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Abstract

Numerical methods for the Landau-Lifshitz equation in micromagnetics : the mimetic
finite difference method and the mass-lumped finite element method

by

Eugenia Hail Kim

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Jon Wilkening, Chair

Micromagnetics is a continuum theory describing magnetization patterns inside ferromag-
netic media. The dynamics of a ferromagnetic material are governed by the Landau-Lifshitz
equation. This equation is highly nonlinear, has a non-convex constraint, has several equiv-
alent forms, and involves solving an auxiliary problem in the infinite domain, which pose
interesting challenges in developing numerical methods. In this thesis, we first present a
low order mimetic finite difference method for the Landau-Lifshitz equation, that works on
general polytopal meshes on general geometries, preserves non-convex constraint, is energy
(exchange) decreasing, requires only a linear solver at each time step and is easily applicable
to the limiting cases. Secondly, we present a high order mimetic finite difference method
for the Landau-Lifshitz equation which is third order in space and second order in time.
In fact, it can be arbitrarily high order in space. This method works on general polytopal
meshes, and preserves the non-convex constraint in a certain sense. Lastly, we present a
new class of convergent mass-lumped finite element methods to solve a weak formulation of
the Landau-Lifshitz equation. The scheme preserves a non-convex constraint, requires only
a linear solver at each time step and is easily applicable to the limiting cases. We provide a
rigorous convergence proof that the numerical solution of our finite element method for the
Landau-Lifshitz equation converges weakly to a weak solution of the Landau-Lifshitz-Gilbert
equation.
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Chapter 1

Introduction

1.1 Micromagnetics

Micromagnetics is a continuum theory describing magnetization patterns in ferromagnetic
media. It can be used to explain the magnetization process of ferromagnetic materials
between magnetic domains at submicrometer length scales. These scale are large enough to
use continuum physics, neglecting the description of the atomic structure of the material,
but are small enough to resolve complex magnetic structures such as domain walls, magnetic
vortices and skyrmions [83, 65, 95, 94, 56, 66, 57, 50, 19].

In micromagnetics, the quantity of interest is the magnetization M. Mathematically, it
is a vector field from the domain Ω to R3. Magnetization is defined as the magnetic dipole
moment per unit volume [44]. It is a property of materials that describes to what extent
they are affected by magnetic fields, and also determines the magnetic field that the material
itself creates [29]. In ferromagnetic materials, far below the Curie temperature, the length of
the magnetization stays constant throughout the domain, i.e.

|M| = Ms. (1.1)

where Ms is the saturation magnetization. For convenience, we normalize the magnetization
and set m := M

Ms
so that the magnetization is a vector field of unit length.

Micromagnetics can handle both static equilibria and dynamic behavior inside ferromag-
netic materials. For the static case, the magnetization patterns or domain structures inside
ferromagnetic materials are local or global minima of the total energy called the Landau-
Lifshitz energy, or free energy [29, 40].
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1.2 The Landau-Lifshitz energy

The Landau-Lifshitz energy has four contributions : exchange energy, anisotropy energy,
stray field energy and the external field energy. It is given by

E(m) =
η

2

∫
Ω

|∇m|2 dx+
Q

2

∫
Ω

(m2
2 +m2

3) dx− 1

2

∫
Ω

hs ·m dx−
∫

Ω

he ·m dx, (1.2)

where each term will be described in more detail below.

1.2.1 Exchange energy

The exchange energy prefers the alignment of the magnetization along a common direction
and penalizes spatial change in magnetization m. It is minimized when the magnetization
is uniform. The exchange energy can be written as

Eex(m) =
η

2

∫
Ω

|∇m|2 dx

where η is the exchange constant.

1.2.2 Anisotropy energy

The anisotropy energy prefers certain orientation of the spins due to the crystallographic
properties of the ferromagnetic material. In the crystal lattice, it tries to align in one or
more specific directions, called easy axes. The anisotropy energy is given by

Eani(m) =
Q

2

∫
Ω

ψ(m) dx.

where Q is an anisotropy constant and ψ : S2 → R+. For the material with uniaxial
anisotropy with easy axis along the x-axis, the anisotropy energy is given by

Eani(m) =
Q

2

∫
Ω

(m2
2 +m2

3) dx.

This energy is minimized when the magnetization aligns along the easy axis.

1.2.3 Stray field energy

The magnetic material itself creates a magnetic field known as the stray field, or magneto-
static field. The stray field is given by

Estray(m) = −1

2

∫
Ω

hs ·m dx
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In the absence of the electric currents and charges, Maxwell’s equations reduce to [40, 44]

div B = 0,

∇×Hs = 0,
(1.3)

where B is the magnetic induction and Hs is the stray field (magnetic field). The relation
of B, Hs and M is

B = µ0(Hs + M). (1.4)

where µ0 is magnetic permeability of vacuum.
Normalizing the stray field by hs := Hs

Ms
, we have ∇×hs = 0 from (1.3). Then, the stray

field is given by hs = −∇φ for some potential φ. We have

div (−∇φ+ m) = 0 in Ω (1.5)

from (1.3) and (1.4). Let Ωc denote the complement of Ω. Then, the potential φ satisfies

4φ =

{
div m in Ω,

0 on Ωc,

[φ]∂Ω = 0,

[∇φ · n]∂Ω = −m · n,

(1.6)

where [v]∂Ω denotes the jump of the function v across the domain boundary, and n is the
outward unit normal vector. Hence, the stray field hs is given by hs = −∇φ, where

φ(x) =
1

4π

∫
Ω

∇
(

1

|x− y|

)
·m(y) dy

= − 1

4π

(∫
Ω

∇ ·m(y)

|x− y|
dy −

∫
∂Ω

m(y) · n
|x− y|

dS(y)

)
.

(1.7)

1.2.4 External energy

The external energy tries to align the magnetization with an external field. It is also called
Zeeman’s energy or the applied field energy. The energy is given by

Eext(m) = −
∫

Ω

he ·m dx.

This energy is minimized when the magnetization aligns with the external field.
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1.3 The Landau-Lifshitz equation

The dynamics of the magnetic distribution in a ferromagnetic material occupying a region
Ω ⊂ Rd where d = 2, or 3, are governed by the Landau-Lifshitz (LL) equation. The
magnetization m : Ω× [0, T ]→ R3 satisfies

∂m

∂t
= −m× h− αm× (m× h), (1.8)

where α is a dimensionless damping parameter and h is the effective field. The first term on
the right-hand side of (1.8) is called the gyromagnetic term. Gyromagnetic precession is a
conservative motion that describes the rotation of the magnetization m around the effective
field h. The second term on the right-hand side of (1.8) is called the damping term, which
leads to dissipative precession. Dissipative precession is the mechanism through which the
magnetization m relaxes to align parallel with the effective field h as the system proceeds
to equilibrium.

The effective field is defined as the functional derivative of the Landau-Lifshitz energy
(1.2)

h(m) := −δE(m)

δm
= η4m−Q(m2e2 +m3e3) + hs(m) + he, (1.9)

where η is the exchange constant, Q is an anisotropy constant, hs is the stray field, and he
is the external field.

Remark 1. The terms corresponding to the exchange, anisotropic and external energy are
local terms in that local change in the magnetization affects them locally. But the stray field
energy term is nonlocal in that local change in the magnetization has a global effect.

We define the low order terms h̄(m) in (1.9) as

h̄(m) := −Q(m2e2 +m3e3) + hs(m) + he. (1.10)

These terms can be regarded as low-order (relative to ∆m) when considering mathematical
properties such as existence and regularity of the solution [6]. Also, they have few derivatives
than ∆m.

The problem is closed with initial condition

m(x, 0) = m0(x),

and Neumann or Dirichlet boundary conditions. In most of the literature [40], the problem
is imposed with homogeneous Neumann boundary condition, i.e.

∂m

∂n
= 0.
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Remark 2. From (1.8), we can immediately derive the nonconvex constraint |m| = 1.
Taking a dot product with m in both sides of (1.8) we have

m · ∂m

∂t
= 0.

Thus, we have
1

2

∂|m|2

∂t
= m · ∂m

∂t
= 0. (1.11)

From this equation, we get that the length of m, |m| is constant in time.

1.3.1 The Landau-Lifshitz-Gilbert equation

There are several equivalent forms of the Landau-Lifshitz equation (1.8) which lead to a large
family of numerical schemes for the Landau-Lifshitz equation. The Landau-Lifshitz-Gilbert
equation was proposed by Gilbert [43] with the damping term,

∂m

∂t
− αm× ∂m

∂t
= −(1 + α2)(m× h). (1.12)

Another equivalent form is the modified Landau-Lifshitz-Gilbert equation

α
∂m

∂t
+ m× ∂m

∂t
= (1 + α2)(h− (h ·m)m). (1.13)

which is used in [6] to develop a numerical scheme. The equations (1.8), (1.12) and (1.13)
are equivalent, and can be derived from each other using the vector identity

a× (b× c) = (a · c)b− (a · b)c. (1.14)

In the special case of h = 4m, that is h̄ = 0, we have more equivalent forms:

∂m

∂t
=−m×∆m− αm× (m×∆m)

=−m×∆m + α∆m− α(m ·∆m)m

=−m×∆m + α∆m + α|∇m|2m.

(1.15)

We used the vector identity (1.14) in the second equality and the nonconvex constraint
|m| = 1, and in turn

m · ∂m

∂u
= 0, u ∈ {x, y, z}

in the last equality.
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1.3.2 Harmonic map heat flow into S2 and the Schrödinger map

Taking only the damping term on the right-hand side of (1.15), we have the harmonic map
heat flow into S2 [46],

∂m

∂t
= α∆m + α|∇m|2m.

This is a geometric generalization of the linear heat equation. Taking only the gyromagnetic
term on the right-hand side of (1.15), we have the Schrödinger map [46],

∂m

∂t
= −m×4m.

This is a geometric generalization of the linear Schrödinger equation.
By designing a numerical scheme based on the Landau-Lifshitz equation (1.8), instead

of the Landau-Lifshitz-Gilbert equation (1.12) or other form (1.13), we can easily apply the
method to the harmonic map heat flow into S2 and the Schrödinger map.

1.4 Properties of the Landau-Lifshitz equation

1.4.1 Nonconvex constraint

One of the important properties of the Landau-Lifshitz equation is the nonconvex constraint
that the length of the magnetization is conserved in time; See (1.11). There are a wide
variety of numerical methods that preserve the nonconvex constraint in various ways [29]:

• direct conservation of the nonconvex constraint can be built into the time stepping
schemes : see section 1.7.1 below.

• nonlinear projection step : this is also a direct conservation of the nonconvex constraint,
employing a projection back to the sphere in a nonlinear fashion.

• asymptotic conservation of the nonconvex constraint.

1.4.2 Lyapunov structure

In the case of constant applied field and α 6= 0, we see that the Landau-Lifshitz energy
decreases in time due to the Lyapunov structure. Formally, we have

dE

dt
= −

∫
Ω

h · ∂m

∂t
dx = −α

∫
Ω

|m× h|2 dx = − α

1 + α2

∫
Ω

∣∣∣∣∂m

∂t

∣∣∣∣2 dx

Since the right-hand side of the equation is less than or equal to 0, the energy does not
increase.
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1.4.3 Hamiltonian structure

In the case of constant applied field, we have the conservation of the Landau-Lifshitz energy
in time, if there is no damping (α = 0). Formally, we have

dE

dt
= −

∫
Ω

h · ∂m

∂t
dx = 0.

This is called the Hamiltonian structure.

1.5 Stray field computation

The most time consuming part of micromagnetic simulation is the computation of the stray
field hs, which involves solving an infinite domain exterior field problems (1.6).

The numerical methods for the stray field calculation can be divided into two groups [2].
The first group are methods that solve a PDE posed in Rd for the potential field (1.6), where
hybrid numerical methods are typically used. In [37, 42], the finite element and boundary
element methods are used and in [22], the finite element method and the shell transformation
are employed. The computational costs are reduced by using multigrid preconditioners [84]
and H-matrix approximation [70].

The second group includes methods based on direct evaluation of the integral with a
nonlocal kernel (1.7), using the fast Fourier transform [61, 1, 96, 41], the fast multipole
method [17], the nonuniform grid method [60], and the tensor grid method [34].

The computational costs are between O(N) and O(N logN), where N is the number of
unknowns.

1.6 Previous mathematical results

Local existence and uniqueness, and global existence and uniqueness with small-energy initial
data for strong solutions of the Landau-Lifshitz equation in R3 was shown in [23]. Local
existence and uniqueness of strong solutions of the Landau-Lifshitz equation on a bounded
domain Ω was shown in [24]. Global existence and uniqueness of strong solutions of the
Landau-Lifshitz equation for small-energy initial data on bounded domain Ω ⊂ R2 was
shown in [24].

The existence of weak solutions was shown in the following papers : In [8, 45], global
existence of weak solutions of the Landau-Lifshitz equation with h = 4m was proved for
Ω ⊂ R3. Moreover, the nonuniqueness of weak solutions of the Landau-Lifshitz equation
with h = 4m and α 6= 0 was proved in [8].



CHAPTER 1. INTRODUCTION 8

1.7 Previous numerical methods

1.7.1 Time-stepping schemes

Several time-stepping schemes have been developed that preserve the unit length constraint,
but without rigorous convergence analysis. To the best of our knowledge, these methods
have only been tested on finite difference schemes, although they could also be used for
finite element discretization.

1.7.1.1 The Gauss-Seidel projection method

The Gauss-Seidel projection method [87, 88, 39] uses another formulation of the Landau-
Lifshitz equation, the last equation in (1.15). It treats the gyromagnetic and damping
terms separately to overcome the difficulties associated with the stiffness and nonlinearity.
It regards |∇m|2 as the Lagrange multiplier for the pointwise constraint |m| = 1. This
method is first-order accurate in time and unconditionally stable. It was further improved
to be second-order accurate but without unconditional stability.

1.7.1.2 Geometric integration method

In [49], Jiang, Kaper, and Leaf develop the semi-analytic integration method. It uses the
fact that m is determined by (m · h) and m × h and analytically integrates the system of
ODEs for (m · h)h and h× (m× h). This method is first-order accurate and explicit, so it
is subject to a CFL time step constraint.

The geometric integrators were used in [51] and, in a more general setting, in [54]. They
are more amenable for building high order scheme than previous methods. The methods
use the Cayley transform to lift the Landau-Lifshitz-Gilbert equation to the Lie algebra of
the three dimensional rotation group. In [51], the scheme, which is second-order accurate,
is studied numerically, and yields the same scheme as the mid-point method. In [54], the
schemes that are first, second and fourth-order accurate, are examined.

1.7.1.3 Mid-point method

In [15, 32], the mid-point method is studied. It is second-order accurate, unconditionally sta-
ble, and preserves the Lyapunov and Hamiltonian structures of the Landau-Lifshitz equation.
This method can also be regarded as a geometric integration method.

1.7.2 Semi-implicit schemes in [72] and [31] for 2D and 3D
formulations, respectively, of the Landau-Lifshitz equation

Semi-implicit schemes are introduced in [72] for 2D, and in [31] for 3D formulation of the
Landau-Lifshitz equation and error estimates are derived under the assumption that there
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exists a strong solution. These schemes are linear and preserve the nonconvex constraint
asymptotically.

1.7.3 Finite element methods

The finite element methods for the Landau-Lifshitz equation deal with weak solutions, and,
in some cases, also include a rigorous convergence analysis.

1.7.3.1 Alouges et al’s scheme

The finite element method for the Landau-Lifshitz equation with rigorous convergence proof
was first presented by Alouges and his collaborators in a series of paper [6, 5, 7]. It is
developed based on the modified Landau-Lifshitz-Gilbert equation (1.13), which only requires
a linear solver for each time step. It is first order accurate in time and second order accurate
in space (in L2 norm). The method was further developed to reach almost second order
accuracy in time [52, 9].

1.7.3.2 Bartels and Prohl’s scheme

In [13], Bartels and Prohl presented an implicit time integration method based on the
Landau-Lifshitz-Gilbert equation. It is second order accurate in both space and time, and
unconditionally stable, but a nonlinear solver is needed for each time step. However, there
is a step size constraint k

h2
≤ C to guarantee the existence of the solution for the fixed point

iteration.

1.7.3.3 Cimrák’s scheme

In [30], Cimrák developed a scheme which is based on the Landau-Lifshitz equation. It is
second order accurate in both space and time, but a nonlinear solver is necessary for each
time step. It also had the step size constraint k

h2
≤ C to guarantee the existence of the

solution for the fixed point iteration.

1.8 Applications

Application areas of micromagnetics include the following areas and magnetic materials :

• magnetic sensor technology [73, 81, 53, 80, 85].

• magnetic recording [78, 74, 33, 69, 93].

• magnetic storage devices such as hard drives and magnetic memory (MRAM) [18, 75,
97, 92, 16, 26, 55].
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• permanent composite magnets [36, 71, 35, 79, 77, 67] : Permanent composite magnets
are used in electric cars, computers, and wind turbine generators. These materials
consist of hard and soft magnetic grains or crystals in which have different properties.

• magnetoelastic materials [48, 76, 25, 11, 3, 27, 64, 90, 91] : Magnetoelastic materials
change their shape in response to an applied magnetic field with volume conservation.
They play important roles in actuation and sensing applications.

1.9 Outline

The remainder of this thesis is organized into three additional chapters. In chapter 2, the
mimetic finite difference method for the Landau-Lifshitz equation is presented. Chapter 2
has been adapted from the paper

• E. Kim and K. Lipnikov, The mimetic finite difference method for the Landau-Lifshitz
equation, Journal of Computational Physics, 328:109–130, 2017.

In chapter 3, high order mimetic finite difference method for the Landau-Lifshitz equation
is presented. I anticipate adapting the material of this chapter into a journal manuscript
entitled

• E. Kim and K. Lipnikov, High order mimetic finite difference method for the Landau-
Lifshitz equation.

In chapter 4, numerical analysis of the mass-lumped finite element method for the Landau-
Lifshitz equation that deals with weak solutions is given. Chapter 4 has been adapted from
the paper

• E. Kim and J. Wilkening, Convergence of a mass-lumped finite element method for
the Landau-Lifshitz equation, 2016, arXiv:1608.07312.
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Chapter 2

The mimetic finite difference method
for the Landau-Lifshitz equation

2.1 The mimetic finite difference method

The mimetic finite difference (MFD) method mimics fundamental properties of the differ-
ential equations such as conservation laws, symmetry, positivity of solution, duality and
self-adjointness of the operators, and exact mathematical identities of the vector and ten-
sor calculus. The MFD method constructs a discrete approximation on general polygonal
or polyhedral meshes that mimics or preserves the properties of the underlying continuum
equations. The MFD has been successfully applied in diffusion, electromagnetic, fluid flow
and Lagrangian hydrodynamics, which has a fifty-year successful history [58].

For the mimetic discretization, the first step is to specify degrees of freedom and build
grid functions for the discrete representation of scalar, vector and tensor fields on a compu-
tational mesh. The grid functions are the collections of degrees of freedom associated with
mesh objects. The MFD uses discrete fields centered at various mesh objects such as nodes
(N ), edges (E), faces (F) and elements (Q). The choice of the discrete fields is problem de-
pendent. The next step is to design the primary operators to represent first order operators
grad, curl,div, which are

∇h : N → E , ∇h× : E → F , div h : F → Q.

The derived operators

d̃iv
h

: E → N , ∇̃h× : F → E , ∇̃h : Q → F ,

are constructed to preserve the duality of discrete operators from the duality principle of the
underlying differential operators. For instance, grad and div are negatively adjoint under
homogeneous boundary condition in continuum setting, and the MFD mimics this property
to construct the discrete operators. In the MFD method, the primary and derived operators
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are constructed to satisfy discrete vector and tensor calclus (DVTC) such as

div h ∇h× = 0, ∇h× ∇h = 0.

2.2 Advantages of the mimetic finite difference

method for the Landau-Lifshitz equation

In the following sections, we discuss explicit and implicit mimetic finite difference method
(MFD) for the Landau-Lifshitz equation. Previous numerical methods for the Landau-
Lifshitz equation use various time stepping strategies with conventional spatial discretization
discussed in section 1.7.1. By contrast, our method incorporates new spatial discretization
with a number of advantages and improvements from the previous numerical methods :

• The MFD method works on arbitrary polytopal meshes including locally refined meshes
with degenerate cells. For the same mesh resolution, a polytopal mesh needs fewer cells
to cover the domain than simplicial meshes, which leads to fewer unknowns and results
in a more efficient method.

• The MFD method uses a mixed formulation of the Landau-Lifshitz equation. This
simplifies the numerical control of nonconvex constraint, |m| = 1. To the best of
our knowledge, this method is the first scheme based on the mixed formulation of the
Landau-Lifshitz equation.

• The MFD method could be applied to problems posed on general domains like the finite
element method, which is a key advantage compared to traditional finite difference
methods.

• The MFD method is based on the Landau-Lifshitz equation, which makes it more
suitable to apply to limiting cases (See section 1.3.2).

• The exchange energy decreases on polygonal meshes under certain conditions.

• For our implicit scheme, we only need to solve a linear system for each time step,
although the Landau-Lifshitz equation is highly nonlinear.

2.3 The mimetic finite difference method for the

Landau-Lifshitz equation

In this section, we introduce the mimetic discretization for the Landau-Lifshitz equation
(1.8). We consider the Landau-Lifshitz equation written as a system of two equations :

p = −∇m,

∂m

∂t
= m× div p + αm× (m× div p) + f(m).

(2.1)
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where
f(m) = −m× h̄(m)− αm× (m× h̄(m)) (2.2)

corresponds to the low-order terms (1.10). We refer to p as the magnetic flux tensor.
We assume that the magnetization m and the magnetic flux p are in appropriate spaces

m ∈ Q = (L2(Ω))3

and
p ∈ F = {p | p ∈ (Ls(Ω))d×3, s > 2, div p ∈ (L2(Ω))3}

to define the degrees of freedom for the mimetic discretization. The MFD method solves for
m and p at the same time.

Let the computational domain Ω be decomposed into NE non-overlapping polygonal or
polyhedral elements E with the maximum diameter h. Let NF denote the total number of
mesh edges (faces in 3D). We use |E| to denote the area (volume in 3D) of E. Similarly, |f |
denotes the length of mesh edge f (area of mesh face f in 3D). Let nE be the unit vector
normal to ∂E.

2.3.1 Global mimetic formulation

The first step of the MFD method is to specify the degrees of freedom for the primary
variables m and p.

Let the magnetization vector m be written (mx, my, mz). The degrees of freedom for
each component of the magnetization are associated with elements E and denoted as mx,E,
my,E, and mz,E. We define

mu,E =
1

|E|

∫
E

mu dx, u ∈ {x, y, z}.

They represent the mean values of mu.
We define the vector space

Qh =
{
mh
u | mh

u = (mu,E1 , · · · ,mu,ENE
)T
}
. (2.3)

Thus, each component of the discrete magnetization mh
u belongs to Qh for u ∈ {x, y, z} and

we have the discrete magnetization mh = (mh
x,m

h
y ,m

h
z ). The dimension of the space Qh

is equal to NE, the number of mesh elements. We can simply control the length of mE to
preserve the nonconvex constraint i.e. |mE| = 1.

Let the magnetic flux tensor be written p be written (px, py, pz). The degrees of freedom
for each component of the magnetic flux are associated with mesh edges f and denoted as
px,E,f , py,E,f and pz,E,f . We define

pu,E,f =
1

|f |

∫
f

pu · nE dx, u ∈ {x, y, z}. (2.4)
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They represent the mean normal flux of edge f , with f ∈ ∂E.
We use additional notations for local degrees of freedom. Let pu,E = (pu,E,f1 , . . . , pu,E,fm)T

be the vector of degrees of freedom associated with element E, where f1, . . . , fm ∈ ∂E and
pE = (px,E, py,E, pz,E)T . We define the vector space

Fh =
{
phu | phu = (pu,E1 , · · · , pu,ENE )T

}
. (2.5)

Thus, each component of the discrete magnetic flux phu belongs to Fh for u ∈ {x, y, z}, and
we have the discrete magnetic flux ph = (phx, p

h
y , p

h
z ). The dimension of the space Fh is equal

to the number of boundary edges plus twice the number of internal edges (faces in 3D).
By defining magnetic flux as in (2.4), we clearly have the flux continuity constraint

pu,E1,f + pu,E2,f = 0 (2.6)

where f is an internal edge shared by two elements E1 and E2.
The second step of the MFD method is to define appropriate inner products in the discrete

spaces. In the space of discrete magnetizations, we define the discrete inner product by

〈mh, wh〉Q :=
∑

u∈{x,y,z}

〈mh
u, w

h
u〉Q, 〈mh

u, w
h
u〉Q :=

∑
E∈Ωh

〈mh
u,E, w

h
u,E〉Q,E. (2.7)

Note that 〈mh
u,E, w

h
u,E〉Q,E = |E|mu,E wu,E, because we have only one degree of freedom per

mesh element for each component of the magnetization.
In the space of discrete flux tensors, we define the following inner product by

〈ph, qh〉F :=
∑

u∈{x,y,z}

〈phu, qhu〉F , 〈phu, qhu〉F :=
∑
E∈Ωh

〈pu,E, qu,E〉F ,E. (2.8)

Here 〈·, ·〉F ,E is an element-based inner product that is constructed to satisfy consistency
and stability conditions discussed in section 2.4.

The third step of the MFD method is to discretize the divergence operator. For each
component of the magnetic flux, we discretize the divergence theorem for element E and get
the discrete divergence operator.

DIVE pu,E =
1

|E|
∑
f∈∂E

|f | pu,E,f . (2.9)

The degrees of freedom associated with the magnetic flux tensor were chosen to define the
discrete divergence operator easily. We further define

DIVE pE =

DIVE px,E,DIVE py,E,
DIVE pz,E


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The fourth step of the MFD method is to define the discrete gradient operator. In the
continuum setting, the Green formula states that the gradient operator is negatively adjoint
to the divergence operator with respect to the L2-inner product, under the homogeneous
boundary conditions: ∫

Ω

m · div p dx = −
∫

Ω

∇m : p dx.

The discrete gradient operator is defined implicitly and uniquely from the discrete duality
principle :

〈mh, DIV ph〉Q = −〈GRAD mh, ph〉F ∀mh,ph. (2.10)

Using the above four-step mimetic discretization, we have a semi-discretization for (3.1).
The semi-discrete mimetic formulation for the Landau-Lifshitz equation (1.8) is to find mh

and ph such that

ph = −GRAD mh,

∂mh

∂t
= mh ×DIVph + α (mh ·DIV ph) mh − αDIV ph + fh(mh)

where fh(mh) is a discretization of low-order terms (3.2).

2.3.2 Local mimetic formulation

For the local mimetic formulation, we define a local discrete gradient operator. We first
discretize Green formula on each element E:∫

E

m · div p dx = −
∫
E

∇m : p dx+

∫
∂E

(p · n) ·m dx (2.11)

We need additional degrees of freedom for magnetization m associated with mesh edge f
mf = (mx,f ,my,f ,mz,f ) to discretize the last term in (2.11). The degrees of freedom for each
component of the magnetization are associated with edges f , given by

mu,f =
1

|f |

∫
f

mu dx, u ∈ {x, y, z}.

They represent mean value of mu on each edge f . The number of these degrees of free-
dom is equal to the number of edges NF . Let m̃E = (m̃x,E, m̃y,E, m̃z,E)T be the vector
of these additional degrees of freedom associated with each element E, where m̃u,E =
(mu,f ,mu,f ,mu,f )

T
f∈∂E for u ∈ {x, y, z}.

The local discrete gradient operator is defined implicitly by

〈mE, DIVE pE〉Q,E = −〈GRADE

(
mE

m̃E

)
, pE〉F ,E +

∑
f∈∂E

|f |pf ·mf (2.12)

for all mE, m̃E, and pE. This follows from the discrete duality principle. Moreover, the
local discrete gradient operator is defined uniquely, since these are bone a fide inner products.
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Since the inner products defined in (3.18) and (2.8) are sums of inner products for vector
components, we can also define a component-wise discrete gradient operator

〈mu,E, DIVE pu,E〉Q,E = −〈GRADE
(
mu,E

m̃u,E

)
, pu,E〉F ,E +

∑
f∈∂E

|f | pu,E,f ·mu,f .

We introduce inner product matrices MQ,E and MF ,E to simplify the above formulae:

〈mu,E, wu,E〉Q,E = mu,E MQ,E wu,E, 〈pu,E, qu,E〉F ,E = pu,E MF ,E qu,E. (2.13)

The matrix MQ,E has entries |E| on its diagonal. The construction of the second matrix
MF ,E needs special attention; see section 2.3.4 below. We get the explicit formula for the
discrete gradient operator

GRADE
(
mu,E

m̃u,E

)
= M−1

F ,E


|f1| (mu,f1 −mu,E)
|f2| (mu,f2 −mu,E)

...
|fn| (mu,fn −mu,E)

 , (2.14)

where n is the total number of edges (faces in 3D) of element E.
In summary, the semi-discrete mimetic formulation is to find mE, m̃E, and pE, for

E ∈ Ωh, such that

pE = −GRADE

(
mE

m̃E

)
,

∂mE

∂t
= mE ×DIVEpE + α (mE ·DIVE pE) mE − αDIVE pE + fE(mE),

(2.15)

together with the flux continuity constraint (2.6), initial conditions and boundary conditions.
If Dirichlet boundary conditions are given, we can set the auxiliary magnetization m̃E to
the given values on the edges. If Neumann boundary conditions are given, we can set the
magnetic fluxes pE to given values on the edges.

The local mimetic formulation implies a global mimetic formulation. The local mimetic
formulation is more suitable for implementation on computers, whereas the global mimetic
formulation is more suitable for convergence analysis. The local and global discrete gradi-
ent operator are equivalent. This fact can be shown by summing up equations (3.21) and
canceling out interface terms by flux continuity constraint (2.6).

2.3.3 Implicit-explicit time discretization

We consider a θ-scheme, 0 ≤ θ ≤ 1 by discretizing time derivative in (3.32). Let us denote
the time tj = j k where k is the time stepsize and j is the index. We define the θ-scheme as

pj+θE = −GRADE

(
mj+θ

E

m̃j+θ
E

)
,

mj+1
E −mj

E

k
= mj

E ×DIVE pj+θE + α (mj
E · (DIVE pj+θE ))mj

E − αDIVE p
j+θ
E + f jE(mj

E).

(2.16)
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For θ = 0, (2.16) is an explicit method otherwise it is an implicit method. But it is not
fully implicit as it requires only a linear solver for each time step. From now on, we only
deal with the implicit case θ = 1. For simplicity, we write mj instead of mh,j. By plugging
in the first equation in (2.16) into the second equation, and using flux continuity constraint
(2.6) with appropriate boundary and initial conditions, we get a linear system of equations
for element-based and edge-based magnetizations:

Aj

(
mj+1

m̃j+1

)
=

(
bj1

bj2

)
. (2.17)

Here, the flux continuity conditions (2.6) can multiplied by |f | for better symmetry. The
vector on the right-hand side of the equation depends on mj, the external field, the stray
field, and boundary conditions.

The stiffness matrix Aj is of the following form

Aj =
∑
E∈Ωh

NE Aj
E NT

E. (2.18)

where NE is the conventional assembly matrix that maps local indices to global indices. It
is a sparse matrix and is the sum of local matrices. The local 3(n+ 1)× 3(n+ 1) matrix Aj

E

has the following block structure

Aj
E =

(
AEE AEf

AfE Aff

)
(2.19)

where the first block row corresponds to element-based magnetizations and n is the number
of edges of the element E.

Let I be a generic identity matrix, CE be the n×n diagonal matrix CE = diag{|f1|, . . . , |fn|},
and e = (1, 1, . . . , 1)T . We could further represent block matrices of (2.19) using the tensor-
product notation:

AEE = I + k
|E|(e

TCE M−1
F ,E CE e) Âj, AEf = − k

|E|

(
eTCE M−1

F ,E CE

)
⊗ Âj

AfE = −
(
CE M−1

F ,E CE e
)
⊗ I, Aff =

(
CE M−1

F ,E CE

)
⊗ I,

(2.20)

and

Âj = α I− αmj
E (mj

E)T −

 0 −mj
z,E mj

y,E

mj
z,E 0 −mj

x,E

−mj
y,E mj

x,E 0

 . (2.21)

Our method is summarized in Algorithm 1. We project the magnetization onto the
unit sphere in step 2b), to preserve the nonconvex constraint |mj+1

E | = 1. In the actual
computation, we only require the matrix M−1

F ,E. This can be calculated at the same cost as
matrix MF ,E. In Algorithm 1 step 2a), the right-hand side of (2.17) does not depend on m̃j

(See (2.16) with θ = 1). Thus, in practice, we don’t need to renormalize m̃j+1
E in step 2b) of

the algorithm to prepare for the next iteration.
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Algorithm 1 The mimetic finite difference method for the Landau-Lifshitz equation

For a given final time T > 0, set J = [T
k

].

1. Set an initial discrete magnetization m0 at the centroids of mesh elements.

2. For j = 0, . . . , J − 1,

a) Form and solve the linear system (2.17) and denote the solution by

(
m̂j+1

m̃j+1

)
.

b) Renormalize the element-centered magnetizations,

mj+1
E :=

m̂j+1
E

|m̂j+1
E |

, ∀E ∈ Ωh.

2.3.4 Construction of the matrices MF ,E and M−1F ,E
The inner product matrix MF ,E in (2.13) and its inverse M−1

F ,E are built to satisfy the
consistency and stability conditions.

• (Consistency) Let p0
u,E and qu,E be vectors of the degrees of freedom for functions p0

u

and qu, respectively. Let p0
u be any constant vector function and qu be any sufficiently

smooth function such that div qu is constant and qu · nf is constant on each edge f
of the element E. Then the local mimetic inner product is exact with the integral of
p0
u and qu. (

p0
u,E

)T MF ,E qu,E = 〈p0
u,E, qu,E〉F ,E =

∫
E

p0
u · qu dx (2.22)

• (Stability) There exists two positive constants c0, C0 > 0, independent of h and E,
such that, for every qu ∈ Fh|E and every E ∈ Ωh, we have

c0 |E| qTu,E qu,E ≤ qTu,E MF ,E qu,E = 〈qu,E, qu,E〉F ,E ≤ C0 |E| qTu,E qu,E. (2.23)

Taking p0
u as the gradient of a linear function m1

u with mean value zero on E and inte-
grating by parts, we have∫

E

p0
u · qu dx = −

∫
E

m1
u div qu dx+

∫
∂E

(qu · nE)m1
u dx =

∑
f∈∂E

qu,E,f

∫
f

m1
u dx. (2.24)

Let (xE, yE, zE) be the centroid of the element E. By taking m1
u = x − xE, y − yE, and

z − zE, the formula in (2.22) becomes

qTu,E MF ,E p0,(j)
u,E = qTu,E r

(j)
u,E. (2.25)
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for j = 1, 2, 3. Let us take N = [p
0,(1)
u,E , p

0,(2)
u,E , p

0,(3)
u,E ] and R = [r

(1)
u,E, r

(2)
u,E, r

(3)
u,E], to reformulate

(2.22) as
MF ,E N = R. (2.26)

Let f1, . . . , fm be the edges of E. Using equation (2.4), we can calculate

p
0,(1)
u,E |fi =

1

|fi|

∫
fi

pu · nfi dx =
1

|fi|

∫
fi

∇(x− xE) · nfi dx = nxfi .

for i = 1, . . . ,m. Similary, we can calculate all the entries of N, and we have

N =


nxf1 nyf1 nzf1
nxf2 nyf2 nzf2

...
...

...
nxfm nyfm nzfm

 .

Here nuf is the u-th component of the outward unit normal vector of the edge f of E. Let
(xf , yf , zf ) be the centroid of the edge. By taking qu,E = ~ei in (2.24), we can calculate

r
(1)
u,E|fi =

∫
fi

(x− xE) dx = |fi|(xfi − xE)

Similary, we can calculate all the entries of R, and we have

R =


|f1|(xf1 − xE) |f1|(yf1 − yE) |f1|(zf1 − zE)
|f2|(xf2 − xE) |f2|(yf2 − yE) |f2|(zf2 − zE)

...
...

...
|fm|(xfm − xE) |fm|(yfm − yE) |fm|(zfm − zE)

 .

The symmetric positive definite matrix

MF ,E =
1

|E|
RRT + γ (I− N (NT N)−1 NT ), γ > 0, (2.27)

is a solution to matrix equation (2.26) which was shown in [21]. The second term includes
the orthogonal projection, and we can set γ = |E| or γ = 1

2 |E| trace(RRT ). The general

solution to (2.26) is

MF ,E =
1

|E|
RRT + (I− N (NT N)−1 NT )G (I− N (NT N)−1 NT ) (2.28)

where G is a symmetric positive definite matrix. This matrix is chosen to satisfy the stability
condition (2.23).

We can easily derive a formula for M−1
F ,E used in the actual computation of Algorithm 1.

The matrix equation (2.26) can be also written as

M−1
F ,E R = N. (2.29)
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Because there are only changes in the role of the matrices R and N with the same equation
structure, the symmetric positive definite matrix

M−1
F ,E =

1

|E|
NNT + γ̃(I− R (RT R)−1 RT ) (2.30)

is a solution to (2.29). The general solution to (2.29) is

M−1
F ,E =

1

|E|
NNT + (I− R (RT R)−1 RT ) G̃ (I− R (RT R)−1 RT ), (2.31)

where G̃ is symmetric positive definite matrix. We can set γ̃ = 1
|E| or γ̃ = 1

2 |E| trace(NNT ).

Remark 3. The matrix equations (2.26) and (2.29) both have multiple solutions. However,
the matrices in (2.27) and (2.30) with γ = γ̃−1 = |E| are not inverse to each other. They
do not represent related members from two families of solutions.

2.4 Stability analysis

In this section, we show that the discrete exchange energy decreases in time under certain
conditions for both explicit (θ = 0) and implicit time integration schemes, focusing on
θ = 1 in the latter case. We consider the case h̄ = 0 and homogeneous Neumann boundary
conditions. For the explicit scheme, the time step and the mesh size must satisfy a Courant
condition, but for the implicit scheme, we do not have such constraint. In our results, we
require all matrices M−1

F ,E to be M-matrices.
Let ‖ · ‖F denote the norm induced by the global inner product in (2.8) and ‖ · ‖F ,E

denote the norm induced by local inner product in (2.8). We first give our main result and
then prove two lemmas.

Theorem 1. Let the assumptions from Lemmas 1 and 2 hold true. For the explicit scheme
(θ = 0), we further assume the Courant condition

k

h2
≤ 2α

C1(1 + α2)
. (2.32)

Then, for any j, we have the following energy estimate,

||GRAD mj+1||F ≤ ||GRAD mj||F .

Proof. Let m̂j+1 denote the element-based magnetization obtained from step 2a of Algo-
rithm 1. Let vj denote the velocity vector, i.e. m̂j+1 = mj + kvj. We have mj

E · v
j
E = 0

from (2.16) and |mj
E| = 1 from step 2b of Algorithm 1 for all E. Thus, we have |m̂j

E| ≥ 1
and we have energy decrease after normalization from Lemma 2 below, which is

||GRAD mj+1||F ≤ ||GRAD m̂j+1||F . (2.33)
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Now, we derive an upper bound for ||GRAD m̂j+1||F , starting from the following identity,

‖GRAD
(
mj + kvj

)
‖2
F = ‖GRAD mj||2F

+ 2k 〈GRAD mj, GRAD vj〉F + k2‖GRAD vj‖2
F .

(2.34)

Next, we derive an expression for 〈GRAD mj, GRAD vj〉F . We get the definition of vjE
from the second equation in the θ-scheme (2.16),

vjE = −mj
E ×DIVE pj+θE − α

(
mj

E ·DIVE pj+θE

)
mj

E + αDIVE pj+θE .

From this definition and the fact that |mj
E| = 1, we get

αvjE + mj
E × vjE = −(1 + α2)

(
(mj

E ·DIVE pj+θE ) mj
E −DIVE pj+θE

)
. (2.35)

Taking the dot product with vjE, and summing over the element with weighted element
volumes, we get

− α

1 + α2
〈vj, vj〉Q = −〈DIV pj+θ, vj〉Q (2.36)

From the duality property of the mimetic operator, we have

−〈DIV pj+θ, vj〉Q = 〈GRAD
(
mj + θkvj

)
, GRADvj〉F (2.37)

Equations (2.36) and (2.37) give

− α

1 + α2
〈vj, vj〉Q = 〈GRAD mj, GRADvj〉F + θk 〈GRADvj, GRAD vj〉F (2.38)

Inserting (2.38) in (2.34), we obtain

‖GRAD m̂j+1‖2
F = ‖GRAD mj‖2

F −
2α k

1 + α2
‖vj‖2

Q − k2 (2θ − 1)‖GRAD vj‖2
F .

This shows that for the implicit scheme, θ = 1, we have the decrease of the energy using
equation (2.33). For the explicit scheme θ = 0, we have

‖GRAD m̂j+1‖2
F ≤ ‖GRAD mj‖2

F − k
(

2α

1 + α2
− C1 k

h2

)
‖vj‖2

Qh

using Lemma 1 below. Thus, for the explicit scheme, we have the energy decrease under the
Courant condition (2.32) using (2.33).

We now present two technical lemmas which are important in Theorem 1 above. The
first lemma is the inverse estimate which uses the stability condition (2.23). This lemma is
used only for the explicit scheme (θ = 0). The second lemma shows that the exchange energy
decreases even under nonlinear projection step in Algorithm 1 step 2b). It assumes that the
family of elemental matrices M−1

F ,E contains M-matrices, which gives certain constraints on
the shape of mesh cells. An M-matrix is a Z-matrix with eigenvalues whose real parts are
positive; a Z-matrix is a matrix whose off-diagonal entries are less than or equal to zero. We
refer to [14, 59] for more details about M-matrices.
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Lemma 1. Let mesh Ωh be shape regular and quasi-uniform. Then, for any vh ∈ (Qh)3, we
have the inverse estimate,

‖GRAD vh‖2
F ≤

C1

h2
‖vh‖2

Q, (2.39)

where C1 is a positive constant, independent of h and vh.

Proof. For each component u ∈ {x, y, z}, we have

‖GRAD vhu‖F = ‖M−1/2
F DIVT MQvhu‖ ≤

C2

hd/2
‖DIVT MQvhu‖ ≤

C2

hd/2
‖DIVT‖ ‖MQvhu‖.

where C2 depends on c0 in (2.23) and the shape regularity of mesh Ωh. Here, we used the
definition of the discrete gradient operator in (2.10) in the first equality and the stability
condition (2.23) in the first inequality. From the definition of the discrete divergence opera-
tor, we have ‖DIVT‖ ≤ C3 h

−1, where C3 depends only on the shape regularity of the mesh.

Also, we have ‖M1/2
Q ‖ ≤ hd/2 from the definition of the inner product matrix. Thus, we get

‖GRAD vhu‖2
F ≤

(C2C3)2

h2
‖vhu‖2

Q.

Summing over u ∈ {x, y, z}, we obtain the above result with C1 = (C2C3)2.

Lemma 2. Let each elemental matrix MF ,E satisfy two conditions: (a) M−1
F ,E is an M-matrix,

and (b) vector M−1
F ,E CE e has positive entries. Let v̂h ∈ (Qh)3 be a vector with |v̂E| ≥ 1 for

all E ∈ Ωh. Also, let vh be the normalization of v̂h, that is vE = v̂E/|v̂E| for all E ∈ Ωh.
Then, we have energy decrease after the renormalization:

‖GRAD vh‖F ≤ ‖GRAD v̂h‖F . (2.40)

Proof. First, we define the vectors

qh = GRAD vh and qE = GRADE

(
vE
ṽE

)
using global and local discrete gradient operators. The global and local discrete gradient
operators are equivalent from the flux continuity constraint, which is qu,E1,f + qu,E2,f = 0 on
each internal edge f shared by two elements E1 and E2. From the additivity property of the
inner products, we have

‖q‖2
F =

∑
E∈Ωh

‖qE‖2
F ,E.

We then obtain

‖qu,E‖2
F ,E =

(
vu,E

ṽu,E

)T (
eTTE e −eTTE
−TE e TE

)(
vu,E

ṽu,E

)
, TE = CE M−1

F ,E CE (2.41)
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from formula (2.14) for the local discrete gradient operator and the definition of the diagonal
matrix CE. The ṽhu,E are associated with edges and are defined completely by the flux
continuity condition qu,E1,f + qu,E2,f = 0. We sum up equations (2.41) to get

‖qu‖2
F =

∑
E∈Ωh

‖qu,E‖2
F ,E =

(
vhu

ṽhu

)T (TEE TEf

TfE Tff

)(
vhu

ṽhu

)
. (2.42)

By multipling (2.14) by |f | and using the flux continuity equation, we have

TfE vhu + Tff ṽhu = 0.

Plugging this equation into (2.42), we have

‖qu‖2
F = (vhu)T

(
TEE − TEf (Tff )−1 TfE

)
vhu =: (vhu)T SEE vhu.

The Schur complement SEE has one important property. According to [59], the conditions
(a) and (b) imply that the local matrices in (2.41) are singular irreducible M-matrices with
the single null vector e. Hence, the assembled matrix in (2.42) is a singular M-matrix.
From linear algebra we know that the Schur complement is also a singular M-matrix. Since
SEE e = 0, the following vector-matrix-vector product can be broken into the assembly of
2× 2 matrices,

(vhu)T SEE vhu =
∑
i<j

βij

(
vu,Ei
vu,Ej

)T (
1 −1
−1 1

)(
vu,Ei
vu,Ej

)
, (2.43)

with non-negative weights βij. Recall that vu,Ei = v̂u,Ei/|v̂Ei| and |v̂Ei | ≥ 1. Thus, we have
the following estimate:∑

u∈{x,y,z}

(
(v̂u,Ei)

2

|v̂Ei|2
− 2

v̂u,Ei
|v̂Ei |

v̂u,Ej
|v̂Ej |

+
(v̂u,Ej)

2

|v̂Ej |2

)
= 2− 2

∑
u∈{x,y,z}

v̂u,Ei
|v̂Ei|

v̂u,Ej
|v̂Ej |

≤ |v̂Ei | |v̂Ej |

 |v̂Ei |
|v̂Ej |

+
|v̂Ej |
|v̂Ei |

− 2
∑

u∈{x,y,z}

v̂u,Ei
|v̂Ei |

v̂u,Ej
|v̂Ej |

 =
∑

u∈{x,y,z}

(v̂u,Ei − v̂u,Ej)2.

We conclude that∑
u∈{x,y,z}

(vhu)T SEE vhu ≤
∑

u∈{x,y,z}

(v̂hu)T SEE v̂hu =
∑

u∈{x,y,z}

‖GRAD v̂hu‖2
F ,

and the assertion of the lemma follows.

2.5 Numerical Examples

In this section, we present several numerical tests on various meshes with different boundary
conditions.
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2.5.1 Analytical solution

As a first test, following [38], we present an analytical solution of the Landau-Lifshitz equa-
tion (1.8) with effective field involving only exchange energy term with h = ∆m. The
analytical solution m = (mx,my,mz) on the unit square is given by

mx(x1, x2, t) =
1

d(t)
sin β cos(κ(x1 + x2) + g(t)),

my(x1, x2, t) =
1

d(t)
sin β sin(κ(x1 + x2) + g(t)),

mz(x1, x2, t) =
1

d(t)
e2κ2αt cos β,

(2.44)

where β = π
12

, κ = 2π, d(t) =
√

sin2 β + e4κ2αt cos2 β and g(t) = 1
α

log
(
d(t)+e2κ

2αt cosβ
1+cosβ

)
. Note

that m → (0, 0, 1) as t → ∞. The analytical solution (2.44) at time 0 is shown in Fig. 2.1.
We perform simulations on the time interval [0, T ], where T = 0.001.
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Figure 2.1: Analytical solution (2.44) of the Landau-Lifshitz equation at time 0. The vectors
in the plot denote the mx and my components, and the color denotes the mz component.

2.5.1.1 Explicit time integration scheme (θ = 0)

We consider a uniform square mesh on the unit square Ω with mesh size h and time step
k = 8 · 10−7h2. We measure errors in the magnetization m in the mesh dependent L2-type
norm ‖ · ‖Q and the maximum norm

‖mh −mI‖L∞ = max
E∈Ωh

|mE −mI
E|.
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We also measure error in the magnetization flux tensor p in the mesh dependent L2-type
norm ‖ · ‖F . The mI ∈ (Qh)3 and pI ∈ (Fh)3 denote the projections of the analytical
solution on the discrete spaces. For these projections, we simply take the values of m and p
at centroids of elements E and edges (or faces) f , respectively.

The convergence rates of the magnetization and its flux are summarized in Table 2.1. It
shows second order convergence for both the magnetization and its flux.

1/h ‖mh −mI‖L∞ ‖mh −mI‖Q ‖ph − pI‖F
32 8.222e-05 8.360e-05 2.967e-03
64 2.060e-05 2.092e-05 7.418e-04
128 5.154e-06 5.231e-06 1.854e-04
256 1.289e-06 1.308e-06 4.636e-05
rate 2.00 2.00 2.00

Table 2.1: Explicit time integration scheme (θ = 0) : Error and convergence rates on
uniform square mesh with mesh size h and time step k = 8 · 10−7h2 and time 0.001.

2.5.1.2 Implicit time integration scheme (θ = 1), uniform square meshes

In this section, we consider the implicit time integration scheme, i.e. θ = 1 in (2.16), with
the analytical solution (2.44). We set time step k = 0.008h2 so that the first-order time
integration error does not affect the convergence rate.

Table 2.2 shows the second-order convergence for the magnetization and the first-order
convergence for its flux. The explanation of the lack of super-convergence of magnetization
flux tensor p in this implicit scheme is required by conducting a rigorous convergence analysis
of the Algorithm 1, which is beyond the scope of this work.

1/h ‖mh −mI‖L∞ ‖mh −mI‖Q ‖ph − pI‖F
32 9.082e-05 9.195e-05 2.531e-02
64 2.273e-05 2.302e-05 1.261e-02
128 5.687e-06 5.756e-06 6.301e-03
256 1.422e-06 1.439e-06 3.150e-03
rate 2.00 2.00 1.00

Table 2.2: Implicit time integration scheme (θ = 1) : Error and convergence rates on a
uniform square mesh with mesh size h and time step k = 0.008h2 and time 0.001.

2.5.1.3 Smoothly distorted and randomized quadrilateral meshes

We consider the randomized and smoothly distorted meshes shown in Fig. 2.3.
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Figure 2.2: Error plot with respect to the mesh size h using Algorithm 1 on a uniform square
mesh with θ = 1. Left :
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Q, Right :
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Figure 2.3: Left : Randomized mesh, Right : Smoothly distorted mesh.

The randomized mesh is constructed from the uniform square mesh by random distortion
of its nodes. The map is given by

x := x+ 0.2 ξx h, y := y + 0.2 ξy h, (2.45)

where ξx and ξy are random variables between −1 and 1. The nodes on the boundary were
modified to satisfy periodic boundary conditions.
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The smoothly distorted mesh is constructed from the uniform square mesh using a smooth
map. The map is given by

x := x+ 0.1 sin(2πx) sin(2πy),

y := y + 0.1 sin(2πx) sin(2πy).
(2.46)

In Table 2.3 and Fig. 2.4, the errors and the convergence rates are summarized. We
observe almost second-order convergence rate for the magnetization and almost first-order
convergence rate for its flux.

Randomized mesh
1/h ‖mh −mI‖L∞ ‖mh −mI‖Q ‖ph − pI‖F
16 3.121e-03 9.460e-04 6.560e-02
32 1.005e-03 2.988e-04 3.249e-02
64 2.585e-04 7.258e-05 1.615e-02
128 7.939e-05 1.807e-05 8.135e-03
rate 1.79 1.92 1.00

Smoothly distorted mesh
1/h ‖mh −mI‖L∞ ‖mh −mI‖Q ‖ph − pI‖F
16 1.751e-03 1.009e-03 7.611e-02
32 5.477e-04 2.809e-04 3.000e-02
64 1.432e-04 7.214e-05 1.362e-02
128 3.608e-05 1.816e-05 6.623e-03
rate 1.87 1.94 1.17

Table 2.3: Implicit time integration scheme (θ = 1) : Error and convergence rates on
randomly and smoothly distorted meshes shown in Fig. 2.3 with mesh size h and time step
k = 0.008h2 and time 0.001.

In these numerical tests, we used M−1
F ,E in (2.30) with constant γ̃ defined by the scaled

trace of the first term. Thus, M−1
F ,E is not always an M-matrix. In section 2.4, we proved

that exchange energy decreases under the condition that M−1
F ,E is an M-matrix. Fig. 2.5

shows exchange energy 1
2
[ph, ph]F as a function of time for both randomized and smoothly

distorted meshes and for two different mesh sizes h = 1
32

and h = 1
64

. It shows that exchange
energy decreases in time. This result suggests that the M-matrix conditions are sufficient
but may not be necessary for the stability analysis.

We further investigate the influence of the constant γ̃ in (2.30) on the error. In Fig. 2.6,
the errors are plotted as a function of γ0 on the randomly distorted mesh with mesh size
h = 1/32, where γ̃ = γ0

1
|E| trace(NNT ). We were unable to minimize errors both in the

magnetization and its flux with only one free parameter. The full matrix of parameters has
to be used to minimize both errors.
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of Fig. 2.3 with mesh size h = 1/32.
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2.5.2 Convergence analysis for problems with the Dirichlet
boundary condition

In this section, we consider the implicit time integration scheme with θ = 1 in (2.16) and
the analytical solution (2.44), but now with the Dirichlet boundary condition.

We can consider more general domains such as the circular domain under the Dirichlet
boundary condition. Fig. 2.7 shows a logically square mesh fitted to the circular domain
with center (0.5, 0.5) and radius 0.5. The four mesh elements at the four corners of this
mesh are almost triangles. However, these elements are classified as shape regular in the
mimetic framework and do not alter the convergence rates [21].
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Figure 2.7: Left : Logically square mesh fitted to the circular domain, Right : Polygonal
mesh.

In Table 2.4 and Fig. 2.8, the errors and the convergence rates are summarized. We
conducted the numerical experiments on uniform square meshes, smoothly and randomly
distorted meshes as in Fig. 2.3, logically square meshes fitted to the circle and polygonal
meshes as in Fig. 2.7. The time step for the polygonal meshes is set to k = 0.004h2 and all
the other meshes set to k = 0.008h2. We have an almost second-order convergence rate for
the magnetization and an almost first-order convergence rate for its flux.
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Uniform square meshes
1/h ‖mh −mI‖L∞ ratio ‖mh −mI‖Q ratio ‖ph − pI‖F ratio
8 6.799e-03 0.83 3.239e-03 0.83 1.585e-01 1.40
16 3.812e-03 1.81 1.347e-03 1.73 6.021e-02 1.19
32 1.088e-03 2.00 4.061e-04 1.98 2.639e-02 1.05
64 2.717e-04 1.028e-04 1.275e-02

Randomized meshes
8 6.889e-03 0.89 3.335e-03 1.09 1.795e-01 1.31
16 3.722e-03 1.62 1.566e-03 1.67 7.254e-02 1.12
32 1.212e-03 1.85 4.921e-04 2.01 3.348e-02 1.04
64 3.370e-04 1.221e-04 1.630e-02

Smoothly distorted meshes
8 6.451e-03 0.57 3.562e-03 1.20 2.522e-01 1.52
16 4.349e-03 1.49 1.550e-03 1.52 8.808e-02 1.45
32 1.551e-03 1.61 5.414e-04 1.91 3.220e-02 1.21
64 5.073e-04 1.440e-04 1.393e-02

Polygonal meshes
8 7.071e-03 0.72 4.029e-03 1.42 2.301e-01 1.32
16 4.288e-03 1.40 1.506e-03 1.60 9.242e-02 1.28
32 1.623e-03 1.71 4.970e-04 1.81 3.794e-02 1.10
64 4.957e-04 1.85 1.422e-04 2.28 1.765e-02 1.06
128 1.372e-04 2.929e-05 8.495e-03

Logically square meshes in the circular domain
8 2.388e-02 1.68 3.689e-03 1.66 1.293e-01 1.35
16 7.451e-03 1.87 1.166e-03 1.90 5.086e-02 1.11
32 2.032e-03 1.95 3.120e-04 1.99 2.354e-02 1.02
64 5.268e-04 7.856e-05 1.159e-02

Table 2.4: Implicit time integration scheme (θ = 1) : Error and convergence rates
on various meshes under the Dirichlet boundary condition with mesh size h and time step
k = 0.008h2 at time 0.001.
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Figure 2.8: Error plot with respect to the mesh size h using Algorithm 1 and θ = 1 with
Dirichlet boundary conditions. Left :

∥∥mh −m
∥∥
Q, Right :

∥∥ph − p
∥∥
F .
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2.5.3 NIST µmag standard problem 4

The µmag standard problem 4 is proposed by Micromagnetic Modeling Activity Group
(µMAG) at the National Institute of Standards and Technology (NIST) [62]. The problem
is to simulate the magnetization dynamics in a permalloy thin film of dimensions 500nm×
125nm× 3nm with two different applied fields.

Before its nondimensionalization, the Landau-Lifshitz equation [63] is

∂M

∂t′
= − γ

1 + α2
M×H− γα

Ms(1 + α2)
M× (M×H) (2.47)

with homogeneous Neumann boundary condition and the initial condition described below.
Here, the effiective field is given by

H = − 1

µ0Ms

δE

δm
, E(M) =

∫
Ω

A

2M2
s

|∇M|2 − µ0(He ·M)− 1

2
µ0(Hs ·M) dx, (2.48)

where M = Msm, He is the external field and Hs is the stray field. The material parameters
are the exchange constant A = 2.6 × 10−11 [J ·m−1], saturation magnetization Ms = 8 ×
105 [A ·m−1], gyromagnetic ratio γ = 2.21 × 105 [m · A−1 · s−1], magnetic permeability of
vacuum µ0 = 4π × 10−7 [N · A−2] and the dimensionless damping parameter α = 0.02.

By taking H = Msh, Hs = Mshs, He = Mshe, x = Lx′ with L = 10−9, and t = 1+α2

γMs
t′,

we obtain equation (1.8) with η = A
µ0M2

sL
2 and equation (1.9) with Q = 0. The initial state

is an equilibrium S-state as in Fig. 2.9. This is obtained by applying an external field of 2T
along direction [1, 1, 1] and slowly reducing it to zero by 0.02T each time step [62, 52].

For the thin film, we assume that the magnetization is constant along the OZ direction
and solve the two-dimensional Landau-Lifshitz equation. We take spatial step size as hx =
hy = 5nm. We use the explicit time integration scheme (θ = 0) with the time step k̂ =
0.005
γMs
≈ 28.28 fs and implicit time discretization scheme (θ = 1) with five different time steps

k̂ = 0.01
γMs
≈ 56.56 fs, k̂ ≈ 0.14 ps, k̂ ≈ 0.28 ps, k̂ ≈ 0.57 ps, and k̂ ≈ 1.13 ps.
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Figure 2.9: NIST µmag standard problem 4 : the initial equilibrium S-state. The vectors in
the plot denote the mx and my components, and the color denotes the mz component.
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Figure 2.10: NIST µmag standard problem 4 with the external field µ0 He =
(−24.5, 4.3, 0.0) [mT]. Left : The time evolution of the average magnetization calculated
using the explicit and implicit mimetic schemes with the comparison of Roy and Svedlindh’s
results in [62], Right : The magnetization field when 〈mx〉 first crosses zero. The vectors in
the plot denote the mx and my components, and the color denotes the mz component.

With two different applied fields, we simulate the dynamics of the magnetization. The
first field is µ0He = (−24.6, 4.3, 0.0) [mT] which makes angle of approximately 170 degrees
with the positive direction of the x-axis. The second field is µ0He = (−35.5, 6.3, 0.0) [mT]
which makes angles of approximately 190 degrees with the positive direction of the x-axis.
We plot the time evolution of the average magnetization, where the average magnetization
is computed by the formula

〈m〉 =
1

NE

∑
E∈Ωh

mE.

The evolution of the average magnetization and the magnetization field when 〈mx〉 first
crosses zero is shown in Fig. 2.10. The result is compared with the results obtained by Roy
and Svedlindh in [62]. They used a finite difference method (leading to the conventional
5-point approximation for the Laplacian) and RK4 for the time-stepping with time step
k̂ ≈ 11 fs. The evolution of the magnetization is qualitatively in very good agreement.

With the second external field, the evolution of the average magnetization and the mag-
netization field when 〈mx〉 first crosses zero is shown in Fig. 2.11. Solutions obtained with
different schemes begin to diverge approximately after 0.35ns as reported in [62]. We have
qualitatively good agreement until this time.

Furthermore, Fig. 2.12 shows the evolution of the magnetization for both applied fields
with different time steps. This shows the stability and temporal convergence of the θ = 1
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Figure 2.11: NIST µmag standard problem 4 with the external field µ0 He =
(−35.5, 6.3, 0.0) [mT]. Left : The time evolution of the average magnetization calculated
using the explicit and implicit mimetic schemes with comparison of Roy and Svedlindh’s
results in [62]. Right : The magnetization field when 〈mx〉 first crosses zero. The vectors in
the plot denote the mx and my components, and the color denotes the mz component.

implicit scheme of Algorithm 1.
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Figure 2.12: NIST µmag standard problem 4 : Evolution of average magnetization computed
using Algorithm 1 with various time steps k̂ = k

γMs
with two different applied fields : Left :

µ0He = (−24.5, 4.3, 0.0) [mT], Right : µ0He = (−35.5, 6.3, 0.0) [mT].
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2.5.4 Domain wall structures in a thin film

In this section, we conduct numerical simulation of the domain wall structures in rectangular
thin films of size 240nm × 480nm × 7nm using both explicit and implicit time integration
schemes (θ = 0, 1). In [89], a similar numerical experiment was conducted using the Gauss-
Seidel projection method while gradually increasing the thickness of the film. Before its
nondimensionalization, the Landau-Lifshitz equation [89] is given by

∂M

∂t′
= −γµ0M×H− γαµ0

Ms

M× (M×H) (2.49)

with homogeneous Neumann boundary conditions and the initial condition described below.
The effective field H is given by (2.48). The material parameters are the exchange constant
A = 2.1× 10−11 [J ·m−1], saturation magnetization Ms = 1.71× 106 [A ·m−1], gyromagnetic
ratio γ = 1.76× 1011 [T−1 · s−1], magnetic permeability of vacuum µ0 = 4π × 10−7 [N · A−2],
and the dimensionless damping parameter α = 0.02.

Using a slightly different rescaling than in section 2.5.3, H = Msh, Hs = Mshs, He =
Mshe, x = Lx′ with L = 10−9, and t = 1

µ0γMs
t′, we obtain equation (1.8) with η = A

µ0M2
sL

2

and equation (1.9) with Q = 0. We may assume that the magnetization is constant along
OZ direction and solve two-dimensional Landau-Lifshitz equation. We set spatial step size
as hx = hy = 3.75nm.

For the explicit time integration scheme, we set time step k = 0.01
µ0γMs

≈ 26.44 fs. For the

implicit time discretization scheme, we set k = 0.25
µ0γMs

≈ 0.66 ps. The initial state is a uniform

Néel wall, with m = (0, 1, 0) for 0 < x < 120nm and m = (0,−1, 0) for 120nm < x < 240nm
as shown on the first panel in Fig. 2.13. The evolution of the magnetization is shown in
other panels in Fig. 2.13. We observe a transition from the Néel wall to four 90◦ Néel walls
connecting a vortex which is the equilibrium state. For better visualization, we plotted the
magnetizations on a coarser grid in Fig. 2.13.
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Figure 2.13: Transition from the Néel wall to vortex structure. The vectors in the plot
denote the mx and my components, and the color denotes the mz component.
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2.6 Adaptive mesh refinement

The simulation of domain walls in section 2.5.4 shows a strong need for adaptive meshes.
We compare the performance of the MFD method on uniform and locally refined meshes
with prescribed structure. We consider the 1D steady-state solution m = (mx,my,mz) with
the Dirichlet boundary conditions given by

mx(x1, x2, t) = sin(φ(x1, x2, t))

my(x1, x2, t) = cos(φ(x1, x2, t))

mz(x1, x2, t) = 0,

φ(x1, x2, t) = π
(
1 + e−sπ(x1−b/2)

)−1
, (2.50)

where b = 1 and s = 20. This is a steady-state solution of the Landau-Lifshitz equation
(1.8)-(1.9) with the external field

(he)x(x1, x2, t) =

(
∂φ(x1, x2, t)

∂x

)2

sin(φ(x1, x2, t))−
∂2φ(x1, x2, t)

∂x2
cos(φ(x1, x2, t))

(he)y(x1, x2, t) =

(
∂φ(x1, x2, t)

∂x

)2

cos(φ(x1, x2, t)) +
∂2φ(x1, x2, t)

∂x2
sin(φ(x1, x2, t))

(he)z(x1, x2, t) = 0,

(2.51)

Q = 0 and hs = 0. The magnetization m has a sharp transition on the interval 0.4 < x1 < 0.6
and is almost constant on the other regions as shown on the first panel in Fig 2.14. The
locally refined meshes consist of squares and degenerate pentagons. They are shown on the
other panels in Fig 2.14.

In Table 2.5, the convergence results are summarized. The locally refined meshes lead to
more accurate results for about the same numerical cost. We expect even better results for
adaptive meshes constructed using an error indicator.

Uniform square meshes
Number of cells ‖mh −mI‖L∞ ratio ‖mh −mI‖Q ratio

256 9.170e-01 1.51 3.429e-01 1.67
1024 3.231e-01 2.67 1.081e-01 2.81
4096 5.072e-02 2.09 1.542e-02 2.10
16384 1.192e-02 3.605e-03

Adaptive mesh
220 8.993e-01 3.52 2.906e-01 3.60
952 6.846e-02 3.30 2.076e-02 3.36
3760 7.099e-03 1.39 2.062e-03 1.99
15904 2.609e-03 4.915e-04

Table 2.5: Comparison of errors between uniform and locally refined meshes in Fig. 2.14.



CHAPTER 2. THE MIMETIC FINITE DIFFERENCE METHOD FOR THE
LANDAU-LIFSHITZ EQUATION 40

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.14: Steady state solution of the Landau-Lifshitz equation and three locally refined
meshes.
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Chapter 3

A high order mimetic finite difference
method for the Landau-Lifshitz
equation

In this chapter, we present a high order mimetic finite difference method (MFD) for the
Landau-Lifshitz equation.

3.1 High order mimetic finite difference method for

the Landau-Lifshitz equation

We consider the Landau-Lifshitz equation, written as a system of two equations, as in chapter
2 :

p = −∇m,

∂m

∂t
= m× div p + αm× (m× div p) + f(m).

(3.1)

where
f(m) = −m× h̄(m)− αm× (m× h̄(m)) (3.2)

corresponds to the low-order terms (1.10). We refer to p as the magnetic flux tensor. Our
high-order MFD method solves simultaneously for m and p.

As before, we assume m ∈ Q = (L2(Ω))3 and p ∈ F , where

F = {p | p ∈ (Ls(Ω))d×3, s > 2, div p ∈ (L2(Ω))3}.

Let Ωh be the partitions of the domain Ω with NE non-overlapping polygonal or polyhedral
elements E with maximum diameter h. Let NF be the total number of edges (or faces in
3D). Let |E| denote the area of each element E (or volume in 3D), and |f | denote the length
of each edge f (or area in 3D).

We develop a high order MFD for the Landau-Lifshitz equation using similar framework
to the high order MFD method for the diffusion equation in [47].
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3.1.1 Orthogonal basis functions

In order to introduce the degrees of freedom associated with the magnetization vector and
magnetic flux tensor, we introduce a family of orthogonal polynomials {φE,i}i=0,1,...,nEk −1 of

degree k on each element E and a family of orthogonal polynomials {φf,i}i=0,1,...,nfk−1 of

degree k associated with each edge f (or face in 3D). Here, nEk = (k+1)(k+2)
2

for d = 2,

nEk = (k+1)(k+2)(k+3)
6

for d = 3 and nfk = k + 1 for d = 2, nfk = (k+1)(k+2)
2

for d = 3 .
For each mesh element E, let Pk(E) be the space of polynomial functions defined on E

with degree at most k. The orthogonal polynomials {φE,i}i=0,1,...,nEk −1 associated with each

element E form an orthogonal basis in Pk(E) and satisfy the orthogonality condition∫
E

φE,i φE,j dx = |E| δij. (3.3)

where δij is a Kronecker delta function. We take φE,0 = 1. We define the projection
ΠE
k (φ) ∈ Pk(E) of a function φ ∈ L2(E) by the orthogonality relation∫

E

(ΠE
k (φ)− φ) ψ dx = 0 for all ψ ∈ Pk(E). (3.4)

For each mesh edge f , let Pk(f) be the space of polynomial functions defined on f with
degree at most k. The orthogonal polynomials {φf,i}i=0,1,...nfk−1 associated with each edge f

(or face in 3D) form an orthogonal basis in Pk(f), and satisfy the orthogonality condition∫
f

φf,i φf,j dS = |f | δij. (3.5)

and we take φf,0 = 1. We define the projection Πf
k(φ) ∈ Pk(f) of a function φ ∈ L2(f) by

the orthogonality relation∫
f

(Πf
k(φ)− φ) ψ dS = 0 for all ψ ∈ Pk(f). (3.6)

3.1.2 Degrees of Freedom

For m = (mx,my,mz), we associate the degrees of freedom for each component of the
magnetization m to each element E. They represent the moments of mu with respect to the
orthogonal polynomials φE,i of degree at most k. We define

mu,E,i :=
1

|E|

∫
E

mu φE,i dx, for i = 0, 1, . . . , nEk − 1, u ∈ {x, y, z} (3.7)

where φE,i are orthogonal polynomials of degree up to k. The vector space

Qh =
{
mh
u | mh

u = (mu,E,0,mu,E,1, · · · ,mu,E,nEk −1)TE∈Ωh

}
. (3.8)
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has dimension equals to nEk times the number of elements. Then the discrete magneti-
zation mh may be written (mh

x, m
h
y , m

h
z ) with mh

u ∈ Qh. The restriction of each com-
ponent of the magnetization mh

u to each element E is given by mu,E which is the set of
nEk real numbers (mu,E,0, mu,E,1, · · · , mu,E,nEk −1), and the restriction of the magnetiza-

tion to each element E is given by mE = (mx,E,my,E,mz,E). The restriction operator
to each element E and ith degree is given by (·)E,i and we have (mh

u)E,i := mu,E,i and
(mh)E,i := mE,i = (mx,E,i,my,E,i,mz,E,i)

T .
Let p = (px,py,pz). We associate the degrees of freedom for each component of the

magnetic flux p to each element E and edge f (or face f in 3D) :

pu,E,i =
1

|E|d/2

∫
E

pu · ∇φE,i dx, for i = 1, . . . , nEk − 1, u ∈ {x, y, z},

and

pu,E,f,i =
1

|f |

∫
f

pu · nE,f φf,i dx, for i = 0, . . . , nfk − 1, u ∈ {x, y, z},

where nE,f is an outward unit normal vector. Consider the vector space

Fh =
{
phu | phu = ({pu,E,1, pu,E,2, . . . , pu,E,nEk −1}E∈Ωh , {pu,E,f,0, pu,E,f,1, . . . , pu,E,f,nfk−1}f∈∂E)T

}
.

(3.9)
The dimension of this space is equal to nEk − 1 times the number of elements plus 2nfk times

the number of interior edges and nfk times the number of boundary edges (faces in 3D). Then
the discrete magnetic flux ph may be written (phx, p

h
y , p

h
z ) with phu ∈ Fh. The restriction of

each component of the magnetic flux phu to each element E consists of degrees of freedom
associated with both the element and the edges (faces) of the element. It is denoted by
pu,E which is (pu,E,1, . . . , pu,E,nEk −1, {pu,E,f,0, . . . , pu,E,f,nkf−1}f∈∂E)T , and the restriction of the

magnetic flux is pE = (px,E, py,E, pz,E). The restriction operator to each element E and ith
degree is (·)E,i given by (phu)E,i := (pu,E,i), and the restriction operator to each edge (or face)
f ∈ ∂E and ith degree is (·)E,f,i given by (phu)E,f,i := (pu,E,f,i)f∈∂E.

We have a continuity condition for the flux on the edge. Let f be an internal edge shared
by two elements E1 and E2. Then it satisfies the flux continuity constraints,

pu,E1,f,i + pu,E2,f,i = 0, for i = 0, . . . , nfk − 1, u ∈ {x, y, z}. (3.10)

3.1.3 Interpolation Operators

The local interpolation for each component of the magnetization mu ∈ L2(E) is mI
u,E ∈ Qh|E,

whose components are the moments of mu with respect to the orthogonal polynomials φE,i,

mI
u,E,i := (mI)u,E,i =

1

|E|

∫
E

mu φE,i dx for i = 0, 1, . . . , nEk − 1.

The global interpolation of mu is denoted by mI
u ∈ Qh, whose restriction to E is mI

u,E.
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The piecewise polynomial representation on each element using the degrees of freedom
for each component of the discrete magnetization is

m̃h
u(x) =

nEk −1∑
i=0

mu,E,i φE,i(x) for x ∈ E, u ∈ {x, y, z}. (3.11)

Then we have mh
u = (m̃h

u)
I . The piecewise polynomial representation on each element using

the degrees of freedoms for the discrete magnetization is

m̃h(x) =

nEk −1∑
i=0

mx,E,i

my,E,i

mz,E,i

 φE,i(x) for x ∈ E. (3.12)

The local interpolation for each component of the magnetic flux pu ∈ H(div, E)∩(Ls(E))d

with s > 2 is pIu,E ∈ Fh|E whose components have the moments of pu with respect to the
gradient of the orthogonal polynomials ∇φE,i,

pIu,E,i = (pIu)E,i =
1

|E|1/d

∫
E

pu · ∇φE,i dx for i = 1, 2, . . . , nEk − 1,

and the moments of pu ·nE,f for each edge (or face) f ∈ ∂E with respect to the orthogonal
polynomials φf,i,

pIu,E,f,i = (pIu)E,f,i =
1

|f |

∫
f

pu · nE,f φf,i dx for i = 0, 1, . . . , . . . , nfk − 1,

where nE,f is an outward unit normal vector. The global interpolation of pu is denoted by
pIu ∈ Fh, whose restriction to E is pIu,E.

The piecewise polynomial representation on each edge (or face) using the degrees of
freedoms for each component of the discrete flux is

p̃hu(x) =

nfk−1∑
i=0

pu,E,f,i φf,i(x) for x ∈ f, u ∈ {x, y, z}. (3.13)

The piecewise polynomial representation on each edge (or face) using the degrees of
freedoms for the discrete flux is

p̃h(x) =

nfk−1∑
i=0

px,E,f,ipy,E,f,i
pz,E,f,i

 φf,i(x) for x ∈ f. (3.14)

Remark 4. We can define the degrees of freedom for the low order terms (1.10) similarly
as in (3.7). Let us denote h̄E,i(m) = (h̄x,E,i(m), h̄y,E,i(m), h̄z,E,i(m))T , where h̄u,E,i(m) are
the degrees of freedom for each component of the low order term h̄(m). That is,

h̄u,E,i(m) =
1

|E|

∫
E

h̄u(m) φE,i dx, for i = 0, 1, . . . , nEk − 1, u ∈ {x, y, z}.
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Similarly, the piecewise polynomial representation on each element using the degrees of free-
doms for h̄(m) is

˜̄h(m)
h

(x) =

nEk −1∑
i=0

h̄x,E,i(m)
h̄y,E,i(m)
h̄z,E,i(m)

 φE,i(x) for x ∈ E. (3.15)

3.1.4 Mimetic Divergence Operator

The mimetic divergence operator DIV : Fh → Qh is defined on each element by the com-
mutation property:

DIV pIu = (div pu)
I for all p ∈ F .

Each degree of freedom can be computed by using integration by parts:

(div pu)
I
E,i =

1

|E|

∫
E

(div pu) φE,i dx =
1

|E|
(−
∫
E

pu · ∇φE,i dx+
∑
f∈∂E

∫
f

pu ·nE,f φE,i dx)

for i = 0, 1, . . . , nEk − 1. The restriction of DIV phu ∈ Qh to each element E is given by
DIVE pu,E with components ((DIV phu)E,0, (DIV phu)E,1, · · · , (DIV phu)E,nEk −1)T . Let us
define

DIVE pE =

DIVE px,EDIVE py,E
DIVE pz,E

 ,

and

DIVE pE,i =

(DIV phx)E,i
(DIV phy)E,i
(DIV phz )E,i

 .

for i = 0, 1, . . . , nEk − 1.
The piecewise polynomial representation using the degrees of freedoms for each compo-

nent of the divergence is

D̃IV phu (x) =

nEk −1∑
i=0

(DIV phu)E,i φE,i(x) for x ∈ E. (3.16)

The piecewise polynomial representation using the degrees of freedoms for the divergence
is

D̃IV ph (x) =

nEk −1∑
i=0

(DIV phx)E,i
(DIV phy)E,i
(DIV phz )E,i

 φE,i(x) for x ∈ E. (3.17)
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3.1.5 Mimetic Inner Products

We define the mimetic inner product in the discrete magnetization space Qh by

〈mh, wh〉Q =
∑

u∈{x,y,z}

〈mh
u, w

h
u〉Q, 〈mh

u, w
h
u〉Q =

∑
E∈Vh

〈mh
u,E, w

h
u,E〉Q,E (3.18)

The local inner product is defined by adding all degrees of freedom associated with the
element,

〈mh
u,E, w

h
u,E〉Q,E = |E|

nEk −1∑
i=0

mu,E,iwu,E,i

 .

This can be obtained from the L2 inner product for piecewise polynomial functions of degree
k associated with mh

u and whu. That is,

∫
E

m̃h
u(x) w̃hu(x) dx =

nEk −1∑
i,j=0

mu,E,iwu,E,j

∫
E

φE,i(x)φE,j(x) dx

= |E|

nEk −1∑
i,j=0

mu,E,iwu,E,j δij

 = |E|

nEk −1∑
i=0

mu,E,iwu,E,i

 .

(3.19)

We define the mimetic inner product in the space of discrete magnetic flux Fh by

〈ph, qh〉F =
∑

u∈{x,y,z}

〈phu, qhu〉F , 〈phu, qhu〉F =
∑
E∈Vh

〈pu,E, qu,E〉F ,E, (3.20)

where 〈·, ·〉F ,E is an element-based inner product that requires special construction discussed
later in section 3.1.7.

3.1.6 Mimetic Gradient Operator

To introduce the mimetic gradient operator, we start by discretizing the local Green formula∫
E

m · div p dx = −
∫
E

∇m : p dx+

∫
∂E

(p · n) ·m dx.

To discretize the last term, we introduce additional degrees of freedom associated with the
magnetization on mesh edges (or faces) f for each element E. The components are

mu,f,i =
1

|f |

∫
f

mu φf,i dx, for i = 0, 1, . . . , nfk − 1, u ∈ {x, y, z}.

The restriction of each component of the magnetization to each edge (or face) f is denoted
by mu,f and the restriction of the magnetization to each edge (or face) f is denoted by
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mf = (mx,f , my,f , mz,f ). Let m̃E = (m̃x,E, m̃y,E, m̃z,E)T be the additional degrees of freedom
associated with each element E, where m̃u,E = (mu,f,0, . . . ,mu,f,nfk−1)f∈∂E. The total number

of degrees of freedom is equal to nfk times the number of edges (or faces) NF . The local
mimetic gradient operator is defined implicitly by a discrete duality property :

〈mE, DIVE pE〉Q,E = −〈GRADE

(
mE

m̃E

)
, pE〉F ,E +

∑
u∈{x, y, z}

∑
f∈∂E

nfk−1∑
i=0

|f | pu,E,f,i ·mu,f,i

(3.21)
for all mE, m̃E, and pE. The local mimetic gradient operator is defined uniquely due to the
properties of the inner products.

3.1.7 Construction of mimetic inner product for flux

We present the construction of the local mimetic inner products for magnetic fluxes. We
consider a subspace Sh of F̄h defined as

Sh = {p ∈ F̄h | (div p)E ∈ Pk(E), p · nE,f ∈ Pk+1(f) for every E ∈ Ωh}, (3.22)

where
F̄h = {v | div v ∈ L2(Ω), (div v)|E ∈ L2(E), v ∈ (Ls(E))d,

with s > 2, E ∈ V h for every E ∈ Ωh}
(3.23)

The local inner product 〈pu,E, qu,E〉F ,E in (3.20) is constructed to satisfy stability and con-
sistency conditions :

• (Local Consistency) For every polynomial p ∈ Pk+2(E) and every q ∈ Sh, we have

〈
(
ΠE
k+1(∇p)

)I
, qI〉E =

∫
E

∇p · q dx. (3.24)

• (Stability) There exist two positive constants c0, C0 > 0 such that

c0|E||pu,E|2E ≤ 〈pu,E, pu,E〉F ,E ≤ C0|E||pu,E|2E (3.25)

for all pu,E ∈ Fh|E, where

|pu,E|2E = h2
E

nEk∑
i=1

|pu,E,i|2 +
∑
f∈∂E

nfk−1∑
i=0

|pu,E,f,i|2 (3.26)

with hE the diameter of E.
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Using equation (3.24), we get

〈
(
ΠE
k+1(∇p)

)I
, qI〉E =

∫
E

∇p · q dx = −
∫
E

p div q dx+
∑
f∈∂E

∫
f

q · nE,f p dS

= −
∫
E

p ΠE
k (div q) dx+

∑
f∈∂E

∫
f

Πf
k+1(q · nE,f ) p dS

= −
∫
E

p ˜(DIVqI) dx+
∑
f∈∂E

∫
f

(q̃I) p dS.

(3.27)
Using equation (3.27), we can construct the mimetic inner product in Fh as in [47]. It is

an nEk+1 × nEk+1 symmetric positive definite matrix MF ,E with

〈pu,E, qu,E〉F ,E = (pu,E)T MF ,E (qu,E). (3.28)

The matrix MF ,E is defined by

MF ,E = RE (NT
E RE)−1 RT

E + µE (I − NE (NT
E NE)−1 NT

E), (3.29)

where the ith column of NE is given by

(NE)i = (ΠE
k+1(∇φE,i))I (3.30)

for i = 1, . . . , nEk+2 − 1 and the ith column of RE satisfies

qTu,E (RE)i = −
∫
E

D̃IVqhu φE,i dx+
∑
f∈∂E

∫
f

q̃hu φE,idS (3.31)

for every qE ∈ Fh|E and µE = trace (RE (NT
E RE)−1 RT

E).

3.1.8 The Predictor-Corrector Scheme

We use the mimetic discretization to discretize in space. The semi-discrete mimetic formu-
lation is to find mE, m̃E, and pE, for E ∈ V h, such that

pE = −GRADE

(
mE

m̃E

)
∑nEk −1

i=0 ail
∂mE,i

∂t
=
∑nEk −1

i,j=0 aijlmE,i × (DIVEpE,j − h̄E,j(m))

+α
∑nEk −1

i,j,k=0 aijkl(mE,i · (DIVE pE,j − h̄E,j(m)) mE,k

−α
∑nEk −1

i,j,k=0 aijkl (mE,i ·mE,k) (DIVE pE,j − h̄E,j(m))

(3.32)

where ail =
∫
E
φE,i φE,l dx, aijl =

∫
E
φE,i φE,j φE,l dx, and aijkl =

∫
E
φE,i φE,j φE,k φE,l dx,

for l = 0, . . . , nEk − 1 and subject to flux continuity (3.10), initial and boundary conditions.
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The Dirichlet boundary conditions are imposed by prescribing given values of the auxiliary
magnetization m̃E on each edge (or face) f . The Neumann boundary conditions are imposed
by setting the magnetic flux to the given values. In fact, the second equation in (3.32) can
be derived from ∫

E
∂m̃h

∂t
· ṽh =

∫
E

(m̃h × (D̃IV ph − ˜̄h(m)
h

)) · ṽh

+α
∫
E

(m̃h · (D̃IV ph − ˜̄h(m)
h

))(m̃h · ṽh)

−α
∫
E

(m̃h · m̃h)((D̃IV ph − ˜̄h(m)
h

) · ṽh)

(3.33)

We discretize in time using backward Euler time stepping, which is first order in time,
and use it as the predictor step. To preserve the magnitude of the magnetization in a certain
sense, we use a corrector step. This step preserves the magnitude of the magnetization in the

sense that
∫
E
|m̃h,J+1|2 =

∫
E
|m̃h,J |2, that is,

∑nEk −1
i=0 |mJ+1

E,i |2 =
∑nEk −1

i=0 |mJ
E,i|2. We expect to

be asymptotic conservation of the length. Note that, if we use a low order discretization in
space, the predictor-corrector scheme would preserve the nonconvex constraint, i.e. |mJ+1

E | =
|mJ

E|.
The resulting method is second order in time.

1. Predictor Step : Backward Euler

p∗E = −GRADE

(
m∗E
m̃∗E

)
∑nEk −1

i=0 ail
m∗E,i−m

J
E,i

k
=
∑nEk −1

i,j=0 aijlm
J
E,i × (DIVEp∗E,j − h̄∗E,j(m))

+α
∑nEk −1

i,j,k=0 aijkl(m
J
E,i · (DIVE p∗E,j − h̄∗E,j(m)) mJ

E,k

−α
∑nEk −1

i,j,k=0 aijkl (mJ
E,i ·mJ

E,k) (DIVE p∗E,j − h̄∗E,j(m))
(3.34)

2. Corrector Step :

p
J+ 1

2
E = −GRADE

(
m

J+ 1
2

E

m̃
J+ 1

2
E

)
∑nEk −1

i=0 ail
mJ+1
E,i −m

J
E,i

k
=
∑nEk −1

i,j=0 aijl
mJ
E,i+mJ+1

E,i

2
× (DIVEp

J+ 1
2

E,j − h̄
J+ 1

2
E,j (m))

+α
∑nEk −1

i,j,k=0 aijkl(
mJ
E,i+mJ+1

E,i

2
· (DIVE p

J+ 1
2

E,j − h̄
J+ 1

2
E,j (m)) m

J+ 1
2

E,k

−α
∑nEk −1

i,j,k=0 aijkl (
mJ
E,i+mJ+1

E,i

2
·mJ+ 1

2
E,k ) (DIVE p

J+ 1
2

E,j − h̄
J+ 1

2
E,j (m))
(3.35)

where m
J+ 1

2
E =

mJ
E+m∗E

2
and m̃

J+ 1
2

E =
m̃J
E+m̃∗E

2
.
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3.2 Numerical Examples 1

3.2.1 Periodic Boundary Conditions

In this section, we consider the predictor-corrector scheme and provide convergence tests on
various meshes. A family of analytic solutions for the Landau-Lifshitz equation with effective
field including only the exchange energy term, i.e. h = ∆m, is given by [38]

mx(x1, x2, t) =
1

d(t)
sin β cos(κ(x1 + x2) + g(t)),

my(x1, x2, t) =
1

d(t)
sin β sin(κ(x1 + x2) + g(t)),

mz(x1, x2, t) =
1

d(t)
e2κ2αt cos β.

(3.36)

where β = π
12

, κ = 2π, d(t) =
√

sin2 β + e4κ2αt cos2 β and g(t) = 1
α

log
(
d(t)+e2κ

2αt cosβ
1+cosβ

)
. This

family was also used in section 2.5.1 .
We perform simulations on the time interval [0, T ] with T = 0.001. We have (mx,my,mz)→

(0, 0, 1) as t→∞. We measure errors by calculating mesh dependent L2-type norms ‖ · ‖Q
for the magnetization, and ‖ · ‖F for the magnetic flux.

3.2.1.1 Uniform square meshes

In this section, we consider predictor-corrector scheme with the analytic solution given by
(3.36) on a unit square Ω = [0, 1]× [0, 1] with periodic boundary conditions. We perform the
simulation on a uniform square mesh with mesh size h and set k = Ch3/2 so that the second
order time integration does not affect our conclusions. Specifically, we set C =

√
2 · 10−4 for

h = 1/8, 1/32, 1/128 and C = 10−4 for h = 1/16, 1/64. The result is shown in Table 3.1 and
Fig 3.2 which shows both third order convergence in h and second order convergence in k
for the magnetization.

1/h ‖mh −mI‖Q
8 5.830e-04
16 7.427e-05
32 9.404e-06
64 1.178e-06
128 1.474e-07
rate 2.99

Table 3.1: Convergence analysis of predictor-corrector scheme on a uniform square mesh.
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3.2.1.2 Smoothly distorted and randomized quadrilateral meshes

In this section, we continue the convergence analysis for the predictor-corrector scheme with
two different meshes. We consider randomly and smoothly distorted mesh as shown in
Fig. 3.1. The randomized mesh is constructed by random perturbation of the interior nodes
in a uniform mesh, The nodes of the randomized mesh are given by

x := x+ 0.2 ξx h, y := y + 0.2 ξy h, (3.37)

where ξx and ξy are random variables between −1 and 1. The smoothly distorted mesh is
constructed from a uniform square mesh using a smooth map to calculate the positions of
the new nodes. The smooth map is given by

x := x+ 0.1 sin(2πx) sin(2πy),

y := y + 0.1 sin(2πx) sin(2πy).
(3.38)

As before, for a given mesh size h, we set k = Ch3/2 with C =
√

2 · 10−4 for h =
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Figure 3.1: Left : Randomized mesh, Right : Smoothly distorted mesh.

1/8, 1/32, 1/128 and C = 10−4 for h = 1/16, 1/64 . The results are shown in Table 3.2
and Fig 3.2 which shows third order convergence in h for the magnetization.

3.2.1.3 Convergence analysis for problems with Dirichlet boundary conditions

In this section, we consider the predictor-corrector scheme for the Landau-Lifshitz equation
with effective field including only the exchange energy term, i.e. h = ∆m. We consider the
analytic solution in (3.36) with Dirichlet boundary condition. We consider not only uniform
and distorted meshes on a unit square, but also structured meshes on a circular domain
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Randomized mesh Smoothly distorted mesh
1/h ‖mh −mI‖Q ‖mh −mI‖Q
8 1.504e-03 2.748e-03
16 1.740e-04 3.253e-04
32 2.294e-05 4.346e-05
64 2.799e-06 5.537e-06
128 3.600e-07 6.955e-07
rate 3.00 2.96

Table 3.2: Convergence analysis of predictor-corrector scheme on distorted meshes.
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Figure 3.2: Error plot of ‖mh − mI‖Q with respect to the mesh size h on the uniform,
randomized and smoothly distorted meshes shown in Fig. 3.1.

with center (0.5, 0.5) and radius 0.5, shown in Fig. 3.3. The Dirichlet boundary conditions
allows us to consider more general domains such as circular domains. In Fig. 3.3, it shows a
logically square mesh fitted to the circular domain.

For a given mesh size h, we set k = Ch3/2 with C =
√

2·10−4 for h = 1/8, 1/32, 1/128 and
C = 10−4 for h = 1/16, 1/64 . The errors and convergence rates are summarized in Table 3.3
and Fig. 3.4. We observe again the third-order convergence rate for the magnetization.
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Figure 3.3: Logically square mesh fitted to the circular domain.

Uniform square mesh Randomized mesh
1/h ‖mh −mI‖Q ratio 1/h ‖mh −mI‖Q ratio
8 8.478e-04 3.26 8 1.549e-03 3.08
16 8.824e-05 3.14 16 1.830e-04 2.97
32 9.985e-06 3.05 32 2.338e-05 3.05
64 1.206e-06 64 2.825e-06
Smoothly distorted mesh Logically square mesh in the circular domain
8 3.363e-03 3.13 8 9.318e-04 3.26
16 3.843e-04 3.08 16 9.719e-05 3.24
32 4.547e-05 3.02 32 1.027e-05 3.11
64 5.588e-06 64 1.189e-06

Table 3.3: Convergence analysis of predictor-corrector scheme with Dirichlet boundary con-
ditions.

3.3 Static skyrmions and efficiency of the high order

method

In this section, we compute a static skyrmion [50], which is a local minimizer of the energy
functional

E(m) =
1

2

∫
Ω

|∇m|2 dx+
κ

2

∫
Ω

(m2
1 +m2

2) dx+ λ

∫
Ω

m · (∇×m) dx, (3.39)

where λ is a chirality constant and κ is a dimensionless anisotropy constant. The energy
of a skyrmion in a chiral ferromagnet is given by the above equation (3.39). The first
term is the exchange energy, the second term is the anisotropy energy and the last term
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Figure 3.4: Error plot of ‖mh−mI‖Q with respect to the mesh size h for predictor-corrector
scheme with Dirichlet boundary conditions.

is the Dzyaloshinskii-Moriya (DM) interaction [95, 66, 57]. In order to compute a static
skyrmion, we use both low order and high order predictor-corrector scheme on a square
domain [−15, 15]× [−15, 15] with Neumann boundary conditions and evolve to steady-state.
The initial state of the magnetization is given by

mx(x1, x2) = sin Θ(r) cos Φ(φ)

my(x1, x2) = sin Θ(r) sin Φ(φ)

mz(x1, x2) = cos Θ(r),

(3.40)

where Θ(r) = 2 arctan( r
r−a)+π and Φ(φ) = φ, with a = 5, r =

√
x2

1 + x2
2 and φ = arctan(x2

x1
).

The skyrmion number is given by

Q =
1

4π

∫
V

m · (∂m

∂x
× ∂m

∂y
) dx,

which is the integral of the solid angle and counts how many times the magnetization wraps
around the unit sphere. The initial state has spin configuration with Q = 1 and eventually
converges to a static skyrmion with Q = 1. The energy of the numerical solution is shown in
Fig. 3.5; it monotonically decreases as the solution converges to a stationary state. Table 3.4
summarizes the error in skyrmion number Q at time 6 with k = 1.28h. It shows second
order convergence for the low order method and more than second order convergence for the
high order method. We compared the efficiency of the two methods in Fig. 3.6, where the
x-axis is the cost of the numerical method, which is proportional to the number of nonzero
entries of the matrix, and the y-axis is the error in the skyrmion number Q at time 6. It
shows that the high order method is more efficient than the low order method already for
coarse meshes.
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Figure 3.5: Energy of solutions as a function of time.

Low order method High order method
1/h Error in Q at time 6 rate 1/h Error in Q at time 6 rate
32 4.246e-01 1.92 8 5.683e-01 0.46
64 1.123e-01 1.89 16 4.135e-01 3.32
128 3.026e-02 1.97 32 4.134e-02 5.23
256 7.723e-03 64 1.103e-03

Table 3.4: Error in skyrmion number and rate of convergence.
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Figure 3.6: Comparison of the efficiency of high and low order methods.
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Chapter 4

The mass-lumped finite element
method for the Landau-Lifshitz
equation

In this chapter, we present a family of mass-lumped finite element methods for the Landau-
Lifshitz equation. We provide a rigorous convergence proof that the numerical solution of
our scheme has a subsequence that converges weakly to a weak solution of the Landau-
Lifshitz-Gilbert equation. We develop a simple proof technique that cancels out the product
of weakly convergent sequences. Our proofs use tools introduced in [7].

Our scheme has several advatanges over previous finite element methods for the Landau-
Lifshitz equation [6, 5, 7, 52, 9, 13, 30] (See section 1.7.3). For our implicit scheme, we only
need to solve a sparse linear system for each time step, which is of similar complexity to
the algorithms in Alouges et al’s scheme [6, 5, 7]. By contrast, Bartels and Prohl’s scheme
and Cimák’s scheme require the solution of a nonlinear system. For the explicit scheme,
our approach is more efficient in that it is completely explicit : the effective mass matrix is
diagonal. Furthermore, we built our scheme based on the Landau-Lifshitz equation instead of
the Landau-Lifshitz-Gilbert equation so that we can naturally extend the method to limiting
case, such as the Schrödinger map or the harmonic map heat flow. In contrast, Alouges et
al’s scheme and Bartels and Prohl’s schemes are based on other forms of the Landau-Lifshitz
equation.

4.1 Weak solutions, meshes and the finite element

space

Let us denote ΩT = Ω × (0, T ). We first introduce the definition of a weak solution of the
Landau-Lifshitz-Gilbert equation :
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Definition 1. Let m0(x) ∈ H1(Ω)3 with |m0(x)| = 1 a.e. Then m is a weak solution of
(1.12) if for all T > 0,

(i) m(x, t) ∈ H1(ΩT )3 and |m(x, t)| = 1 a.e.,

(ii) m(x, 0) = m0(x) in the trace sense,

(iii) m satisfies

∫
ΩT

∂m

∂t
·w − α

∫
ΩT

(m× ∂m

∂t
) ·w (4.1)

= (1 + α2)η
d∑
l=1

∫
ΩT

(m× ∂m

∂xl
) · ∂w

∂xl
− (1 + α2)

d∑
l=1

∫
ΩT

(m× h̄(m)) ·w.

for all w ∈ H1(ΩT )3.

(iv) m satisfies an energy inequality

C

∫
ΩT

|∂m

∂t
|2 + E(m(x, T )) ≤ E(m(x, 0)). (4.2)

for some constant C > 0, where the energy E(m) is defined in equation (1.2).

The value C in (iv) is taken to be C = α
1+α2 in [6, 13].

Let the domain Ω ⊂ Rd where d = 2 or 3 be discretized into triangular or tetrahedral
elements {Th}h of mesh size at most h, with vertices (xi)

N
i=1. Let the family of partitions

T = {Th}h be admissible, shape regular and uniform. We review the definition of admissible,
shape regular and uniform (taken from [20]) :

Definition 2. 1. A family of partitions T = {Th}h is called admissible provided that

a) Ω̄ = ∪hTh.
b) If Thi ∩ Thj consists of exactly one point, then it is a common vertex of Thi and
Thj .

c) If for i 6= j, Thi ∩Thj consists of more than one point, then Thi ∩Thj is a common
edge of Thi and Thj .

2. A family of partitions T = {Th}h is called shape regular provided that there exists a
positive constant κ > 0 such that every Th ∈ T contains a circle of radius ρT with

ρT ≥
hT
κ

where hT is half the diameter of Th.
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3. A family of partitions T = {Th}h is called uniform provided that there exists a positive
constant κ > 0 such that every Th ∈ T contains a circle of radius ρT with

ρT ≥
h

κ
.

Let {φi}1≤i≤N be piecewise linear nodal basis functions for T , such that φi(xj) = δij,
where δij is a Kronecker delta function. The vector-valued finite element space F h is defined
by

F h = {wh | wh(x) =
N∑
i=1

wh
i φi(x), wh

i ∈ R3}.

Because of the nonconvex constraint, we consider a submanifold Mh of F h defined by

Mh = {mh ∈ F h |mh(x) =
N∑
i=1

mh
i φi(x), |mh

i | = 1},

where the discrete magnetization mh belongs to Mh. Moreover, we define the nodal inter-
polation operator Ih : C0(Ω,R3)→ F h by

Ih(m) =
N∑
i=1

m(xi)φi(x). (4.3)

We make some additional assumptions for our finite element method: There exist some
positive constants C1, C2, C3, C4 such that

C1h
d ≤ bi =

∫
Ω

φi ≤ C2h
d,

|Mij| =
∣∣∣∣∫

Ω

φiφj

∣∣∣∣ ≤ C3h
d,∣∣∣∣∂φi∂xl

∣∣∣∣ ≤ C4

h∫
Ω

∇φi · ∇φj ≤ 0, for i 6= j,

(4.4)

for all h > 0, i, j = 1, . . . , N and l = 1, . . . , d.

4.2 The finite element scheme, the main algorithm,

and the main theorem

We consider the simple case with the effective field h containing only the exchange energy
term, i.e. h = η4m from (1.9), to illustrate how we obtain Algorithm 2 below. The weak
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form of the Landau-Lifshitz equation with h = η4m is∫
ΩT

∂m

∂t
·w = η

d∑
l=1

∫
ΩT

(
m× ∂m

∂xl

)
· ∂w

∂xl

− αη
d∑
l=1

∫
ΩT

∂m

∂xl
· ∂w

∂xl
+ αη

d∑
l=1

∫
ΩT

(
∂m

∂xl
· ∂m

∂xl

)
(m ·w).

(4.5)

Taking this weak form as a hint, we would like to find v =
∑N

j=1 vjφj ∈ F h such that∫
Ω

N∑
j=1

vjφj ·wiφi = η

d∑
l=1

N∑
j=1

∫
Ω

(
mi ×mj

∂φj
∂xl

)
·
(
∂φi
∂xl

wi

)

− αη
d∑
l=1

N∑
j=1

∫
Ω

(
mj

∂φj
∂xl

)
·
(

wi
∂φi
∂xl

)
+ αη

d∑
l=1

N∑
j=1

∫
Ω

(
∂φj
∂xl

mj ·mi

)(
mi ·wi

∂φi
∂xl

)
(4.6)

for i = 1, . . . , N , where m =
∑N

j=1 mjφj(x) ∈ Mh, w ∈ (C∞(Ω))3 and wi = Ih(w)(xi) =
w(xi). Then, with wi as (1, 0, 0), (0, 1, 0) or (0, 0, 1) in equation (4.6), we obtain

(Mv)i = η mi × (Am)i + αη mi × (mi × (Am)i) (4.7)

for i = 1, . . . , N , where M =

M 0 0
0 M 0
0 0 M

 and A =

A 0 0
0 A 0
0 0 A

 are 3N × 3N block

diagonal matrices with each block M and A a mass or stiffness matrix, i.e. Mij =
∫

Ω
φi φj,

and Aij =
∑d

l=1

∫
Ω
∂φi
∂xl

∂φj
∂xl

. Note that mi · (Mv)i = 0, so approximating v by v̂ = Mv
b

yields

a tangent vector to the constraint manifold Mh, where bi =
∫

Ω
φi. The left-hand side of (4.7)

is then biv̂i which is a mass-lumping approximation. This suggests Algorithm 2 below.
Next we define the time-interpolated magnetization and velocity as in [7]:

Definition 3. For (x, t) ∈ Ω× [jk, (j + 1)k) ⊂ Ω× [0, T ), where T = Jk, define

mh,k(x, t) = mj(x),

m̄h,k(x, t) =
t− jk
k

mj+1(x) +
(j + 1)k − t

k
mj(x),

v̂h,k(x, t) = v̂j(x),

vh,k(x, t) = vj(x).

The main theoretical result of this chapter is the following theorem, which is proved in
section 4.4.

Theorem 2. Let m0 ∈ H1(Ω,S2) and suppose mh
0 →m0 in H1(Ω) as h→ 0. Let θ ∈ [0, 1],

and for 0 ≤ θ < 1
2
, assume that k

h2
≤ C0, for some C0 > 0. If the triangulation T = {Th}h

satisfies condition (4.4), then the sequence {mh,k}, constructed by Algorithm 2 and definition
3, has a subsequence that converges weakly to a weak solution of the Landau-Lifshitz equation.
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Algorithm 2 The mass-lumped finite element method

Set an initial discrete magnetization m0 at the nodes of the finite element mesh described
in section 4.1 above.
For j = 0, . . . , J ,

a. compute a velocity vector v̂ji at each node by

v̂ji =
(Mvj)i
bi

=
η mj

i × (Am + θkAv̂)ji + αη mj
i × (mj

i × (Am + θkAv̂)ji )

bi

−mj
i × (Mh̄(m) + θkMh̄(v̂))ji + αmj

i × (mj
i × (Mh̄(m) + θkMh̄(v̂))ji )

bi
.

(4.8)

for θ ∈ [0, 1] and for i = 1, . . . , N .

b. Compute mj+1
i =

mj
i+kv̂

j
i

|mj
i+kv̂

j
i |

for i = 1, . . . , N .

4.3 Numerical Results

Before giving a proof for Theorem 2, we demonstrate the effectiveness of the scheme on a test
problem. We conduct a numerical test for the Landau-Lifshitz equation (1.8) with effective
field involving only the exchange energy term, i.e. h = ∆m in equation (1.9), on the unit
square with periodic boundary conditions. This corresponds to setting η = 1 and h̄ = 0 in
equation (4.8) in Algorithm 2. For the convergence study, we used an explicit method (θ = 0)
and an implicit method (θ = 0.5) on a structured and unstructured mesh. The unstructured
mesh was generated using DistMesh [68], with an example shown in Figure 4.1. The L∞ and
L2 errors were measured relative to an exact solution of the Landau-Lifshitz equation with
h = ∆m from [38], namely

mx(x1, x2, t) =
1

d(t)
sin β cos(k(x1 + x2) + g(t)),

my(x1, x2, t) =
1

d(t)
sin β sin(k(x1 + x2) + g(t)),

mz(x1, x2, t) =
1

d(t)
e2k2αt cos β.

(4.9)

Here β = π
24

, k = 2π, d(t) =
√

sin2 β + e4k2αt cos2 β and g(t) = 1
α

log
(
d(t)+e2k

2αt cosβ
1+cosβ

)
. These

exact solutions were used in sections 2.5.1 and 3.2.1 for the numerical tests. The numerical
results are summarized in the Tables 4.1 and 4.2. Figure 4.2 shows the convergence rate of
the method, which is first order in the time step k and second order in the mesh size h.
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Figure 4.1: Unstructured mesh, with h = 1/32.

structured mesh unstructured mesh
1
h

||m−mh||L∞ ||m−mh||L2 ||m−mh||L∞ ||m−mh||L2

32 8.22e-05 7.40e-04 9.93e-04 1.11e-03
64 2.06e-05 1.85e-04 2.09e-04 2.75e-04
128 5.15e-06 4.63e-05 5.18e-05 6.88e-05
256 1.29e-06 1.16e-05 1.60e-05 1.73e-05

Slope 2.00 2.00 2.04 2.00

Table 4.1: Explicit method (θ = 0) : L∞ and L2 error and convergence rates on a
structured and unstructured mesh with spatial step h, time step k = 8 · 10−7h2 and time
0.001.

4.3.1 Going beyond first order in time

In this section, we propose a method which is second order in time, by replacing the nonlinear
projection step 2 (b) in Algorithm 2 by a linear projection step, and test the convergence
order. In Algorithm 2, step 2 (a) can be viewed as the predictor step and 2 (b) as the
corrector step. The corrector step was used to conserve the length of the magnetization at
each node. By replacing this nonlinear projection by a linear projection step, it not only
preserves the length of the magnetization at each node, but also makes the method higher
order. Moreover, it has a similar complexity to the nonlinear projection step in that one
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Figure 4.2: Convergence plot, Left : Explicit method, Right : Implicit method.

structured mesh unstructured mesh
1
h

||m−mh||L∞ ||m−mh||L2 ||m−mh||L∞ ||m−mh||L2

32 8.50e-05 7.40e-04 9.94e-04 1.11e-03
64 2.13e-05 1.85e-04 2.10e-04 2.75e-04
128 5.32e-06 4.63e-05 5.19e-05 6.88e-05
256 1.33e-06 1.16e-05 1.60e-05 1.73e-05

Slope 2.00 2.00 2.00 2.00

Table 4.2: Implicit method (θ = 1
2
) : L∞ and L2 error and convergence rates on structured

and unstructured meshes, with spatial step h, time step k = 0.02048h2 and time 0.001.

only needs to solve a 3 × 3 matrix equation for each node. We defer a rigorous analysis to
future work and present here the modified algorithm and some convergence test results.

The length of the magnetization at each node is preserved, because by taking a dot

product in (4.10) with
mj+1
i +mj

i

2
, we have |mj+1

i |2 = |mj
i |2. As before, we conduct a numerical

test for the Landau-Lifshitz equation (1.8) with effective field involving only the exchange
energy term, with h = ∆m in equation (1.9), on the unit square with periodic boundary
conditions, to compare the two algorithms. For the convergence study, we used an implicit
method (θ = 0.5) on a structured and unstructured mesh. One of the unstructured meshes
was shown in Figure 4.1. The L2 errors are measured relative to the analytical solution (4.9)
for the Landau-Lifshitz equation with h = ∆m. The numerical results are summarized in
the Table 4.3. Figure 4.3 shows the convergence rates of the methods, which shows first
order in k for Algorithm 2 and second order convergence for Algorithm 3.
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Algorithm 3 Modified mass-lumped finite element method

For a given time T̄ > 0, set J = [ T̄
k

].
Set an initial discrete magnetization m0 at the nodes of the finite element mesh described
in section 4.1 above.
For j = 0, . . . , J ,

a. compute an intermediate magnetization vector m∗i at each node by

m∗i −mj
i

k
= v̂ji =

(Mvj)i
bi

=
η mj

i × (Am + θkAv̂)ji + αη mj
i × (mj

i × (Am + θkAv̂)ji )

bi

− mj
i × (Mh̄(m) + θkMh̄(v̂))ji + αmj

i × (mj
i × (Mh̄(m) + θkMh̄(v̂))ji )

bi

for θ ∈ [0, 1] and for i = 1, . . . , N .
b. Compute mj+1

i

mj+1
i −mj

i

k
=

=
η

mj+1
i +mj

i

2
× (Am

j+1/2
i ) + αη

mj+1
i +mj

i

2
× (m

j+1/2
i × (Am

j+1/2
i ))

bi

−
mj+1
i +mj

i

2
×Mh̄(m

j+1/2
i ) + α

mj+1
i +mj

i

2
× (m

j+1/2
i × (Mh̄(m

j+1/2
i ))

bi

(4.10)

where m
j+1/2
i =

mj
i+m∗i

2
for i = 1, . . . , N .

4.4 Proof of Theorem 2

In this section, we present the proof of the theorem, which states that the sequence {mh,k},
constructed by Algorithm 2 and Definition 3, has a subsequence that converges weakly to
a weak solution m of the Landau-Lifshitz-Gilbert equation under some conditions. That is,
we show that the limit m satisfies Definition 1. In section 4.4.1, we derive a discretization
of the weak form of the Landau-Lifshitz-Gilbert equation satisfied by the {mh,k}, namely
(4.13). In section 4.4.2, we derive energy estimates to show that the sequences mh,k, m̄h,k

converge to m and v̂h,k converges to ∂m
∂t

in a certain sense made precise in section 4.4.3. In
section 4.4.4, we show that each term of the discretization of the weak form converges to the
appropriate limit, so that the limit m satisfies the weak form of the Landau-Lifshitz-Gilbert
equation. In section 4.4.5, we show that the limit m satisfies the energy inequality (4.2) in
Definition 1 (iv). Finally, in section 4.4.6, we establish that the magnitude of m is 1 a.e. in
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Figure 4.3: Convergence plot, Left : Structured mesh, Right : Unstructured mesh.

Structured mesh Unstructured mesh
1
h

Alg. 2 rate Alg. 3 rate Alg. 2 rate Alg. 3 rate
32 5.14e-04 1.32 1.87e-04 2.01 6.64e-04 1.44 3.32e-04 2.02
64 2.06e-04 1.18 4.66e-05 2.00 2.44e-04 1.28 8.21e-05 2.00
128 9.12e-05 1.10 1.16e-05 2.00 1.01e-04 1.16 2.06e-05 2.00
256 4.27e-05 2.91e-06 4.51e-05 5.16e-06

Table 4.3: Implicit method (θ = 1
2
) : L2 error and convergence rates on structured and

unstructured meshes, with spatial step h, time step k = 0.04h and time 0.01.

ΩT .

4.4.1 Equations that mh,k and vh,k satisfy

In this section, we derive a discretization of the weak form of the Landau-Lifshitz-Gilbert
equation. This form is easier to use for the proof of Theorem 2, since it does not involve
the product of weakly convergent sequences. In general, a product of weakly convergent
sequences is not weakly convergent. It is convergent only in some certain cases, such as
when the sequences satisfy the hypothesis of the div-curl lemma [82, 28].

The generalized version of equation (4.6), including all the terms in the effective field h
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in (1.9) and with 0 ≤ θ ≤ 1 is∫
Ω

vh,k ·wh = η
∑
l,i

∫
Ω

((
mh,k

i ×
∂(mh,k + θkv̂h,k)

∂xl

)
· wh

i

)
∂φi
∂xl

− αη
∑
l,i

∫
Ω

(
∂(mh,k + θkv̂h,k)

∂xl
· wh

i

)
∂φi
∂xl

+ αη
∑
l,i

∫
Ω

(
∂(mh,k + θkv̂h,k)

∂xl
·mh,k

i

)
(mh,k

i ·wh
i )
∂φi
∂xl

−
∑
i

∫
Ω

(mh,k
i × h̄(mh,k + θkv̂h,k)) · φiwh

i

+ α
∑
i

∫
Ω

h̄(mh,k + θkv̂h,k) · φiwh
i

− α
∑
i

∫
Ω

(h̄(mh,k + θkv̂h,k) ·mi)(mi ·wh
i φi).

(4.11)

In fact, by taking wh
i as (1, 0, 0), (0, 1, 0) and (0, 0, 1) in (4.11), we get (4.8) in Algorithm 2.

Setting wh =
∑N

j=1(mh,k
j × uhj )φj in (4.11), we have

−
∑
i

∫
Ω

(mh,k
i × vh,k) · uhi φi = η

∑
l

∫
Ω

∂(mh,k + θkv̂h,k)

∂xl
· ∂uh

∂xl

− η
∑
l,i

∫
Ω

(
∂(mh,k + θkv̂h,k)

∂xl
·mh,k

i

)
(mh,k

i · uhi )
∂φi
∂xl

+ αη
∑
l,i

∫
Ω

((
mh,k

i ×
∂(mh,k + θkv̂h,k)

∂xl

)
· uhi
)

∂φi
∂xl

−
∑
i

∫
Ω

(h̄(mh,k + θkv̂h,k)) · φiuhi

+
∑
i

∫
Ω

(h̄(mh,k + θkv̂h,k) ·mh,k
i ) (mh,k

i · uhi )φi

− α
∑
i

∫
Ω

(mh,k
i × h̄(mh,k + θkv̂h,k)) · uhi φi.

(4.12)

Equations (4.11) and (4.12) have terms that contain the product of weakly convergent se-
quences, namely the third term of the right hand side of (4.11), and the second term of the

right hand side of (4.12), αη
∑

l,i

∫
Ω

(
∂(mh,k+θkv̂h,k)

∂xl
·mh,k

i

)
(mh,k

i ·wh
i )∂φi

∂xl
. By adding α times
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equation (4.12) to equation (4.11), we eliminate the terms that contain such products :∫
Ω

[
vh,k ·wh − α

∑
i

(mh,k
i × vh,k) · (wh

i φi)
]

= (1 + α2)

[
η
∑
l,i

∫
Ω

[(
mh,k

i ×
∂m

∂xl

h,k)
·
(

wh
i

∂φi
∂xl

)
+ θk

(
mh,k

i ×
∂v̂

∂xl

h,k
)
·
(

wh
i

∂φi
∂xl

)]
−
∑
i

∫
Ω

[
(mh,k

i × h̄(mh,k)) · (wh
i φi) + θk(mh,k

i × h̄(v̂h,k)) · (wh
i φi)

]]
.

(4.13)
This is a similar procedure to subtracting α times the following equation

m× ∂m

∂t
= −m× (m× h) + αm× h (4.14)

from the Landau-Lifshitz equation (1.8) to get the Landau-Lifshitz-Gilbert equation (1.12).
Here, equation (4.14) is obtained by taking m× the Landau-Lifshitz equation (1.8).

4.4.2 Energy inequality

In this section, we derive the energy inequalities we will need to prove Theorem 2, namely
(4.27) for 0 ≤ θ < 1

2
and (4.28) for 1

2
≤ θ ≤ 1. We will use Theorem 1 from [7], which states

that the exchange energy is decreased after renormalization. This result goes back to [10,
12, 7] :

Theorem 3. For the P 1 approximation in Ω ⊂ R2, if∫
Ω

∇φi · ∇φj ≤ 0, for i 6= j, (4.15)

then for all w =
∑N

i=1 wiφi ∈ F h such that |wi| ≥ 1 for i = 1, . . . , N , we have∫
Ω

∣∣∣∣∇Ih( w

|w|

)∣∣∣∣2 ≤ ∫
Ω

|∇w|2 . (4.16)

In 3D, (4.16) holds if an additional condition that all dihedral angles of the tetrahedra
of the mesh are smaller than π

2
is satisfied, along with (4.15); see [86, 7]. Also, we will use

inequality (14) of [7], ∥∥h̄(m)
∥∥
L2 ≤ C5 ‖m‖L2 + C5, (4.17)

and equation (25) from [9],
‖hs(m)‖L2 ≤ C5 ‖m‖L2 , (4.18)
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where C5 is a positive constant, depending only on Ω. Furthermore, we will use an inequality
(20) of [7] in the proof, which states there exists C6 > 0 such that for all 1 ≤ p <∞ and all
φh ∈ F h, we have

1

C6

‖φh‖pLp ≤ hd
N∑
i=1

|φh(xi)|p ≤ C6 ‖φh‖pLp . (4.19)

Moreover, we will assume that there exists C7 > 0 such that∫
Ω

|∇vh|2 ≤ C7

h2

∫
Ω

|vh|2 (4.20)

for all vh ∈ F h.
Taking wh =

∑N
j=1(mh,k

j × uhj ) φj in (4.13), and setting uh = v̂h,k, we have

− α
∑
i

∫
Ω

vh,ki · v̂iφi = (1 + α2)

[
η
∑
l,i

∫
Ω

[(
∂mh,k

∂xl
· ∂φi
∂xl

v̂i

)
+ θk

(
∂v̂

∂xl

h,k

· ∂φi
∂xl

v̂i

)]
−
∑
i

∫
Ω

[
(h̄(mh,k) · v̂i)φi + θk(h̄(v̂h,k) · v̂i)φi

]]
(4.21)

where we have used the fact mh,k
i · v̂

h,k
i = 0 for i = 1, . . . , N . This equation can be written

as

(∇m,∇v̂) = −θk ‖∇v̂‖2
L2 −

α

1 + α2

1

η

∑
i

|(Mv)j|2

bj
+

1

η
(h̄(m), v̂) +

θk

η
(h̄(v̂), v̂). (4.22)

We now derive an energy estimate. We have

1

2

∥∥∇mj+1
∥∥2

L2 ≤
1

2

∥∥∇mj + k∇v̂j
∥∥2

L2 =
1

2

∥∥∇mj
∥∥2

L2 + k(∇mj,∇v̂j) +
1

2
k2
∥∥∇v̂j

∥∥2

L2

≤ 1

2

∥∥∇mj
∥∥2

L2 − k
(

α

1 + α2

)
1

η

∑
i

|(Mv)ji |2

b2
i

bi +
1

2
k2
∥∥∇v̂j

∥∥2

L2 − θk2
∥∥∇v̂j

∥∥2

L2

+
k

η
(h̄(mj), v̂j) + θ

k2

η
(h̄(v̂j), v̂j)

≤ 1

2

∥∥∇mj
∥∥2

L2 − k
(

α

1 + α2

)
1

η

C1

C6

∥∥v̂j∥∥2

L2 −
(
θ − 1

2

)
k2
∥∥∇v̂j

∥∥2

L2 +
k

η
(h̄(mj), v̂j)

+ θ
k2

η
(h̄e, v̂

j)

(4.23)
where the first inequality is obtained by Theorem 3, the second inequality by equation (4.22),
and the last inequality by the fact (hs(v̂

j), v̂j) < 0. We have the estimate for the last two
terms of the above inequality :∣∣(h̄(mj) + θkh̄e, v̂

j)
∣∣ ≤ ∥∥h̄(mj) + θkh̄e

∥∥
L2

∥∥v̂j∥∥
L2 ≤ C8

∥∥v̂j∥∥
L2 ≤ ε

∥∥v̂j∥∥2

L2 +
1

4ε
C2

8 (4.24)



CHAPTER 4. THE MASS-LUMPED FINITE ELEMENT METHOD FOR THE
LANDAU-LIFSHITZ EQUATION 68

for some C8 > 0, where the second inequality is obtained by equation (4.17) and the last
inequality by Young’s inequality with ε = 1

2
α

1+α2
C1

C6
. Summing the inequality (4.23) from

j = 0, . . . , J − 1 and using (4.24), we get

1

2

∥∥∇mJ
∥∥2

L2 + k

(
1

2η

(
α

1 + α2

)
C1

C6

− C7

(
1

2
− θ
)
k

h2

) J−1∑
j=0

∥∥v̂j∥∥2

L2 ≤
1

2

∥∥∇m0
∥∥2

L2 + C9T

(4.25)
with k

h2
≤ C0 <

1
2

α
1+α2

C1

C6

1
C7η

, for 0 ≤ θ < 1
2
, and

1

2

∥∥∇mJ
∥∥2

L2 + k

(
1

2η

(
α

1 + α2

)
C1

C6

) J−1∑
j=0

∥∥v̂j∥∥2

L2 +

(
θ − 1

2

)
k2

J−1∑
j=0

∥∥∇v̂j
∥∥2

L2

≤ 1

2

∥∥∇m0
∥∥2

L2 + C9T

(4.26)

for 1
2
≤ θ ≤ 1, and for some C9 > 0.

In summary, we have the energy inequalities

1

2

∫
Ω

|∇mh,k(·, T )|2 +

(
1

2η

(
α

1 + α2

)
C1

C6

− C7C0

)∫
ΩT

|v̂h,k|2

≤ 1

2

∫
Ω

|∇mh,k(·, 0)|2 + C9T

(4.27)

with C0 <
1
2

α
1+α2

C1

C6

1
C7η

, for 0 ≤ θ < 1
2

and

1

2

∫
Ω

∣∣∇mh,k(·, T )
∣∣2 +

(
1

2η

(
α

1 + α2

)
C1

C6

)∫
ΩT

∣∣v̂h,k∣∣2
+

(
θ − 1

2

)
k

∫
ΩT

∣∣∇v̂h,k
∣∣2 ≤ 1

2

∫
Ω

∣∣∇mh,k(·, 0)
∣∣2 + C9T.

(4.28)

for 1
2
≤ θ ≤ 1.

4.4.3 Weak convergence of mh,k, m̄h,k and v̂h,k

In this section, we show the weak convergence of m̄h,k and v̂h,k and strong convergence of
mh,k in some sense, based on the energy estimates (4.27) and (4.28). We follow similar
arguments from section 6 of [9].

Since we have ∣∣∣∣∣mj+1
i −mj

i

k

∣∣∣∣∣ ≤ ∣∣v̂ji ∣∣ (4.29)

for i = 1, . . . , N and j = 0, . . . , J − 1, we have∥∥∥∥∂m̄

∂t

h,k
∥∥∥∥
L2(Ω)

=

∥∥∥∥mj+1 −mj

k

∥∥∥∥
L2(Ω)

≤ C6

∥∥v̂h,k∥∥
L2(Ω)

. (4.30)
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Thus, we have ∥∥∥∥∂m̄

∂t

h,k
∥∥∥∥
L2(ΩT )

=

∥∥∥∥mj+1 −mj

k

∥∥∥∥
L2(ΩT )

≤ C6

∥∥v̂h,k∥∥
L2(ΩT )

(4.31)

which is bounded by the energy inequalities, (4.27) for 0 ≤ θ < 1
2

and (4.28) for 1
2
≤ θ ≤ 1.

Hence, m̄h,k is bounded in H1(ΩT ) and v̂h,k is bounded in L2(ΩT ) by (4.31) and by the
energy inequalities, (4.27) for 0 ≤ θ < 1

2
and (4.28) for 1

2
≤ θ ≤ 1. Thus, by passing to

subsequences, there exist m ∈ H1(ΩT ) and v̂ ∈ L2(ΩT ) such that

m̄h,k →m weakly in H1(ΩT ),

m̄h,k →m strongly in L2(ΩT ),

v̂h,k → v̂ weakly in L2(ΩT ).

(4.32)

Moreover, we have

∣∣mj+1
i −mj

i − kv̂
j
i

∣∣ =

∣∣∣∣∣ mj
i + kv̂ji

|mj
i + kv̂ji |

−mj
i − kv̂

j
i

∣∣∣∣∣ =
∣∣1− |mj

i + kv̂ji |
∣∣ ≤ 1

2
k2
∣∣v̂ji ∣∣2 , (4.33)

since |mj
i +kv̂ji | =

√
1 + k2|v̂ji |2 ≤ 1 + 1

2
k2|v̂ji |2, for i = 1, . . . , N and j = 0, . . . , J −1. Thus,∥∥∥∥∂m̄

∂t

h,k

− v̂h,k
∥∥∥∥
L1(ΩT )

≤ 1

2
kC2C6

∥∥v̂h,k∥∥2

L2(ΩT )
(4.34)

which converges to 0 as h, k → 0, so
∂m

∂t
= v̂. (4.35)

Furthermore, since

∥∥mh,k − m̄h,k
∥∥
L2(ΩT )

=

∥∥∥∥(t− jk)
mj+1 −mj

k

∥∥∥∥
L2(ΩT )

≤ k

∥∥∥∥∂m̄

∂t

h,k
∥∥∥∥
L2(ΩT )

(4.36)

and the right hand side goes to 0 as h, k → 0, we have

mh,k →m strongly in L2(ΩT ). (4.37)

In summary, we have shown that there exist a subsequence of {m̄h,k} that converges
weakly in H1(Ω× (0, T )), a subsequence of {v̂h,k} that converges weakly in L2(Ω× (0, T )),
and a subsequence of {mh,k} converges strongly in L2(ΩT ) based on the energy estimates
(4.27) and (4.28). However, in our numerical tests in section 4.3, it was not necessary to
take subsequences and the method was in fact second order in space and first order in time.
Thus, there is still a gap in what we are able to prove and the practical performance of the
algorithm in cases where the weak solution is unique and sufficiently smooth.
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4.4.4 The proof that the limit m actually satisfies
Landau-Lifshitz-Gilbert equation

In this section, we show that each term of equation (4.13) converges to the appropriate
limit, so that the limit m of the sequences {m̄h,k} and {mh,k} satisfies the weak form of
the Landau-Lifshitz-Gilbert equation (4.1) in Definition 1. The Bramble-Hilbert lemma, or
classical interpolation inequality, is extensively used in this proof. We state the Bramble-
Hilbert lemma for our proof [20, 6, 5].

Lemma 3 (Bramble-Hilbert lemma). For each element E, for any function φ ∈ H2(E), we
have

‖φ− Ih(φ)‖L2(E) ≤ Ch2‖4φ‖L2(E),

and
‖φ− Ih(φ)‖H1(E) ≤ Ch‖4φ‖L2(E).

Lemma 4. Let the sequences {mh,k}, {m̄h,k}, {v̂h,k}, and {vh,k} be defined by Definition
3. Also, let m ∈ H1(ΩT ) be the limit as in (4.32) and (4.37). Moreover, let’s assume
w ∈ (C∞(ΩT )3 ∩ (H1(ΩT ))3, and wh = Ih(w) ∈ Fh as in equation (4.3). Then we have

lim
h,k→0

∫
ΩT

vh,k ·wh = lim
h,k→0

∫ T

0

N∑
j=1

v̂h,kj ·wh
j

∫
Ω

φj =

∫
ΩT

∂m

∂t
·w. (4.38)

Proof. The difference between the last two terms is bounded by∣∣∣∣∫
ΩT

Ih(v̂
h,k ·wh)− v̂h,k ·wh

∣∣∣∣+

∣∣∣∣∫
ΩT

v̂h,k ·wh − ∂m

∂t
·w
∣∣∣∣ . (4.39)

The first term of (4.39) has the following estimate. For each element E, we have v̂h,k(·, t) ·
wh(·, t) ∈ C∞(E) and∥∥Ih(v̂h,k ·wh)− v̂h,k ·wh

∥∥2

L2(E)
≤ C10h

4
∥∥∆(v̂h,k ·wh)

∥∥2

L2(E)

≤ C10h
4(
∥∥∆v̂h,k ·wh

∥∥2

L2(E)
+
∥∥∇v̂h,k · ∇wh

∥∥2

L2(E)
+
∥∥v̂h,k ·∆wh

∥∥2

L2(E)
)

≤ C10h
4((
∥∥∇v̂h,k · ∇wh

∥∥2

L2(E)
)

(4.40)

for some C10 > 0, where the first inequality is obtained by the Bramble-Hilbert lemma [20],
and in the last inequality we have used ∆v̂h,k = 0 and ∆wh = 0 in E, since v̂h,k and wh are
the sum of piecewise linear functions. We have the estimate∥∥∇v̂h,k

∥∥2

L2(Ω)
≤
∑
E

∫
E

|
∑
i

(v̂h,k)i∇φi|2 ≤
C11

h2

∑
E

|
∑
i∈IE

(v̂h,k)i|2|E|

≤ C12h
d−2

N∑
i=1

|(v̂h,k)i|2 ≤
C13

h2

∥∥v̂h,k∥∥2

L2(Ω)
.

(4.41)



CHAPTER 4. THE MASS-LUMPED FINITE ELEMENT METHOD FOR THE
LANDAU-LIFSHITZ EQUATION 71

for some constants C11, C12, C13 > 0 and IE is the index of nodes of E, where the second
inequality is obtained by (4.20), and the last inequality by (4.19). Hence,∥∥Ih(v̂h,k ·wh)− v̂h,k ·wh

∥∥2

L2(ΩT )
≤ C10h

4
∥∥∇v̂h,k · ∇wh

∥∥2

L2(ΩT )
≤ C14h

2
∥∥v̂h,k∥∥

L2(ΩT )

(4.42)
for some constant C14 > 0. Therefore, the first term of (4.39) goes to 0 as h, k → 0.
Moreover, the second term of (4.39) goes to 0 by the weak convergence of v̂h,k to ∂m

∂t
which

are equations (4.32) and (4.35) .

Lemma 5. Under the same assumptions of Lemma 4, we have

lim
h,k→0

∫
ΩT

∑
i

(mh,k
i × vh,k) ·wh

i φi = lim
h,k→0

∫
ΩT

∑
i

(mh,k
i × v̂h,ki ) ·wh

i φi

=

∫
ΩT

(
m× ∂m

∂t

)
·w

(4.43)

Proof. The difference between the last two terms is bounded by∣∣∣∣∫
ΩT

Ih((m
h,k)a(v̂h,k)b(wh)c)− (mh,k)a(v̂h,k)b(wh)c

∣∣∣∣
+

∣∣∣∣∣
∫

ΩT

(mh,k)a(v̂h,k)b(wh)c −ma

(
∂m

∂t

)b
wc

∣∣∣∣∣
(4.44)

for some a, b, c ∈ {1, 2, 3}. The first term of (4.44), has the following estimate. For each
element E, we have (mh,k)a(v̂h,k)b(wh)c ∈ C∞(E) and∥∥Ih((mh,k)a(v̂h,k)b(wh)c)− (mh,k)a(v̂h,k)b(wh)c

∥∥
L1(E)

≤ C15h
2(
∥∥∆((mh,k)a(v̂h,k)b(wh)c)

∥∥
L1(E)

)

≤ C15h
2(
∥∥∇(mh,k)a∇(v̂h,k)b(wh)c

∥∥
L1(E)

+
∥∥∇(mh,k)a(v̂h,k)b∇(wh)c

∥∥
L1(E)

+
∥∥(mh,k)a∇(v̂h,k)b∇(wh)c

∥∥
L1(E)

)

(4.45)

for some constant C15 > 0, where the first inequality is obtained by Bramble-Hilbert lemma,
and in the last inequality we have used ∆m̂h,k = 0, ∆v̂h,k = 0 and ∆wh = 0 in E, since
mh,k, v̂h,k and wh are the sum of piecewise linear functions. Hence, we have the estimate∥∥Ih((mh,k)a(v̂h,k)b(wh)c)− (mh,k)a(v̂h,k)b(wh)c

∥∥
L1(ΩT )

≤ C16h
∥∥(v̂h,k)b

∥∥
L2(ΩT )

(
∥∥∇(mh,k)a

∥∥
L2(ΩT )

+ h
∥∥∇(mh,k)a

∥∥
L2(ΩT )

+
∥∥(mh,k)a

∥∥
L2(ΩT )

).

(4.46)

for some constant C16 > 0, where we have used Hölder’s inequality for all the terms and
used (4.41) for the first and the third terms. Therefore, the first term of (4.44) goes to 0 as
h, k → 0. Moreover, the second term of (4.44) goes to 0 by the weak convergence of (v̂h,k)b

to
(
∂m
∂t

)b
established in (4.32) and (4.35), and strong convergence of (mh,k)a to ma.
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Lemma 6. Under the same assumptions of Lemma 4, we have

lim
h,k→0

∑
l,i

∫
ΩT

(
mh,k

i ×
∂m

∂xl

h,k)
·
(

wh
i

∂φi
∂xl

)
=
∑
l

∫
ΩT

(
m× ∂m

∂xl

)
· ∂w

∂xl
. (4.47)

Proof. The difference between the last two terms is bounded by∣∣∣∣∣
∫

ΩT

(
∂m

∂xl

h,k)b(∂Ih((mh,k)c(wh)a)

∂xl

)
−
∫

ΩT

(
∂m

∂xl

h,k)b
(mh,k)c

(
∂w

∂xl

h)a ∣∣∣∣∣
+

∣∣∣∣∣
∫

ΩT

(mh,k)c
(
∂m

∂xl

h,k)b(∂w

∂xl

h)a
−
∫

ΩT

mc

(
∂m

∂xl

)b(
∂w

∂xl

)a ∣∣∣∣∣ ,
(4.48)

for some a, b, c ∈ {1, 2, 3}. The first term is bounded by∥∥∥∥∥
(
∂m

∂xl

h,k)b∥∥∥∥∥
L2(ΩT )

∥∥∥∥∂Ih((mh,k)c(wh)a)

∂xl
− ∂((mh,k)c(wh)a)

∂xl

∥∥∥∥
L2(ΩT )

. (4.49)

For each element E, we have (mh,k)c(wh)a ∈ C∞(E), and we have the estimate,∥∥∥∥∂Ih((mh,k)c(wh)a)

∂xl
− ∂((mh,k)c(wh)a)

∂xl

∥∥∥∥2

L2(E)

≤ C17h
2|(mh,k)c(wh)a|2H2(E) (4.50)

for some constant C17 > 0, by the Bramble-Hilbert lemma. Moreover, we have the estimate,

|(mh,k)c(wh)a|2H2(E) =

∫
E

|∆((mh,k)c(wh)a)|2 ≤ C18

∫
E

|∇(mh,k)c|2|∇(wh)a|2

≤ C19

∥∥(mh,k)c
∥∥2

H1(E)

(4.51)

for some constants C18, C19 > 0, since ∆mh,k = 0 and ∆wh = 0 in E, since mh,k and wh are
the sum of piecewise linear functions. We get the estimate∥∥∥∥∂Ih((mh,k)c(wh)a)

∂xl
− ∂((mh,k)c(wh)a)

∂xl

∥∥∥∥2

L2(ΩT )

≤ C17C19h
2
∥∥(mh,k)c

∥∥2

H1(ΩT )
. (4.52)

Therefore, we may conclude that the first term of (4.48) goes to 0 as h, k → 0. Moreover, the

second term of (4.48) goes to 0 by the weak convergence of
(
∂mh,k

∂xl

)b
to
(
∂m
∂xl

)b
and strong

convergence of (mh,k)c to mc, which gives (4.32) and (4.37).

Lemma 7. Under the same assumptions of Lemma 4, we have

lim
h,k→0

∣∣∣∣∣k∑
i

∫
ΩT

(
mh,k

i ×
∂v̂h,k

∂xl

)a(
∂wh

i

∂xl

)a∣∣∣∣∣ = 0. (4.53)

for 0 ≤ θ ≤ 1.
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Proof. An upper bound for the sequence above is

√
k

∥∥∥∥√k ∂(v̂h,k)c

∂xl

∥∥∥∥
L2(ΩT )

∥∥∇(Ih(m
h,k)b(wh)a)

∥∥
L2(ΩT )

. (4.54)

for some a, b, c ∈ {1, 2, 3}. The term
∥∥∥√k ∂(v̂h,k)c

∂xl

∥∥∥
L2(ΩT )

in (4.54) is uniformly bounded,

since
∥∥∥√k ∂(v̂h,k)c

∂xl

∥∥∥
L2(Ω)

≤ C7

√
k
h

∥∥(v̂h,k)c
∥∥
L2(Ω)

is uniformly bounded by (4.27) for 0 ≤ θ < 1
2
,

which is obtained by (4.20), and
∥∥∥√k ∂(v̂h,k)c

∂xl

∥∥∥
L2(Ω)

is uniformly bounded by equation (4.28)

for 1
2
≤ θ ≤ 1. For each element E, we have (mh,k)b(wh)a ∈ C∞(E), so∥∥∇Ih((mh,k)b(wh)a)−∇((mh,k)b(wh)a)

∥∥2

L2(E)
≤ C20h

2(
∥∥(∇(mh,k)b)

∥∥2

L2(E)
), (4.55)

for some constant C20 > 0, by the Bramble-Hilbert lemma, and using ∆mh,k = 0 and
∆wh = 0 in E, since mh,k and wh are the sum of piecewise linear functions. Thus, we have∥∥∇(Ih(m

h,k)b(wh)a)
∥∥2

L2(ΩT )

≤
∥∥∇(mh,k)b

∥∥2

L2(ΩT )
+ C20h

2(
∥∥(∇(mh,k)b)

∥∥2

L2(ΩT )
),

(4.56)

which is uniformly bounded. Hence, (4.54) goes to 0 as h, k → 0.

Lemma 8. Under the same assumptions of Lemma 4, we have

lim
h,k→0

∑
i

∫
ΩT

(mh,k
i × h̄(mh,k)) ·wh

i φi =

∫
ΩT

(m× h̄(m)) ·w. (4.57)

Proof. An upper bound for the difference between the sequence and the limit is given by∣∣∣∣∫
ΩT

(h̄(mh,k))aIh((m
h,k)b(wh)c)−

∫
ΩT

(h̄(mh,k))a(mh,k)b(wh)c)

∣∣∣∣
+

∣∣∣∣∫
ΩT

(h̄(mh,k))a(mh,k)b(wh)c −
∫

ΩT

(h̄(m))ambwc)

∣∣∣∣ (4.58)

for some a, b, c ∈ {1, 2, 3}. The first term of (4.58) is bounded by∥∥h̄(mh,k)a
∥∥
L2(ΩT )

∥∥Ih((mh,k)b(wh)c)− (mh,k)b(wh)c
∥∥
L2(ΩT ) (4.59)

For each element E, we have (mh,k)b(wh)c ∈ C∞(E), and we get the estimate,∥∥Ih((mh,k)b(wh)c)− ((mh,k)b(wh)c)
∥∥2

L2(E)
≤ C21h

4|(mh,k)b(wh)c|2H2(E) (4.60)
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for some constant C21 > 0, by the Bramble-Hilbert lemma. Moreover,

|(mh,k)b(wh)c|2H2(E) ≤ C21

∫
E

|∇(mh,k)b|2|∇(wh)c|2 + |(mh,k)b|2|∆(wh)c|2

≤ C22

∥∥(mh,k)b
∥∥2

H1(E)

(4.61)

for some constant C22 > 0, and using the fact ∆mh,k = ∆wh = 0 in E, since mh,k and wh

are the sum of piecewise linear functions. We get the estimate∥∥Ih((mh,k)b(wh)c)− ((mh,k)b(wh)c)
∥∥2

L2(ΩT )
≤ C23h

4
∥∥(mh,k)b

∥∥2

H1(ΩT )
. (4.62)

for some constant C23 > 0. Thus, the first term of (4.58) goes to 0 as h, k → 0, and the
second term of (4.58) converges to 0 as h, k → 0, because of the strong convergence of
(h̄(mh,k))a and (mh,k)b.

Lemma 9. Under the same assumptions of Lemma 4, we have

lim
h,k→0

∣∣∣∣∣k∑
i

∫
ΩT

(mh,k
i × h̄(v̂h,k)) ·wh

i φi

∣∣∣∣∣ = 0. (4.63)

Proof. An upper bound for the sequence above is

k
∥∥h̄(v̂h,k))

∥∥
L2(ΩT )

∥∥wh
∥∥
L2(ΩT )

. (4.64)

Since,
∥∥h̄(v̂h,k))

∥∥
L2(ΩT )

≤ (C5

∥∥v̂h,k∥∥
L2(ΩT )

+ C5) by (4.17), the term
∥∥h̄(v̂h,k))

∥∥
L2(ΩT )

in

(4.64) is uniformly bounded. Therefore, (4.64) goes to 0 as h, k → 0.

4.4.5 Energy of m

Recall the definition of the energy E(m) in (1.2). We follow the same arguments in section
6 of [9]. We have an energy estimate of mh,k as

E(mj+1)− E(mj) ≤− k
(

α

1 + α2

)
C1

C6

||v̂j||2L2 −
(
θ − 1

2

)
k2η||∇v̂j||2L2 + k(h̄(mj), v̂j)

+ θk2(h̄e, v̂
j)− 1

2

∫
Ω

(h̄(mj+1) + h̄(mj)) · (mj+1 −mj).

(4.65)
by (4.23) from section 4.4.2. For 0 ≤ θ < 1

2
, the second term on the right has an upper

bound(
θ − 1

2

)
k2η

∥∥∇v̂j
∥∥2

L2(Ω)
≤ k2η

∥∥∇v̂j
∥∥2

L2(Ω)
≤ C7kη

k

h2

∥∥v̂j∥∥2

L2(Ω)
≤ C7C0ηk

∥∥v̂j∥∥2

L2(Ω)

(4.66)
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and by choosing C0 ≤ 1
2

α
1+α2

C1

C6

1
C7η

, this term and the first term on the right hand side of

(4.65) can be combined to be less than equal to

− k

2

(
α

1 + α2

)
C1

C6

||v̂j||2L2(Ω) (4.67)

The second term on the right of equation(4.65) can be disregarded for 1
2
≤ θ ≤ 1. We will

derive the upper bound for the rest of the terms of right hand side of (4.65).
The third and the last terms on the right can be combined to be written as∣∣∣∣k(h̄(mj), v̂j)− 1

2

∫
Ω

(h̄(mj+1) + h̄(mj)) · (mj+1 −mj)

∣∣∣∣ . (4.68)

and has an upper bound∣∣∣∣∫
Ω

h̄(mj) · (mj+1 −mj − kv̂j)
∣∣∣∣+

∣∣∣∣12
∫

Ω

(h̄(mj+1)− h̄(mj)) · (mj+1 −mj)

∣∣∣∣ . (4.69)

The first term of (4.69) is bounded by

C24k
2
(∥∥v̂j∥∥

L2(Ω)

∥∥v̂j∥∥
L4(Ω)

)
≤ C24

k2

2

(∥∥v̂j∥∥2

L2(Ω)
+
∥∥v̂j∥∥2

L4(Ω)

)
(4.70)

for some constant C24 > 0, by (4.33), and (4.19). The second term of (4.69) is bounded by

C25k
2 ‖v̂j‖2

L2(Ω) for some constant C25 > 0, by (4.29) and (4.19).

The fourth term on the right has the upper bound |θk2(h̄e, v̂
j)| ≤ C26k

2 ‖v̂j‖L2(Ω) for
some constant C26 > 0. Then (4.65) has an upper bound

E(mj+1)− E(mj) +
k

2

(
α

1 + α2

)
C1

C6

||v̂j||2L2(Ω) ≤C27k
2
(∥∥v̂j∥∥2

L4(Ω)
+
∥∥v̂j∥∥2

L2(Ω)

)
≤C28k

2
(∥∥∇v̂j

∥∥2

L2(Ω)
+
∥∥v̂j∥∥2

L2(Ω)

) (4.71)

for some constants C27, C28 > 0, by using Sobolev embedding theorem [4], ‖v̂j‖L4(Ω) ≤
C29 ‖∇v̂j‖L2(Ω) for some constant C29 > 0. Summing from j = 0, . . . , J − 1, we get

E(mJ)− E(m0) +
1

2

(
α

1 + α2

)
C1

C6

∫
ΩT

|v̂h,k|2

≤ C28 k
(∥∥∇v̂h,k

∥∥2

L2(ΩT )
+
∥∥v̂h,k∥∥2

L2(ΩT )

) (4.72)

Therefore, taking h, k → 0, we get the energy inequality (4.2).
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4.4.6 Magnitude of m

By the same argument in [7], we have |m(x, t)| = 1 a.e. for (x, t) ∈ ΩT ( See equation (28)
and (29) on page 1347 of [7] ). In this section, we will prove that the magnitude of m,
which is the limit of the sequence {mh,k}, is 1 almost everywhere in ΩT . We follow the same
argument from [5], and first state the following fact from [5]:

For any q ∈ F h, we have

||q(x)| − |q(xi)||2 ≤ C30h
2|∇q(x)|2 (4.73)

for x ∈ E, xi a vertex of E and L ∈ Th, which is a triangle or tetrahedron, and for some
constant C30 > 0.

Taking q as mh,k, we have∫
ΩT

∣∣|mh,k(x, t)| − 1
∣∣2 ≤ Ch2

∥∥∇mh,k
∥∥2

L2(ΩT )
. (4.74)

Since
∥∥∇mh,k

∥∥
L2(ΩT )

is bounded by the energy estimates (4.27) for 0 ≤ θ ≤ 1
2
, and (4.27)

for 1
2
≤ θ ≤ 1, we have ∫

ΩT

| |m(x, t)| − 1|2 ≤ 0, (4.75)

by taking h, k → 0. Therefore, m satisfies |m(x, t)| = 1 a.e. for (x, t) ∈ ΩT .
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Chapter 5

Conclusion

A number of unique features of the Landau-Lifshitz equation in micromagnetics impose in-
teresting challenges in the development and analysis in numerical methods for the Landau-
Lifshitz equation. The Landau-Lifshitz equation is highly nonlinear, has a non-convex con-
straint, has several equivalent forms and involves solving an auxiliary problem in the infinite
domain. In this thesis, we presented numerical methods for the Landau-Lifshitz equation
in micromagnetics, that preserve the properties of the underlying PDE : the mimetic finite
difference method and the mass-lumped finite element method.

We developed the mimetic finite difference method for the Landau-Lifshitz equation
that works on general polytopal meshes on general geometries. In Chapter 2, we presented
low order mimetic finite difference method for the Landau-Lifshitz equation that works
on general unstructured meshes on general geometries, preserves non-convex constraint, is
energy (exchange) decreasing, requires only a linear solver at each time step and is easily
applicable to the limiting cases. We tested the method on various meshes. We performed
a numerical simulation for NIST’s micromag standard problem #4, which is to simulate
the magnetization dynamics in a permalloy thin film with applied fields. In Chapter 3,
we presented high order mimetic finite difference method for the Landau-Lifshitz equation
which is third order in space and second order in time. In fact, it is arbitrarily high order
in space. We compared the efficiencies of high order mimetic finite difference method to low
order mimetic finite difference method using a simulation of the static skyrmion in chiral
magnet. It showed that the high order method is more efficient than the low order method
for already coarse meshes.

In Chapter 4, we presented a mass-lumped finite element method for the Landau-Lifshitz
equation that deals with weak solution. The scheme is practical in that it deals with a
weak solution. The scheme preserves non-convex constraint, requires only a linear solver at
each time step and is easily applicable to the limiting cases. We showed that the numerical
solution of our method has a subsequence that converges weakly to a weak solution of the
Landau-Lifshitz-Gilbert equation. Numerical tests show that the method is second order
accurate in space and first order accurate in time when the underlying solution is smooth.
A second-order in time variant was also presented and tested numerically, but not analyzed
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rigorously in the present work.
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