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Introduction 

 

Seismic AVA inversion is commonly used to develop reservoir models with the goal of producing 

detailed fine-scale permeability fields that can accurately represent the observed production data.  The 

typical workflow transforms course-scale geophysical parameters, 𝜃𝑐 (acoustic velocity Vp, shear 

velocity Vs, density  and porosity ), derived from some form of AVA inversion through a rock 

physics model derived from log data to a fine-scale permeability model, 𝑘𝑓. Sulistiono et al. (2015) 

describes a commonly used work flow using current geostatistical inversion and statistical rock physics 

to produce an initial 𝑘𝑓 model that then requires history matching to produce a final model. Once history 

matching has been done the new 𝑘𝑓 model, when transformed back to 𝜃𝑐, rarely fits the seismic data. In 

most cases the loop is not closed by cycling between AVA and production models until a common 

model is found that fits both the seismic and production data. Even if the loop is closed it requires 

considerable time and computing resources. 

 

New developments in machine learning (ML) technology have provided methods that can link the 

course-scale 𝜃𝑐 to fine-scale 𝑘𝑓.  However, unlike facial recognition applications where ML has 

performed well, ML applications in the earth sciences are limited by a relative lack of training data (a 

company may have 10’s of seismic data sets compared to millions of photographs of faces in a facial 

recognition data base).  The lack of real data examples can be ameliorated using the method of transfer-

learning (Goodfellow, et al. 2016) where models and synthetic data are used to produce synthetic data 

for ML training.  

 

Borrowing from the transfer-learning approach, we present a combination of stochastic MCMC-based 

AVA inversion (Hoversten et al. 2017) with conditional generative adversarial networks (cGAN).  The 

starting point is a Bayesian model for full joint AVA and production data inversion.  In this paper we 

use a simplified form of the complete model to develop a workflow that generates an ensemble of 𝜃𝑐 

and 𝑘𝑓 models that fit both the AVA data and the production data. 

 

Method 

 

The Bayesian model for the joint posterior distribution of  𝜽𝒄 and 𝒌𝒇, 𝒇(𝜽𝒄, 𝒌𝒇|𝑺, 𝑫), given AVA data 

(S) and production data (D) is given by 

 

𝒇(𝜽𝒄, 𝒌𝒇|𝑺, 𝑫) ∝ 𝒇(𝑺|𝜽𝒄) × 𝒇(𝑫|𝒌𝒇) × 𝒇(𝒌𝒇|𝜽𝒄) × 𝒇(𝜽𝒄)                                 (1) 

 

where 𝒇(𝑺|𝜽𝒄) is the likelihood of S given 𝜽𝒄 and 𝒇(𝑫|𝒌𝒇) is the likelihood of D given 𝒌𝒇.  The term 

that integrates cGAN into the stochastic inversion is 𝒇(𝒌𝒇|𝜽𝒄), the conditional probability of 𝒌𝒇 given 

𝜽𝒄.  The final term in (1) is the prior information on the probability of 𝜽𝒄.  The standalone stochastic 

AVA inversion (Hoversten et al. 2017) would remove 𝒇(𝑫|𝒌𝒇) and 𝒇(𝒌𝒇|𝜽𝒄) from the right-hand side 

leaving only the posterior 𝒇(𝜽𝒄|𝑺). 

 

We have chosen cGAN to generate 𝒇(𝒌𝒇|𝜽𝒄) because it is currently under investigation by many 

researchers, leading to open source code that could be quickly tested and modified. The original Torch 

code developed by Isola et al. (2017) was tested and then modified for use in this work.  Two options 

for the generator were considered: 1) Encoder-decoder networks (Hinton and Salakhutdinov, 2006, 

Badrinarayanan et al., 2016), and 2) U-net (Ronneberger et al., 2015). Further, two options for 

the discrimination were considered, 1) Markovian discriminator (PatchGAN) (Li and Ward, 

2016), and 2) Conventional neural networks with variable layers.  The choice of options is part 

of the model selection process. For the results shown here we chose U-net as the generator and 

conventional neural networks as the discriminator. The tuning parameter values were taken from 
Isola et al. (2017). 
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Equation (1) represents a full joint inversion of AVA and production data.  For the AVA inversion, the 

forward problem required to evaluate 𝒇(𝑺|𝜽𝒄) at each element of the Markov chain is a convolution that 

is fast, however the forward problem required to evaluate 𝒇(𝑫|𝒌𝒇) is a flow simulation that is 

numerically intensive. While this is not impossible, and the end-product may justify the cost, we are 

investigating ways to speed the evaluation of 𝒇(𝑫|𝒌𝒇).  Approximations such as stream line simulation 

or emulation and even ML are being considered.  In this presentation, we make the approximation 

that 𝒇(𝒌𝒇|𝜽𝒄) is smaller than 𝒇(𝑺|𝜽𝒄), allowing 𝒇(𝒌𝒇|𝜽𝒄) to be dropped and  thus decoupling  𝒇(𝑫|𝒌𝒇)  

and 𝒇(𝑺|𝜽𝒄).  This results in a workflow that eliminates evaluation of 𝒇(𝒌𝒇|𝜽𝒄) during the MCMC 

sampling and moves it to a post-inversion step, thus reducing the number of simulations required. 

 

The process is summarized in five steps; 

1) Numerical models based on flow simulations and rock-physics provide synthetic AVA data 

from 𝒌𝒇 models.   

2) Stochastic AVA inversion of the synthetic data from 1) provides an ensemble of course-scale 

𝜽𝒄 (i.e. Vp, Vs, , ) models.   

3) cGAN is trained on the synthetic 𝜽𝒄 and 𝒌𝒇 to produce 𝒇(𝒌𝒇|𝜽𝒄). 

4) Field data is inverted and the conditional probability 𝒇(𝒌𝒇|𝜽𝒄) is applied to the ensemble of 

stochastic 𝜽𝒄 models producing an ensemble of 𝒌𝒇 models. 

5) All or a subset of the ensemble of 𝒌𝒇 models have production simulated, and the models that 

match the field production data within the estimated variance are selected. 

 

Steps 1-3 represent the transfer learning using models to generating training data and training the cGAN 

network.  Step 4 provides an ensemble of 𝒌𝒇 models that can be used as is or as input to step 5.  Step 5 

refines 𝒌𝒇 to those that fit available production data.  In the best-case scenario 𝒌𝒇 models from step 5 

may be used directly for production predictions; however, it is likely that these models will still require 

human interaction before they are field-ready. Nevertheless, our goal is to significantly accelerate the 

workflow and provide more robust 𝒌𝒇 models compared to starting directly from rock-physics 

transformation of the course-scale 𝜽𝒄. 

 

Examples 

 

To test the proposed inversion workflow, a fine-scale dual-permeability model that had previously been 

built for CO2 injection modelling was used.  The 𝒌𝒇 field was generated using a first order Markov 

random field with horizontal and vertical weights calculated using an exponential variogram with 

correlation lengths of 25m and 0.5m in x and z directions, respectively.  The permeability field was 

transformed to 𝜽𝒄 using the rock-physics properties derived from a borehole used by Chen and 

Hoversten (2012).   

 

Synthetic AVA gathers at 4ms sampling were generated every 16 meters on a 2D section. The synthetic 

data was first inverted for course-scale 𝜽𝒄 using the algorithm from Hoversten et al. (2017). Figure 1 

shows the true fine-scale permeability model, 𝒌𝒇, the course-scale permeability, 𝒌𝒄, converted from the 

median 𝜽𝒄, an example synthetic angle gather used as observed data and the computed angle gather 

from the median 𝜽𝒄 model. 

 

Flow was modelled for a CO2 injection well at the left side and production at the right side. In addition 

to the injection flow rate, the pressure and CO2 saturation was also calculated at x of 128, 256, and 384 

m at five depths from 43 to 213m to simulate monitor wells. In step 5) several combinations of injection 

flow rate, measured pressure and saturation were tested. Figure 2 shows the injection flow rate at the 

left side of the model, the pressure curves at x=256, z=1373m for 600 realizations of step 4), the MAP 

model from 600 realizations from step 4, and the 𝒌𝒇 that best fits the 15 monitor pressure curves (step 

5). In Figure 2a) and b) the pressure curve from the model derived from the course-scale AVA inversion 

without application of 𝒇(𝒌𝒇|𝜽𝒄) (red curve) does a very poor job of fitting the observed flow rate and 
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pressures curve. This is true at all the pressure monitor locations and represents a common occurrence 

after AVA models are converted to flow models. The MAP solution from the 600 fine-scale realizations 

of step 4) without conditioning to the flow rate or pressure data (blue curve) is significantly closer to 

the true response (green curve) than that produced directly from the median 𝜽𝒄 (red curve). If the 15 

monitor locations are used in step 5) the best overall fits to observed pressure or saturation come from 

using the pressure or saturation respectively. The pressure responses from conditioning to the saturation 

data only (magenta), while better than AVA only, still has significant error in flow rate and pressure 

(Figure 2a and 2b) compared to conditioning to pressure data. 

While the spacing of the monitor wells in this model may be close to appropriate for mature land-based 

fields, in an offshore setting it is more likely that only a few wells would provide data.  In the case here 

where only the injection flow rate is used in step 5, the 𝒌𝒇 that best fits the flow rate data (yellow curve 

 
Figure 2 a) flow rate at CO2 injection well on left side of model, b) pressure at z=1373m in middle 

monitor well, c) MAP solution from the 600 fine-scale realizations of step 4) without conditioning to 

the flow rate or pressure data, d) 𝑘𝑓 from best fit to 15 monitor-well pressure curves. 

 

Figure 1 a) A single angle gather from the true fine-scale model, b) the calculated gather from the 

median 𝜃𝑐 model from AVA inversion, c) the true fine-scale 𝑘𝑓model, d) the k model transformed from 

the median 𝜃𝑐 mode1 derived from AVA inversion. The fine-scale model has dx=4m, dz=2m, the 

inversion model has dx=16m, dz = 16m 
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in figure 2a) does a reasonable job of fitting the pressure at the monitor well locations (Figure 2b) and 

saturation (not shown) at the monitor locations. 

 

Conclusions 

 

In this study, we develop a new approach that bridges the gap between the resolution of seismic AVA 

inversion models and the fine-scale models required to match production data by combining Bayesian 

models with deep learning. Tests show that application of cGAN conditional probabilities applied to 

AVA-generated course-scale models significantly improves production history matches without 

additional flow simulations. Further, flow simulation of the ensemble of fine-scale models generated by 

cGAN conditional probabilities applied to AVA-generated course-scale parameters followed by 

selection of those models that best fit production data provides additional significant improvement. 

Since seismic inversion, training of the deep neural networks, and forward flow simulation are carried 

out separately, the workflow is scalable and can be applied to large-scale problems. 

 

This work represents only a proof of concept, work continues to enhance many aspects of the workflow. 

In particular, the large number of tuneable parameters that control the performance of the cGAN network 

means that our choices are almost certainly not optimal.  We observe that the spatial frequency content 

of the produced 𝒌𝒇 models is somewhat higher than that of the true model.  This is most likely due to 

sub-optimal cGAN parameter choices. Additionally, we are investigating ways to build constraints such 

as connectivity and/or lithotype ratios into the cGAN.   

 

We are currently working on field data examples to test the current and enhanced workflows. We will 

report on the application to field data in 2019. 
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