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ABSTRACT: Precise size and shape control in nanocrystal synthesis is essential for utilizing nanocrystals in various
industrial applications, such as catalysis, sensing, and energy conversion. However, traditional ensemble
measurements often overlook the subtle size and shape distributions of individual nanocrystals, hindering the
establishment of robust structure−property relationships. In this study, we uncover intricate shape evolutions and
growth mechanisms in Co3O4 nanocrystal synthesis at a subnanometer scale, enabled by deep-learning-assisted
statistical characterization. By first controlling synthetic parameters such as cobalt precursor concentration and
water amount then using high resolution electron microscopy imaging to identify the geometric features of
individual nanocrystals, this study provides insights into the interplay between synthesis conditions and the size-
dependent shape evolution in colloidal nanocrystals. Utilizing population-wide imaging data encompassing over
441,067 nanocrystals, we analyze their characteristics and elucidate previously unobserved size-resolved shape
evolution. This high-throughput statistical analysis is essential for representing the entire population accurately and
enables the study of the size dependency of growth regimes in shaping nanocrystals. Our findings provide
experimental quantification of the growth regime transition based on the size of the crystals, specifically (i) for
faceting and (ii) from thermodynamic to kinetic, as evidenced by transitions from convex to concave polyhedral
crystals. Additionally, we introduce the concept of an “onset radius,” which describes the critical size thresholds at
which these transitions occur. This discovery has implications beyond achieving nanocrystals with desired
morphology; it enables finely tuned correlation between geometry and material properties, advancing the field of
colloidal nanocrystal synthesis and its applications.
continued...
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INTRODUCTION
Over the last few decades, significant strides have been made in
precisely controlling the size and shape of inorganic nanocryst-
als, progress further accelerated by the discovery and synthesis of
quantum dots with size-dependent properties.1−6 Altering the
size and shape of nanocrystals is of interest since it directly
influences their exposed surface facets, impacting their surface
energy, which plays a key role in various surface reactions.7−10

Mechanistic studies of nanocrystal shaping have been conducted
by systematically controlling synthetic conditions, such as
varying the type and concentration of metal precursors and
capping agents, to examine the role of thermodynamic and
kinetic parameters. Traditionally, “monodisperse” nanocrystals
are described as having uniform size and shape, but their shapes
have often been observed qualitatively without precise
quantification of their distribution. However, achieving true
monodispersity critically depends on accurate size and shape
measurements. If the distribution fails to represent the entire
population, the derived relationships between size, shape, and
synthetic parameters remain uncertain. Furthermore, the shape
of nanocrystals can vary depending on their size, and shape
variance among nanocrystals might exist within the same
sample. This variability complicates the accurate assessment of
their uniformity and can lead to misinterpretation of their
properties and behavior when based on small data sets.
Commonly used nanocrystal size measurements rely on

ensemble techniques, such as applying the Sherrer equation to
X-ray diffraction data. Although X-ray techniques are suitable for
obtaining the bulk information due to their deep probing depth,
they generally offer lower spatial resolution and are less effective
for surface morphology studies. This limitation prevents precise
distribution measurements for individual nanocrystals, thereby
complicating the structure−property relationship and placing
additional constraints on the design and synthesis of nanocryst-
als with desired functionalities. In contrast, electron microscopy
measures individual nanoparticles with high-resolution capa-
bilities, capturing detailed structural information at the nano-
scale. While electron microscopy images enable detailed high-
resolution analysis, the manual analysis of images is limited in
throughput. The absence of precise, high-throughput measure-
ments on individual nanocrystals to obtain size and shape
distributions, especially the shape, has limited not only control
over the overall morphology of nanocrystals but also the
establishment of relationships between nanocrystal sizes, shapes
and their properties.
Computer vision and advanced machine learning techniques,

such as neural networks, can bridge the gap between colloidal
synthesis and statistical analysis by processing extensive data sets
containing characteristics from individual particles.11−18 Recent
advancements in statistical image analyses offer a robust
approach by measuring the size and shape of a significant
number of distinct particles to represent the entire nanocrystal
population.19−22 However, the techniques developed so far have
primarily focused on relatively large nanoparticles, mostly larger
than several tens of nanometers, where in most cases, do not
need a subnanometer scale accuracy in measurements. In
contrast, analyzing smaller nanoparticles requires high-magni-
fication imaging, which introduces additional image features.

High-resolution transmission electron microscopy (TEM)
images not only differ in pixel size but also exhibit increased
textural complexity, such as lattice fringes, making traditional
segmentation methods less effective. These finer details, along
with lower amplitude and phase contrast, as well as a reduced
signal-to-noise ratio, necessitate more advanced segmentation
techniques to accurately resolve surface features.
We use high-throughput, deep learning-assisted computer

vision to identify and measure geometric features of individual
nanocrystals with sizes less than 10 nm, enabling a detailed
statistical analysis of size and shape distributions that allows us to
study shape variations and correlate shape with size at a
subnanometer level. Our approach provides a more compre-
hensive understanding of nanocrystal morphology with high
precision, highlighting variations and subtleties that are not
apparent through traditional qualitative analysis alone. More-
over, size-resolved observations, which were previously
unavailable due to the lack of measurement tools and insufficient
data size in prior research, are now possible with our technique.
We validated our approach through a population-wide study of
cuboid Co3O4,

23 given their significant interest due to high
electrocatalytic properties in the oxygen evolution reaction and
Li−O2 batteries.9,10,24−27 We analyze 441,067 individual
nanocrystals from various sol−gel synthesis conditions, enabled
by a convolutional neural network (CNN) for computer vision
to solve complex segmentation challenges in high-resolution
transmission electron microscopy (HRTEM) images. Trained
neural networks efficiently detect individual nanocrystals,
enabling further analysis in the size-resolved shape variations
in nanocrystal samples.
With our approach, we achieved two noteworthy break-

throughs in nanoscience. First, even when dealing with
polydisperse nanocrystals, our detailed statistical analysis offers
refined guidance for synthesizing nanocrystals with specific size
and shape attributes. By precisely correlating synthetic variables,
such as cobalt precursor concentration and water amount, with
nanocrystal size and shape, we can optimize synthesis conditions
to achieve desired properties more accurately than traditional
methods. Second, we experimentally discovered the “onset
radius” for the transitions: (i) from spherical to Wulff shape and
(ii) from thermodynamic- to kinetic-controlled growth mode,
enabled by precise and semiautomated high-throughput shape
measurements. Our study extends beyond the development of
CNNs for precise segmentation in high-resolution electron
micrographs and demonstrates how they can be applied to reveal
the role of synthetic parameters and critical size thresholds in
growth regimes.

RESULTS AND DISCUSSION
Workflow for High-Throughput Statistical Character-

ization of Nanocrystals.The overall workflow begins with the
colloidal synthesis of inorganic nanocrystals, followed by high-
resolution imaging of the nanocrystals using a transmission
electron microscope (TEM), training a neural network to
segment the TEM images, and conducting statistical analysis on
the distribution of nanocrystals in terms of size and various
shape descriptors (Figure 1). We chose spinel Co3O4 polyhedral
nanocrystals to validate the platform’s capabilities. Precise
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control over the synthesis conditions allows us to achieve
desired sizes and shapes of the nanocrystals, optimizing their
properties for specific applications. Using our synthetic
procedure based on colloidal systems, which we slightly
modified from a previous report,23 we synthesize sub-10 nm
cuboid Co3O4 nanocrystals. These nanocrystals are dominantly
enclosed with {100} facets and exhibit slight truncation at the
edges and/or corners. This process enables us to produce
nanocrystals under different experimental conditions to achieve
the desired geometrical characteristics (Figure 1a and Figure
S1).
Leveraging our deep learning-based platform, we identified

the size, shape, and monodispersity of several hundred thousand
Co3O4 nanocrystals at the subnanometer scale. The high-
throughput analysis of 727 electron microscopy images of
441,067 nanocrystals was enabled by a convolutional neural
network with a residual U-Net architecture (Figure 1b andTable
S1).16,28,29 This U-Net architecture is an effective way to achieve
high performance in segmenting, or pixel-wise classification,
between particle and background regions.16,17,30 To distinguish
the variations in the structural features at a subnanometer level
with high precision, we acquired high-resolution 4k (4096 ×

4096 pixel) TEM images with a pixel size of 86 pm (Figure 1c).
To train the neural network, raw images were selected from the
larger data set and labeled by hand into segmented images using
Image Labeler, a Matlab application (see Methods for details).
The data set, comprising pairs of images and labels (ground
truth), were then split into 512 × 512 pixel patches to minimize
GPU memory requirements and fed into the deep learning
model (Figure 1b). The networks were trained using both cross-
entropy and Dice loss functions, softmax activation function,
and the Adam optimizer with a decaying learning rate,
facilitating the model to converge at the optimal score and
loss values and get the final model with the least loss. To evaluate
the neural network’s ability to segment nanocrystals in the
images, we used the Dice coefficient, also known as the F1-score
(Figure S2). The Dice coefficient, a standard metric for
segmentation tasks, quantifies the normalized union of positive
pixels between true and predicted segmentation labels and is
visualized in a confusion-matrix style (Figure 1c). To enable
generalization across various nanocrystal samples and imaging
sessions, we preprocessed the images, including flat-field
correction and rescaling of image values (standardization).30

Figure 1. Overview of the workflow from nanocrystal synthesis to statistical analysis. a, Illustrations of the diversity of as-synthesized cobalt
oxide nanocrystals, showcasing variations in size and shape, including truncated cubes, truncated octahedrons, and cubes with concave surfaces.
b, Overview of the CNN training, testing, and evaluation process. The architecture of an 18-layer deep residual U-Net is used formodel training.
Training data sets are prepared throughmanual labeling of images, and the trained neural network predicts particle regions in newTEM images,
and its performance is evaluated using the F1-score. The confusion matrix in (b) shows an example of soft Dice scores for neural network
performance. c, Example of a HRTEM image captured using an aberration-corrected microscope at a resolution of 4k (4096× 4096). Pixel size
is 86 pm. d, e, Prediction (d) and statistical characterization (e) of individual particles in 4k images by the trained neural network, alongside the
identification of individual particles. A filter is applied to exclude overlapping, irregularly shaped, and poorly segmented particles. Particles that
pass the filter are then analyzed through various data visualizations.
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The trained neural net predicts particle regions in
preprocessed full-resolution 4k images and the binary-classified
particle pixels are identified as individual particle regions using
the scikit-image package, a Python image processing tool
(Figure 1d). Size and shape statistics of the segmented particle
regions are then analyzed using geometric shape descriptors
(Figure 1e). To quantitatively analyze the morphological
evolution both between and within samples prepared under
various synthetic conditions, we compared the geometric
features of the nanocrystals using three simple shape descriptors:
edge length (nm; √area), circularity (4π × object area/object
perimeter2), and face convexity (object area/convex hull area)
(Figure S2).13 To find and filter out unwanted objects such as
overlapping particles and particle agglomerates from down-
stream analysis, we use two convexity measurements (i.e., line-
and area-based convexity) to identify these mostly nonconvex
objects (Figure S3). The area-based convexity is referred to as
“face convexity” in this study due to the absence of a hollow
portion within the nanocrystal.

Empirical Analysis of Data Size Requirements for
Reliable Statistical Characterization. High-throughput
imaging with HRTEM often introduces inherent sampling
biases due to uneven nanoparticle distribution on the grid. To
mitigate these biases and determine the data size required for
reliable statistical analysis, we performed an empirical
comparison by grouping the data. By dividing the 65,000-
particle data set from 78 images of a single synthesis condition
(the ‘Co0.4’ sample) into several groups, we systematically
compared the statistics of each group with the same data size to
understand how sample size affects the statistical results. Figure
2 illustrates the comparison of statistical results using two
different grouping methods�sequential (Figure 2a−c) and
random (Figure 2d,e). As shown in Figure 2a, when sequentially
grouping the data, where particles are assigned to groups based
on their image acquisition order, the difference in mean values of
edge length between groups decreases with increasing sample
size. For example, when grouping the data into three different
groups and comparing the first 1000 particles in each group, the
mean values differ greatly depending on the group (Figure 2a).
This is potentially due to the possibility that when groups are
divided by sequentially extracting particles from TEM images,
the assembly of particles in nearby locations can be similar in
size, which may affect the statistical results (see Table S1 for the
number of particles and images analyzed for each sample). For
this reason, to include the diversity of nanocrystal characteristics
that covers the entire population, a larger data size is needed. As
the data size of subgroups increases to 3000, 5000, and 10,000,
the differences between groups become smaller, and the
statistical distribution becomes more similar to that of the
whole group, indicating that the group represents the entire
population well (Figure 2b and Figure S4). For a more robust
comparison and exploration of statistical results across different
data sizes, we analyzed the necessary group size needed to obtain
reliable statistical results over 65,000 particles (e.g., divided into
65, 10, and 3 groups of 1000, 6000, and 20,000 particles each,
respectively) (Figure 2c) (see Figure S5 for grouping based on
the number of images). When the number of particles exceeds
5000, the coefficient of variance (CV) of mean values between
groups is around 4% and decreases to around 2% at a data size of
10,000. We examined and compared the CV values of various
nanocrystal samples, finding that regardless of the sample, when
the data size reaches 5000, the CV is reduced to half its value
compared to a data size of 500 (Figure S5). Additionally,

although the extent of CV reduction varies by sample, in all
cases, the CV either remains the same or decreases further after
the data size reaches 5000. Based on these observations, we
decided to obtain data for more than 20,000 particles per sample
to ensure reliable statistical results (see Table S1).
The statistical distributions of the shape properties of the

particles are then visualized in histograms, violin plots, scatter
plots, and contour plots (Figure 1e). Multiple visualizations are
essential to capture the different aspects of the data
comprehensively. While histograms encompass all measured
features of objects and provide a clear view of the frequency
distribution of the shape properties, they still represent a form of
data reduction. Using scatter plots, not only can individual
information be preserved, but they also allow us to understand
correlations between variables. However, large data sets
necessary to reflect information from an entire population
pose challenges in effectively discerning distribution informa-
tion at the individual level, due to redundancy, overlapping data
points, and reduced visual clarity. To address this visualization
issue, we generated a reduced data set by selecting a specific
number of particles from each nanocrystal sample. To mitigate
the sequential acquisition bias seen in Figure 2c, we adopted a
random selection method by shuffling particle data and
subsequently selecting the reduced number of particles. With

Figure 2. Effect of data size on statistical results. a, Histograms
showing a comparison of statistical analysis methods by evaluating
the mean of edge length values in each group, where each group
represents data of the same size but with different particles. b,
Histogram of entire statistics including 65,404 particles. c, Mean
edge length values among different group sizes of data sequentially
selected by naively counting nanoparticles in consecutive images. d,
A randomly selected subset of 1000 particles out of the total 65,404
particles effectively represents the statistical distribution. e, Mean
edge length values among different group sizes of randomly selected
data. The dotted horizontal lines in (c) and (e) represents the global
mean values of the edge length. Navy circles denote the CV values
between the mean values of each group. A higher CV value indicates
a greater disparity in mean values between groups within that data
size, which means significantly different statistical outcomes
depending on the choice of groups.
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random sampling, a smaller data set can accurately represent the
larger population. For example, 1000 particles were randomly
chosen three times and each group appears to have substantially
similar mean values (Figure 2d). Their distribution shapes are
already similar to that of the whole group with only a relatively
small data size of 1000. Figure 2e shows the trend in the mean
value difference between groups depending on the group size.
Notably, a data size of 2000 can effectively capture population
characteristics when selected uniformly at random from the
entire population, and even a data size of 1000 shows a low CV
of about 1%, indicating its suitability for analysis with a reduced
data size. Note that this approach still requires collecting a large
data set, as it is currently impractical to experimentally randomly
sample individual nanoparticles. This high-throughput sampling
ensures that even with a smaller data size used during analysis,
we achieve robust and reliable statistical insights.

Effect of Cobalt Precursor and Water on Nanocrystal
Geometry. Recent strategies for the synthesis of spinel oxide
nanocrystals are based on the use of an alcohol/water system,
employing the organic/aqueous interface of reverse vesicles as
the reaction medium.23,31−34 In our study, Co3O4 nanocrystals
were synthesized in the reaction medium of cobalt(II)
perchlorate precursors, 1-octanol, oleylamine, and water
(Methods). Cobalt precursors and water play crucial roles
throughout the entire synthesis process, including the
conversion of metal precursors into monomers�the funda-
mental building units of the nanocrystals�and the subsequent
growth phase. During the reaction, hydrated Co(ClO4)2
precursor complexes with 1-octanol and oleylamine to form a
cobalt−ligand complex. The complex acts as a premonomeric
species that will be converted to monomers.35,36 The hydrolysis
of the metal−ligand complex in the solution is accelerated by the
injection of water, leading to the formation of monomers, which
can further condense to form metal−oxygen−metal bridges.37
The concentration of cobalt precursors influences the
proportion of 1-octanol ligands per cobalt ion center, affecting
the number of binding sites and, consequently, the super-
saturation level of monomers. Higher concentrations of cobalt
precursors result in fewer 1-octanol ligands per cobalt ion center,
reducing the binding sites for oleylamine ligands at a given
oleylamine amount, which in turn lowers the monomer
supersaturation level. Conversely, more water in the solution
increases the supersaturation level by converting more cobalt−
ligand complexes into water ligands. In our study, the reaction
temperature (120 °C), reaction time, and the type and amount
of ligands (oleylamine and 1-octanol) are kept constant to
isolate the effect of the initial cobalt concentration and water
amount. Therefore, to control the size and shape of the
nanocrystals, we varied the synthetic parameters such as cobalt
precursor amount (0.2 to 0.8 mmol) and water amount (0.43 to
1.0 mL).
The representative images and shape statistics of the samples

produced with varying amounts of cobalt precursor and water
are shown in Figures 3 and 4, respectively. The synthesis
conducted at lower cobalt concentrations yielded small, round,
and mostly convex nanocrystals, as shown in the TEM images
(Figure 3; Co0.2−Co0.8). This trend is also apparent in the
histograms; with higher initial cobalt precursor concentrations,
the mean edge length increases while circularity and face
convexity decrease. For reference, a circle has a circularity of 1,
while a square has a circularity of 0.785.While the size deviations
broaden with an increase in mean size across samples, the
distributions of circularity and face convexity narrow as their

mean values increase. A broader or even bimodal size
distribution could result from different growth stages of
nanocrystals depending on the synthesis conditions. This
suggests that, at the same stage, crystals formed under higher
cobalt concentration may experience size defocusing, such as
Ostwald ripening. The summed contour plot, visualizing the
outlines of all individual nanocrystals, effectively demonstrates
the trend of Co3O4 nanocrystals increasing in size and
transitioning from a convex round shape to a concave cube as
the initial concentration of the cobalt precursor increases
(Methods). The trend is further supported by violin plots in
Figure 3b, displaying each shape descriptor value with a density
estimation for each sample. These plots reveal a strong
correlation between geometric features and cobalt precursor
concentrations.
Co3O4 nanocrystals of various morphologies can be produced

through the further control of reaction kinetics by varying the
oxidation conditions. When adjusting the amount of water, the
nanocrystals change shape while maintaining approximately

Figure 3. Statistical data of initial cobalt precursor concentration-
controlled samples. a, TEM images, histograms, and contour plots
of nanocrystals synthesized under cobalt concentration-controlled
conditions. The water amount was kept consistent at 0.7 mL. The
numbers in the sample names in the TEM images represent the
amount of cobalt precursor used during the experiments; for
example, ‘Co0.5’ refers to 0.5 mmol of Co(ClO4)2. The number of
nanocrystals counted for the statistical data ranges from 24,394 to
65,404 for each sample and is listed in Table S1. Scale bars in TEM
images and contour plots are 20 and 5 nm, respectively. b, Violin
plots illustrating the distribution of geometric features of the
nanocrystals synthesized under varying cobalt concentrations. Each
violin plot includes kernel density estimation curves, representing
the density of data points across the range of each feature.
Additionally, mean (star), median (colored circle), and mode
(horizontal black line), along with the 25−75% quartile window
(gray rectangular), and 95% confidence intervals (vertical black
line) are provided, offering a comprehensive visualization of the
data distribution.
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similar sizes across samples (Figure 4; DW0.43−DW1.0). As the
amount of water increases, both the circularity and face
convexity of the nanocrystals tend to increase. Although the
size distribution remains relatively unchanged, the distributions
of circularity and face convexity narrow as their mean values
increase. The broader shape distribution observed in samples
with lower mean circularity and face convexity, compared to
those with higher mean values, may be attributed to the presence
of nanocrystals with both kinetic and thermodynamic shapes in
the former (detailed discussion in the following section). This is
supported by the statistical results presented in histograms and
violin plots in Figure 4, which show that high circularity and face
convexity values are present in all samples. Emergence of
concave nanocrystals can be attributed to the growth behavior
under water-deficient conditions. As water decreases, the
hydrolysis of the metal−ligand complex is less favorable, causing
premonomeric species to oxidize on the nanocrystal surface
rather than in the solution due to lower activation energy for
surface reaction.38 Since the corners and edges have a higher
degree of curvatures than faces, the coverage density of the
surfactants is lower, resulting in easier access to growing species
for the surface reaction/deposition on that site.39−41 Therefore,
surface deposition tends to occur on the corners/edges, forming
higher energy surfaces.

Given the individual contributions of cobalt precursors and
water in architecting the final size and shape during nanocrystal
growth, it becomes crucial to understand how the interplay of
experimental parameters impacts geometric features for
designed synthesis. Uncovering these relationships facilitates
navigating optimal synthetic conditions for nanocrystals with
targeted geometric features. To estimate the size and shape of
the final product from a given synthetic condition by varying
cobalt precursors and water, we examined the linear relation-
ships between the mean values of shape descriptors and different
mathematical operations (multiplication, division) of the
amount of synthetic parameters, including their exponentiation
to various powers (Figure S6). The use of exponentiation allows
us to explore the nonlinear effects and higher-order interactions
of these parameters. By testing these combinations, we aimed to
identify the best combination that yields the minimum R-
squared value when fitted to a line, thus indicating the strongest
relationship with the shape descriptors. Although there is a
possibility of overfitting the data points, the general trend
indicates a higher-order magnitude contribution of the cobalt
precursor than water for three different shape descriptors. The
dominant role of cobalt concentration in determining the size of
nanocrystals is even more pronounced at high cobalt
concentrations, with orders of magnitude differences. To
validate this empirical model, we tested it by choosing synthesis
conditions that were not used during the fit (e.g., ‘Co0.5’), and
the results confirmed its validity (see Figures S6 and S7).

Nanocrystal Shape Evolution through Size-Domain
Analysis and Visualization. While histograms provide
valuable information on the size and shape distributions of
nanocrystals within a sample, they do not reveal how shape
distribution varies with size. For example, histograms do not
showwhether smaller nanocrystals are round or concave. Scatter
plots, however, are particularly useful as they not only allow for
shape comparisons between different samples but also facilitate
the exploration of the relationship between size and shape within
nanocrystals belonging to the same sample. In these scatter
plots, each data point corresponds to a single nanocrystal
(Figure 5a,b and Figure S8). To avoid visualization problems
when plotting multiple samples in a single scatter plot
(uppermost row in Figure 5a,b), we decided, based on the
empirical investigation of data size requirements, to analyze
2000 randomly selected particles per sample. This approach
allowed us to effectively study the distribution of geometric
features among nanocrystals under various experimental
conditions. By color-coding data points based on particle size,
the relationship between size, circularity, and face convexity
becomes evident. This multidimensional visualization enables us
to understand unobservable aspects in histograms, such as how
smaller nanocrystals exhibit more round and convex shapes.
To check representative nanocrystal shapes for each sample,

we selected nanocrystals withmedian values of shape descriptors
(star symbols in scatter plots) and displayed their respective
TEM images (Figure 5c,d). As seen in Figures 3 and 4, scatter
plots also reveal changes in nanocrystal shape depending on
synthesis conditions. Furthermore, observations from the
distribution of shape information on individual particles in
scatter plots and TEM images of representative particles indicate
a tendency for smaller crystals, regardless of synthetic
conditions, to exhibit a nearly “round” shape with higher
circularity and convex surfaces. This suggests that smaller
crystals attain equilibrium shapes under thermodynamic control
rather than kinetic growth.

Figure 4. Statistical data of water concentration-controlled samples.
a, TEM images, histograms, and contour plots of nanocrystals
synthesized under water concentration-controlled conditions.
Co(ClO4)2 amount was kept consistent at 0.6 mmol. The numbers
in the sample names in the TEM images represent the amount of
water used during the experiments; for example, ‘DW0.7’ refers to
0.7 mL of water. The number of nanocrystals counted for the
statistical data ranges from 27,822 to 32,879 for each sample (see
Table S1). b, Violin plots illustrating the distribution of geometric
features of the nanocrystals synthesized under varying water
amounts. A detailed description of the violin plot is provided in
Figure 3. Scale bars in TEM images and contour plots are 20 and 5
nm, respectively.
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To delve deeper into these observations and clarify the
comparison between different synthesis conditions, we
generated size-domain scatter plots to illustrate changes in
circularity and face convexity values at 0.2 nm size intervals
(Figure 6a). These plots allow for quantitative comparisons of
how nanocrystal shapes evolve with varying monomer
concentrations within the same size domain. From this analysis,
we inferred that the influence of synthetic conditions on
nanoparticle shape varies with particle size.Within the size range
of 4.3−5.3 nm, the mean values of circularity and face convexity
remain high, close to 0.90 and 0.985, respectively, and do not
vary across synthesis conditions, as indicated by the low CVs of
mean values. This consistency is observed when varying Co
concentration, as well as when varying water concentration. At
larger nanocrystal sizes, different shape descriptor values begin
to emerge for each synthesis condition. For instance, at 4.3 nm,
the circularity and face convexity values of cobalt-controlled
samples are similar, but for sizes above 5.3 nm, differences in
shape between samples become more pronounced as the size
increases. Similar trends are observed in the water-controlled
experimental groups. Again, this can be seen by the increase of
CV across mean values starting at around 4.3 nm.
The sizes at which both shape properties reach their

maximum values are 4.3 nm for circularity and 5.3−6.5 nm for
face convexity, with the latter peaking at larger sizes. This
indicates that crystals predominantly exhibit a round shape at 4.3
nm. Within the 4.3−5.3 nm range, face convexity slightly
increases or remains similar, while circularity decreases,
suggesting that crystals begin creating facets from a round
shape. Samples with a significant decrease in face convexity
values at sizes above the 5.3 nm range (i.e., ‘Co0.8’, ‘DW0.43’,
‘DW0.6’) indicate that at this critical size the crystals begin to
have concave surfaces. To visually depict this phenomenon, we

use contours to plot the shape probability distribution of
nanocrystals for each size-domain, providing a comprehensive
understanding of shape evolution (Figure 6b) (see Figure S9 for
representative TEM images and Figure S10 for the effect of data
size on the size-resolved analysis). Contour plots of nanocrystals
within the 4.3−5.3 nm range exhibit relatively small changes in
mean circularity and face convexity values between samples,
representing similar round shapes (Figure 6b). As size increases,
the difference in contour shape across experimental conditions
becomes more pronounced. For instance, the ‘DW0.43’ and
‘DW1.0’ samples at 4.3 nm exhibit similar round shapes, but at
8.5 nm, ‘DW0.43’ features concave surfaces while ‘DW1.0’ has
truncated corners.

The “Onset Radius”: Thermodynamic and Kinetic
Control during Nanocrystal Growth. This phenomenon�
the shape transition from round shapes at smaller sizes to faceted
shapes at larger sizes�can be attributed to the variance in
surface-to-volume ratio among the polyhedra with different
facets, which varies with crystal size. For spinel transition metal
oxides, the surface energies of low-index facets typically follow
the order γ{100} < γ{110} < γ{111}.42−44 Due to this facet-dependent
surface energy, Co3O4 nanocrystals are expected to adopt a cubic
shape. However, when nanocrystals are as small as sub-10 nm
scales, the surface-to-volume ratio increases significantly,
contributing more to minimizing the overall energy. To
minimize the total free energy of the crystal, the surface tends
to form a structure with the lowest surface-to-volume ratio,
leading to rounded shapes for small crystals rather than faceted
ones. As the crystal size increases to a certain extent, faceted
surfaces become energetically advantageous for lowering the
total energy, leading to the adoption of faceted structures. As
explained by the Wulff theorem, the relationship (γ/d =
constant) between the specific surface free energy (γ) and the

Figure 5. Shape distribution of individual nanocrystal samples under varying experimental conditions. a, b, Scatter plots showing the
distributions of edge length, circularity, and face convexity for cobalt precursor concentration-controlled (a) and water amount-controlled
samples (b). For the scatter plots in the uppermost row of (a) and (b), where multiple nanocrystal samples are combined in a single plot, 2000
particles were selected uniformly at random from each nanocrystal sample. Colors in the upper right plot indicate each nanocrystal’s edge
length value and colors in the rest of the plots indicate the type of sample. Star symbols denote the median values of each sample. c, d, TEM
images showing the representative shape of nanocrystals, with particle regions segmented and highlighted in purple for cobalt-controlled (c)
and in green for water-controlled (d). Representative particles were selected based on the median values of shape descriptors for each sample.
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distance from the facet to the crystal center (d) causes {100},
{110}, and {111} facets to appear as truncated polyhedral,
reducing the total surface energy of the crystals. This explains the
decrease in circularity beyond a certain size, resulting in shapes
such as truncated octahedra and cubes. Up to this point, crystal
growth appears to be controlled by thermodynamics.
Furthermore, as crystals grow larger, they acquire lower

energy due to the contribution of volume energy, allowing them
to accommodate relatively high-energy surfaces. Our research
shows that, consequently, face convexity gradually decreases in
the range of approximately 5.3−8.5 nm. Beyond 8.5 nm, face
convexity no longer decreases significantly with increasing size,
indicating a balance between surface energy and volume energy
in determining the total free energy, resulting in a relatively
constant facet ratio on the surface. In this kinetically controlled
growth regime, facets start to be determined by the growth rate
of each face, with the growth rate of high-energy facets being
much faster than that of low-energy facets. As a result, crystals

grow more rapidly along the ⟨111⟩ direction, forming concave
surfaces with high-index facets (see ‘Co0.8’ and ‘DW0.43’ in
Figure 6).45

We propose the concept of the “onset radius” to describe two
critical size thresholds in the formation of Co3O4 nanocrystals in
this study: the onset of surface faceting and the onset of kinetic
crystal growth. The former represents a size threshold at which
the surface energy difference between facets predominantly
governs the total surface free energy of crystallites, leading to the
development of faceted crystals. Within the size range of 4.3 nm,
all samples exhibit similar circularity and face convexity, with
minimal differences in mean values and a CV of less than 1%
among samples, indicating uniform shape consistency across the
entire sample set. As crystals grow beyond 4.3 nm, circularity
gradually decreases while face convexity either remains constant
or increases, marking the onset of crystal surface faceting and
defining this criterion as the first onset radius. At an edge length
of 5.3 nm, face convexity values begin to decrease, with the

Figure 6. Size-resolved shape probability distributions of nanocrystals. a, Comparison of mean and CV values for nanocrystal samples in
different size domains. Colored circles represent the mean values of nanocrystal samples, while hollow black squares indicate the CV values
between these means. Vertical lines in the plots indicate edge lengths of 4.3, 5.3, 6.5, 7.7, and 8.5 nm. b, Size-domain contour plots of
nanocrystals. These plots enable comparison of average shape distributions based on size and variations in shape across different experimental
conditions as size increases.
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extent of reduction varying among samples, as evidenced by the
increase in CV values, thus defining this point as the second
onset radius. Below this onset, crystal growth is thermodynami-
cally regulated, while above it, kinetic control dominates.
Nanocrystal shaping becomes more evident beyond this second
onset radius, serving as an indicator for high-energy surface
formation, and crystals start to exhibit kinetic shapes rather than
thermodynamically stable ones. Up to an edge length of 8 nm,
the influence of synthesis parameters on crystal shaping is
maximized as crystal size increases. Beyond this point, crystal
shapes remain similar to those at 8 nm, implying that the impact
of monomer concentration on crystal shape remains consistent
regardless of size thereafter.
The identification and naming of these two regimes provide

an opportunity for similar observations in other nanocrystal
systems, within our framework. Our approach sets the stage for
future research to explore the generalizability of the onset radius
concept. This size-resolved analysis provides a detailed frame-
work for examining nanocrystal growth, exploring how these
regimes align with traditional growth models and vary based on
different growth mechanisms. Additionally, in recent nanoma-
terials science, machine learning has shown great potential for
finding patterns and trends in complex data, discovering new
materials, and predicting properties to gain deeper insights into
systems.46−51 Leveraging large data sets will enable more
effective and reliable machine learning-based analysis, further
enhancing the understanding of these growth regimes. By
unlocking numerous unexplored areas in nanoscience, our
approach drives significant advancements in well-optimized
nanocrystal synthesis.

CONCLUSIONS
In summary, our study elucidates the intricate relationship
between synthesis conditions and the size and shape evolution of
colloidal nanocrystals. Given the historical importance of
statistics in advancing knowledge, it is crucial to incorporate
robust statistical characterization into scientific findings at the
nanoscale. By integrating deep learning-assisted high-through-
put techniques with advanced statistical analysis, we have
uncovered insights into the growth regimes governing nano-
crystal morphology through a size-resolved approach. This
methodology allows us to quantify subtle morphological
differences across size ranges that have previously been
challenging to capture experimentally. Enabled by size-resolved
observations, our findings highlight the critical roles of
thermodynamic and kinetic growth regimes in shaping nano-
crystals. This is particularly evidenced by the observed
transitions from faceted to kinetically driven growth regimes
in Co3O4 nanocrystals. Moreover, the introduction of the “onset
radius” concept offers a valuable framework for understanding
the critical size thresholds at which these transitions�namely
surface faceting and the formation of kinetic shapes with concave
surfaces�occur. Notably, this shape evolution, captured at a
singular time point under specific synthetic conditions,
represents an approach that moves beyond traditional methods
commonly used in nanoscience, transforming raw data into
meaningful insights. By elucidating the interplay between
synthesis parameters and nanocrystal morphology, our work
offers a more precise understanding of nanocrystal growth and
provides valuable insights into refined guidance for optimizing
nanomaterial synthesis. Ultimately, these insights will guide the
creation of tailored nanomaterials with enhanced properties and
functionalities.

METHODS
Preparation for TEM Sample and Image Acquisition of Co3O4

Nanocrystals. Spinel cobalt oxide nanocrystals were synthesized using
the previously reported method with a slight modification.23 A mixture
of 0.07−0.29 g of cobalt(II) perchlorate (Aldrich) in 15 mL of 1-
octanol (Aldrich) and 2.67 g of oleylamine (Acros) was heated to 120
°C under air. Distilled water (0.7 mL) was added to the mixture at 80
°C during heating and aged at 120 °C for 6 h. The reaction was
quenched, and the temperature was reduced to room temperature. The
nanocrystals were purified with an excess amount of acetone for the first
purification step and hexane/ethanol for the second purification step.
At each step, the nanocrystals were retrieved by centrifugation. After
emptying the supernatant, the nanocrystals were redispersed in toluene
for drop casting onto the TEM grid with carbon substrate. High-
resolution TEM images were collected using the aberration-corrected
TEAM 0.5 microscope at the National Center for Electron Microscopy
(NCEM) in theMolecular Foundry. Images of 4096× 4096 pixels were
acquired at 300 kV with the Gatan OneView camera. Magnification
used for imaging was 78 kX (corresponding to 0.086 nm/pixel) and the
electron dosage was set between 370 and 500 e/Å2. This magnification
was chosen to balance field of view and resolution, ensuring that lattice
planes were visible while capturing a large population of nanoparticles.
Each image contained between 350 and 1000 particles, depending on
their size and distribution. Building on our group’s prior work,17,52 we
kept the electron dosage within a similar range for all samples and
imaging sessions and applied data preprocessing techniques, such as
pixel value rescaling and flat-field correction, to enhance the
generalization of the trained neural network across the samples. The
electron dose range was selected to maintain a signal-to-noise ratio that
ensures accurate segmentation, while avoiding the risk of nanoparticle
damage or surface reconstruction at higher doses.

Neural Network Training. The neural network was trained using
computational resources provided by the National Energy Research
Scientific Computing Center (NERSC). Specifically, a GPU node was
utilized to accelerate the training process. In our neural network
training, we utilized an 8-fold cross-validation approach with a batch
size of 8 and trained the models for 100 epochs with no early stopping.
We used an initial learning rate of 0.04, applying an exponential decay
with a decay rate of 0.5 every 20 epochs. To augment the training data,
we used ImageDataGenerator in Keras to randomly flip individual
images horizontally and/or vertically every epoch. As input data, we
utilized 992 image patches, each with dimensions of 512 × 512 pixels.
Input images were chosen from ‘Co0.4’ (864 patches with pixel size
33−67 pm), ‘Co0.6’ (64 patches with pixel size 67 pm), and ‘Co0.7’ (64
patches with pixel size 86 pm). Input data were split into training and
validation sets in an 8:1 ratio, ensuring a balanced and representative
distribution. The U-Net architecture with a ResNet-18 backbone was
initialized and compiled with the Adam optimizer and a combined
categorical cross-entropy andDice coefficient loss function (Details can
be found in our code implementation, available at https://github.com/
ScottLabUCB). Metrics used to assess the model’s performance at each
epoch included the Intersection over Union (IoU) score and the F1
score (see Figure S2 for the learning curve during training).

=
+ +

F1 score
TP

TP 0.5(FN FP)

TP (true positive) indicates correct identification of particle regions,
FP (false positive) denotes misidentification of background as particle
regions, and FN (false negative) represents particle regions mistakenly
identified as background. The F1 score calculates the harmonic mean of
precision (=TP/(TP+FP)) and recall (=TP/(TP+FN)), equally
weighs the contribution of both metrics. The best possible F1 score
is 1, indicating a perfect model where all predictions are correct, and the
worst is 0, reflecting no correct predictions.

Testing the Images with Trained Neural Network for Particle
Predictions. To test new images not used during the training and
validation process, we selected the trained neural network with the
lowest validation loss from the 8-fold cross validation study as the best-
performingmodel. Its performance was evaluated with 512× 512 image
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patches of ‘Co0.5’ with pixel size of 86 pm using the soft Dice
coefficient, which was displayed in a confusion matrix (see Figure S2).
The best performing model, saved during the training, then predicted
the particle and background regions for unseen test data (4k resolution
images) individually at a speed of less than 0.1 s/image using the
computational resources of NERSC. The results were stored in an array,
and the predicted images were saved for further analysis.

Postprocessing of Predicted Images. To refine the segmenta-
tion masks predicted by the neural network, we implemented a
postprocessing pipeline that involved thresholding, connected
component analysis for individual particle identification, and edge-
touching region removal. The predicted images consisted of values
ranging from 0 to 1 due to the use of the softmax function during the
testing phase. Therefore, for each predicted segmentation mask, a
threshold of 0.5 was applied to generate a binary image, where pixels
with a probability greater than 0.5 were marked as particles, and others
as background. The threshold value of 0.5 was selected based on
statistical results, demonstrating the reasonable match between the
predicted regions and the ground truth data (Figure S2). Connected
component analysis was then performed to label each particle in the
binary images. Subsequently, we filtered out any “edge-touching
regions”, or regions in the predicted mask that touch the image
boundaries, often resulting in incomplete or partially visible objects. By
filtering these out, we ensure only fully contained and well-defined
particles are retained, enhancing segmentation accuracy and reliability.
This was achieved by analyzing the bounding box coordinates of each
labeled region. Regions with bounding boxes at the image boundaries
were excluded, ensuring only complete particles within the image
boundaries were retained.

Feature Extraction and Filtering. Scikit-image package was used
to calculate the properties of regions identified as individual particles.
For each region, the area was calculated by multiplying the pixel area by
the square of the pixel size, converting it into actual square units.
Subsequently, each object underwent a series of conditional checks to
determine its eligibility as a particle based on the following criteria (see
Figure S3 and Table S2): the area must fall within predefined lower (6
nm2) and upper bounds (which vary across different samples); the
eccentricity, indicating the elongation of the shape, must be below a set
upper threshold; and the solidity, referred to here as face convexity,
which measures compactness, must surpass a lower threshold. If an
object met all these conditions, further shape analysis was conducted.
We computed the perimeter of its convex hull and then calculated the
convexity�the convex hull perimeter divided by the object’s perimeter.
If this ratio exceeded the specified lower bound, we kept the object’s
label in the image at that location. This approach only selected particles
that met all required geometrical standards as regular particles for
further analysis, including geometrical feature measurements and
contour extractions.

Generation of Contour Plots. For each particle identified within
labeled images, contours were extracted using the f ind_contours
function in the scikit-image package, tracing the exterior boundaries
of objects. The extracted contours were used without any
postprocessing such as smoothing. On average, the contours contained
between 300 and 585 points, depending on the size of the nanoparticles.
To analyze and compare the contours, we reparameterized the contours
from a list of Cartesian coordinates (x, y) to a radial coordinate (r, θ)
system. In this system, the radial coordinate represents the contour as
the Euclidean distance and angle from the centroid, which is the center
of the contour. To visualize the average shape of nanocrystals within a
given subset, we plotted the sum of the contours of the nanocrystals. To
align these contours to a consistent orientation,53 an initial contour was
selected as a reference orientation. Each subsequent contour was then
permuted through all possible orientations, including rotations and
mirroring to account for opposite chirality (i.e., particles flipped upside
down). For each permutation, the Euclidean distance to the running
average shape, computed from the already aligned contours, was
calculated. The permutation with the smallest distance to the running
average shape was chosen as the aligned orientation for that shape. This
process was repeated iteratively, updating the running average shape

with each newly aligned contour, resulting in a set of contours that are
consistently oriented relative to one another.
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