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Dynamic mode decomposition of
nonequilibrium electron-phonon
dynamics: accelerating the first-
principles real-time Boltzmann equation

Check for updates

Ivan Maliyov 1, Jia Yin 2, Jia Yao 1,3, Chao Yang 2 & Marco Bernardi 1,3

Nonequilibrium dynamics governed by electron–phonon (e-ph) interactions plays a key role in
electronic devices and spectroscopies and is central to understanding electronic excitations in
materials. The real-time Boltzmann transport equation (rt-BTE) with collision processes computed
from first principles can describe the coupled dynamics of electrons and atomic vibrations (phonons).
Yet, a bottleneck of these simulations is the calculation of e–ph scattering integrals on dense
momentum grids at each time step. Here we show a data-driven approach based on dynamic mode
decomposition (DMD) that can accelerate the time propagation of the rt-BTE and identify dominant
electronic processes. We apply this approach to two case studies, high-field charge transport and
ultrafast excited electron relaxation. In both cases, simulating only a short timewindowof ~10%of the
dynamics suffices to predict the dynamics from initial excitation to steady state using DMD
extrapolation. Analysis of the momentum-space modes extracted from DMD sheds light on the
microscopic mechanisms governing electron relaxation to a steady state or equilibrium. The
combination of accuracy and efficiency makes our DMD-based method a valuable tool for
investigating ultrafast dynamics in a wide range of materials.

First-principles calculations are widely employed for modeling and
designing materials, with applications ranging from energy1,2 to (opto)
electronic devices3–5 to materials discovery6–8. Starting from the crystal
structure and atomic positions as the main inputs, these methods can
predict material properties, including mechanical, electrical, magnetic, and
optical. While computing ground-state and linear-response properties with
density functional theory (DFT) is a decades-long effort9–12, recent work has
focused on modeling ultrafast dynamics in materials and simulating time-
domain spectroscopies from first principles13–23. These methods focused on
nonequilibrium dynamics are a more recent research frontier with both
theoretical and computational challenges.

First-principles calculations in the time domain provide amicroscopic
description of nonequilibrium dynamics in materials. These methods
propagate in time quantities characterizing the quantum dynamics, such as
the time-dependent electron wave function, density24, density matrix25, or
Green’s function21, and can also access the time-dependent atomic positions

and lattice vibrations17,18. Different schemes are successful in different
regimes. For example, coherent electron dynamics on the attosecond time
scale can be modeled effectively using time-dependent DFT22,26–29, but that
approach is not ideal for modeling phonon dynamics, which occurs on a
picosecond time scale30.

The real-time Boltzmann transport equation (rt-BTE) has emerged as
an effective tool for exploring the coupled electron and phonon dynamics
from femtosecond to nanosecond timescales15,18,31. In the rt-BTE, the time-
dependent electron populations are obtained by solving a set of integro-
differential equations accounting for the e–ph scattering processes on dense
momentum grids. Following an initial excitation, the rt-BTE is propagated
in time to reach thermal equilibriumor steady state in an external field. This
scheme employs a femtosecond time step to capture the e–ph scattering
processes. However, evaluating the scattering integral at each time step
makes the rt-BTE approach computationally demanding, even formaterials
with a handful of atoms in the unit cell.
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Data-driven techniques are increasingly employed in materials mod-
eling, both for accelerating computational workflows and to gain physical
insight using learning algorithms32,33. In particular, dynamic mode
decomposition (DMD), which was developed in the last decade to study
fluid dynamics, is a valuable tool to linearize dynamical problems and
reduce their dimensionality34,35. In DMD, explicit simulation of a short
initial time window allows one to learn the dominant modes governing the
dynamics and extrapolate the simulation to future times at low computa-
tional cost. Recent work has employed DMD to study electron dynamics
described by model Hamiltonians with purely electronic interactions36,37.
Yet, to date, DMD has not been applied to more computationally intensive
first-principles studies.

In this work, we combine DMD with first-principles calculations of
nonequilibrium electron dynamics, using the framework of the rt-BTE in
the presence of e–ph collisions and external fields. We show that DMD
provides an order-of-magnitude computational speed-up while retaining
the full accuracy of thefirst-principles rt-BTE. In addition,DMDreveals key
momentum-space temporal patterns and achieves a significant dimen-
sionality reduction of the nonequilibrium physics. Our results include both
high-field transport and transient excited-state dynamics and are accom-
panied by a careful characterization of convergence with respect to the size
of the sampling window during which DMD learns the dominant modes.
Taken together, this work provides the blueprint for combining data-driven
methods with first-principles calculations to study nonequilibrium
dynamics in real materials.

Results
First-principles rt-BTE
Wedescribe the electrondistributionusing the time-dependent populations
fnk(t), whichquantify the occupation of each electronic state ∣nki, wherek is
the electron crystal momentum, and n is the band index (from now on, we
omit the band index to simplify the notation). Starting from an initial
distribution at time zero, fk(t = 0), in the rt-BTE, the populations evolve
according to38

∂f kðtÞ
∂t

¼ F
_
� ∇kf kðtÞ þ I ½f kðtÞ�; ð1Þ

where I ½f kðtÞ� is the collision integral accounting for e-ph scattering pro-
cesses inmomentumspace39 andF includesany externalfields applied to the
system.

The rt-BTE simulations use dense momentum grids to accurately
describe scattering between electronic states via absorption and emission of
phonons. The required grid sizes are typically >100 × 100 × 100 for both
electron and phonon momenta. We time-step Eq. (1) using explicit solvers
(Euler or fourth-order Runge–Kutta) or more advanced Strang splitting
techniques31. The collision integral includes a summation over the phonon
momentum grid and is evaluated at least once per time step using a parallel
algorithm implemented in the PERTURBO code38 (see the “Methods” section
for details). Althoughherewe focus on the dynamics of electrons interacting
with phonons, the rt-BTE formalism has also been extended to study
nonequilibrium phonon17 and exciton dynamics40.

DMD learning and prediction of the dynamics
We employ DMD in combination with rt-BTE simulations. The DMD
approach linearizes the dynamics by relating the states of the systemat times
t and t+Δt via a time-independent matrix A41,42. Focusing on the e–ph
dynamics, this amounts to advancing the electronic populations at time t
using

f kðt þ ΔtÞ ¼ Af kðtÞ; ð2Þ

where the populations fk form a vectorwith sizeN equal to the number of k-
points in the electronicmomentum grid (typically,N ≈ 105−106). To obtain
thematrixA, we time-step the rt-BTE in a samplingwindowconsisting ofM
time steps (using the PERTURBO code38), and then we form two matrices X1

andX2. The populations fk(t) from t1 to tM−1 are stacked column-wise in the
matrix X1, with column i corresponding to time ti and containing the
populations fk(ti) for all k-points and bands. The populations from t2 to tM
are similarly stacked column-wise in the second matrix X2.

According to equation (2), these matrices are related byX2 =AX1, but
computing A naively from the pseudo-inverse of X1 has a prohibitive cost
due to the large size N of the k-point grid. To circumvent this problem, in
DMD, one first performs a truncated singular value decomposition
(SVD)43,44 of the X1 matrix:

X1 ¼ UΣVy; ð3Þ

whereΣ 2 RN × ðM�1Þ is amatrix with diagonal entries equal to the singular
values σj arranged in decreasing order, while U 2 CN ×N and V 2
CðM�1Þ× ðM�1Þ are matrices collecting the mutually orthogonal singular
vectors45. (Above, V† indicates the Hermitian conjugate of V).

Because X1 contains time-dependent populations, this SVD pro-
cedure can single out the main patterns in the momentum-space
dynamics. Here, we keep only the first r singular values (typically,
r ≈ 10) to restrict the solution space to the leading r momentum-space
modes and then project the matrix A onto this reduced r-dimensional
space. This procedure provides the matrix ~A, with reduced size r × r,
which can be diagonalized straightforwardly to obtain the dominant
DMD modes. Using this procedure, the populations at future times
t > tM are predicted—that is, obtained without explicit solution of the rt-
BTE—using

f kðt > tMÞ≈
Xr
l¼1

bl ϕ
l
k e

iωDMD
l t ; ð4Þ

where ϕlk are themomentum-space DMDmodes obtained from thematrix
~A, andωDMD

l and bl are their frequencies andamplitudes (see the “Methods”
section for detailed derivations).

We summarize the main steps of this DMD procedure, which are
illustrated in Fig. 1:
1. Simulate the rt-BTE dynamics for the firstM steps and construct the

matrices X1 and X2;
2. Perform SVD on X1 to find the matrix ~A in the reduced

r-dimensional space;

Fig. 1 | Workflow of DMD plus rt-BTE calcula-
tions.The firstM steps of the dynamics, whichmake
up the sampling window for DMD learning, are
simulated by solving the rt-BTE. The resulting
populations fk(t) are stacked in the X1 and X2

matrices with a relative shift of one time step. The
dynamics at later times t > tM is predicted withDMD
using the r leading modes obtained by SVD of the
matrix X1 and diagonalization of the
matrix ~A ¼ ~U

y
A~U.
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3. Diagonalize ~A tofind theDMDmodesϕlk and their frequenciesω
DMD
l ,

with l = 1…r;
4. Obtain the mode amplitudes bl from the initial condition fk(t1);
5. Predict the dynamics for t > tM using Eq. (4).

A key parameter is the duration of the sampling window (tM) required
for accurate DMD extrapolation of the dynamics beyond tM. As the com-
putational cost of DMD is negligible, the size of the sampling window,
during which the rt-BTE is solved by explicit time-stepping, determines the
computational cost of the entire workflow.

High-field electron dynamics
We employ our DMD-based approach to simulate time-domain electron
dynamics in an applied electric field in the presence of e-ph collisions. We
recently demonstrated similar calculations using the rt-BTEwithout the aid
of data-driven techniques31. Here, we use this case study to explore the
accuracy and efficiency of our rt-BTE plus DMD approach, as well as find
optimal values for the sampling window and analyze themomentum-space
DMD modes. Our calculations focus on electrons in GaAs, where the
conduction band has three sets of low-energy valleys, at Γ and near L and X
in order of increasing energy46 (see the inset in Fig. 2a). Upon applying an
electric field, the electrons are accelerated to higher band energies while they
also transfer part of that excess energy to the lattice via e–ph collisions. These
competing mechanisms lead to a steady-state electronic distribution which
is typically reached on a picosecond to nanosecond time scale.

Our simulations begin with electrons in thermal equilibrium with the
lattice at 300 K. We apply a constant electric field E and time-step the
electron populations until they reach the steady-state distribution, f Ek , from
which we compute the mean drift velocity, v(E), a quantity routinely
measured in experiments47–49. Repeating this procedure for multiple field

values allows us to construct the full drift velocity versus electric field curve
in amaterial, starting from linear response at low field to velocity saturation
at high field31.

Figure 2a shows the time-dependent populations in four regions of the
Brillouin zone following the application of a high field (5 kV cm−1). Elec-
trons initially occupying the Γ-valley scatter to the higher-energy L- and
X-valleys. As a result, the electron populations in the Γ-valley decrease, with
a corresponding increase in L- and X-valley populations. In regions of
momentum space between the Γ- and L-valleys, the populations peak at
intermediate times and then relax to lower values.

This dynamics is nontrivial because the populations evolve differently
in different momentum-space regions, making accurate predictions chal-
lenging.OurDMDapproach can learn thedominantmodes governing these
intricate dynamics and extrapolate the time-dependent populations well
beyond the sampling window. Remarkably, we find that a short sampling
window−400 fs to 2 ps out of a total simulation time of 12.5 ps—is suffi-
cient to extrapolate the dynamics all theway to steady state, with rt-BTE and
DMD trajectories in nearly exact agreement outside the sampling window
(Fig. 2a). This accuracy extends to the entire set of ~105 k-points considered
in our simulations, providing carrier number conservation within 1% error.

The ability to learn key temporal momentum-space patterns is a
consequence of the relatively rapid decay of the singular values of the X1

matrix used for learning the dynamics in the sampling window (Fig. 2b).
This decaybecomes slower as the samplingwindow increases, but it remains
significant even for the longest samplingwindow of 2 ps used here (note the
log scale in the plot). In turn, the singular value decay enables a striking
dimensionality reduction, withDMDemploying only r ≈ 10modes to solve
thedynamicsas opposed to 105 populations fk andbillions of e–ph scattering
terms in the rt-BTE.

Fig. 2 | DMD simulations of electrons inGaAs in an applied electric field. aTime-
dependent electron populations fk(t) for four electron momenta. The gray region
indicates the shortest sampling window (0.4 ps), and the red vertical line is the
longest sampling window we tested (2 ps). Solid black lines show the rt-BTE results
and orange dashed lines, the DMD predictions obtained using the longest sampling
window. The inset is a schematic of the low-energy band structure of GaAs showing
the Γ- and higher energy L- andX-valleys.b Singular values of theX1matrix, with the
ten largest singular values used in our DMD calculations separated by a vertical line.

c DMD frequencies plotted in the complex plane and shown as circles with radii
proportional to the DMDmode amplitudes bl. In panels a–c, the colors indicate the
duration of the DMD sampling window according to the legend given in (c). dDMD
momentum-space modes ϕlk , multiplied by the corresponding amplitudes bl, given
as a function of energy. The initial state fk(t1) is shown with a dashed line.
e Convergence of the steady-state drift velocity with respect to the duration of the
DMD sampling window. The rt-BTE value is shown for reference as a dashed line.
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The choice of an ideal sampling window can rely on the appearance of
specific DMD modes at a steady state. Figure 2c shows the DMD mode
frequencies ωDMD in the complex plane, where the imaginary part of ωDMD

corresponds to the decay rate of a given mode, and the real part gives its
oscillation frequency. The populations fk(t) are real-valued and are written
as a summation of complex exponentials in Eq. (4). Therefore, physically
meaningful results are possible only when ReðωDMDÞ ¼ 0 (modes 1, 2) or
when ωDMD appear as conjugate pairs (modes 3−10). Describing the steady
state is particularly important in our simulations. InDMD, all modeswith a
non-zero imaginary frequency vanish in the long time limit, with only one
mode surviving at steady state (mode 1 in Fig. 2c). As the sampling window
increases, the imaginary frequency of this mode goes to zero, providing the
correct steady-state behavior. This analysis allows us to find the minimal
sampling window required for accurate steady-state results by monitoring
the zero-frequency mode.

TheDMDeigenvector of the zero-frequencymode (mode 1 in Fig. 2d)
determines the steady-state electron distribution blϕ

1
k ¼ f kðt ! 1Þ, while

the other modes control the transient dynamics. For example, mode 2
governs electron scattering from the Γ- to the L- and X-valleys, and higher
modes appearing as conjugate pairs exhibit oscillating trends in energy
(modes 3−10 in Fig. 2d). Converging the zero-frequencymode allows us to
compute the steady-state drift velocitymore efficiently. Figure 2e shows that
a samplingwindow of 1.7 ps (170 snapshots) provides a drift velocity nearly
identical to the full rt-BTE calculation, which requires much longer simu-
lation times of up to 12.5 ps (1250 snapshots). On this basis, we conclude
that DMD needs only ~10% of the dynamics data for accurate steady-state
predictions.

Velocity-field curves
We also employ DMD to accelerate calculations of entire velocity-field
curves. This requires the drift velocity for a set of electric field values, and
thus we adopt a modified workflow. Following our recent work31, we gra-
dually increase the electric field (black curve in Fig. 3a) and use the steady-
statepopulations for a givenfield, f Ek , as the initial condition for thenextfield
value, E+ΔE, where the field increment ΔE is typically 100−200 V cm−1.
As the applied field increases, the DMD frequencies andmomentum-space
modes change substantially. Therefore, for each new field value, we repeat
DMD learning in the initial stage of the simulation (see the DMD sampling
regions shown as red rectangles in Fig. 3a).We then predict the steady-state
populations using mode 1 fromDMD, f Ek ¼ b1ϕ

1
k and the drift velocity for

that field value, and use f Ek as the initial condition for the next field value.
The velocity-field curves obtainedwith this approach are shown in Fig.

3b for GaAs and graphene and compared with rt-BTE results obtained
without DMD. Using DMD lowers significantly the computational cost to
obtain the full velocity-field curves by a factor of 10.5 forGaAsand ~ 16.5 for
graphene, while fully preserving the accuracy. Because the drift velocity is
computed as aweighted sumof f Ek

31, the nearly exact agreement between the
DMD and full rt-BTE results demonstrates the accuracy of the DMD
populations in momentum space. The DMD efficiency is a consequence of
its ability to capture the dominant modes in the population dynamics using
only a small number of snapshots, with a similar accuracy regardless of the
electricfield value.Our strategyof gradually increasing the electricfield leads
to easier-to-extrapolate dynamics compared to the abrupt application of a
strong field.

Excited electron relaxation
Next, we consider different nonequilibrium dynamics where the material is
initially prepared in an excited electronic state. This setting can be used, for
example, to model the effect of an optical excitation with a laser pulse13.
Different from the high-field dynamics, in this case, the long-time limit is
known, andweareprimarily interested in the transientdynamics. Following
the initial excitation, in the presence of e–ph interactions and without any
external fields, the electrons relax to a thermal equilibrium Fermi–Dirac
distribution50, f FDk , typically on a sub-picosecond time scale. This ultrafast
dynamics can be modeled by time-stepping the rt-BTE until reaching the

equilibrium Fermi-Dirac distribution. Using this approach, our previous
work has shown that electrons relax to the band edge significantly slower
than holes in GaN semiconductors, with implications for optoelectronic
devices15.

Following that work, we model an excited state in GaN by placing the
electrons ~1 eV above the conduction band edge and then obtain the time-
dependent electron populations by solving the rt-BTE (see Fig. 4a, b). We
employ DMD to predict this transient dynamics and find large errors when
using a short time window of up to ~50 fs (solid red line in Fig. 4c). The
correct steady state and transient dynamics are obtained by increasing the
sampling window to 200 fs (dashed orange line in Fig. 4c). Our analysis of
the DMD frequencies shows that the zero-frequency mode describing
thermal equilibrium in the long-time limit appears when the sampling
window reaches 100 fs (see the arrow in Fig. 4d) and fully converges for
a ~200 fs sampling window. The need for such a long sampling window
relative to the total duration of the dynamics (400 fs) makes DMD
ineffective.

To address this issue and more efficiently study transient dynamics
with DMD, we formulate a different learning procedure that incorporates
knowledge of the equilibrium state.We focus on the difference between the
transient and equilibriumpopulations, δf kðtÞ ¼ f kðtÞ � f FDk , as opposed to
just fk(t) as we did in the high-field example. After predicting δfk(t) with
DMD, we obtain the time-dependent populations fk(t) by adding back the
f FDk term.As δfk vanishes in the long-time limit (Fig. 4b), the zero-frequency
DMD mode is missing when computing δfk (Fig. 4e); all other DMD fre-
quencies associatedwith δfk are similar to those for fk(t) (Fig. 4d, e).We find
that the DMD method based on δfk is far more effective and requires a
significantly shorter sampling window for accurate DMD predictions
−using a 50 fs samplingwindow,we achieve results similar toDMDfor fk(t)
with a four times longer (200 fs) window (Fig. 4c).

With this improved DMD approach, using a sampling window of
only ~12% of the total simulation time allows us to accurately predict the
average electron relaxation rate in GaN, with a DMD computed value of
5.23 eV fs−1 in close agreement (within 0.8%) with the rt-BTE result. This
result demonstrates that our DMD approach can predict excited electron
relaxation with a high accuracy.

Discussion
The DMD approach introduced here is very efficient: the rt-BTE is solved
explicitly on a high-performance computer only for a small number of initial
time steps, after which the entire dynamics can be computed straightfor-
wardlywithDMD,using only a laptop.Themost demanding step is carrying
out truncated SVD on the X1 matrix, but for comparison, this step requires
lower computational resources than even just a single rt-BTE time step.

This remarkable speed-up is achieved by reducing the dimensionality
of the rt-BTE dynamics and is linked to the shape of the X1 matrix. The rt-
BTE employs a large number of k-points (about 105−106), which equals the
number of rows of the matrix X1, and a significantly smaller number of
snapshots in the DMD sampling window, typically ~100 time steps, which
sets the number of columns inX1. Following truncated SVD, the size of the
problem is reduced to (at most) the number of snapshots and is typically of
order 50−100, and thus smaller by orders of magnitude compared to the
original rt-BTE. (Note that one coulduse the entire set of singular values, but
here we prefer using only ~10 singular values to prevent numerical
instabilities45).

This efficiency allows us to evaluate the accuracy of DMD on the fly,
halting explicit time-stepping of the rt-BTE when the DMD steady state or
transient dynamics are fully converged. In addition, our approach addresses
the key challenge of storing the rt-BTE populations. This is a critical
improvement because in conventional rt-BTE simulations one needs to
store the populations fk(t) on densemomentum grids for thousands of time
steps, resulting in terabytes of data. In contrast, after carrying out SVD in the
sampling window, DMD stores only a handful of complex frequencies and
momentum-space modes, using which the dynamics can be reconstructed
for the entire simulation.
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In summary, we have introduced a data-driven approach based
on DMD to accelerate first-principles calculations of nonequilibrium
electron dynamics in materials. Our method speeds up the solution of
the time-dependent Boltzmann equation with electron collisions
computed from first principles.We have shown that DMD can capture
dominant modes governing the microscopic dynamics, enabling
accurate predictions of the steady-state properties such as the drift
velocity as well as transient processes such as electron relaxation and
equilibration. In both steady-state and transient nonequilibrium
calculations, DMD requires explicit time-stepping of the rt-BTE in a
time window of only ~10% of the full simulation, after which the
dynamics is extrapolated from the DMD modes with negligible
computational cost. This DMDworkflow preserves the accuracy while
requiring far more modest computational resources than full rt-BTE
simulations.

These advances are broadly relevant to studying nonequilibrium
quantum dynamics of elementary excitations. For example, in future
work, our data-driven approach will be extended to study the coupled
dynamics of electrons and phonons, which involves fast (electron) and
slow (phonon) timescales. The current DMD approach is not designed
to address such multiscale nonequilibrium dynamics, and extensions
using multiresolution DMD will be explored.

Methods
Computing DMDmodes and frequencies
Let us describe in more detail the calculation of DMD modes and fre-
quencies. We start from the snapshots fk(t) evaluated explicitly with the rt-
BTE in the samplingwindow t1 < t < tM, and then apply the SVDprocedure
to the matrixX1 (see Eq. (3)). As shown in Fig. 2b, we find that the singular
values σj decay rapidly. Keeping only the largest r ≈ 10 singular values, we
write the SVD of X1 as

X1 ≈ ~U~Σ~V
y
; ð5Þ

where we defined the economy-sized matrices in the
r-dimensional subspace45 as ~Σ ¼ Σð1 : r; 1 : rÞ, ~U ¼ Uð1 : N; 1 : rÞ,
~V ¼ Vð1 : M � 1; 1 : rÞ. This way, the approximate pseudo-inverse of the
matrixX1, denotedasX1

þ, canbeobtainedwith little effort as ~V~Σ
�1 ~U

y
. Then

the matrix A relating the snapshot matrices via X2 =AX1 can be written as

A ¼ X2X1
þ ¼ X2

~V~Σ
�1 ~U

y
: ð6Þ

Note that the matrix A depends on the sampling window. Due to its large
N ×N size (here, N ≈ 105 is the number of k-points), diagonalizing A is
computationally expensive. In DMD, a key step is rewriting this matrix in
the reduced r-dimensional space:

~A ¼ ~U
y
A~U ¼ ~U

y
X2

~V~Σ
�1
; ð7Þ

allowing for straightforward eigenvalue decomposition:

~AW ¼ WΛ; ð8Þ

where the matrix W contains the eigenvectors of ~A and the eigenvalues
Λ = diag{λl} are common to both matrices ~A and A51. The DMD modes,
stacked column-wise in the matrix Φ ¼ ϕ1 ϕ2 � � �ϕr

� � 2 CN × r , can be
obtained using51

Φ ¼ X2
~V~Σ

�1
W: ð9Þ

The DMD frequency of mode l is obtained from the corresponding eigen-
value λl using Eq. (8),

ωDMD
l ¼ �i

ln λl
Δt

; ð10Þ

whereΔt is the simulation time step. To circumvent thepotential additionof
a 2πm i;m 2 Z termdue to ln λl computation, we evaluate the logarithm in
the following way: ln λl ¼ ln jλlj þ i argðλlÞ, with argðλlÞ in (−π, π].

The mode amplitudes b ¼ b1 b2 � � � br
� � 2 Cr are obtained from the

initial condition. Setting t = 0 in Eq. (4), we get

f kð0Þ ¼ Φb; ð11Þ

and thus the mode amplitude vector b is obtained from the pseudo-inverse
of the DMD mode matrix Φ:

b ¼ Φþf kð0Þ: ð12Þ

The pseudo-inverse of the matrixΦ is computed using truncated SVD and
has a negligible computational cost compared to SVD of theX1 matrix due
to (N, r) dimensions of the matrixΦ.

This approach provides the DMD modes ϕlk , frequencies ω
DMD
l , and

mode amplitudes bl, and thus all the quantities needed for DMDprediction
of the dynamics outside the sampling window (t > tM) using Eq. (4).
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Fig. 3 | Velocity-field curves from DMD. a Transient drift velocity in GaAs com-
puted as a function of time (black curve). The external electric field is increased step-
wise in the simulation (see the field values given above the plot). TheDMD sampling
window for each electric field is shown with a red rectangle, and the drift velocities
outside this window are predicted with DMD. The steady-state drift velocities from
DMD correspond to the plateaus for each field value and agree with the reference
drift velocities obtained by explicitly time-stepping the rt-BTE until the steady state,
which are shown with white dots. b Velocity-field curves in GaAs and graphene
obtained from the rt-BTE (black and blue solid lines) and by combining the rt-BTE
and DMD (red and orange dashed lines).
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Electron–phonon scattering from first principles
Our first-principles calculations of e–ph scattering employ an established
workflow, which is summarized here and described inmore detail in ref. 38.
The electronic wave functions and band energies are obtained from plane-
wave DFT calculations with the QUANTUM ESPRESSO code52 using the local
density approximation53 and norm-conserving pseudopotentials54. The
electronic quasiparticle band structure is refined using GW calculations
carried out with the, YAMBO code55. This step improves the agreement with
the experiment of the electron effective masses and relative valley energies,
which are essential for precise calculations of high-field dynamics31 and
excited electron relaxation15.

The phonon dispersion and e-ph perturbation potentials are obtained
from density-functional perturbation theory (DFPT), where lattice vibra-
tions and their coupling with electrons are treated as perturbations to the
ground-state electron density52. The e–ph interactions are described by the
matrix elements

gmnνðk; qÞ ¼
_

2ωνq

 !1=2

ψmkþq∣ΔνqV
KS∣ψnk

D E
; ð13Þ

which are the probability amplitudes to scatter from an initial electronic
state ∣ψnk

�
, with band n and momentum k, to a final state ∣ψmkþqi by

absorbing or emitting a phononwithmode ν, momentum q, and frequency
ωνq. The term ΔνqV

KS is the e–ph perturbation potential induced by the
phonon mode and is defined in ref. 38.

To study nonequilibrium dynamics with the rt-BTE, the electrons,
phonons, and e–ph scattering are described on dense k- and q-point
momentum grids. Obtaining the e–ph matrix elements on such grids

directly from DFPT is computationally prohibitive. Therefore, we first
compute gmnν(k, q) on coarse k- and q-point grids15,56 and then interpolate
these quantities to significantly finer grids using Wannier–Fourier inter-
polation with Wannier functions generated from WANNIER9057. Finally, the
e–ph scattering integral employed in Eq. (1) is defined as

I f nk
� � ¼ � 2π

_
1
N q

P
mqν

∣gmnνðk; qÞ∣2

× δðεnk � _ωνq � εmkþqÞ× Fem f nk
� ��

þ δðεnk þ _ωνq � εmkþqÞ× Fabs f nk
� ��

;

ð14Þ

whereN q is the number of q-points, εnk and εmk+q are the band energies of
the initial andfinal electronic states, and theDiracdelta functions expressing
energy conservation are implemented as Gaussians with a small (~5meV)
broadening. Above, Fabs and Fem are phonon absorption and emission
terms, whose explicit expressions are given in ref. 38. The Wannier inter-
polation, scattering integral computation, and the rt-BTEultrafast dynamics
are implemented in our PERTURBO open-source package38.

Data availability
All thedata supporting the resultsof this study are available upon reasonable
request.

Code availability
The PERTURBO code used in this work is open-source software and can be
downloaded at https://perturbo-code.github.io.

Fig. 4 | Transient dynamics in GaN using DMD.
a Energy dependence of the momentum-averaged
electron populations, and b difference between the
time-dependent and equilibrium populations in
GaN. In both panels, the simulation time is color-
coded using sepia for the initial excited state and
purple for the equilibrium state. The energy zero is
set to the conduction band minimum. cDMD error
on the electron populations, computed as the root-
mean-square difference between the reference
values from rt-BTE and those obtained from DMD.
Results are shown for different sampling windows,
given in the legend, and for the two schemes where
DMD is applied to fk(t) or alternatively to
δf kðtÞ ¼ f kðtÞ � f FDk . d, e DMD frequencies on the
complex plane, respectively for fk(t) and f kðtÞ � f FDk ,
with the duration of the sampling window,
color-coded.
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