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ABSTRACT OF THE THESIS

Robust and Equitable Non-Contact Health Sensing

by

Alexander Vilesov

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Achuta Kadambi, Chair

Contactless vital sensing is gaining prominence with applications in disease control, health

monitoring, and medicine; airports are beginning to use infrared thermometers to screen for

fevers, automobile companies are researching how cars can wirelessly detect drowsy drivers,

and the medical field is exploring the benefits of how cameras can be used to remotely monitor

neonates or detect diseases such as atrial fibrillation or sleep apnea. However, prior research

to a large extent has not explored when remote vital sensing methods fail and if they may

be disadvantageous to certain physiologies more than others such as age, weight, or gender.

New methods in the field should strive to determine the impact of these variables as well as

rectify inaccuracies in sensing that may occur if possible. This work explores how skin tone

can adversely impact heart-rate detection with cameras and temperature evaluation with

thermal cameras. Multimodal fusion and algorithmic techniques are proposed to improve

skin tone equity while improving performance of contactless vital sensing methods.
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CHAPTER 1

Introduction

Non-contact health monitoring technologies are gaining attention due to the benefits in

their method of sensing over contact technologies. They are noninvasive, passive, and more

flexible. In recent time, these technologies have seen interest with infrared thermometers

during pandemics due to reduction of contamination [33] and radars for determining levels of

drowsiness of automobile drivers through detection of their respiratory rate [76, 79]. Current

research has explored more possibilities of non-contact monitoring with cameras for getting a

photoplethysmograph waveform in groups like neonates whose skin is too sensitive to contact

pulse oximeters [2], NIR cameras for sleep apnea detection [95], and the use of simple RGB

cameras for remote-screening of cardiac diseases such as atrial fibrillation [109] or to record

heart-rate and breathing-rate during a medical telehealth call [55]. The long-term goal of

these technologies are to reach levels of convenience and acceptance where there is ubiquitous

use of it in the medical field and everyday life. This thesis brings us closer to this goal by

taking steps to making the technology both more equitable and robust.

Due to the inherent human aspect of health monitoring a major concern with all med-

ical devices is not just their accuracy, but the consistency of their accuracy across various

demographics of the population. Unfortunately, there have been many cases where medicine

has indirectly favored certain demographics more than others. The form in which this takes

can vary with computational, physical, and interpretation bias being proposed as some of

the categories in Kadambi [43]. Computational bias may occur for a medical sensor when

it fails on a certain group due to being calibrated on a different group. The same sensor
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may have a physical bias such that despite being calibrated for all parts of the population,

the sensor may not work well on a certain group due to unique innate physical attributes

that cause the physics of the sensor to be less accurate. Lastly, inference bias occurs when

even if the sensor works at the same accuracy across all people, the medical decision that a

doctor makes given the sensor reading may vary based on differences in anatomy of various

populations. These different errors in the operation of medical devices are not necessarily

mutually exclusive. Kadambi [43] gives concrete examples of the various forms of the bias.

Remote sensing technologies used as medical devices need to be evaluated for biases just

like all other medical devices. This thesis focuses on physical biases and how to solve them.

Physical biases occur due to differences in anatomy causing sensor performance to be affected.

These anatomy differences can be due to gender, body mass index (BMI), age, skintone, or

any other physiological factor. This thesis tackles two applications of non-contact health

monitoring where skintone affects sensor performance.

The first application is in image photoplethysmography (iPPG) technologies. These

technologies typically detect a plethysmography waveform using a camera and ambient or

active illumination. The light from illumination travels through our skin and can reach

blood vessels located under the epidermis [50]. The remaining light that was not absorbed is

scattered or reflected out of the skin and into the camera. The camera can then detect the

plethysmography waveform by measuring subtle changes in the intensity of the light coming

from the skin due to being modulated by periodic blood volume pulses at the frequency of

the heart beating [91]. However, darker skintones have less light reaching these blood vessels

and even less light coming back to the camera due to absorption by melanin particles.

This thesis proposes a method to make the estimation of the plethysmography signal more

equitable across skin tones through the use of multimodal fusion of the camera with another

sensing modality, radar [93].

The second application is in the remote estimation of temperature of the human body. All

remote estimation of temperature technologies rely on the infrared radiation emitting from
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our body whose power is proportional to our body’s temperature [67]. While the amount of

infrared radiation emitted from two bodies with the same temperature but different skintones

is the same [22], certain situations can cause these two bodies to have dramatically different

temperature readings. In this thesis, the effect of solar loading, or exposure to sunlight, is

shown to cause error in temperature estimation across all skintones but disproportionally

causes larger errors in darker skintones [114]. The proposed solution attempts to remove the

effect of solar loading in one shot of a thermal camera by taking advantage of the unique

heat patterns caused by solar loading.

In summary, this thesis makes two specific contributions:

Contribution A: We show how skintone bias in iPPG can be reduced through multi-

modal fusion on a self-collected diverse dataset. A multi-modal hardware and algorithmic

approach using radar and camera is proposed to enable better performance and fairness.

Contribution B: We show how solar loading leads to erroneous temperature readings in

infrared sensors that is exacerbated with darker skintones. We propose two methods for

removing this effect by utilizing either temporal or spatial information.

While this thesis addresses two situations in which skintone can adversely affect medical

sensors’ performance. There exist many other sensor configurations and applications that

may also suffer from a similar bias. Moreover, skintone is only one of the axes of fairness.

BMI, age, gender, and many other factors in human physiology can physically affect the

sensor. Future research should strive to increase the accuracy of sensors and concurrently

remain resistant to physical biases.
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CHAPTER 2

Radar and Camera Fusion for Equitable, Robust

Plethysmography

2.1 Problem Background

2.1.1 Introduction

Camera-based remote plethysmography is a rapidly developing field. Most methods utilize

small changes in the facial skin color as a function of dermal blood volume to capture pulse

rate trends [5, 104]. Over the years, a broad range of methods have been proposed, ranging

from physics-based approaches [27, 91, 98], blind source separation-based approaches [52, 68]

and more recently, data-driven learning-based approaches [24, 111]. Through these advances,

the heart-rate estimation performance has steadily approached levels of clinical accuracy.

However, more recently, it has been established that most methods for imaging-based re-

mote photoplethysmography (iPPG) are biased in performance against dark skin tone par-

ticipants [64]. This points towards two potential problems: biases in datasets used for algo-

rithmic evaluation, and potential fundamental biases in the physics of camera-based remote

plethysmogaphy.

Another comparable modality for heart-rate estimation is the use of radio frequency (RF)

devices. These devices capture the variations in chest displacement through cardiac cycles

to estimate the frequency of the heart beat signal. Approaches use different types of radars

and include signal processing [6, 56], as well as deep learning-based methods [106]. Ren et
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al. [72] performed a comparison study between a camera and a doppler stepped-frequency

continuous wave radar on one subject and showed that both modalities perform nearly

equally under ideal conditions for extracting heart rates. Additionally, it is noted from our

experiments on multiple subjects that while iPPG and radar are comparable, iPPG slightly

outperforms radar. However, since radar systems primarily capture displacement signals [1],

radar techniques do not theoretically show performance correlation with skin tone and are

therefore fairer.

In this thesis, a fresh look at multi-modal fusion from the perspective of bias removal. We

show that combining iPPG, a biased modality, with radar, an unbiased modality, results in

a better performing algorithm compared to the unimodal methods with only small trade-offs

in fairness over the unbiased method. To evaluate optimality, we establish a comprehensive

set of performance and fairness metrics tailored to the task of remote plethysmography,

evaluated on our novel multi-modal remote plethysmography dataset. This proposed fusion

method, along with the existing iPPG and radar-based methods, constitute viable remote

heart-rate detection approaches with differing performance and fairness trade-offs that an

end-user may select from.

2.1.2 Related Work

Image-photoplethysmography is biased against darker skin tones. To improve fairness and

performance of unimodal iPPG, we fuse it with another sensing modality (radar). In what

follows, we expand on background context.

Image Photoplethysmography Heart-rate estimation using image-photoplethysmography

(iPPG) has been actively studied since the early 2000s [103, 107, 108]. Typically, early meth-

ods observed and took advantage of changes in optical absorption of hemoglobin molecules

at the surface of the skin during a blood volume pulse with a RGB camera. The work that

followed focused on reducing error due to motion with region of interest (ROI) alignment
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and clever modeling of physical properties of light reflectance [27, 98]. Remote heart-rate

estimation is also achieved with Ballistocardiogram (BCG) methods which extract motion

information due to the Newtonian reaction of a blood volume pulse [12]. Color analysis and

BCG methods are not limited to use with RGB cameras. Near Infrared (NIR) imaging with

active illumination has been employed to combat the effects of unreliable illumination in the

visible spectrum [57], despite having a worse signal to noise ratio (SNR) to RGB cameras

[94]. Infrared (IR) or thermal imaging has used BCG [13] and temporal temperature differ-

entials [47]. Other work focused on visualizations of the blood volume pulse with Eulerian

magnification [104] and augmented reality [38].

More recently, deep learning approaches have been utilized to attain state of the art re-

sults. [24] used an attention-based Convolutional Neural Network (CNN) to explicitly fuse

skin-reflection and motion information. [111] introduced spatio-temporal CNNs to iPPG

to enable temporal context-aware networks. Other work has extended these architectures

[63], incorporated meta-learning [51], improved PPG waveform characteristics [81], and aug-

mented iPPG datasets with synthetic examples [10, 100].

Radar Plethysmography Vital sensing using radar was pioneered in the 1970s for respiratory-

rate detection [54]. Today, radar research has diverse applications in respiratory-rate, heart-

rate, and blood-pressure detection. For heart-rate estimation, various hardware setups are

used, including FMCW [6], Ultra Wide Band (UWB) Impulse [71], and Continuous Wave

Doppler radars [28]. Vital sign detection is performed by observing millimeter (mm) level

displacements in the chest. The average adult has chest displacements for breathing and

heart pulses of 1-12 mm and 0.01-0.5 mm, respectively [29]. Through single-subject analy-

sis, [72] note that both camera and radar-based methods perform nearly equally under ideal

conditions. That is, both are potentially viable methods for remote heart-rate estimation.

Since heart-rate detection is more prone to noise, applications and experimental results are

often done with subjects laying down to avoid interference due to motion.
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Fairness in iPPG Fairness in machine learning has been a rapidly growing area of research

in the last decade. It has spanned ensuring fairness in classification [112], word embeddings

[17], and computer vision [99]. Dataset bias is a common problem and it has been shown

that performance is lower for minority groups in machine learning problems due to underrep-

resentation [18] and its effect on majority and minority performance is shown in Chari et al.

[21]. In the iPPG field, fairness has been less studied. However, [10, 64] show that dataset

bias as well as lower SNRs result in darker skin tones producing poorer performance than

lighter skin tones. We introduce a skin tone representative dataset and propose to reduce

bias across skin tones through multi-modal fusion.

Multi-modal Fusion Multi-modal fusion is the process of combining two or more modal-

ities to achieve better performance for a given task than any singular modality on its own.

In deep learning, architectures either fuse modalities in a middle latent space or at a late

stage once each modality independently gives a prediction. For mid-level fusion, Restricted

Boltzmann machines [83] are a common choice in popular architectures such as Deep Belief

Networks [45] and Stacked Autoencoders [80]. In late-level or decision-level fusion, predic-

tions from various modalities are simply aggregated using majority voting, weighted vot-

ing, or a meta-classifier. These architectures and formulations of multi-modal fusion have

achieved great success in classification-based problems [36]. Unfortunately, they do not easily

translate to a regression-based problem such as plethysmography. Nonetheless, several works

have attempted fusion such as RGB+Mid-Infrared (Thermal) [61] and RGB+Near-Infrared

(NIR) [58].

2.1.3 Contributions and Scope

The goal is to use camera and 77 GHz radar fusion to create a higher performing and more

equitable remote plethysmograph technique. We make three specific contributions:

Contribution A: Existing unimodal remote plethysmography methods show a Pareto trade-
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off between performance and fairness. We show that through carefully chosen modalities,

multi-modal fusion can improve the Pareto frontier for this tradeoff, enabling improvements

in both performance and fairness.

Contribution B: To the best of our knowledge, we present the first RGB and radar plethys-

mograph multi-modal fusion technique incorporating bias cues as part of a novel discrimi-

native learning framework.

Contribution C: We open-source the first and largest multi-modal remote plethysmography

dataset with representation across skin tones and other demographic markers.

Our code, dataset, and hardware tutorial may be accessed from https://github.com/UCLA-

VMG/EquiPleth.

Scope We aim to establish the importance of multi-modal fusion towards achieving high

performing and fair algorithms for vital sign sensing. We do not consider or incorporate

other confounding effects, such as motion, resolution, and compression. These are relevant

engineering aspects that need to be considered when looking at deployability of the technol-

ogy. In this work, however, we constrain our focus on the analysis and mitigation of skin

tone bias (as opposed to other kinds of biases).

2.1.4 Problem Formulation

A human subject is sensed by a non-contact sensing method, f , that processes data from

M modalities (e.g. images, radar matrices, etc.). For the i-th training example, let this

data be represented as an irregular list xi = [v1
i ,v

2
i , ...,v

M
i ], with each vm

i ∈ RNm . This

subject has a ground truth and predicted plethysmograph signal, denoted as vectors yi ∈ RK

and f(xi) = ŷi ∈ RK , respectively. The corresponding heart rate of the plethysmograph

signal is hi ∈ R+. The sensor data, plethysmograph signal, and heart rate are drawn from

distributions X, Y, and H respectively. Unique to this work’s formulation (as compared to

8

https://github.com/UCLA-VMG/EquiPleth
https://github.com/UCLA-VMG/EquiPleth


others in iPPG literature), the subject also has a protected attribute ai ∈ A. This attribute

describes skin tone categories, such that A = {light,medium, dark}. Subjects are labeled

according to a modified Fitzpatrick skin tone scale [10] as light for I/II, medium for III/IV,

and dark for V/VI. For brevity, the sample indexing is dropped here onward; x, y, h, and a

denote xi, yi, hi and ai respectively.

2.2 iPPG Signal Strength and Skintone Dependency

This section initially goes over the operation of pulse oximeters and how it relates to the

signal strength in classical iPPG methods. We then show how skintone bias can manifest

from the signal strength equations in iPPG. We end with our implementation of iPPG used

for experiments and generating results.

2.2.1 Conventional Pulse Oximetry

The pulse oximeter is one of the primary tools doctor’s use to asses two important vi-

tal signs: heart-rate (HR) and oxygen saturation (SpO2). In this work we focus on es-

timating heart-rate, but a brief overview of estimating oxygen saturation is also given to

show the large dependence on accurate heart-rate and photoplethysmography measurements.

Figure 2.1: Hb Absorption Spectras [69].

The classical approach to measuring heart-

rate and SpO2 utilizes spectrophotometry,

where light is passed through a sample and

a detector measures the absorption or trans-

mittance of light. The two main Hemoglobin

(Hb) molecules of interest are oxygenated-

hemoglobin and deoxygenated-hemoglobin.

The two can be separated in a sample by mea-

9



suring the difference in their absorption spec-

tras as in figure 2.1.

The origin of the pulse picked up by pulse oximeter can be best understood through the

Beer-Lambert law [50]. The absorbance of light, A, is the product of molar attenuation

coefficient (ϵ), optical length (l) and molar concentration (c) of the attenuating substance.

The product of the molar attenuation coefficient and molar concentration is also known as

the attenuation constant (µ). It is a logarithmic measure and the intensity of light that is

expected is:

I(l) = Ioe
−ϵcl (2.1)

In the case of human tissue, the attenuation is caused by a linear combination of absorptions:

Itissue = Ioe
−lblood(µHb+µHbO2

)−ltissueµTissue (2.2)

Assume that lblood is the length of light travel across blood filled capillaries at rest or in

between blood volume pulses (BVP). When a blood volume pulse occurs, the light travel is

extended1 slightly due to dilation of the capillaries such that:

Iptissue = Ioe
−(lblood+∆l)(µHb+µHbO2

)−ltissueµTissue (2.3)

The largest intensity change during a blood volume pulse cycle would be when the capillaries

are least and most dilated, Ivtissue−Iptissue. In general, the blood volume pulses cause the pulse

oximeter to record a distinct waveform in time, Itissue(t), whose AC component is called the

photoplethysmogram (PPG). A simple frequency analysis or peak detector can then extract

the heart-rate.

Extracting the PPG waveform is crucial for correct estimation of SpO2. SpO2 estimation

relies on accurate amplitude estimates in the PPG waveform. To determine the ratio of

oxygenated hemoglobin to total hemoglobin in the blood, SpO2 methods employ forms of

1Various sources will show that the plethysmography signal originates due to either increase in light travel
due to dilation of blood vessels or due to increases in concentration of blood [50]. In this thesis, we will use
the former hypothesis for the origin of the PPG signal without loss of generality.
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the Ratio of Ratios method [50] which was devised to eliminate dependency on various skin

thicknesses, compositions, as well as blood volume pulse characteristics through observing

the PPG signal at two different wavelengths of light.

2.2.2 iPPG Signal Strength

In contrast to pulse oximeters, where light travels from an emitter on one side of the finger

through to a detector on the other side, camera-based PPG or iPPG relies on reflective PPG.

In this scenario, the source of light is ambient light and our detector is effectively located on

the same side of skin in which light entered. The iPPG signal strength can be determined

through application of previous biorealistic rendering models [7, 39]. Our signal of interest is

light that transmits through the epidermis and then experiences reflection through scattering

in the dermis. Table 2.1 describes and summarizes the various symbols and notations used.

The epidermal transmission is modeled through Beer-Lambert Law like in Section 2.2.1,

Tepi(λ) = e−µa,epi(λ)depi , (2.4)

where µa,epi(λ) is the absorption coefficient of the epidermis and depi is the thickness of the

epidermis. In general, the absorption coefficient is a convex combination between skin tissue

and melanin absorption coefficients,

µa,epi(λ) = fmelµa,mel(λ) + (1− fmel)µa,skin(λ). (2.5)

The skin tissue absorption coefficient, µa,skin(λ), is a known parameter, while µa,mel(λ)

is a another convex combination,

µa,mel(λ) = feumµa,eum(λ) + (1− feum)µa,phm(λ), (2.6)

with absorption coefficients µa,eum(λ) and µa,phm(λ) for eumelanin and pheomelanin. Equa-

tions 2.4, 2.5, and 2.6 fully define epidermal transmission light which is dominated by ab-

sorption.
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Table 2.1: Notation used for light transport modeling of iPPG. The left column

shows the notation used and the right column describes the notation.

Notation Description

µa,eum(λ) Eumelanin absorption coefficient

µa,phm(λ) Phomelanin absorption coefficient

µa,der(λ) Dermal absorption coefficient

µs,der(λ) Dermal scattering coefficient

µa,bld(λ) Blood absorption coefficient

µa,ski(λ) Skin absorption coefficient

µoxy(λ) Oxygenated hemoglobin abs. coefficient

µdox(λ) Deoxygenated hemoglobin abs. coefficient

fmel Skin melanin fraction

feum Epidermal eumelanin fraction

fbld Dermal blood volume fraction

foxy Oxygenated hemoglobin fraction in blood

The light that transmits through the epidermis enters the dermis. The reflection of light

from the dermal layer follows the Kubelka-Munk theory for scattering-dependent reflection

that predicts the proportion of light reflected as a function of wavelength as,

Rd(λ) =
(1− β(λ))2(eK(λ)dder − e−K(λ)dder)

(1 + β(λ))2eK(λ)dder − (1− β(λ))2e−K(λ)dder
. (2.7)

dder is the dermal skin depth [7], β(λ) and K(λ) are deterministically related to µa,der(λ)

(dermal absorption coefficient) and µs,der(λ) (reduced dermal scattering coefficient [8]), as

given in [7, 39]. The absorption coefficient of the dermis and blood are:

µa,der(λ) = fbldµa,bld(λ) + (1− fbld)µa,ski(λ), (2.8)

µa,bld(λ) = foxyµoxy(λ) + (1− foxy)µdox(λ). (2.9)
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This dermal reflection takes into account reflections due to skin composition as well as

oxygenated and deoxygenated blood. Now, the reflection from the skin can be modeled

through transmission through the epidermis and reflection of the dermis:

R(λ) = T 2
epi.Rd(λ). (2.10)

where the transmission term is squared to take into account the light going through the

epidermis twice: in and out. A camera would then sense the intensity,

Ic =

∫
λ

E(λ)Sc(λ)R(λ)dλ, (2.11)

where E(λ) is the illuminant’s spectrum and Sc(λ) is the spectral response for channel c.

As mentioned in Section 2.2.1, the plethysmography signal originates due to changes

in the path length through blood during blood volume pulses. The change can also be

parameterized through how the blood volume fraction, fbld under the skin is modulated

during the blood volume pulse. The signal strength of the iPPG signal for a particular

camera channel can be approximated as the largest change in the captured intensity:

Σc = ∆Ic ≈
∣∣∣ ∂Ic
∂fbld

∣∣∣ ·∆fbld. (2.12)

The contribution of the change in blood volume fraction to the camera intensity can then

be seen as,

Σc ≈

∣∣∣∣∣
∫
λ

E(λ)Sc(λ)
∂R

∂fbld

∣∣∣
fbld

dλ

∣∣∣∣∣ ·∆fbld, (2.13)

where fbld is the average blood volume fraction(fbld ≈ 0.05). This approximation holds true

since fbld only varies by a small amount around the average blood volume fraction value,

fbld.

This PPG signal rides on top of a DC value given by the average skin tone color:

Γc =

∫
λ

E(λ)Sc(λ)R(λ)
∣∣∣
fbl

dλ. (2.14)

Notice that Σc and Γc are both dependent on fmel due to the dermal reflection term,

Rd(λ).
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Figure 2.2: The iPPG per-pixel SNR drastically worsens with increasing skin

melanin fraction. Using biophysical skin reflectance models, we estimate the iPPG signal

strength as a function of skin melanin fraction. Along with the monotonic decrease in signal

strength with melanin fraction, we also note finer trend differences between the SNR for the

red, green and blue channels, as well as dependence on the spectral properties of the light

source.

2.2.3 Skin Tone Bias in iPPG

Skintone bias arises due to the interplay between the signal strength of the iPPG signal as

a function of melanin and imaging noise. Imaging noise occurs primarily due to the Poisson

randomly distributed photon arrival processes as well as thermal noise from circuity and the

quantization noise due to ADCs [37]. Assuming the pixel is not saturated past its maximum

value, its noise can be written as :

σ2
pixel =

Φt

g2
+

σ2
r

g2
+ σ2

q , (2.15)

where Φ is the radiant power of light collected, t is the exposure time, g is the sensor gain,

and σr and σq are camera noise parameters for thermal and quantization noise respectively.

The same noise model that is used for calculating the signal to noise ratio (SNR) of a pixel’s
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value can also be used to estimate the iPPG signal’s SNR as follows:

SNRc =
Σct

g
√

Γct
g2

+ σ2
r

g2
+ σ2

q

. (2.16)

Here, radiant power, Φ, is the average skin tone color Γc for a particular color channel, c.

Figure 2.2 shows the iPPG per-pixel SNR plots for the three camera color channels, across

two lighting conditions (indicated by the light source ‘temperature’). We use average camera

response functions Sc(λ) to identify responsiveness of each of the channels to incident light,

as well as exemplar camera noise parameters. Specifically, we used σr = 140.7, σq = 0.08

and g = 1.06. These parameters are representative and are calculated for a typical cell

phone camera. Their specific values do not affect the trends and hence are not of primary

importance. We note that the SNR monotonically decays with increasing skin melanin

fraction. This trend is consistent across color channels and scene lighting conditions. That

is, given a fixed scene and camera configuration, the underlying physical signal is poorer for

dark skin tones.

2.2.4 Implementation

The RGB measurements v1 ∈ [0, 1]T×C×H×W are tensor-valued. Here, T is the numbers of

frames, C is the number of image channels (3), and H and W are the image height and width

respectively. We use the Physnet spatio-temporal network by [111] as one of the inputs for

fusion. The PPG network g1(·) estimates the PPG waveform ŷRGB from video inputs v1

with T = 64 frame samples as input.

The PPG network is updated using a negative Pearson loss between the estimated wave-

form ŷ and the ground truth waveform y to enforce waveform reconstruction, similar to

previous work [111]. This is given by,
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LP (y, ŷRGB) =1− 1√
a1 × a2

(
N

N∑
i=1

yiŷi −
N∑
i=1

yi

N∑
i=1

ŷi

)
,

a1 =

N
N∑
i=1

y2
i −

(
N∑
i=1

yi

)2


a2 =

N

N∑
i=1

(ŷi)
2 −

(
N∑
i=1

ŷi

)2
 ,

(2.17)

where N is the length of y and ŷRGB. The overall loss function used, LRGB is given by,

LRGB = LP (y, ŷRGB). (2.18)

2.3 Radar for Plethysmography

FMCW radar emits and receives (reflected) chirps, which are linearly frequency modulated

electromagnetic (EM) waves, enabling the estimation of the distance travelled by the chirp

before reflection. Aardal et al. [1] showed that one contributor to detecting a heartbeat is

a large reflection at the air/skin interface and experimentally demonstrated that heartbeat

detection is primarily reliant on physical displacements of the chest. Therefore, we assume

radar is not directly affected by skin tone.

2.3.1 Radar Theory

The transmitted and received signal, s(t) and u(t) respectively, can be modeled as:

s(t) = Ascos(2πfct+ πkt2), 0 < t < Tc. (2.19)

u(t) = Aucos(2πfc(t− td) + πk(t− td)
2), td < t < Tc. (2.20)

where k is the frequency slope (the rate of change of frequency of the chirp), fc is the starting

frequency of the chirp, Tc is the duration of the chirp transmission, and td is the time delay
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Figure 2.3: A FMCW Chirp Sequence. The blue and red signal are the transmitted

and received chirps plotted with their frequency content as a function of time. The green

signal denotes the mixed signal whose phase changes while the frequency remains relatively

constant.

between the start of transmission and initial reception of the reflected wave. Then, the

bandwidth of the signal, the difference between the maximum and minimum frequencies, is

given by:

B = fmax − fmin = (fc + kTc)− fc = kTc, (2.21)

and the time delay is proportional to the round trip distance, td = 2R
c

, where R and c are

the range of the object and speed of light respectively. Figure 2.3 indicates these values on

a FMCW chirp sequence.

Upon receiving a reflected chirp, the radar mixes the received chirp with the still trans-

mitting signal. The mixed signal is proportional to s(t) · u(t) and contains 2 components:

a beat signal component with a frequency equal to the frequency difference of s(t) and

r(t), ∆f = ktd, and a high frequency component situated near 4πfc. The higher frequency

component is filtered out by a low pass filter (LPF) to prevent aliasing, generating m(t).
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Figure 2.4: We use a 77 Ghz FMCW radar setup for non-contact radar plethys-

mography. Chirp signals are bounced off the subject’s chest in order to capture subtle

motion. By exploiting the dependency of the phase on the distance of flight, we are able to

measure this motion.

Concretely, the radar samples in-phase and quadrature (IQ) components such that:

m(t) ∝ LPF[sI(t) · u(t)] + j LPF[sQ(t) · u(t)], (2.22)

where sI(t)·u(t) and sQ(t)·u(t) denote the in-phase and quadrature components respectively.

The in-phase component is comprised of the transmitted signal s(t) = sI(t) multiplied with

the received signal u(t). The quadrature component is derived by multiplying the received

signal u(t) with a copy of the transmitted signal shifted by a phase of −90◦, sQ(t). However,

IQ details are excluded for brevity and the following equations are represented with just the

in-phase component. The IF signal, m(t), can then be written as:

m(t) ∝ Amcos(2πfctd + 2π(ktd)t+ πkt2d), td < t < Tc. (2.23)

The πkt2d term is several orders of magnitude smaller than the other terms and is thus

negligible. Equation 2.23 can be rewritten into a more succinct form:

m(t) ∝ Amcos (ωt+ ϕ) , td < t < Tc. (2.24)

ω = 4π
kR

c
, ϕ = 4π

R

λ
. (2.25)
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The phase and frequency of the resulting signal depend on the range R and can be extracted

through a discrete Fourier transform (DFT) of the signal after passing it through the analog

to digital converter (ADC). The frequency term, ω = 2π∆f , provides the range through

the following relation R = c∆f
2k

. Therefore, the maximum unambiguous range an object can

be placed from the radar follows from the Nyquist sampling theorem and ADC sampling

rate fs, to give Rmax = c fs
4k

. The range resolution is c fs
4kN

, where N is the number of ADC

samples. The phase term ϕ is inversely proportional to the wavelength of the radar, λ = c
fc

.

The range of an object can be parameterized as R(t) = Ro + r(t), where r(t) models

changes due to vibrations (for example, heart beat) around the average range Ro. To extract

a heart rate, r(t) needs to be sampled with multiple chirps. Note that the frequency term

cannot be used to extract the sub millimeter displacement of a heart beat; the frequency

resolution is on the order of centimeters. Instead, we use the highly sensitive phase to

determine the oscillations of r(t). The reader may note that in reality the phase extracted

from the digital signal would be wrapped between [−π, π]. This can be solved using a

standard phase unwrapping algorithm.

Practically, for the transmission and processing of the nth chirp, the ADC samples, mn[i],

are converted into the frequency domain or a single range profile, Mn[f ]. To observe the

periodic movements of the body due to a heart beat, we sample the range profile in time to

construct a range matrix, M = [M1[f ],M2[f ], ...Mn[f ]]
T , such that a range bin is indexed

by a fast time or range axis and a given chirp is indexed by the slow time axis (fast time

refers to a chirp’s ADC samples, while slow time refers to chirp samples). Figure 2.4 shows

the processing pipeline as well as the range matrix and a range profile where the amplitude

strengths determine a person’s location.

2.3.2 Implementation

To extract the heart rate, a frequency analysis can be performed on the phase of the central

range bin (the range bin with the maximum power occupancy)[6]. However, as [56, 115] note,
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the phase is very sensitive to movement and body background reflection which can diminish

the signal or cause interference due to the harmonics of the respiratory rate. To mitigate

this, we were inspired by [115] work in UWB radar on extracting fine-grained respiratory

signals by learning from raw IQ data. We employ a deep learning approach to estimate g2(·),

a mapping from v2 to ŷRadar. Specifically, v2 consists of a window of range profiles around

the central bin that are then processed by a series of 1D CNNs. The output is an estimate

of the ground truth PPG signal even though the radar is only measuring vibrations. During

training, we apply a data augmentation technique of rotating the complex components of

the data [115] and a loss consisting of a Negative Pearson Loss LP and a Signal to Noise

Ratio (SNR) loss. The SNR loss is defined as follows:

LSNR(y, ŷ) =

f0+w∫
f0−w

|Ŷ(f)|2 df

f0−w∫
−∞

|Ŷ(f)|2 df +
∞∫

f0+w

|Ŷ(f)|2 df
,

f0 = argmax
f

Y(f),

(2.26)

where Y(f) and Ŷ(f) are the respective Fourier transforms of y and ŷ and w is the chosen

window size.

The overall loss function used is given by,

LRadar(y, ŷRadar) = LP (y, ŷRadar) + λRadarLSNR(y, ŷRadar). (2.27)

2.4 Multimodal Fusion of Camera and Radar

2.4.1 Resisting SNR Bias through Sensor Fusion

In this section, we prove that sensor fusion, even if some of the individual sensors are biased,

can lead to overall resistance of bias. Consider a temporal signal s ∈ Rn. Without loss

of generality, we assume normalized signals such that ∥s∥2= 1. Our sensing setup consists

20



of modalities m ∈ {M1,M2}. Each modality m captures a noisy observation of the signal

ym ∈ Rn.

An additional property of a sample is its attribute a ∈ {light, dark}. The observed signal

is then given by ya
m. Both modalities behave differently for different attributes. For example,

a modality may have different expected performance for samples with different attributes.

Let the theoretical Signal to Noise Ratio (SNR) of a signal ya
m be denoted by the operator

S(ya
m). We use the SNR to define modality-wise fundamental performance and fairness.

Without loss of generality, we assume that the modality M1 is better performing as compared

to the modality M2 (in our practical setting, M1 would correspond to the RGB modality

while M2 would correspond to the radar modality). That is,

E
a,ya

M1

[
S(ya

M1
)
]
> E

a,ya
M2

[
S(ya

M2
)
]
. (2.28)

Additionally, we note that according to our required conditions, the modality M1 is biased

in terms of attribute a, while the modality M2 is unbiased. That is,∣∣∣∣ E
yLight
M1

[
S(yLight

M1
)
]
− E

yDark
M1

[
S(yDark

M1
)
] ∣∣∣∣ > ϵ, and∣∣∣∣ E

yLight
M2

[
S(yLight

M2
)
]
− E

yDark
M2

[
S(yDark

M2
)
] ∣∣∣∣ < ϵ,

(2.29)

for some suitable small ϵ. We also assume without loss of generality that the ‘dark’ attribute

is the worse performing attribute group on average. That is,

E
yLight
m

[
S(yLight

m )
]
≥ E

yDark
m

[
S(yDark

m )
]
, ∀m ∈ {M1,M2}. (2.30)

We wish to characterize the improvement in signal quality arising as a result of combining

observations from the two modalities M1 and M2. That is, we wish to understand the

performance and bias properties of a combined measurement signal ya
comb that is optimal in

the SNR sense, as follows:

C∗ = argmax
C

E
[
S(C(ya

M1
,ya

M2
))
]
, ∀ a.

ya
comb = C∗(ya

M1
,ya

M2
), ∀ a.

(2.31)
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Here, C(·, ·) is an appropriately chosen combining operator.

We wish to quantify the benefit of multi-modal combination in terms of the gains obtained

over the modality M1. The quality gain factor Qa is therefore given by,

Qa =
E [S(ya

comb)]

E
[
S(ya

M1
)
] . (2.32)

We have established the required terminology for our result.

Theorem 1: Let QLight and QDark be the quality gain factors for the light and dark attributes

respectively. Then, optimally combining observations ya
M1

from a better performing but

biased modality M1 and ya
M2

from a worse performing but unbiased modality M2, where

a ∈ {light, dark}, ensures,

QDark > QLight. (2.33)

That is, the worse performing attribute sees a greater relative gain in signal strength.

Proof: The optimal combination method for two signals with known SNRs is the Maximal

Ratio Combining [66]. The resulting expected SNR is given by,

E [S(ya
comb)] = E

[
S(ya

M1
)
]
+ E

[
S(ya

M2
)
]
, ∀ a. (2.34)

Then, the quality gain factor is given by,

Qa =
E
[
S(ya

M1
)
]
+ E

[
S(ya

M2
)
]

E
[
S(ya

M1
)
]

= 1 +
E
[
S(ya

M2
)
]

E
[
S(ya

M1
)
] . (2.35)

Then, from Equations 2.29 and 2.35, we can infer that,

QDark > QLight. (2.36)

This completes the proof. ■

We therefore establish that fusion with a worse performing but less biased modality is in

fact beneficial in terms of bias mitigation.
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Figure 2.5: The proposed approach uses a novel adversarial discriminative

training-based approach for skin tone debiasing in the modality fusion mod-

ule. The fusion network operates in the frequency domain using an alternating waveform

reconstruction and adversarial losses.

2.4.2 Overall Inferences

We now summarize the inferences from the theory section, which serve as a motivation for

our multi-modal fusion hypothesis for bias alleviation.

1. The RGB modality is biased against darker skin tone samples. This arises fundamen-

tally as a result of poor Signal to Noise Ratio.

2. Combining the RGB modality with a poorer but unbiased modality results in larger

improvements for the darker skin tone samples as compared to the lighter skin tone

samples.

2.4.3 Implementation of Fusing RGB Camera and Radar for Plethysmography

In the previous section, we discussed bias in the context of plethysmography. We now discuss

the specific fusion of camera and 77 Ghz radar to resist bias. Referring to notation from
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Section 2.1.4, let v1 denote an RGB modality measurement, and let v2 denote a FMCW

radar modality measurement. Then, x = [v1,v2], our overall measurement. Our goal is to

learn a robust functional mapping f from the measurement space to the plethysmograph

space,

y = f(x)

= f([v1,v2]).
(2.37)

Figure 2.5 describes our overall pipeline. We use a late fusion parameterization for the

mapping f . The unimodal plethysmography signal estimates are first obtained. A fusion

architecture combines these to obtain the final fused plethysmography estimate. That is,

y = f([v1,v2]) = gf (g1(v
1), g2(v

2)), (2.38)

where g1(·) and g2(·) are the modality specific estimators for RGB and radar respectively.

The function gf (·) is the late fusion model. We describe each of these components in the

following text. Specific implementation, training configuration and model architecture details

may be found in the included supplementary code.

2.5 MMFAIR Dataset

To conduct evaluations, we recruited 91 volunteers to participate in this study. The dataset

contains 28 light, 49 medium, and 14 dark skin tone volunteers. The skin tones were labeled

according to the Fitzpatrick scale [75]. The volunteers are primarily from a college back-

ground, with representation between genders. 6 recordings were taken for each volunteer. A

recording lasts 30 seconds and consists of a RGB video and radar IQ data. Environmental

factors such as lighting variations are left in the dataset to enable more robust skin tone

bias trend analysis. Figure 2.6 describes our data collection setup in detail. The data was

taken using one camera from a ZED stereo camera and a Texas Instruments AWR1443 RF

development board at a distance of 0.5-1m. The entire dataset consists of over 550 record-

ings and 18,000 unique beats of the hearts. The ground-truth plethysmograph signal was
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Figure 2.6: A mobile multi-modal sensing platform was deployed to collect our

remote plethysmography dataset. The parts list and reference designs may be

found at https://github.com/UCLA-VMG/EquiPleth.

acquired using an IntelliVue MX800 clinical grade patient monitor. An external computer

is used to synchronize the capture and storage of the two modalities and the ground truth.

The entire data collection setup is mobile, enabling large scale data capture irrespective of

location.

The RGB camera was used with default factory settings at 30 fps. Videos were processed

to 128x128 crops using a MTCNN [113] to locate facial regions. The FMCW radar was set

to emit 120 chirps per second with a frequency slope of 60 MHz/µs, starting frequency of 77

Ghz, bandwidth of 3.720 Ghz, and sampling rate of 5 Mhz using a single transmitter-receiver

pair. The sampled IQ data was processed into a range matrix and data related to regions of

interest extracted within a 25 cm window.

We note that several previous works [10, 24, 111] evaluate metrics over 30 second windows

of the estimated waveform. In this work, we choose to evaluate metrics over 10 second

widows with a stride of 128 samples (4.27 s) instead. This provides a more realistic setting

for analysis (with lower latency), in addition to better highlighting the effects related to bias
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and fairness. All evaluations and metrics are evaluated over six independent data splits. For

each split, we include 40 participants in the traning set, 12 participants in the validation set

and all remaining participants in the test set. Note that to enable control over the participant

skin tone representation in each split, we ensure that the train and validation set have equal

number of participants from Fitzpatrick groups I, II, III and groups IV, V, VI.

2.6 Results

2.6.1 Evaluation Metrics

Performance To assess general performance, we use heart rate prediction metrics as in

previous iPPG work [63, 111]. Table 2.2 summarizes metrics for heart-rate accuracy. Several

results are reported using the absolute percent error (APE) metric due to the Association

for Advancement of Medical Instruments (AAMI) defining a threshold heart-rate error as no

greater than 10% relative error [59], as well as its prevalence in evaluating heart monitors and

physical monitoring devices [9, 62]. We note that all performance measures are evaluated

over the entire testing dataset, consisting of samples from the light, medium and dark skin

tone groups.

Fairness To evaluate fairness, we adopt standard metrics from the fairness community [92].

A plethysmograph method can be considered fair if the outcome for the general population

is the same as for a sub-population with a given attribute, a. In our case, to facilitate

experimental analysis, we evaluate fairness in terms of similarity of outcome between the

light and dark skin tone groups. The following definitions introduce metrics for quantifying

fairness and are summarized in Table 2.2. The threshold test [14] is a notion of sufficiency

of fair performance. The test shows the proportion of test samples in the light (L) and

dark (D) categories that fall outside of the threshold defined by AAMI. In order to measure

bias through performance metrics, we follow [19] by evaluating a performance metric, D on
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Metric Expression
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Mean Absolute Error (MAE) ↓ 1
N

∑N
i=1|hi − ĥi|

Root Mean Square Error (RMSE) ↓
√

1
N

∑N
i=1(hi − ĥi)2

Mean Absolute Error (MAPE) ↓ 1
N

∑N
i=1

|hi−ĥi|
hi

Pearson Corr. Coefficient (R) ↑
∑N

i=1 (ĥi−µĥ)(hi−µh)∑N
i=1 (ĥi−µĥ)

2
∑N

i=1 (hi−µh)2

Fa
ir

ne
ss Threshold Test ↓ PX[APE(Ĥ) > 10% | a] ,∀ a ∈ {L,D}

Performance Bias ↓ |Da=D(H, Ĥ)−Da=L(H, Ĥ)|

Table 2.2: We use multiple performance and fairness metrics for evaluation. Per-

formance and fairness are not necessarily correlated properties and requires both for full

comparison.

attribute groups and taking a pairwise difference.

2.6.2 Qualitative Performance

Analyzing the generated photoplethysmograph waveforms allows for visual inspection of the

estimated waveforms. The heart-rate estimates are frequency estimates obtained out of

these waveforms. Fig. 2.7 shows estimated plethysmograph waveforms for randomly chosen

samples from the light and dark groups respectively. We compare the estimated waveforms

from the best RGB and radar unimodal models with our fusion-based model. For the RGB

only modality, a degradation in signal quality is observed from the light to the dark skin

tones. This highlights the performance bias in the modality. For the radar only modality,

we note across the board noisy waveforms. However, there is minimal bias across skin tones.
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Table 2.3: Across baselines spanning the radar and camera modalities, the pro-

posed fusion model shows performance and fairness improvements over the uni-

modal iPPG modality. The performance metrics measure the average performance across

the entire dataset. The pairwise difference between light and dark groups being bracketed

and the sign shows direction of bias - ideally the absolute value of this bias should be low.

The fairness threshold test measures the percent of the light and dark populations failing

the AAMI standard. The best performing numbers are bolded between the fusion, RF, and

PhysNet backbone.

Performance (Fairness) Fairness

Method MAE ↓ (↓) MAPE ↓ (↓) RMSE ↓ (↓) r ↑ (↓) T-Test (APE %)

Green [91] 11.61 (0.23) 15.57% (1.09%) 16.56 (-0.97) 0.23 (-0.12) 42.9,52.9

ICA [68] 8.38 (4.42) 11.65% (6.19%) 14.03 (3.15) 0.41 (-0.36) 19.9,46.9

CHROM [27] 7.45 (4.97) 10.57% (6.81%) 13.38 (4.17) 0.46 (-0.38) 14.5,42.6

BCG [12] 13.01 (-0.99) 15.03% (-1.05%) 20.66 (-1.25) 0.132 (0.05) 30.5,29.1

FFT-based RF [6] 13.51 (2.25) 1.66% (2.56%) 21.07 (2.47) 0.240 (-0.25) 39.1,44.5

PhysNet [111] 1.78 (2.22) 2.35% (2.63%) 5.26 (4.05) 0.91 (-0.25) 2.1,12.2

Our RF 2.18 (0.51) 3.05% (0.69%) 6.12 (0.85) 0.89 (-0.13) 5.1,8.4

Our Fusion 1.12 (0.67) 1.52% (0.79%) 3.42 (1.44) 0.95 (-0.10) 1.1,4.2

Our fusion model infers the best qualitative waveforms across all three groups, while also

reducing the skin tone bias that is evident in the RGB only modality.

Our second set of qualitative resources for analysis are Bland-Altman plots [35] (Fig-

ure 2.8). These plots visualize the distribution of the heart-rate estimation error versus the

ground truth heart rates. The plots highlight that ground truth heart rates are distributed

over a large range. In terms of heart rate estimation accuracy, we note good performance

for the RGB only modality. However, visibly significant bias is present across skin tones, as

visible from the error distributions. For the RF only modality, we note a larger spread in
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Unimodal RF Multimodal FusionUnimodal RGB

Figure 2.7: Qualitative analysis of estimated waveforms indicates superior overall

performance for the fusion model, with reduced group-wise bias. We highlight a

randomly chosen snippet of the plethysmograph waveform to highlight qualitative differences.
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the distributions and a larger 1σ value. However, the skin tone bias is minimal. Again, our

fusion method show significant performance and bias improvements, with lower and largely

similar 1σ thresholds across skin tones.

2.6.2.1 Quantitative Performance

Table 2.3 highlights the performance measures for the various compared methods. The

signal processing-based iPPG and radar-based methods reflect relatively poor performance

on our dataset. We note that in general, the iPPG methods show better performance but

the radar-based method is fairer.

The deep learning-based iPPG method [111] shows significant gains in performance over

the signal processing methods. This highlights the benefit of data-driven nonlinear modeling.

However, the performance bias between groups becomes much clearer. This reinforces the

existence of fundamental bias in the iPPG modality. We also note that implementations for

DeepPhys [24] and LSTM PhysNet [111] were tried on our dataset, however they did not

converge during training. We believe this may be due to small misalignments between the

ground-truth and video, that only the 3D-CNN PhysNet can handle.

Our deep learning-based RF method follows a similar trend. A significant improvement

in performance is observed when compared to the signal processing-based RF method. How-

ever, the overall performance is lower that that of the deep learning-based iPPG method.

Additionally, we note the significantly lower performance bias between the groups.

Our fusion method outperforms all previously listed methods. We see clear improvements

in overall performance across all metrics. In addition, we also notice significant improvement

in bias measures when compared to the RGB unimodal methods.

Notably, despite the lower performance of the radar-based method compared to the iPPG

and fusion methods, the performance still remains high (with an average MAE of 2.18 beats

per minute). Therefore, from the perspective of our evaluations on average performance, all

30



U
n
im

od
al

 R
F

M
u
lt
im

od
al

 F
u
si

on
U

n
im

od
al

 R
G

B

Figure 2.8: Plotting the heart-rate estimation error versus the ground truth heart

rate (Bland-Altman plots) emphasizes performance benefits of the proposed

multi-modal fusion model. Each plot highlights the distribution of the ground truth

heart rates (top), distribution of the heart-rate estimation errors (right) and the plot of the

estimation errors versus the ground truth heart rates.
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three methods (iPPG, radar and fusion) show acceptably high average performance. Readers

may note that real-world factors such as motion, distance from sensor and so on may have

relevant effects on the relative performance of the three methods, that are beyond the scope

of evaluation of this work. Such a detailed study, which will determine a more general

conclusion on the viability of the three methods, is deferred to future work.

2.6.2.2 Fairness

Table 2.3 highlights performance bias measures for the various compared methods. We note

modality specific trends for these measures. For the RGB-only modality, we note that the

T-Test values for the light and dark groups, as well as the performance bias measures, show

significant bias. This is consistent with our theoretical analysis and expectations. On the

other hand, for the radar modality, the T-Test values show low bias. This is also noted in the

performance bias measures. Finally, we note that our fusion method achieves significantly

better performance bias and T-Test scores compared to the RGB-only modality. Compared

to the radar modality, we note slightly worse performance bias - the fusion method shows

better performance bias in terms of some metrics, while the radar-only method shows better

performance bias in terms of other metrics.

The observations from the previous subsections set up a tradeoff between performance and

fairness. The proposed fusion method improves on both fronts over the iPPG method, but

not compared to the radar-based method. Therefore, both these methods (fusion and radar-

based) are potentially deployable candidates. We discuss this in some detail in Section 2.6.4.

2.6.3 Benefit of the Skin Tone Discriminative Loss

To establish the importance of our proposed skin tone-based adversarial discriminator, we

compare against a naive fusion regime, trained only with our squared Pearson loss. Table 2.4

highlights the benefit of the skin tone discriminative loss. We note that the addition of the
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Table 2.4: An adversarial network for skin tone estimation is a novel contribu-

tion that helps obtain a more equitable plethysmograph estimator across skin

tone. When compared with a fusion network trained without the adversarial network, sig-

nificant improvements are noted across all performance fairness measures, at a small cost in

performance measures.

MAE ↓ (↓) MAPE ↓ (↓) RMSE ↓ (↓) r ↑ (↓)

Fusion w/o AN 1.09 (0.98) 1.47% (1.28%) 3.31 (2.56) 0.964 (-0.146)

Fusion w/ AN 1.12 (0.67) 1.52% (0.79%) 3.42 (1.44) 0.953 (-0.102)

discriminative loss significantly reduced the skin tone bias of the fusion model, at a small

performance cost. The model is encouraged to minimize the distributional gap between the

estimated plethysmograph waveforms for light and dark skin tone groups.

2.6.4 Discussion

In summary, we fuse data from camera streams and 77 GHz radar to create a higher perform-

ing and more equitable plethysmography technique. To encourage reproducible research, we

make the dataset and reference designs available. While we have only fused camera and

radar data, these two modalities were chosen for a reason. Camera-based plethysmography

is generally known to be high performing but exhibits high skin tone bias. In contrast,

from our experiments, we note that radar-based methods have relatively poorer performance

but are more resistant to skin tone bias. This work demonstrates that in both theory and

practice, sensor fusion of RGB and radar modalities can improve performance and fairness.

Comparing Fusion Results with Radar The goal of this work is to improve the fair-

ness of camera-based plethysmography through fusion with radar measurements. Through
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such fusion, we show performance and fairness gains over the camera-based modality. An

alternative analysis is comparison of the fusion method with the radar modality. This sets up

a tradeoff-based selection: the fused modality shows sizeable performance gains over radar,

albeit with a small reduction in fairness. Notably, this means that the dark skin tone per-

formance of the fusion method is superior to both unimodal methods. This choice between

performance and fairness depends on the end-user. We present the fusion-based method to

the community as a viable alternative, for potential adoption. Follow-up works can attempt

to improve the fusion-model fairness.

Limitations Constrained by relatively smaller data sizes, and imperfect skin tone balance

in the dataset, we use a late fusion parameterization for our model, to enable better con-

ditioned model training. End-to-end learning for multi-modal fusion may be explored in

future works for improved performance gains. In addition, while our dataset is the largest

dataset for camera-radar fusion plethysmography with a focus on demographic diversity, we

note the need for continued effort towards dataset collection. Our definition of bias is also

specific in nature. We deal with bias in terms of the signal to noise ratio (SNR). This is one

interpretation of bias, and future work can extend our tools and analysis to other definitions.

Future Work and Conclusion In follow-up work, it is possible to add further sensing

modalities such as thermal, acoustic, near infrared, and polarization images to this dataset.

These additional modalities have their own uses and can aid in the sensing of additional

physiological information beyond the plethysmograph. We conclude by noting that this is a

small step in what might be a much bigger trend for the next-generation of internet of things

(IoT) devices where both performance and equity are quality metrics.

Ethical Considerations Although there is much algorithmic research on fairness, it is

imperative for devices to also be equitable and not disadvantage segments of the population.

This is particularly important for devices that may one day be used clinically.
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CHAPTER 3

Correcting for Solar Loading in Infrared Thermometers

3.1 Problem Background

3.1.1 Introduction

Infrared thermometers (IRTs) offer the potential to measure human body temperature in

a fast, non-invasive manner. These devices can be based on single point (hereafter, non-

contact infrared thermometer (NCIT)) or image based measurements (hereafter, thermo-

graphic imaging). IRTs have been used for rapid screening of temperature to help maintain

public health during the SARS, H1N1, Ebola and now, COVID-19 outbreaks. A common

case is when workers enter an office building on their way to work. The lobby will have a

kiosk that uses a thermal camera to screen for an elevated temperature, to assess if the per-

son is safe to proceed into a crowded office. If she has elevated temperature, she is advised

to stay home. Such screening schemes are placed at airports, hotels, and stadiums and have

proven useful for minimizing spread of infectious disease.

Given the importance of measuring temperature it is critical that thermal cameras mea-

sure temperature accurately and equitably. Recent findings about thermal camera bias have

not shown a clear link between skin tone and thermal bias. However, this is only true in

controlled indoor scenarios. When a subject is exposed to the sun, their skin absorbs solar

radiation and heats up—we term this phenomenon “solar loading". While the thermal sen-

sor correctly measures increased skin temperature, the thermometer does not correct for the

sun-induced temperature elevation.
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Figure 3.1: Experimental data showing the solar loading effect. (a) The experiment

setup. (b) Solar loading results in elevated skin temperature measurements that are biased

against dark skin toned subjects compared to light skin toned subjects. Commonly accepted

fever threshold (> 37.9◦C) [31] would misclassify solar loaded, healthy, dark skin toned

subjects.

Addressing solar loading is an important problem because the effect is significant. In fact,

the solar loading bias is often more than the threshold for fever. Observe the human subjects

data shown in Fig. 3.1(b). The number line at bottom plots the deviation in temperature per

subject with respect to a ground truth device based on contact thermography. All subjects

were healthy, but most of them are falsely identified as having a fever. Moreover, there is

also an issue with equity. Absorption of solar radiation in skin depends on the constituent

chromophores, such as melanin. This suggests that the magnitude of solar loading scales

with skin pigmentation, resulting in poorer IRT performance for select demographics. Thus,

in our work we aim to not only correct solar loading, but to also study and remedy skin tone

bias due to the solar loading effect.

While our focus is on solar loading, our broader vision aligns with a surge of recent

scholarship in generalizing IRT operation to outdoor and less controlled environments. Dzien

et al. [30], Ogawa et al. [65], Spindel et al. [82] evaluated IRTs in cold weather and found

that IRT measurements were correlated with the cold. Ravi et al. [70], Tay et al. [88] tested

IRTs in hot weather and found a similar correlation. It is generally accepted in the scientific
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Table 3.1: Today, commercial thermal IR sensors require a waiting period for

solar loading to cool down.

Manufacturer Model IR Sensor Waiting Period

Welch Allyn 105801 NCIT 30 min [102]

ADC Adtemp 429 NCIT 30 min [4]

Joytech Sejoy DET-306 NCIT 10 min [77]

Solution I (Ours) Generic NCIT 3-5 min

Solution II (Ours) Generic Thermal Camera 0 min

community that IRTs are accurate in limited settings: a patient must be acclimated to

an indoor measurement location, held at room temperature (20 − 22°C) for 10-30 minutes

[25, 34] and this is typically the recommendation of NCIT manufacturers as can be seen in

Table 3.1. In contrast to previous work, we focus our attention on the less characterized,

but no less important, issue of solar loading biases.

3.1.2 Related Work

Broadly, there are two types of infrared thermometers: those that use point measurements

and those that capture spatial temperature fields. The former, which refers to as non-

contact infrared thermometers (NCITs), measure the forehead or temple to estimate core

temperature. The latter captures larger field-of-views (FoVs) using thermal cameras and

will be referred to as infrared thermography. A temporal artery thermometer (TAT) falls

between these two groups: the device is manually scanned across the face to obtain multiple

temperature measurements. While a TAT is highly accurate, we do not consider it in this

work because (1) proper operation of the device requires training and (2) they are contact-

based infrared thermometers. In this section, we discuss the accuracy and bias in NCITs and

thermographic methods.
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Non-contact infrared thermometers (NCITs): While NCITs are accurate in standard

cases, in general, their performance depends on climate, measurement location and metabolic

activity. Erenberk et al. [32] monitored forehead NCIT measurements in children exposed to

cold weather (0− 4◦C). NCIT measurements underestimate core temperature, but increase

and stabilize after 10 minutes indoors. Spindel et al. [82] compared NCIT performance in

different measurement locations based on proximity to outdoors conditions. They found

that accuracy improved as measurement locations moved further indoors. The influence

of sunlight is considered but not explored. Kistemaker et al. [48] assessed the reliability of

NCITs after exercise, which is expected to raise the metabolic rate. After 15 minutes of exer-

cise, NCITs overestimated by 1.2◦C. Shajkofci [78] corrects environmental perturbations on

NCIT measurements by regressing a linear relationship between skin, outdoors and ambient

temperature. Additionally, they correct for diurnal variations by recording the time of day.

This work, as noted by the authors, is limited in the ethnic distribution of the dataset.

Infrared Thermography: In some ways, infrared thermography is preferred over NCITs.

NCITs require the device to be held 1 − 2cm from the skin, while thermographic methods

do not suffer from this limitation due to the larger FoV. Infrared cameras are however more

expensive than NCITs as the hardware is more complex. In infrared thermography, an image

of the subject is taken, usually of the face or neck. A region-of-interest (ROI) is selected

and the aggregate skin temperature is mapped to core temperature. The inner canthus and

forehead are suggested ROIs due to high perfusion from the carotid and orbital arteries

respectively [34]. It is worth noting that the ROIs comprise barely 1% of the entire thermal

image, meaning 99% of captured data is discarded.

IR thermography suffers from the same limitations as NCITs. Švantner et al. [85] found

that measurements were influenced by ambient conditions. Wang et al. [97] use regression

on multiple ROIs to achieve better accuracy then NCITs, but impact of ambient conditions

are not studied.
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Machine Learning for Infrared Thermometers: Machine learning has often been used

with infrared thermometers in two ways: to improve the accuracy of infrared thermography,

or to predict infections and illnesses using NCITs and other physiological measurements.

Dagdanpurev et al. [26] used a combination of facial infrared thermography images, axillary

temperature measurements and ambient temperature values to obtain optimum temperature

estimates using linear regression analysis. This optimized temperature was further used for

infection screening using the kNN algorithm. A skin heat transfer model for converting facial

infrared thermography images into blood-perfusion maps was proposed by Wu et al. [105]

to improve facial recognition model performance. The approach helped alleviate the effect

of environmental conditions on infrared images. NCITs and thermographic cameras were

used to detect temperatures which helped classify COVID-19 cases using recurrent neural

networks (RNN) with long short term memory (LSTM) model [74]. Random forests were

utilized in Li et al. [53] for the prediction of thermal comfort of healthy subjects in indoor

HVAC settings using facial infrared thermography.

Bias in Infrared Thermometers: Recent works have evaluated bias in medical devices

and proposed general solutions to eliminating bias, such as collection of diverse datasets [42,

116]. Other works, specifically in heart rate estimation, have demonstrated strides towards

equitable technology both through hardware and software [11, 20, 93]. Recently, understand-

ing the limitations of infrared thermometers has become important, but studies on potential

biases reveal conflicting findings. Adams et al. [3] found that age and gender impacted IR

thermography measurements. Regarding skin tone bias, Khan et al. [46] evaluated NCITs in

subjects grouped by researcher labelled skin tone: "light" and "medium and dark". No skin

tone bias was found, although the dataset was heavily skewed towards lighter skin. Strasse

et al. [84] compared the performance of NCITs across body locations as well as ethnic groups

(Black, White and mixed race). Again, no bias was found. Most recently, Bhavani et al. [16]

compared TATs against oral thermometers. From self-reported race, performance on Black
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and White patients were compared, revealing that TAT measurements underestimated tem-

perature in Black patients (−0.07◦C). Charlton et al. [23] found that emissivity of skin

does not depend on skin pigmentation. These conflicting studies show that race, ethnicity

and skin tone groupings preclude an understanding of bias in IRTs. The mechanism behind

recorded biases is unclear.

3.1.3 Contributions and Scope

In this thesis, we offer two solutions to solar loading. Solution I exploits temporal modu-

lation of solar loading to moderately reduce the waiting period. This is useful for NCITs.

However, if spatial information is available with a camera, then we propose Solution II which

offers single shot correction. Our approach is in the family of computational light transport

techniques that use optical and computational principles to reveal and interpret the flow of

light in our everyday world [15, 49]. The insights from light transport are practical: they

inform learning-based inductive biases to correct for solar loading. A real dataset of sub-

jects is collected and ground-truthed with contact-based thermometers. Metadata is stored

with objective measures of melanin concentration, enabling an analysis of equity. The end

result from this study is that solar loading is corrected. Since solar loading affects both

light skinned and dark skinned people, solving for solar loading is a win-win where equity is

improved as well as accuracy for everyone.

3.2 Thermal Light Transport Preliminaries

We overview the image signal processor (ISP) chain that thermal imagers use to estimate

temperature of the human body depicted in Fig. 3.2. Let us begin by linking an object’s

temperature to its emission of light. In particular, every object hotter than absolute zero

(−273.15◦C) emits radiation proportional to its temperature—this radiation is called ther-

mal radiation. The relationship between thermal radiation and temperature is wavelength
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Figure 3.2: Thermal image signal processing (ISP). (a) Raw data from a thermal sen-

sor is converted to temperature through a series of processing blocks. For thermal cameras,

additional processing for temporal drift and gain control (shaded) are added. (b) Infrared

thermometers convert sensor temperature to core temperature using a device-specific cali-

bration. We propose an additional solar loading correction (shaded).

dependent. We observe this in everyday life: an iron bar heated to a very high temperature

will initially glow red and then as its temperature rises it will glow orange, then yellow, and

so on, until it is perceived as glowing violet. This relationship is described more precisely by

Planck’s law. For a given wavelength λ, an object with emissivity ε and temperature T has

spectral radiant exitance I(λ, T ):

I(λ, T ) =
2πεhc2

λ5

1

ehc/(λkT ) − 1
Wm−2, (3.1)

where h = 6.63·10−34J s (Planck’s constant), k = 1.38·10−23J K−1 (Boltzmann constant)

and c = 3 · 108ms−1. Planck’s law in Eq. (3.1) can be simplified. Assume that we have a

sensor that can capture readings over the support of wavelengths considered. Then we can

integrate Eq. (3.1) to obtain the total radiant flux emitted by a surface as:

I(T ) =

∫
λ

M(λ, T ) dλ, (3.2)

= εσT 4. (3.3)

This equation is known as the Stefan-Boltzmann law which is convenient as it relates thermal

radiation to only three terms. The thermal radiation received is proportional to the product
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of the fourth power of temperature multipled by emissivity and a fixed constant, σ = 5.67 ·

10−8W m−2K−4, known as the Stefan-Boltzmann constant. Estimation of temperature can

proceed by taking the fourth root of Eq. (3.3) as.

T =
4

√
I(T )

εσ
. (3.4)

We can measure I(T ), using for instance, a thermal camera and σ is the fixed Stefan-

Boltzmann constant, leaving us with only the emissivity to plug in. Emissivity determines

how efficient a surface is at emitting thermal energy and varies across objects: ε = 1.0

describes a perfect emitter of thermal radiation (blackbody) and ε = 0 describes an object

that does not emit thermal radiation (e.g. polished metals). The emissivity value of human

skin is known in literature as ε = 0.98.1 To obtain the temperature of the human, we can

take the fourth root of received radiation vis a vis Eq. (3.4) by setting ε = 0.98 to obtain

temperature of the human skin surface. This assumes that the human is the only object in

the scene.

3.2.1 Multipath Temperature Estimation

Real world measurement of human body temperature must account for multiple thermal

emitters in a scene. In any practical setting, the human body is in a multipath environment.

A sensor measures thermal radiation from all the objects in a scene. Consider a person sitting

in a room. Their skin emits thermal radiation proportional to Eq. (3.3) and reflects radiation

from the wall to the camera. This is a form of global illumination reminiscent of the Cornell

Room in computer graphics, except that this setting is at thermal wavelengths. Thermal

radiation arriving at the camera is compounded with radiation from the atmosphere. The

object, background and atmosphere contribute to the thermal multipath.

To address this multipath problem, thermal sensor ISPs used in clinical medicine have a

1In the context of equitable sensing, one must be careful about using a single material constant for all
humans. However, bias has not been observed in thermal cameras [73], and so this value is considered safe
to use.
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radiometric chain that abstracts multipath into a model with three steady state terms. A

radiometric chain relates radiation intensity Isensor at a single scene point as:

Isensor = Iskin + Iamb + Iatm. (3.5)

Here, Iskin is the intensity of thermal emission from the human body, and more precisely,

the skin surface. The radiation from objects in the scene that reaches the measured spot

is referred to as Iamb and is the multipath of objects in the background environment. The

ambient term is difficult to write out explicitly as multipath reflections depend on the am-

bient surroundings, which are generally unknown. Finally Iatm describes the intensity from

atmospheric air particles.

The goal of the radiometric chain in commercial devices is to rewrite Eq. (3.5) into a

form that extracts T skin. In literature, the human body is assumed to be opaque to thermal

radiation, such that thermal radiation does not pass through the body. The emissivity of

the human body can then be described by Kirchhoff’s law: ε = α, where α is absorptivity or

the fraction of incident radiation that is absorbed by the object. In analogy to visible light

optics, conservation of energy on absorbed, reflected, and transmitted radiation is expressed

as:

1 = α + r + τ, (3.6)

1 = ε+ r + τ, (3.7)

where r, τ are the fraction of reflected and transmitted radiation respectively. For opaque,

human skin, τ = 0 and consequently r = 1 − ε. When measuring a human body target,

multiple radiative phenomena are recorded by a thermal sensor. Due to opacity, the human

only emits radiation (Eq. (3.3)) and reflects a portion of background radiation. The emitted

and reflected components then pass through an atmospheric volume. The atmosphere both

attenuates the incoming radiation by τatm, the transmission factor, and emits its own radi-

ation. Putting this together, we can use the emissivity of the human skin as well as human
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temperature (T skin), ambient temperature (T amb) and atmospheric temperature (T atm) to

write Eq. (3.5) as

Isensor = τatm (Iskin + (1− ε)Iamb) + (1− τatm)Iatm

= στatm

(
εT

4

skin + (1− ε)T
4

amb

)
+ σ(1− τatm)T

4

atm. (3.8)

Note the explicit use of a bar on top of the temperature symbols. This emphasizes that the

temperature is at steady state and not fluctuating in time. Eq. (3.8) can be algebraically

rearranged to solve for the human skin temperature as

T skin =
4

√
Isensor

σ
− τatm(1− ε)T

4

amb − (1− τatm)T
4

atm

τatmε
. (3.9)

Estimation of skin temperature from Eq. (3.9) requires values for all parameters on the right

hand side of the equation. This is problematic because τatm is not known. It is possible to

hard-code a value as some existing thermal monitors do, by estimating the working distance

and priors on air concentration. However, since our derivations will not depend on the

specific value of τatm, we will without loss of generality set τatm = 1. At a close range of

less than 3 meters τatm = 0.98− 0.99, and this value is also a good approximation when the

camera is sufficiently close to the human subject. Eq. (3.9) now simplifies to

T skin =
4

√
Isensor

σ
− (1− ε)T

4

amb

ε
. (3.10)

Here all terms on the right hand side are measured or estimated in commercial devices for

healthcare. As discussed, Isensor is the intensity measured by the instrument and ε = 0.98 for

the human body. Clinical devices include an additional calibration step to measure T amb, the

ambient temperature. While temperature of human skin can now be estimated in multipath

conditions, there is another problem: skin temperature is not the same as clinically useful

core temperature.
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3.3 Effect of Solar Loading on Temperature Estimation

3.3.1 Core Temperature Estimation

We now discuss how existing devices estimate core temperature from skin temperature. The

core temperature, denoted as T core, is the temperature of our internal organs and differs from

peripheral skin temperature by a few degrees Celcius. Clinicians seek the core temperature,

not the skin temperature. Existing instruments estimate T core from T skin by finding a map:

C : T skin → T core, (3.11)

where the form of C varies across manufacturers, and use configurations. Existing devices

use a mapping that assumes the subject is thermoneutral, i.e., the skin temperature is at a

steady state temperature with no transient effects. Such mappings are often linear, of the

form:

T core = b0 + b1T skin, (3.12)

where b0 and b1 are scalar coefficients used by a manufacturer. Unfortunately, the assumption

of a steady state model is invalid. If sun is shining on a person’s skin, there is a transient

effect to T skin but that same transient effect will not propagate to T core.

The core mapping, C, is opaque to users because it is built from proprietary data collected

by a manufacturer. As such, instead of directly solving for core temperature, we aim to

estimate the solar loading bias in skin temperature. With a bias value, we can estimate

the thermoneutral skin temperature and use existing device mappings to obtain the core

temperature.

3.3.2 Gap in Prior Models: Solar Loading

The gap in the current radiometric chain in Eq. (3.5) is that heating from the sun is not

modeled. As discussed from the introduction, the problem that we seek to address is solar

loading, where the skin heats up outdoors due to sunlight. A valid indoor measurement
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can then only be taken many minutes later. The focus is to correct for solar loading while

minimizing the waiting period. It should also be noted that while solar loading is a source of

error for all human subjects, it particularly disadvantages darker skin subjects who heat up

more due to melanin absorption. We model tissue in the next section with varying melanin

to underscore this disparity.

3.3.3 Equity of Solar Loading

The magnitude of the solar loading effect depends on absorption of solar radiation by the skin.

Melanin absorbs solar radiation in the visible range of the EM spectrum and conservation

of energy dictates that absorbed the energy must exit the skin. It does so in the form of

long wave radiation, also known as thermal radiation. Eq. (3.7) dictates that absorptivity

is equal to emissivity (α = ε = 0.98), which is constant for human skin. This appears to

contradict the claim that absorption of solar radiation is melanin dependent. However, α

in Eq. (3.7) is defined for thermal wavelengths, while absorption of solar radiation mainly

occurs for visible wavelengths.

3.4 Correcting Solar Loading Induced Errors

3.4.1 Transient Model and Correction (Solution I)

Here, we present Solution I for solar loading that uses only the transient temperature profile

at a single spatial point to correct for solar loading. The advantage of Solution I (compared

to Solution II) is the requirement of only one spatial location. This is useful because temper-

ature scanners are often single pixel as they are much cheaper than a thermal camera. The

downside of Solution I (compared to Solution II) is that transient information alone only

reduces but does not eliminate a waiting period.

Solar loading involves transience. The existing three component model from Eq. (3.5)
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needs to be generalized to include time as a parameter. Let us do so using t for time and

writing

Isensor(t) = Iskin(t) + Iamb + Iatm. (3.13)

In contrast to the previous steady state model, Iskin(t) depends on both steady state and

time-varying components of the skin temperature. Solar loading skin temperature can be

written as:

Tskin(t) = T skin + βsolarpeakf(t), (3.14)

where βsolarpeak is the maximum solar loaded bias at steady state in units of degrees. Note

that the maximum solar loading is a steady state quantity, but transience arises vis a vis

multiplication by time-varying function f(t) with range from 0 to 1 representing the fraction

of maximum solar loading. For example, a person who has been outdoors for a while might

have a maximum temperature increase of βsolarpeak = 5◦C. When the person returns indoors

they will start cooling down as f(t) starts to decay from a maximum value of 1 (fully loaded)

to 0 (no solar loading bias). It is useful to also think of a transient parametrization of solar

loading bias, βsolar(t). This can be written by rearranging Eq. (3.14) as

βsolar(t) = Tskin(t)− T skin = βsolarpeakf(t). (3.15)

Heat transfer literature studies how human body tissue heats up with radiation and

offers differential equations for bio-heat. One such model, from Wang et al. [96], can be

approximated such that skin temperatures approximate an exponential model during solar

loading and cooling. This is visualized in Fig. 3.3. Using this principle, an estimate of

temperature T ∗
skin(t) can be obtained by replacing f(t) in Eq. (3.14) with an exponential.

This returns two equations, one for heating/loading and another for cooling:

T ∗
skin(t) ≈

βsolarpeak(1− e−rht) + T skin heating,

βsolarpeak e
−rct + T skin cooling.

(3.16)

where rh, rc are the rate of heating and cooling respectively and have non-negative values.

The rates depend on factors such as skin tone, blood flow and environmental temperature.
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Here, our goal is to estimate the steady state temperature T skin, which is at a single scene

point. From Eq. (3.16) we see that skin temperature is parameterized by three values: the

maximum solar loading, the level of solar loading and the steady state skin temperature.

With a time series of skin temperature measurements, we can extrapolate T skin by fitting to

the exponential model.

Based on Eq. (3.16), only three temperature measurements are needed to fully determine

T ∗
skin(t); that is, we only need to find βsolarpeak, rc and T skin. Our estimated steady state skin

temperature T
∗
skin can be passed through a standard IRT core estimation block to retrieve a

solar loading invariant core temperature:

T skin︸︷︷︸
ground truth

→
Solar

Load
→


Tskin(tmin)

...

Tskin(tmax)


︸ ︷︷ ︸
measurement

→
Expn.

F it
→ T

∗
skin︸︷︷︸

estimate

→
Core

Est.
→ T

∗
core︸︷︷︸

estimate

, (3.17)

where tmin is the time the first temperature sample was captured and tmax is the time the

last sample was captured. The total time window observed is then Wt = tmax − tmin.

Unfortunately, thermal sensors exhibit drift and introduce a non-Gaussian temporally

distributed noise that is difficult to correct, resulting in a low signal-to-noise ratio (SNR).

The distribution of noise is also non-stationary. Environmental fluctuations such as wind

and other factors must also be accounted for. For this reason using transient data in the real

world is difficult. Solution I requires many more than three measurements and a suitably long

time window of observation for the steady state extrapolation to work well. This is illustrated

on real data in Fig. 3.3, where one observes that multiple minutes, between 3-5 minutes of

transient data are needed to extrapolate the exponential. Nonetheless, Solution I is still an

advance over previous methods which do zero solar loading correction. In particular, the

waiting period is on average reduced as compared to existing solutions. However, we still

seek a single shot solution, enabling mass screening without a waiting period. In Solution

II, we leverage the spatial temperature field of a face to demonstrate single shot correction.
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Figure 3.3: Solution I requires transient data to extrapolate, which increases the

waiting time.

3.4.2 Spatial Modulation and Correction (Solution II)

Although solar loading seems like a solely transient effect, there is a spatial dependence as

well. Solar loading is a variational quantity with respect to the spatial fields of geometry

and material that characterize a human face.

The three path radiometric chain in Eq. (3.5) describes neither temporal nor spatial

modulation. It can be generalized to include space as a parameter. Let us do so, using x for

space to write:

Isensor(x) = Iskin(x) + Iamb + Iatm (3.18)

A few direct simplifications have been made:

• The ambient multipath and atmospheric intensity is assumed to not be spatially de-

pendent.

• Temporal information is not involved because we are restricting scope to single shot

correction.

We follow an analogous path to Equations 3.13 to 3.16 from Solution I by defining solar

loading bias as a spatial functional:

βsolar(x) = Tskin(x)− T skin(x). (3.19)
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Figure 3.4: Skin heat transfer. Skin temperature is determined by the heat transfer of

endogenous and exogenous factors. Penne’s bio-heat equation describes these heat transfer

processes.

We need to show that Tskin(x) and T skin(x) are both functions of space, and that they

are different functions of space (so they do not cancel to a constant). In particular, the two

quantities Tskin(x) and T skin(x) are defined by a partial differential equation known as Penne’s

Bio-heat equation whose mechanics are illustrated in Fig. 3.4. This equation is derived from

the standard heat equation, where heat storage is balanced with diffusion (qdiff ), internal

heat generation and external heating sources. In our simplified setting, heat generation is

from in vivo physiology which we abstract as (qblood), external heating is from the sun (qrad),

and the tissue properties are defined by the constants: tissue density (ρ) and specific heat

of tissue (c). For brevity, we do not include the boundary conditions and full definition of

all terms. For further details, we direct the reader to Wang et al. [96]. We then have:

ρc
∂Tskin(x, t)

∂t
= qdiff (x, t) + qblood(x, t) + qrad(x) (3.20)

ρc
∂T skin(x, t)

∂t
= qdiff (x, t) + qblood(x, t) (3.21)

The primary difference between the two is qrad that we define as:

qrad = α(x, µmel)Esun max(0, l · n(x)) (3.22)

where α(x, µmel) is the proportion of incident solar energy absorbed given the melanin con-

centration, µmel, in the skin, Esun is the incident solar radiation power, l is the direction of
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solar radiation, and n(x) is the surface normal vector at the location x.

Note that Tskin(x, t) and T skin(x, t) are both modulated by spatial heterogeneity in biology

of the skin (spatial variation of blood perfusion, melanin concentration, etc.). However,

when sunlight is incident on the face, l ·n(x) > 0, Tskin(x) and thereby βsolar(x) are spatially

dependent on the interaction of the solar rays with the geometry of the face: l·n(x). However,

this suggests that the bias term is jointly dependent on time and space. In the following, we

show that there exists a space-time equivalence in the bias term that allows us to write it

strictly as a function of space if certain conditions are met, thus enabling one-shot methods.

There exists a Space-Time Equivalence in Solar Loading Bias if T skin(x, t) is constrained

to be spatially homogeneous and diffusion only occurs in the depth dimension. The spatially

varying solar loading bias βsolar(x) can be solved for with linear equations if T skin(x, t) is

spatially homogeneous and in steady state such that it is written as T skin. Then, the solar

loading bias can be solved for given at least two regions whose temperatures and surface

normals are known and different from each other. The temperature of their regions can then

be modeled from Eq. (3.14) at a particular time instant to:

T (x1, to) = T + β f(to)
(
l⃗ · n⃗(x1)

)
,

...

T (xn, to) = T + β f(to)
(
l⃗ · n⃗(xn)

)
.

(3.23)

Given the temperatures of the regions, as well as the solar vector and surface normals, it is

possible to solve for βsolar(x)f(to). Then, the solar bias can be determined at any location

whose surface normal and solar vector is known at one point in time.

3.4.3 Correcting for Solar Loading in Space-Time

The spatial-modulation model in Eq. (3.21) describes the governing equations for solar loaded

skin temperature, parameterized by Tskin, Tcore and melanin. Theoretically, the equations can

be inverted to solve for T skin given a series of observations, however, the assumed constraints
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are severe and do not generalize to human physiology. Diffusion occurs across all three

dimensions and occurs concurrently during solar loading and cooling; additionally, the human

face is not spatially homogeneous as can be seen in Fig. 3.6. We know that skin temperature

varies spatially, but the lack of an analytical solution precludes our understanding of the

specific temperature patterns and gradients induced by solar loading. There is, however,

no dearth of facial thermal imagery. By taking a data-driven approach, we can correct

solar loading by learning a canonical pattern of heat distribution from real faces and how

they change during the cooling process that allows us to relax the spatially homogeneous

and depth diffusion constraint in Eq. (3.23). While spatial temperature and normal vector

distributions [89] of the face can be learned through a data-driven approach, a potential

drawback of the method is if the relative orientation of the surface normals and light vector

vary at a high frequency during solar loading due to motion. If this occurs, than Eq. (3.23)

is invalid due to the light vector being a function of time, l(t).

3.5 Experimental Method

3.5.1 Protocol and Dataset

We show through simulation and in situ experiments that the solar loading bias affects

IRT measurements and is skin tone-dependent. To do so, we acquire a unique dataset of

temperature and skin color information. Our imaging prototype consists of an IR camera

(FLIR Lepton 3.5 LWIR camera) mounted next to a RGB webcam (ArduCam). The RGB

camera is only used for better facial landmark detection when processing the dataset. In

lieu of a block-body reference, the wall in the background of the images is used as a pseudo-

reference to help correct for camera flat-field correction effects. Environmental conditions

are recorded using a solar power meter (Tenmars Solar Meter TM-206) and a handheld

anemometer (BTMeter Anemometer 866A). Throughout the experiment, the study subject

is measured using multiple NCITs, an oral thermometer (Boncare Digital Thermometer MT-
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601A) and our RGB-IR camera setup. Subject’s skin tone information is recorded during

the study; as there is no universal non-invasive skin color measurement, we discuss some

existing methods of skin color measurement.

The standard for measuring skin tone in previous works has been subjective classification

of skin darkness and using ethnicity as a proxy for skin tone. Classification of skin tones is

done using Fitzpatrick skin tone (FST) scale, which groups skin tones into 6 categories of

variable skin darkness. We record FST using the ratings of 2 or more study coordinators.

The FST scale has known limitations [101] so we collect objective skin tone measurements

to separate optical biases from race-related physiological biases. The FST and melanin

demographics are shown in Fig. 3.5. We use the DSM III Colormeter (Cortex Technology)

to measure melanin index (MI). This device has been widely used in various clinical studies

for skin tone and scar color measurements [40, 90]. The colormeter measures red light

reflected by the skin (Ir), to obtain:

MI = 100 · log
(
1

Ir

)
. (3.24)

In subsequent analysis, we group subjects into dark and light skin tone groups based on the

MI. We select MI = 45 as the threshold between dark and light skin tones because it is

the median value of our dataset.

We collect data from subjects under multiple conditions: thermoneutral, solar loading,

and cooling. We record the subject’s temperature, skin color and the experimental condi-

tions. The setup is shown in Fig. 3.1(a). Prior to the experiment, the subject rests indoors to

acclimatize to the experiment location. After resting, the subject’s oral temperature, NCIT

temperatures and skin color are recorded. A thermal video of their face provides steady state

skin temperature. Next, the subject stands in sunlight for five minutes, after which they are

immediately measured using NCITs. Back indoors, the subject cools down for five minutes

and their skin temperature is recorded continuously by our thermal camera setup. Finally,

NCIT temperatures are measured after five minutes of cooling.
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Figure 3.5: Dataset demographics. Dataset distribution across: (a) Fitzpatrick scale

skin tones. (b) Melanin Index (MI) values.

Solar loading bias depends not only on skin tone, but also on environmental conditions,

such as wind, solar azimuth, and cloudiness. To control for these covariates, we only collect

data under the following conditions:

• Solar zenith close to 0 (12:00-2:00PM)

• Minimal to no clouds (Esun ≥ 1000Wm−2)

• Minimal to no wind (vwind < 3ms−1)

Collecting data in a limited time of day also controls for diurnal variations. 21 subjects with

melanin index (MI) values over the range [35.34, 80] were selected to ensure a skin tone

diverse dataset and the dataset demographics are summarized in Fig. 3.5.

3.5.2 Solar Loading Correction

The hardware required for our data acquisition is off-the-shelf and relatively inexpensive.

The novelty of our method is in our computational imaging algorithms, which we discuss

next.
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3.5.2.1 Transient Solution

Solving for T skin using Eq. (3.16) can be done in many ways. Due to the unknown steady

state term, the function is not linearizable but can be solved numerically using a non-linear

least squares algorithm or using a grid search as in [86, 87]. Knowledge of typical skin

parameters allows us to bound the variables; in our case, we constrain skin temperature to

be between 27 − 43◦C and the solar loading bias to safely be between 0 − 20◦C. We find

that fitting an exponential to the data is extremely sensitive to the camera calibration, so

we additionally weight the data according to the calibration status, determined by finding

temperature spikes in the background image.

3.5.2.2 Single-Shot Solution

To demonstrate the utility of spatial information, we train a lightweight convolutional neural

network (CNN) to learn solar loading bias βsolarpeakf(t) from single-shot data. The network

is exceedingly simple and still performs well, consisting only of two convolutional layers

and three fully connected layers. We train using the ADAM optimizer for 20 epochs on

cropped (50×50) facial thermal images. While we do our best to collect a diverse data from

training, there will always be gaps in the acquired dataset. To combat this, we augment

the dataset in multiple ways. First, we apply random horizontal flips to training data, since

the level of solar loading bias in the image does not change due to flips. We simulate fever

images by adding a constant offset (1.6◦C) to the face images [110]. The linear effect of core

temperature on skin temperature is shown in Wang et al. [96]. The simulated fever images

help ensure that the model is not overfitting to temperature intensity, rather than spatial

patterns, when correcting for solar loading. We use a statistical power analysis to determine

that 14 is the minimum number of subjects needed, and we collect data from 21 subjects.

The network is trained using leave-one-out cross validation; each subject is used as a test

subject, 4 subjects are used for validation and remaining subjects are used for training.
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Table 3.2: Errors of solutions during steady state and solar loading.

Method MAE (°C) ↓ RMSE (°C) ↓ MAPE (°C) ↓

St
ea

dy
St

at
e

Tskin 0 0 0

Sol. I 1.63 2.16 4.75

Sol. II 0.39 0.52 1.13

So
la

r
Lo

ad
ed

Tskin 2.86 2.97 8.40

Sol. I 2.48 2.79 7.23

Sol. II 0.72 0.95 2.12

3.6 Results

In the following, we assess our solar loading correction methods against the thermal camera

measurement of steady state skin temperature, T skin. We do not directly compare the camera

method to the NCITs since the mapping function from Tskin to Tcore is unknown as mentioned

in Section 3.3.1. We compare our temporal and spatial solutions against the uncorrected

thermal measurement after solar loading and cooling.

3.6.1 Transient Solution (Solution I)

Since most point sensors measure the forehead temperature, we choose this location for our

transient experiments. The forehead is also the most accessible and tends to have a steady

temperature, making it easy to continuously measure this location. An example forehead

temperature curve during cooling is shown in Fig. 3.3, along with exponential curves fit with
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variable window lengths. In both cases, the exponential fitting is successful in minimizing

the residual, but an accurate T
∗
skin does not always accompany this. In Table 3.2, the

performance of this method is shown as Sol. I where 5 seconds of data are used for fitting.

Assuming an exponential model causes the model to suffer on easy cases, such as the steady

and cooled states, where temporal noise may present as a skin transient. However, for

the solar loaded case, this model corrects a minimal amount of solar loading (MAE=2.48

compared to MAE=2.86 for the uncorrected skin temperature).

3.6.2 Spatial Solution (Solution II)

Our learned spatial solution is a data-hungry model. Since the problem of solar loading

is unexplored, we collect our own dataset to test our spatial correction method. For each

subject, we acquire their steady state facial temperatures as well as a continuous capture

of cooling after solar loading. The steady state is used to generate βsolar(t) for solar loaded

frames for the model to regress on. Fig. 3.6 shows facial temperatures and results from

our trained CNN on multiple subjects. We observe that the model tends to perform worse

when correcting the first minute of cooling. The solar loading effect is the strongest in the

early minutes of cooling and the magnitude of solar loading may be difficult to correct.

Additionally, recall that skin temperature cools exponentially, so there are far less frames

of strong solar loading compared to moderate solar loading. Overall, the accuracy does not

suffer too much due to this effect. One failure case is shown in Fig. 3.6. The model attempts

to correct solar loading but achieves a constant error in correction over time. Despite this,

the model still recognizes that solar loading is present and corrects ≈ 2.5◦C of solar loading.

Quantitative results from the CNN are given in Table 3.2 as Sol. II. Sol. II significantly

outperforms other methods in the case of solar loading, estimating level of solar loading with

an MAE=0.97.

Note too, that Solution II is not returning false positive corrections, i.e., making a correc-

tion to temperature when solar loading does not exist. As illustrated in the curves in Fig. 3.6
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Figure 3.6: Solution II enables single shot correction and does not over correct

when solar loading is not present. From left to right: RGB image, steady state thermal

image (ground truth), indoor cooling after solar loading (0 min, 5 min) and the results of

our correction. In the plots, we compare the solar loaded skin temperature (blue, Tskin), the

baseline temperature (dotted, T skin) and our corrected skin temperature (black, T ∗
skin) Our

method successfully removes solar loading (up to 3°C) on multiple subjects. The plots show

frame-by-frame inference of Solution II, showing that Solution II is not overfitting to a fixed

temperature offset.
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the temperature prediction from Solution II is relatively uncorrelated with the amount of

solar loading.

3.6.3 Equity Analysis

In Section 3.3.3, we proposed melanin bias in solar loading using theory and now we further

validate this finding with experimental data. The lower-level skin bias is seen in Fig. 3.1(b).

Dark skin samples have, on average, a higher solar loading bias than light samples by

+0.72◦C. After our spatial solar loading correction, the absolute difference between dark

and light solar loading bias is −0.24◦C (MAE for dark samples is 0.82◦C, MAE for light

samples is 1.06◦C).

While our experimental conditions control for non-subject covariates, we can further

improve our analysis by collecting data from subject pairs. Two subjects, one with dark skin

and one with light skin, complete the experiment at the same time, hence undergoing the

same environmental conditions. We are interested in how the NCIT error, ϵ = TNCIT −Toral,

varies between skin tones. Paired ϵdark, ϵlight measurements were compared using paired t-

tests (p = 0.05). The subsequent analysis shows only the results for device NCIT 1; we do

not report specific values for the other tested NCITs since they exhibit the same behavior.

Prior to solar loading, there is no statistical difference in NCIT error between dark and

light samples. However, after five minutes of solar loading, NCIT temperatures are higher

for dark subjects with a mean bias of +1.49◦C, 95% CI [0.46, 2.51]. After five minutes of

cooling, there is again no statistical difference in NCIT error between skin tones. We conclude

that—under solar loading—NCITs overestimate temperatures more severely for dark skin

compared to light skin subjects. NCIT performance is summarized in Section 3.6.3.

While there is no bias after 5 minutes of cooling, the NCITs are still inaccurate: NCIT

values are uncorrelated with oral temperatures (r = 0.07). This is compared to moderate

correlation for before solar loading (r = 0.65) and poor correlation after 5 minutes of solar
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MAE (°C)

Method Steady state Solar loaded Cooled (5’) Claimed Acc.

NCIT 1 0.39 7.10 0.65 0.1

NCIT 2 0.60 6.10 0.72 0.3

NCIT 3 0.51 7.98 0.78 0.2

Table 3.3: Performance of commercial NCITs. We test three NCITs which are marketed

as being within the ASME and FDA acceptable error limits. However, the devices are not

within their specified ranges even during steady state.

loading (r = 0.02). Daanen et al. [25] suggest subjects should rest for up to 30 minutes after

heat exposure to ensure accurate NCIT readings. The poor accuracy of the NCIT after five

minutes of cooling agrees with the time frame set forth by Daanen et al. [25].

3.7 Discussion

In summary, we present two methods of correction of solar loading. Solution I of using

transient correction was a natural method to implement and relates to NCIT devices. Un-

fortunately, temporal errors in the measurement from today’s devices means that transient

correction (as we implemented it) requires a large window of sampling observation. We there-

fore consider our implementation of Solution II of using spatial correction to be desirable.

This enables single shot elimination of solar loading with a thermal camera.

Limitations: This study characterizes light transport principles and demonstrates the

ability to correct for solar loading in a single shot, but it is not a large-scale clinical study

of solar loading. The scale of this study was chosen to match calculations of a power size
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sample statistic. Based on the large effect size of solar loading, only 14 samples were needed

to draw significance. A larger scale study, conducted in the clinic, could directly assess the

impact of solar loading, not only on temperature measurement, but also clinical decision

making.

Conclusion: This study has discussed solar loading and offered single shot correction

(33ms) using spatial information. Before spatial correction, the solar loading bias is 3.03◦C

and post-correction the error is 0.97◦C. Before spatial correction the difference in solar

loading effects between dark and light skin groups is statistically significant with test statistic

of (one-tail Kolmogorov-Smirnov test, p < 0.005) and after correction the difference is not

statistically significant (p > 0.5). We hope this lays a foundation for large scale efforts to

improve the ability of thermal cameras to accurately and equitably sense the human body.

Ethical Considerations The equity numbers from this work were based on the sampling

dataset used by the authors. The study was collected on a University campus and does

not match the inclusion criteria of a societal study. Although this work analyzes skin tone,

this is only one particular axis on which one seeks equitable operation. There exist several

other axes of variation across humans. The study size was sufficiently large to demonstrate

that solar loading is corrected (based on power analysis measures), but a large-scale clinical

study that builds on the ideas here could explore a broader range of inclusion criteria, axes

of demographic variation, and improvements in the performance of solar loading correction.
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CHAPTER 4

Conclusions

This thesis proposed two methods for improving the accuracy of non-contact health mon-

itoring sensors while making them more equitable. Many of the research thrusts taken in

this field are often improving general performance of the devices. This metric is important,

however, neglecting equity can lead to serious ramifications.

Equity, especially in the medical field, is paramount. If parts of the population feel

like medical devices do not work as well on them, trust in the device’s capabilities falls.

Moreover, negative experiences that marginalized groups have experienced in the medical

field have already led to an overall deterioration of trust in the medical field [60]. Therefore,

it is extremely important that we reverse this trend by understanding devices’ weaknesses

and correcting them.

In order to do this, we first need to understand what anatomical factors may cause a

device to perform worse. One of the easiest ways to ensure this is for future data-collection

efforts to ensure as a diverse representation in the dataset as possible. A diverse represen-

tation of anatomical factors allows for an analysis of how performance varies with respect

to a certain factor. For example, in Chapter 2 and Chapter 3, the acquisition of a diverse

dataset allowed for a bias analysis with respect to skintone. The next step after identifying

a physical bias is to solve the bias through a different approach or at least to document it

so that it is well-known that the bias exists.

While the two examples shown in this thesis relate to a physical bias caused by skintone,

there exist many other types of physical biases. Ideally, all sources of physical biases or axes
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of fairness should be explored. These can be anatomical differences such as gender, BMI, or

age, but can be more subtle such body-type, body fat/muscle composition, race, presence of

a disease, or even geographical location.

Since there exist many applications of non-contact health monitoring and sources of

physical bias, there is a large scope for future work. For instance, there may be a relation

between the accuracy at which radar can sense heartbeats and breathing to the BMI or fat

percentage of a person’s body. This is even more relevant with the recent pushes towards

using radar for sleep apnea detection and sleep quality measurement [41, 44]. Furthermore,

while [93] improves the accuracy and equity of plethysmography estimation, it is not clear

whether this waveform can be used for downstream tasks. A downstream task such as remote

SpO2 detection requires accurate photoplethysmography estimation and radar and camera

fusion plethysmograph signal may not be an accurate PPG surragote. Future work can try

to utilize the combination of radar and camera to output a PPG signal from the camera

that is somehow improved by radar data without interfering with the amplitude information

of the PPG. Future work can also explore the best methodology to understand both the

physical biases of a device and how to build and properly test a new one. The development

of such methodologies would make research plans easier and comparisons between works

straightforward. The field of non-contact health monitoring is growing and steps are being

taken towards more equity. We hope to build upon this work to make sure that the future

of remote health monitoring is robust and equitable.
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