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Abstract 
Prediction plays a critical role in comprehending human language. Many theoretical and 

computational models have attempted to characterize how we use context to facilitate language 

processing in noisy environments either with or without relying on predictive processing. 

Despite these attempts, we do not yet have a complete understanding of the role of prediction in 

language processing. Predictive coding models have recently gained popularity as potential 

architectures for the role of prediction during language comprehension. These models suggest 

that predictions about bottom-up inputs are continuously generated from higher cortical levels to 

lower levels in a hierarchical manner – i.e., a particular level generates predictions about the next 

lower level. As bottom-up input is encounter by each level of processing, prediction error is 

computed by comparing the input with the top-down prediction. The goal of this dissertation was 

to assess whether predictive coding models can account for the time course of information 

retrieval during predictive language processing. Specifically, the studies described examine the 

time course of pre-activations of lexical and sub-lexical features in both monolinguals and 

bilinguals using a combination of decoding electroencephalogram (EEG) with machine-learning 

classifiers and mass univariate event-related potential analysis. 

 Chapter 1 describes an experiment that compared three frequently used models for signal 

classification – support vector machines (SVM), linear discriminant analysis (LDA), and random 

forest (RF) to determine which is best-suited for analyzing word pair prediction paradigms. 

Results showed that SVM was the best performing classifier of the three within two data sets 

from separate visual word priming paradigms. Chapter 2 describes an experiment which used 

EEG decoding with SVM classifiers and mass univariate ERP analyses to identify the time 

course of information retrieval prior to the onset of accurately predicted, related but inaccurately 
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predicted, and unrelated target words during a visual word priming prediction paradigm. In 

addition to this pre-stimulus information retrieval, these analyses were used to investigate the 

effects of prediction error. The results of this study showed that semantic information, such as 

concreteness, is retrieved earlier than visual feature information, like word length, and that 

unrelated words had greater prediction error than predicted or related but inaccurately predicted 

words. Finally, Chapter 3 describes an experiment that extends the results of Chapter 2 by using 

the same paradigm and analyses with Spanish-English bilingual participants. The results of this 

study showed that bilinguals reading words in their second language (L2) retrieve anticipated 

information in a similar fashion as monolinguals. Semantic information preceded visual 

information and unrelated words showed evidence of greater prediction error than did predicted 

or related words that were not accurately predicted.  

 Together, these experiments support predictive coding models of language processing in 

both monolinguals and bilinguals during word recognition. Both groups predict higher-level 

features (concreteness) before lower-level features (word length) of anticipated words and 

calculate prediction error when they make inaccurate predictions.  
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Chapter 1 

1. Introduction 
 Language processing is hard. Gwilliams and Davis (2020) characterize this difficulty by 

pointing out the great challenges faced, and resources invested, in creating state-of-the-art 

artificial language processors. Nevertheless, humans have the remarkable ability to comprehend 

language rapidly and accurately in several modalities (written, spoken, or sign), often dealing 

with both internally and externally noisy environments. Current theories and models of language 

processing assume that efficient language processing therefore relies on predictive processing, 

defined here as the ability to use the context and prior knowledge to pre-activate upcoming 

linguistic features (and, potentially, non-linguistic features) prior to encountering the sensory 

input. The notion that prediction leads to pre-activation of imminent linguistic representations is 

currently debated, in part because it has been methodologically challenging to measure the 

presence and content of pre-activated features.  

 In this chapter, I will provide some evidence from prior research that a complete model of 

language comprehension should be cross-modal, allow for contextual effects beyond those that 

are purely linguistic, and be driven, at least in part, by prediction. A critical mechanism of 

prediction – potentially among several – is priming. Priming happens when one input facilitates 

the processing of a later input. The present work used machine learning approaches to examine 

whether predictive pre-activation of various linguistic features can be decoded from 

electrophysiological signals recorded during language processing during word pair priming 

studies. 

Before introducing the studies that I have performed to address this question, I will 

provide an overview of psycholinguistic models of language processing at multiple processing 

levels (phonemic/orthographic, lexical, sentential, syntactic, and semantic) and across visual and 
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spoken modalities. This overview is followed by a discussion of prediction frameworks. Next, I 

will review two important methodologies – event-related potentials (ERPs) from 

electroencephalography (EEG) and multivariate pattern analysis (MVPA) of EEG using 

machine-learning classifiers (frequently referred to as decoding) – used to investigate language 

comprehension, predictive processing, and their relation to other domain general cognitive 

processes. These sections are accompanied by a discussion of how to use these techniques in 

complementary ways to further explore prediction in language. The final section discusses the 

implications of the reviewed literature and motivations for the present work.   

2. Models of language comprehension 
 Each of the various modalities of language comprehension present challenges that must 

be overcome by the comprehender. This includes speech, written language, and sign language. 

This review will focus primarily on speech and written language. While the studies presented in 

the following chapters focus on visual word recognition, many models of language 

comprehension treat word recognition as one part of the hierarchy of language processing. 

Indeed, in models that rely upon top-down predictions, higher levels of representation are 

relevant for word recognition regardless of input modality. Furthermore, several models of word 

recognition assume that both on phonological and orthographic representations are activated, 

even during visual word recognition. Therefore, a more complete picture of word recognition 

requires a basic understanding of different models. Speech comprehension poses a challenging 

problem in that the signal is continuous and noisy. The speech signal must be segmented so that 

the parts bearing meaning – for example, words – can be identified. This must be done while 

handling the noise created by the speaker – in the form of accents, speech impairments, and other 

individual speaker characteristics –by the environment – such as ambient sound, interruptions, 

and distortions created by obstacles – and internally due to ambiguous linguistic input or lack of 
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focus. To compound these challenges, all this processing must occur in a matter of a few hundred 

milliseconds to maintain discourse comprehension. Written language is already discretized, and 

readers can also easily re-read prior parts of the message when comprehension is difficult. 

However, it poses its own challenges to comprehenders in the forms of noise in the writing – 

sloppy handwriting, misspellings, and poor grammar – and ambiguity in words, phrases, and 

sentences, for example when words are lexically ambiguous, or when sentences have an 

ambiguous structure. Due to these challenges in processing language, several theories have 

proposed that comprehenders rely on the prior context to facilitate the processing of incoming 

words. Some theories assume that comprehenders use context to predict upcoming input while 

others suggest that the prior context facilitates integration of new input only after encountering 

said input (see Traxler, 2014 and Traxler & Swaab, 2024 for further review). Here I focus on 

seminal models of speech and reading comprehension that have been, or could be, implemented 

computationally to provide views on how language may be processed using contextual 

constraints either with or without a mechanism for predictive processing.  

2.1 Spoken word recognition 

Presented here are three seminal models of speech processing. These models were chosen to 

provide a non-exhaustive sample of models that range from mostly ignoring predictive 

processing (cohort model) to relying on it heavily (lossy context surprisal model and information 

exchange model). Additionally, this selection of models includes both isolated word recognition 

(cohort) and word recognition within a sentence context (cohort, lossy context surprisal and 

information exchange model). It is important to note that while these are speech recognition 

models, many of the principles could apply to visual word recognition with little or no 

adaptation. Several of the models which I discuss here and in the following section are 
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connectionist models. Connectionist 

models are designed, in some 

fashion, to resemble the workings of 

the human nervous system (Rohde 

& Plaut, 2003). These models are 

based on parallel, distributed 

processing (Rumelheart & 

McClelland, 1988). Connectionist 

models are the precursors to current prediction models; particularly those based on neural 

networks. The first model discussed here is one of the earliest connectionist models. The cohort 

model (Marslen-Wilson & Welsh, 1978; Marslen-Wilson & Tyler, 1980; Marslen-Wilson, 1987, 

Gaskell & Marslen-Wilson, 1997), initiates word processing at the onset of the incoming word 

and uses context to facilitate processing of the word and integrate it into the context. The second 

model, the lossy context surprisal model (Futrell et al., 2020), is a probabilistic model that uses a 

representation of the prior context to predict upcoming words. The third model, referred to here 

as the information exchange model, is also a probabilistic model that goes beyond word 

recognition and suggests that probabilistic prediction is the main driver of speech 

comprehension.  

Cohort Model. The first model presented here is the cohort model (see figure 1, Marslen-Wilson 

& Welsh, 1978; Marslen-Wilson & Tyler, 1980; Marslen-Wilson, 1987). Marslen-Wilson’s 

cohort model (Marslen-Wilson & Welsh, 1978; Marslen-Wilson & Tyler, 1980; Marslen-Wilson, 

1987) evolved from prior models of the organization of the mental lexicon, including the 

logogen model (Figure 2), according to which each word is represented as a separate abstract 

Figure 1. An interpretation of the cohort model. A word initial cohort is formed 
after about 100-150ms of the speech input. As more speech input is heard, the 
cohort is narrowed down until the point of recognition is reached. Note that the 
actual word initial cohort would be much larger than pictured here.  
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unit – a logogen – in a network that is organized as a function of semantic relations between 

words (Morton, 1969). Another prominent model of the organization of the mental lexicon was 

the serial lexical frequency ordered bin model (Forster, 1976), which assumed that information 

about a given word form is part of a single master file, or bin, and addressed by domain-specific 

codes (Allport et al., 1981). Whereas this latter model assumes a serial frequency ordered search, 

where each candidate must be discarded before another candidate can be activated, the logogen 

model assumed that sensory input would activate the intended representation, and that this 

activation would spread to semantically related representations, thereby facilitating their 

recognition should they subsequently be encountered. It will become clear that the Cohort model 

requires parallel spoken word recognition as I review the model below. 

Marslen-Wilson (1987) 

asserts that spoken word recognition 

breaks down into three basic 

functions: access, selection, and 

integration. Access is the relationship 

between the recognition process to 

the sensory input. Any system for 

recognizing spoken words must be 

capable of mapping speech signals to 

representations in the mental lexicon. 

Integration is the relationship of the 

recognized word to higher-level representations of the preceding utterance. To complete 

recognition, the system must allow for the integration of the syntactic and semantic information 

Figure 2. Early version of Morton's (1969; figure from Coltheart et al, 
2001) logogen model for reading aloud. In this model auditory and 
visual word analyses feed forward to activate logogens that are mental 
lexical representations of words which feed forward to generate a 
verbal response. 
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of the word being recognized into the existing sentence or discourse context. Selection is the 

interface between access and integration. The system must discriminate between accessed word-

forms to select the word-form that best matches the input. During this process of lexical 

selection, the initial cohort is narrowed down as more bottom-up speech input becomes available 

and those representations that no longer match the speech input are dropped out of the cohort. 

This cohort narrowing continues until a recognition point is reached in which only one mental 

lexical representation is consistent with the signal input. These three required functions must be 

performed within the short timeframe during which listeners are shown to be capable of correctly 

identifying words (Marslen-Wilson, 1973, 1985, 1987; Marslen-Wilson & Tyler, 1975, 1980).  

Cohort assumes that context can facilitate lexical selection: When a word is heard, the 

recognition point of words can occur prior to the entire word being heard. This early selection 

constraint rules out serial models and forces a parallel model of selection and access. This results 

in three functional requirements for models of the spoken word recognition process: multiple 

access, which is the ability to access multiple candidate word forms from the input signal to their 

representations in mental lexicon; multiple assessment, which is the ability to evaluate the 

syntactic and semantic appropriateness of candidate words at a time at which multiple candidate 

words are compatible with the input; and real-time efficiency, which is the need for the access 

and selection processes to complete within a real timeframe of ~200ms from word onset 

(Marslen-Wilson, 1987). The cohort model assumes that the initial access to word-form 

representations is entirely driven by the sensory signal, even when words are embedded in a 

highly constraining context. The model hypothesized that a “word-initial cohort” of lexical 

representations that match the initial sensory input is activated within 100-150ms of the onset of 

the incoming speech signal. This corresponds to multiple access. The process of narrowing down 
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the word initial cohort to those candidates that are still compatible with the speech signal can be 

facilitated in constraining sentence contexts, i.e., the zooming in to the lexical candidate that 

represents the speech signal is facilitated. This corresponds to multiple assessment. Marslen-

Wilson (1987) argues that this system allows for optimal real-time efficiency as words will be 

recognized as soon as the auditory signal permits according to the currently available contextual 

constraints; thus, satisfying the requirement for real-time efficiency. The early versions of the 

model (Marslen-Wilson & Welsh, 1978; Marslen-Wilson & Tyler, 1980) could not account for 

word frequency effects and assumed matching in an all-or-nothing fashion which required 

unrealistically perfect matches to sensory and contextual inputs, given the great variability in the 

acoustic realization of phonemes in the speech signal. These issues necessitated amendments to 

the model to allow for an activation-based representation of the cohort (Marslen-Wilson, 1987) 

 In a seminal study, Zwitserlood (1989) performed a series of experiments to examine the 

two main predictions of the cohort model, namely that 1) only the sensory input determines 

access to and activation of candidates in the cohort, and 2) that a biasing sentence context can 

speed up the process of lexical selection such that less of the speech signal is needed to zoom in 

on the correct word form representation In this study participants heard sentences and were asked 

to perform a visual lexical decision task at a critical point in the sentence. The contextual bias of 

the sentence contexts was manipulated, as shown in the examples below. 

1. The next word is captain. 

2. They mourned the loss of their captain. 

3. With dampened spirits the men stood around the grave. They mourned the loss of their 

captain. 
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In addition to the context manipulation, the probing point at which the lexical decision stimulus 

was presented was varied, in 4 conditions, 1) before the onset of the critical word to probe 

potential pre-activation of the critical probe word, 2) at word onset, to examine effects of context 

on lexical access 3) before the recognition point to examine effects of context on lexical 

selection 4) after the recognition point to examine the effects of context on lexical integration. 

The recognition point of spoken words in isolation was determined in a gating task prior to the 

actual experiment. Participants were presented with increasing stretches of the speech signal of 

individual words, until most participants converged on the same word, i.e. the recognition point. 

The visual target words for the lexical decision task were semantically related either to the 

critical word of the priming stimulus or a competing word – Zwitserlood gives the example of 

Dutch words for “captain” (kapitein – critical word) and “capital” (kapitaal – competitor word) 

with “ship” (schip) and “money” (geld) as the respective related visual probe target words. The 

probing points were determined based on the results of the gating task. Differences in facilitation 

of the critical-related target words versus the competitor-related target words at a given probing 

point indicated at which point in time the critical word was selected. Zwitserlood found no 

evidence of differential facilitation prior to the onset of the critical word or when the first 

phoneme was presented. However, lexical decision was facilitated before the recognition point. 

This suggests that context does not pre-activate contextually appropriate lexical items as both 

appropriate and inappropriate items were activated after word onset, but contextual effects do 

occur prior to the sensory input being sufficient to disambiguate the activated lexical items.  

 In contrast to Zwitserlood’s findings, a more recent, two-experiment study found 

evidence that semantic features of the upcoming word are indeed activated prior to the onset of 

the critical word during auditory sentence processing (Heikel et al., 2018). While listening to 
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auditory sentences that were either highly constraining regarding concreteness (experiment 1) or 

regarding animacy (experiment 2), participants sometimes encountered an unexpected delay 

directly preceding the critical word. Electroencephalogram (EEG) was recorded from the 

subjects while listening to these sentences. Heikel and colleagues used machine-learning 

techniques to classify the EEG signal from the silent period prior to critical word onset according 

to the animacy or the concreteness of said word, and they were able to reliably decode animacy 

and concreteness features. These findings suggest that context can indeed predictively pre-

activate features of an upcoming word. The next model features prediction as a driving factor in 

speech processing. 

Lossy Context Surprisal Model. While the cohort model relegates contextual effects to 

constraints on selection of the candidate that matches the (partial) speech input, other models 

assume that contextual effects can be used to predict imminent input. One such model is the 

lossy context surprisal model (figure 3), which is a combination of predictive expectation-based, 

models that are rooted in information theory and the idea of imperfect, or lossy, representations 

of the current context.  

 The lossy surprisal model was proposed by Futrell and colleagues (2020), to integrate 

expectation and memory-based models of spoken word recognition. Expectation-based models 

treat processing difficulty as a function of word predictability, positing that optimal processors 
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will have already performed 

much of the work related to 

processing the word prior to 

encountering it when context 

makes words predictable 

(Futrell et al., 2020; Hale 2001; 

Jurafsky, 2003). A prime 

example of expectation-based 

models is surprisal theory, 

which is based on information 

theory (Shannon, 1948) and suggests that a word’s processing cost is determined by how 

predictable the word is given its context. (Futrell et al., 2020; Hale, 2001; Levy, 2008). Futrell et 

al. suggest that surprisal, serves as a link to prediction and predictive coding (Clark, 2013; 

Friston, 2009; 2010; Friston & Keibel, 2009; Rao & Ballard, 1999), which is discussed in more 

detail in the section on predictive processing. Memory-based models posit that integration of 

words in sentence contexts requires retrieval of representations of those words from working 

memory and that this retrieval process can be the source of incremental sentence processing 

difficulty (Futrell et al., 2020; Gibson 1998; Lewis & Vasishth, 2005). The example of memory-

based models presented by Futrell and colleagues is the dependency locality theory which 

suggests that processing difficulty is, in part, due to difficulty in integrating words that are 

linearly far apart from each other in the sentence with the cost of integration increasing with 

distance (in the sentences below: integrating threw out in 4 and 6 will be less costly than in 5 and 

7, Gibson 1998; 2000, example given in Futrell et al., 2020).  

Figure 3. Lossy context surprisal model (Futrell et al., 2020). Within this model, 
the prior linguistic input (Bob threw the trash...) is not used to predict the 
upcoming word. Rather, a lossy, or incomplete, memory representation is used as 
the prior context. 
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4. Bob threw out the trash. 

5. Bob threw the trash out. 

6. Bob threw out the old trash that had been sitting in the kitchen for several days. 

7. Bob threw the old trash that had been sitting in the kitchen for several days out. 

 Futrell and colleagues present their model, lossy context surprisal, and suggest that it 

unifies traditional surprisal theory with dependency locality theory. Their model extends 

surprisal theory with a memory model that includes four characteristics: incrementality of 

memory, linguistic knowledge, inaccessibility of content, and a linking hypothesis. By 

incrementality of memory, Futrell and colleagues mean that working memory during sentence 

processing can be characterized as a probabilistic memory encoding function that takes a 

memory representation and combines it with the current word to produce the next memory 

representation. Linguistic knowledge is defined as the ability of listeners to access some 

probability model – potentially Bayesian – providing the distribution of potential upcoming 

words given a context. Although referred to as linguistic knowledge, this probability model may 

incorporate non-linguistic context – such as information about the speaker. For example, a 

Bayesian version of this model may incorporate the prior context of the current discourse, 

existing knowledge of what words are semantically related to the given context, the mood of the 

speaker, and their proclivity toward sarcasm to determine a distribution of future input. 

Inaccessibility of content means that comprehenders do not have access to the true linguistic 

contexts, but only to their memory representations. Finally, the linking hypothesis is that 

incremental processing difficulty for any given word is proportional to the surprisal of that word 

given the previous memory representation.  
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To support the claim that lossy context surprisal theory integrates the prediction of surprisal 

theory with those of the dependency locality theory, Futrell and colleagues present evidence 

showing that lossy context surprisal can account for structural forgetting. Structural forgetting 

happens when comprehenders forget, or misremember, the beginning of a sentence by the time 

they reach the end. This can sometimes cause ungrammatical sentences to appear more 

understandable and acceptable than grammatical sentences (Futrell, 2020; Vasishth, 2010). 

Futrell and colleagues provide the sentences below as an example of this effect. 

8. The apartment that the maid who the cleaning service sent over was well-decorated. 

9. The apartment that the maid who the cleaning service sent over cleaned was well-

decorated. 

English speakers reliably rate Sentence 8 to be equally or more acceptable than Sentence 9, 

despite Sentence 8 being ungrammatical (Frazier, 1985; Gibson & Thomas, 1999).  

 To summarize, the lossy context surprisal model provides a model of word recognition in 

context that is driven by prediction and incorporates context effects from memory. This model 

therefore provides a bridge between expectation-based and memory-based theories of speech 

processing and can account for a phenomenon, structural forgetting, that neither family of 

models could resolve alone. While the lossy context surprisal model incorporates predictive 

effects and memory effects into word recognition, it does not explain how acoustic-phonetic, 

phonological, morphological, and semantic information interact during speech processing. The 

next model attempts to do exactly that. 
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Information Exchange Model. The prior models discussed here focus primarily on how context 

influences word recognition in sentence or discourse contexts, but they do not provide a 

mechanism for how a representation of the overall discourse is developed. Gwilliams and Davis 

(2020) aim to address this by taking a broader perspective, formally describing the speaker-

listener interaction as a 

communication system (see 

figure 4, defined by Shannon, 

1948). The goal of this system 

is to exchange information between the speaker and the listener, where the speaker is the source 

of the information. The purpose of the speaker is to formulate an intended message and produce 

an auditory signal via the human vocal apparatus or transmitter, that encodes that message. 

Along the channel between the speaker and the listener, the auditory signal will encounter both 

internal and external noise that distorts the signal. The listener serves as the destination of the 

information. The purpose of the listener is to decode the distorted auditory signal. The combined 

auditory and language processing systems serve as the receiver, allowing the listener to 

reconstruct an interpretation of the originally intended message.  

Figure 4. The speaker-listener interaction as a communication system (Gwilliams & 
Davis, 2020). 
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 Gwilliams and Davis developed a simple, high-level network graph model (see figure 5) 

of speech comprehension from this information theory-driven view of the speaker-listener 

interaction (see Gwilliams et al., 2018 for a lower-level spoken word recognition model). 

Although Gwilliams and Davis do not formally name their model, I will refer to it as the 

information exchange model for ease of reference. The information exchange model suggests 

that the goal of speech comprehension can be construed as identifying a sequence of morphemes, 

the smallest meaningful units 

of speech, from the auditory 

signal using multiple sources 

of noisy information – for 

example, slips of the tongue 

and misheard words – and, 

ultimately, combining those 

morphemes with prior 

knowledge to understand the 

intended message. Prior studies have shown that surprisal – and its mathematical equivalent – 

entropy are frequently observed to modulate neural responses (Gwilliams & Davis, 2020; 

Donhauser & Baillet, 2020; Di Liberto et al., 2019; Brodbeck et al., 2018; Gaston & Merantz, 

2018; Gwilliams et al., 2017; Gwilliams & Merantz, 2015; Ettinger et al., 2014; Gagnepain et al., 

2012). Informed by these findings, Gwilliams and Davis suggest that Bayesian Inference 

provides a plausible framework for integrating the aforementioned noisy information sources. In 

this framework, the acoustic input is processed into speech sounds, or phonemes, using a 

combination of top-down predictions and bottom-up prediction error calculations. These 

Figure 5. Network graph model of information exchange theory of speech 
comprehension (Gwilliams & Davis, 2020). The listener uses an internal 
statistical language model to form top-down predictions of lower levels of speech 
representation (P). Bottom-up acoustic input (I) is compared to these top-down 
predictions (P – I) to generate prediction error (E). Prediction error is used to 
update the probabilities of possible words iteratively throughout the word 
processing time course to converge on the best possible lexical candidate. A 
similar process is used at every level of representation from phonemes to high-
level concepts.  
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phonemes are then inferred into lexical candidates, or words, and these inferences continue into 

higher-level interpretations. Overall, the information exchange model attempts to explain the 

mechanisms behind speech processing across all levels of representation using predictive 

Bayesian Inference to drive the process.  

This section has provided an overview of computational models of speech processing that 

address word recognition within context. Now with a better understanding of how language 

comprehension can be modeled within speech, I turn our attention to reading. 

2.2 Visual word recognition 

 As in speech comprehension, there are many theoretical and computational models of 

reading comprehension. Here I review a selection of three models that address reading in context 

– two of which do not use prediction as a driving factor and one which assumes prediction. I start 

our exploration with the older of the two models that do not explicitly use prediction.  
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Dual-Route Cascade Model. 

Coltheart and colleagues 

(2001) developed the dual-

route cascade model (see 

figure 6) of visual word 

recognition and reading 

aloud as an evolution from 

logogen models (Morton, 

1969). Dual routes were 

proposed because beginning 

readers almost exclusively 

rely on a sub-lexical route 

of translating graphemes 

into phonemes until they 

have read the word, while 

experienced readers 

typically skip this process unless encountering an unfamiliar word. Coltheart and colleagues used 

a principle called nested modeling, in which each model builds on prior models that have not 

been disproved and, consequently, account for all phenomena previously explained by the prior 

models. The model uses graded activation and is interactive allowing for both bottom-up and 

top-down processing for both excitation and inhibition. Although it is called “dual-route”, this 

model technically has three routes for reading aloud: the lexical non-semantic route, the lexical 

semantic route, and the grapheme-phoneme rule system route. In the lexical non-semantic route, 

Figure 6. Dual-route cascade model (Coltheart et al., 2001) 
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graphemes are activated in parallel, subsequently activating visual word representations. When 

reading aloud, these visual word representations activate phonological lexical representations, 

which can be used to generate the pronunciation of a word. In the lexical semantic route, 

orthographic lexical representations directly activate the meanings of words in the semantic 

system. When reading aloud, semantic representations then activate phonological lexical 

representations. To account for the ability to read pseudowords and generate spoken output, the 

third route allows for direct translation of graphemes to phonemes without activation of lexical 

wordforms. From a predictive processing perspective, it is critical to note that, while the dual-

route cascade model does not explicitly mention a mechanism for predictive processing effects, 

the theoretical framework implemented by this computational model does include top-down 

input. The semantic system is undefined, and it is assumed to have both excitatory and inhibitory 

connections to the orthographic lexicon. This leaves room for future extensions of the model to 

incorporate specific models of predictive effects in the form of top-down excitation or inhibition 

of lexical items based on whether they fit with the current semantic context. 

 In summary, the dual-route cascade model was created specifically to account for 

reading aloud behaviors of individual words while also accounting for reading without naming. 

The model does this by allowing visual input to take one of three routes – the lexical non-

semantic, lexical semantic, or phoneme-grapheme rule route. However, there is evidence from 

fast masked phonological priming (Grainger & Holcomb, 2009; Rastle & Brysbaert, 2006) that 

may disqualify this model. As I will show while discussing the following model, evidence from 

masked priming studies (e.g., Grainger et al., 2003) in which auditory words presented rapidly 

after masked visual words benefit from priming by cannot be explained by the dual-cascade 

route model, because it the dual-route cascade places phonological access too long after 



 18 

orthographic input. To be able to account for their results, Grainger and Holcomb proposed the 

Bi-modal Interactive Activation model. The next model presented is not only a dual-route model, 

but also incorporates parallel phonological activation, rather than the sequential activation 

(orthographic followed by phonological) used in dual-route cascade model. 

Bi-modal Interactive Activation Model. Like Coltheart and colleagues (2001), Grainger and 

Holcomb recognize that there are cross-modal influences in word recognition. However, 

according to Holcomb and Grainger (2009), findings from their masked visual priming studies 

cannot be explained by Coltheart’s dual cascade model. In one masked priming experiment 

(Grainger et al., 2003), homophone word or pseudoword primes (e.g., maid–MADE, brane–

BRAIN) were presented for very short durations (<60s), and a mask was (#####) presented 

immediately after the prime. Masking of the prime in this manner prevents expectation induced 

priming and allows for assessment of automatic spread of activation. The question they raised in 

their studies is if the orthographic form of the primes could activate the phonological form of the 

target words, even though their visual word forms were not identical. In addition to the 

homophone and pseudo-homophone primes, participants were shown unrelated word or non-

word primes. The findings showed that effects of phonological priming occurred only 20-30ms 

later than effects of visual priming. This finding of very rapid phonological regularization errors 

cannot be easily accounted to by Coltheart’s model but can be accommodated by the bi-modal 

interactive model. In the latter model, visual words first activate visual features outside of the 

word recognition system which in turn activate sub-lexical orthographic units, or O-units. O-

units activate a central interface between orthographic and phonologic representations that 

allows the O-units to be mapped onto corresponding phonological units, or P-units. In parallel, 

the O-units activate orthographic word forms while the P-units activate higher-level 
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phonological representations that 

can, in turn, modulate the processing 

of higher-level orthographic 

representations. While Holcomb and 

Grainger focus primarily on visual 

word recognition, it is critical to 

note that the model can also 

accommodate speech processing via 

a spoken word input path.  

 The bimodal interactive 

activation model accounts for cross-modal effects between phonology and orthography during 

word recognition in parallel. This results in the model making predictions about the time course 

of word recognition (Figure 7) – including predicting fast phonological priming effects that lag 

slightly behind orthographic effects (Grainger & Holcomb, 2009; Diependaele et al., 2009). 

These predictions account for the empirical observations in the aforementioned masked priming 

study (Grainger et al., 2003). The predictions are also supported by findings in other masked 

repetition priming and semantic priming experiments (Chauncey et al., 2008; Grainger et al., 

2003; Holcomb & Grainger, 2006, 2007, 2009) using event-related potentials (ERPs) – measures 

of brain responses to specific events generated by averaging electrophysiological data across 

similar trials locked to said events (see Luck, 2014 for detailed explanation of ERP techniques). 

Grainger and Holcomb identify four critical ERP components to this time course. The first 

component is the N/P150, a posteriorly distributed component that peaks around 150ms after 

stimulus onset. It is sensitive to visual feature mismatches and thought to be driven by featural 

Figure 7. Time course of the bimodal interactive activation model (Grainger 
and Holcomb, 2009) 
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overlap between prime stimuli and target stimuli (Grainger & Holcomb, 2009; Chauncey et al., 

2008). The second component, the N250, is negative going wave that can begin as early as 

110ms after stimulus onset, peaks around 250ms, has a wide scalp distribution that is maximal 

over midline and anterior left hemisphere electrode sites, and is sensitive to the degree to which 

prime words and target words overlap orthographically (Grainger & Holcomb, 2009). The third 

component is the P325 (Holcomb & Grainger, 2006) which is a positive going component that 

peaks around 325ms and is thought to be sensitive to repetition of words but not to repetition of 

pseudowords (Grainger & Holcomb, 2009; Holcomb & Grainger, 2006). The final ERP 

component is the N400 which is a widely distributed, negative going component that is maximal 

over centroparietal electrodes that peaks between 300-500ms and is sensitive to the amount of 

effort involved in interfacing between whole-word representations, both orthographic and 

phonological, and higher-level semantic representations (Grainger & Holcomb, 2009). 

 Overall, the bimodal interactive activation model provides explanations for cross-modal 

priming effects in word recognition and is supported by ERP evidence. However, the model does 

not explicitly use prediction as a driving mechanism for processing. The next model does use 

predictions generated by top-down contextual processes within a recurrent neural network to 

drive language comprehension.  

Simple Recurrent Network Model. Altmann and Mirković (2009) recognize a critical, but often 

overlooked, distinction that speech unfolds as a function of time, yet written language unfolds 

across space. Due to this distinction, Dienes, Altmann, and Gao (1999) and Altmann (2002) 

extended the simple recurrent network model proposed by Elman (1990). Elman’s original 

model processes structure in time and was only trained on linguistic information. Dienes and 



 21 

colleagues built upon this simpler model to allow for mapping across domains. I will first explain 

Elman’s model and then discuss how it was extended. 

 Elman’s (1990) model took input as a combination of sensory input and the system’s 

prior internal state. The network then learned the time-varying structure by attempting to predict, 

at each time point, the upcoming word input. In this way, when given a sequence of words, the 

network would learn some range of words which would be most probable to follow the current 

word. However, humans learn language as a symbolic representation for external world events 

and Elman’s model can only map linguistic information to predict linguistic events. In contrast, 

the extension (Dienes et al., 1999; Altmann, 2002) allows the model to first train on non-

linguistic information, such as real-world events or scenes, and subsequently train on linguistic 

information. With this extension, Altmann and Mirković (2009) argue that the simple recurrent 

network embodies four principles that underlie human sentence comprehension: Mapping across 

domains, which is the principle that language processing is a mapping of sentence internal 

linguistic context to real-world events being described; prediction, which refers to real-world 

mapping manifesting as the ability to make predictions as to how the sentence will unfold as well 

as how the real-world event would unfold; context, which is the principle that both the sensory 

input and the current internal state of the comprehension system drive the predictive process; 

representation across time, which refers to making predictions across various time frames and 

with variable levels of abstraction.  

2.3 Evaluation of speech and reading processing models 

 Each model presented here has supporting evidence that indicates they work, 

heuristically, to model human language comprehension, within their respective scopes. However, 

with increasing empirical evidence, it has become clear that some models are better at modeling 
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word recognition than others. For instance, of the models presented here, only dual-route 

cascading and bi-modal interactive models can directly account for cross-modal interactions, and 

the simple recurrent network, can account for these interactions indirectly. Furthermore, many 

studies now support the idea that both linguistic and non-linguistic memory and contextual 

information can be used to generate top-down inferences about the incoming linguistic input. 

Only two models, lossy context surprisal and simple recurrent network, account for context 

beyond purely linguistic information and only the latter extends that context to real-world event 

knowledge. Although all the presented models account for contextual constraint effects, the 

cohort model assumes that these constraint effects only begin after new input has been 

encountered and does not allow the system to activate information about an upcoming stimulus 

prior to its onset. Taken together, these discrepancies indicate that a complete model of language 

comprehension should be cross-modal, allow for contextual effects beyond those that are purely 

linguistic, and be driven, at least in part, by prediction. The next section explores the roles of 

prediction and predictive processing in language comprehension.  

3. Prediction and predictive processing 
 Many researchers have many different ideas about what constitutes prediction in 

cognition in general and more specifically within language processing (see Kuperberg & Jaeger, 

2016 for additional review). In fact, many still debate whether prediction is an a-priori 

characteristic of language processing, or whether it can be flexibly engaged or disengaged as a 

function of prediction success. Older approaches viewed integration as the primary mechanism 

driving language comprehension – here integration is the linking of novel information to 

information that is already known (Ferreira & Chantavarin, 2018; Gernsbacher, 1991; Kintsch & 

Van Dijk, 1978). For example, Kintsch, (1988; see Ferreira & Chantavarin, 2018 for review) 

assumed incoming sentences are parsed into propositions, temporarily stored into working 
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memory, which then activate long-term memory representations. Comprehenders use these long-

term representations to establish both linguistic and semantic relationships which are then 

combined to create a rich representation of the overall discourse context. If there is no immediate 

link between the current sentence and previous content, then the comprehender must go back 

through the discourse-level representation to connect the current sentence with the ones that 

preceded it. In contrast, newer approaches – such as the lossy context surprisal model (Futrell, 

2020), the information exchange model (Gwilliams & Davis, 2020) discussed above – lean 

heavily into Bayesian and information theory approaches to comprehension. Ferreira and 

Chantavarin (2018) suggest that there is a way to reconcile these two views of language 

comprehension and their approach seems to be compatible with predictive coding (Clark, 2013; 

Friston, 2009; 2010; Friston & Keibel, 2009; Rao & Ballard, 1999) which I will discuss later in 

this section. However, before I discuss how they can be reconciled, it is necessary to explore 

what is meant by prediction regarding language processing.  

 Ferreira and Chantavarin (2018) argue that many of the empirical results that have been 

taken as evidence of prediction could also be explained in terms of facilitation or inhibition of 

the integration of newly encountered input into a context (see also Foss, 1982). Facilitated 

integration is conceptualized as top-down contextual processes, facilitating word recognition 

when the incoming word matches in meaning with the contextual representation, and hindering 

word recognition when representation of the context does not match with the meaning of the 

incoming word. In this view, this can only occur after the onset of the new input. They therefore 

proposed three strict criteria for prediction effects to be considered legitimate: 1) Assure that 

facilitated processing is not due to facilitated integration. Highly contextually constrained words 

and phrases are not sufficient to support prediction as these items might be easier to process once 
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encountered. 2) Assure that facilitated processing is not due to interlexical priming effects in 

sentences. Highly constraining sentences often containing words that are associatively or 

semantically related, and results in facilitated processing not due to sentence level prediction 

effect, because spreading activation, which is thought to drive associative priming, is a passive 

mechanism that occurs within a single level of representation (Duffy et al., 1989). 3) Assure that 

facilitated processing in language is not due to tasks that encourage prediction, because this may 

result from strategic mechanisms that may not be necessary of natural language processing.  

In line with this strict interpretation, prediction was often seen as an all-or-nothing 

process (Kuperberg & Jaeger, 2016). However, the minimal sense of the term prediction, as it 

relates to language processing, is that context changes the language processing system’s state 

prior to encountering new input which facilitates the processing of said input (Kuperberg & 

Jaeger, 2016). In this view of prediction as a system state, a more intuitive interpretation is that 

context predictively pre-activates linguistic representations to process language more efficiently.  

 With a more solid concept of what prediction is, the focus now turns to how it may be 

implemented within theoretical and computational models. Many of the models discussed in the 

previous sections implicitly addressed prediction by including top-down feedback. But some 

previously discussed models explicitly suggest Bayesian inference as a mechanism for 

prediction. In line with these probabilistic models, Kuperberg and Jaeger (2016) suggested a 

hierarchical multi-representational generative framework in which the goal of the comprehender 

is to infer – as certainly as possible – the message-level representation that the producer intends 

to communicate. This is accomplished by incremental cycles of propagating predictions – 

generated by Bayesian inference – down to successively lower levels of representation via 

predictive pre-activation. As bottom-up input reaches each of these levels, the Bayesian surprise 
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or prediction error generated will be, on average, reduced due to pre-activation. Within this 

framework, pre-activation is weighted such that the degree to which representations are pre-

activated corresponds to the relative reliability of the top-down beliefs. Therefore, predictions are 

used less when they are perceived to be less useful. This interpretation could be instantiated at 

the neural level as a form of predictive coding (Clark, 2013; Friston, 2009; 2010; Friston & 

Keibel, 2009; Rao & Ballard, 1999) and is compatible with the idea of prediction as 

preparedness (Ferreira & Chantavarin, 2018). 

 Ferreira and Chantavarin (2018) suggest that the older and newer views of predictive 

processing can be reconciled by thinking of prediction as a form of preparedness (see figure 8) – 

the idea that rich high-level representations 

place the language processing system in a ready 

state that improves receptivity to certain 

semantic, syntactic, and phonological features. 

This state of preparedness may take the form of 

pre-activation. The preparedness framework 

suggests that as new input is encountered, both 

redundant and novel information are integrated 

bottom-up into the preceding context to develop 

a rich representation of the discourse or intended 

message. This rich representation then generates 

anticipation of upcoming information which, 

potentially through pre-activation, prepare the 

system to process anticipated features. The 
Figure 8. Preparedness model of language processing (Ferreira & 
Chantavarin, 2018) 
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preparedness framework could potentially be implemented computationally as a probabilistic 

model. The rich high-level representations act as the prior distribution. The posterior 

distributions are fed down to pre-activate lower-level representations. The prediction error 

generated by comparing the bottom-up input with the top-down predictions represents the cost 

associated with integrating the input into the preceding context to update the higher-level 

representations.  

Taken together, the concepts of preparedness, predictive coding, and early definitions of 

prediction, associative priming, and integration seem to have some missing links. Early strict 

definitions of prediction as described above would make true prediction effects impossible by 

disallowing attribution to associate priming and requiring that prediction occur prior to receiving 

the input (Ferreira & Chantavarin, 2018).  

Neely (1991; Neely & Keefe, 1989) reviewed evidence in support of pre-activation of 

lexical items in semantic priming studies and suggested expectancy (Posner & Snyder, 1975) as 

a prospective mechanism for this priming. Under the Posner-Snyder theory of expectancy, when 

subjects encounter a prime word – such as “cat’ – they develop an expectancy for “cat”-related 

items and, therefore, have facilitated processing for related targets like “dog”. One caveat to this 

is that the expectancy induced priming effects are strategically related to the task and such 

expectancy sets are not generated during a naming task (Grainger, 1990; Jared et al., 1990; Strain 

et al., 1995). However, when considering ideas of preparedness, predictive coding, and 

associative priming together one could propose a link between prediction at higher representation 

levels and word priming. I suggest that within the preparedness model of language 

comprehension, priming is one mechanism that drives putting together context at any level of 

representation. A word that we read or hear is semantically associated with other potential inputs 
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and primes the comprehender anticipates for potentially upcoming words. As more words are 

added to the discourse, they are integrated into the overall context which then collectively primes 

for additional input. This collective priming is pruned by the comprehender’s models of higher-

level meaning. Predictive coding is the architecture by which these constraining hierarchical 

models are developed. To properly test whether a preparedness model is driven by priming and 

predictive coding, we must be able to investigate what happens both before and after 

encountering a particular input. In the next two sections, I will discuss potentially well-suited 

methods and avenues for testing the predictions of a preparedness computational model, as well 

as other models for predictive processing. 

4. Electrophysiological methods 
 Many methodologies have been used to gain valuable insights into language processing, 

and more specifically, predictive processing within language. From purely behavioral techniques 

– which rely on modulated RTs and accuracy as a function of association strengths, and cloze 

probabilities as indices of predictive effects to functional neural imaging techniques - such as 

functional magnetic resonance imaging (fMRI) that rely on hemodynamic responses as a 

measure of brain activity in response to tasks – researchers have many options for approaches to 

studying predictive effects in language comprehension. For this chapter, I focus primarily on 

electrophysiology – specifically, electroencephalography (EEG) and magnetoencephalography 

(MEG) – techniques due to their ability to measure responses that occur prior to stimulus onset 

with relatively high temporal resolution compared to alternative measures – particularly in the 

case of EEG and MEG versus fMRI – while being minimally invasive. The milliseconds level 

temporal precision of electrophysiology measures such as EEG and MEG provide a critical tool 

for exploring the time course of language processing and the sensitivity of several ERP 

components (and their MEG equivalents), such as the ones discussed earlier in this review, to a 
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variety of perceptual, orthographic, phonological, and semantic features of language provide a 

means for designing clever experiments such as those discussed below. With that purpose in 

mind, this section explores electrophysiology techniques that are highly relevant to investigating 

predictive processing in language. 

 There is a long history of electrophysiology providing insights on effects of context 

during language processing, particularly from the use of ERPs. The ERP component that is likely 

most relevant to investigating prediction is the N400, which has been briefly discussed earlier in 

this chapter, but I will expand on it here. As mentioned before, the N400 is a negative deflecting 

ERP component that is maximal between 300 and 500 ms. It is widely distributed, but maximal 

over centroparietal electrodes. It has been shown to be sensitive to levels of cognitive effort, 

orthographic and phonological features, and semantic features. However, its sensitivity to 

semantic violations (Kutas & Hillyard, 1980) is perhaps the most intriguing feature when 

discussing predictive processing.  

In a recent study, Eddine and colleagues (2023) used a computational predictive coding 

model to tie prediction error – as defined in predictive coding theory – to various N400 findings. 

The model was built to approximate Bayesian inference and was able to simulate N400 effects 

consistent with priming effects – repetition and semantic – and with contextual effects – lexical 

probability and lexical violation – as well as interactions between these effects. The findings 

from this study provide computational evidence that the N400 is, at least in part, reflective of 

prediction error during language processing. 

 In a study that examined prediction during sentence processing, Grisoni and colleagues 

(2020) presented participants with either high constraint sentences or low constraint sentences 

that ended with an animal word or a tool word (see sentences 10-13 below) while recording 
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EEG. Participants showed more negative N400 amplitude to critical words in the low relative to 

high constraint sentences. However, the ERP recordings also showed a negative deflecting pre-

stimulus component called the semantic prediction potential, or SPP, that begins approximately 

150ms before the stimulus onset that is inversely correlated with the N400 – the SPP is more 

negative in high constraint sentences and less negative in the low constraint condition and the 

N400 is the reverse. These findings further support the pre-activation of contextually predictable 

words prior to the comprehender encountering them.  

10. HC animal: “The emblem of Germany is the eagle.” 

11. LC animal: “The emblem of my family is the eagle.” 

12. HC tool: “The logo of the German post office is a horn.” 

13. LC tool: “The logo of the company is a horn.” 

  In addition to N400, the N250 ERP component – which was discussed earlier in this 

chapter while describing the bimodal interactive activation model and masked priming studies – 

is another potential measure of prediction error. The N250 has been shown to be sensitive to 

repetition priming, particularly in relation to manipulations of orthographic features of words 

(Holcomb et al., 2002; Holcomb & Grainger, 2006, 2007). This means that the N250 has the 

potential to be used as a measure of prediction error for sub-lexical features. 

Recently, machine learning approaches have been successful implemented to classify 

EEG data into two or more categories depending on the experimental conditions (Bae & Luck, 

2018, 2019;Hong et al., 2020; Nadra et al., 2023; Noah et al., 2020;, Trammel et al., 2023). The 

brain signals could be from EEG, MEG, or fMRI – among other possibilities. To illustrate 

machine learning decoding approaches to electrophysiological signals  
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I will discuss a study by Gwilliams 

and colleagues (2022). These 

authors recorded MEG while 

participants listened to stories that 

contained lexically ambiguous 

words. The MEG recordings were 

then analyzed using temporal 

generalization – a technique in 

which a machine learning classifier is trained at one point and then used to decode all other time 

points in the time frame. The results (see figure 9) indicate that speech signal is transformed at 

the rate of phoneme duration and that phonemes representations are sustained until lexical 

ambiguity is resolved.  

 Temporal precision is important to studying predictive processing and ERP and MEG 

measures are temporally precise in the order of milliseconds. MEG has an additional advantage 

of better spatial resolution than EEG (Nakasato et al., 1994), which means that it may also be 

possible to source localize predictive effects using MEG, to gain a better understanding of which 

cortical regions are involved in the processing of predictive effects. Taken together these 

methodologies provide an increasingly useful toolbox for studying predictive processing in 

language. I will further review the use of decoding methods to classify EEG signals and some of 

their potential benefits in the next section. 

5. Multivariate Pattern Analysis using machine learning 
As discussed in the previous section, machine-learning can be used to decode MEG or EEG data 

to classify different aspects of language, such as different phonemes (Gwilliams et al., 2022). A 

chief advantage of these decoding techniques is their multivariate nature. Machine-learning 

Figure 9. Results of temporal generalization analysis (Gwilliams et al., 2022) 
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algorithms can readily accept dozens to hundreds of variables on which to perform their 

classifications. This allows the analysis to be done on multiple electrode sites simultaneously 

even when very 

dense electrode 

arrays are used. This 

can prove useful 

when performing an 

investigation in 

which there are no a 

priori assumptions 

for when and where 

an effect will take 

place.  

There are a 

multitude of 

classification 

algorithms that can 

be used for decoding. Some of these – especially those based on neural networks – can be 

computationally very costly. I present here three varieties of machine learning classifier that 

readily accessible for most language research. These three models will be compared in Chapter 

2. Support vector machines (SVM, figure 11A; Boser et al., 1992) are a category of binary 

classifiers that are based on the idea of a separating hyperplane. The basic principle of a support 

vector machine is to represent the data in some n-Dimensional space. The dots in the figure each 

Figure 9. Examples of three different machine learning models that can be used for classification: A) 
Support Vector Machine (SVM), B) Linear Discriminant Analysis (LDA), and C - D) Random Forest 
(RF). SVM uses data points (support vectors; filled dots) closest to the decision boundary to create a 
maximal margin boundary to classify; some training data are allowed to cross this boundary within a 
set limit to improve classification generalization. LDA projects the data points onto a one-dimensional 
space and then chooses a boundary which maximizes the distance between the means of the 
classification groups. RF utilizes an ensemble of decision trees to split the data according to some pre-
determined information gain function until only one class remains in a node. Test data that ends up 
within a given node are classified as the same group. Multiple trees classify in this fashion and vote for 
the overall class of the data. This process allows RF to have multiple decision boundaries. 

A B 

C D 
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represent one data point. A cost optimization function, called a kernel, is then used to generate a 

dividing plane through the data. The data points that define this plane are called support vectors. 

SVMs are robust classifiers because only those data points closest to the marginal boundary will 

influence the boundary. However, SVMs are naturally binary classifiers and work well for that 

function. They require adaptation to work for multiple classes. Linear discriminant analysis 

(LDA or sometimes called discriminant function analysis, figure 11B), is a generalization of 

Fisher’s linear discriminant (Fisher, 1936) and creates linear combinations of predictors and 

latent variables for each function. The generated canonical functions are then used for 

classification of the data. Random forests (Figure 11C; Breiman, 2001) are an ensemble 

classifier method. The random forest consists of multiple classifiers that come together to make 

the final classification. In this case, the base classifier is a decision tree. At each of the nodes 

(Figure 11D), the tree randomly selects a subset of predictor features and uses a function to 

generate a split. At the next node, a new subset of features is selected for the split. This continues 

until all that remains is a single class in a final node called a leaf. Usually for computational 

performance and to avoid overfitting, there are tree depth constraints and other rules placed on 

the random forest. A defined number of trees are grown in this way from the training data, then 

the test data are put through each tree and classified according to which leaf they end in. The 

classifications of the majority of trees within the RF determines to which class the data is 

assigned. 

I have now introduced some background on language processing models including more recent 

prediction-based models. Additionally, I have provided some overview of EEG and decoding 

methods that can be potentially used to investigate these models. Next, I will discuss the 

implications these discussions have on the present work. 
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6. Implications for the present work 
 In this review, I presented an overview of seminal models on processing language in 

context in both speech and reading. Next, I explored the role of prediction during language 

processing and discussed a model that could potentially unify predictive and integrative accounts 

of language processing. Finally, I discussed some of the most promising methods for future 

investigations of predictive processing in language comprehension. These discussions form the 

bases for how I aimed to study which linguistic and non-linguistic features are predictively pre-

activated during language comprehension, to test assumptions of hierarchical predictive coding 

models.  

 Of the two anticipatory models described, predictive coding and preparedness, the easier 

of the two to test is predictive coding. The reason is that predictive coding models make a much 

easier to approach falsifiable claim: that predictions occur in a top-down fashion at all levels of 

processing. This suggests that during predictive processing of language, there should be 

representations in the brain of different levels of the linguistic hierarchy – such as semantic 

features which would be higher-level and visual features which would be lower-level – at 

different times during the prediction. Specifically, higher-level features should be represented 

earlier than are lower-level features. Using EEG decoding methods data can be labeled according 

to different content categories and allowing the machine learning classifier to differentiate the 

data according to those content labels. Combining decoding with more traditional ERP measures, 

provides an excellent toolbox for investigating predictive coding. In the upcoming chapters, I 

present how I used decoding of EEG data from a visual predictive priming paradigm to 

investigate which linguistic features are predictively pre-activated and the time course of those 

pre-activations. First, I looked at which machine learning classifier was best suited for the task. 

This study is presented here as it was published within NeuroImage (Trammel et al., 2023). 
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Next, I utilized that method to study which features are pre-activated in native English speakers. 

Finally, I investigated whether Spanish-English bilinguals pre-activate features in the same way. 

  



 35 

References 

Allport, D. A., Funnell, E., Longuet-Higgins, H. C., Lyons, J., & Broadbent, D. E. (1981). 
 Components of the mental lexicon. Philosophical Transactions of the Royal Society of 
 London. B, Biological Sciences, 295(1077), 397–410. 
 https://doi.org/10.1098/rstb.1981.0148  

Altmann, G. T. M. (2002). Learning and development in neural networks: The importance of 
 prior experience. Cognition, 85, 43–50. 

Altmann, G., & Mirković, J. (2009). Incrementality and prediction in human  sentence 
 processing. Cognitive Science, 33(4), 583–609.  

Becker, W., & Jürgens, R. (1979). An analysis of the saccadic system by means of double 
 step stimuli. Vision Research, 19(9), 967–983. https://doi.org/10.1016/0042-
 6989(79)90222-0 

Brothers, T., Swaab, T. Y., & Traxler, M. J. (2015). Effects of prediction and contextual 
 support on lexical processing: Prediction takes precedence. Cognition, 136, 135–149. 
 https://doi.org/10.1016/j.cognition.2014.10.017 

Brodbeck, C., Hong, L. E., & Simon, J. Z. (2018). Rapid Transformation from Auditory to 
 Linguistic Representations of Continuous Speech. Current Biology, 28(24), 3976-
 3983.e5. https://doi.org/10.1016/j.cub.2018.10.042 

Chauncey, K., Holcomb, P. J., & Grainger, J. (2008). Effects of stimulus font and size on 
 masked repetition priming: An event-related potentials (ERP) investigation. Language 
 and Cognitive Processes, 23(1), 183–200. https://doi.org/10.1080/01690960701579839 

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of 
 cognitive science. The Behavioral and Brain Sciences, 36(3), 181–204.  

Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: a dual  route 
 cascaded model of visual word recognition and reading  aloud. Psychological 
 review, 108(1), 204. 

Dienes, Z., Altmann, G. T. M., & Gao, S.-J. (1999). Mapping across domains without 
 feedback: A neural network model of transfer of implicit knowledge. Cognitive Science, 
 23, 53–82 

Di Liberto, G. M., Wong, D., Melnik, G. A., & de Cheveigné, A. (2019). Low-frequency 
 cortical responses to natural speech reflect probabilistic phonotactics. NeuroImage, 196, 
 237–247. https://doi.org/10.1016/j.neuroimage.2019.04.037 

Donhauser, P. W., & Baillet, S. (2020). Two Distinct Neural Timescales for Predictive 
 Speech Processing. Neuron, 105(2), 385-393.e9. 
 https://doi.org/10.1016/j.neuron.2019.10.019 

https://doi.org/10.1098/rstb.1981.0148
https://doi.org/10.1016/0042-
https://doi.org/10.1016/0042-
https://doi.org/10.1016/j.cognition.2014.10.017
https://doi.org/10.1016/j.neuron.2019.10.019


 36 

Duffy, S. A., Henderson, J. M., & Morris, R. K. (1989). Semantic facilitation of lexical 
 access during sentence processing. Journal of Experimental Psychology: Learning, 
 Memory, and Cognition, 15, 791–801. 

Engbert, R., Nuthmann, A., Richter, E. M., & Kliegl, R. (2005). SWIFT: A Dynamical 
 Model of Saccade Generation During Reading. Psychological Review, 112(4), 777–813. 
 https://doi.org/10.1037/0033-295X.112.4.777  

Ettinger, A., Linzen, T., & Marantz, A. (2014). The role of morphology in phoneme 
 prediction: Evidence from MEG. Brain and Language, 129, 14–23. 
 https://doi.org/10.1016/j.bandl.2013.11.004 

Ferreira, F., & Chantavarin, S. (2018). Integration and Prediction in Language Processing: A 
 Synthesis of Old and New. Current Directions in Psychological Science, 27(6), 443–448. 
 https://doi.org/10.1177/0963721418794491  

Foss, D. J. (1982). A discourse on semantic priming. Cognitive Psychology, 14(4), 590–607. 
https://doi.org/10.1016/0010-0285(82)90020-2 

Forster, K. I. (1976). Accessing the mental lexicon. In R.J.Wales & E.Walker (Eds.), New 
 Approaches to Language Mechanisms. (pp. 257-287). Amsterdam: North-Holland. 

Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews 
 Neuroscience, 11(2), 127–138. https://doi.org/10.1038/nrn2787 

Friston, K. (2018). Does predictive coding have a future? Nature Neuroscience, 21(8), 1019–
 1021. https://doi.org/10.1038/s41593-018-0200-7 

Friston, K., & Kiebel, S. (2009). Predictive coding under the free-energy principle. 
 Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521), 
 1211–1221. https://doi.org/10.1098/rstb.2008.0300 

Futrell, R., Gibson, E., & Levy, R. P. (2020). Lossy-Context Surprisal: An Information-
Theoretic Model of Memory Effects in Sentence Processing. Cognitive Science, 44(3), 
 e12814. https://doi.org/10.1111/cogs.12814 

Gagnepain, P., Henson, R. N., & Davis, M. H. (2012). Temporal Predictive Codes for 
 Spoken Words in Auditory Cortex. Current Biology, 22(7), 615–621. 
 https://doi.org/10.1016/j.cub.2012.02.015 

Gaston, P., & Marantz, A. (2018). The time course of contextual cohort effects in auditory 
 processing of category-ambiguous words: MEG evidence for a single “clash” as 
noun or  verb. Language, Cognition and Neuroscience, 33(4), 402–423. 
 https://doi.org/10.1080/23273798.2017.1395466 

Gibson, E. (1998). Linguistic complexity: Locality of syntactic dependencies.  Cognition, 
 68(1), 1–76. https://doi.org/10.1016/S0010-0277(98)00034-1 

https://doi.org/10.1037/0033-295X.112.4.777
https://doi.org/10.1038/nrn2787
https://doi.org/10.1038/s41593-018-0200-7
https://doi.org/10.1098/rstb.2008.0300
https://doi.org/10.1111/cogs.12814


 37 

Grainger, J., & Holcomb, P. J. (2009). Watching the Word Go by: On the Time-course 
 of Component Processes in Visual Word Recognition. Language and Linguistics 
 Compass, 3(1), 128–156.  

Grainger, J., Diependaele, K., Spinelli, E., Ferrand, L., & Farioli, F. (2003). Masked 
Repetition and Phonological Priming Within and Across Modalities. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 29(6), 1256–1269. 
https://doi.org/10.1037/0278-7393.29.6.1256 

Grisoni, L., Tomasello, R., & Pulvermüller, F. (2021). Correlated Brain Indexes of Semantic 
 Prediction and Prediction Error: Brain Localization and Category Specificity. 
Cerebral  Cortex, 31(3), 1553–1568. https://doi.org/10.1093/cercor/bhaa308 

Gwilliams, L., & Marantz, A. (2015). Non-linear processing of a linear speech stream: The 
 influence of morphological structure on the recognition of spoken Arabic words. 
Brain  and Language, 147, 1–13. https://doi.org/10.1016/j.bandl.2015.04.006  

Gwilliams, L., Linzen, T., Poeppel, D., & Marantz, A. (2018). In Spoken Word Recognition, 
 the Future Predicts the Past. The Journal of Neuroscience, 38(35), 7585–7599. 
 https://doi.org/10.1523/JNEUROSCI.0065-18.2018  

Gwilliams, L., & Davis, M. H. (2020). Extracting language content from speech sounds: An 
 information theoretic approach. In The Auditory Cognitive Neuroscience of Speech 
 Perception. https://hal.archives-ouvertes.fr/hal-03013496 

Gwilliams, L., King, J.-R., Marantz, A., & Poeppel, D. (2022). Neural dynamics of phoneme 
sequences reveal position-invariant code for content and order. Nature Communications, 
13(1), Article 1. https://doi.org/10.1038/s41467-022-34326-1 

Hale, J. (2001). A probabilistic Earley parser as a psycholinguistic model. In Proceedings of 
 NAACL (Vol. 2,pp. 159–166). Pittsburgh, PA. 

Holcomb, P. J., & Grainger, J. (2009). ERP effects of short interval masked associative and 
repetition priming. Journal of Neurolinguistics, 22(3), 301–312. 
https://doi.org/10.1016/j.jneuroling.2008.06.004 

Hong, X., Bo, K., Meyyapan, S., Tong, S., & Ding, M. (2020). Decoding Attention Control 
 and Selection in Visual Spatial Attention [Preprint]. Neuroscience. 
 https://doi.org/10.1101/2020.02.08.940213 

Jurafsky, D. (2003). Probabilistic modeling in psycholinguistics: Linguistic comprehension 
 and production. Probabilistic Linguistics, 39–96. 

Kintsch, W. (1988). The role of knowledge in discourse comprehension: A construction-
integration model. Psychological Review, 95, 163–182. 

Kintsch, W., & Van Dijk, T. A. (1978). Toward a model of text comprehension and 
 production. Psychological review, 85(5), 363.  

https://doi.org/10.1037/0278-7393.29.6.1256
https://doi.org/10.1016/j.bandl.2015.04.006
https://hal.archives-ouvertes.fr/hal-03013496
https://doi.org/10.1038/s41467-022-34326-1
https://doi.org/10.1016/j.jneuroling.2008.06.004


 38 

Kuperberg, G. R., & Jaeger, T. F. (2016). What do we mean by prediction in  language 
 comprehension? Language, Cognition and Neuroscience, 31(1),  32–59.  

Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect 
 semantic incongruity. Science, 207(4427), 203–205. 
 https://doi.org/10.1126/science.7350657 

Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 1126–1177. 

Lowder, M. W., & Ferreira, F. (2016). Prediction in the Processing of Repair Disfluencies: 
 Evidence from the Visual-World Paradigm. Journal of Experimental Psychology. 
 Learning, Memory, and Cognition, 42(9), 1400–1416. 
 https://doi.org/10.1037/xlm0000256 

Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique, second edition. 
 MIT Press.  

Marslen-Wilson, W. (1973). Linguistic structure and speech shadowing at very short 
 latencies. Nature. 244(5417), 522-523. 

Marslen-Wilson, W. D. (1985). Speech shadowing and speech comprehension. Speech 
 Communication, 4(1), 55–73. https://doi.org/10.1016/0167-6393(85)90036-6 

Marslen-Wilson, W. D. (1987). Functional parallelism in spoken-word recognition. 
 Cognition, 25(1), 71-102. 

Marslen-Wilson, W., & Tyler, L. K. (1975). Processing structure of sentence perception. 
 Nature, 257(5529), 784–786. https://doi.org/10.1038/257784a0  

Marslen-Wilson, W., & Tyler, L. K. (1980). The temporal structure of spoken  language 
 understanding. Cognition, 8(1), 1–71.  

Marslen-Wilson, W. D., & Welsh, A. (1978). Processing interactions and lexical access 
 during word recognition in continuous speech. Cognitive psychology, 10(1), 29-63 

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context 
 effects in letter perception: I. An account of basic findings. Psychological Review, 88(5), 
 375–407. https://doi.org/10.1037/0033-295X.88.5.375  

Morton, J. (1969). Interaction of Information in Word Recognition. Psychological Review, 
 76, 165. https://doi.org/10.1037/h0027366 

Nakasato, N., Levesque, M. F., Barth, D. S., Baumgartner, C., & Rogers, R. L. (1994). 
Comparisons of MEG, EEG, and ECoG source localization in neocortical partial epilepsy 
 in humans. Electroencephalography and Clinical Neurophysiology, 91(3), 171–
178.  https://doi.org/10.1016/0013-4694(94)90067-1 

https://doi.org/10.1038/257784a0
https://psycnet.apa.org/doi/10.1037/0033-295X.88.5.375
https://doi.org/10.1037/h0027366
https://doi.org/10.1016/0013-4694(94)90067-1


 39 

Neely, J. H. (1977). Semantic priming and retrieval from lexical memory: Roles of 
 inhibitionless spreading activation and limited-capacity attention. Journal of 
 Experimental Psychology: General, 106(3), 226–254. https://doi.org/10.1037/0096-
 3445.106.3.226 4 

Neely, J. H. (1991). Semantic priming effects in visual word recognition: a selective review 
 of current findings and theories. Basic Processes in Reading: Visual Word 
Recognition,  264.  

Neely, J. H., & Keefe, D. E. (1989). Semantic Context Effects on Visual Word Processing: A 
 Hybrid Prospective-Retrospective Processing Theory. In G. H. Bower (Ed.), 
Psychology  of Learning and Motivation (Vol. 24, pp. 207–248). Academic Press. 
 https://doi.org/10.1016/S0079-7421(08)60538-1 

Posner, M. I., Snyder, C. R. R., & Solso, R. L. (1975). Information processing and cognition: 
 The Loyola symposium. 

O’Regan, J. K., & Lévy-Schoen, A. (1987). Eye Movements. From Physiology to Cognition. 
 Amsterdam. 

Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A 
 functional interpretation of some extra-classical receptive-field effects. Nature 
 Neuroscience, 2(1), 79–87. https://doi.org/10.1038/4580 

Rastle, K., & Brysbaert, M. (2006). Masked phonological priming effects in English: Are 
 they real? Do they matter? Cognitive Psychology, 53(2), 97–145. 
 https://doi.org/10.1016/j.cogpsych.2006.01.002 

Rayner, K. (1975). The perceptual span and peripheral cues in reading. Cognitive 
 Psychology, 7(1), 65–81. https://doi.org/10.1016/0010-0285(75)90005-5 

Rayner, K., Slattery, T. J., Drieghe, D., & Liversedge, S. P. (2011). Eye movements and 
 word skipping during reading: Effects of word length and predictability. Journal of 
 Experimental Psychology. Human Perception and Performance, 37(2), 514–528. 
 https://doi.org/10.1037/a0020990 

Reichle, E. D., & Sheridan, H. (2015). EZ Reader: An overview of the model and two recent 
 applications. The Oxford handbook of reading, 277-290. 

Reichle, E. D., & Reingold, E. M. (2013). Neurophysiological constraints on the eye-mind 
 link. Frontiers in Human Neuroscience, 7, 1–6. 

Reilly, R. G., & Radach, R. (2006). Some empirical tests of an interactive activation model 
 of eye movement control in reading. Cognitive Systems Research, 7(1), 34–55. 
 https://doi.org/10.1016/j.cogsys.2005.07.006 

Reingold, E. M., Reichle, E. D., Glaholt, M. G., & Sheridan, H. (2012). Direct lexical control 
 of eye movements in reading: Evidence from a survival analysis of fixation 

https://doi.org/10.1037/0096-
https://doi.org/10.1037/0096-
https://doi.org/10.1016/S0079-7421(08)60538-1
https://doi.org/10.1038/4580
https://doi.org/10.1016/j.cogpsych.2006.01.002
https://doi.org/10.1016/0010-0285(75)90005-5
https://doi.org/10.1037/a0020990
https://doi.org/10.1016/j.cogsys.2005.07.006


 40 

durations.  Cognitive Psychology, 65(2), 177–206. 
https://doi.org/10.1016/j.cogpsych.2012.03.001 

Rumelhart, David E., James L. McClelland, and PDP Research Group. "Parallel distributed 
processing." Foundations 1 (1988).  

Schotter, E. R., Angele, B., & Rayner, K. (2012). Parafoveal processing in reading. 
 Attention, Perception, & Psychophysics, 74(1), 5–35. https://doi.org/10.3758/s13414-
 011-0219-2  

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System 
 Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x 

Taylor, W. L. (1953). “Cloze Procedure”: A New Tool for Measuring Readability. 
Journalism Quarterly, 30(4), 415–433. https://doi.org/10.1177/107769905303000401 

Traxler, M. J. (2014). Trends in syntactic parsing: Anticipation, Bayesian estimation, and 
 good-enough parsing. Trends in Cognitive Sciences, 18(11), 605–611. 
 https://doi.org/10.1016/j.tics.2014.08.001 

Vasishth, S., Suckow, K., Lewis, R. L., & Kern, S. (2010). Short-term forgetting in sentence 
comprehension: Crosslinguistic evidence from verb-final structures. Language and 
 Cognitive Processes, 25(4), 533–567. 
https://doi.org/10.1080/01690960903310587 

Zwitserlood, P. (1989). The locus of the effects of sentential-semantic context in spoken-
word processing. Cognition, 32(1), 25–64. https://doi.org/10.1016/0010-0277(89)90013-
9 

https://doi.org/10.3758/s13414-
https://doi.org/10.3758/s13414-
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1080/01690960903310587


 

 41 

Chapter 2 
Decoding semantic relatedness and prediction from EEG: A classification method comparison 

Abstract 
Machine-learning (ML) decoding methods have become a valuable tool for analyzing 

information represented in electroencephalogram (EEG) data. However, a systematic 

quantitative comparison of the performance of major ML classifiers for the decoding of EEG 

data in neuroscience studies of cognition is lacking. Using EEG data from two visual word-

priming experiments examining well-established N400 effects of prediction and semantic 

relatedness, we compared the performance of three major ML classifiers that each use different 

algorithms: support vector machine (SVM), linear discriminant analysis (LDA), and random 

forest (RF). We separately assessed the performance of each classifier in each experiment using 

EEG data averaged over cross-validation blocks and using single-trial EEG data by comparing 

them with analyses of raw decoding accuracy, effect size, and feature importance weights. The 

results of these analyses demonstrated that SVM outperformed the other ML methods on all 

measures and in both experiments.  

This chapter was published in its entirety in NeuroImage: 
 
Trammel, T., Khodayari, N., Luck, S. J., Traxler, M. J., & Swaab, T. Y. (2023). Decoding 

semantic relatedness and prediction from EEG: A classification method comparison. 

NeuroImage, 277, 120268. https://doi.org/10.1016/j.neuroimage.2023.120268 

 

1. Introduction 
Recent developments in machine-learning (ML) classification have been successfully 

applied to analyze the contents of cognitive computations reflected by EEG signals. These 

approaches are commonly referred to as multivariate pattern analysis (MVPA) classification. 
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MVPA approaches are increasingly used in cognitive neuroscience studies that use the EEG 

method and these studies have identified potential strengths (Hebart & Baker, 2018). First, 

MVPA can reliably classify patterns of EEG activity at the individual subject level, which could 

uncover individual differences that are not detectable with univariate EEG analyses. This is 

important for studies of neurotypical participants, but essential in studies of neuro-divergent 

individuals. A second potential strength of MVPA is that they can classify the content of 

information carried in the EEG signal, even prior to the onset of a critical stimulus in the 

experiment. This is evident from studies that have decoded the contents of working memory 

(Bae & Luck, 2018), the specific category of objects selected by attention prior to stimulus 

presentation (Noah et al., 2020), the animacy and size of visually presented objects (Wang et al., 

2022), the word information activated and anticipated during reading (Murphy et al., 2022), 

speech comprehension (e.g., Heikel et al., 2018; McMurray et al, 2022; Murphy et al., 2022), 

silent naming (Murphy et al., 2011), and imagined speech (Proix et al., 2022). 

However, systematic comparison of ML classification methods to quantify which method 

is best suited to decode EEG data from neuroscience studies of cognition is lacking. Here we will 

examine the accuracy, reliability, and robustness of three major ML methods that use different 

algorithms to perform classification of EEG data from two visual word priming experiments: 1) 

support vector machines (SVM), 2) linear discriminant analysis (LDA), and 3) Random Forest 

(RF); (for details see: Boser et al., 1992 on SVM; Fisher, 1936 on LDA; and Breiman, 2001 on 

RF). Although deep learning models implemented using Artificial Neural Networks (ANN) may 

outperform the ML methods tested in this study, we nevertheless chose to assess these three ML 

methods. This was done because SVM, LDA and RF are capable of classifying EEG data from 
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cognitive neuroscience studies that do not include vast amounts of data (which is needed for 

ANNs), are computationally less costly, and can be implemented more easily. 

We compared the performance of the three classification methods using EEG data from 

two visual word priming experiments conducted in our laboratories (Experiment 1, Brothers et 

al., 2016; Experiment 2, Kappenman et al., 2021). In these studies, we examined the effects of 

prediction and semantic relatedness on a well-established event-related potential (ERP), the 

N400, which reflects facilitation of word processing in supportive contexts (e.g., Bentin et al., 

1993; Chwilla et al., 1995; Holcomb; 1988; Delaney-Bush et al., 2019; Lau et al., 2013; see 

Swaab et al., 2012). In both studies, participants read related (e.g., circus – clown) and unrelated 

(e.g., napkin – clown) word pairs. In the first experiment, the participants’ task was to predict the 

target word after having read the prime. In the second experiment their task was to judge whether 

the words of each pair were semantically related after the target word was presented. 

Although ML methods provide a powerful tool to uncover new data-driven features that 

could be highly informative to model targeted real-world applications, the aim of the present 

study was to specifically test the performance of ML approaches in cognitive neuroscience EEG 

studies, i.e., whether the EEG data can be reliably classified according to the conditions in the 

two visual word priming experiments. To test this, we compared the SVM, LDA and RF 

methods on 1) their raw decoding accuracy (percentage correctly classified), to assess which of 

the methods most consistently classified the EEG data above chance in accordance with the 

conditions in the experiments 2) their effect sizes, to assess whether the classifiers differed in 

their ability to detect differences between conditions, and 3) their feature importance weights, to 

examine the weighting of each of the electrode sites included in the two EEG studies in the 

classification decisions. We did this for the entire decoding epoch, and further assessed whether 
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those electrodes that show maximal differences between the EEG signals as a function of the 

experimental manipulations would also be weighted most heavily in the ML classifications. This 

was done for the N400 effect, which is maximal in the 300 – 500 ms epoch for electrodes over 

central and parietal sites, and in the 600 – 800 ms epoch where the ERP effect shifted to more 

anterior sites. 

Since the two priming experiments used different tasks, different numbers of participants, 

different numbers of trials, different electrode configurations and different recording electrodes 

(active vs. passive), we were able to assess how robust these ML methods were in their decoding 

of the EEG data. In addition, we not only examined classification accuracy for averaged trials, as 

is more common, but we also assessed their reliability for classification of single-trial EEG data. 

To foreshadow the results, SVM generally outperformed classification of the EEG results on 

measures of raw decoding accuracy, effect size and feature weighting in both visual word 

priming studies compared to the LDA and the RF methods. 

 

2. Methods 
The stimuli and EEG data from Experiment 1, and all machine learning scripts are 

available on OSF: https://doi.org/10.17605/OSF.IO/V8ACD. The experiment control scripts, 

data, and univariate analysis scripts for Experiment 2 can be downloaded at 

https://doi.org/10.18115/D5JW4R. See Kappenman et al. (2021) for additional methods details 

regarding Experiment 2.  

 

2.1 ERP Methods  

2.1.1 Participants 

https://doi.org/10.17605/OSF.IO/V8ACD
https://doi.org/10.18115/D5JW4R
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Participants (N=80; 45 in Experiment 1; age range 18-30; 59 female) first provided 

informed consent. All were native English speakers with normal or corrected-to-normal vision, 

and all but two participants were right-handed. Both experiments were approved by the UC 

Davis Institutional Review Board and subjects signed informed consent forms before 

participating.  

2.1.2 Materials  

In both experiments, participants read sequences of word pairs for which the second word 

(the target) could be related or unrelated 

in meaning to the first word (the prime; 

see Figure 1).  

Experiment 1 consisted of 320 

trials in the related condition and 160 in 

the unrelated condition; Experiment 2 had 

60 trials in each condition. In both 

experiments, the same target words 

appeared in both related and unrelated 

conditions, so that they could serve as their own controls. However, within subjects the same 

target word was never repeated. The mean forward association strength – as assessed by the 

University of Florida Free Association Norms (Nelson et al., 1998) – was 0.5 in Experiment 1, so 

that two equally likely target words were predictable, and 0.8 in Experiment 2, to promote 

accuracy in the semantic-relatedness task (see section 2.1.3). The trials in the related condition in 

Experiment 1 were subdivided according to each participant’s prediction accuracy responses (see 

Figure 1. Schematic depiction of a trial in 
Experiments 1 (A) and 2 (B). See methods 
for further details. 
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procedure below), yielding three conditions: predicted-related, unpredicted-related, and 

unpredicted-unrelated.  

2.1.3 Procedure 

In Experiment 1, participants' task was to silently generate a prediction of the target word 

immediately after presentation of the prime word, and to indicate via a button press after 

presentation of the target word, whether it matched their prediction. Assessment of prediction 

accuracy showed that participants on average accurately predicted 50% of the target words in the 

related condition, which demonstrated that they had adhered to the task. In Experiment 2, 

participants pressed one of two buttons after each target word to indicate whether it was related 

or unrelated in meaning to the preceding prime word. Prime and target words were presented for 

200 ms in both experiments, with a stimulus onset asynchrony (SOA) of 2000 ms in Experiment 

1, and of 1100 – 1300 ms in Experiment 2. In Experiment 1, after the target word was presented, 

a 1400 ms delay followed and then a question mark appeared in the center of the screen to 

indicate that participants could make their prediction accuracy response. The experiment then 

proceeded to the next trial after 1500 ms. In Experiment 2, there was a uniformly distributed 

1400-1600 ms inter-trial interval following each target word, during which the participants were 

asked to make their semantic-relatedness response.  

 2.1.4 EEG Recording and Processing 

All analyses used previously recorded and pre-processed data. We performed traditional 

univariate ERP analyses on the results both experiments. We will summarize key information 

about the methods here. For further detail, please see the Supplementary Materials section on 

ERP Methods.  

For Experiment 1, EEG was recorded from 29 tin electrodes in an elastic cap with a 

sampling rate of 250 Hz (electrodes: FP1, FP2, F3, F4, F7, F8, FC1, FC2, FC3, FC4, FC5, FC6, 
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C3, C4, CP1, CP2, CP5, CP6, P3, P4, T3, T4, T5, T6, O1, O2, AFz, Fz, Cz, Pz and POz). For 

Experiment 2, EEG was recorded from 30 active electrodes with a sampling rate of 1024 Hz 

(electrodes: FP1, F3, F7, FC3, C3, C5, P3, P7, P9, PO7, PO3, O1, Oz, Pz, CPz, FP2, Fz, F4, 

F8, FC4, FCz, Cz, C4, C6, P4, P8, P10, PO8, PO4, and O2). In both experiments, 20 electrodes 

were placed according to the 10-20 system (Jasper, 1959). Additional electrodes were included 

at different scalp locations for experiments 1 and 2. All electrode locations are shown in Figure 

5 c and d, respectively.  

In both experiments, offline pre-processing analyses were conducted in MATLAB using 

EEGLAB (Delorme & Makeig, 2004) and ERPLAB (Lopez-Calderon & Luck, 2014). To be 

consistent with Experiment 1, the EEG from Experiment 2 was down sampled to 250 Hz. EEG 

was re-referenced offline to the average of the right and left mastoids in Experiment 1 and to 

the average of P9 and P10 electrodes in Experiment 2. In both experiments, a Butterworth 

bandpass filter was applied with half-amplitude cutoff of 0.05-30 Hz. In Experiment 1, 

participants with at least 80 trials per condition after artifact rejection were included from the 

analyses (range: 80 - 231, mean: 152.7). In Experiment 2, participants were included in our 

analysis when they had a minimum of 30 trials per condition (range: 35 - 60, mean: 50.4) (see 

supplementary tables S1 and S2 for details on artifact rejection by participant). Artifact 

rejection led to removal of 9 participants in Experiment 1 (45 remained) and 5 participants in 

Experiment 2 (35 remained).  

 

2.2 Decoding analyses methods 

2.2.1 Classification implementation 

All three classifiers were implemented within MATLAB. The linear SVM algorithm was 

implemented using the fitcsvm() function using ‘one vs. one’ classification. The LDA algorithm 
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was implemented using the fitcdiscr() function. The RF algorithm was implemented using the 

treebagger() function. To prevent excessive processing time, the RF was limited to only 10 trees 

per iteration. This allowed the other parameters – iterations and cross-validation folds – to be 

held constant across the three machine-learning methods. Other than the function calls for the 

classifier algorithm, the script for each implementation was identical to ensure that no 

differences in pre-processing were introduced. For Experiment 1, each method classified 400 

time points in the -200-1396 ms target stimulus-locked interval, and in Experiment 2 this was 

done for 250 time points over the -200-796 ms epoch locked to the target stimulus onset.1  

Classification was performed for all trials that were included in the ERP analyses after 

artifact correction for ocular artifacts (using independent component analysis) and rejection of 

trials with other subject-generated artifacts (e.g., movement). For Experiment 1, classification 

accuracy of the three ML methods was compared for: 1) accurately predicted-related vs. 

unpredicted-related to isolate prediction effects, 2) unpredicted-related vs. unpredicted-unrelated 

to isolate effects of semantic relatedness, and 3) accurately predicted-related vs. unpredicted-

unrelated which includes both effects along with any interactions between them. For Experiment 

2, method comparison was done for the classification of correctly judged unrelated versus related 

target words. All classifiers were trained and tested on each individual participants’ data. At each 

time point, the single-sample values from all electrode sites (29 for Experiment 1; 28 for 

Experiment 2) were used in the ML procedures. Machine learning was performed over 128 

iterations – with each iteration repeating the entire process including randomized assignment to 

cross-validation blocks – using 10-fold cross-validation. Iterating the process 128 times ensured 

 
1 This was done on the data available online via the ERP Core data set, for which we did not 
adjust the measured epoch. 
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sufficient re-sampling so that all trials were included in the random block assignments and 

spurious results were eliminated. For each iteration, trials were separated into 10 blocks (9 

training; 1 testing) and each trial could alternately serve as a training and a test data point. To 

keep an equal number of trials across conditions, each iteration used a random sampling to 

reduce the number of trials in one condition to equal the number of trials in the other condition.2 

2.2.2 Average vs. single trial classification 

For the averaged-trial method, we implemented a procedure recommended by 

Grootswagers et al (2017) which was adapted from the scripts used by Bae and Luck (2019). For 

example, if a participant’s data included 100 trials per condition – 200 total – then those trials 

were randomly divided into 10 equal sets of 20 trials – 10 per condition. An averaged ERP was 

calculated for each condition within each of the 10 sets of 20 trials, and this was used by the ML 

algorithms to classify the data. For the single-trial method, this averaging step was omitted. To 

assess decoding accuracy, we calculated the percentage of EEG data that was classified above 

chance for each classifier at each time point across all iterations and cross-validation blocks for 

each participant. The final accuracy was then averaged across participants. Because of the binary 

classifications, chance performance was at 50%. 

2.2.3 Raw Decoding Accuracy for each individual Classification Method 

For each of the three ML methods we used cluster-based permutations to test if their 

performance was significantly above chance (Bae & Luck, 2019; Maris & Oostenveld, 2007). 

This generated a null distribution using 10080 random permutations of the existing data labels. 

This number of permutations is approximate to a .01 alpha value for non-parametric testing 

 
2 For example, if the predicted-related condition had 101 trials and the unpredicted-related 
condition had 88 trials, then 88 trials of the 101 within the predicted-related condition would be 
randomly selected for each iteration. 
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(Marozzi, 2004). A one-sample t test was then performed to compare the individual participants’ 

decoding accuracy at a given time point to chance (separately for each permutated dataset and 

the actual data). Contiguous sets of timepoints that were significant without correction were 

considered clusters, and the mass of a given cluster was computed as the sum of the t values for 

that cluster. If the mass of at least one cluster in the actual data was greater than the 95th 

percentile of the cluster masses in the permutated data, then the decoding accuracy was 

considered significantly greater-than-chance. This method avoids multiple comparison errors 

while accounting for autocorrelation in the EEG data. The significance testing was done between 

0 – 1396 ms after target onset for Experiment 1 and for 0 – 796 ms for Experiment 2 (because 

this was the epoch available from the Kappenman et al., 2021 dataset). The t tests comparing the 

decoding accuracy at each time point to chance were one-tailed because performance 

significantly lower than chance-level has no meaningful interpretation in these analyses. 

2.2.4 Comparison of Raw Decoding Accuracy between Classification Methods  

To formally test differences between the methods, we used F tests from a three-level 

ANOVA (including decoding results from SVM, LDA, and RF) to perform cluster analyses. This 

ANOVA including all three decoding methods for direct comparison follows the same steps as 

described for the performance tests of each of the three individual methods in the previous 

section. We again used the 10080 permutations, but now a null distribution of the F mass was 

generated and compared to the 95th percentile of the null distribution to assess significance. If 

significant, this initial analysis was followed by pairwise comparisons of each pair of methods 

using two-tailed t tests. In the pairwise comparisons, a t mass larger than the 97.5th percentile or 

less than the 2.5th percentile of the null distribution indicated a significant difference. These 

direct comparisons were performed over the same time periods as the decoding-versus-chance 
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analyses (Experiment 1: 0 – 1396 ms, 350 time points; Experiment 2: 0 – 796 ms, 200 time 

points). 

2.2.5 Effect Sizes 

Effect sizes were computed using Cohen’s dz for each condition in both experiments for all three 

ML methods, relative to chance level. This quantifies the ability of each classifier to produce 

statistically significant results while accounting for variation in decoding accuracy across 

participants as well as the mean. Cohen’s dz was computed by subtracting the chance value from 

the mean percent correct and then dividing by the SD. The classification approach that produced 

the largest Cohen’s dz had the greatest statistical power. 

2.2.6 Feature Importance Maps 

 Calculation of the contribution of each of the electrodes to the classification decision of each of 

the ML methods was performed. For SVM and LDA, the magnitudes of weight coefficients 

applied to each electrode site relative to one another were used as a reasonable proxy for how 

important each site was to the classification. Because SVM and LDA are linear classifiers, the 

extracted coefficients were multiplied by the covariance of the μV values of the electrode sites 

that were classified using the training data at each time point to obtain the feature weights 

(Grootswagers et al., 2017, Haufe et al., 2014). For RF, feature importance measures were 

directly extracted from the model using the oobPermutedPredictorImportance() function.  

Each classifier’s feature weights were standardized by separately computing the mean of 

the absolute weights across all the electrodes for each time point, subtracting that mean from the 

absolute weight values of each electrode and dividing the resulting weight values by the standard 

deviation for all the electrode site weights. We used absolute values for the weights because 

negative and positive weights are equally important to the classifier. Important to note here is 
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that the directionality (+/-) of the feature weights does not necessarily correspond to positive or 

negative μV values. The standardized values were used to evaluate the relative importance of 

each electrode site as the number of standard deviations from the mean. A zero value on this 

measure indicates average importance, while positive values indicate greater than average 

performance and negative values correspond to less than average importance. Feature importance 

measures were then plotted for a total epoch of 1600 ms in experiment 1 and for a total epoch of 

1200 ms for experiment 2 (See Figure 5a, b). The distribution of the contribution of the feature 

weights for each of the electrodes is also plotted for two epochs, the N400 epoch (300 – 500 ms) 

and a later epoch (600 – 800 ms), and compared to the distribution of the ERP effects in those 

epochs (See Figure 5c and d)  

 

3. Results 
The ANOVA for the ERP results of Experiment 1 showed significant N400 effects of 

predictability and priming with a typical topographic distribution (p’s<.0000, for details see 

Supplementary Materials). Significant effects of priming were reported for Experiment 2 in 

Kappenman et al., (2021). In the remainder of this results section, we will report on the findings 

of the decoding analyses. 

3.1 Results of the decoding accuracy analyses. Figures 2 and 3 show decoding accuracy 

at each time point for each decoding method, for averaged and single-trial data, respectively.  
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Figure 2. Decoding accuracy (percentage of averaged trials correctly classified) for averaged 
trial data of the three ML methods. Panel A shows the decoding accuracy for the conditions in 
Experiment 1 (Brothers et al., 2016), panel B for the conditions in Experiment 2. In Experiment 
2, the decoding epochs were shorter than in Experiment 1, to remain consistent with 
Kappenman et al. (2021). Shading indicates the standard error of decoding accuracy for each 
method. Decoding accuracy is above chance for all three methods for the entire epoch to the 
right of the arrows. See Table 1 for exact onset of above chance decoding accuracy of each of 
the methods. 
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The t tests of the decoding accuracy showed that all three ML methods significantly 

classified above chance (50%) the EEG signal in all conditions for most of the epoch after the 

target word was presented for both averaged and single trial data. These results are reported in 

Figure 3. Decoding accuracy (percentage of trials correctly classified) for single trial data of 
the three ML methods. For all other information about this Figure, see the legend of Figure 2. 
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Table 1 for averaged and single trial analyses under (a) decoding accuracy vs. chance. This table 

also reports the results of the ANOVA directly comparing the three ML methods (under (b) 

ANOVA Based Test Method), and the follow up t tests comparing SVM to LDA, SVM to RF 

and RF to LDA (under (c) Pairwise t Test method). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

  
 
 
 
 
 

Ex
pe

ri
m

en
t Conditions 

 
  

Decoding 
Method 

  

Significant Cluster Epochs (ms) 

Averaged Trials Single Trials 

a) Decoding 
Accuracy v. 
Chance-level  

b) ANOVA-
based Test 

c) Pairwise t Test  a) Decoding 
Accuracy v. 
Chance-level  

b) 
ANOVA-
based Test  

c) Pairwise t Test  
LDA RF LDA RF 

Br
ot

he
rs

 e
t a

l. 
(2

01
6)

 

PR v. UR SVM 116 - 1396 224 - 1396 224 -
1396# 

224 -
1396# 

116 - 1396 172 – 1396 220 -
408# 

172 - 1396# 

LDA 116 - 1396   228 - 
460X 

124 - 1396   172 - 1396+ 

RF 116 - 1396     44 - 76       
116 - 1396 

    

PR v. UU SVM 148 - 1396 220 - 1396 220 - 
1140# 

220 - 
1396# 

144 - 1396 180 – 1396 none 180 - 1396# 

LDA 148 - 1396   224 - 
512x 

1248 -
1396+ 

152 - 1396   180 - 1396+ 

RF 136 - 1396     140 - 1396     
UR v. UU SVM 208 - 1396 324 - 1396 324 - 

1396# 
324 - 
1396# 

212 - 1396 236 – 1396 none 236 - 1396# 

LDA 212 - 1396   324 - 
488x  

196 - 1396   236 - 1396+ 

RF 176 - 1396     268 - 1396     

K
ap

pe
nm

an
 e

t 
al

. (
20

21
)  R v. U SVM 188 - 796 240 - 476 240 - 

476# 
240 - 
476# 

192-796 264 – 400 
628 - 716 

264 - 
400# 

264 - 400# 
628 - 756# 

LDA 196 - 796   240 - 
476x 

188-796   628 - 792x 

RF 188 - 796     192-796     

Table 1: Onset and offset of epochs where ML methods significantly differed from (a) chance decoding accuracy 
(percentage of trials or averaged trials correctly classified), (b) each other in an ANOVA (b), and in (c) follow up 
pairwise t tests between each method, for each of the cluster-based permutation tests, for Averaged Trials and Single 
Trials. PR = Predicted-related, UR = Unpredicted-Related, UU = Unpredicted-Unrelated, R= Related, U= Unrelated. 
The following symbols indicate significantly higher decoding accuracy of one method over another method in the 
pairwise t tests: # = SVM; + = LDA; x = RF 
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The results of the follow-up t tests were done for the epochs for which the ANOVA 

showed significant differences between ML methods for averaged and single trial data. For 

averaged trial classification, decoding accuracy was significantly greater for SVM than LDA in 

each condition from both datasets. Additionally, SVM had significantly higher decoding 

accuracy than RF for most of the epochs and conditions. The pairwise analyses of the single-trial 

data of Brothers et al. (2016) did not show significant differences in decoding accuracy between 

SVM and LDA, except for a window in the predicted-related vs. unpredicted-related condition 

(220 – 408 ms). In contrast, RF consistently had lower decoding accuracy than the other two 

Figure 4. Method decoding accuracy effect sizes (Cohen’s dz) against chance-level, for each 
condition and at each time point for all three ML methods, for Experiment 1 (Panel A) and 
Experiment 2 (Panel B). In Experiment 2, the decoding epochs were shorter than in Experiment 1, to 
remain consistent with the original experiment. Effects sizes are shown with target word onset at 0 
ms. 
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classifiers for the single-trial data. For Kappenman et al., (2021), SVM outperformed the other 

classifiers early in the epoch (264 – 400 ms) while RF underperformed relative to the others late 

in the epoch (628 – 716 ms).  

3.2 Results for Effects Size (Cohen’s dz) 

Figure 4 shows the results 

of the analyses of effect size for 

each of the ML methods for each 

of the conditions in both 

experiments. Each of the methods 

had large effect sizes (>1) for most 

conditions. However, SVM 

showed the greatest effect sizes in 

all conditions indicating that SVM 

will provide the greatest statistical 

power among the three methods 

(for effect sizes in univariate ERP 

analyses, see table S3 in the 

Supplementary Materials). We also 

calculated effect sizes for each of 

the ML models averaged over the 

time points in the 300 – 500 ms 

epoch for which the N400 is 

maximal (see Table 2).  

Average in Effect Sizes vs. Chance (300 – 500 ms) 

Experiment Conditions Method Cohen’s dz 

Averaged-

Trials 

Single-

Trials 

Br
ot

he
rs

 e
t a

l.,
 2

01
6 

PR
 v

. U
R

 SVM 5.442 4.009 

LDA 3.847 3.364 

RF 4.501 3.020 

PR
 v

. U
U

 SVM 10.092 5.717 

LDA 5.858 4.518 

RF 8.553 4.118 

U
R 

v.
 U

U
 SVM 2.829 2.407 

LDA 2.519 2.260 

RF 2.287 1.810 

K
ap

pe
nm

an
 e

t a
l.,

 
20

21
 

 

R 
v.

 U
 

SVM 2.722 2.282 

LDA 2.202 1.921 

RF 2.383 1.983 

Table 2. Averaged method decoding accuracy effect sizes 
(Cohen’s dz) against chance-level, for each condition within the 
300 – 500 ms time window for all three ML methods. The greatest 
effect size for each comparison of conditions is bolded. 
PR=Predicted Related; UR=Unpredicted Related; UU=Unpredicted 
Related, R=Related, U=Unrelated. 
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3.3 Feature importance 

Feature importance maps for both experiments across the whole target epoch and for 

selected times points are shown in Figure 5. For the averaged-trial data, all three classifiers 

placed more relative weight on centro-parietal electrode sites during the epoch typically 

associated with the N400 ERP component (300 – 500 ms). This pattern is in line with the typical 

topographical distribution of  

the N400 (see Swaab et al., 2012). RF placed more weight on occipital and temporal sites 

than did SVM or LDA. After 600 ms, all three classifiers shifted more relative weight to frontal 

electrodes, in line with expectations. For the single-trial data, all three classifiers showed similar 

weight patterns for all conditions in Experiment 1. In contrast, Experiment 2 showed that RF 

weighted features differently from the other classifiers during the 600 – 800 ms time window. 

This coincides with a substantial decrease in the RF decoding accuracy relative to SVM and 

LDA reported earlier.  

In summary, feature importance from all three classifiers matched well to both 

expectations and to the ERP scalp topographies in Experiment 1. In Experiment 2, RF weights 

did not match well to the ERP scalp topographies during the 600 – 800 ms time frame, 

suggesting that improper weighting may have resulted in the drop off in decoding accuracy. 
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Figure 5. Feature importance maps for all three ML methods. The maps show the normalized weighting of each electrode site in the decoding of the target words in 
Experiment 1 (panel A) for the predicted related vs. unpredicted related condition, and in Experiment 2 (panel B) for the target words in the unrelated vs. related 
condition. Six boxes of feature maps are shown for each experiment, for SVM, LDA and RF, respectively, on the left for the averaged trials, on the right for the single 
trails. Each box shows data for all electrode sites over the entire epoch from anterior to posterior sites, along the vertical axis. For Panel A, the electrodes included are 
indicated on the right, and for panel B on the left. Values are in standard deviations from mean weights for a given time point. While the figure legend is capped at +/- 
2, actual weights can exceed these limits. Panels C (predicted related vs. unpredicted related) and D (unrelated vs. related) show feature weights from select time 
points (400 ms and 700 ms) along with difference topography maps of the ERPs for the conditions being decoded (panel C: unpredicted-related minus predicted-
related averaged separately over 300 – 500 ms and 600 – 1000 ms; panel D: unrelated minus related averaged separately over 300 – 500 ms and 600 – 800 ms). 
Values for ERP difference maps are in μV. Feature maps for the other conditions of Experiment 1 are shown in the Supplementary Materials (Figure S3).  
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4. Discussion 
The goal of this study was to identify which of three well-established ML classifiers, 

SVM, LDA or RF, was the best performing classifier when decoding EEG data from two visual 

two-word priming experiments. We assessed the performance of these three ML methods in 

classifying the EEG responses to the second word of each pair, the target, in each of the 

conditions in both experiments. In Experiment 1, we examined ML classification of the EEG to 

in three conditions: 1) related target words that were predicted by the participant 2) related target 

words not predicted by the participant and 3) unrelated target words. In experiment 2 this was 

done for related and unrelated target words. Classification performance was assessed for both 

averaged and single EEG trial classification by establishing decoding accuracy, effect sizes and 

feature importance measures for each of the classifiers. This was done in epochs of 400 ms 

before the presentation of the target words and, after the onset of the target words, in an epoch of 

1200 ms for Experiment 1 and of 800 ms for Experiment 2. To assess whether the central and 

parietal electrode sites for which the N400 prediction and priming effects are most prominent 

were also most heavily weighted in the classifier decisions of each of the ML methods, we 

further compared the topographic distribution of the N400 effect to the topographic distribution 

of the weights assigned by the ML classifiers to the electrode sites in this epoch. We compared 

this to a later epoch between 600 - 800 ms, where the ERP effects had shifted to more anterior 

electrode sites.  

Overall, SVM was the best performing classifier on all three of our performance 

measures in both experiments (with one exception, discussed below): relative to LDA and RF, 

SVM decoded the EEG data to the target words in the different conditions with higher decoding 

accuracy and larger effect sizes. Moreover, its classification decisions for the time points in the 

N400 epoch were weighted more heavily to cento-parietal electrode sites, and shifted more 
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anteriorly for the 600-800 ms epoch, consistent with the ERP findings. Because the experiments 

differed in task, the number of participants, the number of trials per condition, and number, 

configuration, and kind of electrodes (active vs. passive), we conclude that this is a robust 

finding.  

There was one instance where the LDA and SVM classifiers showed similar 

performance, namely in the single trial analyses for Experiment 1. This might suggest that the 

decoding method that performs best when decoding averaged data is not always be the best 

method for decoding single-trial data (or vice versa), as SVM appears to have a greater drop-off 

in decoding accuracy than does LDA in single trial decoding when compared to decoding of 

averaged trials. Alternatively, it could be the case in the present study that LDA’s decoding 

accuracy is near its performance ceiling when decoding single trial data, and only receives a mild 

boost in decoding accuracy from increased signal-to-noise ratio in averaged data. In contrast, 

SVM appears to get a substantial boost in decoding accuracy when classifying averaged trials 

relative to decoding single trials. We suggest that this may be related to the different ways in 

which SVM and LDA classify the data. Whereas SVM classifies based on data points that are 

near the boundary between two classes, LDA considers the entire distribution of the data points. 

In addition, the LDA decoding accuracy is much reduced relative to SVM for the single trial 

classification in Experiment 2. As mentioned before, experiment 2 included considerably less 

trials per condition than Experiment 1 (i.e., 40 vs. 150). This may indicate that LDA requires 

greater number of individual training trials than SVM does to optimize its decoding accuracy. 

With a sufficiently large training data set, LDA performs as well as SVM. 

All three ML methods showed overlap between the centro-parietal electrode sites that 

were most heavily weighted in the classification of the N400 effects in the 300 - 500 ms epoch 
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and, consistent with the ERP data, more anterior sites for the 600 - 800 ms epoch. However, 

there was one exception (See Figure 5d) in the classification of the single trial data of 

Experiment 2. In contrast to SVM and LDA, for which the weight maps were very similar to the 

topographic maps of the ERP results, RF placed greater weight on electrodes that were more 

anterior and left lateralized than the distribution of the maximal ERP differences in this epoch. 

This may be due to the smaller number of trials in Experiment 2. It also important to note that the 

less precise feature weighting for the RF coincides with a rapid drop-off in decoding accuracy 

for the RF classifier of the single trials in the post 500 ms epoch.  

While our results demonstrate that SVM was the best classifier of EEG data in this study, 

it is important to note that both experiments required binary classifications. SVM classifiers are 

binary classifiers best suited for categorizing two classes – separating two classes from one 

another or separating out one class from many. SVM can be modified to handle multiple classes 

(Bae & Luck, 2018), but LDA and RF can handle multiple classes without modification. Thus, 

future studies are needed to examine the performance of these three ML methods when more 

than two variables are manipulated in an experiment.  

It is also important to emphasize here that the goal of the present study was to compare 

the ML classification methods performance in cognitive neuroscience studies using EEG data, 

and this was reflected in the way we assessed their performance. We recognize that ML 

classifiers can be a powerful tool to uncover spatio-temporal features of EEG signals that cannot 

be detected in univariate EEG analyses, which could be used to generate new hypothesis for both 

basic and more applied scientific studies. 

The results of our study show that SVM is an excellent and robust choice for decoding 

EEG data in cognitive neuroscience experiments, with high decoding accuracy, good effect sizes 
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and valid feature importance weights. We further suggest that EEG decoding provides an 

important tool that can complement the EEG/ERP method, because it will allow researchers to 

examine a variety of questions about the nature of the information that is contained in the 

EEG/ERP signal – such as whether and when the semantic features of upcoming words are pre-

activated (Heikel et al., 2018) or how phonemic representations are sustained over time 

(Gwilliams et al., 2020). Questions such as these are difficult to answer with univariate methods 

alone.  

 

5. Conclusion 
In this technical note, we formally compared three classification methods - SVM, LDA, 

and RF - frequently used for decoding EEG signals. Our goal was to examine the performance 

and utility of these three ML methods for cognitive neuroscience studies, and we used two visual 

word priming experiments as a test case in the present study. We demonstrated that SVM is a 

highly reliable and valid choice for classification of binary data in cognitive neuroscience EEG 

experiments. SVM showed the highest decoding accuracy and the greatest sensitivity for 

detecting differences between experimental conditions. Additionally, SVM showed reliable 

feature weight patterns for testing a priori assumptions about electrode importance. This finding 

further paves the way for future studies of the content of cognitive computations in EEG signals 

that can advance basic neuroscience. Because SVM can classify single trial EEG data with a 

limited number of training trials (i.e., 40), it can also provide a powerful tool to examine 

individual differences in neurotypical and neuro-diverse populations.  
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Supplementary Materials 
 
1. ERP Methods 

1.1. EEG Recording and Analyses 

In addition to our decoding analyses, we performed univariate analyses of the EEG data from 

Experiment 1 (Brothers et al., 2016) and Experiment 2 (Kappenman et al., 2021) on the same 

EEG data that were used for the three ML classifications. The goal of these ERP analyses was to 

test for significant differences between conditions that the three ML classifiers should be able to 

detect.  

1.1.1 EEG Recording.  

In Experiment 1, in addition to the electrodes for EEG recording described in the main 

paper, horizontal and vertical eye-movements were recorded via bi-polar montages, placed 

lateral to the outer canthi of the left and the right eye and the above the supra- and below the sub-
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ordinal ridges of the right eye, respectively. The left mastoid was included as an active channel 

for later off-line re-referencing. Horizontal and vertical EOG electrodes were used to capture 

oculo-motor activity, such as blinks and saccades. All electrode impedances were kept below 5 

kΩ. For details of Experiment 2, please see Kappenman et al., (2021). Data are available at: 

https://doi.org/10.18115/D5JW4R.  

In both experiments, offline pre-processing analyses were conducted in MATLAB using 

the EEGLAB toolbox (Delorme & Makeig, 2004) and ERPLAB (Lopez-Calderon & Luck, 

2014). Independent component analysis (ICA) was performed to isolate and remove ocular-

motor artifacts. Single-trial waveforms were then screened for amplifier drift, muscle artifacts 

and eye movements, and any epochs containing these artifacts were rejected prior to analysis. 

Table S1 and S2 show the number of trials rejected per subject and electrode site for Experiment 

1 and 2, respectively. ERPs were calculated by averaging individual EEG epochs, time-locked to 

the onset of the target words. In Experiment 1 this was done for an epoch of 1600 ms and in 

Experiment 2 for an epoch of 1000 ms, in both experiments with a 200 ms pre-stimulus baseline.  

Participant Predicted-Related Unpredicted-Related Unpredicted-Unrelated 

Accepted 
Trials 

Rejected 
Trials 

Reject 
% 

Accepted 
Trials 

Rejected 
Trials 

Reject 
% 

Accepted 
Trials 

Rejected 
Trials 

Reject 
% 

1 167 5 2.9% 142 6 4.1% 150 3 2.0% 
2 47 110 70.1% 72 91 55.8% 61 99 61.9% 
3 136 3 2.2% 168 4 2.3% 148 9 5.7% 
4 162 0 0.0% 157 1 0.6% 158 1 0.6% 
5 134 11 7.6% 159 16 9.1% 139 20 12.6% 
6 41 110 72.8% 44 125 74.0% 41 118 74.2% 
7 157 0 0.0% 163 0 0.0% 160 0 0.0% 
8 124 9 6.8% 176 11 5.9% 153 6 3.8% 
9 66 15 18.5% 204 35 14.6% 136 21 13.4% 
10 134 5 3.6% 178 3 1.7% 154 5 3.1% 
11 207 4 1.9% 107 1 0.9% 157 1 0.6% 

https://doi.org/10.18115/D5JW4R
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12 31 103 76.9% 62 124 66.7% 33 127 79.4% 
13 145 0 0.0% 175 0 0.0% 160 0 0.0% 
14 138 2 1.4% 178 2 1.1% 158 2 1.3% 
15 72 9 11.1% 190 48 20.2% 119 33 21.7% 
16 169 5 2.9% 142 4 2.7% 155 3 1.9% 
17 147 4 2.6% 157 11 6.5% 151 9 5.6% 
18 161 0 0.0% 154 0 0.0% 157 0 0.0% 
19 146 0 0.0% 161 0 0.0% 155 0 0.0% 
20 152 0 0.0% 168 0 0.0% 159 0 0.0% 
21 223 1 0.4% 96 0 0.0% 156 1 0.6% 
22 118 35 22.9% 104 57 35.4% 96 60 38.5% 
23 117 9 7.1% 186 8 4.1% 153 7 4.4% 
24 144 3 2.0% 158 15 8.7% 152 7 4.4% 
25 127 1 0.8% 190 2 1.0% 153 4 2.5% 
26 147 0 0.0% 172 1 0.6% 160 0 0.0% 
27 167 3 1.8% 147 3 2.0% 150 10 6.3% 
28 132 0 0.0% 187 0 0.0% 159 1 0.6% 
29 177 4 2.2% 131 8 5.8% 154 6 3.8% 
30 148 7 4.5% 157 8 4.8% 157 3 1.9% 
31 160 1 0.6% 156 3 1.9% 158 2 1.3% 
32 187 0 0.0% 133 0 0.0% 160 0 0.0% 
33 147 2 1.3% 170 1 0.6% 159 1 0.6% 
34 135 32 19.2% 129 24 15.7% 121 37 23.4% 
35 181 10 5.2% 120 9 7.0% 153 7 4.4% 
36 7 0 0.0% 290 23 7.3% 2 0 0.0% 
37 142 4 2.7% 167 7 4.0% 150 10 6.3% 
38 178 0 0.0% 142 0 0.0% 159 1 0.6% 
39 32 55 63.2% 67 166 71.2% 48 112 70.0% 
40 192 1 0.5% 125 0 0.0% 159 0 0.0% 
41 231 6 2.5% 80 3 3.6% 150 5 3.2% 
42 74 119 61.7% 50 77 60.6% 52 108 67.5% 
43 191 0 0.0% 129 0 0.0% 159 0 0.0% 
44 201 9 4.3% 109 1 0.9% 155 5 3.1% 
45 232 22 8.7% 61 5 7.6% 155 3 1.9% 
46 116 3 2.5% 198 3 1.5% 155 1 0.6% 
47 274 0 0.0% 46 0 0.0% 158 0 0.0% 
48 180 0 0.0% 140 0 0.0% 160 0 0.0% 
49 126 51 28.8% 83 60 42.0% 112 45 28.7% 
50 187 0 0.0% 132 0 0.0% 160 0 0.0% 
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1.1.2 ERP analyses. 

 In both experiments, we measured the mean amplitude of the N400 in the typical 300-

500 ms epoch following target onset. This was done for each of the three conditions in 

Experiment 1 (predicted-related, unpredicted-related, unpredicted-unrelated) and for the two 

conditions of  

 Experiment 2 (related vs. unrelated). For each experiment, we performed two repeated-measures 

analysis of variance (ANOVAs) with Greenhouse-Geisser corrections. In Experiment 1, we 

performed a 3x5 (Condition x Midline) ANOVA with a 5-level factor of Anteriority at Midline 

electrode sites (AFZ, FZ, CZ, PZ, POZ ) and a 3x3x2 (Condition x Anteriority x Hemisphere) 

ANOVA with a 3-level factor of Anteriority at Lateral electrode sites – Frontal (FP1/2, F7/8, 

F3/4), Central (FC5/6, FC1/2, C3/4, CP1/2, CP5/6), and Posterior (T5/6, P3/4, O1/2) – and a 2-

level factor of Hemisphere – Left (FP1, F3, F7,FC1, FC5, C3, T3, CP1, CP5, P3, T5, O1) and 

Right (FP2, F4, F8, FC2, FC6, C4, T4, CP2, CP6, P4, T6, O2). In Experiment 2 we performed a 

3x6 (Condition x Midline) ANOVA with 6-level factor of Anteriority at Midline electrode sites 

(FZ, FCZ, CZ, CPZ, PZ, OZ) and a 3x3x2 (Condition, Anteriority x Hemisphere) ANOVA with 

3-level factor of Anteriority – Frontal (FP1/2, F7/8, F3/4), Central (C3/4, FC3/4, C5/6), and 

Posterior (P3/4, O1/2, P7/8, PO7/8, PO3/4) – and 2-level factor of Hemisphere – Left (FP1, F3, 

F7, FC3, C3, C5, P3, P7, PO7, PO3, O1) and Right (FP2, F4, F8, FC4, C4, C6, P4, P8, PO8, 

51 58 36 38.3% 109 98 47.3% 68 83 55.0% 
52 197 0 0.0% 123 0 0.0% 157 0 0.0% 
53 163 0 0.0% 157 0 0.0% 160 0 0.0% 
54 157 3 1.9% 158 2 1.3% 160 0 0.0% 
55 151 0 0.0% 168 0 0.0% 158 2 1.3% 
56 140 1 0.7% 152 27 15.1% 144 16 10.0% 

Table S1: Shows accepted and rejected trials after artifact rejection for each of the original 56 
participants in Experiment 1. After artifact rejection, participants with fewer than 80 trials were 
excluded from analyses (indicated in bold). 
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PO4, O2). Due differences in the epochs across the two experiments, we did not perform 

analyses during later windows. However, we did generate scalp topography maps for the 

differences between conditions (Experiment 1: unpredicted-related minus predicted-related, 

unpredicted-unrelated minus predicted related, unpredicted-related minus unpredicted-related; 

Experiment 2: unrelated minus related) for 600 – 800 ms to allow for comparisons with the 

decoding feature weights (Figure 5 and S3). 
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Participant Related Unrelated 

Accepted Trials Rejected Trials Reject 
% 

Accepted Trials Rejected Trials Reject 
% 

1 46 7 13.2% 46 11 19.3% 
2 49 8 14.0% 45 7 13.5% 
3 51 9 15.0% 54 5 8.5% 
4 46 11 19.3% 50 6 10.7% 
5 42 16 27.6% 47 8 14.5% 
6 56 1 1.8% 54 0 0.0% 
7 56 1 1.8% 58 2 3.3% 
8 51 5 8.9% 56 3 5.1% 
9 13 40 75.5% 15 21 58.3% 
10 45 11 19.6% 38 13 25.5% 
11 57 2 3.4% 52 3 5.5% 
12 43 12 21.8% 50 9 15.3% 
13 40 18 31.0% 47 8 14.5% 
14 34 25 42.4% 27 24 47.1% 
15 51 4 7.3% 49 7 12.5% 
16 49 10 16.9% 47 11 19.0% 
17 51 7 12.1% 51 6 10.5% 
18 53 4 7.0% 53 3 5.4% 
19 56 3 5.1% 60 0 0.0% 
20 46 9 16.4% 40 14 25.9% 
21 55 2 3.5% 55 4 6.8% 
22 53 1 1.9% 53 3 5.4% 
23 50 9 15.3% 47 11 19.0% 
24 57 2 3.4% 52 4 7.1% 
25 37 19 33.9% 46 9 16.4% 
26 55 5 8.3% 54 4 6.9% 
27# 41 1 2.4% 50 4 7.4% 
28 52 4 7.1% 55 2 3.5% 
29 44 14 24.1% 42 16 27.6% 
30 29 30 50.8% 37 22 37.3% 
31 49 11 18.3% 49 8 14.0% 
32 56 0 0.0% 53 0 0.0% 
33 59 0 0.0% 57 1 1.7% 
34 53 4 7.0% 56 3 5.1% 
35 35 12 25.5% 46 13 22.0% 
36 56 1 1.8% 55 1 1.8% 
37 55 3 5.2% 56 3 5.1% 
38 40 17 29.8% 47 10 17.5% 
39 59 0 0.0% 58 1 1.7% 
40 6 48 88.9% 4 49 92.5% 

Table S2: Shows accepted and rejected trials after artifact rejection for each of the original 56 
participants in Experiment 1. Excluded participants are indicated in bold. One participant was excluded 
for poor task performance (#). Other exclusions were due to participants having fewer than 30 trials per 
condition after artifact rejection. 
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1.2 ERP results 

     Figure S1 illustrates mean amplitude (μV) difference waves across conditions for 

electrode Pz for Experiment 1 (panel A) and Experiment 2 (panel B). In Experiment 1, we found 

a significant main effect of Condition (FGG(2, 88) = 463, p < 0.0001). Subsequent pairwise 

comparisons showed significant N400 effects when comparing predicted related vs unpredicted-

related (t(44) = -20.1, p < 0.0001) and vs unpredicted-unrelated (t(44) = -24.7, p < 0.0001). 

Unpredicted-related was also significantly different from unpredicted-unrelated (t(44) = -12.8, p 

< 0.0001). Topographic distribution analyses show a significant main effect of Condition 

(Midline: FGG(2, 88) = 403.4, p < 0.0001); Lateral: FGG(2, 88) = 326.3, p < 0.0001)), and 

significant interactions for Condition x Midline (FGG(8, 352) = 111.8, p < 0.0001)), Condition x 

Hemisphere (FGG(2, 88) = 30.1, p < 0.0001)), Condition x Anteriority (FGG(4, 176) = 59.1, p < 

0.0001)), and Condition x Hemisphere x Anteriority (FGG(4, 176) = 9.6, p < 0.0001)), consistent 

with the centro parietal distribution of the N400 effect. Topographic maps in Figure 5 of the 

main article show that differences between conditions were greatest across central-parietal and 

right-hemispheric electrode sites. 

Figure S1: Difference waveforms showing N400 effects for electrode Pz for the comparison of all 
conditions in Experiment 1 (panel A) and Experiment 2 (panel B).  
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In Experiment 2, the N400 effect of semantic priming was significant (t(34) = 12.2, p < 

0.0001). Topographic distribution analyses show a significant main effect of Condition (Midline: 

F(1, 34) = 146.6, p < 0.0001); Lateral: F(1, 34) = 111.8, p < 0.0001)). We found significant 

interactions for Condition x Midline (FGG(5, 170) = 23.8, p < 0.0001)), Condition x Hemisphere 

(FGG(2, 68) = 7.3, p < 0.0001)), Condition x Anteriority (FGG(2, 68) = 9.0, p < 0.001)), and 

Condition x Hemisphere x Anteriority (FGG(4, 176) = 9.6, p < 0.01)), consistent with the typical 

topographic distribution of the N400 effect. Topographic maps in Figure 5 of the main article 

show that the N400 amplitude difference between related and unrelated conditions was greatest 

across central-parietal and right-hemispheric electrode sites. 

We also calculated Cohen’s dz effect sizes (Figure S2) for the ERP data using the same 

methods as were done in our decoding analyses. Average effects sizes were calculated for the 

300 – 500 ms post-target epoch and summarized in Table S3. Finally, in Figure S3 we show the 

distribution of the feature weights and topographic distribution of the ERP effects for the 

remaining conditions that are not shown in Figure 5 of the main article. The electrodes that were 

most important in the classification decisions of the classifiers (highest weights) were similar to 

the electrode sites where the ERP effects were maximal in the 300 - 500 ms (N400) epoch and 

the 600 - 800 ms epoch. 
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N400 Effect Sizes (300 – 500 ms) 
Exp.1   Exp. 2   
Electrode PR v. 

UR 
PR v. 
UU 

UR v. 
UU 

Electrode R v. U 

FP1 0.497 0.823 0.3865 FP1 -0.0679 
FP2 0.592 1.025 0.4984 FP2 0.1818 
F3 1.021 1.452 0.4428 F7 -0.319 
F4 1.163 1.813 0.7048 F3 0.468 
F7 0.487 0.61 0.1151 FZ 0.7569 
F8 0.679 1.176 0.5376 F4 0.825 

FC1 1.357 1.986 0.6535 F8 0.4357 
FC2 1.457 2.179 0.7664 FC3 0.7462 
FC5 1.122 1.377 0.262 FCZ 1.0939 
FC6 1.304 1.963 0.7065 FC4 1.1077 
C3 1.686 2.291 0.6574 C5 0.5488 
C4 1.855 2.655 0.8933 C3 1.1106 
T3 1.142 1.179 0.0698 CZ 1.3756 
T4 1.432 2.068 0.7062 C4 1.2962 

CP1 1.944 2.776 0.9373 C6 1.1984 
CP2 2.03 2.922 1.0007 CPZ 1.406 
CP5 1.811 2.283 0.578 P7 0.7954 
CP6 1.959 2.704 0.8893 P3 1.2144 
P3 1.962 2.727 0.8961 PZ 1.2393 
P4 2 2.824 0.9827 P4 1.366 
T5 1.576 1.904 0.3972 P8 1.2477 
T6 1.488 2.149 0.7907 PO7 1.1126 
O1 1.438 2.087 0.7094 PO3 1.2944 
O2 1.455 2.148 0.7985 PO4 1.2673 

AFZ 0.836 1.391 0.5743 PO8 1.0787 
FZ 1.108 1.72 0.6319 O1 1.0897 
CZ 1.736 2.538 0.8809 OZ 1.1692 
PZ 1.961 2.835 0.9986 O2 1.2095 

POZ 1.769 2.614 0.9499   
Table S3: shows the average effects sizes of the N400 effects in Exps. 1 and 2 for each electrode site. 
Conditions are abbreviated as follows: PR=Predicted Related, UR=Unpredicted Related, UU= 
Unpredicted Unrelated, R=Related, U=Unrelated. Bold indicates electrode is within ROI. 
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2. Supplementary Figures

Figure S2: Effect sizes (Cohen’s dz) shown for the ERP effects for electrode Pz for Experiment 
1 in panel A: unpredicted-related minus predicted-related, panel B: unpredicted-unrelated minus 
predicted related, and panel C: unpredicted-related minus unpredicted-related, and for 
Experiment 2 in panel D: unrelated minus related. Shading indicates the time window (300 – 
500 ms) where significant differences between conditions were observed. 
 



 

 

Figure S3: Feature importance maps for all three ML methods for the two remaining conditions of Experiment 1 (see figure 5 in the main text for the feature maps of 
the third condition in Experiment 1 and for Experiment 2). The maps show the normalized weighting of each electrode site in the decoding of the target words in for 
the predicted-related vs. unpredicted-unrelated condition (panel A) and for the unpredicted-related vs. unpredicted-unrelated condition (panel B). Six boxes of 
feature maps are shown for each condition for SVM, LDA and RF, respectively, on the left for the averaged trials, on the right for the single trails. Each box shows 
data for all electrode sites over the entire epoch from anterior to posterior sites, along the vertical axis. Included electrode sites are shown on the left and right of 
the figure (same for both panels). Values are in standard deviations from mean weights for a given time point. While the figure legend is capped at +/- 2, actual 
weights can exceed these limits. Panels C (predicted related vs. unpredicted unrelated) and D (unpredicted-related vs. unpredicted-unrelated) show feature weights 
from select time points (400 ms and 700 ms) along with difference topography maps of the ERPs for the conditions being decoded (panel C: unpredicted-
unrelated minus predicted-related averaged separately over 300 – 500 ms and 600 – 1000 ms; panel D: unpredicted-unrelated minus unpredicted-related averaged 
separately over 300 – 500 ms and 600 – 800 ms). Values for ERP difference maps are in μV.  
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Chapter 3 
Decoding anticipated semantic and visual word features prior to word onset: Investigating the 

time course of prediction during word priming 

1. Introduction 
In our daily interactions, language processing typically appears effortless, masking the fact that it 

is, in fact, a multifaceted cognitive endeavor, that includes parsing of incoming linguistic stimuli, 

extracting meaning, integrating contextual information, and generating appropriate responses. In 

addition, language is often processed under suboptimal conditions, affected by both internal and 

external sources of noise, including lexical and syntactic ambiguities, lapses in attention, 

working memory limitations, and noisy environments. Furthermore, the language input is 

sequential and fleeting, requiring incremental interpretation as the signal unfolds over time. 

Thus, theories of language processing need to accommodate how humans efficiently process and 

make sense of language amidst varying conditions and constraints. 

 Contemporary approaches in psycholinguistics emphasize forward-looking, anticipatory 

processes to optimize comprehension efficiency amidst internal and external sources of noise and 

ambiguity (Altmann & Mirković, 2009; DeLong et al., 2021; Elman, 2004; Kuperberg, 2021). 

Under these approaches, interpretation entails using prior knowledge and experience to derive 

expectations about how the language input unfolds in the imminent future. The outcome of these 

anticipatory processes reduces the processing load that "bottom-up" perceptual information 

imposes within a given context. Such anticipatory, likelihood-driven, processes affect lexical, 

syntactic, and discourse processes under a variety of theoretical frameworks (e.g., Gibson et al., 

2013; Hale, 2011; Jaeger & Snider, 2013; Kuperberg & Jaeger, 2016; Levy, 2008). One such 

forward-looking framework is predictive coding (Rao & Ballard, 1999), which proposes that 

higher cortical levels continuously generate top-down predictions of information at lower levels. 
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With respect to language processing a predictive coding framework suggests that the human 

brain continuously predicts a hierarchy of representations that span multiple timescales 

(Kuperberg & Jaeger, 2016). However, it has been challenging to pinpoint the nature and time 

course of anticipated information during prediction in language processing. The aim of the 

present study is to examine this by using machine learning decoding and mass univariate ERP 

analyses in a priming study with a prediction task. 

 A crucial assumption of predictive coding during language processing is that the brain 

generates internal predictions about incoming sensory information based on prior experiences at 

all levels of representation, including sub-lexical visual features (e.g. word length), lexical 

features (e.g., orthographic neighborhood density, lexical frequency) and semantic features (e.g., 

concreteness of words). Prediction should modulate processing of these imminent words when 

they are presented, leading to facilitated processing if the prediction of the imminent word 

completely or partially coincides with the actual input, or to processing costs if the prediction of 

the imminent word does not overlap at all with the actual input. Prediction coding models 

propose that a closer match between anticipated and received information results in smaller 

prediction errors. When such errors occur, they propagate through the neural network, signaling 

the need to update internal representations or predictions to better match the incoming 

information. Over time, minimizing prediction errors allows the brain to refine its internal 

models of the world, enhancing its ability to predict future language inputs. Additionally, there is 

evidence suggesting that readers and listeners adapt their anticipatory behavior when faced with 

a high rate of prediction errors, as demonstrated in studies by Brothers et al. (2017), and Ness & 

Meltzer-Asscher (2021). This phenomenon, termed 'rational prediction,' indicates that prediction 
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errors influenced by the present context dynamically shape anticipation during real-time 

language processing. 

 The aim of the present study was to test two main assumptions of the predictive coding 

model for language processing: 1) whether and when linguistic features (e.g., concreteness of 

words) and sub-linguistic features (e.g., word length) are anticipated prior to the sensory input 

and 2) how anticipation, whether correct or incorrect, during predictive language processing 

influences the comprehension of incoming words, considering that anticipated information may 

fully, partially, or not at all align with the predicted word. 

 Studies of anticipation during prediction have been challenging, because language 

processing unfolds over time, and predictions are likely to be generated and updated dynamically 

as new information is encountered. Furthermore, because retrieval of semantic, syntactic, lexical, 

and visual features of words may occur rapidly and perhaps concurrently, it is methodologically 

difficult to disentangle if and when these features are anticipated, even with temporally sensitive 

methods such as eyetracking, event-related potentials (ERPs) and magnetoencephalography 

(MEG). 

 Eyetracking is a method used in studies of reading to monitor and analyze the eye 

movements of participants as they process written text, providing insights into the cognitive 

processes involved in language comprehension. But studies using eyetracking methods offer 

limited information about the specific nature of the information that is retrieved prior to fixation 

of a target word and the time course by which different sources of information might be 

anticipated. Furthermore, eye movement patterns do not provide direct evidence of predictive 

coding mechanisms operating in the brain. 
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 Brain activity during language processing as it unfolds in real-time provide can be 

measured more directly by using ERPs, EEG oscillatory activity, or MEG. Studies using ERPs 

have been very informative about the brain's sensitivity to predictability of words in context, but 

they have typically not provided a direct measure of the pre-activation of information prior to the 

onset of the critical word. Furthermore, ERP studies that have used experimental manipulations 

that allowed for examination of anticipated information have typically focused on separate 

individual aspects of the language input, i.e., when an adjective was unexpected given the 

predicted noun that followed it (e.g., healthy-cake; Boudewyn et al., 2015)), or when prenominal 

adjectives or determiners were inconsistent with the gender or phonological properties of the 

predicted noun (DeLong et al., 2005; Grisoni et al., 2017; Szewczyk & Schriefers, 2013; Van 

Berkum et al., 2005). Although these studies suggest pre-activation of syntactic, phonological, 

and semantic features of words, they have not examined the time course by which different 

sources of information are anticipated during on-line language processes. 

 Several studies using MEG have examined the nature and time course of information 

anticipated during prediction of imminent predictable words (Dikker & Pylkkänen, 2013; 

Eisenhauer et al., 2022; Gwilliams et al., 2018). However, Eisenhauer and colleagues used a 

lexical repetition paradigm, making it difficult to distinguish between activation of lexical-

semantic features as a function of the prime, or anticipation of lexical semantic features of the 

imminent target word. Dikker and colleagues used a picture word matching paradigm, and 

therefore did not directly test language driven anticipation. Gwilliams et al. focused on the time 

course of phoneme ambiguity resolution given the context but did not examine anticipation of 

other linguistic features in the same study. 
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 Analytical techniques of neurophysiological data using representational similarity analyses 

(RSA) have been used to uncover the nature of anticipated information during language 

processing, by examining how the similarity structure of neural activity changes based on the 

predictability of upcoming linguistic input (e.g., Hubbard & Federmeier, 2021; Wang et al., 

2018).These studies also suggest that semantic features are anticipated prior to the onset of the 

imminent predictable word. However, results of other studies using this approach suggest that 

evidence of activation of semantic features only became available after the initial phonemes of 

the critical word had been heard (Klimovich-Gray et al., 2019). These divergent results 

emphasize the importance of examining the time course of the retrieval of various linguistic 

features in the anticipatory time before the onset of a critical word. 

 Complementing RSA, machine learning algorithms potentially offer a powerful tool to 

elucidate the nature and timing of anticipated information in language studies. While both RSA 

and decoding of EEG signals involve analyzing patterns of neural activity, they differ in their 

goals and methodologies. RSA focuses on comparing similarity structures of neural 

representations, whereas decoding aims to directly infer the content of cognitive states or 

processes from neural data using machine learning algorithms. Previous studies have 

demonstrated the efficacy of machine learning classification in decoding the content of 

computations from electrophysiological data collected during working memory (Bae & Luck, 

2018, 2019) or attention paradigms(Hong et al., 2020; Nadra et al., 2023; Noah et al., 2020). 

Trammel et al. (2023, Chapter 2 of this dissertation) have further demonstrated that the SVM 

machine learning algorithms could classify EEG data from two language priming paradigms with 

very high accuracy. 
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 In the present study, SVM classification was used to examine whether and when semantic 

features (concreteness) and sub-lexical visual features (word-length) of target words in a visual 

two-word priming paradigm could be reliably decoded from the EEG prior to the onset of the 

target word. Additionally, it was examined whether anticipation of semantic and sub-lexical 

visual features of the target words modulated the SVM classification of EEG activation of these 

features when the target word was presented. Finally, mass univariate ERP statistical analyses 

(e.g., Fields & Kuperberg, 2020) were performed as well -- using the same conditions -- to 

examine if SVM decoding results could be reliably detected in the averaged ERP signal 

The EEG data from the prediction priming study in Chapter 2 were used for decoding in the 

present study was well (see Figure 1 for paradigm; full details of the paradigm are in methods 

section below). Briefly, in this study, one third of the target stimuli was unrelated in meaning to 

the prime (e.g., pillow – clown), and the remaining stimuli were related in meaning (e.g., circus – 

clown). The association strength in the related condition was manipulated so that two target 

words were about equally predictable (e.g., circus – clown, vs. circus– acrobat). The task of the 

participants was to actively predict the target words following the prime, and to indicate with a 

button press whether the received word was the same as the word they anticipated. This ensured 

that participants were anticipating upcoming target words, at least most of the time. In the related 

condition, they accurately predicted the target word 50% of the cases (e.g., they predicted clown, 

and received clown), but in the other 50% of the cases they indicated that they had not predicted 

the identity of the target word (e.g., perhaps they had predicted acrobat instead of clown). In the 

unrelated condition, participants could not anticipate the identity of the target word. The ERP 

results to the target words of this study are shown for electrode Fz in Figure 2A below. These 

effects were statistically significant (see Chapter 2, supplementary materials). As can be seen in 
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this Figure, relative to the unrelated condition, the N400 to the related words whose identity was 

not anticipated by the participants was reduced. Because participants were required to actively 

predict the upcoming word, this facilitatory effect could be attributable to anticipation of similar 

semantic features, but not the anticipation of sub-lexical features of word length, because 

participants had indicated that their predicted word was not the same as the target word. The 

ERPs to the anticipated target words did not show an N400, but instead showed a large positive 

shift, which is typically found to repeated words in lexical repetition paradigms (Rugg, 1987) 

and suggests that participants had indeed predicted the identity of the target words. 

 In the present study, SVM decoding was used to explore the anticipation of both semantic 

features (concreteness) and sub-lexical word length features. A second aim was to determine 

when during the anticipatory period preceding the target words, semantic and visual features 

became decodable. If the identity of the target words was accurately predicted, the SVM 

classifier should be able to reliably decode concreteness features before the presentation of the 

target words. Similarly, if sub-lexical visual features of words were anticipated, these features 

would also be decodable before the presentation of the target words. For target words where the 

identity was not predicted, SVM might still decode anticipated concreteness features, as the 

actual and predicted target words could share semantic features. However, in such cases, sub-

lexical visual features such as word length should not be decodable before target onset, as the 

anticipated word and the received target word were not the same. Finally, in the unrelated 

condition, where potentially anticipated concreteness and word length features are unlikely to 

have overlapped, we expected these features not to be decodable before the onset of the target 

words. Given the predictions of hierarchical predictive coding accounts of language processing 

(Kuperberg & Jaeger, 2016), anticipation of higher-level semantic information should precede 
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lower-level anticipation of visual features of words. Thus, concreteness information about words 

(a semantic feature) should be decodable earlier than word length (a sub-lexical visual feature). 

We predict a similar pattern of results for the mass univariate ERP analyses. Effects of 

concreteness and word length on ERPs have been found in prior studies using univariate ERP 

analyses (e.g., see  for effects of concreteness; and Hauk et al., 2006 for effects of word length). 

These findings have been replicated in large scale ERP studies of visual word processing without 

context that have performed regression analyses on individual trials. Based on these prior 

studies, we predict that ERP effects of word length would occur 100ms post-stimulus onset (N1) 

and ERP effects of concreteness around 400ms post stimulus onset (N400). We therefore predict 

a reduced amplitude N1 to longer vs. shorter words, and a reduced N400 to abstract relative to 

concrete words to the prime words. If concreteness and word length features are anticipated prior 

to target onset, then we predict that ERP effects of these features on the target words will be 

modulated as a function of prediction accuracy and relatedness. We do not have a-priori 

predictions about the epochs during which we might find evidence of anticipation of 

concreteness and visual word length prior to the onset of the target words, but again predict that 

concreteness features should be decodable before word-length features (Kuperberg & Jaeger, 

2016).  

2. Methods 
2.1 Participants 

 Participants in the ERP experiment (N=56; age range 18-30; 34 female) were all 

undergraduate students at the University of California, Davis, who received course credit for 

participation. Prior to participation, all participants signed informed consent forms approved by 

the Institutional Review Board at UC Davis. All were monolingual native English speakers with 

normal or corrected-to-normal vision, and all but two participants were right-handed according 
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to assessment with the Edinburgh Handedness Inventory (Oldfield, 1971). None of the 

participants reported a history of psychiatric or neurological disorders, or head trauma, and they 

did not use any neuro-active prescription medication. Statistical analyses were performed on the 

EEG data from 46 participants (see artifact rejection description in EEG recording; see 

supplemental Tables S1 and S2 for details on trials rejected). 

2.2 Materials 

Participants read related and unrelated word pairs. These pairs consisted of 320 trials in 

the related condition (circus – CLOWN) and 160 in the unrelated condition (pillow – CLOWN). 

The critical target words were the same in both conditions, but stimuli were distributed across 

lists to avoid repetition of target words within participants. The mean forward association 

strength was 0.5 (range = 0.4-0.6; Nelson et al., 2004), so that two equally likely target words 

were predictable (see task description in procedure). Please note that the primes in the unrelated 

condition had the same forward association strength characteristics (e.g., pillow- bed/ sleep), but 

in this case were replaced with an unrelated target word. Participants rate of accurate prediction 

closely aligned with forward association strength (mean= 51.5%, SD= 11.9%,). Concreteness of 

words in the experiment was used as a measure of semantic activation. Concreteness values were 

taken from the English Lexicon Project (Balota et al., 2007). Concreteness ratings are between 1 

and 5 with 5 being most concrete and 1 being most abstract. The words were separated into high 

and low concreteness groups based on a median split of the concreteness values for the target 

words. To measure activation of sub-lexical visual features of the words, they were grouped into 

long (6 or more letters) and short (4 or less letters) words. Medium length words (5 letters) were 

omitted to allow some separation between the shorter and longer words. 
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Stimuli were randomized and organized into five blocks. Block order was 

counterbalanced according to Latin Square design to minimize ordering effects. Three lists were 

used to allow counterbalancing of related and unrelated word pairs such that across participants, 

each target word was used as both related and unrelated target without repetition of words within 

participant. 

2.3 Procedure 

While recording EEG, participants were seated in an electrically shielded, sound-

attenuated booth. At the beginning of each trial (see Figure 1), participants were presented with 

two separated and horizontal fixation lines for 200 ms. which remained on the screen throughout 

the trial. This was done so that participants could keep their eyes fixated, to prevent eye-

movement artefacts. A prime word was then presented for 200 ms in white lower case Calibri 

text (font size: 65 pt.) between the fixation lines. Participants were asked to actively predict the 

upcoming target given the prime word during the 1800 ms delay before the onset of the target 

word. They were encouraged to use the first word that came to mind as their prediction to limit 

the possibility of switching to a different prediction. The participant practiced this orally during 

the instructions. Following the delay, a target word was displayed in uppercase letters for 200 ms 

followed by an additional 1400 ms delay, during which participants only saw the fixation lines. 

Figure 1. Predictive processing paradigm 
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Participants were then prompted with a blue question mark and were instructed to indicate, via 

button press, whether they had accurately predicted the target (yes) word or not (no). Participants 

were encouraged to honestly report whether they had predicted the presented target word. After 

the participant’s response, the experiment automatically proceeded to the next trial following a 

1200 ms intertrial interval with the fixation lines present. Stimuli were presented on an CRT 

monitor with a refresh rate of 60Hz connected to a Dell Optiplex 980 Small Form-Factor Intel 

Core i7 Quad-Core 2.8GHz Processor).  

The paradigm generated three plausible outcomes dependent on whether participants had 

successfully predicted the identity of the target words, and whether target words were related or 

unrelated in meaning to the prime: successfully predicted related target words (predicted), 

unsuccessfully predicted related target words (unpredicted), and unsuccessfully predicted 

unrelated target words (unrelated). For example, if the participant sees “circus” as the prime 

word and predicts “clown” when clown is the target word, then that was a predicted trial. On the 

other hand, if the participant sees “circus” as the prime word and predicts “acrobat” when clown 

is shown as the target word, then that was an unpredicted trial. Finally, if the participant sees 

“pillow” as the prime word and predicts “bed” when clown is shown as the target word, then that 

was an unrelated trial. It is important to emphasize here that we assume that participants 

predicted the imminent target word for most trials, as this was their task. Thus, prediction 

accuracy in this paradigm indicates trials on which participants predicted a target word that was 

subsequently presented. A fourth outcome, successfully predicted unrelated words, is also 

technically possible, but is extremely unlikely and typically results from participant error (i.e., 

pressing predicted when they did not predict; <1% of total trials).  

 Condition specific codes were sent out at the onset of the prime and the onset of the target 
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words. Target words were sorted for each participant based on their yes or no prediction 

accuracy response. Prior to decoding analyses, additional codes were generated according to 

prime and target word concreteness values and target word length values. Concreteness (high or 

low) and word length (short or long) were then also sorted in bins according to prediction 

accuracy and relatedness.  

2.4 EEG Recording 

EEG was recorded from 29 tin electrodes, embedded within an elastic cap (Electro-Cap 

International). Additionally, electrodes were placed on the outer canthi of the left and right eyes 

to monitor for horizontal eye-movements, and above and below the left eye to monitor for blinks. 

All electrode impedances were kept below 5 kΩ. The EEG signal was amplified using a 

Synamps Model 8050 Amplifier (Compumedics Neuroscan) with online AC band-pass 0.05-100 

Hz and recorded digitally at a 250 Hz sampling rate. Channels were referenced online to the right 

mastoid electrode and re-referenced offline to the average of the right and left mastoid channels. 

Offline pre-processing analyses were conducted using the EEGLAB (Delorme & Makeig, 2004) 

and ERPLAB (Lopez-Calderon & Luck, 2014) MATLAB toolboxes. A 0.1 - 10 Hz band-pass 

filter was applied to reduce high frequency electrical noise in accordance with recommended 

filtering cutoffs for N400 ERP components (Zhang et al., 2024). Independent component 

analysis (ICA) was performed to isolate and remove ocular-motor artifacts. Epochs were 

generated 3600 ms post-prime stimulus onset with a 200 ms pre-prime baseline. The target word 

appeared 2000 ms after the prime onset. Artifact rejection was performed on these epochs to 

remove remaining artifacts from the data. Subjects with at least 20 trials per condition after pre-

processing were retained. This led to rejection of the data of 8 participants, leaving data from 48 

subjects for the analyses. 
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2.5 Analyses 

To investigate the time course of anticipated information during predictive processing, we used a 

support vector machine (SVM; Boser et al., 1992) classifier to categorize the EEG data from 

each of our conditions. We chose to use an SVMs as our classifier as they have been shown to 

have superior performance when classifier linguistic data when compared to similar classifiers 

(linear discriminant analysis and random forest; Trammel et al., 2023). We first used the 

classifier to decode the main effects of prediction accuracy and relatedness by comparing 1) 

predicted vs. unpredicted, 2) predicted vs. unrelated, and 3) unpredicted vs. unrelated. This was 

done for a total epoch of 4000 ms, beginning 400 ms prior to prime onset until 2000 ms post 

target onset. Word feature decoding was done separately for each of the conditions (predicted, 

unpredicted, and unrelated) according to whether the target word was concrete or abstract 

(concreteness) and, separately, whether the length of the target word (number of letters) was 

short (4 or fewer letters) or long (6 or more letters). We also decoded the concreteness and word 

length of the prime words in the same conditions – predicted: primes followed by accurately 

predicted targets, unpredicted: primes followed by related targets that were not accurately 

predicted, and unrelated: primes followed by unrelated target words – to compare to our target 

word decoding and ensure that we were not merely decoding the correlation of prime and target 

word features. For the prime words we additionally tested reliable decoding of concreteness and 

word length independent of whether subsequent target words were accurately predicted or 

semantically related. This was done to identify the earliest epoch during which these effects 

could be reliably decoded. We will consider these earliest epochs as our estimate of effects of 

concreteness and word-length relatively uninfluenced by anticipatory predictions of these 

features for the target words. Finally, we performed mass univariate ERP analyses (e.g., Fields & 



 

 92 

Kuperberg, 2020) using the same conditions to confirm that these differences are detectable with 

alternative methods. 

2.5.1 Decoding Analyses 

The SVM algorithm was implemented within MATLAB using the fitcsvm() function. Due to the 

250 Hz sampling rate, the original time course is 1000 time points: one every 4 ms. The method 

classified 200 time points, one every 20 ms, across the -400 – 3596ms time-locked to the onset 

of the prime. We did this without down sampling the original 250 Hz data. All 29 scalp electrode 

sites were used to create the feature set – the set of input variables which the SVM classifies – 

for the classifier at each time point. For each time point classified, we utilized the electrode site 

voltages for that time point as well as the two time points preceding it and the two time points 

that followed. For example, when decoding the time point 400 ms after stimulus onset, all 29 

electrode site voltages were used from 392 ms, 396 ms, 400 ms, 404 ms, and 408 ms providing a 

total of 145 features. Using this technique allowed us to functionally “down sample” the data 

from the original 250 Hz (one time point every 4 ms) to 50 Hz (one time point every 20 ms) to 

conserve computing time without sacrificing the dynamics of the data between time points. 

Machine-learning was performed across 24 iterations using 10-fold cross-validation. In each 

iteration, trials were separated into 10 blocks (9 training; 1 testing) and were alternated to allow 

each trial to serve as both a training and a test data point. To avoid spurious above-chance 

decoding accuracy (Carrasco et al., 2023), we kept the number of trials constant across 

conditions. This was done by using a random sampling of the larger of the two conditions equal 

to the number of trials in the smaller condition for each iteration. For each interval, trials were 

then averaged. To assess decoding accuracy, we calculated the proportion correctly classified for 

each classifier at each interval across all iterations for each subject and then averaged the final 
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accuracy across subjects. Chance-level is indicated by a decoding accuracy of 50% correct. This 

entire process was done each of our conditions. 

 To determine if the SVM decoding accuracy was significantly above-chance, we used a 

cluster-based permutation method (Bae & Luck, 2018, 2019; Maris & Oostenveld, 2007) which 

we had successfully used for language stimuli in a prior method comparison study (Trammel et 

al., 2023). Cluster based analyses generated a null distribution using 10080 random permutations 

of the existing data labels. We performed t tests (⍺ = 0.05) at each time point for both the null 

distribution and the actual data. Contiguous, significant intervals were organized into clusters. To 

mitigate spurious findings, significant clusters consisting of a single time point were removed as 

orphan clusters. The t test results for the remaining significant clusters were summed. The 

summed t test results for each cluster in the data were compared to the 95th percentile of the 

summed t test results of the generated null distribution. If the t test sum of the data clusters was 

greater than the 95th percentile of the null distribution, then the decoding accuracy of that cluster 

was significantly greater-than-chance. This method avoided the need for multiple comparison 

correction and accounted for autocorrelation in the EEG data (Bae & Luck, 2019). The 

significance testing was limited to the 0 – 3596 ms time frame as the pre-stimulus baseline 

period (-400 – 0 ms) should not contain any effects. One-tailed t-tests were used because 

performance significantly lower than chance-level has no meaningful interpretation within this 

study. The null hypothesis of the permutation-cluster analysis is that within the examined epoch, 

there are no clusters of significantly above-chance decoding accuracy. Therefore, we were not 

explicitly testing the timing of these clusters. To address this issue, we followed up the initial 

testing with additional tests limiting the epoch to the time frames of each significant cluster from 

the first analysis. This process confirmed the onset and offset of the observed significant clusters. 
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2.5.2 ERP Analyses 

 For our ERP analyses, we implemented a cluster-based permutation analysis (Maris & 

Oostenveld, 2007) that is similar to that used for our decoding analyses. This was done as we did 

not have a priori assumptions of where effects of pre-activation of concreteness and length 

features might be found in the interval between prime and target, and this technique avoids 

multiple comparison problems. For each condition (predicted, related, and unrelated), we 

generated ERP waveforms for each participant of either the concrete vs. abstract words or long 

vs. short words. Then, we generated a null distribution of the differences in concreteness 

waveforms or word length wave forms using 10080 random permutations. We performed two-

tailed t tests (⍺	=	0.01) at each scalp electrode site (29 electrodes) and each time point within the 

0 – 3596 epoch (900 time points). We then generated spatio-temporal clusters of contiguous, 

significantly different, neighboring electrode sites across contiguous time points. Electrode sites 

were considered neighbors if they were within 4 cm of each other. Orphan clusters – those 

consisting of electrode sites or fewer than 7 contiguous time points (<28 ms) – were removed to 

mitigate spurious effects. The t test scores for these clusters were summed. If summed t tests of 

clusters from the data were less than the 0.5th percentile of the null distribution or greater than 

the 99.5th percentile of the null distribution, then that cluster was deemed significantly different. 

This method can generate very large spatio-temporal clusters; therefore, we used the stricter 

alpha criterion of 0.01 for our t tests. 
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3. Results 
We performed EEG decoding analyses using SVM classifiers and mass univariate ERP 

analyses using cluster permutation testing and report the results below. Within all decoding 

analyses, significant time clusters are those for which their summed t test scores exceeded the 

95th percentile of the null distribution generated by the one-tailed permutation cluster t test. For 

all mass univariate analyses, significant time clusters are those for which their summed t test 

scores exceeded the 99.5th percentile or were lower than the 0.5th percentile of the of the null 

distribution generated by the two-tailed permutation cluster t test. It is important to note that 

because cluster permutation testing is not designed to answer questions of latency, we worked 

around this limitation by performing follow-up cluster testing on all significant cluster epochs 

Figure 2. Shows the results from analyses of the main prediction and relatedness conditions: predicted, unpredicted, and 
unrelated. A) SVM decoding accuracy for three classification conditions: predicted vs. unpredicted (blue), predicted vs. 
unrelated (green), and unpredicted vs. unrelated (red). Prime (0 ms) and target (2000 ms) word onsets are indicated by vertical 
dashed lines (grey). Solid lines with shading under the curve highlight clusters of significantly above chance-level (50%; cluster t 
test sums exceeded 95th percentile of null distribution) decoding accuracy. B) ERP results for electrode Fz (see supplemental 
figure S1 for all electrode plots) waveform for the three main conditions: predicted (blue), unpredicted (red), and unrelated 
(yellow). The epoch is time-locked to prime onset and target onset is indicated by a vertical dashed line (green). ERP difference 
waves for the mass-univariate analyses are shown for: C) unrelated minus predicted, D) unpredicted minus predicted, and E) 
unrelated minus unpredicted. Target onset is indicated by the vertical dashed line (red). Depicted cluster t test sums were less 
than the 0.5th percentile of the null distribution or greater than the 99.5th percentile of the null distribution. Within these plots, 
non-significant time points are masked in grey (see supplemental figure S2 for unmasked plots).  
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separately. This confirms that there is a significant cluster for both analyses for the epoch shown 

in all figures and tables. 

3.1 Results of main prediction and 

relatedness effects 

Figure 2 illustrates the results from 

our analyses of main prediction and 

relatedness effects. SVMs reliably 

classified (significantly above-chance; 

50%) the ERP results for the target words: 

predicted vs. unpredicted, predicted vs. 

unrelated, and unpredicted vs. unrelated (Figure 2A) after target onset. As in Chapter 2, reliable 

decoding was found for these comparisons post target (see Table 1 for exact epochs) onset. In 

addition, all three conditions were decoded at above-chance levels prior to target word onset as 

well. The reliable decoding for predicted vs. unpredicted classification spanned a single 

continuous period from: 700-3560ms. In the predicted vs. unrelated reliably decoding was found 

from prime word onset (0 ms) through the end of the trial epoch with a few time periods where 

decoding accuracy dropped pre-target onset. Finally, unpredicted vs. unrelated conditions were 

decoded at above-chance levels prior to target word onset as well with reliable decoding first 

beginning at 760 ms. This pattern is consistent with anticipation of information about the target 

words that were predicted or unpredicted but related. Figure 2B shows the averaged ERP effects 

for electrode Fz, and the pattern of results shows facilitatory effects of relatedness, with the greatest 

facilitatory effect for related target words that were accurately predicted. 

Table 1. Main Effects - Significantly above chance decoding 
accuracy 

Condition Cluster Times (ms) 
Begin End 

Predicted vs Unpredicted 1 700 3560 
Predicted vs Unrelated 1 0 200 

2 280 500 
3 1440 3560 

Unpredicted vs Unrelated 1 760 1020 
2 1140 1620 
3 1660 1780 
4 1840 3560 

Table 1. Summary of clusters where significantly above chance (50%; 
cluster t test sums exceeded 95th percentile of null distribution) 
decoding accuracy for the main effects of prediction and relatedness. 
Target onset is 2000 ms. 
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Figures 2C– 2E show the results of the mass-univariate permutation cluster analyses (Figures 2C 

– 2E)). These analyses confirm our observed N400 effects, and they echo the decoding results. 

Exact epochs and member electrodes are reported in Table 2. The mass-univariate analysis 

showed significantly different clusters prior to target onset when comparing the predicted and 

unpredicted conditions (earliest onset: 900 ms), when comparing the predicted and unrelated 

conditions (earliest onset: 1108 ms), and when comparing the unpredicted and unrelated 

conditions (earliest onset: 600 ms). Additionally, the periods of the most robust differences for 

all conditions overlap substantially with the significant pre-target decoding clusters. 

Interestingly, in this anticipatory period, more negative ERPs were found for the related 

predicted and related unpredicted than the unrelated condition, the opposite pattern than what is 

found for these same conditions to the target words. This pattern of results is entirely consistent 

with “costs” of retrieval and maintenance of information about the upcoming target words prior 

to their presentation, and reduced prediction error/ greater facilitation for target words that were 

(partially) predicted.  

 



 

 

 

 

Table 2. Main Prediction and Relatedness Effects - Significantly different ERP cluster times 
Condition Cluster Difference (µV) Time (ms) Electrodes 

Min Max Begin End 
Unpredicted 

minus 
Predicted 

1 -0.8 -0.4 900 1156 CP1 CP2 CP5 CP6 P3 P4 T6 O1 PZ POZ 
2 0.4 0.8 1220 1284 FP1 F3 F7 FC1 FC5 T3 AFZ FZ 
3 0.5 0.7 1296 1368 F3 F7 FC1 FC5 T3 
4 0.3 0.9 1396 1592 FP1 FP2 F3 F4 F7 FC1 FC2 FC5 C3 T3 CP5 T5 AFZ FZ 
5 0.3 0.9 1604 1716 FP1 F3 F4 F7 FC1 FC2 FC5 FC6 C3 T3 CP1 CP2 CP5 P3 T5 AFZ FZ CZ PZ 
6 0.4 1.3 1720 2128 FP1 F3 F4 F7 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 P3 P4 T5 T6 O1 O2 

AFZ FZ CZ PZ POZ 
7 -12.5 0.6 2232 3276 FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 P3 P4 T5 

T6 O1 O2 AFZ FZ CZ PZ POZ 
8 -1.2 -0.4 3392 3420 FP1 FP2 F3 F7 FC1 FC5 C3 T3 CP5 AFZ FZ 
9 -0.6 -0.4 3592 3592 F7 FC5 

Unrelated 
minus 

Predicted 

1 0.3 0.6 1108 1168 F3 F4 F7 FC1 FC5 T3 AFZ FZ 
2 0.3 0.6 1204 1256 F3 F7 FC1 FC5 C3 FZ 
3 0.3 1.2 1288 2176 FP1 FP2 F3 F4 F7 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 P3 P4 T5 T6 

O1 O2 AFZ FZ CZ PZ POZ 
4 -15.9 0.6 2200 3360 FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 P3 P4 T5 

T6 O1 O2 AFZ FZ CZ PZ POZ 
5 -0.9 -0.5 3388 3416 FP1 FP2 F3 F4 F7 F8 FC2 FC5 AFZ FZ 
6 0.4 0.6 3424 3464 P3 O1 O2 PZ POZ 
7 0.4 0.7 3516 3596 CP1 CP2 CP6 P3 P4 O1 O2 PZ POZ 

Unrelated 
minus 

Unpredicted 

1 0.3 0.5 600 656 C4 CP6 P4 O1 PZ POZ 
2 0.3 0.7 776 936 FC6 C4 CP1 CP2 CP5 CP6 P3 P4 T5 O1 O2 CZ PZ POZ 
3 0.3 0.9 940 1236 F4 FC2 FC6 C3 C4 CP1 CP2 CP5 CP6 P3 P4 T5 O1 O2 CZ PZ POZ 
4 0.4 0.6 1276 1396 C4 CP6 P4 
5 0.4 0.6 1468 1504 C4 CP6 P4 O2 
6 0.4 0.6 1652 1680 C4 CP6 
7 0.3 1.0 2124 2208 FP1 FP2 F4 FC1 FC2 FC6 C3 C4 T4 CP1 CP2 CP6 P4 AFZ FZ CZ PZ 
8 -4.7 1.0 2248 3164 FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 P3 P4 T5 

T6 O1 O2 AFZ FZ CZ PZ POZ 
9 0.3 0.6 3376 3420 C3 T3 CP5 P3 T5 

Table 2. Summary of all significant ERP clusters (cluster t test sums less than the 0.5th percentile of the null distribution or greater than the 99.5th percentile of the null 
distribution) found in the main prediction and semantic relationship effects analyses. Target word onset is 2000 ms. 
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3.2 Results of the feature decoding analysis 

As illustrated in Figures 3 and 4, SVM reliably classified EEG data for concreteness and 

word-length. For the targets, SVMs were trained to classify concreteness and word-length based 

on the values of these features for the target words, but for the primes SVMs were trained to 

classify these features based on values for the prime words. Decoding of the features was 

examined for target words that were binned according to prediction accuracy and relatedness 

yielding three conditions: predicted, unpredicted, and unrelated. The same target word 

conditions were used to examine decoding of features for the primes. The exact epochs during 

which SVM reliably classified concreteness and length features are shown in Table 3. These 

epochs were found to have significantly above-chance decoding accuracy in the cluster-

permutation analyses (exceeded 95th percentile of null distribution). As illustrated in Figure 3, 

Figure 3. Shows decoding accuracy of target word concreteness (A – C) and word length (D – F) classifications over the entire -
400 – 3600 ms epoch. Prime word onsets at 0 ms (magenta) and target word onsets at 2000 ms (green). Solid red lines indicate 
decoding accuracy that is significantly above-chance level (50%; cluster t test sums exceeded 95th percentile of null distribution); 
highlighted by red shading under the curve. 
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significant clusters of above-chance decoding of concreteness features for the target words were 

found in epochs prior to target word onset for the accurately predicted targets and for related 

target words that were not accurately predicted. These significant clusters were found in a period 

that concentrated between 1640 to 1040ms prior to target word onset (between 360 – 940 ms in 

Figure 3). In contrast, for unrelated target words, we did not find any evidence of significant 

decoding of concreteness features prior to target word onset. After target word onset, 

Figure 4. Shows decoding accuracy of prime word concreteness (A – D) and word length (E – H) classifications over the 
entire -400 – 3600 ms epoch. Prime word onsets at 0 ms (magenta) and target word onsets at 2000 ms (green). Solid red 
lines indicate decoding accuracy that is significantly above-chance level (50%; cluster t test sums exceeded 95th 
percentile of null distribution); highlighted by red shading under the curve.  
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concreteness was significantly 

decodable for target words 

that were related but not 

accurately predicted and for 

unrelated target words in a 

period that spanned 220 - 

1060ms relative to target 

onset (2220 - 3060ms in 

Figure 3). In contrast, for the 

accurately predicted target 

words we did not find any 

evidence for reliable decoding 

of concreteness features. For 

word length, clusters of  

significantly above-chance 

decoding were exclusively 

found after or at target word 

onset in all three conditions. 

Predicted target words, reliable decoding accuracy began at target word onset (2000 ms in 

Figure 3). Related unpredicted words were decodable early as well (80 ms post-target; 2080 ms 

in Figure 3). Finally, unrelated target words were reliably decodable 220 ms  

after target onset (2220 ms in Figure 3). 

Table 3. Features - Significantly above chance decoding cluster 
times 

Decoded Word Feature Condition Cluster Times (ms) 
Begin End 

Target Concreteness Predicted 1 360 940 
Unpredicted 1 320 780 

2 880 1060 
3 1800 1920 
4 2220 3060 

Unrelated 1 2240 2720 
Length Predicted 1 2000 2640 

Unpredicted 1 2080 2460 
Unrelated 1 2220 2560 

Prime Concreteness Predicted 1 300 820 
Unpredicted 1 260 1040 

2 1260 1480 
3 2380 2500 
4 2820 3000 

Unrelated 1 260 700 
2 1060 1240 
3 1420 1560 

Length Predicted 1 60 540 
2 700 860 

Unpredicted 1 240 460 
Unrelated 1 120 720 

2 880 1120 
3 2060 2240 

Table 3. Summary of all significantly above-chance (50%; cluster t test sums 
exceeded 95th percentile of null distribution) decoding cluster start and stop times. 
Target word onset is 2000 ms. 
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These decoding findings suggest that accurate prediction of the target words resulted in 

anticipation of both semantic and sub-lexical visual features. We infer pre-activation of word-

length features because reliable decoding of these features was found at the onset of the target 

word before any information about word-length was available. For related target words that were 

not accurately predicted, there was evidence of anticipation of semantic features as well, 

presumably because there was overlap of semantic features between the predicted and received 

target words. For example, after reading the prime word circus, participants may have predicted 

acrobat instead of clown, because it is approximately equally associated to “circus”. However, 

because the semantic features in this case are related but not identical, the exact features of the 

target words still need to be retrieved when it is read, evident from reliable decoding of 

concreteness after target word onset. Reliable decoding of word-length features for the related 

but unpredicted targets was found 80 ms after target word onset, consistent with ERP findings 

(Dufau et al., 2015) and MEG findings showing word length effects in ventral occipito-temporal 

cortex around 100ms (Wydell et al., 2003; see also Hsu et al., 2011, for MEG evidence of 

character complexity in Chinese around 100ms). Finally, in the unrelated condition, the predicted 

target words never overlapped with the actual target word, and the semantic and visual features 

of the target words could only be retrieved after it was presented. Interestingly, visual features in 

the unrelated condition were not decodable until 200ms after target word onset. We suggest that 

this delay could be due to the initial disconfirmation of the prediction after presentation of the 

target word, leading to delayed visual word recognition.  

Significant above chance decoding for concreteness and visual word forms was found for 

the primes, starting at 80ms for word length and 220ms for concreteness, indicating the earliest 

reliable classification of these features likely uncontaminated by anticipation of these features for 



 

 103 

the target words. Figure 4 illustrates clusters of reliable, significantly above-chance decoding for 

concreteness and word length of the prime words. Exact epochs are reported in Table 3. When 

target words were predicted, prime word concreteness was reliably decoded in a period spanning 

300 – 820 ms after prime onset. When target words were unpredicted, both when related and 

unrelated, there was a much longer overall period during which prime word concreteness was 

reliably decoded. Also, we found above-chance decoding accuracy after target onset for 

unpredicted related words. We will address possible explanations for these findings in the 

discussion. Word length was reliably decoded for clusters that concentrated in the period 

between 80 - 860 ms after the prime onset. Additionally, when the target word was unrelated, 

prime word length was decodable 60 – 240 ms post target (2060 – 2240 ms in Figure 4). This 

suggests that prediction failure leads to partial reconsideration of the prime in working memory 

and is consistent with our findings of delayed decoding of target word length features. 

Although no direct statistical analyses were done to compare the periods of reliable decoding 

between prime and target words, the overall decoding patterns appear to suggest that target word 

decoding was truly classifying target word features. This was evident from the earlier onset of 

reliable decoding of concreteness features for the primes in the first decoding analyses (220ms 

post prime for prime concreteness vs 340 ms post prime for target concreteness), and in the 

second analysis of the primes that was done contingent on the subsequent prediction accuracy 
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and relatedness of the targets. In these analyses, reliable decoding of concreteness features was 

found for the primes in a period between 300 - 820 ms after prime onset, reliable decoding of 

this feature for target words prior to target word onset spanned a period between 1640 to 960 ms 

pre-target (340 – 960 ms after prime onset). This suggests that pre-activation of concreteness 

features for the target appeared later and lasted longer than activation of these features following 

the prime 

3.3 Results of mass-univariate ERP analysis of the features 

Figures 5 and 6 show the ERP effects of concreteness and length features for the target 

and the prime words, respectively. Exact epochs and member electrodes are reported in Table 4. 

These effects were computed using ERP permutation cluster analyses (Maris & Oostenveld, 

2007). As can be seen in Figure 5, the results of the cluster permutation t tests showed significant 

effects of concreteness for predicted target words and for related target words that were not 

predicted prior to target word onset. These effects are primarily concentrated 1852 – 888 ms 

Figure 5. Shows difference wave ERP results (µV) from target concreteness (concrete minus abstract) and word length (long 
minus short) for each condition. Depicted cluster t test sums were less than the 0.5th percentile of the null distribution or 
greater than the 99.5th percentile of the null distribution. Darkened areas indicate no significant clusters of differences detected 
within that spatio-temporal range (see supplemental figure S3 for unmasked plots). The dashed white line indicates target word 
onset (2000 ms).  
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prior to target onset (148 – 1112 ms in Figure 5). No effect of concreteness was found for 

unpredicted target words in the unrelated condition prior to target word onset. Given that 

participants were always attempting to predict the target words, these results indicate that 

semantic features of the target word were activated prior to the target word onset when 

successfully predicted or related to the prime. Effects of concreteness for the unrelated target 

words were only found in the 180 – 840 ms epoch after target onset (2180 – 2840 ms in Figure 

5). There was also evidence for effects of concreteness after target onset for related target words 

– both predicted and unpredicted. For unpredicted related target words, this provides further 

support for the idea that when the target was related but not identical to the prediction, there was 

still concreteness information that needed to be processed. In the case of predicted words, this 

effect appeared to be greatly reduced. This suggests that anticipation of concreteness features of 

words does not prevent of these features during target word processing, but greatly reduced the 

need to do so. 

In all three conditions, significant differences between long and short target words 

occurred almost exclusively after target onset, concentrated between 272 and 1000 ms (2272 – 

3000 ms in Figure 5). This effect of word length is much is later than was found in previous 

studies and later than we observed in the decoding analysis. Perhaps the effects of word length in 

the ERP results were partially masked by the huge N400 prediction effects that followed them. 

features. The one unexpected pre-target difference found was a small significant cluster in the 

unpredicted condition (1616 – 1656 ms). Due to the small size and timing of this cluster, it is 

difficult to determine if this is a real effect which the classifier missed, or a spurious effect 

detected by the mass univariate analyses. For now, we prefer to err on the side of the latter. 
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As Figure 6 illustrates, significant differences between concrete and abstract prime words 

for all three conditions are concentrated primarily 240 – 1000 ms after prime word onset. 

However, similar to the decoding analyses, we observe some effects post-target which will be 

expanded upon in the discussion. Results of word length for the primes were found for all three 

conditions and for all primes without separating by conditions, but these word length effect occur 

later than prior studies (e.g., Dufeau et al, 2015). In the unpredicted condition the effects of word 

length of the prime were observed across the epoch from prime to target word onset, which is 

also an unexpected finding. Furthermore, reliable effects of word length were observed after 

target onset for the predicted target word and for the unrelated target words, but in the latter case 

the ERPs were more negative to the long words, which is contrary to the effects of word length 

found in prior studies (Dufeau et al, 2015). The results of this analysis of the effects of word 

Figure 6. Shows difference wave ERP results (µV) from prime concreteness (concrete minus abstract) and word length 
(long minus short) for each condition. Depicted cluster t test sums were less than the 0.5th percentile of the null 
distribution or greater than the 99.5th percentile of the null distribution (see supplemental figure S4 for unmasked 
plots). The dashed white line indicates target word onset (2000 ms).  
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length of the primes contingent upon accurate prediction and relatedness of the targets is 

inconsistent with our decoding results.  

 Summarized in Table 5 is a post-hoc cluster analysis on the paired prime and target 

difference waves within each the conditions. In addition to significant cluster times and electrode 

membership, this table reports the µV differences between the target and prime difference waves 

(target – prime). The direction of this difference indicates which word had a greater feature effect 

(positive indicates target was greater). Significant clusters which overlapped with significant 

differences in either of the prior mass univariate analyses are reported in bold. Significant 

differences between ERP responses to primes and targets are observed during times in which 

significantly different clusters in their respective ERP cluster analyses were found both for 

predicted (340 – 808 ms) and unpredicted but related target words (212 – 924 ms). These post-

hoc results provide further evidence that our original analyses were not driven by correlations of 

concreteness and word length features between primes and targets.
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Table 4. Features - Significant differences from ERP cluster analyses 

Word Feature Condition Cluster 
Difference 

(µV) Times (ms) Electrodes 

Min Max Begin End   

Target Concreteness 

Predicted 

1 0.3 0.5 8 24 F3 F7 FC5 T3 AFZ 

2 0.4 0.6 148 176 F4 F8 FC2 FC6 AFZ FZ 
3 -0.7 -0.4 308 348 C4 T4 CP2 CP6 P4 O2 PZ POZ 

4 -1.4 -0.4 384 980 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 
FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 
P3 P4 T6 O1 O2 AFZ FZ CZ PZ POZ 

5 -0.9 -0.5 1308 1344 F4 FC2 C4 CP2 CP6 P4 CZ PZ 
6 -0.7 -0.5 1528 1596 O1 O2 POZ 

7 0.4 0.6 1616 1656 F7 FC5 

8 -1.4 -0.4 2408 2628 
FP2 F3 F4 FC1 FC2 FC6 C3 C4 T4 
CP1 CP2 CP5 CP6 P3 P4 T5 O1 O2 
AFZ FZ CZ PZ POZ 

9 0.3 0.5 2944 3000 FC5 T3 CP5 

10 0.4 0.7 3068 3104 FC5 T3 CP5 

11 0.3 0.5 3468 3496 FC5 T3 T5 

Unpredicted 

1 -1.8 -0.3 232 1112 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 
FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 
P3 P4 T5 T6 O1 O2 AFZ FZ CZ PZ POZ 

2 -0.5 -0.5 1284 1320 T3 
3 -0.8 -0.4 1456 1512 FP1 F7 FC2 FC5 C3 T3 CP5 AFZ FZ 

4 -2.5 -0.4 2276 2768 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 
FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 
P3 P4 T6 O1 O2 AFZ FZ CZ PZ POZ 

Unrelated 

1 -0.8 -0.4 2180 2220 C3 CP1 CP5 P3 T5 CZ 

2 -2 -0.4 2224 2740 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 
FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 
P3 P4 T5 T6 AFZ FZ CZ PZ POZ 

3 -1 -0.5 2744 2800 FP1 F4 FC2 FC6 C4 T4 CP2 CP6 AFZ 
FZ CZ 
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4 -1 -0.4 2804 2840 FP2 F4 FC2 FC6 C4 CP2 CP6 AFZ FZ 
CZ 

Length 

Predicted 

1 -1.3 -0.6 2280 2372 CP5 P3 T5 O1 O2 POZ 

2 0.5 1.8 2408 2648 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 
FC6 C3 T4 CP1 CP2 CP5 CP6 P3 P4 
AFZ FZ CZ PZ 

3 0.6 1.2 2660 2780 FC1 FC2 FC6 C3 CP1 CP2 CP6 P3 P4 
FZ CZ 

Unpredicted 

1 0.5 0.6 1616 1656 FC5 T3 CP5 

2 0.6 1.7 2288 2448 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 
FC6 C3 T3 T4 CP1 CP2 CP5 CP6 P3 
P4 AFZ FZ CZ PZ POZ 

Unrelated 

1 0.4 1.7 2272 2424 
FP1 FP2 F3 F4 F7 FC1 FC2 FC5 FC6 
C3 C4 T3 T4 CP1 CP2 CP5 CP6 P3 P4 
T5 O2 AFZ FZ CZ PZ POZ 

2 0.7 1 2476 2528 F3 F7 FC1 FC5 C3 

3 0.5 1.2 2872 3000 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 
FC6 C3 T3 T4 CP1 CP2 CP5 CP6 P3 
P4 T5 AFZ FZ CZ PZ POZ 

Prime Concreteness Predicted 

1 -1.4 -0.2 264 808 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 
FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 
P3 P4 T5 T6 O1 O2 AFZ FZ CZ PZ POZ 

1 -1.3 -0.4 316 568 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 
FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 
P3 P4 T6 O1 O2 AFZ FZ CZ PZ POZ 

2 -1.2 -0.5 628 908 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 
FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 
P4 AFZ FZ CZ PZ 

2 -0.8 -0.3 836 872 FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 
FC6 C3 C4 T4 CP2 CP6 P4 AFZ FZ CZ 

3 -0.4 -0.3 1016 1064 FP2 F8 T4 

4 -0.6 -0.3 2416 2640 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 C4 T4 
CP1 CP2 CP6 P4 O2 AFZ FZ CZ PZ 
POZ 
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3 -0.9 -0.4 2440 2468 F4 FC1 FC2 C3 C4 CP1 CP2 CP6 P4 
FZ CZ PZ 

4 -0.9 -0.4 2472 2540 FC1 C3 C4 CP1 CP2 CP6 P4 O1 O2 
CZ PZ POZ 

Unpredicted 

1 0.4 0.5 12 32 T6 O2 
2 0.5 0.7 56 96 O1 O2 PZ POZ 

3 -1.7 -0.4 276 888 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 
FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 
P3 P4 T5 T6 O1 O2 AFZ FZ CZ PZ POZ 

4 -1 -0.5 932 992 FP2 F3 F4 F7 FC1 FC2 FC5 FC6 C3 
C4 T3 T4 AFZ FZ 

5 -0.8 -0.6 1220 1272 T3 T4 CP1 CP5 CP6 P3 PZ 
6 -0.7 -0.6 1372 1420 T4 CP6 

7 -0.7 -0.6 2292 2332 T3 

8 -1.5 -0.5 2424 2728 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 
FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 
P3 P4 T6 O2 AFZ FZ CZ PZ POZ 

Unrelated 

1 -1.5 -0.4 284 784 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 
FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 
P3 P4 O1 O2 AFZ FZ CZ PZ POZ 

2 0.4 0.7 2172 2204 FC1 C3 T3 CP5 T5 

3 0.4 0.9 2208 2316 F4 FC1 FC2 FC6 C3 C4 T3 CP1 CP2 
CP5 CP6 P3 T5 AFZ CZ 

4 0.5 0.8 2428 2460 FC1 C3 T3 CP1 CP5 P3 T5 CZ 
5 0.4 0.8 2464 2496 F4 FC1 C3 T3 CP1 CP5 P3 T5 FZ CZ 

Length Predicted 

1 0.3 1.4 212 436 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 
FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 
P3 P4 T5 O1 O2 AFZ FZ CZ PZ POZ 

1 0.6 1.1 212 272 T5 O1 O2 

2 0.5 1.3 304 408 
FP2 F3 F4 F8 FC1 FC2 FC5 FC6 C3 
C4 T4 CP1 CP2 CP5 CP6 P3 P4 AFZ 
FZ CZ PZ POZ 

2 0.3 0.6 556 636 F3 F4 F7 F8 FC1 FC5 FC6 C3 C4 T3 
T4 CP1 CP2 CP5 P3 AFZ PZ POZ 

3 0.3 0.6 640 720 F3 FC1 FC5 C3 C4 CP1 CP2 CP5 CP6 
P3 P4 FZ CZ PZ POZ 
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4 0.3 0.9 724 892 F3 FC1 FC5 C3 C4 CP1 CP2 CP5 P3 
P4 O2 CZ PZ POZ 

5 0.4 0.5 940 968 CP1 P4 PZ POZ 
6 0.4 0.6 1900 1936 C4 CP2 PZ POZ 

7 -0.7 -0.3 2256 2424 F3 FC1 FC2 FC5 FC6 C3 C4 CP1 CP2 
CP5 CP6 P3 P4 T5 O1 AFZ FZ CZ PZ 

3 0.5 1.3 2440 2744 
FP1 F3 F4 FC1 FC2 FC6 C3 C4 T4 
CP1 CP2 CP5 CP6 P3 P4 T5 O1 O2 
AFZ FZ CZ PZ POZ 

8 0.3 0.6 2564 2624 C4 T4 CP6 P4 O2 
9 0.3 0.6 2628 2720 C4 CP6 P3 P4 O1 O2 PZ POZ 

Unpredicted 

1 0.4 0.5 12 36 FP2 F8 FC6 T4 
2 0.5 0.9 80 124 CP6 P4 T6 O2 
3 0.5 1.2 208 260 T5 T6 O1 O2 

4 0.5 1.2 636 880 F3 FC1 FC5 C3 CP1 CP2 CP5 P3 P4 
O1 O2 CZ PZ POZ 

5 0.5 0.9 936 1000 F3 F7 FC5 C3 T3 CP1 CP5 PZ POZ 
6 0.5 0.9 1428 1584 FC5 C3 T3 CP1 CP5 P3 T5 PZ POZ 

7 0.5 1.2 1908 1968 FP2 F3 F4 FC1 FC2 FC5 C3 T3 CP1 
CP2 CP5 P3 T5 CZ PZ POZ 

Unrelated 

1 0.5 1.7 216 424 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 
FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 
P3 P4 T5 O1 O2 AFZ FZ CZ PZ POZ 

2 0.6 1.1 504 584 FP1 FP2 F3 F4 F7 F8 FC5 FC6 C3 C4 
T4 AFZ FZ 

3 -1.2 -0.5 2432 2476 FC1 FC2 FC6 C3 T4 CP1 CP2 CP5 
CP6 P3 P4 T5 O1 AFZ FZ CZ PZ POZ 

Table 4. Summary of all significantly different (cluster t test sums less than the 0.5th percentile of the null distribution or greater than the 99.5th percentile of 
the null distribution) ERP cluster start times, stop times, and member electrodes for the word feature conditions. For concreteness, a positive feature difference 
(µV) indicates that abstract words had greater amplitude than concrete words. For word length, a positive feature difference indicates long words had greater 
amplitude than short words. Target word onset is 2000 ms. 
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Table 5. Features - Significant differences from ERP cluster analyses between target and prime words 

Feature Condition Cluster 

Target 
Difference 

(µV) 

Prime 
Difference 

(µV) 

Target - 
Prime 
(µV) 

Times (ms) 
Electrodes 

Min Max Min Max Min Max Begin End 

Concreteness 

Predicted 

1 -0.2 0.2 -0.3 0.1 -0.5 -0.3 24 56 CP1 CP2 CP6 P3 P4 T6 O1 O2 PZ POZ 
2 -0.4 0 -0.4 0 -0.6 -0.3 340 420 FP1 FP2 F3 F8 FC1 FC2 FC5 C3 CP1 AFZ FZ CZ 
3 -0.2 0.3 0 0.2 0.4 0.7 520 576 T5 O1 O2 POZ 
4 0.4 0.4 0.7 0.8 0.4 0.5 796 808 F7 FC5 
5 -0.2 0.6 -0.2 0.5 0.4 0.5 1080 1132 O1 O2 POZ 

6 -0.3 0.9 -0.3 0.7 0.4 0.7 1296 1396 FC1 FC2 FC6 C4 T4 CP1 CP2 CP5 CP6 P3 P4 T5 O1 
O2 CZ PZ POZ 

7 0 0.5 -0.3 0.1 0.4 0.6 1444 1584 O1 O2 POZ 
8 -0.3 0.3 -0.4 0.3 0.3 0.6 2476 2492 FC6 C4 CP1 CP2 CP6 P3 P4 T6 O1 O2 PZ POZ 
9 -0.1 0.1 -0.1 0.3 0.4 0.6 2520 2536 FC6 C4 CP2 P3 P4 O1 O2 PZ POZ 
10 -0.4 0.1 -0.8 -0.1 0.4 0.5 2700 2716 T6 O2 

11 0.2 0.3 0 0.3 0.3 0.4 3180 3192 O1 O2 POZ 

Unpredicted 

1 0 0.3 0 0.3 0.3 0.6 212 260 FP1 F4 F7 F8 FC1 FC2 FC6 AFZ FZ CZ 
2 0 0.3 0 0.2 0.4 0.6 288 316 F4 F8 FC6 AFZ FZ 
3 -0.3 0.1 -0.5 0 0.3 0.6 464 492 F3 F4 FC1 FC2 FC6 C3 CP1 CP2 CP5 P3 AFZ FZ CZ 
4 0.6 1.5 0.6 1.7 -0.8 -0.4 744 788 P4 T6 O2 PZ POZ 
5 1.2 1.6 1.1 1.3 -0.7 -0.4 844 864 PZ POZ 
6 0.7 1.7 0.5 1.4 0.3 0.7 888 924 FP1 FP2 F3 F4 F8 FC1 FC2 FC5 FC6 AFZ FZ 
7 -0.3 1.2 -0.2 1.1 -1.1 -0.4 1068 1196 CP1 P3 P4 T5 T6 O1 O2 PZ POZ 
8 -0.4 0.4 -0.1 0.5 -0.8 -0.4 1320 1388 CP6 P3 P4 T6 O2 PZ POZ 
9 -0.4 0.1 0.3 0.9 -1.1 -0.4 1504 1568 P3 P4 T6 O1 O2 PZ POZ 
10 0.2 0.5 0.4 0.6 0.6 0.7 1932 1956 FC1 FZ CZ 
11 0.1 0.5 -0.3 0 0.7 0.9 2288 2300 FC1 AFZ FZ CZ 
12 -0.2 0.5 -0.2 0.3 0.4 0.8 2388 2400 C4 CP1 CP2 P4 T6 O2 CZ PZ 

13 -0.2 0.7 -0.5 0.5 0.4 1.2 2420 2672 FP1 F3 FC1 FC2 FC5 FC6 C3 C4 CP1 CP2 CP6 P4 
T6 O1 O2 AFZ FZ CZ PZ 

14 0.3 0.5 0.2 0.3 0.5 0.7 3260 3276 CP1 CZ 
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Unrelated 

1 -0.4 0.3 -0.5 1 -1.9 -0.4 284 764 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T3 
T4 CP1 CP2 CP5 CP6 P3 P4 T6 O1 O2 AFZ FZ CZ 
PZ POZ 

2 0 0.3 -0.1 0.7 0.5 0.9 964 1008 CP5 P3 T5 O1 
3 -0.1 0.1 -0.5 -0.1 0.5 0.8 1460 1520 C3 CP5 P3 T5 O1 
4 -0.1 0.1 -0.3 0 0.6 0.8 1536 1560 F3 FC1 FC5 C3 T3 CP5 P3 T5 
5 -0.1 0.1 -0.3 0 0.6 0.9 1572 1608 FC5 C3 T3 CP5 P3 T5 O1 
6 0.2 0.3 -0.2 -0.1 0.6 0.8 1688 1716 CP5 T5 
7 0 0.2 -0.5 -0.4 0.4 0.7 2144 2164 FC5 C3 T3 CP5 T5 

8 -0.3 1.9 -0.9 0.3 0.4 2.7 2168 2860 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T3 
T4 CP1 CP2 CP5 CP6 P3 P4 T5 T6 O1 AFZ FZ CZ 
PZ POZ 

9 1.3 1.5 -0.2 -0.1 0.6 0.7 2932 2964 FC6 C4 
10 0.7 1 0 0.1 0.6 0.7 3056 3068 C4 CP6 
11 -0.1 0.4 -0.5 -0.2 0.5 0.7 3180 3212 CP5 P3 T5 O1 

Length 

Predicted 

1 0 0.2 0 0.1 -0.6 -0.4 32 44 F4 F8 FC2 FC6 
2 -0.1 0 -0.3 -0.2 0.4 0.5 136 148 FC5 C3 CP5 
3 -0.6 0.2 -0.4 0.3 0.4 1.4 208 308 T3 CP5 P3 P4 T5 O1 O2 PZ POZ 

4 -0.2 0.3 -0.3 0.5 0.4 1.3 336 424 F3 F4 F8 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 
CP5 CP6 P3 P4 AFZ FZ CZ PZ POZ 

5 -0.4 -0.1 -0.4 0.2 -0.9 -0.6 460 488 T6 O2 
6 -0.1 0.3 -0.7 -0.4 -0.7 -0.5 676 708 O1 O2 
7 -0.6 -0.2 -0.5 -0.4 -0.5 -0.5 1056 1072 T4 CP6 
8 -0.2 0 0 0.5 -0.8 -0.5 1320 1356 FP1 F3 F7 FC1 FC2 C3 AFZ FZ 
9 0.1 0.3 0.2 0.4 -0.8 -0.6 2156 2204 FP1 FP2 F7 
10 -0.2 0.1 0.3 0.6 -0.9 -0.6 2412 2456 FP1 FP2 F3 F7 FC1 FC5 C3 

Unpredicted 

1 -0.1 0.1 -0.3 0.3 0.3 0.7 76 120 T6 O2 
2 0.1 0.2 -0.2 -0.1 -0.5 -0.5 156 168 CP1 P3 

3 -0.2 0.3 -0.2 0.1 0.5 1.1 220 312 F4 F8 FC2 FC5 FC6 C3 C4 T4 CP1 CP2 CP5 CP6 P3 
P4 T6 O1 O2 PZ POZ 

4 -0.6 0.2 -0.4 0.3 0.5 1.3 316 420 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T3 
T4 CP1 CP2 CP5 CP6 P3 P4 T6 O2 AFZ FZ CZ PZ 
POZ 

5 -0.3 0 -1.1 0.2 0.5 0.9 652 692 CP1 CP2 P3 P4 O1 O2 CZ PZ POZ 
6 -0.4 0.5 -1.1 0.1 0.6 1.1 744 876 FC5 C3 CP1 CP2 P4 O1 O2 PZ POZ 
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7 -0.4 0 -0.7 -0.2 0.4 0.7 1096 1144 FC2 C4 CP2 CP6 
8 0 0.1 -0.8 -0.3 0.5 0.8 1196 1208 F3 F7 FC5 C3 CP5 
9 -0.1 0.2 -1.1 -0.3 0.4 0.9 1228 1256 F3 F7 FC5 C3 T3 CP1 CP2 CP5 PZ POZ 
10 -0.2 0 -0.7 -0.3 0.4 0.9 1276 1372 F3 F7 FC5 C3 T3 

11 -0.8 0.1 -1.2 0 -1.7 -0.4 2284 2464 FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 T3 T4 
CP1 CP2 CP5 CP6 P3 T5 O1 AFZ FZ CZ PZ POZ 

12 -0.4 0.4 -0.1 0.2 0.5 0.9 3092 3148 P4 O1 O2 POZ 

Unrelated 

1 -0.2 0.1 -0.2 0.2 -1.2 -0.4 56 120 FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T4 
CP1 CP2 CP5 CP6 P3 P4 O1 O2 AFZ FZ CZ PZ POZ 

2 -0.1 0.2 -0.1 0.1 0.4 1.5 212 252 CP5 P3 P4 T5 O1 O2 PZ POZ 

3 -0.5 0.3 -0.3 0.2 0.5 2 272 420 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T3 
T4 CP1 CP2 CP5 CP6 P3 P4 T5 T6 O1 O2 AFZ FZ 
CZ PZ POZ 

4 -0.3 0.1 -0.2 0.2 0.6 1.1 548 580 FP1 FP2 F4 F8 FC6 C4 AFZ FZ 
5 0 0.1 -0.6 -0.5 0.9 1 1580 1612 C4 

6 -0.8 0.4 -0.7 0.6 -2.4 -0.6 2268 2516 
FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T3 
T4 CP1 CP2 CP5 CP6 P3 P4 T5 T6 O1 O2 AFZ FZ 
CZ PZ POZ 

7 -1.7 -0.8 0.3 0.6 -1.2 -0.7 2704 2776 F3 FC1 FC5 C3 CP1 CP5 

8 -1.3 -0.3 0.1 1 -1.2 -0.6 2780 2848 F3 F7 FC1 FC5 C3 T3 CP1 CP2 CP5 P3 T5 CZ PZ 
POZ 

9 -0.9 0.1 -0.3 0.7 -1.3 -0.6 2880 3004 FP2 F3 F7 F8 FC1 FC2 FC5 FC6 C3 T3 T4 CP1 CP2 
CP5 CP6 P3 P4 T5 AFZ FZ CZ PZ 

Table 5. Summary of all significantly different ERP cluster start times, stop times, and member electrodes for comparison between target and prime word feature effects. Clusters 
which overlap with significant clusters from the original target or prime word analyses are in bold. The max and min difference values (Target – Prime) indicates direction of the 
difference; positive values indicate that target word had a larger difference between the features and negative values indicates that the prime word had larger differences. Target 
word onset is 2000 ms. 
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4. Discussion 
The present study aimed to investigate the time course of top-down pre-activations during 

predictive processing using a combination of machine-learning EEG decoding and mass 

univariate ERP cluster analyses. Our prediction task allowed us to distinguish between trials for 

which participants predicted the exact target word from those in which the participants were 

unsuccessful at predicting a related target word or encountered a completely unrelated word. 

This allowed us to identify whether specific linguistic and visual features were anticipated, and if 

successful prediction resulted in a reduction or absence of evidence of prediction error. In 

agreement with our predictions, when words were successfully predicted, concreteness and word 

length features were pre-activated, and our ERP analyses suggest a reduction in additional 

processing after the target word was encountered. It is unclear whether word length pre-

activation resulted in a reduction of prediction error because reliable decoding began at target 

onset and continued well into the period during which the expected prediction error measure, the 

N250 ERP component, would have been observed. However, these results provide compelling 

evidence for predictive coding accounts of language comprehension (e.g., Kuperberg & Jaeger, 

2016) during visual word recognition.  

Even though we did not experimentally manipulate concreteness and sub-lexical word 

length, the findings still showed reliable decoding and identified significant differences in mass 

univariate ERP analysis which is promising for studies that use more naturalistic stimuli. 

However, to gain a more detailed view of the temporal dynamics of pre-activation of difference 

linguistic and sub-linguistic features, explicit manipulation may prove beneficial. 

Another interesting observation was evidence from decoding of extended activation of 

semantic features when target words were not accurately predicted – whether it is related or not. 

One limitation of the paradigm, as implemented here, is that we do not know what exactly 
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happens during an unsuccessful prediction. One possibility is a prediction that is different from 

the target, but another possibility is that the participant failed to make a prediction at all. It is not 

unreasonable to assume the latter happens with some frequency. This could result in the prime 

word remaining active in working memory longer as the participant continues to think of a 

prediction. Future studies could further explore this by making predictions more explicit. 

5. Conclusion 
 In summary, the present experiment utilized a combination of EEG decoding and mass 

univariate ERP analysis to uncover the time course of the anticipation of semantic – such as 

concreteness – and sub-lexical – such as word length – information, and that successfully 

anticipated information largely prevents the need for further processing as indicated by the 

absence or reduction of prediction error. Our findings are consistent with predictive coding 

theories of language, showing that higher level semantic features are anticipated prior to low 

level visual features during word recognition, and that accurately anticipated features reduce 

prediction error (Kuperberg & Jaeger, 2016). In future studies we will examine anticipation of 

other features that are relevant to word recognition, such as visual complexity of the words, 

orthographic neighborhood, phonological neighborhood, and lexical frequency.  
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Appendix 
The appendix contains supplemental tables and figures that could not be included within the 

main paper. Figure S1 shows ERP waveforms for all electrode sites. Figures S2 – S4 depict the 

unmasked ERP difference waves for all the conditions of the study: Figure S2 shows the main 

effects waveforms, Figure S3 shows target word waveforms, and Figure S4 shows the prime 

word waveforms. Tables S1 and S2 show the artifact rejection summaries for word length and 

concreteness, respectively. 

Subject Table S1. Length Artifact Rejection 

Target 

Predicted Unpredicted Unrelated 

Acc. 

Long 

Rej. 

Long 

Acc. 

Short 

Rej. 

Short 

Acc. 

Long 

Rej. 

Long 

Acc. 

Short 

Rej. 

Short 

Acc. 

Long 

Rej. 

Long 

Acc. 

Short 

Rej. 

Short 

1 54 2 61 2 38 2 71 3 44 2 59 2 

2 49 1 61 1 45 1 73 2 48 0 65 0 

3 37 0 53 2 53 1 80 2 46 0 63 1 

4 46 0 62 0 50 0 75 0 47 0 65 0 

5 45 1 57 1 50 0 79 0 48 0 63 1 

6 46 1 61 0 54 0 68 1 42 1 70 0 

7 55 0 63 0 46 0 68 0 43 0 71 0 

8 25 3 37 1 46 2 70 0 33 0 59 1 

9 26 0 35 0 74 1 96 0 43 0 68 1 

10 39 0 39 1 41 0 61 1 38 2 53 1 

11 56 1 90 0 33 0 46 0 52 0 65 1 
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12 35 2 51 2 53 1 83 0 52 1 66 0 

13 39 0 66 0 52 0 70 0 53 0 66 0 

14 46 0 64 0 45 0 71 0 53 0 66 0 

15 14 4 36 6 55 15 74 16 42 7 52 10 

16 48 0 77 0 47 1 60 0 48 0 63 0 

17 44 0 68 0 51 0 68 1 48 0 65 0 

18 52 0 60 0 40 0 77 0 47 0 64 0 

19 44 0 59 0 46 0 74 0 47 0 61 0 

20 40 0 70 0 56 0 67 0 48 0 64 0 

21 75 0 83 1 26 0 47 0 41 0 68 2 

22 49 2 54 5 47 1 63 6 42 1 65 4 

23 32 0 36 0 49 0 62 0 34 0 54 0 

24 41 0 67 0 60 0 63 1 43 0 70 1 

25 45 0 56 0 56 0 75 0 42 0 70 1 

26 38 0 67 0 53 0 69 0 53 0 66 0 

27 44 1 72 2 45 1 60 2 53 0 65 1 

28 40 0 53 0 50 0 83 0 53 0 65 1 

29 44 0 85 1 47 0 50 0 53 0 66 0 

30 47 3 64 1 39 2 69 2 53 0 66 0 

31 49 0 61 2 47 0 74 0 47 1 64 1 

32 56 0 76 0 40 0 61 0 46 0 65 0 

33 45 0 64 0 51 0 73 0 48 0 65 0 

34 47 2 69 2 43 4 63 3 45 3 63 1 

35 51 1 82 0 44 0 55 0 48 0 65 0 

36 97 1 119 9 3 0 2 1 42 1 63 7 
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37 45 5 53 3 50 1 73 2 36 7 67 4 

38 54 0 70 0 47 0 61 0 43 0 70 1 

39 21 4 36 3 66 9 79 13 35 8 64 7 

40 67 0 78 0 32 0 52 0 42 0 71 0 

41 54 0 80 0 21 0 21 1 40 1 52 1 

42 28 23 48 42 24 16 28 18 30 23 37 29 

43 61 0 78 0 30 0 58 0 53 0 66 0 

44 59 1 88 2 31 0 46 0 51 2 61 5 

45 70 7 99 7 13 1 29 1 52 1 65 0 

46 33 1 49 0 57 0 87 0 51 1 65 0 

47 37 0 57 0 5 0 8 0 20 0 35 0 

48 57 0 76 0 34 0 60 0 53 0 66 0 

49 58 0 68 2 41 2 60 1 41 0 70 0 

50 52 0 86 0 38 0 49 0 53 0 66 0 

51 19 9 34 5 35 22 50 37 28 21 39 23 

52 60 0 81 0 41 0 50 0 42 0 70 0 

53 52 0 70 0 43 0 67 0 48 0 65 0 

54 53 1 59 0 47 0 72 0 43 0 71 0 

55 45 0 61 0 46 0 72 1 52 1 65 1 

56 50 0 57 1 51 0 73 0 43 0 70 1 

Subject Prime 

Predicted Unpredicted Unrelated 

Acc. 

Long 

Rej. 

Long 

Acc. 

Short 

Rej. 

Short 

Acc. 

Long 

Rej. 

Long 

Acc. 

Short 

Rej. 

Short 

Acc. 

Long 

Rej. 

Long 

Acc. 

Short 

Rej. 

Short 
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1 81 5 48 2 79 2 30 3 78 3 40 1 

2 85 0 42 1 81 2 40 1 87 0 42 0 

3 66 1 38 1 94 2 41 1 81 4 39 2 

4 82 0 45 0 86 0 39 0 86 0 41 0 

5 76 1 46 1 91 0 37 0 85 1 42 0 

6 76 2 43 0 92 0 43 1 84 0 37 1 

7 77 0 45 0 93 0 43 0 85 0 38 0 

8 45 2 21 5 83 3 48 2 67 1 29 0 

9 42 0 21 0 126 2 66 0 81 1 37 0 

10 71 1 43 0 95 1 41 0 86 1 39 3 

11 111 1 57 0 60 0 23 0 81 1 46 0 

12 67 3 37 0 101 1 42 1 82 1 46 0 

13 75 0 43 0 97 0 37 0 83 0 46 0 

14 73 0 39 0 98 0 41 0 82 0 46 0 

15 39 8 17 4 102 21 40 14 64 16 37 7 

16 94 0 48 0 74 0 36 0 86 0 42 0 

17 80 1 40 0 86 0 43 1 87 0 42 0 

18 87 0 43 0 76 0 39 0 84 0 42 0 

19 72 0 46 0 88 0 35 0 82 0 42 0 

20 79 0 39 0 89 0 45 0 86 0 42 0 

21 119 1 56 1 50 0 31 0 82 2 37 0 

22 80 4 38 2 79 2 43 4 80 4 36 1 

23 67 0 39 0 103 0 49 0 85 0 38 0 

24 76 0 39 0 94 0 48 1 84 0 38 0 

25 72 0 34 0 98 0 53 1 83 0 35 1 
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26 76 0 39 0 96 0 41 0 83 0 46 0 

27 86 2 44 0 84 0 35 1 82 1 44 2 

28 62 0 44 0 109 0 36 0 82 1 46 0 

29 99 0 51 1 73 0 28 0 83 0 46 0 

30 80 1 46 1 88 3 32 1 81 2 46 0 

31 77 2 43 1 89 0 40 0 86 1 42 0 

32 100 0 46 0 68 0 38 0 86 0 41 0 

33 88 0 33 0 80 0 51 0 87 0 42 0 

34 71 6 54 0 83 8 28 2 83 3 37 4 

35 100 1 53 0 67 0 31 0 87 0 42 0 

36 154 12 86 1 4 0 1 0 82 3 34 4 

37 73 6 38 4 86 5 45 1 76 9 36 2 

38 86 0 57 0 84 0 31 0 84 1 38 0 

39 40 4 19 3 108 18 57 8 73 12 34 4 

40 99 0 57 0 71 0 28 0 85 0 38 0 

41 121 1 66 0 49 1 14 0 81 0 42 2 

42 58 41 26 28 45 28 15 11 51 32 19 27 

43 93 0 51 0 79 0 29 0 82 0 46 0 

44 117 3 47 1 52 0 32 0 80 3 44 2 

45 129 10 63 2 32 1 13 2 80 2 43 2 

46 66 1 28 0 105 0 52 0 80 0 46 0 

47 91 0 47 0 11 0 8 0 52 0 21 0 

48 97 0 49 0 75 0 31 0 83 0 46 0 

49 96 1 51 1 71 2 35 1 84 0 38 0 

50 99 0 45 0 72 0 34 0 83 0 46 0 
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Subject 

Table S2. Concreteness Artifact Rejection 

Target 

Predicted Unpredicted Unrelated 

Acc. 

High 

Rej. 

High 

Acc. 

Low 

Rej. 

Low 

Acc. 

High 

Rej. 

High 

Acc. 

Low 

Rej. 

Low 

Acc. 

High 

Rej. 

High 

Acc. 

Low 

Rej. 

Low 

1 82 3 82 5 72 2 68 4 73 3 74 3 

2 72 1 83 1 86 1 74 2 80 0 80 0 

3 63 2 74 0 90 1 79 2 76 2 74 4 

4 82 0 80 0 78 0 80 0 80 0 78 0 

5 73 1 70 1 86 0 89 0 80 0 78 1 

6 73 1 75 1 84 1 84 0 79 1 79 0 

7 73 0 84 0 87 0 76 0 80 0 80 0 

8 39 3 45 4 86 4 72 2 60 0 65 1 

9 37 0 44 0 122 1 114 1 77 1 78 0 

10 50 0 64 1 72 1 64 0 65 0 60 4 

11 97 0 113 1 63 0 45 0 80 0 77 1 

51 38 10 18 7 76 40 26 19 50 29 25 17 

52 100 0 54 0 70 0 34 0 85 0 36 0 

53 85 0 46 0 83 0 37 0 87 0 42 0 

54 79 0 43 0 91 0 45 0 84 1 38 0 

55 78 0 43 0 92 0 37 0 82 1 45 1 

56 76 1 37 0 93 0 51 0 85 0 38 0 

Table S1. Shows the artifact rejection summary for all word length conditions. 
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12 60 4 70 0 93 3 90 0 80 0 79 1 

13 71 0 74 0 89 0 86 0 80 0 80 0 

14 73 0 67 0 87 0 92 0 79 0 80 0 

15 26 7 41 6 106 20 87 19 61 15 64 10 

16 91 0 83 0 68 1 77 0 79 0 79 0 

17 72 0 78 1 88 0 79 1 80 0 80 0 

18 79 0 80 0 78 0 76 0 79 0 78 0 

19 83 0 63 0 71 0 90 0 78 0 77 0 

20 73 0 79 0 87 0 81 0 80 0 79 0 

21 101 1 121 1 58 0 38 0 76 1 79 1 

22 68 3 77 5 79 6 72 4 75 2 73 5 

23 51 0 55 0 76 0 76 0 60 0 63 0 

24 72 0 75 0 88 0 84 1 79 0 79 1 

25 73 0 55 0 86 1 105 0 79 0 76 1 

26 67 0 80 0 93 0 80 0 80 0 80 0 

27 75 3 92 0 81 1 66 2 80 0 77 3 

28 71 0 61 0 89 0 98 0 79 1 80 0 

29 82 1 98 0 77 0 62 0 80 0 80 0 

30 73 0 78 4 83 4 76 2 78 2 80 0 

31 78 2 79 2 80 0 79 0 80 0 78 2 

32 93 0 94 0 67 0 66 0 79 0 79 0 

33 74 0 75 0 86 0 85 0 80 0 80 0 

34 85 4 74 4 67 4 75 7 76 3 75 4 

35 87 1 103 0 72 0 57 0 80 0 80 0 

36 145 9 153 6 5 1 1 0 75 4 72 7 
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37 68 6 67 5 83 3 83 5 72 8 74 6 

38 89 0 89 0 71 0 71 0 79 1 80 0 

39 39 6 41 1 99 15 102 16 72 8 67 13 

40 93 0 100 0 66 0 58 0 80 0 79 0 

41 90 0 97 1 31 1 32 0 62 2 61 0 

42 48 41 54 50 45 26 34 22 43 37 45 35 

43 91 0 100 0 69 0 60 0 79 0 80 0 

44 90 0 116 4 70 0 40 0 75 5 77 3 

45 114 12 123 5 31 3 31 1 75 4 78 1 

46 58 1 60 0 100 1 100 0 76 1 79 0 

47 74 0 64 0 10 0 9 0 35 0 38 0 

48 81 0 99 0 79 0 61 0 80 0 80 0 

49 85 2 89 1 72 1 68 2 79 0 78 0 

50 94 0 93 0 66 0 65 0 80 0 80 0 

51 36 10 36 11 59 43 68 36 44 29 50 28 

52 95 0 102 0 65 0 58 0 79 0 78 0 

53 79 0 84 0 81 0 75 0 80 0 80 0 

54 78 0 81 1 82 0 78 0 80 0 79 1 

55 73 0 77 0 86 0 81 1 80 0 77 3 

56 71 0 68 2 89 0 90 0 80 0 79 1 

Subject 

Prime 

Predicted Unpredicted Unrelated 

Acc. 

High 

Rej. 

High 

Acc. 

Low 

Rej. 

Low 

Acc. 

High 

Rej. 

High 

Acc. 

Low 

Rej. 

Low 

Acc. 

High 

Rej. 

High 

Acc. 

Low 

Rej. 

Low 
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1 72 1 92 7 49 2 91 4 66 3 81 3 

2 56 1 99 1 67 1 93 2 74 0 86 0 

3 57 1 80 1 63 2 106 1 69 2 81 4 

4 70 0 92 0 55 0 103 0 73 0 85 0 

5 53 1 90 1 71 0 104 0 74 0 84 1 

6 59 0 89 2 72 0 96 1 67 0 91 1 

7 65 0 92 0 67 0 96 0 67 0 93 0 

8 31 3 53 4 71 2 87 4 54 0 71 1 

9 31 0 50 0 99 2 137 0 67 0 88 1 

10 42 0 72 1 49 1 87 0 56 1 69 3 

11 91 1 119 0 49 0 59 0 56 0 101 1 

12 55 2 75 2 81 3 102 0 58 0 101 1 

13 66 0 79 0 75 0 100 0 58 0 102 0 

14 71 0 69 0 70 0 109 0 58 0 101 0 

15 25 9 42 4 88 16 105 23 47 6 78 19 

16 71 0 103 0 53 1 92 0 73 0 85 0 

17 56 0 94 1 69 0 98 1 74 0 86 0 

18 60 0 99 0 63 0 91 0 73 0 84 0 

19 63 0 83 0 58 0 103 0 71 0 84 0 

20 60 0 92 0 65 0 103 0 74 0 85 0 

21 86 1 136 1 45 0 51 0 65 1 90 1 

22 53 4 92 4 72 2 79 8 61 2 87 5 

23 44 0 62 0 58 0 94 0 47 0 76 0 

24 62 0 85 0 70 0 102 1 66 1 92 0 

25 60 0 68 0 71 1 120 0 64 0 91 1 
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26 58 0 89 0 83 0 90 0 58 0 102 0 

27 73 1 94 2 65 2 82 1 56 2 101 1 

28 65 0 67 0 75 0 112 0 57 1 102 0 

29 65 1 115 0 75 0 64 0 58 0 102 0 

30 67 0 84 4 71 3 88 3 58 0 100 2 

31 58 0 99 4 67 0 92 0 73 1 85 1 

32 74 0 113 0 51 0 82 0 73 0 85 0 

33 57 0 92 0 68 0 103 0 74 0 86 0 

34 68 2 91 6 53 2 89 9 67 5 84 2 

35 74 0 116 1 51 0 78 0 74 0 86 0 

36 123 4 175 11 4 1 2 0 61 5 86 6 

37 49 6 86 5 74 3 92 5 61 6 85 8 

38 73 0 105 0 59 0 83 0 66 1 93 0 

39 30 4 50 3 88 9 113 22 54 13 85 8 

40 75 0 118 0 57 0 67 0 66 0 93 0 

41 78 0 109 1 25 1 38 0 43 1 80 1 

42 45 41 57 50 38 17 41 31 33 25 55 47 

43 80 0 111 0 61 0 68 0 58 0 101 0 

44 78 1 128 3 62 0 48 0 56 2 96 6 

45 97 10 140 7 30 4 32 0 56 1 97 4 

46 52 1 66 0 88 0 112 1 58 0 97 1 

47 60 0 78 0 8 0 11 0 27 0 46 0 

48 76 0 104 0 65 0 75 0 58 0 102 0 

49 73 1 101 2 57 1 83 2 66 0 91 0 

50 81 0 106 0 60 0 71 0 58 0 102 0 
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51 34 8 38 13 58 34 69 45 36 17 58 40 

52 82 0 115 0 50 0 73 0 65 0 92 0 

53 64 0 99 0 61 0 95 0 74 0 86 0 

54 68 1 91 0 63 0 97 0 67 0 92 1 

55 67 0 83 0 73 0 94 1 57 1 100 2 

56 57 0 82 2 75 0 104 0 67 0 92 1 

Table S2. Shows the artifact rejection summary for all concreteness conditions. 
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Figure S1. Shows all electrode ERP plots for predicted (blue) – predicted target word, unpredicted (red) – unpredicted 
related target word, and unrelated (yellow) – unpredicted unrelated target word – conditions.  

-10 µV 
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Figure S2. Shows the unmasked difference waves for main effects of target words. A) is unrelated minus predicted target words, 
B) is unpredicted minus predicted target words, and C) is unrelated minus unpredicted target words. Target word onset is 2000 
ms.  
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Figure S3. Shows the unmasked difference waves for feature effects of predicted target words, unpredicted – unpredicted related 
target word, and unrelated – unpredicted unrelated target word –. Target word onset is 2000 ms. 
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Figure S4. Shows the unmasked difference waves for feature effects of prime words. Conditions are relative to the target word: 
predicted – predicted target word, unpredicted – unpredicted related target word, and unrelated – unpredicted unrelated target 
word. Target word onset is 2000 ms. 
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Chapter 4 
Decoding anticipated semantic and visual word features prior to word onset in bilinguals  

1. Introduction 
As discussed in previous chapters, increasingly predictive processing is considered an 

important mechanism to facilitate human language comprehension. To date, most research on 

prediction during language processing has focused on native speakers of one language. However, 

as more than 50% of the world speaks at least two languages (Grosjean, 2019) there is a need to 

better understand how bilinguals predict within both their L1 and their second language (L2). 

There has been a great deal of debate on whether and how bilinguals predict in L2. The aim of 

the present study was to examine prediction and anticipation of information during visual word 

recognition in L2 of Spanish-English bilinguals.  

After prediction became a popular topic within mainstream psycholinguistics, research 

began looking for evidence of prediction within L2 processing (Kaan, 2023). Early studies found 

no evidence of anticipation during prediction in L2 (Grüter et al., 2012; Lew-Williams & 

Fernald, 2010; Martin et al., 2013, see Kaan, 2023 for overview), suggesting that bilinguals had 

reduced prediction ability (Grüter et al., 2014). More recent studies have shown evidence 

suggesting that bilinguals predict in their L2 in similar fashion to how they predict in their L1 

(Chun & Kaan, 2019; Dijkgraaf et al., 2019; Hopp, 2013; Kaan, 2014), though perhaps with 

delays in timing relative to L1. Currently, results of studies in bilingual language users who are 

proficient in both languages suggests that bilinguals predict higher level semantic features 

(Dijkgraaf et al., 2017), and lower level lexical features including morphology (Hopp, 2013; 

Kaan, 2014), and orthography (Casaponsa et al., 2015; Hoversten et al., 2017). However, since 

these studies often have focused on the processing of the predictable word itself, not much is 
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known about if and when semantic and lexical features are anticipated prior to the onset of this 

word. Thus, much is still unknown about the architecture of predictive processing in bilinguals. 

As discussed in Chapters 1 and 3, predictive coding theory (Rao & Ballard, 1999) is a 

potentially unifying model of prediction during perceptual and cognitive processing that has been 

adapted to fit within language processing (Kuperberg, 2021; Kuperberg & Jaeger, 2016). In 

brief, predictive coding models suggest that higher levels of the cortical hierarchy make 

continuous predictions about upcoming input from lower levels by using prior beliefs and the 

current context. At each level, prediction error is calculated between the top-down prediction and 

the bottom-up input. This prediction error is passed back up to higher levels to update beliefs. 

Thus, predictive coding accounts have two major assumptions: 1) that higher level features of 

predicted upcoming content should be retrieved earlier during anticipation than lower-level 

features because higher level information must be predicted before lower level, and 2) that some 

representation of prediction error should be present after the bottom-up input is presented when 

predictions are inaccurate. 

Prediction in bilingual language users may be different from monolinguals, because many 

findings suggest that bilinguals always activate both languages and that language selection 

occurs at a later stage, as suggested by the BIA+ model (Dijkstra & Heuven, 2002). BIA+ 

predicts that language selection (L1 or L2) occurs too late to influence semantic processing. 

However, many studies in support of nonselective access to both languages have studied word 

processing with minimal context. When the context is extended to sentences, there is evidence 

that of early selection of the context relevant language, such that bilinguals only activate the 

context relevant meaning of interlingual homographs such as pie (which means foot in Spanish) 

(Hoversten et al., 2015).  
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But even if bilinguals are able to select the context appropriate language early on, they 

are still facing increased entropy relative to monolinguals, as they have knowledge of two 

languages (Gullifer & Titone, 2020). Entropy is a concept adapted from information theory 

(Shannon, 1948) that is used to quantify uncertainty. Along with its mathematical equivalent 

surprisal, entropy has been proposed as a mechanism in language research to represent the 

uncertainty during language processing, particularly in Bayesian language models (e.g., Gibson 

et al., 2013; Hale, 2011; Jaeger & Snider, 2013; Kuperberg & Jaeger, 2016; Levy, 2008). An 

increase in entropy in bilinguals could impact predictive processing by making prediction error 

more likely due to the increased number of options available. 

In the present study we will use ERPs to examine anticipation and prediction of imminent 

words in Spanish English bilinguals. Two ERP components that have been strongly linked to 

predictive effects during language processing: N400 – a negatively deflecting, centro-parietal 

ERP component that is maximal 300 – 500 ms post stimulus onset – and N250 – a negatively 

deflecting, fronto-central ERP component that is maximal 200 – 350 ms post-target onset. As 

was discussed in previous chapters, the N400 can be viewed as an index of prediction error 

within a predictive processing framework (e.g., see Federmeier, 2022 and Kuperberg, 2021 for 

views on this). The N250 is sensitive to processing of orthography, and is larger in amplitude 

when there is a mismatch between orthography of words, as has been shown in masked repetition 

priming when the target word differs from the masked prime, and in sentence reading studies 

when a predicted word differs from the actually presented word (Holcomb & Grainger, 2007; 

Brothers et al., 2015). The sensitivity to repetition priming of the N250 means that it could also 

be viewed as a measure of prediction error, but at the level of the complexity of orthographic 

visual features rather than at the semantic level. In monolinguals, effects of sub-lexical visual 
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features during word recognition, such as complexity and word length, have been shown to 

modulate the amplitude of the N1: shorter words elicit larger N1 amplitude than longer words 

(Dufau, Grainger, Midgley & Holcomb, 2015). Studies of bilingual language using ERPs have 

typically found reduced and delayed N400 responses relative to monolinguals (Frenck-Mestre et 

al., 2014; Kaan, 2023; Newman et al., 2012). Casaponsa and colleagues (2015) examined 

modulations of the N250 and N400 in Spanish Basque bilinguals in a masked priming paradigm 

and found that Spanish-Basque bilinguals use orthographic features as important cues to select 

the appropriate language. To our knowledge, there are no studies that have found evidence of 

modulation of N1 amplitude as a function of word-length in Spanish-English bilinguals.  

While these ERPs studies suggest that semantic, orthographic, and word-length 

information may be predicted, they have not examined the time course of retrieval of anticipated 

information before a predicted stimulus is encountered. As shown in Chapter 3 of this 

dissertation, full trial epoch EEG decoding accompanied by mass univariate ERP permutation 

cluster analysis has proven promising in monolinguals to examine this time course of anticipated 

information and may prove quite useful in elucidating time course of prediction prior to the onset 

of a predicted word as well as elucidating the effects of incorrect anticipation on prediction error 

in bilinguals. 

 The present study aimed to examine prediction during visual word processing in L2 

(English) of Spanish-English bilinguals. Given results of prior studies, we predicted that 

bilinguals would be able to select the context appropriate language and tested the two crucial 

assumption of the predictive coding theory 1) bilinguals anticipate semantic features before sub-

lexical features during visual word processing in a priming, and 2) failed prediction will be 

evident from increased prediction errors. Pre-activation of semantic features are expected to load 
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on the N400, of orthographic features on the N250 and potentially the N1. In the present study, 

we used the same prediction priming paradigm as reported in Chapters 2 and 3, and the same 

analytical methods as reported in Chapter 3. As a brief reminder, during this priming paradigm 

with a prediction task, participants read prime and target words in sequence with a delay between 

the onsets of the two words. Participants are instructed to try to predict the target word before it 

appears. They then self-report their prediction accuracy at the end of the trial. Two-thirds of the 

word pairs are related, and the remainder is unrelated. Based on the behavioral responses about 

prediction accuracy and the relatedness of the target stimuli, ERP results in this study are sorted 

as follows: predicted – participants successfully predict the related target word, unpredicted – 

participants unsuccessfully predict the related target word, and unrelated – participants could not 

predict the target word because it was unrelated. Given prior findings about L2 early language 

selection, predictive processing, and the assumptions of the predictive coding theory, we predict 

that Spanish English bilinguals will predict target words in their L2. We anticipate that we will 

find electrophysiological evidence of prediction errors for target words that were unrelated and 

for target words that were related but not predicted. The size of the prediction error will depend 

on whether bilinguals anticipate semantic and sub-lexical orthographic and visual features in 

their L2. If these features are anticipated, then we should be able to decode them in the EEG 

signal prior to the onset of the target words. Additionally, successful anticipation of related target 

words should lead to a reduction in prediction error for the target words, which would lead to a 

reduction of the amplitude of the N400, the N250 and the N1. When bilinguals do not 

successfully predict a related target word, we predict that there will still be evidence in the EEG 

signal prior to the target word onset of semantic features, and reduction of the N400 amplitude 

relative to the unrelated condition, but not of visual features because the predicted word and the 
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target word are likely related, but not identical. However, the pre-activation during these two 

conditions may be delayed relative to what has been seen in native speakers, consistent with 

delayed N400 responses observed post-target in bilingual speakers (Frenck-Mestre et al., 2014; 

Kaan, 2023; Newman et al., 2012) Finally, when bilinguals encounter an unrelated word, there 

should be no evidence of pre-activation of target features prior to the target word onset, but 

evidence of a large prediction error post-target onset (larger N400, N250 and N1 in unrelated 

relative to predicted and unpredicted related conditions).  

2. Methods 
The materials, experimental procedures, EEG recording procedures, EEG data processing 

procedures, and data analyses for this study are identical to those used in the study described in 

chapter 3. Here, we will focus on the methods were specific to this study in Spanish English 

bilinguals. 

 

2.1 Participants 

Spanish-English bilinguals (Spanish L1, n=30; 20 Female; age=19.2 SD=.95) participated in the 

study. All participants were undergraduate students at the University of California, Davis and 

provided written informed consent at the beginning of every recording session. Participants 

Figure 1. Shows the predictive priming paradigm. This is the same paradigm used in Chapter 3. 
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received research credit required for their courses as compensation for their participation. All 

participants were right-handed. One participant was rejected due to not having sufficient trials 

per condition after artifact rejection (see supplemental Table S1 for summary of artifact 

rejection). Statistical analyses were performed on the remaining 29 participants. 

2.2 Language Proficiency Measures  

Participants completed three 

assessments to gauge their 

proficiency and use of Spanish and 

English, the LexTale, the Language 

History Questionnaire and the 

Multilingual Language Diversity 

Score. The results of these 

assessments are reported in Table 1. 

The LexTALE test is a validated 

measure of language proficiency 

(Lemhöfer and Broersma, 2012) which the participants completed for English. Participants 

scores on the LexTALE were in the ranges of 60-80-% or 80-100%, which corresponds with 

“upper intermediate” and “upper & lower advanced/proficient users” respectively, according to 

the Common European Framework (CEF), which is the Council of Europe’s pedagogical 

guidelines for assessment of language proficiency (Europarat, 2020). These are the highest 2 

proficiency levels across the 7 identified by the CEF.  

The results on the Language History Questionnaire 3.0, a self-report measure of language 

usage, proficiency, and age and manner of acquisition (Li, Zhang, Yu, & Zhao, 2019), showed 

Language Spanish (L1) English (L2) 

Years of Use 18.37 (2.87) 15 (3.79) 

Mode of Acquisition Home School 

*Proficiency (LHQ) .80 (.13) .87 (.11) 

*Dominance (LHQ) .48 (.10) .64 (.12) 

Immersion (LHQ) .73 (.15) .70 (.16) 

Multilingual Language 

Diversity (MLD) Score  

1.04 (.21) 
 

LexTALE Score – .73 (26.18) 
 

Table 1. Results from the participants' language proficiency assessments. 
Means are reported along with SD in parentheses. Significance (p < .01) 
indicated by *. 

https://www.sciencedirect.com/science/article/pii/S0028393217302798?casa_token=6CziwDKBB8MAAAAA:VHT_XeRnut5QdUpAGiqD6FOH2UpE-Nehj3cM3bVLeJztqlLNrz99x0ZDpn8xAxzGCaWZkP4tmS8#bib29
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that the Spanish-English participants in this study were highly proficient in both languages, but 

somewhat more dominant in English (L2), which is typical of Spanish-English bilingual 

university undergraduates (d´ scores on the LHQ3, (t(29) = 3.06; p < .01. (p=.0047); (t(29) = 

5.55; p < .0001).  

The Multilingual Language Diversity Score (MLD; Li, Zhang, Yu, & Zhao, 2019; 

Gullifer and Titone, 2019; DeLuca, Rothman, Bialystok, and Pliatsikas, 2019) is a continuous 

measure of bilingualism which considers language context and diversity. The MLD score ranges 

from 0-2 with 0 representing a purely monolingual individual, 1 indicating a balanced bilingual, 

and 2 representing a multilingual individual that is equally proficient in, at least, four different 

languages with equal usage. As can be seen in Table 1, the Spanish English participants in the 

Figure 2. Shows the results from analyses of the main prediction and relatedness conditions: predicted, unpredicted, and 
unrelated. A) SVM decoding accuracy for three classification conditions: predicted vs. unpredicted (blue), predicted vs. 
unrelated (green), and unpredicted vs. unrelated (red). Prime (0 ms) and target (2000 ms) word onsets are indicated by vertical 
dashed lines (grey). Solid lines with shading under the curve highlight clusters of significantly above chance-level (50%; cluster t 
test sums exceeded 95th percentile of null distribution) decoding accuracy. B) An example ERP (Pz, see supplemental figure S1 
for all electrode plots) waveform for the three main conditions: predicted (blue), unpredicted (red), and unrelated (yellow). The 
epoch is time-locked to prime onset and target onset is indicated by a vertical dashed line (green). ERP differences between 
conditions as found in the mass univariate analyses are shown for: C) predicted minus unrelated, D) predicted minus 
unpredicted, and E) unpredicted minus unrelated. Target onset is indicated by the vertical dashed line (white). Within these plots, 
non-significant time points are masked in grey (see supplemental figure S2 for unmasked plots). 
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present study had an MLD score of 1.04, indicating that they were equally proficient in both 

Spanish and English.  

2.2 Materials 

The materials were identical to those used in Chapter 2 and 3.  

3. Results 
We performed EEG decoding analyses using SVM classifiers and mass univariate ERP 

analyses using cluster permutation testing and report the results below. As in Chapter 3, 

significant time clusters for all decoding analyses are those for which their summed t test scores 

exceeded the 95th percentile of the null distribution generated by the one-tailed permutation 

cluster t test. For all mass univariate analyses, significant time clusters are those for which their 

summed t test scores exceeded the 99.5th percentile or were lower than the 0.5th percentile of the 

of the null distribution generated by the two-tailed permutation cluster t test. It is important to 

note that because cluster permutation testing is not designed to answer questions of latency, we 

worked around this limitation by performing follow-up cluster testing on all significant cluster 

epochs separately. This confirms that there is a significant cluster for both analyses for the epoch 

shown in all figures and tables. 

3.1 Results of main prediction and relatedness effects 

In Figure 2, results are shown for the target words when they were accurately predicted, 

related but unpredicted and unrelated for the decoding analyses, for univariate ERP analyses 

(electrode Pz) and for mass univariate ERP analyses. In all three of our decoding conditions - 

predicted vs. unrelated (880 – 1040 ms; 1320 – 3560 ms), predicted vs. unpredicted (660 – 3560 

ms), and unpredicted vs. unrelated (780 – 1560 ms; 1640 – 2000 ms; 2100 – 3560 ms) – we 

observed above chance-level (50%) decoding accuracy in several epochs before and after target 

word onset (Figure 2A): for predicted vs. unrelated between 880 – 1040 ms and 1320 – 3560 ms, 
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for predicted vs. unpredicted between 660 – 3560 ms, and for unpredicted vs. unrelated between 

780 – 1560 ms, 1640 – 2000 ms and 2100 – 3560 ms. Figure 2B shows the ERP results from the 

univariate ERP analysis for electrode Fz (Figure S1 in the supplementary materials shows ERP 

results for all electrode sites). As can be seen in this Figure, unrelated target words elicit the 

greatest amplitude N400 response, related but unpredicted words elicited a reduced N400 

relative to the unrelated targets, and accurately predicted words show the greatest reduction in 

N400 amplitude. These results were confirmed by our mass univariate analysis. The full results 

of the mass univariate ERP cluster permutation analyses are illustrated in figures 2C – 2E. The 

exact epochs and member electrodes for significantly different clusters are reported in Table 2. 

These results indicate large clusters of differences post-target onset for each of the conditions 

spanning 2000 – 3560 ms (one cluster spans both pre- and post-target onset) when the participant 

predicted the target word (Figure 2C), 2000 – 3596 ms when the participant failed to predict a 

related target word (Figure 2D), and 2096 – 3420 (first cluster begin before target onset) when 

the target word is unrelated to the prime (Figure 2E). We also observed significantly different 

clusters in all three conditions before the target word onset: 1020 – 2000 ms (one cluster begins 

pre-target and continues after target onset) for unpredicted minus predicted target words, 880 – 

1000 (with one cluster continuing post-target) for unrelated minus predicted target words, and 

164 – 1816 ms for unrelated minus unpredicted target words. The findings of the mass univariate 

analyses echo and support the findings of the decoding analyses. Additionally, the reversal of 

polarity in the pre-target to post-target results matches prior findings of the semantic prediction 

potential (SPP, Grisoni et al., 2020, see Chapter 1 for more details).  
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Table 2. Main Prediction and Relatedness Effects - Significantly different ERP cluster times 
Condition Cluster Difference 

(µV) 
Time (ms) Electrodes 

Min Max Begin End 
Unpredicted 
minus 
Predicted 

1 0.6 1.0 1020 1072 F7 FC5 T3 
2 0.7 0.9 1084 1144 F7 FC5 T3 
3 0.6 1.4 1172 1692 F3 F7 FC1 FC2 FC5 C3 T3 CP1 CP5 P3 T5 O1 AFZ FZ CZ 
4 0.8 1.4 1704 1776 F3 F7 FC1 FC2 FC5 C3 C4 T3 CP1 CP2 CP5 P3 T5 O1 FZ CZ PZ POZ 
5 0.6 1.8 1780 2164 F3 F4 F7 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 P3 P4 T5 O1 O2 AFZ FZ CZ PZ 

POZ 
6 -12.4 -0.6 2248 3228 FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 P3 P4 T5 T6 O1 O2 

AFZ FZ CZ PZ POZ 
7 -1.6 -0.8 3248 3560 F3 F4 F7 FC1 FC2 FC5 C3 AFZ FZ 

Unrelated 
minus 
Predicted 

1 0.6 0.9 512 584 CP6 P4 T6 O1 O2 POZ 
2 0.5 0.8 648 708 CP6 P4 T6 O2 
3 0.5 0.8 1008 1068 CP2 P4 T6 O1 O2 POZ 
4 0.9 1.1 1208 1248 FC1 FC2 FZ 
5 0.4 2.1 1324 2180 F3 F4 F7 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 P3 P4 T5 T6 O1 O2 AFZ FZ CZ 

PZ POZ 
6 -14.4 -0.7 2216 3596 FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 P3 P4 T5 T6 O1 O2 

AFZ FZ CZ PZ POZ 
Unrelated 
minus 
Unpredicted 

1 -0.6 -0.3 164 232 FP1 FP2 F7 AFZ 
2 0.4 0.9 520 668 P3 P4 T5 T6 O1 O2 PZ POZ 
3 0.5 1.1 832 924 P3 P4 T6 O1 O2 POZ 
4 0.6 1.1 928 1000 C4 CP2 CP6 P4 T6 O1 O2 POZ 
5 0.5 1.3 1020 1212 C4 CP1 CP2 CP6 P3 P4 T5 T6 O1 O2 CZ PZ POZ 
6 0.3 0.8 1264 1292 C4 T4 CP6 P4 T6 O2 POZ 
7 0.5 1.0 1556 1596 CP6 P4 T6 O1 O2 POZ 
8 0.5 1.1 1616 1684 CP6 P4 T6 O1 O2 POZ 
9 0.5 1.0 1776 1816 FC2 C4 CP2 CP6 P4 T6 O1 O2 PZ POZ 
10 0.6 0.9 2096 2128 O1 O2 POZ 
11 -3.9 -0.5 2304 3112 FP1 FP2 F3 F4 F8 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 P3 P4 T5 T6 O1 O2 

AFZ FZ CZ PZ POZ 
12 -2.7 -0.5 3148 3420 FP1 FP2 F3 F4 F8 FC1 FC2 FC6 C4 T4 CP1 CP2 CP6 P4 T6 AFZ FZ CZ PZ 

Table 2. Summary of all significant ERP clusters found in the main prediction and semantic relationship effects analyses. Target word onset is 2000 ms. 
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The mass univariate permutation analysis indicates that the N400 amplitude was significantly 

reduced for target words that were related and accurately predicted, and for target words that 

were related but not accurately predicted relative to the unrelated targets. The N400 is most 

reduced when words are predicted. It is important to note that these findings very closely match 

those observed in monolinguals in Chapter 3 despite the bilingual participants having a 41% 

prediction accuracy relative to the 51% in the monolingual participants. This may indicate that 

bilinguals do not predict the identity of the target words as frequently as monolinguals, but this 

has not been tested statistically. Strikingly, the unrelated condition appears less negative in the 

bilinguals than in the monolinguals from Chapter 3. This could suggest that higher entropy in 

bilinguals leads to reduced prediction error from unrelated target words because bilinguals must 

allow for possibilities in their other language as observed within Hoversten et al. (2015) where 

Figure 3. Shows decoding accuracy of target word concreteness (A – C) and word length (D – F) classifications over the entire -
400 – 3600 ms epoch. Prime word onsets at 0 ms (magenta) and target word onsets at 2000 ms (green). Solid red lines indicate 
decoding accuracy that is significantly above-chance level (50%; cluster t test sums exceeded 95th percentile of null distribution); 
highlighted by red shading under the curve. 
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bilinguals after the target word was 

processed that it also had a Spanish 

meaning. Taken all together, these 

findings are strong evidence that the 

bilingual participants are predictively 

pre-activating features of target 

words when they are successfully 

predicted or unpredicted but related 

to the prime word. 

3.2 Results of the feature decoding 

analysis  

 Figures 3 and 4 show that SVMs 

reliably decoded EEG data for 

concreteness and word length features 

of target words and prime words, respectively. Whether decoding prime or target word features, 

the trials were binned according to prediction accuracy of the target word and relatedness of the 

target to the prime which yielded three conditions: predicted, unpredicted, and unrelated. The 

exact epochs during which SVMs reliably decoded concreteness and word length features are 

reported in Table 3. The reported epochs had significantly above-chance (50%) decoding 

accuracy using the cluster-permutation analyses (exceeded 95th percentile of the null 

distribution). 

 As illustrated in Figure 3, significant clusters of above-chance decoding accuracy of 

concreteness for the target words were found in pre-target epochs when the target word was 

Table 3. Features - Significantly above chance decoding cluster 
times 

Decoded 
Word 

Feature Condition Cluster Times (ms) 

Begin End 

Target Concreteness Predicted 1 340 980 

Unpredicted 1 320 580 

2 2400 2820 

Unrelated 1 2300 2620 

Length Predicted 1 1840 1960 

Unpredicted 1 2280 2400 

Prime Concreteness Predicted 1 200 1500 
1 460 840 

2 940 1060 

Unpredicted 1 240 560 

Unrelated 1 380 620 

Length Predicted 1 60 160 

1 80 740 
2 260 460 

Unpredicted 1 120 380 

Unrelated 1 260 440 
Table 3. Summary of all significantly above-chance decoding cluster start 
and stop times for word feature decoding. There were no significantly 
above-chance decoding clusters for target word length in the unrelated 
condition. Target word onset is 2000 ms. 
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accurately predicted or unpredicted but related to the prime word. These clusters were 

concentrated 1680 – 1020 ms prior to target word onset (320 – 980 ms in Figure 3). During the 

post-target period, concreteness was significantly decodable for unpredicted but related targets 

and for unrelated target words during a period spanning 300 – 820 ms after target onset (2300 – 

2820 ms in Figure 3). Predicted target word length was decodable 160 – 40 ms prior to target 

onset (1840 – 1960 ms in Figure 3). When the target word was unpredicted but related to the  

 prime word, word length was only decodable during a period spanning 280 – 400 ms after target 

word onset (2280 – 2400 ms in Figure 3). Surprisingly, unrelated target word length could not be 

reliably decoded at all. We will entertain potential reasons for this in the discussion.  

These decoding findings suggest that accurate prediction of target words pre-activated 

both semantic and visual features. Related words that were not accurately predicted showed 

evidence of semantic feature pre-activation, but no evidence for pre-activation of visual features. 

As such, when participants see the prime word circus, and successfully predict clown for the 

target word, then they pre-activated “clown” all the way down to the visual feature level. In 

contrast, if they instead predicted a different related word like acrobat, then some of the semantic 

features of the target were pre-activated, but after encountering “clown”, there would still be 

some semantic processing and all visual feature processing to be done. As the two words are 

visually different, there should be no visual features pre-activated. In the unrelated condition, the 

predicted words did not overlap with the target words either semantically or visually and all 

processing must be done after encountering the target word. 

 Figure 4 shows reliable decoding accuracy for the prime words’ concreteness and word 

length only prior to target onset. Exact epochs are reported in Table 3. Concreteness of the prime 

words was reliably decodable for all three conditions during a period spanning 240 – 1060 ms 
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after prime onset. Prime word length was reliably decoded for all three conditions during a 

period spanning 60 – 460 ms after prime onset. 

Although we did not perform direct statistical analyses comparing the reliable decoding 

periods between prime and target words, the overall decoding patterns suggest that target word 

decoding was truly classifying the features of the target word and not the prime in the case of 

predicted target words. For target words, reliable decoding of concreteness spanned a period 

between 340 and 980 ms after prime onset (1660 – 1020 ms pre-target onset) while prime word 

concreteness decoding initially spanned 460 – 840 ms dropped to unreliable levels and began 

again from 940 – 1060 ms. Reliable target word length decoding spanned 1840 – 1960 ms after 

Figure 4. Shows decoding accuracy of prime word concreteness (A – C) and word length (D – F) classifications over the 
entire -400 – 3600 ms epoch. Prime word onsets at 0 ms (magenta) and target word onsets at 2000 ms (green). Solid red 
lines indicate decoding accuracy that is significantly above-chance level (50%; cluster t test sums exceeded 95th percentile of 
null distribution); highlighted by red shading under the curve. 
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prime word onset while prime word length decoding spanned a total period of 60 – 460 ms 

relative to prime onset. These pattern differences suggest that target word feature decoding was 

not merely reflecting correlations between prime and target word features. For unpredicted but 

related words, the distinction is less clear as there was much overlap between target word and 

prime word concreteness decoding (320 – 580 ms and 240 – 560 ms, respectively) with only 20 

ms of significant decoding accuracy for target words that was not accounted for by a similar 

cluster in prime words (560 – 580 ms). The makes it uncertain whether the classifier was truly 

decoding the target word features or merely reflective of correlation between prime word and 

target word concreteness when related words were unpredicted. 

3.3 Results of feature ERP analysis 

Figures 5 and 6 illustrate the ERP effects of concreteness and word length features for the 

target and prime words, respectively. Exact epochs and member electrodes are reported in Table 

4. The ERP analyses were computed using ERP permutation cluster analyses (Maris & 

Figure 5. Shows difference wave ERP results (µV) for target concreteness (abstract minus concrete) and word length (long 
minus short) for each condition. Darkened areas indicate no significant clusters of differences detected within that spatio-
temporal range (see supplemental figure S# for unmasked plots). The dashed white line indicates target word onset (2000 ms). 
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Oostenveld, 2007). As illustrated in Figure 5, both predicted target words and related target 

words were not predicted showed significant differences of concreteness prior to target word 

onset. These concreteness effects are primarily concentrated 1720 – 1164 ms prior to target onset 

(280 – 836 ms in Figure 5). Effects of concreteness were only found post-target concentrated 292 

– 604 ms after target onset (2292 – 2604 ms in Figure 5). These findings align well with the 

decoding findings for each condition, providing further evidence that concreteness is pre-

activated when a target word is predicted or unpredicted but related to the prime word. For 

unpredicted related target words and unrelated target words, significant differences were found 

post-target. However, as expected, there was no evidence of pre-activation for unrelated target 

words prior to target onset. Again, these findings are in alignment with the decoding results for 

these conditions and provide further evidence that while semantic features of related but 

unpredicted words are partially pre-activated, there is still processing to do after encountering the 

actual word and that unrelated words are not semantically pre-activated at all. For the target 

words, we observe no significant differences prior to the target word onset for word-length. All 

differences are concentrated within a period spanning 196 – 508 ms after target onset (2196 – 

2508 in Figure 5) which coincides with the epoch during which the N250 occurs. It is possible 

that the effects which the classifier identified during the 1840 – 1960 ms significant decoding 

cluster were too small to be identified by our ERP analysis. Interestingly, there are significant 

differences observed post-target for the unrelated target words. When combined with the null 

results in the decoding analysis for this condition, this suggests that there may have been a 

decrease in signal-to-noise ratio for this condition that prevented the classifier from finding 
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differences between long and short words that were still observable when averaging the data for 

ERPs.  

Figure 6 depicts significant pre-target differences between concrete and abstract prime 

words for all three conditions that are concentrated between 288 and 984 ms after prime word 

onset. For unpredicted but related words, we observe post-target word onset concreteness effects 

that are concentrated 408 – 652 ms after target onset (2408 – 2652 ms in Figure 6). 

Significant differences for prime word length were observed almost exclusively prior to 

target onset with clusters concentrated between 136 and 664 ms after prime word onset. The lone 

exception was for primes with unrelated target words where significant differences were 

Figure 6. Shows difference wave ERP results (µV) from prime concreteness (abstract minus concrete) and word length (long minus 
short) for each condition. Red areas indicate significant clusters of differences in that spatio-temporal range (see supplemental 
figure S# for unmasked plots). The dashed white line indicates target word onset (2000 ms). 
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observed in a period spanning 416 – 464 ms after target word onset (2416 – 2464 ms in Figure 

6). Table 5 summarizes a post-hoc cluster analysis on the paired prime and target word ERP 

amplitudes of difference waves for features (concreteness and word length). Critically, we 

observe a cluster from 240 – 420 ms which shows that the target word concreteness effect is 

larger during this time frame than the prime word concreteness effect. This suggests differential 

processing of prime words and predicted target word concreteness during this epoch.  
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Table 4. Features - Significant differences from ERP cluster analyses 
Word Feature Condition Cluster Feature 

Difference 
(µV) 

Times (ms) Electrodes 

Min Max Begin End 
Target Concreteness Predicted 1 -1.6 -0.5 280 484 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 P3 P4 T6 

AFZ FZ CZ PZ 
2 -1.7 -0.6 496 836 F3 F4 F7 F8 FC1 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 P3 P4 T6 O1 

O2 CZ POZ 
Unpredicted 1 -1.9 -0.5 288 692 FP2 F3 F4 F7 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 P3 P4 

T5 T6 O1 O2 AFZ FZ CZ PZ POZ 
2 -0.9 -0.6 1908 1940 P3 T5 O1 
3 -2.3 -0.5 2324 2920 FP2 F3 F4 F8 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 P3 P4 

T6 O1 O2 AFZ FZ CZ PZ POZ 
Unrelated 1 -1.8 -0.7 2292 2496 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 P3 

P4 AFZ FZ CZ 
2 -2.1 -0.7 2516 2604 FP1 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 T3 T4 CP1 CP5 FZ CZ 

Length Predicted 1 -2.1 -0.9 2196 2276 F3 F4 F7 FC2 FC5 FC6 C3 T4 CP5 CP6 P4 AFZ FZ CZ 
2 -1.6 -1.1 2284 2348 CP5 T5 O1 
1 -1.5 -0.8 2212 2248 F3 F4 FC1 FC2 FC5 FC6 C3 C4 T4 CP5 CP6 AFZ FZ CZ 
2 0.7 2.1 2316 2380 F3 F4 FC1 FC2 FC6 C3 C4 CP1 CP2 CP6 P4 T6 AFZ FZ CZ PZ POZ 
3 0.8 1.9 2432 2508 C3 CP1 CP2 P3 P4 O1 O2 CZ PZ POZ 
1 -1.8 -0.6 2168 2240 FC1 FC2 FC6 C4 T4 CP2 CP5 CP6 P3 P4 T5 O1 PZ POZ 

Prime Concreteness Predicted 1 -1.7 -0.3 264 804 FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 
P3 P4 T5 T6 O1 O2 AFZ FZ CZ PZ POZ 

1 -1.5 -0.9 288 352 F3 F7 FC5 C3 T3 CP5 
2 -1.5 -0.8 364 460 FP2 F3 F4 F7 F8 FC5 FC6 C3 T3 T4 CP5 AFZ 
3 -1.8 -0.9 480 508 F3 FC1 FC5 C3 CP1 CP2 CP5 P3 CZ 
4 -2.0 -0.8 524 568 F3 F4 F7 F8 FC1 FC5 FC6 C3 T3 T4 CP1 CP2 CP5 CP6 P3 T6 CZ 
2 -0.9 -0.5 824 868 F4 FC2 FC6 C4 T4 AFZ FZ 

Unpredicted 1 -2.2 -0.5 260 740 FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 
P3 P4 T5 T6 O1 O2 AFZ FZ CZ PZ POZ 

2 -0.9 -0.5 1732 1764 FC2 FC6 C3 C4 CP1 CP2 FZ CZ 
3 -1.9 -0.5 2408 2652 F3 F4 F8 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 P4 T6 AFZ 

FZ CZ PZ 
4 -1.4 -0.8 3228 3256 F4 F8 FC1 FC2 FC6 C4 CP6 FZ CZ 
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5 -1.2 -0.7 3352 3400 F4 F8 FC1 FC2 FC6 C4 CP6 AFZ FZ CZ 
Unrelated 1 -1.3 -0.7 296 416 F3 F4 FC1 FC2 FC5 FC6 C3 C4 T4 CP1 CP2 CP6 P3 P4 AFZ FZ CZ PZ 

POZ 
2 -1.4 -1.0 476 532 C3 CP1 CP2 P4 PZ POZ 
3 -1.0 -0.8 644 676 FP1 AFZ 
4 1.0 1.2 956 984 CP5 T5 
5 0.9 1.5 2868 2900 CP5 P3 T5 O1 PZ POZ 
6 0.7 1.2 3364 3396 F4 FC1 FC6 C4 FZ 
7 0.6 0.9 3560 3596 F8 FC6 T4 

Length Predicted 1 0.6 1.6 136 176 FP1 FP2 F4 F7 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP6 FZ CZ 
2 0.7 1.9 292 488 FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T4 CP1 CP2 CP5 CP6 P3 

P4 T6 O2 AFZ FZ CZ PZ POZ 
1 0.3 1.3 316 512 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 CP6 P3 

P4 T6 O1 O2 AFZ FZ CZ PZ POZ 
3 1.2 1.7 516 548 FP1 F3 FC5 C3 AFZ FZ 
4 1.1 1.6 612 664 FP2 F3 F4 FC1 FC2 FC5 FC6 C4 CP5 AFZ FZ CZ 
2 0.4 0.9 664 748 F3 F7 FC5 C3 T3 

Unpredicted 1 0.6 1.3 320 356 CP6 P4 T6 POZ 
Unrelated 1 -1.2 -0.6 196 264 FP2 F3 F7 FC1 FC2 FC5 C3 C4 CP1 CP2 AFZ FZ CZ 

2 0.6 1.6 332 424 FC6 C4 T4 CP2 CP6 P3 P4 T6 O2 CZ PZ POZ 
3 0.6 1.0 476 520 FC5 T3 
4 -1.6 -0.8 2416 2464 FC1 FC2 C4 CP1 CP2 CP6 P4 AFZ FZ CZ 

Table 4. Summary of all significantly different ERP cluster start times, stop times, and member electrodes between target word and prime word features. For 
concreteness, a positive feature difference (µV) indicates that abstract words had greater amplitude than concrete words. For word length, a positive feature 
difference indicates long words had greater amplitude than short words. Target word onset is 2000 ms. 
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4. Discussion 
 The present study aimed to investigate the time course of top-down pre-activations during 

predictive processing in the L2 of Spanish English bilinguals’ visual word recognition using two 

approaches: machine-learning EEG decoding with mass univariate ERP cluster analyses. Within 

this paradigm, we assumed the selection of contextually relevant language, and if this is the case, 

then representations of semantic features should be identifiable within the EEG signal earlier 

than representations of visual features and we should see greater prediction error after unrelated 

target words than we observe within related but unpredicted or predicted target words. If 

bilinguals select the context appropriate language (no multiple activation of both languages) then 

they should be able to anticipate relevant features just like monolinguals. Correct prediction 

would lead to reduction of prediction error (smaller N400), incorrect prediction would lead to a 

larger prediction error, but relative to monolinguals the N400 would be reduced, because 

bilinguals often must switch between languages and, therefore, keep open the possibility that the 

unexpected input is the other language that needs activating. As was the case in Chapter 3, our 

prediction task enabled us to distinguish between trials during which the participants successfully 

predicted the exact target word from trials from an unsuccessful prediction when the target word 

was related and from trials with unrelated target words that could not be predicted. This allowed 

us to uncover whether semantic and visual features were anticipated and whether successfully 

predicted words showed decreases in prediction error. Both the results from the decoding 

analyses and of the mass univariate ERP analyses showed that semantic features were anticipated 

prior to sub-lexical features when target words were successfully predicted. Evidence of 

anticipation of semantic features was also observed for related targets that were not predicted, 

likely because participants anticipated a word that was related to the presented target word, but 

not evidence of anticipation of sub-lexical visual features was found in this case. When target 
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words were unrelated, there was no evidence of anticipation of either of these features prior to 

target word onset. The pre-target decoding and ERP results of the main effect analyses are also 

consistent with prior findings about semantic prediction. The results from this experiment 

provide compelling evidence that bilinguals engage in predictive processing in alignment with 

predictive coding accounts of language comprehension (e.g., Kuperberg & Jaeger, 2016).  

Except for one surprising result while decoding word length for unrelated target words, 

the findings are exactly as would be predicted for these tasks according to top-down predictive 

pre-activation. The null post-target decoding results for unpredicted unrelated target word length 

are particularly perplexing as this was both unexpected and a robust effect seen in the 

monolinguals in Chapter 3. However, we did have evidence of processing prediction error in the 

ERP analysis for unrelated target words that is in the typical time frame of the N250. This ERP 

analysis cluster occurs at approximately the same time as a slight increase in decoding accuracy 

that was not sufficient to be considered significant. Therefore, it is possible that due to a decrease 

in signal-to-noise ratio the classifier could not reliably pick up on word length differences during 

this time. One possible source for noise may be the reactivation of the prime word as we 

observed prime word activity within the time frame during which we would have expected to 

decode target word length.  

In this priming paradigm with a prediction task, the effects of prediction during visual 

word recognition in L2 do not appear to be delayed relative to the effects found for monolinguals 

in Chapter 3. We did not directly statistically compare the epochs from bilinguals with native 

speakers. However, when examining the onsets of main prediction effects and feature effects, 

they do not seem to differ much from those observed in Chapter 3. Indeed, the one major 

difference in timing that was observed in bilinguals was earlier activation of word length in 
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predicted words. This may be due to bilinguals’ reliance on orthographic features to identify 

language membership (Casaponsa et al., 2015). It is important to remember that these were 

highly balanced and proficient bilinguals. Therefore, it is possible that delayed prediction timings 

are a function of L2 proficiency which we did not investigate here. 

Overall, our combination of prediction paradigm, EEG decoding, and mass univariate 

ERP analyses uncovered anticipation of both concreteness information and word length 

information within bilinguals reading in L2. Additionally, that successfully anticipated 

information prevents the need for further processing of that information or calculation of 

prediction error.  
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Table 5. Features - Significant differences between target and prime words from ERP cluster analyses  
Feature Condition Cluster Target 

Difference 
(µV) 

Prime 
Difference 

(µV) 

Target - Prime 
(µV) 

Times (ms) Electrodes 

 
Min Max Min Max Min Max Begin End  

Concreteness Predicted 1 -0.4 0.4 -0.4 0.3 0.4 0.8 240 420 F8 FC6 C4 T4 CP2 CP6 P3 P4 T6 O1 O2 POZ  

2 0.8 1.0 0.6 0.8 0.4 0.9 1112 1128 F8 FC6  

3 0.3 1.0 0.1 0.8 0.5 1.1 1132 1152 F8 FC6 T4 CP6  

4 0.3 1.1 0.1 0.7 0.5 1.0 1276 1300 FC6 C4 T4 CP2 CP6 T6  

5 0.3 0.5 0.0 0.2 0.6 0.6 1376 1388 CP6 T6  

6 -0.5 0.2 -0.6 0.3 0.5 0.9 1460 1476 CP6 T5 T6 O1 O2  

7 -0.1 0.7 -0.9 0.0 0.6 1.1 1580 1612 CP6 T6 O1 O2 POZ  

8 -0.2 0.9 -0.7 0.4 0.4 1.1 1616 1692 F4 F8 FC5 FC6 C4 T3 T4 CP1 CP2 CP6 P3 P4 T5 
T6 O1 O2 CZ PZ POZ 

 

9 0.1 1.0 -0.4 0.5 0.5 1.3 1712 1820 F4 F8 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 CP5 
CP6 P3 P4 T5 T6 O1 O2 CZ PZ POZ 

 

10 0.2 1.2 -0.3 0.5 0.6 1.5 1820 1928 FP1 F3 F4 F8 FC1 FC2 FC5 FC6 C3 C4 T3 T4 
CP1 CP2 CP5 CP6 P3 P4 T5 T6 O1 O2 AFZ FZ 
CZ PZ POZ 

 

11 0.1 0.9 -0.3 0.6 0.6 1.1 1972 2052 FC2 FC5 FC6 C4 T3 T4 CP2 CP6 P4 T6 CZ  

12 0.0 0.9 -0.6 0.2 0.5 0.8 2080 2104 FC6 T4 CP2 CP6 P4 T6 O2  

13 -0.1 1.0 -0.7 0.3 0.6 0.9 2112 2128 F8 FC5 FC6 T3 T4 CP2 CP5 CP6 P3 P4 T6 O2 
POZ 

 

14 0.0 1.2 -0.7 0.4 0.4 1.3 2156 2288 FP2 F4 F8 FC2 FC5 FC6 C3 C4 T3 T4 CP1 CP2 
CP5 CP6 P3 P4 T6 CZ POZ 

 

15 0.0 1.2 -0.8 0.3 0.5 1.2 2356 2536 F8 FC6 C4 T4 CP1 CP2 CP6 P3 P4 T5 T6 O1 O2 
CZ PZ POZ 

 

16 -0.2 0.9 -0.8 0.2 0.5 0.9 2600 2664 F8 FC6 T4 CP1 CP2 CP6 P3 P4 T6 O1 O2 CZ 
POZ 

 

17 -0.4 0.7 -0.6 0.3 0.6 0.7 2676 2700 CP2 P4 O1 POZ  

18 0.2 0.7 -0.6 0.1 0.5 1.5 2764 2836 FP2 F8 FC6 T4 CP6  
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Unpredicted 1 0.0 0.2 -0.2 0.0 -0.7 -0.5 124 164 F8 FC6 T4  

2 -0.4 0.2 -0.5 0.4 -0.9 -0.3 240 476 F4 F8 FC6 C3 C4 T4 CP1 CP2 CP5 CP6 P3 P4 T5 
T6 O1 O2 PZ POZ 

 

3 -0.1 0.3 0.0 0.4 0.4 0.8 540 612 CP2 P3 P4 T5 O1 O2 PZ POZ  

4 0.6 0.8 0.7 0.9 0.4 0.6 756 772 O1 O2  

5 1.2 1.6 0.6 1.0 0.4 0.5 944 956 O1 O2 POZ  

6 0.4 1.5 0.8 1.3 -0.8 -0.5 976 1024 F8 FC6 C4 T4  

7 -0.4 0.7 -0.2 0.4 0.3 1.2 2308 2460 F3 FC1 FC2 C3 CP1 CP2 CP6 P3 P4 T6 O1 O2 
FZ CZ PZ POZ 

 

8 -0.1 0.5 0.0 0.4 0.4 1.1 2488 2604 F4 FC2 C3 CP1 CP2 CP6 P3 P4 O1 O2 FZ CZ PZ 
POZ 

 

9 0.3 2.2 -0.1 1.5 0.4 1.2 2636 2996 F3 F4 FC1 FC2 C3 C4 CP1 CP2 CP6 P3 P4 T6 O1 
O2 AFZ FZ CZ PZ POZ 

 

10 0.9 1.8 0.2 1.1 0.7 0.8 3016 3076 CP2 P4 O2  

11 0.2 0.8 0.5 1.1 -0.7 -0.5 3420 3440 FP2 F8 T4  

Unrelated 1 -0.4 0.3 -0.3 0.2 0.6 1.2 8 200 C3 CP1 CP2 CP5 CP6 P3 P4 T5 T6 O1 O2 CZ PZ 
POZ 

 

2 -0.2 0.1 -0.2 0.2 0.7 1.0 208 236 FP2 F4 FC1 FC2 CP1 CP2 CZ  

3 -0.3 0.4 -0.5 0.2 -1.6 -0.7 308 428 FP1 F3 F4 F7 FC1 FC2 FC5 FC6 C3 C4 T3 T4 
CP1 CP2 CP5 CP6 P3 P4 AFZ FZ CZ PZ POZ 

 

4 0.0 0.3 -0.6 -0.3 -1.5 -0.9 492 508 C3 CP1 CP5 PZ  

5 -0.5 -0.1 0.1 0.2 -1.4 -1.1 544 564 F4 FC2 AFZ FZ  

6 -0.7 0.5 -0.6 0.7 -1.5 -0.8 568 700 FP1 FP2 F3 F4 F8 FC2 FC6 C3 C4 T4 CP1 CP2 
CP6 P4 T6 AFZ FZ CZ PZ 

 

7 -0.4 0.1 0.2 1.2 -1.3 -1.0 712 736 FP1 FP2 F8 T4 AFZ FZ  

8 -0.5 0.2 0.5 1.1 -1.7 -0.8 808 936 FP2 F4 FC2 FC6 C4 T4 CP6 AFZ FZ  

9 -0.1 0.3 -0.3 0.7 0.8 1.2 956 1032 T3 CP5 P3 T5  

10 -0.5 -0.1 -0.9 -0.6 0.9 1.3 2224 2248 FC5 T3 CP5 T5  

11 -0.9 1.7 -1.2 0.4 0.8 2.5 2256 2788 FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 
T3 T4 CP1 CP2 CP5 CP6 P3 P4 T5 O1 O2 AFZ 
FZ CZ PZ POZ 

 

12 -0.5 1.2 -1.3 -0.5 0.8 1.8 3572 3584 FP1 F3 F4 FC1 FC2 FC5 FC6 T4  
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13 -0.3 0.0 -1.0 -0.5 0.7 1.3 3592 3592 CP5 T5  

Length Predicted 1 -0.5 0.5 -0.2 0.3 0.6 2.0 140 252 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T4 
CP1 CP2 CP5 CP6 P4 AFZ FZ CZ PZ 

 

2 -0.4 0.4 -0.7 0.2 0.7 2.4 276 368 FP1 FP2 F3 F4 F7 FC2 FC5 FC6 C3 C4 T4 CP1 
CP2 CP5 CP6 P3 P4 T6 O1 O2 AFZ FZ CZ PZ 
POZ 

 

3 -0.3 0.4 -0.5 0.6 0.8 2.4 372 468 FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 
T4 CP1 CP2 CP5 CP6 P3 P4 T6 O2 AFZ FZ CZ 
POZ 

 

4 0.2 0.4 0.4 0.7 1.1 2.0 472 488 F3 F7 FC5 C3 CP5 P3  

5 -0.2 0.7 -1.5 0.5 1.0 2.4 496 540 FP1 FP2 F3 F4 F7 FC1 FC5 FC6 C3 CP1 CP5 P3 
AFZ FZ CZ 

 

6 -0.3 1.5 -1.8 0.1 0.9 2.4 612 808 FP2 F3 F4 FC1 FC5 FC6 C3 CP5 CP6 P4 AFZ FZ 
CZ 

 

7 -0.1 1.0 -1.7 -0.7 0.9 2.4 916 1020 FP2 F3 F4 FC2 FC5 FC6 C3 CP1 CP2 CP5 CP6 
P4 AFZ FZ CZ 

 

8 -0.1 0.5 -0.5 -0.1 0.9 1.6 1532 1564 FC5 C3 CP5  

9 0.3 0.5 -0.2 0.2 1.1 1.9 2204 2244 F3 F4 FC6 AFZ FZ  

10 0.8 1.0 0.8 1.0 1.2 1.3 2680 2692 C3 CP1  

Unpredicted 1 -0.2 0.4 -0.2 0.6 -0.9 -0.4 0 28 FP1 FP2 F4 FC2 FC6 C4 T4 CP2 CP6 T6 AFZ FZ 
CZ 

 

2 0.0 0.3 -0.2 0.0 -1.1 -0.7 200 212 FP1 FC1 AFZ FZ  

3 -0.3 0.2 -0.2 0.3 -1.4 -0.6 216 272 FP1 FP2 F3 F4 F7 F8 FC1 FC2 FC6 C4 AFZ FZ  

4 -0.3 0.3 -0.1 0.4 0.7 1.2 320 408 O2 PZ POZ  

5 -0.2 -0.1 -1.2 -0.8 -1.1 -0.9 756 768 PZ POZ  

6 -0.3 0.0 -0.6 -0.4 0.7 0.9 812 836 FC5 T3  

7 0.1 0.2 -0.4 -0.2 0.6 1.1 1432 1500 FC5 T3  

8 -0.1 0.2 -0.5 -0.2 0.6 1.0 1640 1660 FC5 T3 CP5 T5  

9 0.4 0.7 -0.2 0.0 0.6 1.4 1892 1904 FC5 C3 T3 CP1 CP5 P3 T5  

10 -0.3 0.6 -0.5 0.3 0.6 1.6 1912 1948 FC1 FC5 FC6 C3 C4 T3 CP1 CP2 CP5 CP6 P3 P4 
T5 CZ POZ 

 

11 0.0 0.7 -0.6 0.2 0.7 1.4 2012 2084 FC1 FC5 C3 C4 T3 CP1 CP2 CP5 CP6 P3 T5 CZ 
PZ POZ 
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12 -0.1 0.4 -0.4 0.1 0.7 1.2 2112 2128 T3 CP1 CP5 P3 T5 POZ  

13 0.1 0.6 -0.9 0.1 -1.5 -0.7 2288 2308 CP6 P3 P4 PZ POZ  

14 -0.3 0.8 -1.1 0.5 -1.9 -0.6 2312 2556 F4 FC2 FC6 C3 C4 T4 CP1 CP2 CP5 CP6 P3 P4 
T5 T6 O1 O2 AFZ FZ CZ PZ POZ 

 

15 -0.5 0.1 -0.1 0.6 -1.4 -0.7 3404 3508 P3 T6 O1 O2 PZ POZ  

16 -0.5 -0.1 -0.3 0.5 -1.6 -0.8 3572 3596 FC2 C3 C4 CP1 CP2 P3 P4 T6 O2 CZ PZ  

Unrelated 1 -0.4 0.0 -0.1 0.2 0.7 1.7 320 332 F4 FC2 FC6 C4 T4 CP2 CP6 P4 T6 CZ PZ POZ  

2 -0.4 0.4 -0.2 0.6 0.7 2.0 340 440 F3 F4 F7 F8 FC1 FC2 FC5 FC6 C3 C4 T3 T4 CP2 
CP5 CP6 P3 P4 T6 AFZ FZ CZ PZ POZ 

 

3 -0.8 0.1 -0.4 0.1 -2.2 -0.8 908 1048 FP1 FP2 F4 FC1 FC2 FC6 C4 AFZ FZ  

4 -0.7 -0.2 -0.3 0.2 -1.5 -0.8 1700 1712 F4 FC2 C4 CP2 CP6 P4 T6 FZ  

5 -0.9 0.1 -0.1 0.8 -2.1 -0.8 1724 1768 FP1 FP2 F3 F4 FC1 FC2 C3 C4 CP1 CP2 CP6 P4 
FZ CZ 

 

6 -0.4 0.6 -0.4 0.5 0.6 2.4 2072 2236 FC6 C3 T4 CP5 CP6 P3 P4 T5 O1 O2 PZ POZ  

7 -1.1 0.7 -0.4 0.9 -2.4 -0.7 2352 2520 FP1 F3 F4 F7 FC1 FC5 FC6 C3 C4 T3 T4 CP1 
CP2 CP5 CP6 P3 P4 O2 AFZ FZ CZ POZ 

 

Table 5. Summary of all significantly different ERP cluster start times, stop times, and member electrodes for comparison between target and prime word feature effects. Clusters 
which overlap with significant clusters from the original target or prime word analyses are in bold. The max and min difference values (Target – Prime) indicates direction of the 
difference; positive values indicate that target word had a larger difference between the features and negative values indicates that the prime word had larger differences. Target 
word onset is 2000 ms. 

. 
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5. Conclusion 
The present experiment highlights the time course of top-down activation by predictive 

processing during L2 word recognition within Spanish-English bilinguals. We utilized a 

combination of EEG decoding and mass univariate ERP analysis to show that semantic features 

– such as concreteness – and visual features – such as word length – are activated before a reader 

encounters a predicted word. Therefore, these findings provide a critical extension of our 

knowledge of the predictive processing time course within bilinguals. 

Appendix 
This appendix contains supplemental tables and figures that could not be included within the 

main paper. Figure S1 shows ERP waveforms for all electrode sites. Figures S2 – S4 depict the 

unmasked ERP difference waves for all the conditions of the study: Figure S2 shows the main 

effects waveforms, Figure S3 shows target word waveforms, and Figure S4 shows the prime 

word waveforms. Tables S1 and S2 show the artifact rejection summaries for word length and 

concreteness, respectively.
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Figure S1. Shows all electrode ERP plots for predicted (blue) – predicted 
target word, unpredicted (red) – unpredicted related target word, and 
unrelated (yellow) – unpredicted unrelated target word – conditions. 
Target word onset is 2000 ms indicated by the dashed green line. 

-10 µV 
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Figure S2. Shows the unmasked difference waves for main effects of target words. A) is unrelated minus predicted target words, 
B) is unpredicted minus predicted target words, and C) is unrelated minus unpredicted target words. Target word onset is 2000 
ms. 
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Figure S3. Shows the unmasked difference waves for feature effects of predicted target words, unpredicted – unpredicted related 
target word, and unrelated – unpredicted unrelated target word –. Target word onset is 2000 ms. 

Figure S4. Shows the unmasked difference waves for feature effects of prime words. Conditions are relative to the target word: 
predicted – predicted target word, unpredicted – unpredicted related target word, and unrelated – unpredicted unrelated 
target word. Target word onset is 2000 ms. 
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Subject Table S1. Length Artifact Rejection 
Target 

Predicted Unpredicted Unrelated 
Acc. 
Long 

Rej. 
Long 

Acc. 
Short 

Rej. 
Short 

Acc. 
Long 

Rej. 
Long 

Acc. 
Short 

Rej. 
Short 

Acc. 
Long 

Rej. 
Long 

Acc. 
Short 

Rej. 
Short 

1 42 0 59 2 53 1 75 0 48 0 63 2 
2 49 0 46 4 49 0 73 8 40 1 60 3 
3 24 0 30 0 67 0 106 0 53 0 66 0 
4 43 0 57 0 53 0 80 0 48 0 65 0 
5 55 0 67 0 45 1 63 1 43 0 71 0 
6 27 0 51 0 64 0 85 0 53 0 66 0 
7 37 0 45 0 59 0 92 0 48 0 64 0 
8 34 10 40 14 40 12 66 17 39 9 48 17 
9 32 0 45 0 60 0 88 0 44 0 61 0 

10 32 0 36 0 64 0 101 0 48 0 65 0 
11 32 0 27 0 69 0 104 0 43 0 70 0 
12 29 0 36 0 56 0 86 0 46 0 59 1 
13 45 0 55 0 56 0 76 0 43 0 70 1 
14 44 0 52 0 57 0 79 0 43 0 70 1 
15 44 2 72 1 45 0 63 0 53 0 66 0 
16 45 0 65 0 46 0 71 0 53 0 66 0 
17 20 0 31 0 75 0 101 2 46 1 64 1 
18 34 1 46 1 60 1 90 0 46 2 65 0 
19 35 0 37 0 59 1 100 0 45 3 62 2 
20 36 0 52 0 60 0 85 0 47 1 65 0 
21 43 0 54 0 58 0 77 0 43 0 71 0 
22 42 0 56 0 57 0 75 0 43 0 71 0 
23 37 0 45 0 64 0 86 0 43 0 71 0 
24 44 0 63 0 57 0 68 0 43 0 71 0 
25 39 0 42 0 62 0 88 1 43 0 70 1 
26 32 0 48 0 58 0 83 2 52 1 62 0 
27 51 3 74 7 33 3 51 3 50 3 61 5 
28 54 0 72 0 36 1 62 2 53 0 66 0 
29 78 0 116 0 13 0 20 0 53 0 65 0 
30 25 1 48 0 65 0 87 1 51 0 65 0 

Subject Prime 
Predicted Unpredicted Unrelated 

Acc. 
Long 

Rej. 
Long 

 Acc. 
Short 

Rej. 
Short 

Acc. 
Long 

Rej. 
Long 

Acc. 
Short 

Rej. 
Short 

Acc. 
Long 

Rej. 
Long 

Acc. 
Short 

Rej. 
Short 
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1 67 1 39 2 97 2 43 0 86 1 41 1 
2 66 1 36 0 98 2 48 3 72 6 35 1 
3 36 0 28 0 136 0 52 0 83 0 46 0 
4 64 0 45 0 104 0 39 0 87 0 42 0 
5 85 0 50 0 82 2 38 0 85 0 38 0 
6 60 0 28 0 112 0 52 0 83 0 46 0 
7 63 0 29 0 105 0 55 0 86 0 42 0 
8 62 16 25 6 71 19 42 11 69 18 31 11 
9 55 0 34 0 106 0 48 0 83 0 38 0 

10 52 0 32 0 116 0 52 0 87 0 42 0 
11 45 0 25 0 125 0 63 0 85 0 36 0 
12 51 0 28 0 103 0 45 0 72 1 42 0 
13 73 0 39 0 97 0 49 0 84 1 38 0 
14 70 1 40 0 99 0 48 0 83 2 38 0 
15 87 3 49 2 82 0 28 0 83 0 46 0 
16 92 0 43 0 80 0 37 0 83 0 46 0 
17 38 0 24 0 127 0 57 0 85 1 42 0 
18 62 1 33 1 104 1 49 1 84 3 42 0 
19 66 0 28 0 100 1 56 0 82 4 41 1 
20 67 0 35 0 101 0 49 0 87 0 42 0 
21 63 0 42 0 107 0 46 0 85 0 38 0 
22 67 0 38 0 101 0 50 0 85 0 38 0 
23 50 0 33 0 120 0 55 0 85 0 38 0 
24 77 0 32 1 93 0 55 0 85 0 38 0 
25 60 0 35 0 110 0 52 1 85 0 37 1 
26 62 0 30 0 106 2 49 0 80 0 44 1 
27 98 10 48 3 60 4 25 4 75 8 40 5 
28 97 0 47 0 73 2 33 0 83 0 46 0 
29 147 0 70 0 25 0 10 0 81 0 45 0 
30 59 0 29 1 112 1 50 0 80 1 45 0 

Table S1. Artifact rejection summary of word length for each condition. 
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Subject Table S2. Concreteness Artifact Rejection 
Target 

Predicted Unpredicted Unrelated 
Acc. 
High 

Rej. 
High 

Acc. 
Low 

Rej. 
Low 

Acc. 
High 

Rej. 
High 

Acc. 
Low 

Rej. 
Low 

Acc. 
High 

Rej. 
High 

Acc. 
Low 

Rej. 
Low 

1 69 1 74 3 90 0 80 2 78 2 78 2 
2 60 2 64 2 95 1 82 9 75 2 68 5 
3 33 0 44 0 127 0 116 0 80 0 80 0 
4 73 0 68 0 87 0 92 0 80 0 80 0 
5 91 0 75 0 67 2 84 0 80 0 80 0 
6 52 0 56 0 108 0 104 0 80 0 80 0 
7 64 0 50 0 96 0 110 0 80 0 79 0 
8 52 16 52 13 71 21 77 18 57 23 70 10 
9 50 0 66 0 105 0 89 0 76 0 75 0 

10 54 0 48 0 106 0 112 0 80 0 80 0 
11 42 0 44 0 118 0 116 0 80 0 78 0 
12 43 0 52 0 99 0 96 0 73 1 69 0 
13 72 0 66 0 88 0 94 0 80 0 79 1 
14 66 0 66 1 94 0 93 0 79 1 79 1 
15 76 1 91 4 83 0 64 0 80 0 80 0 
16 72 0 88 0 88 0 72 0 80 0 80 0 
17 39 0 30 0 116 0 125 3 77 2 80 0 
18 68 1 47 1 90 1 111 1 79 1 78 2 
19 56 0 58 0 103 1 101 0 75 4 78 2 
20 57 0 68 0 103 0 92 0 79 1 80 0 
21 60 0 72 0 100 0 88 0 80 0 80 0 
22 61 0 78 0 98 0 81 0 80 0 80 0 
23 49 0 62 0 111 0 98 0 80 0 80 0 
24 69 1 76 0 90 0 84 0 80 0 80 0 
25 55 1 61 0 103 1 99 0 79 1 80 0 
26 60 0 57 0 97 1 100 1 76 1 78 0 
27 85 9 98 4 59 5 54 4 72 8 73 6 
28 85 0 91 0 73 2 68 1 80 0 80 0 
29 130 0 143 0 30 0 17 0 78 0 78 0 
30 54 1 53 0 104 1 107 0 78 1 78 0 

Subject Prime 
Predicted Unpredicted Unrelated 

Acc. 
High 

Rej. 
High 

Acc. 
Low 

Rej. 
Low 

Acc. 
High 

Rej. 
High 

 
Acc. 
Low 

Rej. 
Low 

Acc. 
High 

Rej. 
High 

Acc. 
Low 

Rej. 
Low 
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1 59 1 84 3 65 0 105 2 72 2 84 2 
2 48 3 76 1 79 1 98 9 60 2 83 5 
3 29 0 48 0 112 0 131 0 58 0 102 0 
4 60 0 81 0 65 0 114 0 74 0 86 0 
5 69 0 97 0 60 2 91 0 67 0 93 0 
6 48 0 60 0 93 0 119 0 58 0 102 0 
7 57 0 57 0 68 0 138 0 74 0 85 0 
8 42 17 62 12 50 16 98 23 60 14 67 19 
9 48 0 68 0 75 0 119 0 67 0 84 0 

10 47 0 55 0 78 0 140 0 74 0 86 0 
11 36 0 50 0 96 0 138 0 65 0 93 0 
12 43 0 52 0 86 0 109 0 50 1 92 0 
13 58 0 80 0 74 0 108 0 66 1 93 0 
14 54 0 78 1 78 0 109 0 66 1 92 1 
15 71 2 96 3 68 0 79 0 58 0 102 0 
16 64 0 96 0 77 0 83 0 58 0 102 0 
17 33 0 36 0 87 0 154 3 73 1 84 1 
18 51 1 64 1 72 1 129 1 73 1 84 2 
19 44 0 70 0 81 0 123 1 72 2 81 4 
20 47 0 78 0 78 0 117 0 74 0 85 1 
21 47 0 85 0 85 0 103 0 67 0 93 0 
22 58 0 81 0 73 0 106 0 67 0 93 0 
23 47 0 64 0 85 0 124 0 67 0 93 0 
24 54 1 91 0 77 0 97 0 67 0 93 0 
25 44 0 72 1 88 0 114 1 66 1 93 0 
26 54 0 63 0 83 1 114 1 56 1 98 0 
27 79 8 104 5 47 5 66 4 53 5 92 9 
28 79 0 97 0 61 1 80 2 58 0 102 0 
29 120 0 153 0 21 0 26 0 58 0 98 0 
30 50 0 57 1 91 0 120 1 58 0 98 1 

Table S2. Artifact rejection summary for concreteness for each condition. 
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Chapter 5 

General Conclusion  
The studies described in this dissertation utilized a combination of MVPA classification 

and mass univariate cluster analysis to examine the time course of predictive processing during 

visual word recognition. Specifically, the experiments aimed to 1) establish the best-performing 

decoding tool for decoding results from visual word priming paradigms from a selection of 

readily accessible options, 2) specify the time course of pre-activation of lexico-semantic and 

visual word features in native American-English speakers, and 3) compare that time course with 

the time course of Spanish-English bilinguals reading in L2 (English). The time course of feature 

pre-activation has critical implications for determining the architecture behind predictive 

processing in both native and non-native readers. If readers are pre-activating word information 

in a top-down fashion and at all levels of representation, then that would provide evidence of an 

automatic predictive coding model in which higher levels in the cortical hierarchy are 

continuously making top-down predictions, then calculating prediction error which is passed up 

to update the readers’ higher-level representations.  

The study in Chapter 2 established SVM as a superior option from three highly accessible 

EEG decoding machine learning algorithms. We then used SVMs – in combination with mass 

univariate ERP analyses – to provide evidence that when during prediction tasks, readers can 

pre-activate lexico-semantic and sublexical visual features and whether they do so in a top-down 

fashion – higher level predictions, such as anticipated semantic features, are made first and those 

predictions inform the predictions about lower-level features, like word length – as would be 

expected within a predictive coding model of language processing (Kuperberg & Jaeger, 2016). 

Additionally, predictive coding models require prediction error to update higher level 
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representations (Rao & Ballard, 1999). One important aspect of the N400 ERP component is that 

it has been shown to be sensitive to semantic expectation violations (Kutas & Hillyard, 1980) 

and can be considered a reflection of prediction error within predictive processing in language 

(Eddine et al., 2023). The reduced N400 effects when participants successfully predict a word 

and increased N400 when predictions are incorrect are both reflective of this prediction error 

calculation within the present study. Next, we looked at predictive processing within bilinguals 

using the same paradigm and analyses. The bilingual group in Chapter 4, not only showed 

evidence of lexico-semantic prediction and visual feature pre-activation, but the visual feature 

decoding was clearly before target onset. We found similar evidence of prediction error within 

our bilingual study as well. These findings suggest that bilinguals predict in L2 in a similar 

fashion to monolinguals in their L1. Together these findings provide compelling evidence in 

support of predictive coding models of anticipation within language processing whether bilingual 

or not and regardless of whether using L1 or L2. 

Prior studies have suggested the possibility that while bilinguals may predict in L2 in a 

similar fashion to native speakers, there may be latency delays in processing these predictions 

(Frenck-Mestre et al., 2014; Kaan, 2023; Newman et al., 2012). Although there are no direct 

statistical comparisons of timings between the native English speakers in Chapter 3 and the 

bilinguals in Chapter 4, the overall patterns of results did not suggest any delays in prediction 

timing for the Spanish-English bilinguals relative to the native English speakers. Indeed, within 

bilinguals pre-activation of visual features was observed earlier than in monolinguals which may 

be due to bilinguals’ reliance on word length for language identification (Casaponsa et al., 2015). 

An important caveat to this finding is that due to some overlap between prime and target word 

pre-target concreteness effects in both types of analyses it is difficult to separate out precise 
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onsets for target word pre-activation. Thus, it is possible that there are differences in the timing 

of these effects between the two groups that could not be isolated by this experimental setup.  

Gaining a more precise account of the prediction time course could be partially addressed 

through modification of the current paradigm. One limitation of the paradigm is that in 

unpredicted trials whether the target word is related or unrelated, there is no way of knowing if 

the participant successfully settled on a prediction. For example, after seeing the prime word 

“circus” a participant may predict “acrobat” or the participant may be unable to come up with a 

prediction before the target word appears. In either case, this would fall under the appropriate 

unpredicted condition. Due to this, there will be additional noise within these conditions which 

can impact the ability to detect differences within these conditions. One solution to this problem 

would be to modify the paradigm to have participants explicitly identify their predicted word, 

either through vocalization or by reporting their predicted word post-trial. Such a modification 

would allow more clarity on the prediction time course when encountering an unsuccessfully 

predicted but related word. Additionally, we achieved reliable decoding of these lexical and sub-

lexical features despite not explicitly manipulating the concreteness or word length of target 

words. While this is promising for more naturalistic settings to study these feature activations, it 

may be necessary to explicitly manipulate semantic features to gain a more precise separation of 

the effects of concreteness within prime and target words.  

Overall, the evidence from these studies suggests that both native speakers and non-

native speakers engage in predictive processing in a similar top-down fashion while calculating 

prediction error when their predictions are incorrect. This aligns well with predictive coding 

accounts of language processing (Eddine et al., 2023; Kuperberg & Jaeger, 2016). However, the 

studies highlight the need for further investigation into the precise prediction time course 



 

 177 

differences between native and non-native speakers. Moreover, these studies also highlight the 

possibility that prediction may not always occur at all levels of processing, and this may be 

particularly true of native speakers. Finally, these studies were all conducted at the word level 

within a priming paradigm. Thus, there is a need to perform similar analyses at other language 

processing levels – such as within sentences – and in more natural settings which do not 

explicitly instruct the participant to predict.  

With the rise of predictive coding as a potential unifying theory in cognitive processing, 

including language processing, the study of the time course of predictive processing during 

language comprehension is becoming increasingly important. The present work contributes to 

our understanding of this time course in both first and second languages. 
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