

Each sample hypervector corresponds to an activity class, say ci.

One-shot training: The first step of the training is to bundle the hypervectors for each

class. We call this computation as one-shot training. For example, let us assume that there are

l hypervectors, H1,H2, · · · ,Hl , where all of them are included in the same class. The bundling

56

Figure 3.2: Encoding of Sensor Measurements

operation makes another hypervector, M = H1 + · · ·+Hl . For example, let us assume that we

have another hypervector Htest , which is very similar to H1, by the distance metric. In this case,

δ(M,Htest) is likely to be a positive value. Furthermore, if Htest is similar to the majority of the

hypervectors combined into M, δ(M,Htest) yields a much higher value. Based on this observation,

we create the one-shot model, say M1, · · · ,MK , by bundling all sample hypervectors included in

each activity of K classes.

Retraining: An issue of the one-shot model is that, although the bundled hypervectors

captures the major similarity within each class, it does not understand hypervector differences

across classes. In addition, bundling a large number of hypervectors may degrade classification

quality when a large variety of patterns exists in each class. Thus, we refine the model to i) better

identify the discrepancy between different classes and ii) recognize the common pattern existing

in each class.

Algorithm 1 illustrates our retraining procedure to reduce the misclassification rate of the

activity recognition. From the one-shot model, our design verifies the classification accuracy

for each sample using the associative search. If a sample is wrongly classified, we modify two

57

Algorithm 1: Pseudo code of retraining precedure
1 t← 0
2 while t < # of Iterations do
3 t← t +1
4 for each sample hypervector, Hi do
5 ρ← associative search for Hi in the model
6 if ρ 6= ci then
7 Mci ←Mci +Hi
8 Mρ←Mρ−Hi

9 end
10 end
11 end

model hypervectors, i.e., the hypervector of the target class and the other hypervector of the

misclassified class. We first bundle the sample hypervector once more to the correct class so

that the model hypervector converges faster to the misclassified sample. The second task is

detaching the hypervector from the wrong class to enlarge the difference between the two model

hypervectors. We repeat this updating process multiple times for the training dataset, and the

accuracy converges with sufficient iterations.

Model Binarization: Since our model retraining algorithm exploits the element-wise

addition and subtraction in the bundling and detaching operations, it consequently creates non-

binary hypervectors as the model. Even though it makes the model more accurate, the model size

and computation costs of the inference also increase. Since many devices in IoT environments

which run the activity recognition is less-powerful, we optimize the model by converting the

model to the binary hypervectors. We update the model depending on the sign of each hypervector

element, i.e., choosing 1 if the element value is positive; 0 for the negative value.

3.4.4 Model-Based Inference

Once the model is trained, it is ready to process the inference step for samples whose

labels are unknown. We first encode the values using the level and base hypervectors used in

58

training step. Then, our design finds which model hypervectors is the most similar to the given

sample hypervector using the associative search. Note that, in the associative search, we use

different distance metrics based on the data type of the model. In general, the non-binarized

model provides better accuracy. In contrast, the binarized model processes the inference in a more

efficient way, since the Hamming distance can be computed with bitwise XOR operations for the

smaller model, unlike the element-wise integer additions for the cosine distance computation.

3.5 Evaluation

3.5.1 Experimental Setup

To evaluate how the proposed design works on the heterogeneous IoT environment, we

utilize two different devices running on 2.8 GHz Intel Core i7 (x86) and 1.4 GHz ARM Cortex-

A53 (ARM) processors. For both cases, we execute the same code implemented with Python 2.7

and Numpy which uses C++ backend. We compare our approach with the state-of-the-art deep

neural network models (DNN) implemented using Google TensorFlow. Since our design can

create binarized hypervector models, for fair comparison, we also evaluate the binarized neural

network (BNN) models. The neural network models have three hidden layers of 512 neurons, and

DNN and BNN models are trained with ADAM optimizer for 10 and 100 epochs, respectively, so

that the accuracy converges. For the efficiency comparison, we measure the execution time of the

training and testing procedures.

We evaluate our approach using three practical datasets as follows.

UCIHAR: This dataset includes the sensor measurements for accelerometers and gyro-

scopes of a smartphone, which are measured on the waist of users. The goal is to classify twelve

activity classes, e.g., walking, walking up/downstairs, sitting and standing.

PAMAP2: The dataset contains data measured from three IMUs located at the wrist,

chest, and ankle of users with a heart rate monitor. The goal is to classify five basic activities,

59

Table 3.1: Evaluated Dataset (F: the number of features, K: the number of activity classes,
Ntrain: the number of samples in the training dataset, Ntest : the number of samples in the testing
dataset)

Name Data Size F K Ntrain Ntest

UCIHAR [92] 10MB 561 12 6213 1554
PAMAP2 [91] 240MB 75 5 611142 101582
EXTRA [93] 140MB 225 4 146869 16343

Figure 3.3: Accuracy Comparison for Different Modeling Methods

e.g., walking and sitting. We exploit the feature extraction method suggested by the author.

EXTRA: The dataset has measurements of heterogeneous sensors from smartphones and

smartwatches. We choose to classify the activity labels for phone locations, e.g., whether it is

located on the table, in the pocket, bag, and hand. Note that the activities are related to diverse

device control problems, e.g., thermal management of mobile devices [96].

Table 3.1 summarizes the dataset sizes. In our evaluation, we set the quantization level to

8, the retraining iterations to 20, and the dimension of hypervectors to 1000, since there is no

accuracy gain with larger values.

60

Figure 3.4: Efficiency Comparison for Training and Inference

3.5.2 Classification Accuracy

Figure 3.3 shows the comparison results of the accuracy for different modeling methods.

The results show that the proposed retraining method improves the classification accuracy. For

example, when using the non-binary hypervector models, the accuracy improvement is 3% on

average. We observe higher accuracy improvements for the binarized hypervector models by 4%

on average. Throughout the retraining procedure, we train the HD model which have comparable

accuracy to the DNN and BNN models. For example, for UCIHAR dataset, the accuracy

difference between the non-binary model and DNN is only 0.2%. The accuracy difference

between binary and non-binary models is 8% on average. In the next section, we evaluate how

much performance can be improved by the model binarization.

3.5.3 Efficiency Comparison

Training Efficiency We evaluate the efficiency of different modeling methods. Fig-

ure 3.4(a) shows the efficiency comparison of our design with the state-of-the-art DNN and BNN

model. The results are reported for the non-binarized models, since the overhead of the model

binarization is negligible.1 In this comparison, the HD modeling and the neural network training

were both executed on x86 processor. The results show that the proposed method presents higher

performance efficiency as compared to the neural network training. For example, for UCIHAR

1The model binarization requires to update the trained hypervectors only once after all the retraining procedure.

61

dataset, training the HD model with the retraining procedure is 4x and 56x faster than the DNN

and BNN models, respectively. Note that the accuracy difference between the two model is only

0.2% as presented in the previous section.

In addition, when a small amount of accuracy loss is acceptable, our design can also train

the model without retraining. In that case, we observe the speedup up to 486x compared to the

BNN approach.

Figure 3.4(b) compares the execution time of the training procedure on the two different

processors. The results suggest that the proposed design can efficiently train the hypervector

model even on the low-power processor. For example, for PAMAP2 dataset, the training time

including the retraining only takes 26 seconds on the ARM processor. To train the one-shot model,

it only takes 4 seconds. Thus, we conclude that the proposed design may efficiently process the

activity recognition tasks in the IoT systems, since many IoT devices in the loop is expected to

run on low-power processors with resource budgets.

Inference Efficiency With the trained model, our design performs the inference tasks

for each collected data. Figure 3.4(c) shows how much the execution time takes to process the

inference procedure for each sample. In this evaluation, we compare the non-binary model to the

binary model. The result shows that the model binarization significantly improves the inference

procedure. The speedup is 8.4x and 7.1x for the x86 and ARM case, respectively.

For the ARM processor case, the inference based on the non-binarized model takes 2

ms on average, while the binarized model only takes 0.28 ms. In IoT systems, the sensors are

often equipped with the same device running on these low-power processors. Thus, when a

small amount of accuracy loss is acceptable, the binarized model is more preferable, e.g., serving

real-time needs for the activity recognition.

62

3.6 Conclusion

In this chapter, we present a new algorithm which utilizes HD computing to enable

efficient learning on low-power embedded devices. We also show optimization techniques that

improve the accuracy of the HD-based classification and performance efficiency in the inference

procedure. In our evaluation conducted with practical human activity recognition tasks, the

proposed design is 486x faster for training, compared to the neural network models [63]. The

algorithm proposed in this chapter runs the learning on a single IoT device. In the next chapter,

we discuss how to extend and deploy the proposed learning method into the hierarchy of multiple

IoT nodes.

This chapter contains material from “Efficient Human Activity Recognition Using Hyper-

dimensional Computing”, by Yeseong Kim, Mohsen Imani, and Tajana S. Rosing, which appears

in IEEE Conference on Internet of Things, October 2018. The dissertation author was the primary

investigator and author of this paper.

63

Chapter 4

Collaborative Learning with

Hyperdimensional Computing

64

4.1 Introduction

In the previous chapter, we proposed an HD computing-based learning which encodes the

data to the hypervectors and performs the rest of the learning procedure running on a single node.

In practice, the learning in many IoT systems is done with data that is held by a large number of

devices. To analyze the collected data using machine learning algorithms, IoT systems typically

send the data to a centralized location, e.g., local servers, cloudlets and data centers [76, 77, 78].

However, sending the data not only consumes lots of bandwidth, battery power, but is also

undesirable due to privacy and security concerns [97, 98, 99, 100]. Many machine learning

models usually require unencrypted data original images, to train models and perform inference.

When offloading the computation tasks, sensitive information is exposed to the untrustworthy

cloud system which is susceptible to internal and external attacks [101, 102] . The users may also

be unwilling to share the original data with the cloud and other users [103, 104, 105, 106].

An existing strategy applicable to this scenario is to use Homomorphic Encryption (HE).

HE enables encrypting the raw data and allowing certain operations to be performed directly on the

ciphertext without decryption [16]. However, this approach significantly increases computation

burden. For example, in our evaluation, with Microsoft SEAL, a state-of-the-art homomorphic

encryption library [17], it takes around 14 days to encrypt all of the 28x28 pixel images in the

entire MNIST dataset, and increases the data size 28 times. More recently, Google presented a

protocol for secure aggregation of high-dimensional data that can be used in federated learning

model [107]. This approach trains Deep Neural Networks (DNN) when data is distributed over

different users. In this technique, the users’ devices run the DNN training task locally to update

the global model. However, IoT edge devices often do not have enough computation resources to

perform such complex DNN training.

In this chapter, we design SecureHD, an efficient, scalable, and secure collaborative

learning for the distributed computing in the IoT hierarchy. HD computing does not require

65

complete knowledge for the original data that the conventional learning algorithms need – it runs

with a mapping function that encodes data to a high-dimensional space. The original data cannot

be reconstructed from the mapped data without knowing the mapping function, resulting in secure

computation.

We address several technical challenges to enable HD-based trustworthy, collaborative

learning. To map the original data into hypervectors, it uses a set of randomly-generated base

hypervectors as described in Chapter 3. Since the base hypervectors can be used to estimate the

original data, every user has to have different base hypervectors to ensure the confidentiality of

the data. However, in this case, the HD computation cannot be performed with the data provided

by different users.

SecureHD fills the gap between the existing HD computing and trustworthy, collaborative

learning by providing the following contributions:

i) We design a novel secure collaborative learning protocol that securely generates and

distributes public and secret keys. SecureHD utilizes Multi-Party Computation (MPC) techniques

which are proven to be secure when each party is untrusted [108]. With the generated keys, the

user data are not revealed to the cloud server, while the server can still learn a model based on the

data encoded by users. Since MPC is an expensive protocol, we carefully optimize it by replacing

a part of tasks with two-party computation. In addition, our design leverages MPC only for a

one-time key generation operation. The rest of the operations such as encoding, decoding, and

learning are performed without using MPC.

ii) We propose a new encoding method that maps the original data with the secret key

assigned to each user. Our encoding method significantly improves classification accuracy as

compared to the state-of-the-art HD work [109, 82]. Unlike existing HD encoding functions, the

proposed method encodes both the data and the metadata, e.g., data types and color depths, in a

recover-friendly manner. Since the secret key of each user is not disclosed to anyone, although

one may know encoded data of other users, they cannot be decoded.

66

iii) SecureHD provides a robust decoding method for the authorized user who has the

secret key. We show that the cosine similarity metric widely used in HD computing is not suitable

to recover the original data. We propose a new decoding method which recovers the encoded data

in a lossless manner through an iterative procedure.

iv) We present scalable HD-based classification methods for many practical learning

problems which need the collaboration of many users, e.g., human activity and face image

recognition. We propose two collaborative learning approaches, cloud-centric learning for the

case that end-node devices do not have enough computing capability, and edge-based learning

that all the user devices participate in secure distributed learning.

v) We also show a hardware accelerator design that significantly minimizes the costs paid

for security. This enables secure HD computing on less-powerful edge devices, e.g., gateways,

which are responsible for data encryption/deception.

We design and implement the proposed SecureHD framework on diverse computing

devices in IoT systems, including a gateway-level device, a high-performance system, and

our proposed hardware accelerator. In our evaluations, we show that the proposed framework

can perform the encoding and decoding tasks 145.6× and 6.8× faster than a state-of-the-art

homomorphic encryption library when both are running on the Intel i7-8700K. The hardware

accelerator further improves the performance efficiency by 35.5× and 20.4× as compared to the

CPU-based encoding and decoding of SecureHD. In addition, our classification method presents

high accuracy and scalability for diverse practical problems. It successfully performs learning

tasks with 95% average accuracy for six real-world workloads, ranging from datasets collected in

a small IoT network, e.g., human activity recognition, to a large dataset which includes hundreds

of thousands of images for the face recognition task. Our decoding method also provides high

quality in the data recovery. For example, SecureHD can recover the encoded data in a lossless

manner, where the size of the encoded data is 4 times smaller than the one encrypted by the

state-of-the-art homomorphic encryption library [110].

67

Client 1

Cloud (untrusted)

En
cr
yp
t

D
ec
ry
p
t

Learning

Client n

En
cr
yp
t

D
ec
ry
p
t

Encrypted

Data

En
cr
yp
t

D
ec
ry
p
t

Encrypted

Data

Client 2

Figure 4.1: Motivational scenario

4.2 Motivational Scenario

Figure 4.1 shows the scenario that we focus in this chapter. The clients, e.g., user devices,

send either their sensitive data or partially trained models in an encrypted form to the cloud. The

cloud performs a learning task by collecting the encrypted information received from multiple

clients. In our security model, we assume that a client cannot trust the cloud as well as other

clients. When requested by the user, the cloud sends back the encrypted data to clients. The client

then decrypts the data with its private key.

As an existing solution, homomorphic encryption enables processing on the encrypted

version of data [16]. Figure 4.2 shows the execution time of a state-of-the-art homomorphic

encryption library, Microsoft SEAL [17], for MNIST training dataset, which includes 60000

images of 28×28 pixels. We execute the library on two platforms that a client in IoT systems

may use, a high-performance computer (Intel i7-8700K) and a Raspberry Pi 3 (ARM Cortex

A53). The result shows that, even with the simple dataset of 47 MBytes, it takes significantly

68

1.6 Hours

13.8 Days

20.8 Hours

2.7 Days

10
710

6
10

5
10

4
10

3
10

2

Encryption

Decryption

Execution Time (s)

Figure 4.2: Execution time of homomorphic encryption and decryption over MNIST dataset

large execution time, e.g., more than 13 days on ARM to encrypt.

Another approach is to utilize secure Multi-Party Computation (MPC) techniques [111,

108]. In theory, any function, which can be represented as a Boolean circuit with inputs from

multiple parties, can be evaluated securely without disclosing each party’s to anyone else. For

example, by describing the machine learning algorithm as a Boolean circuit with learning data as

inputs to the circuit, one can securely learn the model. However, such solutions are very costly

in practice and are computation and communication intensive. In SecureHD, we only use MPC

to securely generate and distribute users’ private keys which is orders of magnitude less costly

than performing the complete learning task using MPC. The key generation step is a one-time

operation so the small cost associated with it is quickly amortized over time for future tasks.

4.3 Related Work

Privacy-preserving deep learning and classification has been an active research area in

recent years [107, 112, 113, 114, 115, 116, 117]. Shokri and Shmatikov [113] have proposed a

solution for collaborative deep learning where the training data is distributed among many parties.

69

PKey1

PKeyn

Data

Encoding

Metadata

Injection

Data

Recovery

Metadata

Recovery

Hypervector

PKey2

SKey1

SKeyn

nPKey

Encoding

Client

 1

DecodingMPC-based

Key

Generation

Cloud

HD

Learning

Client

2

Client

 n

Encoded

data

SKey
Encoded Data Hypervector

Original

Data
Original

Data

Figure 4.3: Overview of SecureHD

Each party locally trains her model and sends the parameter updates to the server. However,

it has been shown that Generative Adversarial Networks (GANs) can be used to attack this

method [118].

SecureML [115] is a framework for secure training of machine learning models. All of

the computation of SecureML is performed by the two servers using MPC protocols, whereas, Se-

cureHD only relies on the MPC protocol for secure key generation and distribution. Chameleon [112]

is a privacy-preserving machine learning framework that utilizes different cryptographic protocols

for different operations within the machine learning task. In contrast to SecureML and Chameleon,

our solution does not require two non-colluding servers and only involves one server.

Google has also proposed a federated learning approach [107] for collaborative learning.

In their approach, each client needs to learn the local model based on the private training data

to update the central model in the cloud. However, our solution is more light-weight to be run

on less-powerful IoT devices and also applicable to other cloud-oriented tasks, e.g., data storage

services.

70

4.4 Secure Learning in HD Space

4.4.1 Security Model

In SecureHD, we consider the server and other clients to be untrusted. More precisely,

we consider Honest-but-Curious (HbC) adversary model where each party, server or a client,

is untrusted but follows the protocol. Both the server and other clients are not able to extract

any information based on the data that they receive and send during the secure computation

protocol. For the task of key generation and distribution, we utilize a secure MPC protocol which

is proven to be secure in the HbC adversary model [108]. We also use two-party Yao’s Garbled

Circuits (GC) protocol which is also to be secure in the HbC adversary model as well [119]. The

intermediate results are stored as additive unique shares of PKey by each client and the server.

4.4.2 Proposed Framework

In this section, we describe the proposed SecureHD framework which enables trustworthy,

collaborate HD computing. Figure 4.3 illustrates the overview of SecureHD. The first step is

to create different keys for each user and cloud-based on an MPC protocol. To perform a HD

learning task, the data are encoded with a set of base hypervectors. The MPC protocol creates the

base hypervectors for the learning application, called global keys (GKeys). Instead of sharing the

original GKeys with clients, the server distributes permutations of each GKey, i.e., a hypervector

whose dimensions are randomly shuffled. Since each user has different permutations of GKeys,

called personal keys (PKeys), no one can decode encoded data of others. The cloud has dimension

indexes used in the GKey shuffling, called shuffling keys (SKeys). Since the cloud does not have

the GKeys, it cannot decrypt the encoded data of clients. This MPC-based key generation runs

only once.

After the key generation, each client can encode their data with its PKeys. SecureHD

securely injects a small amount of information into the encoded data. We exploit this technique to

71

S1, S1
*

Sn, Sn
*

Si* GKey

Cloud

Waksman

Block

GKey
GKey

S*1

GKey

S*n

Phase 1

S1

S2

Sn

Phase 2

S1
* PKey1

Waksman

Block

GKey

Sn
*

PKeyn

SKey

Client 1 Client n Client 1 Client n

Si* GKey

Cloud

(Untrusted)

M
P

C

G
C

Figure 4.4: MPC-based key generation

store the metadata, e.g., data types, which are important to recover the entire original data. Once

the encoded data is sent to the cloud, the cloud reshuffles the encoded data with the SKeys for

the client. This allows the cloud to perform the learning task with no need for accessing GKeys

and PKeys. With the SecureHD framework, the client can also decode the data from the encoded

hypervectors. For example, once a client fetches the encoded data from the cloud storage service,

it can exploit the framework to recover the original data using its own PKeys. Each client may

also utilize the specialized hardware to accelerate both the encoding and decoding procedures.

4.4.3 Secure Key Generation and Distribution

Figure 4.4 illustrates how our protocol securely create the key hypervectors. The protocol

runs two phases: Phase 1 that all clients and the cloud participate, and Phase 2 that two parties, a

single client and cloud, participate. Recall that in order for the cloud server to be able to learn the

model, all have to be projected based on the same base hypervectors. Given the base hypervector

72

Value

Extraction

M1

M2

Mk

Value

Extraction

 C

 C

 C

A2 AN

 f1

 f2

 fn

B1 hypervector

B2 hypervector

Bn hypervector

Feature

Values

Meta-vector

Data

Reconstruction

C

D

Metadata

M
e

ta
d

a
ta

D
e

c
o

d
in

g

Data Decoding

A 1 A2 AN

Hypervector (Data + Meta-data)

Base hypervectors

(PKey for a client)

A1 A2 AN

File Type M1

M2

Mk

M

A 1 A2 AN

+

A Segment

Color Depth

Hypervector (Data + Meta-data)

B1 hypervector

B2 hypervector

Bn hypervector

 f1

 f2

 fn

*

Features/Pixels Values Base hypervectors

(PKey for a client)

Data

Meta-vector

+
*
*

*

+

B

A

 C

 C

 C

d

D

Metadata

M
e

ta
d

a
ta

 E
n

c
o

d
in

g
D

a
ta

 E
n

c
o

d
in

g

Data Hypervector (H)

*

*

Encoding Decoding

A1

Metadata

File Type

Color Depth

Figure 4.5: Illustration of SecureHD encoding and decoding procedures

and the encoded result, one can reconstruct the plaintext data. Therefore, all clients have to

use the same key without anyone having access to the base hypervectors. We realize these two

constraints at the same time with a novel hybrid secure computation solution.

In the first phase, we generate the base hypervectors, which we denote by GKey. The

main idea is that the base hypervectors are generated collaboratively inside the secure Multi-Party

Computation (MPC) protocol. At the beginning of the first phase, each party i inputs two sets

of random strings called Si and S∗i . Each stream length is D, where D is the dimension size of a

hypervector. The MPC protocol computes element-wise XOR (⊕) of all the provided bitstreams,

and the substream of D elements represent the global base hypervector, i.e., GKey. Then, it

performs XOR for the GKeys again with S∗i provided by each client. At the end of the first MPC

protocol phase, the cloud receives S∗i ⊕GKey corresponding to each user i and stores these secret

keys. Note that since Si and S∗i are inputs from each user to the MPC protocol, it is not revealed to

any other party during the joint computation. It can be seen that the server has a unique XOR-share

of the global key GKey for each user. This, in turn, enables the server and each party to continue

their computation in a point-to-point manner without involving other parties during the second

phase.

Our approach has a strong property that even if all other clients are dishonest and provide

zero vectors as their share to generate the Gkey, the security of our system is not hindered. The

73

reason is that the Gkey is generated with XOR of Si for all clients. That is, if one generates

its seed randomly, the global key will have a uniform random distribution. In addition, the

server only receives an XOR-share of the global key. The XOR-sharing technique is equivalent to

One-Time Pad encryption and is information-theoretic secure which is superior to the security

against computationally-bounded adversaries in standard encryption schemes such as Advanced

Encryption Standard (AES). We only use XOR gates in MPC which are considerably less costly

than non-XOR gates [120].

In the second phase, the protocol distributes the secret key for each user. Each party

engages in a two-party secure computation using the GC protocol. Server’s inputs are SKeyi and

S∗i ⊕GKey, while the client’s input is S∗i . The global key GKey is securely reconstructed inside

the GC protocol by XOR of the two shares: GKey = S∗i ⊕ (S∗i ⊕GKey). The global key is then

shuffled based on the unique permutation bits held by the server (SKeyi). In order to avoid costly

random accesses inside the GC protocol, we use the Waksman permutation network with SKeyi

being the permutation bits [121]. The shuffled global key is sent back to the user, and we perform

a single rotational shift for the GKey to generate the next base hypervector. We repeat this n times

where n is the required number of base hypervectors, e.g., the feature size. The permuted base

hypervectors serve as user’s personal keys, called PKey, for the projection. Once a user performs

the projection with PKey, she can send the result to the server, and the server permutes back based

on the SKeyi for the learning process.

4.5 SecureHD Encoding and Decoding

Figure 4.5 shows how the SecureHD framework performs the encoding and decoding of a

client with the generated PKeys. The example has been shown for an image input data with n pixel

values, { f1, . . . , fn}. Our design encodes each input data into a high-dimensional vector from

the feature values (•A). It exploits the PKeys, i.e., a set of the base hypervectors for the client,

74

where 0 and 1 in the PKeys correspond to -1 and 1 to form a bipolar hypervector ({−1,+1}D).

We denote them by PKeys = {B1, . . . ,Bn}. To store the metadata with negligible impact on the

encoded hypervector, we devise a method which injects several metadata to small segments of an

encoded hypervector. This method exploits another set of base vectors, {M1, . . . ,Mk} (•B). We

call them as metavector. The encoded data are sent to the cloud to perform HD learning.

Once the encoded data is received from the cloud, SecureHD can also decode them back

to the original domain. This is useful for other cloud services, e.g., cloud storage. This procedure

starts with identifying the injected metadata (•C). Based on the injected metadata, it figures

out the base hyperevectors that will be used in the decoding. Then, it reconstructs the original

data from the decoded data (•D). The key of the data recovery procedure is the value extraction

algorithm, which retrieves both metadata and data.

4.5.1 Encoding in HD Space

Data Encoding The first step of SecureHD is to encode input data into hypervector, where

an original data point has n features. We associate each feature with a hypervector. The features

can have discrete value (e.g., alphabets in the text), in which we perform a straight mapping to

hypervectors, or they can have a continuous range, in which case the values can be quantized

and then mapped similar to discrete features. Our goal is to encode each feature vector to a

hypervector that has D dimensions, e.g. D = 10,000.

To differentiate each feature, we exploit a PKey for each feature value, i.e., {B1,B2, . . . ,Bn},

where n is the feature size of an original data point. Since the PKeys are generated from the

random bit streams, the similarity of different base hypervectors are nearly orthogonal [122]:

δ(Bi, B j)' 0 (0 < i, j ≤ n, i 6= j).

The orthogonality of feature hypervectors is ensured as long as the hypervector dimension, D, is

75

0 20 40 60 80 100 120
-1

-0.5

0

0.5

1
C

o
s

in
e

B
1
 (f

1
=50)

B
2
 (f

2
=26)

B
3
 (f

3
=77)

(a)

0 3 6 9 12 15 18

Iterations

1

10

10
2

10
3

10
4

10
5

10
6

10
7

V
a
ri

a
n

c
e

n=1200, D=7,000

n=1000, D=7,000

n=1200, D=10,000

n=1000, D=10,000

(b)

Figure 4.6: Value extraction example

large enough compared to the number of features (D >> n) in the original data.

Different features are combined by multiplying feature values with the corresponding

base hypervector, Bi ∈ {−1,+1}D and adding them for all the features. For example, where fi is

a feature value, the following equation represents the encoded hypervector, H:1

H = f1 ∗ B1 + f2 ∗ B2 + . . . + fn ∗Bn.

If two original feature values are similar, their encoded hypervectors are also similar, thus

providing the learning capability for the cloud without any knowledge for the PKeys. Please note

that, with this encoding scheme, although an attacker intercepts sufficient hypervectors, the upper

bound of the information leakage is the distribution of the data. It is because the hypervector

does not preserve any information of the feature order, e.g., pixel positions in an image, and there

are extremely large combinations of values in hypervector elements which exponentially grow

as n increases. In the case that n is small, e.g., n < 20, we can simply add extra features drawn

from a uniform random distribution, and it does not affect the data recovery accuracy and HD

computation results.

Metadata Injection A client may receive an encoded hypervector where SecureHD

processes multiple data types. In this case, to identify base hypervectors used in the prior

1The scalar multiplication, denoted by *, can make a hypervector that has integer elements, i.e., H ∈ ND.

76

encoding, it needs to embed additional information of the data identifier and metadata, such as

data type (e.g., image or text) and color depth. One naive way is to store this metadata as attached

bits to the original hypervector. However, this does not keep the metadata secure.

To embed the additional metadata into hypervectors, we exploit the fact that HD computing

is robust to small modification of hypervector elements. Let us consider a data hypervector as a

concatenation of several partial vectors. For example, a single hypervector with the D dimension

can be viewed as the concatenation of different d-dimensional vectors, A1, . . . ,AN :

H = A1 a A2 a · · ·a AN

where D = N×d, and each Ai vector is called as a segment. We inject the metadata in a minimal

number of segments.

Figure 4.5 shows the concatenation of a hypervector to N = 200 segments with d = 50

dimensions. We first generate a random d dimensional vector with bipolar values, Mi, i.e.,

metavector. A metavector corresponds to a metadata type. For example, M1 and M2 can

correspond to the image and text types, while M3, M4, and M5 correspond to each color depth,

e.g., 2-bit, 8-bit, and 32-bit. Our design injects each Mi into one of the segments in the data

hypervector. We add the metavector multiple times to better distinguish it against the values

already stored in the segment. For example, if we inject the metavector in the first segment, the

following equation denotes the metadata injection procedure:

A′1 = A1 + C ∗M1 + C ∗M2 + . . . + C ∗Mk

where C is the number of injections for each metavector.

77

4.5.2 Decoding in HD Space

Value Extraction In many of today’s applications, the clouds are used as a storage, so

the clients should be able to recover the original data from encoded ones. The key component of

the decoding procedure is a new data recovery method that extracts the feature values stored in

the encoded hypervectors. Let us consider an example of H = f1 ∗B1 + f2 ∗B2 + f3 ∗B3, where

Bi is a base hypervector with D dimensions and fi is a feature value. The goal of the decoding

procedure is to find a fi for a given Bi and H. A possible way is to exploit the cosine similarity

metric, δ. For example, if we measure the cosine similarity of H and B1 hypervectors, δ(H, B1),

the higher δ value represents higher chance of the existence of B1 in H. Thus, one method may

iteratively subtracts one instance of B1 from H to check when the cosine similarity is zero, i.e.,

δ(H′,B1) where H′ = H−m∗B1.

Figure 4.6a shows an example of the cosine similarity for each Bi when f1 = 50, f2 = 26

and f3 = 77 and m changes from 1 to 120. The result shows that the similarity decreases as

subtracting more instances of B1 from H. For example, the similarity is zero when m is close to

fi as expected, and it gets negative values for further subtractions, since H′ has the term of −B1.

Regardless of the initial similarity of H with B, the cosine similarity is around zero when m is

close to each feature value fi.

However, there are two main issues in the cosine similarity-based value search. First,

finding the feature values in this way needs iterative procedures, slowing down the runtime of

data recovery. In addition, it is more challenging when feature values are represented in floating

points. Second, the cosine similarity metric may not give accurate results in the recovery. In our

earlier example, the similarity of each fi is zero, when mi is 49, 29 and 78 respectively.

To efficiently estimate fi values, we exploit another approach that utilizes the random

distribution of the hypervector elements. Let us consider the following equation:

78

Value

Discovery
hD

Encoded Vector (H)

 f
1

1 f
1

2 f
1

nh1h2

h
1

D h
1

1h
1

2

1
st

 Estimated Vector (H
1
)

1
st

 Estimated Features (F
1
)

Δh
1

D Δe
1

1Δe
1

2

1
st

 Error Vector (ΔH
1
)

 e
1

2 e
1

n

1
st

 Estimated Errors (E
1
)

 e
1

1

h
2

D h
2

1h
2

2

2
nd

 Estimated Vector (H
2
)

2
nd

 Error Vector (ΔH
2
)

 e
2

2 e
2

n e
2

1

Encoding

Value

Discovery

Encoding

Value

Discovery

-

-

+

 f
2

1 f
2

2 f
2

n

2
st

 Estimated Features (F
2
)

2
st

 Estimated Errors (E
2
)

+

 f
3

1 f
3

2 f
3

n

3
rd

 Estimated Features (F
3
)

Δh
2
D Δe

2
1Δe

2
2

Figure 4.7: Iterative error correction procedure

H ·Bi = fi ∗ (Bi ·Bi)+ ∑
j,∀ j 6=i

f j ∗ (Bi ·B j).

Bi ·Bi is D since each element of the base hypervector is either 1 or -1, while Bi ·B j is almost zero

due to their near-orthogonal relationship. Thus, we can estimate fi with the following equation,

called value discovery metric:

fi 'H ·Bi/D.

This metric yields an initial estimate of all feature values, say F1 = { f 1
1 , ..., f 1

n }. Start-

ing with the initial estimation, SecureHD minimizes the error through an iterative procedure.

Figure 4.7 shows the iterative error correction mechanism. We encode the estimated feature

vector, F1, into the high dimensional space, H1 = {h1
1, ...,h

1
D}. We then compute ∆H1 = H−H1,

and apply the value extraction metric for ∆H1. Since this yields the estimated error, E1, in the

original domain, we add it to the estimated feature vector for the better estimate of the actual

features, i.e., F2 = F1 +E1. We repeat this procedure until the estimated error converges. To

determine the termination condition, we compute the variance of the error hypervector, ∆Hi, at

79

the end of each iteration. Figure 4.6b shows the variance changes when decoding four example

hypervectors. For this experiment, we used two feature vectors whose size is either n = 1200 or

1000, where the feature values are uniform-randomly generated. We encoded each feature vector

to two hypervectors with either D = 7,000 or D = 10,000. As shown in the results, the iterations

required for accurate recovery depends on both the number of features in the original domain and

hypervector dimensions. In the rest of the chapter, we use the ratio of the hypervector dimension

to the number of features in the original domain, i.e., R = D/n, to evaluate the quality of the

data recovery for different feature sizes. The larger R ratio, the larger the retraining iterations are

expected to sufficiently recover the data.

Metadata Recovery We utilize the value extraction method to recover the metadata. We

calculate how many times each metavector {M1, ...,Mk} presents in a segment. If the extracted

instances of metavector are similar to the actual C value that we injected, such metavector is

considered to be in the segment. However, since the metavector has a small number of elements,

i.e., d << D dimensions, it might have a large error in finding the exact C value. Let’s assume

that, when injecting a metavector C times, the value extraction method identifies a value, Ĉ, in a

range of [Cmin,Cmax]. The range also includes C. If the metavector does not exist, the value Ĉ will

be approximately zero, i.e., a range of [−ε,ε]. The amount of ε depends on the other information

stored in the segment.

Figure 4.8a shows the distribution of extracted values, Ĉ, when injecting 5 metadata 10

times (C = 10) into a single segment of a hypervector. These distributions are reported using a

Monte Carlo simulation with 1500 randomly generated metavectors. The results show that the

distributions of the existing and non-existing cases are overlapped, making the estimation difficult.

However, as shown in Figure 4.8b, when using C = 128, there is a clear margin between these

two distributions which identify the existence of a metadata. Figure 4.8c shows the distributions

when we inject 8 metadata into a single segment with C = 128. In that case, two distributions

overlap, i.e., there are a few cases when we cannot fully recover the metadata.

80

(a) 4 Metadata, C=10 (b) 4 Metadata, C=128

(c) 15 Metadata, C=128 (d) Segment Size

𝑪 𝑪

𝑪 C

+ε cmin

NM>0

+ε

+ε cmin

cmin

Figure 4.8: Relationship between the number of metavector injections and segment size

We determine C so that the distance between Cmin and ε is larger than 0. We define the

distance as the noise margin, NM =Cmin− ε. Figure 4.8d shows how many metavectors can be

injected for different C values. The results show that the number of meta vectors that we can

inject saturates for larger C values. Since the large number of C and segment size, d, also have a

higher chance to influence on the accuracy of the data recovery, we choose C = 128 and d = 50

for our evaluation. In Section 4.7.5, we present a detailed evaluation for different settings of the

metavector injection.

Data Recovery After recovering the metadata, SecureHD can recognize the data types

and choose the base hypervectors for decoding. We subtract the metadata from the encoded

hypervector and start decoding the main data. SecureHD utilizes the same value extraction

method to identify the values for each base hypervector. The quality of data recovery depends

81

Vector 1

Vector ρ

Vector 1

Vector ρ

@
 C

la
s
s

 1

Trained Model

A
g

g
ri

g
a
ti

o
nClient 1

Client n

Permute

SKey1

(PKeyn)
Permute

SKeyn

Training

Training

Vector @
Class 1

T
ra

in
e
d

 M
o

d
e
l

In
d

iv
id

u
a

l

M
o

d
e
ls

Repermute

SKey1

Repermute

SKeyn

(PKey1)
Cloud

T
ra

in
in

g

Client 1

Client n

Permute

SKey1

(PKeyn)
Permute

SKeyn

Encoding

Encoding

(PKey1)

@
 C

la
s
s

 KE
n

c
o

d
e
d

D
a
ta

(b) Federated Training(a) Centralized Training

Vector @
Class 2

Vector @
Class K

Cloud

Figure 4.9: Illustration of the classification in SecureHD

on the dimension of hypervectors in the encoded domain (D) and the number of features in

the original space (n), i.e., R = D/n defined in Section 4.5.2. Intuitively, with the larger the R

value, we can achieve a higher accuracy during the data recovery at the expense of the size of

encoded data. For instance, when storing an image with n = 1000 pixels in a hypervector with

D = 10,000 dimensions (R = 10), it is expected to achieve high accuracy for the data recovery.

In our evaluation, we observed that, with R = 7, it is enough to ensure lossless data recovery in

the worst case. In Section 4.7.4, we explore more detailed discussion about how R impacts on the

accuracy of the recovery procedure.

4.6 Collaborative Learning in HD Space

4.6.1 Hierarchical Learning Approach

Figure 4.9 shows the HD-based collaborative learning in the high-dimensional space. In

this chapter, we show two training approaches, centralized and federated training, which performs

classification learning with a large amount of data provided by many clients. The cloud can

perform the training procedures using the encoded hypervectors without explicit decoding. It

82

only needs to permute the encoded data using the SKey of each client. Note that the permutation

aligns the encoded data on the same GKey base, even though the cloud does not have the GKeys.

It reduces the cost of the learning procedure, and the data can be securely classified even on the

untrustworthy cloud. The training procedure creates multiple hypervectors as the trained model,

where each hypervector represents the pattern of data points in one class. We refer them to class

hypervectors.

Approach 1: Centralized Training In this approach, the clients send the encoded hyper-

vectors to the cloud. The cloud permutes them with the SKeys, and a trainer module combines

the permuted hypervectors. The training is performed with the following sub-procedures.

(i) Initial training: At the initial stage, it creates the class hypervectors for each class. As an

example, for a face recognition problem, SecureHD creates two hypervectors representing “face”

and “non-face”. These hypervectors are generated with element-wise addition for all encoded

inputs which belong to the same class, i.e., one for ”face” and the other one for ”non-face”.

(ii) Multivector expansion: After training the initial HD model, we expand the initial model

with cross-validation, so that each class has multiple hypervectors of the size of ρ. The key idea

is that, when training with larger data, it may need to capture more distinct patterns with different

hypervectors. To this end, we first check cosine similarity for each encoded hypervector again to

the trained model. If an encoded data does not correctly match with its corresponding class, it

means that the encoded hypervector has a distinct pattern as compared to the majority of all the

inputs in the class. For each class, we create a set that includes such mismatched hypervectors

and the original model. We then choose two hypervectors, whose similarity is the highest among

all pairs in the set, and update the set by adding the selected two into a new hypervector. This is

repeated until the set includes only ρ hypervectors.

(iii) Retraining: As the last step, we iteratively adjust the HD model over the same dataset to give

higher weights for misclassified samples that may often happen in a large dataset. We check the

similarity for each encoded hypervector again with all existing classes. Let us assume that Cp
k is

83

one of the class hypervectors belonging to kth class, where p is the index of multiple hypervectors

in the class. If an encoded hypervector Q belonging to ith class is incorrectly classified to Cmiss
j ,

we update the model by

Cmiss
j = Cmiss

j − αQ and Cτ
i = Cτ

i + αQ

where τ = argmaxt δ(Ct
i,Q) and α is a learning rate in a range of [0.0, 1.0]. In other words, in

the case of misclassification, we subtract the encoded hypervector from the class which it is

incorrectly classified to, while adding it to the class hypervector which has the highest similarity

in the correct class. This procedure is repeated for predefined iterations, and the final class

hypervectors are used for the future inference.

Approach 2: Federated Training The clients may not have enough network bandwidth

to send every encoded hypervector. To address this issue, we present the second approach, called

federated training, as an edge computing. In this approach, the clients individually train initial

models, i.e., one hypervector for each class, only using their own encoded hypervectors. Once

the cloud receives the initial models of all the clients, it permutes the models with the SKeys and

performs element-wise additions to create a global model, Ck, for each kth class.

Since the cloud only knows the initial models for each client, the multivector expansion

procedure is not performed in this approach, but we can still execute the retraining procedure

explained in Section 4.6.1. To this end, the cloud re-permutes the global model and sends it back

to each client. With the global model, each client performs the same retraining procedure. Let us

assume that C̃i
k is the retrained model by the ith client. After the cloud aggregates all C̃i

k with the

permutation, it updates the global models by Ck = ∑i C̃i
k− (n−1)∗Ck. This is repeated for the

predefined iterations. This approach allows the clients to send the trained class hypervectors only

for each retraining iteration, thus significantly reducing the network usage.

84

MNIST ISOLET UCIHAR PAMPA EXTRA FACE
10

-3

10
-1

10

10
3

10
5

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

(a) Encoding

MNIST ISOLET UCIHAR PAMPA EXTRA FACE
10

-3

10
-1

10

10
3

10
5

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

(b) Decoding

Figure 4.10: Comparison of SecureHD efficiency to homomorphic algorithm in encoding and
decoding

4.6.2 HD Model-Based Inference

With the class hypervectors generated by either approach, we can perform the inference

in any device including the cloud and clients. For example, the cloud can receive an encoded

hypervector from a client, and permute the dimension with the SKey in the same way to the

training procedure. Then, it checks cosine similarity of the permuted hypervector to all trained

class hypervectors to label with the corresponding class to the most similar class hypervector. In

the case of the client-based inference, once the cloud sends re-permuted class hypervectors to a

client, the client can perform the inference for its encoded hypervector with the same similarity

check.

4.7 Evaluation

4.7.1 Experimental Setup

We have implemented the SecureHD framework including encoding, decoding, and

learning in high-dimensional space using C++. We evaluated the system on three different

platforms: Intel i7 7600 CPU with 16GB memory, Raspberry Pi 3, and Kintex-7 FPGA KC705.

We also exploit a network simulator, NS-3 [123], for large-scale simulation. We verify the FPGA

timing and the functionality of the encoding and decoding by synthesizing Verilog using Xilinx

Vivado Design Suite [124]. The synthesis code has been implemented on the Kintex-7 FPGA

85

KC705 Evaluation Kit. We compare the efficiency of the proposed SecureHD with SEAL, the

state-of-the-art C++ implementation of a homomorphic library, Microsoft SEAL [110]. For

SEAL, we used the default parameters: polynomial modulus of n = 2048, coefficient modulus of

q= 128−bit, plain modulus of t = 1<< 8, noise standard deviation of 3.9, and decomposition bit

count of 16. We evaluate the proposed SecureHD framework with real-world datasets including

human activity recognition, phone position identification, and image classification. Table 4.1

summarizes the evaluated datasets. The tested benchmarks range from relatively small datasets

collected in a small IoT network, e.g., PAMAP2, to a large dataset which includes hundreds of

thousands of images of facial and non-facial data. We also compare the classification accuracy of

SecureHD for the datasets with the state-of-the-art learning models shown in the table.

4.7.2 Encoding and Decoding Performance

As explained in Section 4.4.3, SecureHD performs a one-time key generation to distribute

the PKeys to each user using the MPC and GC protocols. Table 4.2 listed the number of required

logic gates evaluated in the protocol and the amount of required communication between clients.

This overhead comes mostly from the first phase of the protocol, since the second phase has been

simplified with the two-party GC protocol. The cost of the protocol is dominated by network

communication. In our simulation conducted under our in-house network of 100 Mbps, it takes

around 9 minutes to create D = 10,000 keys for 100 participants. Note that the runtime overhead

is negligible since the key generation happens only once before all future computation.

We have also evaluated the encoding and decoding procedure running on each client. We

compare the efficiency of SecureHD with the Microsoft SEAL [110]. We run both the SecureHD

framework and homomorphic library on ARM Cortex 53 and Intel i7 processors. Figure 4.10

shows the execution time of the SecureHD and homomorphic library to process a single data

point. For SecureHD, we used R = 7 to ensure 100% data recovery rate for all benchmark

datasets. Our evaluation shows that SecureHD achieves on average 133× and 14.7× (145.6× and

86

Table 4.1: Datasets (n: feature size, K: number of classes)

n K
Data
Size

Train
Size

Test
Size Description/State-of-the-art Model

MNIST 784 10 220MB 60,000 10,000 Handwritten Recognition/DNN[125, 126]
ISOLET 617 26 19MB 6,238 1,559 Voice Recognition/DNN [127, 128]
UCIHAR 561 12 10MB 6,213 1,554 Activity recognition(Mobile)/DNN[129, 128]
PAMAP2 75 5 240MB 611,142 101,582 Activity recognition(IMU)/DNN[91]
EXTRA 225 4 140MB 146,869 16,343 Phone position recognition/AdaBoost[93]
FACE 608 2 1.3GB 522,441 2,494 Face recognition/Adaboost[130]

Table 4.2: Overhead for key generation and distribution

Phases Phase 1 Phase 2# of Clients 10 50 100

D=1000 # of Gates 11K 51K 101K 8.9K
Communication 7.1MB 160MB 650MB 284MB

D=5000 # of Gates 55K 255K 505K 56.4K
Communication 35MB 813MB 3.24GB 1.8MB

D=10,000 # of Gates 110K 510K 101K 122.9K
Communication 70.34MB 1.64GB 6.46GB 3.93MB

6.8×) speedup for the encoding and decoding, respectively, as compared to the homomorphic

technique running on the ARM architecture (Intel i7). The encoding of SecureHD running on

embedded devices (ARM) is still 8.1× faster than the homomorphic encryption running on the

high-performance client (Intel i7). We also compare the SecureHD efficiency on the FPGA

implementation. We observe that the encoding and decoding of SecureHD achieve 626.2× and

389.4× (35.5× and 20.4×) faster execution as compared to the SecureHD execution on the ARM

(Intel i7). For example, the proposed FPGA implementation is able to encode 2,600 data points

and decode 1,335 for the MNIST images in a second.

4.7.3 Evaluation of SecureHD Learning

Learning Accuracy Based on the proposed SecureHD, clients can share the information

with the cloud in a secure way, such that the cloud cannot understand the original data while

87

still performing the learning tasks. Along with the proposed two learning approaches, we also

evaluate the state-of-the-art HD classification approach, called one-shot HD model, which trains

the model using a single hypervector per class with no retraining [82, 109]. For the centralized

training, we trained two models, one that has 64 class hypervectors for each class and the other

one that has 16 for each class. We call them as Centralized-64 and Centralized-16. The retraining

procedure was performed for 100 times with α = 0.05, since the classification accuracy was

converged with this configuration for all the benchmarks.

Figure 4.11 shows the classification accuracy of the SecureHD for the different bench-

marks. The results show that the centralized training approach achieves high classification

accuracy comparable to the state-of-the-art learning methods such as DNN models. We also ob-

served that, by training more hypervectors per class, it can provide higher classification accuracy.

For example, for the federated training approach, which does not use multivectors, the classifica-

tion accuracy is 90% on average, which is 5% lower than the Centralized-64. As compared to

the state-of-the-art one-shot HD model which does not retrain models, Centralized-64 achieves

15.4% higher classification accuracy on average.

Scalability of SecureHD Learning As discussed in Section 4.6.1, the proposed learning

method is designed to effectively handle a large amount of data. To understand the scalability of

the proposed learning method, we evaluate how the accuracy is changed when the training data

are come from different numbers of clients, with simulation on NS-3 [123]. In this experiment,

we exploit three datasets, PAMAP2, EXTRA, and FACE, which include information of where

data points are originated. For example, PAMAP2 and EXTRA are gathered from 7 and 56

individual users. Similarly, the FACE dataset includes 100 clients that have different facial

images with each other. Figure 4.12a and b show the accuracy changes for the centralized and

federated training approaches. The result shows that increasing the number of clients improves

classification accuracy by training with more data. Furthermore, as compared to the one-shot HD

model, the two proposed approaches show better scalability in terms of accuracy. For example,

88

the accuracy difference between the proposed approach and the one-shot model grows as more

clients engage in the training. Considering the centralized training, the accuracy difference for

the FACE dataset is 5% when trained with one client, while it is 14.7% for the 60-client case.

This means that the multivector expansion and retraining techniques are effective to learn with a

large amount of data.

We also verify how the SecureHD learning methods work with constrained network

conditions that often happen in IoT systems. In our network simulation, we assume the worst-case

network condition, i.e., all clients share the bandwidth of a standard WiFi 802.11 network. Note

that it is a worst-case scenario and in practice, each embedded device may not share the same

network. Figure 4.12c shows that the network bandwidth limits the number of hypervectors that

can be sent for each second as multiple clients involve the learning task. For example, a network

with 100 clients can send the lower number of hypervectors by 23.6× than a single-client case.

As discussed before, the federated learning can be exploited to overcome the limited

network bandwidth at the expense of the accuracy loss. Another solution is to use a reduced

dimension in the centralized learning. As shown in Figure 4.12c, when D = 1,000, clients can

send the data to the cloud with 353 samples per second, which is 10 times higher than the case of

D = 10,000. Figure 4.12d shows how learning accuracy changes for different dimension settings.

The results show that reducing the hypervector dimensions to 4000 and 1000 dimensions has less

than 1.4% and 5.3% impact on the classification accuracy. This strategy gives another choice of

the trade-off between accuracy and network communication cost.

4.7.4 Data Recovery Trade-offs

As discussed in Section 4.5.2, the proposed SecureHD framework provides a decoding

method for the authorized user that has the original Pkeys used in the encoding. Figure 4.13a

shows the data recovery rate on images with different pixel sizes. To verify the proposed recovery

method in the worst case scenario, we created 1000 images whose pixel values are randomly

89

MNIST ISOLET UCIHAR PAMAP EXTRA FACE

70

80

90

100

A
c
c
u

ra
c
y
 (

%
)

Centeralized-64 Centeralized-16 Federated One-shot Baseline Learning

Figure 4.11: SecureHD classification accuracy

(b) Federated(a) Centralized

(d) Dimension Reduction(c) Sample Rate Simuation

S
a
m

p
le

s
/s

e
c

o
n

d

Figure 4.12: Scalability of SecureHD classification

chosen, and report the average error when we map the 1000 images to D = 10,000 dimension.

The x-axis shows the ratio R, i.e., D/n where the number of hypervector dimension (D) to

the number of pixels (n) in an image. The data recovery rate depends on the precision of the

pixel values. Using high-resolution images, SecureHD requires a larger R value to ensure 100%

90

2 4 6 8

Ratio (R)

0

20

40

60

80

100

D
a

ta
 R

e
c

o
v

e
ry

 (
%

)

8-bit Pixels

16-bits Pixels

32-bits Pixels

(a) Image

2 4 6 8 10

Ratio (R)

0

20

40

60

80

100

D
a

ta
 R

e
c

o
v

e
ry

 (
%

)

English (26 Letters)
German (29 Letters)
Russian (49 Letters)

(b) Text

Figure 4.13: Data recovery accuracy of SecureHD

R=6 R=5 R=4 R=6 R=5 R=4

100% 96% 86% 100% 96% 86%

Lena MNIST

Recovery

Accuracy

:

Figure 4.14: Example of image recovery

accuracy. For instance, for images with 32-bit pixel resolution, SecureHD can achieve 100%

data recovery using R = 7, while lower resolution images (e.g., 16 and 8-bits) requires R = 6 to

ensure 100% data recovery. Our evaluation shows that our method can decode any input image

with 100% data recovery rate using R = 7. This means that we can securely encode data with 4×

smaller size compared to the homomorphic encryption library which increases the data size by 28

times through the encryption.

We also evaluate the SecureHD framework with a text dataset written in three different

European languages [131]. Figure 4.13b shows the accuracy of data recovery for the three

languages. The x-axis is the ratio between the length of hypervectors to the number of characters

in the text when D = 10,000. Our method assigns a single value to each alphabet letter and

encodes the texts with the hypervectors. Since the number of characters in these languages is less

than 49, we require at most 6 bits to represent each alphabet. In terms of the data recovery, it is

equal to encoding the same size image with the 6-bit pixel resolution. Our evaluation shows that

SecureHD can provide 100% data recovery rate with R = 6.

91

Figure 4.14 shows the quality of the data recovery for two example images. The Lena and

MNIST image have 100×100 pixels and 28×28 pixels, respectively. Our encoding maps the

input data to hypervectors with different dimensions. For example, the Lena image with R = 6

means that the image has been encoded with D = 60,000 dimensions. Our evaluation shows that

SecureHD can achieve lossless data recovery on Lena photo when R≥ 6, while using R = 5 and

R = 4 the data recovery rates are 93% and 68%. Similarly, R = 5 and R = 4 provide 96% and

56% data recovery for the MNIST images.

4.7.5 Metadata Recovery Trade-offs

As discussed in Section 4.5.2, the metadata injection method needs to be performed such

that it ensures 100% metadata recovery and it has minimal impacts on the original hypervector

for the learning and data recovery. The solid line in Figure 4.15a shows the noise margin when

injecting multiple metavectors into a single segment of hypervector when the number of elements

in the segment is chosen by 50(= d). We report the results based on the worst case for 5000

Monte Carlo simulation. The results show that each segment can store 6 metavectors at most to

take a positive noise margin that ensures 100% metadata recovery. The dotted line shows the

data recovery error rate for different numbers of metavectors injected into a single segment. Our

evaluation shows that adding 6 metavectors has less than 0.005% impact on the data recovery

rate.

Since the number of metavectors which can be injected in one segment is limited, we may

need to distribute the metadata in different segments. Figure 4.15b presents the impact of the

metadata injection on the data recovery error rate. When we inject 6 metadata into each of all 200

segments, i.e., 1200 metavectors in total, the impact on the recovery accuracy is still minimal, i.e.,

less than 0.12%.

92

1 2 3 4 5 6 7

Injected Metadata

0

50

100

150

N
o

is
e
 M

a
rg

in

Noise Margin
Data Recovery Error

0

0.005

0.01

0.015

D
a
ta

 R
e
c
o

v
e
ry

 E
rr

o
r

(%
)

(a) Single Segment

1 2 3 4 5 6 7

Injected Metadata

0

0.05

0.1

0.15

D
a
ta

 R
e
c
o

v
e
ry

 E
rr

o
r

(%
)

4 Segments
16 Segments
64 Segments
200 Segments

(b) Multiple Segments

Figure 4.15: Data recovery rate for different settings of metavector injection

4.8 Conclusion

In this chapter, we presented a novel framework, called SecureHD, which provides secure

data encoding and learning based on HD computing. With our framework, clients can securely

send their data to untrustworthy cloud, while the cloud can perform the learning tasks without

the knowledge of the original data. Our proof-of-concept implementation demonstrates that the

proposed SecureHD framework successfully performs the encoding and decoding tasks with high

efficiency, e.g., 145.6× and 6.8× faster than the state-of-the-art encryption/decryption library [17].

Our learning method achieves accuracy of 95% on average for diverse practical learning tasks,

which is comparable to the state-of-the-art learning methods [125, 128, 128, 91, 93, 130]. In

addition, SecureHD provides lossless data recovery with 4× reduction in the data size compared

to the existing encryption solution. In the next chapter, we show how we can solve other cognitive

tasks such as DNA pattern matching based on HD computing.

This chapter contains material from “A Framework for Collaborative Learning in Secure

High-Dimensional Space”, by Mohsen Imani, Yeseong Kim, Sadegh Riazi, John Merssely, Patrick

Liu, Farinaz Koushanfar and Tajana S. Rosing, which appears in IEEE Cloud Computing, July

2019. The dissertation author was the primary investigator and author of this paper.

93

Chapter 5

HD Computing Beyond Classical Learning:

DNA Pattern Matching

94

5.1 Introduction

In Chapters 3 and Chapter 4, we discussed how to solve classification problems using

HD computing by mapping feature vectors into hypervectors. IoT applications often need to

process other data types such as text data. For the other learning algorithms, such as deep learning,

various techniques are developed to handle such data types, e.g., Word2vec [6]. In this chapter,

we show how we can describe such non-feature vector types using HD computing, focusing

on DNA sequence data used in diverse bioinformatics applications [132, 133]. Our key focus

is the acceleration of the pattern matching problem which is an important ingredient of many

DNA alignment techniques to enable personalized IoT-based healthcare [18] and on-site disease

detection [19].

In general, a DNA sequence is a special case of text data, i.e., a string which consists

of four nucleotide characters, A, C, G, and T. The pattern matching problem is to examine

the occurrence of a given query string in a reference string. For example, the technique can

discover possible diseases by identifying which reads (short strings) match a reference human

genome consisting of 100 millions of DNA bases [19]. The efficient acceleration of the DNA

pattern matching is still an open question. Although prior research has developed acceleration

systems on parallel computing platforms, e.g., GPU [20] and FPGA [21], they offer only limited

improvements. The primary reason is that existing pattern matching algorithms they relied on,

e.g., Boyer-Moore (BM) and Knuth-Morris-Pratt (KMP) algorithms [19], are at heart sequential

processes. Their acceleration strategies parallelize the workloads by either scheduling multiple

DNA searching tasks or streaming long-length DNA sequences, consequently resulting in high

memory requirements and runtime. In this context, the pattern matching problem should be

revisited not only to accelerate the existing algorithms on the parallel computing platforms, but

also to redesign a hardware-friendly algorithm itself.

In this chapter, we propose a novel hardware-software codesign of genome identity

95

extractor using hyperdimensional computing, in short GenieHD. Our work includes a new pattern

matching algorithm and the accelerator design. Based on the HD computing which are specialized

for pattern-based computations, GenieHD transforms the inherent sequential processes of the

pattern matching task to highly-parallelizable computations. The followings summarize the

contributions shown in this chapter:

1) We propose a novel hardware-friendly pattern matching algorithm based on HD

computing. GenieHD encodes DNA sequences to hypervectors and discover multiple patterns

with a light-weight HD operation. Besides, we can reuse the encoded hypervectors to query many

DNA sequences newly sampled which are common in practice.

2) We show an acceleration architecture to execute the proposed algorithm efficiently on

general parallel computing platforms. The proposed design significantly reduces the number

of memory accesses to process the HD operations, while fully utilizing the available parallel

computing resources. We also present how to implement the proposed acceleration architecture

on the three parallel computing platforms, GPGPU, FPGA, and ASIC.

3) We evaluate GenieHD with practical datasets, human and Escherichia Coli (E. coli)

genome sequences. The experimental results show that GenieHD significantly accelerates the

DNA matching algorithm, e.g., 44.4× speedup and 54.1× higher energy efficiency when compar-

ing our FPGA-based design to a state-of-the-art FPGA-based design. As compared to an existing

GPU-based implementation, our ASIC design which has the similar die size outperforms the

performance and energy efficiency by 122× and 707×. We also show that the power consumption

can be further saved by 50% by allowing minimal accuracy loss of 1%.

5.2 Related Work

Hyperdimensional Computing HD computing is originated from a human memory

model, called sparse distributed memory developed in neuroscience [7]. Recently, computer

96

scientists recapped the memory model as a cognitive, pattern-oriented computing method. For

example, prior researchers showed that the HD computing-based classifier is effective for diverse

applications, e.g., text classification, multimodal sensor fusion, speech recognition, and human

activity classification [88, 134, 15, 135, 136]. The work in [137] recently uses HD computing for

DNA sequence classification. Prior work also show application-specific accelerators on different

platforms, e.g., FPGA [138, 139, 140, 141] and ASIC [82]. Processing in-memory chips were

also fabricated based on 3D VRRAM technology [90]. The previous works mostly utilize HD

computing as a solution for classification problems. In this chapter, we show that HD computing

is an effective method for other pattern-centric problems, and propose a novel DNA pattern

matching algorithm.

DNA Pattern Matching Acceleration The efficient pattern matching is an important task

in many bioinformatics applications, e.g., single nucleotide polymorphism (SNP) identification,

on-site disease detection and precision medicine development [19]. Many acceleration systems

have been proposed on diverse platforms, e.g., multiprocessor [142] and FPGA [143]. For

example, the work in [21] proposes an FPGA accelerator that parallelizes partial matches for

a long DNA sequence based on KMP algorithm. The work in [20] proposed a parallel pattern

matching method that streams the long-length reference into different CUDA cores. Our work

is different in that we accelerate a new HD computing-based algorithm which is specialized for

parallel systems and also effectively scales for the number of queries to process.

5.3 GenieHD Overview

Figure 5.1 illustrates the overview of the proposed GenieHD design. GenieHD exploits

HD computing to design an efficient DNA pattern matching solution (Section 5.4.) During the

offline stage, we convert the reference genome sequence into hypervectors and store into the HV

database. In the online stage, we also encode the query sequence given as an input. GenieHD

97

Reference Encoding Engine

Reference Sequences (FASTA)
…TCTAGATTCC TTAGGGCGGT AACTGGATGC TGGCAACCGA… …

Initial
Encoding Ref. Hypervector

Hypervector
Refinement

Iterative
updates

Query Hypervectors

…

CGT CCC…
Query Sequences (FASTQ)

TTC CGT… …

Query Encoding Engine

Pattern Discovery Engine
Similarity ComputationHV Database

Ref. Hypervectors

…

HV Database

Ref. Hypervectors

…

Offline (one-time procedure) Online

Figure 5.1: Overview of GenieHD

in turn identifies if the query exists in the reference or not, using a light-weight HD operation

that computes hypervector similarities between the query and reference hypervectors. All the

three processing engines perform the computations with highly-parallelizable HD operations.

Thus, many parallel computing platforms can accelerate the proposed algorithm. We present

the implementation on GPGPU, FPGA, and ASIC based on a general acceleration architecture

(Section 5.5.)

Nowadays, raw DNA sequences are publicly downloadable in standard formats, e.g.,

FASTA for references [144]. Likewise, the HV databases can provide the reference hypervectors

encoded in advance, so that users can efficiently examine different queries without performing

the offline encoding procedure repeatedly. For example, it is typical to perform the pattern

matching for billions of queries streamed by a DNA sequencing machine. In this context, we

also evaluate how GenieHD scales better than state-of-the-art methods when handling multiple

queries (Section 5.6.)

5.4 DNA Pattern Matching Using HD Computing

The major difference between HD and conventional computing is the computed data

elements. Instead of booleans and numbers, HD computing performs the computations on ultra-

wide words, i.e., hypervectors, where all words are responsible to represent a datum in a distributed

manner. HD computing mimics important functionalities of the human memory [7]. For example,

98

the brain efficiently aggregates/associates different data and understands similarity between data.

The HD computing implements the aggregation and association using the hypervector addition and

multiplication, while measuring the similarity based on a distance metric between hypervectors.

The HD operations can be effectively parallelized in the granularity of the dimension level.

In this work, we represent DNA sequences with hypervectors, and perform the pattern

matching procedure using the similarity computation. To encode a DNA sequence to hypervectors,

GenieHD uses four hypervectors corresponding to each base alphabet in Σ = {A,C,G,T}. We

call the four hypervectors as base hypervectors, and denote with ΣHV = {A,C,G,T}1. Each

of the hypervectors has D dimensions where a component is either -1 or +1 (biopolar), i.e.,

{−1,+1}D. The four hypervectors should be uncorrelated to represent their differences in

sequences. For example, δ(A,C) should be nearly zero, where δ is the dot-product similarity.

The base hypervectors can be easily created, since any two hypervectors whose components are

randomly selected in {−1,1} have almost zero similarity, i.e., nearly orthogonal.

5.4.1 DNA Sequence Encoding

DNA pattern encoding: GenieHD maps a DNA pattern by combining the base hy-

pervectors. Let us consider a short query string, ‘GTACG’. We represent the string with

G×ρ1(T)×ρ2(A)×ρ3(C)×ρ4(G), where ρn(H) is a permutation function that shuffles com-

ponents of H (∈ ΣHV) with n-bit(s) rotation. For the sake of simplicity, we denote ρn(H) as Hn.

Hn is nearly orthogonal to H = H0 if n 6= 0, since the components of a base hypervector are

randomly selected and independent of each other. Hence, the hypervector representations for any

two different strings, Hα and Hβ, are also nearly orthogonal, i.e., δ(Hα,Hβ)' 0. The hyperspace

of D dimensions can represent 2D possibilities. The enormous representations are sufficient to

map different DNA patterns to near-orthogonal hypervectors.

Since the query sequence is typically short, e.g., 100 to 200 characters, the cost for

1In this chapter, we use bold Latin symbols to represent hypervectors.

99

the online query encoding step is negligible. In the followings, we discuss how GenieHD can

efficiently encode the long-length reference sequence.

Reference encoding: The goal of the reference encoding is to create hypervectors that

include all combinations of patterns. In practice, the approximate lengths of the query sequences

are known, e.g., the DNA read length of the sequencing technology. Let us defined that the

lengths of the queries are in a range of [⊥,>]. The length of the reference sequence, R , is

denoted by N. We also use following notations: (i) Bt denotes the base hypervector for the

t-th character in R (0-base indexing), and (ii) H(a,b) denotes the hypervector for a subsequence,

B0
a×B1

a+1×·· ·×Bb−1
a+b−1.

Let us first consider a special case that encodes every substring of the size n from the

reference sequence, i.e., n =⊥=>. The substring can be extracted using a sliding window of the

size n to encode H(t,n). Figure 5.2(a) illustrates the encoding method for the first substring, i.e.,

t = 0, when n = 6. A naive way to encode the next substring, H(1,n), is to run the permutations and

multiplications again for each base, as shown in Figure 5.2(b). Figure 5.2(c) shows how GenieHD

optimizes it based on HD computing specialized to remove and insert new information. We first

multiply T0 with the previously encoded hypervector, T0C1T2A3G4A5. The multiplication of

two identical base hypervectors yields the hypervector whose elements are all 1s. Thus, it removes

the first base from H0,n, producing C1T2A3G4A5. After performing the rotational shift (ρ−1) and

element-wise multiplication for the new base of the sliding window (T5), we obtain the desired

hypervector, C0T1A2G3A4T5. This scheme only needs two permutations and multiplications

regardless of the substring size n.

Algorithm 2 describes how GenieHD encode the reference sequence in the optimized

fashion; Figure 5.2(d) shows how the algorithm runs for the first two iterations when ⊥= 3 and

>= 6. The outcome is R, i.e., the reference hypervector, which combines all substrings whose

sizes are in [⊥,>]. The algorithm starts with creating three hypervectors, S, F, and L, (Line 1∼3).

S includes all patterns of [⊥,>] in each sliding window; F and L keep tracks of the first and last

100

⋯

T
C
T
A
G
A
T

T Base

C Base

T Base ×

Pattern HV

A Base ×

×

G Base ×

A Base ×

⋯

C Base

T Base

A Base ×

Pattern HV

G Base ×

×

A Base ×

T Base ×

⋯

T Base

Pattern HV

T Base

×

No need to

read/compute

each base again

(a) Initial Encoding (𝒕 = 𝟎) (b) Naïve Sliding Window

Computation (𝒕 = 𝟏)

(c) GenieHD Sliding Window

Computation (𝒕 = 𝟏)

𝐓𝟎𝐂𝟏𝐓𝟐
𝒕 = 𝟎

𝐓𝟎𝐂𝟏𝐓𝟐𝐀𝟑𝐆𝟒𝐀𝟓

𝐓𝟎𝐂𝟏𝐓𝟐𝐀𝟑 +⋯

𝐓𝟎𝐂𝟏𝐓𝟐 +

𝐓𝟎𝐂𝟏𝐓𝟐𝐀𝟑𝐆𝟒𝐀𝟓

𝑭

𝑺

𝑳

𝒕 = 𝟏

𝐂𝟎𝐓𝟏𝐀𝟐

𝐂𝟎𝐓𝟏𝐀𝟐𝐆𝟑𝐀𝟒𝐓𝟓

𝐂𝟎𝐓𝟏𝐀𝟐𝐆𝟑 +⋯

𝐂𝟎𝐓𝟏𝐀𝟐 +

𝐂𝟎𝐓𝟏𝐀𝟐𝐆𝟑𝐀𝟒𝐓𝟓

𝑹 𝐓𝟎𝐂𝟏𝐓𝟐𝐀𝟑 +⋯

𝐓𝟎𝐂𝟏𝐓𝟐 +

𝐓𝟎𝐂𝟏𝐓𝟐𝐀𝟑𝐆𝟒𝐀𝟓

𝐓𝟎𝐂𝟏𝐓𝟐 +⋯

𝐂𝟎𝐓𝟏𝐀𝟐𝐆𝟑𝐀𝟒𝐓𝟓

(d) Hypervector Changes during

Reference Sequence Encoding

+⋯+

𝝆𝟏

𝝆𝟐

𝝆𝟑

𝝆𝟒

𝝆𝟓

𝝆𝟏

𝝆𝟐

𝝆𝟑

𝝆𝟒

𝝆𝟓

𝝆𝟓

𝝆−𝟏

××

T
C
T
A
G
A
T

T
C
T
A
G
A
T

Figure 5.2: Illustration of Encoding. For (a), (b), and (c), the window size is 6. (d) illustrates
the reference encoding steps described in Algorithm 2.

hypervectors for the ⊥-length and >-length patterns, respectively. Intuitively, this initialization

needs O(>) hypervector operations. The main loop implements the sliding window scheme

for multiple lengths in [⊥,>]. It computes the next L using the optimized scheme (Line 5). In

Line 6, it subtracts F, i.e., the shortest pattern in the previous iteration, and multiply B−1
t to

remove the first base from all patterns combined in S. Then, S includes the patterns in the range

of [⊥,>− 1] for the current window. After adding L whose length is >, we accumulate S to

R. Lastly, we update the first pattern F in the same way to L (Line 7). The entire iterations

need O(N) operations regardless of the pattern length range, thus the total complexity of this

101

Algorithm 2: Reference Encoding Algorithm
1 S←H(0,⊥)+H(0,⊥+1)+ · · ·+H(0,>)
2 F←H(0,⊥); L←H(0,>)
3 R← S
4 for t← 0 to N−> do
5 L← B−1

t ×L−1×B>t+>
6 S← B−1

t × (S−F)−1 +L; R← R+S
7 F← B−1

t ×F−1×B⊥t+⊥
8 end

algorithm2 is O(N +>). Finally, R includes all the hypervector representations of the desired

lengths existing in the reference.

5.4.2 Pattern Matching

GenieHD performs the pattern matching by computing the similarity between R and Q.

Let us assume that R is the addition of P hypervectors (i.e., P distinct patterns), H1 + · · ·+HP.

The dot product similarity is computed as follows:

δ(R,Q) = δ(Hλ,Q)+
P

∑
i=1,i 6=λ

δ(Hi,Q)︸ ︷︷ ︸
Noise

.

If Hλ is equal to Q, since the similarity for the two identical biopolar hypervectors are D, i.e.,

δ(Hλ,Q) = D. The similarity between any two different patterns is nearly zero, i.e., δ(Hi,Q)' 0

of the noise term. Thus, the following criteria checks if Q exists in R:

δ(R,Q)

D
> T (5.1)

where T is a threshold. We call δ(R,Q)
D as the decision score.

The accuracy of this decision process depends on (i) the amount of the noise and (ii)

threshold value, T . To precisely identify patterns in GenieHD, we develop a concrete statistical

2Due to the limited space, we omit the finalization step which combines the patterns for t > N−>; it can be
implemented in a straight-forward way by modifying the main loop so that it does not use L.

102

-0.50.0 0.5 1.01.5

40

80

120

0

Non-Existing Pattern Existing Pattern

O
cc

u
rr

e
n

ce

Dimension (× 𝟏𝟎𝟓)
4 80 4 80

P
at

te
rn

s
(P

)

(a) Probability

(𝑻 = 𝟎. 𝟓)

(b) Probability

(𝑻 = 𝟎. 𝟗)

(c) Decision Score

(Initial encoding)

𝛿 𝑹,𝑸 /𝐷
-0.5 0.0 0.5 1.0

400

800

0

(d) Decision Score

(3 epochs refining)

𝛿 𝑹,𝑸 /𝐷

𝑻 = 𝟎. 𝟗

Prob.

0.4

0.2

0.0

Dimension (× 𝟏𝟎𝟓)

103

104

105

Figure 5.3: Similarity Computation in Pattern Matching. (a) and (b) are computed using
Equation 5.2. The histograms shown in (c) and (d) are obtained by testing 1,000 patterns for
each of the existing and non-existing cases when R is encoded for a random DNA sequence
using D = 100,000 and P = 5,000.

method that estimates the worst-case accuracy. The similarity metric computes how many

components of Q are the same to the corresponding components for each Hi in R. There are

P ·D component pairs for Q and Hi (0≤ i < P). The probability that each pair is the same is 1
2

for all components if Q is a random hypervector. The similarity, δ(R,Q), can be then viewed as

a random variable, X , which follows a binomial distribution, X ∼ B(P ·D, 1
2). Since D is large

enough, X can be approximated with the normal distribution:

X ∼ N
(P ·D

2
,
P ·D

4

)
.

When x component pairs of R and Q have the same value, (P ·D− x) pairs have different

values, thus δ(R,Q) = 2x−P ·D. Hence, the probability that satisfies Equation 5.1 is Pr(X >

(T+P)·D
2). We can convert X to the standard normal distribution, Z:

Pr
(

Z > T ·
√

D
P

)
=

1√
2π

∫
∞

T ·
√

D
P

e−t2/2 dt (5.2)

In other words, Equation 5.2 represents the probability that mistakenly determines that Q

exists in R, i.e., false positive.

Figure 5.3(a) and (b) visualizes the probability of the error for different D and P com-

103

binations. For example, when D = 100,000 and T = 0.5, we can identify P = 10,000 patterns

with 5.7% error using a single similarity computation operation. The results also show that using

larger D values can improve the accuracy. However, the larger dimensionality requires more

hardware resources. Another option to improve the accuracy is using a larger similarity threshold,

T , however it may increase true negatives. GenieHD uses the following two techniques to address

this issue.

Hypervector refinement The first technique is to refine the reference hypervector. Let

us recall Algorithm 2. In the refining step, GenieHD reruns the algorithm to update R. Instead

of accumulating S to R (Line 6), we add S× (1−δ(S,R)/D). The refinement is performed for

multiple epochs. Figure 5.3(c) and (d) show how the distribution of the decision scores changes

for the existing and non-existing cases by the refinement. The results show that the refinement

makes the decision scores of the existing cases close to 1. Thus, we can use a larger T for higher

accuracy. The successful convergence depends on i) the number of patterns included in R with D

dimensions, i.e., D/P, and ii) the training epochs. In our evaluation, we observe that, when R

includes P = D/10 patterns and use T = 0.9, we only need five epochs, and GenieHD can find

all patterns with the error of less than 0.003%.

Multivector generation To precisely discover patterns of the reference sequence, we also

use multiple hypervectors so that they cover every pattern existing in the reference without loss.

During the initial encoding, whenever R reaches the maximum capacity, i.e., accumulating P

distinct patterns, we store the current R and reset its components to 0s to start computing a new

R. GenieHD accordingly fetches the stored R during the refinement. Even though it needs to

compute the similarity values for the multiple R hypervectors, GenieHD can still fully utilize the

parallel computing units by setting D to a sufficiently large number.

104

Streaming
Multiprocessor (SM)

Global Memory

Core

Core

Core

Core

Core

Chunk Computation

SM

SM

SM
⋯

⋯

Constant Memory Base

Buffer

⋯
Ref.

Buffer

❶

❷

❸

𝑸𝒖𝒆𝒓𝒚 𝑯𝑽
× ⋯

+ + + +

++ +

+

⋯

Tree-based

Adder

× × ×

𝑹𝒆𝒇.𝑯𝑽

(c) Similarity Computation

Implementation on FPGA

(b) Encoding Implementation

on GPGPU (CUDA)

𝒕 = 𝟎

𝒕 = 𝟏

𝒕 = 𝟐

𝒕 = 𝑵 − 𝟏

⋯

Accumulate
for every iteration

Compute:

𝑭, 𝑳, 𝑺

Output: 𝑹

Chunk (computed dimension-independent)

Base Buffer (at 𝒕 = 𝟎)

Reference Buffer (at 𝒕 = 𝑵 − 𝟏)

❶

❷

❸

⋯ ⋯⋯

⋯ ⋯⋯

⋯ ⋯⋯

⋯ ⋯⋯
⋯

Read-Only Memory

Parallel Computing Units
Read components

Read/Write Memory
Write left & read right

for each itr.⋯ ⋯⋯

⋯

⋯

⋯

𝑨−𝟏
𝑨⊥

𝑨⊤ ⋯

⋯

⋯

⋯

𝑻−𝟏
𝑻⊥

𝑻⊤

⊥ +1
⊤ −⊥

⊥ +1

⊤ −⊥

Fetch right for each itr.
Input:
Base
HV

Chunk 1 Chunk i Chunk 𝑫/𝒅

(a) Acceleration Architecture

CUDA cores

Figure 5.4: Hardware Acceleration Design. The dotted boxes in (a) show the hypervector
components required for the computation in the first stage of the reference encoding. Recall that
t is the index of the iteration.

5.5 Hardware Acceleration Design

5.5.1 Acceleration Architecture

Encoding Engine The encoding procedure runs i) the element-wise addition/multiplication

and ii) permutation. The parallelized implementation of the element-wise operations is straight-

forward, i.e., computing each dimension on different computing units. For example, if a comput-

ing platform can compute d dimensions (out of D) independently in parallel, the single operation

can be calculated with dD/de stages. In contrast, the permutation is more challenging due to

memory accesses. For example, a naive implementation may access all hypervector components

from memory, but on-chip caches usually have no such capacity.

105

The proposed method significantly reduces the amount of memory accesses. Figure 5.4a

illustrates our acceleration architecture for the initial reference encoding procedure as an example.

The acceleration architecture represents typical parallel computing platforms which have many

computing units and memory. As discussed in Section 5.4.1, the encoding procedures uses the

permuted bipolar base hypervectors, B−1,B⊥ and B>, as the inputs. Since there are four DNA

alphabets, the inputs are 12 near-orthogonal hypervectors. It calculates the three intermediate

hypervectors, F,L and S while accumulating S into the output reference hypervector, R.

Consider that the permuted base hypervectors and initial reference hypervector are pre-

stored in the off-chip memory. To compute all components of R, we run the main loop of the

reference encoding dD/de times by dividing the dimensions into multiple groups, called chunks.

In the first iteration, the base buffer stores the first d components of the 12 input hypervectors

(•1). The same d dimensions of F,L and S for the first chunk are stored in the local memory of

each processing unit, e.g., registers of each GPU core (•2). For each iteration, the processing

units compute the dimensions of the chunk in parallel, and accumulate to the reference buffer

that stores the d components of R (•3). Then, the base buffer fetches the next elements for the

12 input hypervectors from the off-chip memory. Similarly, the reference buffer flushes its first

element to the off-chip memory and reads the next element. When it needs to reset R for the

multivector generation, the reference buffer is stored to the off-chip memory and filled with zeros.

The key advantage of this method is that we do not need to know entire D components of F,L and

S for the permutation. Instead, we can regard that they are the d components starting from the

τ-th dimension where τ = t mod D, and accumulate them in the reference buffer which already

has the corresponding dimensions. Every iteration only needs to read a single element for each

base and a single read/write for the reference, while fully utilizing the computing units for the

HD operations. Once completing N iterations, we repeat the same procedure for the next chunk

until covering all dimensions.

The similar method is generally applicable for the other procedures, the query encoding

106

and refinement. For example, for the query encoding, we compute each chunk of Q by reading an

element for each base hypervector and multiplying d components.

Similarity Computation The pattern discovery engine and refinement procedures use the

similarity computation. The dot product is decomposed with the element-wise multiplication and

the grand sum of the multiplied components. The element-wise multiplication can be parallelized

on the different computing units, and then we can compute the grand sum by adding multiple

pairs in parallel with O(logD) steps. The implementation depends on the parallel platforms. We

explain the details in the following section.

5.5.2 Implementation on Parallel Computing Platforms

GenieHD-GPU We implement the encoding engine by utilizing the parallel cores and

different memory resources in CUDA systems (refer to Figure 5.4b.) The base buffer is stored

in the constant memory, which offers high bandwidth for read-only data. Each streaming core

stores the intermediate hypervector components of the chunk in their registers; the reference

buffer is located in the global memory (DRAM on GPU card). The data reading and writing

to the constant and global memory are implemented with CUDA streams which concurrently

copy data during computations. We implement the similarity computation using the parallel

reduction technique [145]. Each stream core fetches and adds multiple components into the

shared memory which provide high performance for inter-thread memory accesses. We then

perform the tree-based reduction in the shared memory.

GenieHD-FPGA We implement the FPGA encoding engine by using Lookup Table

(LUT) resources. We store the base hypervectors into block RAMs (BRAM), the on-chip

FPGA memory. The base hypervectors are loaded to a distributed memory designed by the

LUT resources. Depending on the reading sequence, GenieHD loads the corresponding base

hypervector and combines them using LUT resources. In the pattern discovery, we use the

DSP blocks of FPGA to perform the multiplications of the dot product and a tree-based adder

107

to accumulate the multiplication results (refer to Figure 5.4c.) Since the query encoding and

discovery use different FPGA resources, we implement the whole procedure in a pipeline structure

to handle multiple queries. Depending on the FPGA available resources, it can process a different

number of dimensions in parallel. For example, for Kintex-7 FPGA with 800 DSPs, we can

parallelize the computation of 320 dimensions.

GenieHD-ASIC The ASIC design has three major subcomponents: SRAM, interconnect,

and computing block. We used the SRAM-based memory to keep all base hypervectors. The

memory is connected to the computing block with the interconnect. To reduce the memory

writes to SRAM, the interconnect implements n-bit shifts to fetch the hypervector components

to the computing block with a single cycle. The computing units parallelize the element-wise

operations. For the query discovery, it forwards the execution results to the tree-based adder

structure located in the computing block in a similar way to the FPGA design. The efficiency

depends on the number of parallel computing units. We design GenieHD-ASIC with the same

size of the experimented GPU core, 471mm2. In this setting, our implementation parallelizes the

computations for 8000 components.

5.6 Evaluation

5.6.1 Experimental Setup

We evaluate GenieHD on parallel various computing platforms. We implement GenieHD-

GPU on NVIDIA GTX 1080 Ti (3584 CUDA cores) and Intel i7-8700K CPU (12 multithreads)

and measure power consumption using Hioki 3334 power meter. GenieHD-FPGA is synthesized

on Kintex-7 FPGA KC705 using Xilinx Vivado Design Suite. We used Vivado XPower tool to

estimate the device power. We design and simulate GenieHD-ASIC using RTL System-Verilog.

For the synthesis, we use Synopsys Design Compiler with the TSMC 45 nm technology library

and the general purpose process with high VT H cells. We estimate the power consumption

108

Table 5.1: Evaluated DNA Sequence Datasets

Description Length ⊥,> HV size
E.Coli (MG1655) Escherichia coli 4.6M 199,201 53MB
Human (CHR14) Human chromosome 14 107M 99,101 1.2GB

Synthetic (RND70) Random sequence 70M 99,101 0.8GB

using Synopsys PrimeTime at (1V, 25◦C, TT) corner. The GenieHD family is evaluated using

D = 100,000 and P = 10,000 with five refinement epochs.

Table 5.1 summarizes the evaluated DNA sequence datasets. We use E.coli DNA data

(MG1655) and the human reference genome, chromosome 14 (CHR14) [144]. We also create a

random synthetic DNA sequence (RND70) having a length of 70 million characters. The query

sequence reads with the length in [⊥,>] are extracted using SRA toolkit from the FASTQ format.

The total size of the generated hypervectors for each sequence (HV size) is linearly proportional

to the length of the reference sequence. Note that state-of-the-art bioinformatics tools also have

the peak memory footprint in up to two orders of gigabytes for the human genome [133].

5.6.2 Efficiency Comparison

We compare the efficiency of GenieHD with state-of-the-art programs and accelerators,

i) Bowtie2 [132] running on Intel i7-8700K CPU and ii) minimap2 [133], which runs on the

same CPU, but tens of times faster than the previous mainstream such as BLASR and GMAP,

iii) GPU-based design (ADEY) [20], and iv) FPGA-based design (SCADIS) [21] evaluated on

the same chip to GenieHD-FPGA. Figure 5.5 presents that GenieHD outperforms the state-

of-the-art methods. For example, even though including the overhead of the offline reference

encoding, GenieHD-ASIC achieves up to 16× speedup and 40× higher energy efficiency as

compared to Bowtie2. GenieHD can offer higher improvements if the references are encoded in

advance. For example, when the encoded hypervectors are available, by eliminating the offline

encoding costs, GenieHD-ASIC is 199.7× faster and 369.9× more energy efficient than Bowtie2.

When comparing the same platforms, GenieHD-FPGA (GenieHD-GPU) achieves 11.1× (10.9×)

109

1

10

100

1000

E.Coli (MG1655) Human (CHR14) Synthetic (RND70)

minimap2 (CPU) SCADIS (FPGA) ADEY (GPU)

GenieHD-GPU GenieHD-FPGA GenieHD-ASIC

GenieHD-GPU (wo/ enc.) GenieHD-FPGA (wo/ enc.) GenieHD-ASIC (wo/ enc.)

1

10

100

1000

E.Coli
(MG1655)

Human
(CHR14)

Synthetic
(RND70)

Sp
e

e
d

u
p

1

10

100

1000

E.Coli
(MG1655)

Human
(CHR14)

Synthetic
(RND70)

En
e

rg
y

Ef
fi

ci
e

n
cy

Im

p
ro

ve
m

e
n

t
Figure 5.5: Performance and Energy Comparison of GenieHD for State-of-the-art Methods. All
results are compared and normalized to Bowtie2.

speedup and 13.5× (10.6×) higher energy efficiency as compared to SCADIS running on FPGA

(ADEY on the GPGPU).

5.6.3 Pattern Matching for Multiple Queries

Figure 5.6(a) shows the breakdown of the GenieHD procedures. The results show that

most execution costs come from the reference encoding procedure, e.g., more than 97.6% on

average. It is because i) the query sequence is relatively very short and ii) the discovery procedure

examines multiple patterns using a single similarity computation in a highly parallel manner.

As discussed in Section 5.3, GenieHD can reuse the same reference hypervectors for different

queries newly sampled. Figure 5.6(b)-(d) shows the speedup of the accumulated execution time

for multiple queries over the state-of-the-art counterparts. For fair comparison, we evaluate

the performance of GenieHD based on the total execution costs including the reference/query

encoding and query discovery engines. The results show that, by reusing the encoded reference

hypervector, GenieHD achieves higher speedup as the number of queries increases. For example,

110

80% 85% 90% 95% 100%

GPU

FPGA

ASIC

Ref Encoding Query Encoding Discovery

(a) Execution time breakdown

(Average for all datasets)
(b) GenieHD-GPU vs. ADEY

(c) GenieHD-FPGA vs. SCADIS (d) GenieHD-ASIC vs. ADEY

0

10

20

30

40

50

Sp
e

e
d

u
p

E.Coli (MG1655)
Human (CHR14)
Synthetic (RND70)

10 102 103 104 105 106

0
20
40
60
80

100
120
140

Sp
e

e
d

u
p

E.Coli (MG1655)
Human (CHR14)
Synthetic (RND70)

10 102 103 104 105 106
0

10

20

30

40

50

Sp
e

e
d

u
p

E.Coli (MG1655)
Human (CHR14)
Synthetic (RND70)

10 102 103 104 105 106

of Queries

of Queries# of Queries

Figure 5.6: Scalability of GenieHD. (a) shows the execution time breakdown to process the
single query and reference. (b)-(d) shows how the speedup changes as increasing the number of
queries for a reference.

when comparing the designs running on the same platform, we observe 43.9× and 44.4× speedup

on average for 106 queries on (b) GPU and (c) FPGA, respectively. The energy-efficiency

improvement for each case is 42.5× and 54.1×. As compared to ADEY, GenieHD-ASIC offers

122× speedup and 707× energy-efficiency improvements with the same area (d). It is because

GenieHD consumes much less cost from the second run. The speedup converges at around 103

queries as the query discovery takes a more portion of the execution time for a larger number of

queries.

111

0

1

2

3

5000075000100000

Dimension (D)

E.Coli
Human
Synthetic

Er
ro

r
(%

)

Figure 5.7: Accuracy Loss over Dimension Size

5.6.4 Dimensionality Exploitation

In practice, the higher efficiency would be more desired than the perfect discovery,

since DNA sequences are often error-prone [19]. The statistical nature of GenieHD facilitates

such optimization. Figure 5.7 shows how much the additional error occurs from the baseline

accuracy of 0.003% as decreasing the dimensionality. As anticipated with the estimation model

shown in Section 5.4.2, the error increases with a less dimensionality. Note that it does not

need to encode the hypervectors again; instead, we can use only a part of components in the

similarity computation. The results suggest that we can significantly improve the efficiency with

minimal accuracy loss. For example, we can achieve 2× speedup for all the GenieHD family

with 2% loss as it only needs the computation for half dimensions. We can also exploit this

characteristic for power optimization. Table 5.2 shows the power consumption for the hardware

components of GenieHD-ASIC, SRAM, interconnect (ITC), and computing block (CB) along

with the throughput. We evaluated two power optimization schemes, i) Gating which does not

use half of the resources, and ii) voltage over scaling (VoS) which uses all resources at a lower

frequency. The frequency is set to obtain the same throughput of 640K/sec (the number of

similarity computations per second.) The results show that VoS is the more effective method

since the frequency non-linearly influences the speed. GenieHD-ASIC with VoS saves 49.6%

and 60.6% power with accuracy loss of 1% and 2%, respectively.

112

Table 5.2: GenieHD-ASIC Designs under Loss
Accuracy 0% 1% 2%

Base Gating VoS Gating VoS

Po
w

er
(W

) SRAM 3.4 2.5 3.4 1.8 3.4
ITC 0.6 0.4 0.6 0.3 0.6
CB 21.5 13.7 8.8 10.9 6.0

Total 25.4 16.6 12.8 13.1 10.0
Power Saving (%) 34.6 49.6 48.4 60.6

Throughput 640K / sec

5.7 Conclusion

In this chapter, we describe GenieHD algorithm, which performs the DNA pattern match-

ing using HD computing. The proposed technique maps DNA sequences to hypervectors, and

accelerates the pattern matching in a highly-parallelized way. We also show how to optimize

the memory access patterns and perform pattern matching tasks with dimension-independent

operations in parallel. The experimental results show that GenieHD significantly accelerates the

pattern matching procedure, e.g., 44.4× speedup with 54.1× energy-efficiency improvements

when comparing to the existing design on the same FPGA [21]. In the next chapter, we summarize

our contributions and discuss the future work.

This chapter contains material from “GenieHD: Efficient DNA Pattern Matching Acceler-

ator Using Hyperdimensional Computing”, by Yeseong Kim, Mohsen Imani, Niema Moshiri and

Tajana Rosing, which appears in IEEE/ACM Design Automation and Test in Europe Conference,

March 2020. The dissertation author was the primary investigator and author of this paper.

113

Chapter 6

Summary and Future Work

In the IoT ecosystems, many applications run machine learning algorithms to assimilate

the data generated in the environment. However, sensors and embedded devices generate massive

data streams, which poses huge technical challenges due to limited device resources. For example,

although deep learning models have provided high classification accuracy for complex learning

tasks, their high computational complexity and memory requirements hinder their usability for a

broad variety of real-life embedded applications where the device resources and power budget are

limited.

In this thesis, we focused on novel solutions which can enable efficient learning for IoT

ecosystems. In general, we address the issue of the device heterogeneity with the intelligent

cross-platform characterization and task allocation technique. We then utilize HD computing to

enable the efficient learning solution for less-powerful resource-hungry IoT devices. Our new

learning solution was applied to the hierarchy of the IoT systems, solving the concerns of the

security and privacy. We lastly present that the HD-based application can cover the variety of

data types that IoT devices generate. Our solution spans from the architecture level up to the

hierarchy of IoT systems. The following sections summarize the contributions of this dissertation

and outline the future directions.

114

6.1 Thesis Summary

This thesis proposes novel solutions for efficient learning in heterogeneous IoT systems,

covering architecture, application, and IoT hierarchy levels. At the architecture level, we propose

a cross-platform power/performance estimation technique to optimize for a given system power

and performance objective of learning tasks in Chapter 2. Our technique identifies latent states

of hardware and software behavior over different configurations and on different platforms that

potentially exist in IoT systems. The proposed framework, P4, a new Phase-based Power and

Performance Prediction framework, enables to intelligently utilize refined data from performance

counters and characterize application power consumption at runtime. We use this information for

predictive task allocation for learning tasks. Unlike existing power estimation techniques, our

framework automatically recognizes distinct application phases in a fine-grained level, without a

priori knowledge of the program source code. The framework utilizes machine learning to identify

the phases, which represent key application profiles related to system usage characteristics. Then,

it performs what-if analysis to predict how application tasks behave on a different system and

allocate the learning tasks among distributed systems. The proposed framework can predict the

power levels of diverse applications with less than 7% error for completely different platforms

from the ones applications are characterized on. The model-based task allocation technique

integrated with Apach Saprk saves the energy consumption and costs by 16%.

At the application level, we show how to enable light-weight learning algorithm which

are suitable for less-powerful IoT devices in Chapter 3. In IoT systems, sending all the data to

the cloud cannot guarantee scalability and real-time response. It is also often undesirable due

to privacy and security concerns. This leads to the need for alternative computing methods that

can run a large amount of data at least partly on the less-powerful IoT devices. Brain-inspired

Hyperdimensional (HD) computing is such an alternative. Our HD-based learning algorithm

converts data collected from IoT sensors to hypervectors. With the hypervector, we perform

115

light-weight training and inference on IoT devices. The experimental results show that we can

improve the learning performance by 486× and 6× for the training and inference, respectively,

as compared to the state-of-the-art deep learning [63].

We apply the HD learning method to the IoT hierarchy in Chapter 4. We utilize the

fact that the HD computing does not require complete knowledge for the original data that the

conventional learning algorithms need. The proposed method uses with a secure mapping function

that encodes a given data to a high-dimensional space. In that way, the original data cannot be

recovered from the hypervectors without knowing the mapping function. Since the HD learning

and inference procedures only depend on the encoded data, the framework performs learning tasks

based on the data encoded by users, while the user data are not revealed to the cloud server. We

present scalable HD-based methods which collaboratively learns diverse classification problems,

a cloud-centric method for the case that end-node devices does not have enough computing

capability, and an edge-based method that all the user devices participate in secure distributed

learning. In our evaluation, we show that the proposed framework can perform the encoding and

decoding tasks 145.6× and 6.8× faster than a state-of-the-art homomorphic encryption library

when both are running on the Intel i7-8700K. In addition, our classification method presents high

accuracy and scalability for diverse practical problems. It successfully performs learning tasks

with 95% average accuracy for six real-world workloads, ranging from datasets collected in a

small IoT network, e.g., human activity recognition, to a large dataset which includes hundreds of

thousands of images for the face recognition task.

In Chapter 4, we examine the potential of HD computing-based learning for other data

types, such as in bioinformatics applications, with a focus on DNA pattern matching. GenieHD

converts the DNA sequences into the hypervector databases to effectively parallelize the pattern

matching task. We also show optimization techniques to implement the algorithm on various

platforms. The experimental results show that GenieHD outperforms the state-of-the-art DNA

pattern matching procedures on various platforms, GPU [20] and FPGA [21]. For example,

116

the proposed design delivers 44.1× speedup with 54.1× energy-efficiency improvements when

implemented on the same FPGA.

6.2 Future Directions

IoT systems and applications continue to evolve while introducing new problems such as

automated online learning and edge-based computing. We are actively working to enable new

learning solutions based on the HD computing. In this section, we provide future directions for

further improvement on the topics discussed in this thesis: hyperdimensional processing system

and software infrastructure for the HD computing.

6.2.1 Efficient Cognitive Processing with HD Computing

HD computing is an attractive solution for efficient learning. This thesis showed that many

classification problems can be efficiently solved using HD computing. HD computing-based

classification drastically reduces the number of operations as compared to deep learning, resulting

in improved performance and high energy efficiency [80, 15]. We can also efficiently accelerate

on a parallel computing platform since the hypervector operations are at heart parallelizable.

As the future work, we plan to integrate HD computing into todays machines to support

other learning tasks. In this system, the hypervector and related operations will be supported as

native data types and instructions so that user-level programs could implement diverse learning

solutions with an augmented programming model. We also plan to design a co-processor, called

hyperdimensional processing unit (HPU), using emerging hardware technology. In particular,

we consider in-memory processing technology to (i) reduce the data movement overheads of

hypervectors betwewen processing core and memory and (ii) drastically parallelize the HD

operations such as the element-wise addition and multiplication, similarity computation, etc. The

interface between CPU and HPU could be implemented based on existing technologies, e.g., PCI

117

express and non-uniform memory architecture (NUMA).

6.2.2 Software Infrastructure for HD Computing

Implementing the HD application from scratch is difficult as there is no software infras-

tructure. Current testbeds are implementd with existing libraries such as Scikit-learn [62] and

Tensorflow [63] with various manual optimizations of the source code for different hardware. The

ideal software library should bridge the hardware and applications so that such optimizations are

automatically done for different applications and platforms.

Our current plan is the design of a software infrastructure which has two components:

HD algorithm package and native HD compiler. The algorithm package will include various

learning algorithms using HD computing. Currently, we are designing a new class of learning

algorithm suites such as regression and reinforcement learning. They will be implemented in

Python that is similar to existing machine learning libraries for better usability. The compiler

translates the Python implementation to generate HD operations suitable for the target hardware

such as GPU and FPGA. The compiler will also optimize the source code in an automated way.

For example, to optimize memory usage, the compiler will consider the different characteristics

of used hypervectors. If a set of hypervectors is frequently used in applications, our compiler

identifies such hypervectors in the static program analysis so that we can proactively allocate the

hypervector to the faster memory area in the hardware accelerator, e.g., performance-efficient

cache.

118

Bibliography

[1] D. Reinsel, J. Gantz, and J. Rydning, “Data age 2025: The evolution of data to life-critical
don’t focus on big data,” Framingham: IDC Analyze the Future, 2017.

[2] I. Lee and K. Lee, “The internet of things (iot): Applications, investments, and challenges
for enterprises,” Business Horizons, vol. 58, no. 4, pp. 431–440, 2015.

[3] T. Yashiro, S. Kobayashi, N. Koshizuka, and K. Sakamura, “An internet of things (iot)
architecture for embedded appliances,” in 2013 IEEE Region 10 Humanitarian Technology
Conference. IEEE, 2013, pp. 314–319.

[4] X. Zheng, L. K. John, and A. Gerstlauer, “Lacross: Learning-based analytical cross-
platform performance and power prediction,” International Journal of Parallel Program-
ming, vol. 45, no. 6, pp. 1488–1514, 2017.

[5] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,
N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley,
M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann,
C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary,
Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagara-
jan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps,
J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance analysis of
a tensor processing unit,” in 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA), June 2017, pp. 1–12.

[6] Y. Goldberg and O. Levy, “word2vec explained: deriving mikolov et al.’s negative-sampling
word-embedding method,” arXiv preprint arXiv:1402.3722, 2014.

[7] P. Kanerva, “Hyperdimensional computing: An introduction to computing in distributed
representation with high-dimensional random vectors,” Cognitive Computation, vol. 1,
no. 2, pp. 139–159, 2009.

119

[8] Z. Ou, B. Pang, Y. Deng, J. K. Nurminen, A. Yla-Jaaski, and P. Hui, “Energy-and cost-
efficiency analysis of arm-based clusters,” in Proceedings of the 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012). IEEE
Computer Society, 2012, pp. 115–123.

[9] W. Cui, Y. Kim, and T. S. Rosing, “Cross-platform machine learning characterization
for task allocation in iot ecosystems,” in Computing and Communication Workshop and
Conference (CCWC), 2017 IEEE 7th Annual. IEEE, 2017, pp. 1–7.

[10] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade, “Decomposable
and responsive power models for multicore processors using performance counters,” in
Proceedings of the 24th ACM International Conference on Supercomputing. ACM, 2010.

[11] R. Bertran, M. Gonzàlez, X. Martorell, N. Navarro, and E. Ayguadé, “Counter-based power
modeling methods: Top-down vs. bottom-up,” The Computer Journal, 2013.

[12] S. Reda and A. N. Nowroz, “Power modeling and characterization of computing devices:
a survey,” Foundations and Trends in Electronic Design Automation, 2012.

[13] P. Kanerva, Sparse distributed memory. MIT press, 1988.

[14] B. Babadi and H. Sompolinsky, “Sparseness and expansion in sensory representations.”
Neuron, vol. 83, no. 5, pp. 1213–1226, Sep. 2014. [Online]. Available: http:
//view.ncbi.nlm.nih.gov/pubmed/25155954

[15] Y. Kim, M. Imani, and T. S. Rosing, “Efficient human activity recognition using hyperdi-
mensional computing,” in Proceedings of the 8th International Conference on the Internet
of Things, 2018, pp. 1–6.

[16] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic encryption
over the integers,” in Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2010, pp. 24–43.

[17] H. Chen, K. Han, Z. Huang, A. Jalali, and K. Laine, “Simple encrypted arithmetic library
v2.3.0,” in Microsoft, 2017.

[18] M. M. Alam, H. Malik, M. I. Khan, T. Pardy, A. Kuusik, and Y. Le Moullec, “A survey on
the roles of communication technologies in iot-based personalized healthcare applications,”
IEEE Access, vol. 6, pp. 36 611–36 631, 2018.

[19] P. Compeau and P. Pevzner, Bioinformatics algorithms: an active learning approach.
Active Learning Publishers La Jolla, 2015, vol. 1.

[20] S. P. Adey, “Gpu accelerated pattern matching algorithm for dna sequences to detect cancer
using cuda,” hgpu, 2013.

120

[21] S. Lei, C. Wang, H. Fang, X. Li, and X. Zhou, “Scadis: A scalable accelerator for data-
intensive string set matching on fpgas,” in 2016 IEEE Trustcom/BigDataSE/ISPA. IEEE,
2016, pp. 1190–1197.

[22] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A platform for internet
of things and analytics,” in Big Data and Internet of Things: A Roadmap for Smart
Environments. Springer, 2014, pp. 169–186.

[23] R. Buyya, A. Beloglazov, and J. Abawajy, “Energy-efficient management of data center
resources for cloud computing: A vision, architectural elements, and open challenges,”
arXiv preprint arXiv:1006.0308, 2010.

[24] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang, “Accurate
online power estimation and automatic battery behavior based power model generation for
smartphones,” in Proceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis. ACM, 2010.

[25] M. Zaharia, R. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica, “Apache
spark: a unified engine for big data processing,” Communications of the ACM, vol. 59,
no. 11, pp. 56–65, 2016.

[26] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal
Statistical Society. Series B (Methodological), pp. 267–288, 1996.

[27] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan, “Full-system power anal-
ysis and modeling for server environments,” in International Symposium on Computer
Architecture-IEEE, 2006.

[28] X. Zheng, L. K. John, and A. Gerstlauer, “Accurate phase-level cross-platform power
and performance estimation,” in Proceedings of the 53rd Annual Design Automation
Conference, 2016, pp. 1–6.

[29] E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson, B. Calder, and C. Dulong, “Detecting
phases in parallel applications on shared memory architectures,” in Proceedings 20th IEEE
International Parallel & Distributed Processing Symposium. IEEE, 2006.

[30] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution analysis to find periodic
behavior and simulation points in applications,” in Parallel Architectures and Compilation
Techniques, 2001. Proceedings. 2001 International Conference on. IEEE, 2001.

[31] G. Tang, W. Jiang, Z. Xu, F. Liu, and K. Wu, “Zero-cost, fine-grained power monitoring of
datacenters using non-intrusive power disaggregation,” in Proceedings of the 16th Annual
Middleware Conference. ACM, 2015.

121

[32] S. S. Bhargav, A. Kolb, and Y. H. Cho, “Accelerating physical level sub-component power
simulation by online power partitioning,” in 2016 17th International Symposium on Quality
Electronic Design (ISQED). IEEE, 2016.

[33] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “Mcpat:
an integrated power, area, and timing modeling framework for multicore and manycore
architectures,” in Proceedings of the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 2009.

[34] Y.-H. Lee and J. Kim, “Fast and accurate on-line prediction of performance and power
consumption in multicore-based systems,” in 2013 12th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications. IEEE, 2013.

[35] V. Petrucci, O. Loques, and D. Mosse, “Lucky scheduling for energy-efficient heteroge-
neous multi-core systems,” in Presented as part of the 2012 Workshop on Power-Aware
Computing and Systems (HotPower), 2012.

[36] J. C. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy, A. C. Snoeren, and
R. K. Gupta, “Evaluating the effectiveness of model-based power characterization,” in
USENIX Annual Technical Conf, 2011.

[37] A. S. Dhodapkar and J. E. Smith, “Comparing program phase detection techniques,” in
Proceedings of the 36th annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 2003.

[38] Y. Kim, F. Parterna, S. Tilak, and T. S. Rosing, “Smartphone analysis and optimization
based on user activity recognition,” in Computer-Aided Design (ICCAD), 2015 IEEE/ACM
International Conference on. IEEE, 2015.

[39] X. Ma, P. Huang, X. Jin, P. Wang, S. Park, D. Shen, Y. Zhou, L. K. Saul, and G. M.
Voelker, “edoctor: automatically diagnosing abnormal battery drain issues on smartphones,”
in Presented as part of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), 2013.

[40] Y. Jin, X. Ma, M. Liu, Q. Liu, J. Logan, N. Podhorszki, J. Y. Choi, and S. Klasky,
“Combining phase identification and statistic modeling for automated parallel benchmark
generation,” ACM SIGMETRICS Performance Evaluation Review, 2015.

[41] A. Annamalai, R. Rodrigues, I. Koren, and S. Kundu, “An opportunistic prediction-based
thread scheduling to maximize throughput/watt in amps,” in Proceedings of the 22nd
international conference on Parallel architectures and compilation techniques. IEEE
Press, 2013.

[42] B. Aksanli and T. Rosing, “Providing regulation services and managing data center peak
power budgets,” in Proceedings of the conference on Design, Automation & Test in Europe.
European Design and Automation Association, 2014.

122

[43] L. Luo, W. Wu, D. Di, F. Zhang, Y. Yan, and Y. Mao, “A resource scheduling algorithm of
cloud computing based on energy efficient optimization methods,” in Green Computing
Conference (IGCC), 2012 International. IEEE, 2012, pp. 1–6.

[44] Í. Goiri, W. Katsak, K. Le, T. D. Nguyen, and R. Bianchini, “Parasol and greenswitch:
Managing datacenters powered by renewable energy,” in ACM SIGARCH Computer
Architecture News, vol. 41, no. 1. ACM, 2013, pp. 51–64.

[45] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption modeling: A survey,”
IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 732–794, 2016.

[46] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuristics for
efficient management of data centers for cloud computing,” Future generation computer
systems, vol. 28, no. 5, pp. 755–768, 2012.

[47] I. Mavridis and H. Karatza, “Performance evaluation of cloud-based log file analysis with
apache hadoop and apache spark,” Journal of Systems and Software, vol. 125, pp. 133–151,
2017.

[48] P. Li, L. Dong, H. Xu, and T. F. Lau, “Spark’s operation time predictive in cloud computing
environment based on src-wsvr,” Journal of High Speed Networks, vol. 24, no. 1, pp. 49–62,
2018.

[49] B. Su, J. Gu, L. Shen, W. Huang, J. L. Greathouse, and Z. Wang, “Ppep: Online perfor-
mance, power, and energy prediction framework and dvfs space exploration,” in Proceed-
ings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 2014.

[50] J. Reinders, VTune (TM) Performance Analyzer Essentials: Measurement and Tuning
Techniques for Software Developers. Intel Press, 2004.

[51] T. S. Shively, T. W. Sager, and S. G. Walker, “A bayesian approach to non-parametric mono-
tone function estimation,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 71, no. 1, pp. 159–175, 2009.

[52] C. S. Chan, Y. Jin, Y.-K. Wu, K. Gross, K. Vaidyanathan, and T. Rosing, “Fan-speed-aware
scheduling of data intensive jobs,” in Proceedings of the 2012 ACM/IEEE international
symposium on Low power electronics and design. ACM, 2012, pp. 409–414.

[53] “Linpack benchmarks,” https://software.intel.com/en-us/articles/
intel-mkl-benchmarks-suite, 2019.

[54] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,” in
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics, 2007.

123

[55] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a kneedle in a haystack:
Detecting knee points in system behavior,” in 2011 31st International Conference on
Distributed Computing Systems Workshops. IEEE, 2011.

[56] “Spec2006,” https://www.spec.org/cpu2006/, 2006.

[57] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: characterization
and architectural implications,” in Proceedings of the 17th international conference on
Parallel architectures and compilation techniques. ACM, 2008.

[58] D. Birant and A. Kut, “St-dbscan: An algorithm for clustering spatial–temporal data,” Data
& Knowledge Engineering, vol. 60, no. 1, pp. 208–221, 2007.

[59] Q. Wu, Q. Deng, L. Ganesh, C.-H. Hsu, Y. Jin, S. Kumar, B. Li, J. Meza, and Y. J.
Song, “Dynamo: Facebook’s data center-wide power management system,” in Computer
Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on. IEEE,
2016, pp. 469–480.

[60] S. Govindan, A. Sivasubramaniam, and B. Urgaonkar, “Benefits and limitations of tapping
into stored energy for datacenters,” in Computer Architecture (ISCA), 2011 38th Annual
International Symposium on. IEEE, 2011, pp. 341–351.

[61] B. Aksanli, J. Venkatesh, I. Monga, and T. S. Rosing, “Renewable energy prediction for im-
proved utilization and efficiency in datacenters and backbone networks,” in Computational
Sustainability. Springer, 2016, pp. 47–74.

[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in python,” Journal of
Machine Learning Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[63] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. G. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A.
Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas, O. Vinyals, P. Warden, M. Watten-
berg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: Large-scale machine learning on
heterogeneous distributed systems,” CoRR, vol. abs/1603.04467, 2016.

[64] C. Boettiger, “An introduction to docker for reproducible research,” ACM SIGOPS Operat-
ing Systems Review, vol. 49, no. 1, pp. 71–79, 2015.

[65] “Weave net,” https://www.weave.works/, 2019.

[66] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file system,”
in Mass storage systems and technologies (MSST), 2010 IEEE 26th symposium on. Ieee,
2010, pp. 1–10.

124

[67] “Wikipedia, mean absolute percentage error,” https://en.wikipedia.org/wiki/Mean
absolute percentage error/, 2019.

[68] “Nersc benchmarks,” http://www.nersc.gov/users/computational-systems/cori/
nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/, 2015.

[69] “Top 500 supercomputer sites,” https://www.top500.org/, 2019.

[70] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench: a comprehensive
benchmarking suite for in memory data analytic platform spark,” in Proceedings of the
12th ACM International Conference on Computing Frontiers. ACM, 2015, p. 53.

[71] J. J. Dai, Y. Wang, X. Qiu, D. Ding, Y. Zhang, Y. Wang, X. Jia, C. L. Zhang, Y. Wan,
Z. Li, J. Wang, S. Huang, Z. Wu, Y. Wang, Y. Yang, B. She, D. Shi, Q. Lu, K. Huang,
and G. Song, “Bigdl: A distributed deep learning framework for big data,” arXiv preprint
arXiv:1804.05839, 2018.

[72] D. Capps and W. Norcott, “Iozone filesystem benchmark,” 2008.

[73] A. Tirumala, “Iperf: The tcp/udp bandwidth measurement tool,” http://dast. nlanr.
net/Projects/Iperf/, 1999.

[74] T. P. P. Council, “Tpc-h benchmark specification,” Published at http://www. tcp. org/hspec.
html, vol. 21, pp. 592–603, 2008.

[75] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts, applications and issues,” in
Proceedings of the 2015 workshop on mobile big data. ACM, 2015, pp. 37–42.

[76] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J.
Shekita, and B.-Y. Su, “Scaling distributed machine learning with the parameter server.” in
OSDI, vol. 14, 2014, pp. 583–598.

[77] J. Andriessen, M. Baker, and D. D. Suthers, Arguing to learn: Confronting cognitions in
computer-supported collaborative learning environments. Springer Science & Business
Media, 2013, vol. 1.

[78] A. Papadimitriou, R. Bhagwan, N. Chandran, R. Ramjee, A. Haeberlen, H. Singh, A. Modi,
and S. Badrinarayanan, “Big data analytics over encrypted datasets with seabed.” in OSDI,
2016, pp. 587–602.

[79] P. Kanerva, “Hyperdimensional computing: An introduction to computing in distributed
representation with high-dimensional random vectors,” Cognitive Computation, vol. 1,
no. 2, pp. 139–159, 2009.

[80] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdimensional computing
for efficient speech recognition,” in International Conference on Rebooting Computing
(ICRC). IEEE, 2017, pp. 1–6.

125

[81] A. Joshi, J. Halseth, and P. Kanerva, “Language geometry using random indexing,” Quan-
tum Interaction 2016 Conference Proceedings, In press.

[82] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring hyperdimensional
associative memory,” in High Performance Computer Architecture (HPCA), 2017 IEEE
International Symposium on. IEEE, 2017, pp. 445–456.

[83] Y. Kim, F. Parterna, S. Tilak, and T. S. Rosing, “Smartphone analysis and optimization
based on user activity recognition,” in Computer-Aided Design (ICCAD), 2015 IEEE/ACM
International Conference on. IEEE, 2015, pp. 605–612.

[84] B. Aksanli, A. S. Akyurek, and T. S. Rosing, “User behavior modeling for estimating
residential energy consumption,” in Smart City 360. Springer, 2016, pp. 348–361.

[85] A. Rahimi, A. Tchouprina, P. Kanerva, J. d. R. Millán, and J. M. Rabaey, “Hyperdimen-
sional computing for blind and one-shot classification of eeg error-related potentials,”
Mobile Networks and Applications, pp. 1–12, 2017.

[86] F. R. Najafabadi, A. Rahimi, P. Kanerva, and J. M. Rabaey, “Hyperdimensional computing
for text classification,” Design, Automation Test in Europe Conference Exhibition (DATE),
University Booth, 2016.

[87] O. Räsänen and S. Kakouros, “Modeling dependencies in multiple parallel data streams
with hyperdimensional computing,” IEEE Signal Processing Letters, vol. 21, no. 7, pp.
899–903, 2014.

[88] O. Rasanen and J. Saarinen, “Sequence prediction with sparse distributed hyperdimensional
coding applied to the analysis of mobile phone use patterns,” IEEE Transactions on Neural
Networks and Learning Systems, vol. PP, no. 99, pp. 1–12, 2015.

[89] A. Rahimi, S. Benatti, P. Kanerva, L. Benini, and J. M. Rabaey, “Hyperdimensional
biosignal processing: A case study for emg-based hand gesture recognition,” in Rebooting
Computing (ICRC), IEEE International Conference on. IEEE, 2016, pp. 1–8.

[90] H. Li, T. F. Wu, A. Rahimi, K. Li, M. Rusch, C. Lin, J. Hsu, M. M. Sabry, S. B. Eryilmaz,
J. Sohn, W. Chiu, M. Chen, T. Wu, J. Shieh, W. Yeh, J. M. Rabaey, S. Mitra, and H. P. Wong,
“Hyperdimensional computing with 3d vrram in-memory kernels: Device-architecture co-
design for energy-efficient, error-resilient language recognition,” in Electron Devices
Meeting (IEDM), 2016 IEEE International. IEEE, 2016, pp. 16–1.

[91] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for activity monitoring,”
in Wearable Computers (ISWC), 2012 16th International Symposium on. IEEE, 2012, pp.
108–109.

[92] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public domain dataset
for human activity recognition using smartphones.” in ESANN, 2013.

126

[93] Y. Vaizman, K. Ellis, and G. Lanckriet, “Recognizing detailed human context in the wild
from smartphones and smartwatches,” IEEE Pervasive Computing, vol. 16, no. 4, pp.
62–74, 2017.

[94] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu, “Fast app launching for mobile devices
using predictive user context,” in Proceedings of the 10th international conference on
Mobile systems, applications, and services. ACM, 2012, pp. 113–126.

[95] M. Imani, C. Huang, D. Kong, and T. Rosing, “Hierarchical hyperdimensional computing
for energy efficient classification,” in Proceedings of the 55th Annual Design Automation
Conference. ACM, 2018, p. 108.

[96] F. Paterna and T. Š. Rosing, “Modeling and mitigation of extra-soc thermal coupling
effects and heat transfer variations in mobile devices,” in Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design. IEEE Press, 2015, pp. 831–838.

[97] S. Suthaharan, “Big data classification: Problems and challenges in network intrusion
prediction with machine learning,” ACM SIGMETRICS Performance Evaluation Review,
vol. 41, no. 4, pp. 70–73, 2014.

[98] A. L. Buczak and E. Guven, “A survey of data mining and machine learning methods for
cyber security intrusion detection,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 2, pp. 1153–1176, 2016.

[99] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards the science of security
and privacy in machine learning,” arXiv preprint arXiv:1611.03814, 2016.

[100] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,”
Science, vol. 349, no. 6245, pp. 255–260, 2015.

[101] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds,” in Proceedings of the 16th
ACM conference on Computer and communications security. ACM, 2009, pp. 199–212.

[102] M. Taram, A. Venkat, and D. Tullsen, “Context-sensitive fencing: Securing speculative
execution via microcode customization,” in International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, 2019.

[103] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an untrusted cloud
with haven,” ACM Transactions on Computer Systems (TOCS), vol. 33, no. 3, p. 8, 2015.

[104] G. Zhao, C. Rong, J. Li, F. Zhang, and Y. Tang, “Trusted data sharing over untrusted cloud
storage providers,” in Cloud Computing Technology and Science (CloudCom), 2010 IEEE
Second International Conference on. IEEE, 2010, pp. 97–103.

[105] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten, “Sporc: Group collaboration
using untrusted cloud resources.” in OSDI, vol. 10, 2010, pp. 337–350.

127

[106] S. Choi, G. Ghinita, H.-S. Lim, and E. Bertino, “Secure knn query processing in untrusted
cloud environments,” IEEE Transactions on Knowledge and Data Engineering, vol. 26,
no. 11, pp. 2818–2831, 2014.

[107] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage,
A. Segal, and K. Seth, “Practical secure aggregation for privacy-preserving machine
learning,” in CCS. ACM, 2017.

[108] A. Ben-Efraim, Y. Lindell, and E. Omri, “Optimizing semi-honest secure multiparty
computation for the internet,” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS). ACM, 2016, pp. 578–590.

[109] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-efficient classifier using
brain-inspired hyperdimensional computing,” in Proceedings of the 2016 International
Symposium on Low Power Electronics and Design. ACM, 2016, pp. 64–69.

[110] H. Chen, K. Laine, and R. Player, “Simple encrypted arithmetic library-seal v2. 1,” in
International Conference on Financial Cryptography and Data Security. Springer, 2017,
pp. 3–18.

[111] W. Du and M. J. Atallah, “Secure multi-party computation problems and their applications:
a review and open problems,” in Proceedings of the 2001 workshop on New security
paradigms. ACM, 2001, pp. 13–22.

[112] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and F. Koushanfar,
“Chameleon: A hybrid secure computation framework for machine learning applications,”
in ASIACCS. ACM, 2018.

[113] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in CCS. ACM, 2015.

[114] M. S. Riazi and F. Koushanfar, “Privacy-preserving deep learning and inference,” in
Proceedings of the International Conference on Computer-Aided Design. ACM, 2018,
p. 18.

[115] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-preserving machine
learning.” in IEEE S&P, 2017.

[116] M. S. Riazi, B. D. Rouhani, and F. Koushanfar, “Deep learning on private data,” in IEEE
Security and Privacy Magazine. IEEE, 2019.

[117] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter, and F. Koushanfar, “XONN:
XNOR-based oblivious deep neural network inference,” USENIX Security, 2019.

[118] B. Hitaj, G. Ateniese, and F. Pérez-Cruz, “Deep models under the GAN: information
leakage from collaborative deep learning,” in CCS. ACM, 2017.

[119] A. C.-C. Yao, “How to generate and exchange secrets,” in Foundations of Computer
Science, 1986., 27th Annual Symposium on. IEEE, 1986, pp. 162–167.

128

[120] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR gates and applica-
tions,” in Automata, Languages and Programming. Springer, 2008.

[121] A. Waksman, “A permutation network,” Journal of the ACM (JACM), vol. 15, no. 1, pp.
159–163, 1968.

[122] P. Kanerva, J. Kristofersson, and A. Holst, “Random indexing of text samples for latent
semantic analysis,” in Proceedings of the 22nd annual conference of the cognitive science
society, vol. 1036. Citeseer, 2000.

[123] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena, “Network simulations
with the ns-3 simulator,” SIGCOMM demonstration, vol. 14, no. 14, p. 527, 2008.

[124] T. Feist, “Vivado design suite,” White Paper, vol. 5, 2012.

[125] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[126] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for
image classification,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on. IEEE, 2012, pp. 3642–3649.

[127] “Uci machine learning repository,” http://archive.ics.uci.edu/ml/datasets/ISOLET, 1994.

[128] M. S. Razlighi, M. Imani, F. Koushanfar, and T. Rosing, “Looknn: Neural network with no
multiplication,” in 2017 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2017, pp. 1775–1780.

[129] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human activity recog-
nition on smartphones using a multiclass hardware-friendly support vector machine,” in
International workshop on ambient assisted living. Springer, 2012, pp. 216–223.

[130] Y. Kim, M. Imani, and T. Rosing, “Orchard: Visual object recognition accelerator based
on approximate in-memory processing,” in Computer-Aided Design (ICCAD), 2017
IEEE/ACM International Conference on. IEEE, 2017, pp. 25–32.

[131] U. Quasthoff, M. Richter, and C. Biemann, “Corpus portal for search in monolingual
corpora,” in Proceedings of the fifth international conference on language resources and
evaluation, vol. 17991802, 2006, p. 21.

[132] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with bowtie 2,” Nature
methods, vol. 9, no. 4, p. 357, 2012.

[133] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioinformatics, vol. 34,
no. 18, pp. 3094–3100, 2018.

129

[134] A. Rahimi, S. Datta, D. Kleyko, E. P. Frady, B. Olshausen, P. Kanerva, and J. M. Rabaey,
“High-dimensional computing as a nanoscalable paradigm,” IEEE Transactions on Circuits
and Systems I: Regular Papers, 2017.

[135] M. Imani, Y. Kim, S. Riazi, J. Messerly, P. Liu, F. Koushanfar, and T. Rosing, “A frame-
work for collaborative learning in secure high-dimensional space,” in 2019 IEEE 12th
International Conference on Cloud Computing (CLOUD). IEEE, 2019, pp. 435–446.

[136] M. Imani, J. Morris, J. Messerly, H. Shu, Y. Deng, and T. Rosing, “Bric: Locality-based
encoding for energy-efficient brain-inspired hyperdimensional computing,” in 2019 56th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2019, pp. 1–6.

[137] M. Imani, T. Nassar, A. Rahimi, and T. Rosing, “Hdna: Energy-efficient dna sequencing
using hyperdimensional computing,” in IEEE BHI. IEEE, 2018, pp. 271–274.

[138] M. Imani, S. Salamat, S. Gupta, J. Huang, and T. Rosing, “Fach: Fpga-based acceleration
of hyperdimensional computing by reducing computational complexity,” in ASP-DAC.
IEEE, 2019.

[139] M. Imani, S. Salamat, B. Khaleghi, M. Samragh, F. Koushanfar, and T. Rosing, “Sparsehd:
Algorithm-hardware co-optimization for efficient high-dimensional computing,” in 2019
IEEE 27th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2019, pp. 190–198.

[140] S. Salamat, M. Imani, B. Khaleghi, and T. Rosing, “F5-hd: Fast flexible fpga-based
framework for refreshing hyperdimensional computing,” in FPGA. ACM, 2019, pp.
53–62.

[141] M. Imani, J. Messerly, F. Wu, W. Pi, and T. Rosing, “A binary learning framework for
hyperdimensional computing,” in DATE. IEEE/ACM, 2019.

[142] S. Memeti and S. Pllana, “Analyzing large-scale dna sequences on multi-core architectures,”
in 2015 IEEE 18th International Conference on Computational Science and Engineering.
IEEE, 2015, pp. 208–215.

[143] E. B. Fernandez, W. A. Najjar, S. Lonardi, and J. Villarreal, “Multithreaded fpga accelera-
tion of dna sequence mapping,” in 2012 IEEE Conference on High Performance Extreme
Computing. IEEE, 2012, pp. 1–6.

[144] “National center for biotechnology information support center,” https://www.ncbi.nlm.nih.
gov, 2019.

[145] M. Harris, “Optimizing parallel reduction in cuda,” Nvidia developer technology, vol. 2,
no. 4, p. 70, 2007.

130

