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ABSTRACT OF THE DISSERTATION

Compiler and Runtime Support for Efficient and Scalable

Big Data Processing

by

Khanh Truong Duy Nguyen
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 2019

Professor Harry Guoqing Xu, Chair

Large-scale data analytical applications such as social network analysis and web analysis
have revolutionized modern computing. The processing demand posed by an unprecedented
amount of data challenges both industrial practitioners and academia researchers to design
and implement highly efficient and scalable system infrastructures. However, Big Data pro-
cessing is fundamentally limited by inefficiencies inherent with the underlying programming

languages.

While offering several invaluable benefits, a managed runtime comes with time and space
overheads. In large-scale systems, the runtime system cost can be easily magnified and be-
come the critical performance bottleneck. Our experience with dozens of real-world systems
reveals the root cause is the mismatch between the fundamental assumptions based on which

the current runtime is designed and the characteristics of modern data-intensive workloads.

This dissertation consists of a series of techniques, spanning programming model, compiler,
and runtime system, that can efficiently mitigate the mismatches in real-world systems, and
hence, significantly improve the efficiency of various aspects of Big Data processing. Specif-
ically, this dissertation makes the following three contributions. The first contribution is the
development of a framework named Facade aiming to reduce the cost of object-based rep-

resentation without an intrusive modification of a JVM. Facade uses a compiler to generate
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highly efficient data manipulation code by automatically transforming classes in such a way
that objects are created only as proxies. Facade advocates for the separation of data storage
and data manipulation. The execution model enforces a statically-bounded total number of
data objects in an application regardless of how much data it processes. The second contri-
bution is the design and implementation of Yak, the first hybrid garbage collector tailored
for Big Data systems. Yak provides high throughput and low latency for all JVM-based lan-
guages by adapting its algorithms to two vastly different types of object lifetime behaviors
in Big Data applications. Finally, the third contribution is a JVM-based alternative to en-
able instantaneous data transfer across processing nodes in clusters called Skyway. Skyway
optimizes away inefficiencies of relying on reflection — a heavyweight runtime operation,
and handcrafted procedures in converting data format by transferring objects as-is, without

changing much of their existing format.

We have extensively evaluated those compiler and runtime techniques in several real-world,
widely-deployed systems. The results show significant improvement of the system over the
baseline: faster execution, reduced memory management costs, and improved scalability.
The techniques are also highly practical and easy to integrate without much user efforts,
making the adoption in real setting possible. The work has inspired a line of several follow-up
work from academia. Moreover, the Yak system has been adopted by a telecommunication

company.
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CHAPTER 1

Introduction

The past decade has witnessed the explosion of Big Data, a phenomenon where massive
amounts of information are created at an unprecedented scale and speed. As a reference
data point, former Google CEO FEric Schmidt, at the Techonomy’10 conference, shared that
the accumulation of data generated in just two days could dwarf the total information that
had been created in all human history up until 2003. As another example, the seventh Digital
Universe study jointly conducted by Dell EMC and International Data Corporation [75] —
the only study to quantify the amount of global data produced annually — reveals that the
digital universe to grow 10-fold by 2020 — from 4.4 zettabytes (i.e., trillion gigabytes) in
2013 to 44 zettabytes. To put that in perspective, the amount of information is equivalent
to 6.6 stacks of 128GB iPad Air tablets, each stack is enough to cover the distance from the

earth to the moon.

The availability of an enormous amount of data has led to the proliferation of large-scale,
data-intensive applications. Big Data analytics quickly become a key component of modern
enterprise computing, transforming science, healthcare, finance, business, and ultimately, the
whole society. As the digital universe expands, companies, government agencies, and aca-
demic institutions have increasing demands for scalable software systems that can quickly
analyze data of massive scale at petabyte or higher to discover patterns, trends, and associ-
ations, especially those relating to human behaviors and interactions. For instance, retailers
and media companies leverage users history to offer personalized product recommendations.
Government agencies such as the SEC and the SSA as well as commercial banks fight frauds

daily using Big Data technologies to monitor huge amounts of financial transactions.
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Chapter 1. Introduction

The mainstream approach to tackle the scalability challenge is to enable distributed pro-
cessing using a large number of machines in clusters or in the cloud. An input dataset is
split among machines so that many processors can work simultaneously on a computing
task. Popular Big Data systems include, to name a few, Hadoop [35], Giraph [34], Hive [36],
Hyracks [51], Storm [38], Naiad [130], Spark [182], and TensorFlow [28]. Often, these Big
Data systems are developed in managed languages, such as Java, C#, or Scala. This is
primarily because these languages 1) enable fast development cycles due to simple usage
and automatic memory management and 2) provide abundant library suites and community

support.

However, a managed runtime comes at a cost [77, 127, 132-135, 137, 169, 171-173, 175]:
memory management in Big Data systems is prohibitively expensive. These systems com-
monly suffer from severe memory problems, causing poor performance and low scalability.
That is due to a mismatch of memory usage in this emerging environment. Under the object-
oriented modeling of data, a concrete object is created for each data item, thus, the heap
of a Big Data application contains several orders of magnitude more objects than a general,
non-data-intensive application. Allocating and deallocating a sea of data objects puts a se-
vere strain on the runtime system, leading to high memory management overhead — objects
compete for memory storage as well as CPU and networking time, causing prolonged execu-
tion time, and inability to process datasets of even moderate sizes. For example, Bu et al.
[55] reports an average-sized application on Giraph [34], an Apache open-source graph ana-
lytics framework initiated by Yahoo!, cannot successfully process 1GB of input data despite

having 12GB of memory available.

While there exists a large body of techniques that can improve Big Data performance [29,
30, 51, 56, 57, 65, 89, 100, 116, 140, 144, 160, 161, 177, 179, 184], they focus on horizontal
scaling, i.e., scaling data processing to a large cluster of machines with an assumption that
the processing task on each machine yields satisfactory performance. However, in practice,
and our experience [135] confirms that, in many cases, the data-processing program running

on a worker machine suffers from extensive memory pressure — the execution pushes the



Chapter 1. Introduction

memory limit soon after it starts and the system struggles with finding allocation space for
new objects throughout the execution. Consequently, data-intensive applications crash due to
out-of-memory errors in a surprisingly early stage. Even if a program runs successfully to the
end, its execution is usually dominated by garbage collection (GC), which can take 40-60%
of a job’s end-to-end execution time [55, 77, 134, 135]. The problem becomes increasingly
severe in latency-sensitive distributed cloud applications such as web servers or real-time
analytical systems, where one slow-performing node can hold up the entire cluster, delaying

the processing of user requests for an unacceptably long time [118, 119].

Going back to unmanaged language? Unsatisfactory performance and low scalabilty in con-
temporary Big Data systems is a real problem that has seriously concerned developers of
data-intensive systems. Debates on whether systems development should forsake managed
languages to avoid their inherent inefficiencies and switch to unmanaged languages such as C
and C++ can be found almost everywhere [7, 8, 25]. While that appears to be a reasonable
choice, unmanaged languages are more error-prone; debugging memory bugs in an unman-
aged language is known to be a notoriously painful task, which can be further exacerbated by
the many Big Data effects, such as distributed execution environment, huge volumes of heap
objects, and extremely long running time. Furthermore, since most existing data processing
frameworks are already developed in a managed language, it is unrealistic to re-implement

them from scratch.

Unlike the mainstream approach which tackles the scalability problem by spending more
resources (e.g., machines or memory), we approach this problem from a different perspec-
tive. This dissertation focuses on enabling vertical scaling, i.e., systematically improving the
performance of each data-processing program. By optimizing the program running on each
worker node, large performance gains can be expected in a data center. With the reduction of
data processing time on each node, the data center is expected to have increased throughput

and reduced energy consumption, leading to economic benefit.

Our extensive experience with dozens real-world, data-itensive systems reveals that the core

reason for the low performance of existing Big Data engines is the mismatch between ancient

3



Chapter 1. Introduction

assumptions and abstractions, based on which runtime systems are developed, and behavior

of modern Big Data workloads. Specifically, the mismatches are:

1. Object-based representation mismatch. In a Big Data application, comparing to
a standard application, the heap contains several orders of magnitude more of objects
and references since they are created proportionally with the cardinality of the input
dataset. Each object has a memory overhead in term of object header space and pointer
reference. While the memory cost of maintaining millions of objects in non-Big-Data
applications can be acceptable, the existence of billions of objects in a heap of a Big

Data application exacerbates the runtime cost, limiting scalability.

2. Garbage collection mismatch. State-of-the-art garbage collectors are built upon
generational hypothesis which assumes objects are short-lived. The hypothesis holds
true for many applications, and dictates the design of the managed heap. However,
the behavior of the majority of runtime objects in Big Data applications do not match
such assumption. Instead, they often exhibit strong epochal behavior: their lifetime
often spans the execution of a data manipulation task, which is often long. Much of
the GC effort is wasted by repeatedly scanning a huge number of objects while they are
not reclaimable. The challenge encountered by state-of-the-art GCs in data-intensive

applications is fundamental, causing unsatisfactory performance.

3. Serialization mismatch. Data transferring process is designed very slow and ineffi-
cient: an object must be serialized (i.e., turning an object from heap format to byte
format) by the sender; and then deserialized (i.e., a complete opposite process, turning
a byte sequence into a heap object) by the receiver. It is understandable that the seri-
alization interface was developed in such a way since only a few objects needed to be
serialized in standard applications. However, in Big Data systems, data transferring is
a common task in the processing pipeline that needs to be invoked on a sea of objects
to be transferred via network. Slow serialization is an unacceptable hurdle in such a

performance-sensitive task.
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The mismatches in existing managed runtime system motivate the development our tech-
niques that can dramatically improve the runtime system efficiency for modern Big Data
workloads. This dissertation consists of a series of techniques, spanning programming model,
compiler, and runtime system, aiming to mitigate the mismatches, optimizing away runtime
system inefficiencies, and thus, significantly improve the efficiency of various aspects of Big

Data processing. In particular, the contributions of this dissertation are:

e Contribution 1. Facade [135], a non-intrusive approach targets the performance prob-
lem caused by excessive object creation in an object-oriented Big Data application. We
propose a facade-based programming model in which data are stored in raw mem-
ory buffers and objects are created as proxies only to satisfy control purposes and to
manipulate buffered data. Facade guarantees that the number of runtime objects for
each data type is statically bounded. The compiler performs a semantics-preserving

transformation on data classes to store and access data in native memory pages.

We have implemented Facade and used it to transform 7 common applications on 3 real-
world data processing frameworks: GraphChi, Hyracks, and GPS. Our experimental
results show the The execution of an object-bounded program is much more memory-
efficient. The generated programs have (1) achieved a 3%-48% execution time reduction
and and up to 88x GC time reduction; (2) consumed up to 50% less memory, and (3)

scaled to much larger datasets.

e Contribution 2. Yak [134], a new hybrid collector that can adapt intelligently to two
different types of object lifetime characteristics in Big Data workloads. In Yak, data
objects are speculatively allocated into lattice-based data regions while the generational
GC only scans and collects the control space, which is much smaller. By moving all
data objects into regions and deallocating them as a whole at the end of the lifetime

of each region, significant reduction in GC overheads can be achieved.

We implemented Yak inside Oracle’s production JVM, OpenJDK 8. The JVM-based

implementation enables Yak to work for all JVM-based languages such as Java, Python,
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and Scala. Our experiments on several real-world systems such as Hadoop, Hyracks
and GraphChi with various types of applications and workloads demonstrate that Yak
outperforms the default Parallel Scavenge production GC in OpenJDK on real Big
Data systems. Specifically, Yak reduces GC latency by 1.4 — 44.3 x and improves overall

application performance by 12.5% — 7.2x while requiring almost zero user effort.

e Contribution 3. Skyway [132], a more efficient, tailored-for-Big-Data-systems seri-
alizer to reduce the data transfer cost among managed heaps. Skyway enhances the
JVM, directly connects managed heaps on different machines. Under Skyway, objects
are transferred as-is from the source to the destination without changing much of the
format, enabling them to be used immediately after the transfer. Unlike all existing
approaches, Skyway provides performance benefits to any JVM-based system by com-
pletely eliminating the need of invoking reflection functions to convert data formats,
thus saving computation power. It also requires less developer intervention in register-

ing classes to be serialized as well as in hand-writing serialization functions.

We have implemented Skyway also in Oracle’s production JVM, OpenJDK 8. Our
evaluation on a Java serializer benchmark set JSBS, Apache Spark, and Apache Flink
shows that (1) Skyway outperforms all the 90 existing serializers in JSBS. It even
outperforms popular industrial effort: 2.2x faster than Kryo and 1.9 faster than the
Google‘s protobuf; (2) compared with Kryo and the Java serializer, Skyway improves
the overall Spark performance by 16% and 36% for four representative analytical tasks
over four real-world datasets; (3) for another real-world system Flink, Skyway improves
its overall performance by 19% compared against Flink’s highly-optimized built-in

serializers.

Impact. Asides from improving dramatically efficiency of several popular Big Data systems
as demonstrated in our evaluations, this line of work has attracted much attention from
both academia and industry. The Facade system [135] inspired a line of several follow-up

work — for instance, researchers from Microsoft Research and University of Cambridge used
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the same idea [86] to improve Naiad, Microsoft’s dataflow egnine; Oracle and UC Berkeley
researchers developed a coordinated GC system for latency-sensitive workloads [118, 119];
and the idea was also adopted by a group of scholars from China, Denmark, and Hongkong
to improve the memory management in Apache Spark [117, 151]. As another example, the
Yak GC [134] was of interest of Oracle and recently commercialized by Huawei for use in

their telecommunication systems.

Organization. The remainder of this dissertation is organized as follows. Chapter 2 intro-
duces several basic concepts. Chapter 3 discusses Facade, a framework to statically bound
total number of objects created regardless of the size of the workload at the compiler level.
Yak, a new hybrid garbage collector for Big Data systems is introduced in Chapter 4. Chap-
ter 5 describes the system Skyway built to directly connect managed heaps, reducing data
transfer cost in clusters. Related work is discussed extensively in Chapter 6. Finally, we

conclude in Chapter 7 with some exciting future directions.



CHAPTER 2

Background

In this chapter, we introduce some basic concepts to facilitate the discussion of our techniques

in subsequent chapters.

2.1 Memory Bloat

The term memory bloat refers to excessive memory space required for processing. Memory
bloat commonly exists in enterprise computing [169, 171, 172, 175]. In object-oriented pro-
gramming, for example, each Java object has a fixed-size header space to store its type and
the information necessary for garbage collection (e.g., in the Oracle 64-bit HotSpot JVM,
the header takes 8 bytes for regular objects and 12 bytes for arrays). In an application that
contains a huge number of objects to represent and manipulate data items of small size, since
the data contents in each such object do not take much space, the space overhead cannot
be amortized. That is not all, a significant source of this space overhead is object references
due to the pervasive use of pointer to form data structures. With multiple layers of indirec-
tion, these pointers consume a significant portion of the heap. Based on a study reported
in [127], the fraction of the useful payload data in an IBM application is only 13% of the total
space. The space impact can be significantly magnified in a data-intensive application when
massive amounts of input data need to be represented and processed in memory. Studies
in [55, 136] found that packing factor, a metric which is defined as the maximal amount
of actual data that be accommodated into a fixed amount of memory, in various system is

below satisfactory. Moreover, in these applications, because the input dataset is too large to
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fit totally into memory, data processing pipeline often must be divided to work on a small

partition of the input resulting in significantly increased round-trip 1/O costs.

As a result, data processing systems written in managed languages frequently face severe
memory problems that cause them to fail with out-of-memory errors, reducing its scalability
although the size of the processed dataset is much smaller than the heap size. For example,
in Spark [181, 182], a leading system in Big Data processing, even machines with reasonably
large memory resources cannot satisfy its need and out-of-memory errors have been con-
stantly reported on StackOverflow [24] and the Apache mailing list [1]. Similarly, numerous
examples of Hadoop users facing out-of-memory errors can also be found on StackOverflow
(e.g., [9-21, 23]). Graph processing systems are not excluded; systems like Giraph [34] is
reported not able to process moderate-sized graphs on large clusters although the amount

of data for each machine is well below its memory capacity [55].

2.2 Garbage collection

Garbage collection (GC) is extremely useful, as it simplifies the programming model, there-
fore freeing valuable programmer time, while avoiding bugs and memory leaks that are
notoriously hard to track and fix. As any C programmer can witness, the manual manage-
ment of a dynamic heap is extremely complex and highly error-prone. If the heap is shared
by many applications written by different programmers, accessed in parallel, or includes disk

storage or distributed access, then manual resource management is simply out of question.

The mainstream collectors in modern systems are tracing garbage collectors. A tracing GC
performs allocation of new objects, identification of live objects, and reclamation of free
memory. It identifies live objects by following references (thus called tracing), starting from
a set of root objects that are directly reachable from live stack variables and global variables.
It computes a transitive closure of live objects; objects that are unreachable during tracing

are guaranteed to be dead and will be reclaimed.
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There are four kinds of canonical tracing collectors: mark-sweep, mark-region, semi-space,
and mark-compact. They all identify live objects in the same way as discussed above. Their

allocation and reclamation strategies differ significantly:

e Mark-sweep collectors [78, 124] allocate from a free list, mark live objects, and then put
reclaimed memory back on the free list. Since a mark-sweep collector does not move live
objects, it is time- and space-efficient, but it sacrifices locality for contemporaneously

allocated objects.

e Mark-region collectors [44, 48, 52] reclaim contiguous free regions to provide contiguous
allocation. Some mark-region collectors such as Immix [48] can also reduce fragmenta-

tion by mixing copying and marking.

e Semi-space [40, 43, 47, 59, 67, 98, 156] and mark-compact [62, 104, 148] collectors both
move live objects. They put contemporaneously-allocated objects next to each other

in a space, providing good locality.

These canonical algorithms serve as building blocks for more sophisticated algorithms such as
the generational GC [156], which built upon the popular, conventional generational hypoth-
esis. The hypothesis states objects are short-lived: most recently allocated objects are more
likely to become garbage and won’t survive a GC run. This dictates the design of the heap,
which divides the heap into a young and an old generation. Allocation happens in young
generation. Most GC runs are nursery (minor) collections that only scan references from the
old to the young generation, promotes (i.e., copies) reachable objects to the old generation,
and then frees the entire young generation. Garbage collection for the old generation occurs
infrequently. Only when nursery GCs are not effective, not yielding enough memory for the
applications, a full (major) collection scans both generations to free more memory. As long
as the generational hypothesis holds, which is true for many large conventional applications
that make heavy use of short-lived temporary data structures, generational GCs are efficient:
a small number of objects escape to the old generation, and hence, most GC runs need to

traverse only a small portion of the heap to identify and copy these escaping objects.

10
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More formally, if the number of live objects is n and the total number of edges in the object
graph (i.e., number of references) is e, the asymptotic computational complexity of a tracing
garbage collection algorithm is O(n + ¢). For a typical data-intensive application, its object
graph often consists of a great number of isolated object subgraphs, each of which represents
either a data item or a data structure created for processing data items. As such, there often
exists an extremely large number of in-memory data objects, and both n and e can be orders
of magnitude larger than those of a regular Java application. In fact, commonly GC is the
performance bottleneck that significantly hurts system performance. Evidence shows that
GC accounts for 25-50% [55, 77, 132, 135], and could go up to as much as 73% of the total

execution time [134].

2.3 Behavior of a Big Data application

It is important to first understand the behavior of a typical Big Data application. Unlike
traditional, object-oriented programs, evidence [55, 86, 135] shows that a Big Data program
often has a very clear logical distinction between a control path and a data path as exemplified
in Figure 2.1. The control path performs cluster management and scheduling, organizes tasks
into pipelines, establishes communication channels between nodes, and interacts with users
to parse queries and return results. Meanwhile, the data path primarily consists of data
manipulation functions such as Aggregate, Join or user-defined functions (e.g., Map, Reduce

in Hadoop) that can be connected to form a data processing pipeline.

These two paths follow different heap usage patterns. The control path behaves similar to a
regular application. It could have a complicated logic to drive the program flow but create a
small number of objects. More importantly, control objects follow the conventional wisdom:
recently allocated objects are also most likely to become unreachable quickly; most objects
have short lifespans. Meanwhile, the data path, not only is the main source where most
objects are created (e.g., this path can create up to 95% of the total number of objects [55]),
its execution of exhibits strong epochal behavior—each piece of data manipulation code is

repeatedly executed. Objects created in this path is several order of magnitudes more than
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Figure 2.1: Graphical illustration of control and data paths.

control objects—they represent the input data set as well as intermediate and final results
of processing. The execution of each epoch starts with allocating many objects and then
manipulating them. These objects are often held in large arrays and stay alive throughout

the epoch, which is often not a short period of time.

2.4 Data shuffling

Modern Big Data systems need to frequently shuffle data in the cluster — a map/reduce
framework such as Hadoop [35] shuffles the results of each map worker before performing
reduction on them; a dataflow system such as Apache Spark [182] supports many RDD
transformations that need to shuffle data across nodes. As most of these systems are written
in managed languages such as Java and Scala, data is represented as objects in a managed

heap. This task utilizes serialization /deserialization procedures.

Transferring an object O across nodes is complicated, involving three procedures shown in
Figure 2.2. First, a serialization procedure turns the whole object graph reachable from
O into a binary sequence. This procedure reformats each object—among other things, it

extracts the object data, strips the object header, removes all references stored in an object,

12
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and changes the representation of certain meta data. Then, this byte sequence is transferred
to a receiver machine via the network. Finally, a deserialization procedure reads out the byte
sequence, creates objects accordingly, and eventually rebuilds the object graph in the heap

of the receiver machine.

Sending Machine Receiving Machine
Object domain Object domain

Binary domain Binary domain

Machine dependent meta data, reference, etc.
. Machine independent representation of meta data, reference, etc.

OI:] Machine independent object data —> Object reference

Figure 2.2: A graphical illustration of data transfer.

The serialization interface, unfortunately, was designed very compute-inefficient. To illus-
trate, we discuss the handling of three key pieces of information these procedures have to
extract, transfer, and reconstruct for every object reachable from O: (1) object data (i.e.,

primitive-type fields), (2) object references (i.e., reference-type fields), and (3) object type.

1. Object data access: A serializer needs to invoke reflective functions such as Reflec-
tion.getField and Reflection.setField to enumerate and access every field to
extract, on the sender side, and then write-back, on the receiver side, each primitive
object field individually. In a Big Data system, each data transfer involves many mil-
lions of objects, which would invoke these functions for millions of times or more. It is
worth noting that reflection is a very expensive runtime operation. It allows the pro-

gram to dynamically inspect or invoke classes, methods, fields, or properties without
13
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type information available statically at the cost of time-consuming string lookups, and

is undesirable in performance-critical tasks.

2. Reference adjustment: References contained in reference-type fields of transferred ob-
jects need to be adjusted, since those objects will be placed in different addresses on
the receiver node. The Java serializer uses reflection to obtain and inline the contents
of referenced objects into the binary representation of the referencing object. It con-
structs all objects reachable from O on the receiver machine using reflection, and then
sets reference fields with the addresses of the just created referenced objects through

reflection.

3. Type representation: Each type is represented by a special meta object in a managed
runtime, and is referenced by the headers of the objects of the type. However, type
references cannot be used to represent types in a byte sequence, because the meta
objects representing the same type may have different addresses in different runtimes.
The Java serializer represents every type by a string that contains the name of a class
and all its super classes. This design causes meta data (i.e., type strings) to consume
a huge portion of the byte sequence transferred across the network. Furthermore, re-
flection must be used to resolve the type from each string during object re-creation on

the receiver node.

While many serialization/deserialization libraries [39, 106, 145] have been developed, large
inefficiencies exist in their implementations. Both our own experience and evidence from
previous work [131] show that data shuffling has a non-trival cost: serialization/deserializa-
tion accounts for 30% of the execution time in Spark. Microsoft researchers reported that
5% of all Google datacenter traffic are from Protobuffers that serialize and deserialize data

between components [102].
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Mitigating Object-based Representation Mismatch

One major performance issue that the managed runtime suffers from is the memory bloat
due to the wasted space for objects’ header and excessive amount of pointers and references,
leading to high space overhead and low memory packing factors. Comprehensive studies
across many contemporary Big Data systems confirm that these overheads lead to signifi-
cantly reduced scalability—e.g., applications crash with out-of-memory errors, although the

size of the processed dataset is much smaller than the heap size [55, 136].

This chapter presents our effort in mitigating the object-based representation mismatch is Big
Data systems. We develop a system named Facade that can optimize the memory overheads
caused by the use of objects, and thus, provide bare-metal performance for all JVM-based
Big Data applications. The key to success is reducing the ratio between auxiliary data and

actual payload by bounding the number of heap objects and references at compiler level.

We begin with a study to validate the memory bloat issue in Section 3.1. Section 3.2 gives
an overview of our approach, including several challenges and how we overcome them. Then,
the following 2 sections discuss Facade execution model (3.3), and implementation details
(3.4). After experimental results are presented in Section 3.5, we conclude the chapter in

Section 3.6.
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Figure 3.1: The ratios between the total bytes of data objects and the size of their actual
payload

3.1 An Empirical Study on Memory Bloat Caused by the Use of
Objects

To empirically quantify object headers and references space overhead , we ran three graph
analytics programs and one data analytic program on Apache Spark [182], the de-facto
leader in Big Data processing. We used Spark version 2.1.0 on a cluster of 11 nodes, each
with 2 Xeon(R) CPU E5-2640 v3 processors, 32GB memory, 1 SSD, running CentOS 6.9
and connected by a 1000Mb/s Ethernet. The three graph programs were Page Rank (PR),
Connected Components (CC) and Triangle Counting (TC); the other program was Word
Count (WC) over four real-world graphs, Live Journal [42], Orkut [26], UK-2005 [50], and
Twitter-2010 [107]. Kryo [106], a high-performance serializer, recommended for Spark, was

used.

To understand the size difference, we modified Kryo to report the numbers of bytes occupied
by data objects before and after they were serialized by Kryo. The first number includes the
size of the actual data as well as the space overhead incurred by the JVM, and the second
number represents the size of the actual data. Finally, these numbers were aggregated across

all machines.
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Figure 3.1 reports the ratios between these two numbers. Across all programs, on aver-
age, the space overheads of the object-based representation is 3.2x. The main reason for
this large overhead is that these applications create billions of small data objects (e.g.,
java.lang.Integer, java.lang.Long, or java.lang.Double), whose corresponding header/-
pointer overhead cannot be amortized by actual payloads. This experiment validates existing

studies in [55, 136] and motivates our work.

3.2 Facade overview

The key observation made in the study is that to develop a scalable system, the number
of data objects and their references in the heap must not grow proportionally with the car-
dinality of the dataset. To achieve this goal, we develop Facade, a compiler and runtime
system, that aims to statically bound the number of heap objects during the execution of a
data-intensive application, thereby significantly reducing the space and temporal overhead

incurred by the object-based data representation.

3.2.1 Technical challenges and solutions

There are three major challenges in Facade’s design. We briefly discuss these challenges and

how Facade overcomes them.

Challenge 1: How to bound the size of the managed heap? Despite a rich body of
work that attempts to reduce the number of objects [49, 61, 70, 80, 114, 152, 170], none of
them can work with modern data processing frameworks whose codebases have millions lines
of codes or they can work with large heaps containing billions of objects. This is because
they all rely on expensive inter-procedural analyses which are known not able to scale to

large systems.

In order to overcome this challenge, Facade does not use such heavy-weight analyses. Instead,
we propose a novel execution model. Facade advocates to separate data storage from data
manipulation: data are stored in the off-heap memory(i.e., not recognized as heap objects)

17



Chapter 3. Mitigating Object-based Representation Mismatch

while heap objects are created as facades only for control purposes such as function calls
(i.e., bounded). As the program executes, a many-to-one mapping is maintained between
arbitrarily many data items in the native memory and a statically-bounded set of facade
objects in the heap. In other words, each facade keeps getting reused to represent data

items.

To enforce this model, our Facade compiler transforms an existing data processing program
into an (almost) object-bounded program: the number of heap objects created for a data class

in one thread is bounded by certain source code properties (i.e., a compile-time constant).

More formally, Facade reduces the number of data objects from O(s) to O(t * n x m + p),
where s represents the cardinality of the dataset, ¢ is the number of threads, n is the number
of data classes, m is the maximum number of facades in a data class’s pool, and p is the

number of page objects used to store data.

Challenge 2: What to transform? Real-world data-intensive systems have very large
codebases and relied heavily on (third-party) libraries. Furthermore, features such as re-
flection and dynamic class loading are prevalently used to instantiate types in third-party
libraries and frameworks that cannot be resolved statically, there is little hope that a whole-
program analysis/transformation can be done for any real system. No real-world programs
can be guaranteed to be safely transformed without using prohibitively expensive, sophisti-

cated program analyses.

Luckily, as discussed in Section 2.3, there often exists a clear boundary between a control
path and a data path in a Big Data processing system. Although the data path creates most
of the runtime objects to represent and process data items, its implementation is rather
simple and its code size is often small (e.g., 35% of lines of code [55]) . This property enables
a systematic solution for data-intensive programs. Since a data path often contains simple
data manipulation functions, developing a compiler to transform these functions is much

more feasible than transforming the entire application.
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Facade requires developers to provide a list of Java classes that form the data path. Each
class in this list is transformed by our compiler into a facade-based class. Many performance
problems result from the extensive use of large collections. For each collection class C' (e.g.,
HashMap or ArrayList) in the standard Java library, we also transform it into a facade-based
class C’. The original class C' is used in normal ways in the control path while type C” will

be used in the data path to substitute C'.

Challenge 3: How to reclaim data objects? As data objects are no longer subject
to garbage collection, an important question is how and when to reclaim them from native
memory. A great deal of evidence shows that a data path is iteration-based [55, 77, 135]. In
this chapter, “iteration” refers to a piece of data processing code that is repeatedly executed.
Its definition includes but is more general than that of “computational iteration” performed
in graph algorithms. For example, an iteration can also be a MapReduce task or a dataflow
operator in data-parallel frameworks. Iterations are very well defined in data processing
frameworks and can be easily identified by even novices. For example, in GraphChi [108], a
computational iteration that loads shards into memory, processes vertices, and writes updates
back to disk is explicitly defined as a pair of callbacks (iteration _start() and iteration _end()).
It took us only a few minutes to find these iterations although we had never studied GraphChi
before. In a data-parallel system such as Hadoop, the code for a Map or Reduce task can be

considered as an iteration because it is repeatedly executed to process data partitions.

There is a strong correlation between the lifetime of an object and the lifetime of the iteration
in which it is created: such objects often stay alive until the end of the iteration but rarely
cross multiple iterations. Hence, we develop an iteration-based memory management that
allocates data objects created in one iteration together in a native region and deallocates
the region as a whole when the iteration finishes. There may be a small number of control
objects that are also created in the iteration, and naively reclaiming the whole region may
cause failures. We rely on developers to refactor the program code to move the creation of
control objects out of the data path. In reality, this effort is very little because a data path

rarely creates control objects (but it does use control objects passed from the control path).
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3.3 The Facade Execution Model

To overcome the fundamental problem of memory bloat caused by the object-based represen-
tation mismatch, we design the Facade framework that exploits compiler and runtime system
support to separate data storage from data manipulation in a data-intensive program. The
key idea is simple: data contents are allocated separately in native memory; heap objects no
longer contain data, and they only provide data-manipulating methods. Objects now only
represent data processors, not data contents, and hence, the number of heap objects is no

longer proportional to the cardinality of the input dataset.

3.3.1 Data Storage Based on Native Memory

We propose to store data records in native, non-GCed memory. Similarly to regular memory
allocation, our data allocation operates at the page granularity. A memory page is a fixed-
length contiguous block of memory in the off-heap memory, obtained through a JVM’s native

support.

To provide a better memory management interface, each native page is wrapped into a Java
object, with functions that can be inserted by the compiler to manipulate the page. Note
that the number of page objects (i.e., p in O(t x n * m + p)) cannot be statically bounded in
our system, as it depends on the amount of data to be processed. However, by controlling the
size of each page and recycling pages, we often need only a small number of pages to process
a large dataset. The scalability bottleneck of an object-oriented data-intensive application
lies in the creation of small data objects and data structures containing them; our system

aims to bound their numbers.

From a regular Java program P, Facade generates a new program P’ in which the data
contents of each instantiation of a data class are stored in a native memory page rather than
in a heap object. To facilitate transformation, the way of a data record is stored in a page is
exactly the same as the way it was stored in an object except that the native-memory-based

record does not contain a heap object’s header and padding.
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class Professor{ R.?;’g;d Address ‘Type, Lock Fields
int id; Professor 0x04e0 | 12 | o0 1254 9 | 0x0504 | 0x070a
int numStudents;
Student[] students;  Student]] 0x0504 | 25| 253 9 0x0800 . us
String name;

} String  0x070a 4 e A

class Student{
int id; -
String name;

} Student  0x0800 | 13 . 2541 | Ox0868 |

Figure 3.2: A data structure in regular Java and its corresponding data layout in a native
page.

Figure 3.2 shows the data layout for an example data structure in our page-based storage
system. Each data record (which used to be represented by an object in P) starts with a
2-byte type ID, representing the type of the record. For example, the IDs for Professor,
Student [], String, and Student are 12, 25, 4, and 13, respectively. These types will be used
to implement virtual method dispatch during the execution of P’. Type ID is followed by a
2-byte lock field, which stores the ID of a lock when the data record is used to synchronize
a block of code. We find it sufficient to use 2 bytes to represent class IDs and lock IDs — in
our experiments with large systems, the number of data classes is often much smaller than
2% 50 is the number of distinct locks needed. Details of the lock implementation and the

concurrency support can be found in §3.4.5.

For an array record, the length of the array (4 bytes) is stored immediately after the lock ID.
In the example, the number of student records in the array is 9. The actual data contents
(originally stored in object fields) are stored subsequently. For instance, field id of the pro-
fessor record contains an integer 1254; numStudents stores an integer 9; the fields students
and name contain memory addresses 0x0504 and 0x070a, respectively. These references are
referred to as page references, as opposed to heap references in a normal Java program. Note
that for efficiency, page references are not offsets into the native page where the memory is
held, they are the absolute memory address so that the Facade runtime can operate directly

on them without further calculation.
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1 class Facade { long pageRef; ... }
P P v 2class ProfessorFacade extends Facade{

3 static int id OFFSET = 0;
1 class Professor{ 4 static int numStudents_ OFFSET = 4;
— 1 5 static int students OFFSET = 8;
2 intid; 6 static int name_OFFSET = 12;
3 int numStudents; 7 JIno data fields
4 Stu_dent[] students; 8 void addStudent
5 _String name; 9 (StudentFacade sf){
6 void addStudent(Student s){ 10 long this_ref = this.pageRef;
11 longs_ref = sf.pageRef;
7 students[numStudents++] 12 intv= ) (
8 =S, 13 this_ref,
2 14 numStudents_ OFFSET);
9 } 15 . (
10 ...//other methods 16  this_ref,
11} 17  students_OFFSET,
18 v,s ref);
19 (
20  this_ref,
21  numStudents OFFSET,
22 v+l);
23 }

24 .../lother methods }

Figure 3.3: A transformation example; part (a).

3.3.2 Using Objects as Facades

We propose to create heap objects as facades for a data class, that is, they are used only for
control purposes such as method calls, parameter passing, or dynamic type checks, but do not
contain actual data. Figure 3.3 and Figure 3.4 depict an example with five transformations
using the same Professor class in Figure 3.2. For simplicity of illustration, we show the
unoptimized version of the generated program, under the assumption that the program is

single-threaded and free of virtual calls. We will discuss the support of these features later.

Class transformation The transformations #1 and #2 from Figure 3.3 show an example
of class transformation. For illustration, let us assume both Professor and Student are
data classes. For Professor, Facade generates a facade class ProfessorFacade, containing

all methods defined in Professor. ProfessorFacade extends class Facade, which has a field
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25 static void client

P P, 26 (ProfessorFacade pf){
27 [*release the binding */

28 long f ref = pf.pageRef;

10 static void client 29 longs_ref= .
11 (Professor f){ 30 (Student_Type_ID,
31 Student_Record_size);

12 Students= !‘ 32 StudentFacade sf =
13 new Student(); | 33 [0];

34 /*bind sf with a page reference*/
14 Professor p = f; B | 35 sfpageRef=s_ref

15 Studentt=s; 36 sf.facadeS$init();//constructor call
37 long p_ref =1 ref;

38 longt ref=s ref;

16 p.addStudent(t);
\ 39 ProfessorFacade pf2 =
17) 5 40 [0];

41 [*bind pf2 with p_ref*/

42 pf2.pageRef =p_ref;

43 StudentFacade sf2 =

44 [0];
45 [*bind sf2 with t_ref*/

46 sf2.pageRef =1 ref;

47 pf2.addStudent(sf2);

48}

Figure 3.4: A transformation example; part (b)

pageRef that records the page reference of a data record (such as 0x0504 in Figure 3.2).
Setting a page reference to the field pageRef of a facade binds the data record with the
facade, so that methods defined in the corresponding facade class can be invoked on the
facade object to process the record. Readers can think of this field as the this reference in

a regular Java program.

ProfessorFacade does not contain any instance fields; for each instance field f in Professor,
ProfessorFacade has a static field f Offset, specifying the offset (in number of bytes) of
f to the starting address of the data record. These offsets will be used to transform field

acCcesses.

Method transformation For method addStudent in Professor, Facade generates a new

method with the same name in ProfessorFacade. Because we no longer have any data
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objects, for each reference of a data object in the original program, we substitute it with
either a page reference or a reference of a corresponding facade object using the following

criteria:

e For any assignment, load, or store that involves a data object, the reference of the
data object is substituted with its page reference. For example, in Figure 3.4, the
transformation #4 replaces the variable assignments (Lines 14 — 15) in P with page
reference assignments (Lines 37 — 38) in P’. In these cases, the generated statements

do not have any heap objects involved.

e For parameter passing and value return in a call site, it is difficult to substitute object
references completely with page references, because if an object is used as a receiver
object to call a method, replacing it with a page reference would make it impossible
to make the call. In this case, we replace references to data objects with references to
their corresponding facade objects. For example, in Figure 3.3, the signature of method
addStudent is changed in a way so that the Student type parameter is replaced with

a new parameter of type StudentFacade.

In the generated addStudent method (Lines 8 — 23 in Figure 3.3), the new facade parameter
sf is used only to pass the page reference of the data record that corresponds to the original
parameter in P. The first task inside the generated method is to retrieve the page references
(Lines 10 and 11 in P’) from the receiver (i.e., this) and sf, and store them in two local
variables this ref and s_ref. Any subsequent statement that uses this and s in P will
be transformed to use the page references this ref and s_ref in P’, respectively. The field
accesses in Lines 5 and 6 in P are transformed to three separate calls to our library methods
that read values from and write values to a native page. Note that what is written into the
array is the page reference s ref pointing to a student record — all references to regular

data objects in P are substituted by page references in P’.

Allocation transformation In Figure 3.4, the allocation in Lines 12 — 13 in P is trans-

formed to Lines 29 — 36 in P’ (Transformation #3). Facade allocates space based on the
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size of type Student by calling a library method allocate, which performs native-memory-
page-based allocation and returns a page reference s ref which is a native memory address.

Details of the allocation algorithm and memory management are discussed in §3.4.7.

Call site transformation Since statements in P’ all use page references, a challenge in
transforming a call site is how to generate the receiver object on which the call can be
made. Our idea is to use facade objects (i.e., objects are created only as proxies). If a call is
made on a data object in P, we can obtain a facade object to call the same method in P/,
because a data class and its corresponding facade class have the same methods. However,
doing so naively would generate a large number of facade objects, which would still cause
space and memory management overhead. Hence, special care needs to be taken to minimize

the number of facade objects used.

We solve the problem by pooling facade objects. For each facade class, we maintain a pool
that contains a small number of objects of the class. This number can be statically bounded
as discussed shortly. For instance, before generating an allocation site, as shown in Trans-
formation #3 in Figure 3.4, the Facade compiler first generates code to retrieve an available
facade object from the pool (Lines 32 — 33 in P’) and bind it with the page reference s _ref
(Line 35). In this example, the first facade in the pool is available; the reason will be ex-
plained shortly. The constructor of class Student in P is converted to a regular method
facade$init in P'. Facade then generates a call to facade$init on the retrieved facade

object (Line 36).

Similarly, Transformation #5 shows how a call to method addStudent on the Professor
object in P (Line 16) is transformed to a call to the same method on the ProfessorFacade
object in P’ (Line 47). This new call site needs (1) a receiver object and (2) a parameter ob-
ject. To prepare for these objects, we generate the statements from Line 39 to Line 44, which
retrieve a ProfessorFacade object pf2 for the receiver and a StudentFacade object sf2
for the parameter from their respective pools, and then bind them with their corresponding

page references (Line 46). Finally, the call site in Line 47 is generated.
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Note that the ProfessorFacade object pf2 and the StudentFacade object sf2 are needed
because the object references p and s in P have been replaced with page references p_ ref and
s_ref in P’, both of which have a long type. It would not be possible to call addStudent with
these (long) page references. Hence, facade objects are retrieved to (1) enable the method

call and (2) take the page references into the callee.

Code generation invariants Our code transformation algorithm maintains the following
three major invariants, guaranteeing transformation correctness. First, for each reference r
of a data object in P, P’ must contain a page reference pr pointing to the native memory
location at which the same object is stored. Since there is a one-to-one mapping between r
and pr, any non-call statement that reads/writes the object referenced by r in P must have

a corresponding statement reads/writes the native memory based object referenced by pr in

P

Second, for two different references r» and r’ in P, the two corresponding page references
pr and pr’ in P’ must be different as well. While facade objects are reused, page references
are never shared among variables. This is straightforward to see given that Facade performs

literal translation for allocation sites, loads, stores, and assignments.

Third, for each parameter (including receiver) of a data class D at each call site in P, a facade
object of type DFacade is retrieved in P’ from the DFacade object pool. The only purpose
of the facade object is to pass a page reference between a caller and a callee. For example,
for parameter passing, the page reference is written into a facade object right before the call,
and then released from the facade and written into a local variable in the very beginning of
the callee. For value returning, the page reference is written into a facade right before the
return statement, and released and written into a stack variable immediately after the call

site.

More formally, the invariant regarding the facade usage is that for a pair of instructions (e.g.,
s and t) that bind a facade with a page reference and release the binding, ¢ is the immediate

successor of s on the data dependence graph. In other words, no instructions between s and

26



Chapter 3. Mitigating Object-based Representation Mismatch

t can read or write the facade object accessed by s or t. We refer to the period between
the executions of s and ¢ as a use span of the facade accessed by s and ¢t. Examples of such
instruction pairs include Lines 42 and 10, and Lines 46 and 11 in P’ of Figure 3.4. This
invariant guarantees that the page reference read from the facade object by ¢ is exactly the
one written into the same facade object by s, and thus, page references are appropriately

propagated between methods.

3.3.3 Bounding the Number of Facades in Each Thread

Our facade pooling is different from traditional object pooling where the objects requested
cannot be reused until they are explicitly returned to the pool. A facade object does not need
to be explicitly returned because its goal is only to carry a page reference across the method
boundary. Its use span automatically ends when the callee returns to the caller (if used
for value return) or the callee is about to execute (if used for parameter passing). In other
words, the way facades are used dictates that the use spans of the facade objects requested
at different statements are completely disjoint. Hence, in most cases, upon a request for a
facade (e.g., at a call site), all facades in the pool are available to use. This explains why it

is always safe to use the first facade of the pool in Lines 33, 40, and 44 in Figure 3.4.

One exception is that if a call site has multiple parameters of the same data class, multiple
objects of the corresponding facade class are needed simultaneously to pass page references.
Hence, the number of facades needed for a data class depends on the number of parameters
of this class needed in a call site. For example, if a call site in P requires n parameters of
type Student, we need at least n StudentFacade objects in P’ for parameter passing (e.g.,
Pools.studentFacades[0], ..., Pools.studentFacades[n - 1]). The number of facades
for type StudentFacade in P’ is thus bounded by the maximal number of Student-type
parameters needed by a method call in P. Based on this observation, we can inspect all
call sites in P in a pre-transformation pass and compute a bound statically for each data
class. The bound will be used to determine the size of the facade pool for that type (e.g.,

Pools.studentFacades) at compile time.
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Note that at different statements, different facades may be retrieved from the pool to carry
the same page reference. For instance, in Figure 3.4, although variable p (Line 16) and
parameter f (Line 11) refer to the same object in P, their corresponding facades pf and
pf2 in P’ may not be the same. In a single-threaded execution, this would not cause any
inconsistency because page references determine data records and facades are used only
to execute control flow. Naively doing so in a multi-threaded environment may lead to
concurrency bugs. Hence, for a multi-threaded program, a facade pool has to be maintained
for each thread to ensure thread safety. Since a program can create an arbitrary number of
threads, the number of facades will no longer be statically bounded. However, the number
of threads in data path is often very small, and hence, the total number of facade objects is

still much smaller than the dataset cardinality.

3.3.4 Performance Benefits

P’ has the following three clear performance advantages over P. First, all data records are
stored in native pages and no longer subject to garbage collection. This can lead to an

orders-of-magnitude reduction in the number of nodes and edges traversed by the GC.

Second, native-memory-based data storage reduces the memory access cost. Since all (billions
of) data objects are represented as native bytes, Facade eliminates many sources of runtime
overhead, including pointer chasing, write barriers (i.e., a piece of code executed per object
write for GC purposes), memory dereferences, and array bound checks. The saving will reduce

total execution time.

Third, significant reduction in memory consumption can be achieved for the following two
reasons. (1) Each data record has only a 4-byte “header” space (8 bytes for an array) in P’
while the size of an object header is 12 bytes (16 bytes for an array) in P. This is due to
the reduction of the lock space as well as the complete elimination of space used for GC. (2)
As discussed shortly in §3.4.10, Facade inlines all data records whose size can be statically

determined, which reduces memory consumption for storing object headers and improves
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data locality. The savings in memory usage may potentially lead to reduced computing

resource (e.g., number of CPUs or compute nodes) needed to process a dataset.

3.4 Facade Design and Implementation

To use Facade, a user needs to provide a list of data classes that form the data path of
an application. Our compiler transforms the data path to page-allocate objects representing
data items without touching the control path. This handling enables the design of a simple
intra-procedural analysis and transformation as well as aggressive optimizations (such as

type specialization), making it possible for Facade to scale to large-scale systems.
3.4.1 Our Assumptions

Based on the user-provided list of data classes, Facade makes two important “closed-world”

assumptions based on our experience with dozens of real-world, data-intensive systems.

o Reference-closed world Facade requires all reference-typed fields declared in a
data class to have data types. This is a valid assumption — there are two major kinds
of data classes in a data-intensive application: classes representing data tuples (e.g.,
graph nodes and edges) and those representing data manipulation functions, such as
sorter, grouper, etc. Both kinds of classes rarely contain fields of non-data types. Java
supports a collections framework and data structures in this framework can store both
data objects and non-data objects. In Facade, a collection (e.g., HashMap) is treated
as a data class; a new class (e.g., HashMapFacade) is thus generated in the data path.
The original class is still used in the control path. If Facade detects a data object
flows from the control path to the data path or a paged data record flows the other
way around, it automatically synthesizes a data conversion function to convert data

formats. Detailed discussion can be found in §3.4.6.

e Type-closed world This assumption requires that for a data class ¢, ¢’s superclasses

(except java.lang.0Object, which is the root of the class hierarchy in Java) and sub-
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classes must be data classes. This is also a valid assumption because a data class usually
does not inherit a non-data class (and vice versa). The assumption makes it possible
for us to determine the field layout of a data record in a page — fields declared in a
superclass are stored before fields in a subclass and their offsets can all be statically
computed. The Facade compiler computes a closure of classes to be transformed from

an initial list of user-specified data classes based on the inheritance relationships.

We allow both a data class and a non-data class to implement the same Java interface (such
as java.lang.Comparable). Doing this will not create any page layout issue because an
interface does not contain instance fields. Facade checks these two assumptions before trans-
formation and reports compilation errors upon violations. The developer needs to refactor

the program to fix the violations.

Boundary Classes. Based on the user-defined list of data classes, our compiler automat-
ically identifies a set of boundary classes, via which the control and data paths interact. For
example, a class A is a boundary class if A is not on the list itself, but has an instance field
whose type is on the list. Boundary classes feed data to the data path before processing
and later send the results back to the control path. They often have a mix of data-type and
non-data-type fields. While Facade can transform all of them, page allocation of non-data
objects would not bring much benefit. We design a @DataObject pragma which can be used
by the developer to annotate data fields of a boundary class. Facade only page-allocates

annotated objects.

3.4.2 Data Class Transformation

Class hierarchy transformation For each method m in a data class D, Facade generates
a new method m’ in a facade class DFacade such that m and m’ have the same name; for
each parameter of a data class type T in m, m’ has a corresponding parameter of a facade
type TFacade. No special treatment is required for overloaded methods since each method

m has its distinct Facade method m’. If D extends another data class F, this relationship

30



Chapter 3. Mitigating Object-based Representation Mismatch

is preserved by having DFacade extend EFacade. All static fields declared in D are also in

DFacade; however, DFacade does not contain any instance fields.

One challenge here is how to appropriately handle Java interfaces. If an interface I is im-
plemented by both a data class C' and a non-data class D, and the interface has a method
that has a data-class type parameter, changing the signature of the method will create in-
consistencies. In this case, we create a new interface I[Facade with the modified method and
make all facades DFacade implement IFacade. While traversing the class hierarchy to trans-
form classes, Facade generates a type ID for each transformed class. This type ID is actually
used as a pointer that points to a facade pool corresponding to the type — upon a virtual

dispatch, the type ID will be used to retrieve a facade of the appropriate type at run time.

Instruction transformation Instruction transformation is performed on the control flow
graph (CFG) of a single static assignment (SSA)-based intermediate representation (IR). The
output of the transformation is a new CFG containing the same basic block structures but
different instructions in each block. The transformations for different kinds of instructions
are summarized in Table 3.1. Here we discuss only a few interesting cases. For a field write in
(i.e., a.f = b in case 3), if b has a data type but a does not (case 3.3), Facade considers this
write as an interaction point (IP), an operation at which data flows across the control-data
boundary. Facade synthesizes a data conversion function long convertToB(B) that converts
data format from a paged data record back to a heap object (see §3.4.6). If a has a data type
but b does not (case 3.4), Facade generates a compilation error as our first assumption (that
data types cannot reference non-data types) is violated. The developer needs to refactor the

program to make it Facade-transformable.

An TP may also be a load that reads a data object from a non-data object (case 4.3) or a
method call that passes a data object into a method in the control path (case 6.3). At each
IP, data conversion functions will be synthesized and invoked to convert data formats. Note

that data conversion often occurs before the execution of the data path or after it is done.
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Hence, these conversion functions would often not be executed many times and cause much

overhead.

Resolving types In two cases, we need to emit a call to a method named resolve to re-
solve the runtime type corresponding to a page reference. First, when a virtual call a.m(b, .. .)
is encountered (case 6.1), the type of the receiver variable a often cannot be statically de-
termined. Hence, we generate a call resolve(a_ref), which uses the type ID of the record
pointed to by a_ ref to find a facade of the appropriate type. However, since this infor-
mation can be obtained only at run time, it creates difficulties for the compiler to select
a facade object as the receiver from the pool (i.e., what index i should be used to access

Pools.aFacades]i]).

To solve the problem, we maintain a separate receiver facade pool for each data class. The
pool contains only a single facade object; the resolve method always returns the facade
from this pool, which is distinct from the parameter pool. Note that we do not need to
resolve the type of a parameter (say b), because b is not used as a receiver to call a method.
We can simply obtain a facade from the parameter pool based on b’s declared (static) type,

and use it to carry b’s page reference.

The second case in which we need a resolve is the handling of an instanceof type check,

which is shown in case 7 of Table 3.1.

3.4.3 Type specialization for Object and Object[]

Variables and parameters whose static types are Object and Object[] introduce additional
challenges, because whether they reference data objects or not cannot be determined stati-
cally. Instead of using a complicated case analysis that generates different handling for dif-
ferent runtime types, Facade speculatively treats these variables as data-typed variables and
generates code to validate this assumption at run time. Upon a violation (e.g., a variable/-

parameter is not an instance of Facade), the generated program P’ will throw an exception,
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and the developer can “blacklist” these variables/parameters to disable the speculation and

recompile the program.

The usage of these general types depends heavily on applications. In fact, in the three frame-
works we have experimented with, they rarely declare variables with Object and Object[].
We have only encountered six methods (in the application code) with parameters of the
Object or Object[] type and these parameters were indeed used to pass data objects.
However, for other applications such has Hive, methods with general-type parameters are
extensively used. After a detailed inspection of Hive, we found almost all of these parameters
represent data objects — since Hive is a data warehouse, it is designed to process queries in a
way that is very similar to a database. Many methods simply perform filtering or aggregation
on generic data records regardless of their types. Hence, we expect our speculative handling

to be still effective for those applications.

3.4.4 Computing Bounds

Before the transformation, Facade inspects the parameters of each method in the data path
to compute a bound for each data class. This bound will be used as the length of the
facade array (i.e., the parameter pool) for the type. Note that the bound computation is
based merely on the static types of parameters. Although a parameter with a general type
may receive an object of a specific type at run time, a facade of the general type will be
sufficient to carry the page reference of the data record (as discussed above) from a caller to
a callee. Since we use a separate pool for receivers, the target method will always be executed
appropriately. If the declared type of a parameter is an abstract type (such as interface) that
cannot have concrete instances, we find an arbitrary (concrete) subtype ¢ of this abstract
type, and attribute the parameter to ¢ when computing bounds. Facade generates code to

retrieve a facade from ¢’s pool to pass the parameter.

Once the bound for each data class is calculated, Facade generates the class Pools by allocat-
ing, for each type, an array as a field whose length is the bound of the type. The array will be

used as the parameter pool for the type. Facade generates an additional field in Pools that
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Figure 3.5: A graphical representation of threads and pools, where AFacade, BFacade, ...,
and ZFacade are facade types.

references its receiver pool (i.e., one single facade) for the type. Eventually, Facade emits an
init method in Pools, which will be invoked by our library to create facade instances and

populate parameter pools.

3.4.5 Supporting Concurrency

Naively transforming a multi-threaded program may introduce concurrency bugs. For exam-
ple, in P’, two concurrent threads may simultaneously write different page references into the
same facade object, leading to a data race. The problem can be easily solved by performing
thread-local facade pooling: for each data class, the receiver pool and the regular pool are
maintained for each thread. We implement this by associating one instance of class Pools
with each thread; the init method (discussed earlier in §3.4.4) is invoked upon the creation

of the thread.

Both implicit and explicit locks are supported in Java. Explicit locking is automatically
supported by Facade: all Lock and Thread related classes are in the control path and not
modified by Facade. For implicit locking (i.e., the intrinsic lock in an object is used), we need
to add additional support to guarantee the freedom of race conditions. One possible solution
is as follows: for each object o that is used as a lock in a synchronized (0){. ..} construct (i.e.,
which is translated to an enterMonitor(o) and an exitMonitor(o) instruction to protect

the code in between), Facade emits code to obtain a facade o' corresponding to o (if o has
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a data type) and then generates a new construct synchronized (o'){...}. However, this
handling may introduce data races—for two code regions protected by the same object in

P, two different facades (and thus distinct locks) may be obtained in P’ to protect them.

We solve the problem by implementing a special lock class and creating a new lock pool
(shown in Figure 3.5) that is shared among threads; each object in the pool is an instance of
the lock class. The lock pool maintains an atomic bit vector, each set bit of which indicates
a lock being used. For each enterMonitor(o) instruction in P, Facade generates code that
first checks whether the lock field of the data record corresponding to o already contains a
lock ID. If it does, we retrieve the lock from the pool using the ID; otherwise, our runtime
consults the bit vector to find the first available lock (say ) in the pool, writes its index
into the record, and flips the corresponding bit. We replace o with [ in enterMonitor and

exitMonitor, so that [ will be used to protect the critical section instead.

Each lock has a counter that keeps track of the number of threads currently blocking on
the lock; it is incremented upon an enterMonitor and decremented upon an exitMonitor.
If the number becomes zero at an exitMonitor, we return the lock to the pool, flip its
corresponding bit, and zero out the lock space of the data record. Operations such as wait

and notify will be performed on the lock object inside the block.

Worst-case object numbers in P and P’ In P, each data item needs an object repre-
sentation, and thus, the number of heap objects needed is O(s), where s is the cardinality of
the input dataset. In P’, each thread has a facade pool for a data class. Suppose the max-
imum number of facades needed for a data class is m, a compile-time constant. The total
number of facades in the system is thus O(t*xn+m), where ¢t and n are the numbers of threads
and data classes, respectively. Considering the additional objects created to represent native
pages, the number of heap objects needed in P’ is O(t * n x m + p), where p is the number

of native pages.

Note that the addition of the lock pool does not change this bound. The number of lock

objects needed first depends on the number of synchronized blocks that can be concurrently
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executed (i.e., blocks protected by distinct locks), which is bounded by the number of threads
t. Since intrinsic locks in Java are reentrant, the number of locks required in each thread
also depends on the depth of nested synchronized blocks, which is bounded by the maximal
depth of runtime call stack in a JVM, a compile-time constant. Hence, the number of lock
objects is O(t) and the total number of objects in the application is still O(¢ xn % m + p). In

our evaluation, we have observed that the number of locks needed is always less than 10.

3.4.6 Data Conversion Functions

For each TP that involves a data class D, Facade automatically synthesizes a conversion
function for D; this function will be used to convert the format of the data before it crosses
the boundary. An IP can be either an entry point at which data flows from the control
path into the data path or an exit point at which data flows in a reverse direction. For an
entry point, a long convertFromA(A) method is generated for each involved data class A;
the method reads each field in an object of A (using reflection) and writes the value into a
page. Exit points are handled in a similar manner. Our experiments on three systems show
that the number of conversion functions needed is very small (< 4). This is expected and
consistent with our observation that the control path and data path are well separated in

data-intensive programs.

3.4.7 Memory Allocation and Page Management

The Facade runtime system maintains a list of pages, each of which has a size of 32KB (i.e., a
common practice in the database design [87]). To improve allocation performance, we classify
pages into size classes (similarly to what a high-performance allocator would do for a regular
program), each used to allocate objects that fall into a different size range. When allocating
a data record on a page, we apply the following two allocation policies whenever possible: (1)
back-to-back allocation requests (of the same size class) get contiguous space to maximize
locality; (2) large arrays (whose sizes are > 32KB) are allocated on empty pages: allocating

them on non-empty pages may cause them to span multiple pages, therefore increasing
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access costs. Otherwise, we request memory from the first page on the list that has enough
space for the record. To allow fast allocation for multi-threading, we create a distinct page
manager that maintains separate size classes and pages per thread so that different threads
concurrently allocate data records on their thread-local pages. Having distinct page managers

also eliminates potential fragmentation issue associated with size classes.

The data path is iteration-based. We define an iteration to be a repeatedly executed block
of code such that the lifetimes of data objects created in different executions of this block
are completely disjoint. In a typical data-intensive program, a dataset is often partitioned
before being processed; different iterations of a data manipulation algorithm (e.g., sorting,
hashing, or other computations) then process distinct partitions of the dataset. Hence, pages
requested in one iteration of P’ are released all at once when the iteration ends. Although
different data processing frameworks have different ways of implementing the iteration logic,
there often exists a clear mark between different iterations, e.g., a call to start () to begin

an iteration and a call to flush() to end it.

We rely on a user-provided pair of iteration_start() and iteration_end() calls to man-
age our pages. Upon a call to iteration_start () that signals the beginning of an iteration,
we create a page manager that will perform page allocation and memory allocation as dis-
cussed above. All pages are recycled immediately upon a call to iteration_end (). While this
may sound non-trivial, our experience with a variety of applications shows that iterations are
often very well-defined and program points to place these calls can be easily found even by
novices without much understanding of the program logic. For example, in GraphChi [108],
a single-machine graph processing framework, iteration_start() and iteration_end()
are the callbacks explicitly defined by the framework. Although we had had zero knowledge
about this framework, it took us only a few minutes to find these events. Note that iteration-
based memory management is used only to deallocate data records and it is unsafe to use it
to manage control objects. Those objects can cross multiple iterations and, hence, we leave

them to the GC for memory reclamation.
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In order to quickly recycle memory, we allow the developer to register nested iterations. If
a user-specified iteration_start() occurs in the middle of an already-running iteration, a
sub-iteration starts; we create a new page manager, make it a child of the page manager for
the current iteration, and start using it to allocate memory. The page manager for a thread
is made a child of the manager for the iteration where the thread is created. Hence, each
page manager has a pair (iterationID,thread) identifier and they form a tree structure at
run time. When a (sub-)iteration finishes, we simply find its page manager m and recursively
release pages controlled by the managers in the subtree rooted at m. Recycling can be done
efficiently by creating a thread for each page manager and letting them reclaim memory

concurrently.

Since each thread t is assigned a page manager upon its creation, the pair identifier for its
default page manager is (L, t); L represents the fact that no iteration has started yet. Data
records that need to be created before any iteration starts (e.g., usually large arrays) are

allocated by this default page manager and will not be deallocated until thread ¢ terminates.

To illustrate, Figure 3.6(a) and (b) show, respectively, a simple program and the corre-
sponding page managers created in Facade. In the beginning, no iteration has started yet,
all allocation requests are handled by the default page manager (L, main). Assuming there
are 2 worker threads ¢; and ¢, executing the program. Upon the call to iteration start in Line
3, 2 page managers (1,t1) and (1,%5) are created and placed as the children of the default
manager to handle allocations in thread t; and %o, respectively, for iteration #1. The call
to iteration_start() in Line 5 signals the start of the sub-iteration #2. Consequently,
the page managers (2,t;) and (2,t5) are created as the children of the managers (1,¢;) and
(1,t5), respectively. Facade allows arbitrarily nested iterations. When the execution encoun-
ters another iteration_start() in Line 7, Facade creates two page managers (3,¢;) and
(3,t3). The calls to iteration_end() in Lines 11, 13, and 15 triggers page reclamation in

the reverse order of page allocation.
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1 void main(Q) {
2 L, main
3 iteration_start()
4 for O { /\
5 iteration_start()
6 for QO { 1t 1t
7 o

iteration_start()
3 for O { l l
9
10 ¥ 2, 2,1
11 iteration_end()
12 3} l l
13 iteration_end()
14 3 3,11 3, b

15 iteration_end()
16 } //end of main

(a) (b)

Figure 3.6: A program (a) and its corresponding page manager tree after Line 7 is exe-
cuted (b), assuming 2 threads t; and ¢, are executing.

3.4.8 Correctness and Profitability Arguments

It is easy to see the correctness of the class transformation and the generation of data
accessing instructions as shown in Table 3.1, because the data layout in a native memory
page is the same as in a heap object. This subsection focuses on the following aspects of

correctness:

Facade usage correctness If a page reference is assigned to a facade that has not released
another page reference, a problem would result. However, it is guaranteed that this situation
will not occur because (1) a thread will never use a facade from another thread’s pool and
(2) for any index i in a facade pool p, the page reference field of p[i] will never be written
twice without a read of the field in between. The read will load the page reference onto the

thread’s stack and use it for the subsequent data accesses.
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Memory management correctness Iteration-based memory management coverts dy-
namic memory reclamation to static reclamation and it is very difficult to make it correct
for general objects in a scalable way. Facade performs iteration-based deallocation only for
data items in native memory. Data items allocated in one iteration represent the data par-
tition processed in the iteration. These items will often not be needed when a different
data partition is processed (in a different iteration). Since practicality is our central design
goal, we choose not to perform any conservative static analysis (e.g., escape analysis [61])
to verify whether data items can escape. A real-world data-intensive application often relies
heavily on (third-party) libraries and the heavy use of interfaces in the program code makes
it extremely difficult for any interprocedural analysis to produce precise results. Instead, we
simply assume that instances of the user-specified data classes can never escape the itera-
tion boundary. However, if a data object escapes an iteration through a control object, the

synthesized conversion function will convert the paged record to an object.

Transformation safety Our transformation is mostly local and does not change the con-
trol flow of the original program. This feature makes it easier for Facade to preserve semantics
in the presence of complicated language constructs such as exception handling (i.e., exception
throwing logic is not changed by Facade: checked exception will be thrown in regular ways
while unchecked exception still crashes the program). In other words, our transformation is
safe. The memory management correctness thus relies solely on the user’s correct specifica-
tion of data classes. Section 3.5 reports our own experiences with finding data classes for

real-world programs that we have never studied.

Transformation profitability Not all Java programs are suitable for Facade transfor-
mations. It is profitable using Facade when (1) the number of runtime objects of a class is
exceptionally large and (2) the lifetimes of these objects follow epochal patterns, that is, they
align with computational iterations in which they are created. While Facade works well for
data-intensive systems, they may not be as effective to transform regular Java applications

for performance improvement.
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3.4.9 Modeling of Important Java Library Classes

All the primitive type wrappers in Java (e.g., java.lang.Integer, java.lang.Float, etc.)
are considered as data classes. We manually implement the StringFacade class to support all
string-related operations instead of generating it automatically from the java.lang.String
class. This is, first, because we want to inline characters, rather than creating a two-layer
structure (as done in the Java String implementation). In addition, the Java String im-
plementation has many references and dependencies, which would make Facade transform
classes we believe to be in control path (e.g., classes representing formats and calendars).

Records for all primitive type wrappers and strings are inlined.

Commonly-used native methods such as System.arraycopy and Unsafe.compareAndSwap
are manually modeled to operate on Facade-page-based data because it is not possible to
transform native library methods. In generated programs, the original native methods are
replaced with our own version. In addition, we provide implementations of the methods
hashCode, equals, and clone in class Facade. For example, equals are implemented by
using page reference as a substitution of object identity, while hashCode is implemented by

computing a hash code based on the page reference contained in the facade.

A real-world program makes heavy use of collection classes in the java.util framework.
Their implementations in the Oracle JDK often reference many other classes; for example,
more than 100 classes all over the JDK can be transitively reached from class HashMap, and
many of these classes have nothing to do with data processing. Instead of transforming all
these classes, we create our own (page-based) implementations for all important collection
classes, including various types of maps, sets, and lists. For example, since HashMap is in the
data path, all its superclasses except java.lang.0Object are included in the data path and

they are all transformed manually into facade classes.

It took us about two weeks of programming to develop our own versions of library classes.
The major part of the development is easy — we simply follow the logic from the original

collection classes in the JDK. However, one challenge is how to break dependencies to classes
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that are in the control path. If a data class has a field of a non-collection class type, we
carefully inspected the class to understand whether removing the field would cause any
semantic inconsistencies. If it would, we include it in the data path and transform it into a
facade class; otherwise, we remove the field and replace the code that uses the field with our
own version that implements the same logic in different ways. Rigorous testing was performed

to ensure that our class collections have the same semantics as their JDK counterparts.

3.4.10 Implementation and Optimizations

We have implemented Facade based on the Soot Java compiler infrastructure [3]. Facade
consists of approximately 40K lines of Java code. Our transformation works on Jimple, a SSA-
based three-address IR; the transformation occurs after all traditional dataflow optimizations
are performed to eliminate redundancies in P, such as dead code and unnecessary loads. We
develop a few additional optimizations that target common operations we have observed in

data-intensive applications.

e Array inlining For a data array whose element size can be statically determined, we
inline its elements to improve data locality and reduce pointer dereference costs. Upon
the creation of an array, we allocate [ x s bytes of memory where [ and s are the array
length and its element size. We perform a static analysis that identifies objects that
must be written into the array and remove their allocation sites. Their indices in the
array will be used as their page references. Although array inlining may lead to wasted
space for general programs, it is very effective for data-intensive applications in which
large arrays are often created and their elements are often “owned” by the arrays (i.e.,

accessed only through the arrays).

e Special handling of oversized objects Keeping large arrays that are no longer
used in a page can lead to excessive memory usage. To solve the problem, we create a
special allocate function in the page manager that allows us to allocate pages bigger
than 32KB for large arrays. Each large array will take one single page, instead of

spanning multiple (32KB) pages. These pages are located in an “oversize” class and
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can be freed manually (after they are no longer used) without waiting until the end
of an iteration. Right now this optimization is enabled only in the implementation of
the resize function in various collection classes, and it has been shown to be effective
in improving memory efficiency of applications that make heavy use of maps and lists.
We are in the process of developing an automated analysis that can detect such early

deallocation opportunities for large objects in the generated code.

e Static resolution of virtual calls We use Spark [113], a simple and inexpensive
context-insensitive points-to analysis to statically resolve virtual calls. For the resolved

calls, their receiver facades can be statically determined.

3.5 Evaluation

We selected 3 different data processing frameworks and used Facade to transform their data
paths. Our evaluation on 7 common data analytical applications on both single machines
and clusters shows that, even for already well-optimized systems, Facade can still improve

their performance and scalability considerably.

3.5.1 GraphChi

Transformation GraphChi [108] is a high-performance graph analytical framework that
has been well optimized for efficient processing of large graphs on a single machine. Since we
had not had any previous experience with GraphChi, we started out by profiling instances of
data classes to understand the control and data path of the system. The profiling results show
that ChiVertex, ChiPointer, and VertexDegree are the only three classes whose instances
grow proportionally with the input data size. From these 3 classes, Facade detected 18
boundary classes that interact with data classes but do not have many instances themselves.
Boundary classes have both data and non-data fields. We allow the user to annotate data
fields with Java pragmas so that Facade can transform these classes and only page allocate

their data fields.
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With about 40 person-hours work (to understand data classes, profile their numbers, and
annotate boundary classes for a system we had never studied before), Facade transformed all
of these classes (7753 Jimple instructions) in 10.3 seconds, at a speed of 752.7 instructions
per second. Iterations and intervals are explicitly defined in GraphChi—it took us only a

few minutes to add callbacks to define iterations and sub-iterations.

Test setup We tested the generated code and compared its performance with that of the
original GraphChi code. The experiments were performed on a 4-core server with 4 Intel Xeon
E5620 (2.40GHz) processors and 50GB of RAM, running Linux 2.6.32. We experimented ex-
tensively with two representative applications, Page Rank (PR) and Connected Components
(CC). The graph used was the Twitter-2010 graph [107], consisting of 42M vertices and 1.5B

edges.

We used the Java HotSpot(TM) 64-bit Server VM (build 20.2-b06, mixed mode) to run all
experiments. The state-of-the-art parallel generational garbage collector was used for memory
reclamation. This GC combines parallel Scavenge (i.e., copying) for the young generation and
parallel Mark-Sweep-Compact for the old generation to quickly reclaim unreachable objects.
GraphChi uses a parallel sliding windows algorithm that partitions data into shards. Since
the number of shards has only little impact on performance (as reported in Figure 8(c)
in [108] and also confirmed in our experiments), we fixed the number of shards to 20 in our

experiments.

Performance GraphChi determines the amount of data to load and process (i.e., memory
budget) in each iteration dynamically based on the maximum heap size. This is a very
effective approach to reduce memory pressure and has been shown to be much more efficient
than loading a fixed amount data per iteration. We ran P and P’ with the same maximal
heap size so that the same amount of data is loaded in each iteration (i.e., guaranteeing the
same I/O time in both executions). Note that P’ actually does not need a large heap because

of the use of native memory. We tried various heap sizes and found that the smallest heap
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size for running P’ was 2.5GB while P could not execute when the heap was smaller than

4GB.
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Figure 3.7: Performance comparisons between the original (P) and Facade-transformed
programs (P’) on GraphChi.

Figure 3.7 illustrates the comparisons between the original run and the Facade run in terms of
running time broken down into various components (top row) and peak memory consumption
(bottom row). Peak memory is computed by calculating the maximum from a set of samples
of JVM memory consumptions collected periodically from pmap. We also exclude graph
preprocessing time in the figure. Table 3.2 shows a more detailed performance comparisons.
Note that our performance numbers may look different from those reported in [108], because

their experiments used SSD and a C++ version of GraphChi.

On GraphChi, P" outperforms P for all configurations. The performance improvements

Facade has achieved for PR and CC over the Twitter-2010 graph on average are, respec-
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App || T(s) | T'(s) | %ET | %UT | %LT | %GC | %PM

PR-8G || 1540.8 | 1180.7 | 23.4% || 23.7% | 25.7% | 84.2% || 27.6%
PR-6G || 1561.2 | 1146.2 | 26.6% || 25.2% | 30.5% | 81.7% 6.3%
PR-4G || 1663.7 | 1159.2 | 30.3% || 34.5% | 28.5% | 86.7% || -37.7%
Mean 26.8% || 27.8% | 28.2% | 84.2%

CC-8G || 2338.1 | 2207.8 | 5.6% 6.4% | 85% | 77.0% || 27.9%
CC-6G || 2245.8 | 2143.4 | 4.6% 5.4% | 10.0% | 72.5% 7.8%
CC-4G || 2288.5 | 21209 | 7.3% 9.4% | 11.7% | 74.4% || -36.8%
Mean 5.8% 7.0% | 10.1% | 74.6%

Table 3.2: Performance summary of GraphChi on Twitter-2010 graph: reported are execu-
tion time of original run (T) and Facade run (T7), the reduction of total execution times
(%ET), engine update times (%UT), data load times (%LT), garbage collection times
(%GC), and peak memory consumption (%PM) under three different memory budgets
(e.g., 8GB, 6GB, and 4GB)

tively, 26.8% and 5.8%; larger gains were seen when we experimented with smaller graphs
(discussed shortly). The generated program P’ not only has much less GC time (i.e., an
average 5.1x reduction); data load and engine update time has also been reduced primarily

due to inlining and direct memory accesses.

For PR, the number of objects for its data classes has been reduced from 14,257,280, 923
1't0 1,363, of which 1,000 is the number of memory page objects and 363 is the number
of total facade objects. Other than the main thread, GraphChi uses two thread pools, each
containing 16 threads, and each thread has a pool of 11 facades. Hence, the total number of
data objects equals 1000 + 11 % (16 x 2 + 1) = 363 , leading to dramatically decreased GC
effort. The cost of page creation and recycling is negligible: the time it took to create and
recycle pages was less than 5 seconds during the execution of PR" with 5 major iterations

and 159 sub-iterations.

For P, its memory consumption is bounded by the maximum heap size, while the memory
usage for P’ is quite stable across different memory budget configurations. This is because our

heap contains only objects in control path, whose numbers are very small; the off-heap data

LObtained from our profiling that counts the number of runtime objects of data classes such as
ChiVertex, ChiPointer, and VertexDegree.
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Figure 3.8: Performance improvements with and without data record inlining.

storage is not subject to the GC and is only determined by the amount of data processed.
For both P and P’, their running time does not vary much as the memory budget changes.
This is primarily due to the adaptive data loading algorithm used by GraphChi. For systems
that do not have this design, significant time increase and the GC efforts can often be seen
when the heap becomes smaller, and thus, further performance improvement can be expected
from Facade’s optimization. Note that under a 4GB heap, P consumes less memory than P’.
This is because the GC reclaims objects immediately after they become unreachable while
Facade allows dead data records to accumulate until the end of a (sub-)iteration (i.e., trades

off space for time).

To have a better understanding of how much inlining contributes to the performance improve-
ments, we have compared the performance of the transformed GraphChi with and without
inlining enabled. The results are shown in Figure 3.8. Inlining contributes to 4% and 1.5%
of the improvements for PR and CC, respectively. The majority of the improvement comes

from the reduction in GC efforts.

Scalability We measured scalability by computing throughput, which is defined as the
number of edges processed per second. From the Twitter-2010 graph, we generated four
smaller graphs with different sizes. We fed these graphs to PR and CC to obtain the scalability
trends, which are shown in Figure 3.9. An 8 GB heap was used to run P and P’. While 8GB
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Figure 3.9: Computational throughput of GraphChi on various graphs; each trend-line is a
least-squares fit to the average throughput of a program.

Input size Page Rank (PR) Connected Component (CC)
S| | VI | IE| T(s) | T'(s) | %ET | %TR | T(s) | T'(s) | %ET | %TR

5.1GB | 33.9M | 293.7M || 661.3 | 341.1 | 48.4% | 93.9% | 696.3 | 582.0 | 16.4% | 19.6%
6.4GB | 35.6M | 367.1M || 711.4 | 414.6 | 41.7% | 71.6% | 796.8 | 680.1 | 14.6% | 17.2%
8.5GB | 37.2M | 489.5M || 808.5 | 533.2 | 34.1% | 51.6% || 991.6 | 880.1 | 11.3% | 12.7%
12.8GB | 38.7M | 734.2M | 1113.0 | 770.9 | 30.7% | 44.4% | 1411.0 | 1250.8 | 11.4% | 12.8%
26.2GB | 41.0M 1.5B || 1540.8 | 1180.7 | 23.4% | 30.5% || 2338.1 | 2207.8 | 5.6% 5.9%

Table 3.3: GraphChi performance comparisons on different datasets: reported are the to-
tal execution times of the original program (T), and its Facade-version (T7); %ET reports
Facade’s reduction in execution time and %TR reports the throughput improvement.

appears to be a large heap for these relatively smaller graphs, our goal is to demonstrate, even
with large memory resources and thus less GC effort, Facade can still improve the application
performance substantially. For both versions, they scale very well with the increase of the
data size. The generated program P’ has higher throughput than P for all the graphs. In
fact, for some of the smaller graphs, the performance difference, shown in Table 3.3, between
P and P’ is even larger than what is reported in Table 3.2. For example, on a graph with
300M edges, PR" and CC' are 48.4% and 16.4% faster than PR and CC, respectively. Since
the cost of single-PC-based graph processing is dominated by disk accesses, the fraction of
the I/O cost is smaller when processing smaller graphs and thus the effectiveness of the
Facade optimizations becomes more obvious. This explains the reason why the performance

difference is larger on smaller graphs.
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3.5.2 Hyracks

Transformation Hyracks [51, 99] is a data parallel platform that runs data-intensive jobs
on a cluster of stand-alone workers. It has been optimized manually to allow only byte buffers
to store data and has been shown to have better scalability than object-based frameworks
such as Hadoop. However, user functions can still (and mostly likely will) use object-based

data structures for data manipulation.

After Facade transformed a significant portion of the high-level data manipulation functions
in Hyracks, we evaluated performance and scalability with two commonly-used applications,
Word Count (WC) and External Sort (ES). It took us 10 person-hours to find and annotate
these user-defined operators; Facade transformed 8 classes in 15 seconds, resulting in a speed

of 990 instructions per second.

Other than the 8 classes automatically transformed, the application code uses 15 collection
classes from the Java library which we already modeled manually. Among these 8 classes, 2
are user-defined functions (one for WC and the other for ES), and the remaining 6 classes are
Hyracks internal classes specifying properties and operator states. Three interaction points
were detected: one for passing data from the control path into the data path and the other two
passing processed data back into the control path (both via ByteBuffer). Data conversion
functions were synthesized and calls to them were added at these points. Iterations are easy
to identify: calls to iteration_start() and iteration_end() are placed at the beginning

and the end of each Hyracks operator (i.e., one computation cycle), respectively.

Note that these 6 Hyracks internal classes do not include those that perform built-in data
manipulation functions such as join and filter, because our search started from the user-
defined application code and we were not familiar enough with the Hyracks framework to
identify all built-in data processing functions. In general, whether a class is transformed or
not relies on whether it is in the user-specified list, and Facade can transform different parts

of the data path individually.
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Test setup We ran Hyracks on a 10-slave-node (c3.2x large) Amazon EC2 cluster. Each
machine has 2 quad-core Intel Xeon E5-2680 v2 processors (2.80GHz) and 15G RAM, running
Linux 3.10.35, with enhanced networking performance. The same JVM and GC were used in
this experiment. We converted a subset of Yahoo!’s publicly available AltaVista Web Page
Hyperlink Connectivity Graph dataset [4] into a set of plain text files as input data. The
dataset was partitioned among the slaves in a round-robin manner. The two applications
were executed as follows: we created a total of 80 concurrent workers across the cluster,
each of which reads a local partition of the data. Both WC and ES have a MapReduce-style
computation model: each worker computes a local result from its own data partition and
writes the result into the Hadoop Distributed File System (HDFS) running on the cluster;

after hash-based shuffling, a reduce phase is then started to compute the final results.

Unlike GraphChi that adaptively loads data into memory, Hyracks loads all data upfront
before the update starts. We ran both P and P’ with an 8GB heap. When the heap is
exhausted in P, the JVM terminates immediately with out-of-memory errors. Naively com-
paring scalability would create unfairness for P, because P’ uses a lot of native memory. To
enable a fair comparison, we disallowed the total memory consumption of P’ (including both
heap and native space) to go beyond 8GB. In other words, an execution of P’ that consumes

more than 8 GB memory is considered as an “out-of-memory” failure.

Input size External Sort (ES) Word Count (WC)
EREEE T(s) | T'(s) | %GC | %PM T(s) | T'(s) | %GC | %PM
3GB | 25.0M | 313.8M || 95.5 | 89.3 | 88.3% | -29.3% 48.9 57.4 | 98.2% | 31.9%
5GB | 33.2M | 562.4M || 178.2 | 167.1 | 96.9% | -3.3% 72.5 180.8 | 96.5% | 31.5%

10GB | 75.6M 1.1B || 326.3 | 302.5 | 90.8% 4.4% || OME(683.1) | 1887.1 N/A N/A
14GB | 143.1M 1.5B || 459.0 | 426.0 | 93.4% 5.4% || OME(943.2) | 2693.0 N/A N/A
19GB | 310.8M 1.8B || 806.4 | 607.5 | 98.9% 8.5% || OME(772.4) | 3160.2 N/A N/A

Table 3.4: Hyracks performance comparisons on different datasets: reported are the total
execution times of the original program (T), and its Facade-version (T"); OME(n) means
the program runs out of memory in n seconds. %GC and %PM report Facade’s reduction
in GC time and peak memory consumption, respectively.

Performance and Scalability Performance comparison is shown in Figure 3.10. In the

figure, if a program fails to process an input dataset (i.e., crash due to out-of-memory error),
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Figure 3.10: Performance comparisons between the original (P) and Facade-transformed
(P’) programs on Hyracks.

the bar is discarded. Table 3.4 shows a detailed running time comparison between P and P’
on datasets of different sizes (which are all generated from the Yahoo! web graph data). P’
outperforms P for all the inputs except the two smallest (3GB and 5GB) ones for WC. For
these datasets, each machine processes a very small data partition (i.e., 300MB and 500MB).
The GC effort for both P and P’ is very small, and hence, the extra effort of pool accesses
and page-based memory management performed in P’ slows down the execution. However,

as the size of the dataset increases, this effort can be easily offset from the large savings of

GC costs.

We can also observe that P’ scales to much larger datasets than P. For example, WC fails
in 683.1 seconds when processing 10GB, while WC’ successfully finishes in 3160.2 seconds
for the 19GB dataset. Although both ES and ES’ can scale to 19GB, ES’ is about 24.7%
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faster than ES. In addition, P’ has achieved an overall 25x reduction in the GC time, with

a maximum 88x (from 346.2 seconds to 3.9 seconds).

The bottom row of Figure 3.10 shows the memory usage comparisons for ES and WC. It is

clear to see that P’ has smaller memory footprint than P in almost all the cases.

3.5.3 GPS

Transformation GPS [149] is a distributed graph processing system developed for scalable
processing of large graphs. We profiled the execution and identified a total number of 4
(vertex- and graph-related) data classes whose instances grow proportionally with the data
size. Starting from these classes, Facade further detected 44 data classes and 13 boundary
classes. After an approximate 30-person-hour effort of understanding these classes, Facade
transformed a total number of 61 classes (including 10691 Jimple instructions) in 9.7 seconds,

yielding a 1102 instructions per second compilation speed.

Test setup We used three applications — Page Rank (PR), K-Means (KM), and Random
Walk (RW) — to evaluate performance. The same (Amazon EC2) cluster environment was
used to run the experiments. We created a total of 20 workers, each with a 4GB heap. The set
of input graphs we used includes the Twitter-2010 graph [107], the Live Journal graph [42],
and 5 synthetic supergraphs of Live Journal (e.g., the largest supergraph has 120M vertices
and 1.7B edges).

GPS uses the distributed message-passing model of Pregel [121]. The behavior of each vertex
is encapsulated in a function compute, which is executed exactly once in each super-step.
GPS is overall less scalable than GraphChi and Hyracks due to its object-array-based repre-
sentation of an input graph. GPS expects vertices to be labeled contiguously starting from
0, and therefore, vertices can be efficiently stored in an array. While the goal of this design
is to improve performance by avoiding using Java data structures (e.g., ArrayList), it leads
to memory inefficiencies in many cases. This is because each node processes an arbitrary set

of vertices and thus the array becomes a sparse structure with a lot space wasted. To solve
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the problem, we replaced the array with an ArrayList before performing transformation —
since Facade will allocate the ArrayList in the native memory, this replacement saves a lot

of space without incurring extra GC overhead.

Input size Page Rank (PR) | K-Means (KM) || Random Walk (RW)
S| T VI | [E] %ET | %GC %ET |  %GC %ET | %GC

LJ 0.5GB 4.8M | 68.0M || -0.3% 15.5% 0.1% 20.5% 0.2% 39.8%
LJ-A 2.5GB | 24.0M | 340.0M || 4.7% 12.8% 2.9% 6.0% 9.4% 34.0%
LJ-B | 5.0GB | 48.0M | 680.0M | 1.6% 11.6% | 6.4% 10.0% || 7.2% 27.8%
LJ-C | 7.5GB | 72.0M 1.0B || 2.4% 12.2% || 8.2% 4.8% || 6.5% 30.1%
LJ-D || 10.0GB | 96.0M 1.5B 5.5% 18.3% 7.7% 4.4% 7.6% 32.5%
LJ-E || 12.5GB | 120.0M 1.7B || 17.3% 30.8% || 13.5% 23.1% || 10.9% 32.1%
TW || 26.2GB | 41.0M 1.5B 2.3% 14.4% 3.5% 7.19% 4.9% 19.9%

Table 3.5: GPS performance comparisons on different datasets: reported are the Facade’s
reduction in execution time (%ET) and GC time (%GC); LJ-A...LJ-E are different syn-
thetic supergraphs of the Live Journal (LJ) graph; TW is the Twitter-2010 graph.

Performance Table 3.5 shows detailed performance comparisons on all datasets of differ-
ent sizes. Compared to the original implementation P, the generated version P’ has achieved
a 3-15.4% running time reduction, a 10-39.8% GC time reduction, as well as an up to
14.4% space reduction. P and P’ have about the same running time on the smallest graph
(with 4.8M vertices and 68M edges). However, for all the other graphs in the input set,
clear performance improvements can be observed on P’, which is especially significant on
the largest graph (LJ-E). The reason why Facade can improve GPS’ performance is that,
GPS still allows the creation of objects to represent vertex values (e.g., DoubleWritable,
TwolntWritable, LongWritable, etc.). These (small) objects in turns are stored in a huge
array. Facade automatically inlines all of them into the array, therefore improves performance

of GPS.

Unlike GraphChi where the majority of the improvement comes from the reduction in GC
efforts, in GPS, data record inlining contributes the most to the improvement. Without
inlining, Facade-generated programs run slightly faster (1-2%) than the original. This is
because the design of GPS is very similar in spirit to what Facade intends to achieve in
many ways. First, it has extensive use of raw (i.e., primitive) arrays to store data such as

adjacent list or message content. Second, GPS reduces the memory cost of allocating many
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Figure 3.11: Performance comparisons between the original (P) and Facade-transformed
(P’) programs on GPS.

Java objects by using canonical objects. Instead of storing the value and the adjacency list
of each vertex inside a separate Vertex object, and calling compute on each object as in
Giraph, GPS workers use a single canonical Vertex object to perform program logic (i.e.,
invoke compute) with vertex values and adjacency list stored in seperate data structures.
GPS also uses a single canoncial Message object for message passing. Incoming messages are
stored as raw bytes in the message queues, and a message is deserialized into the canonical

Message object only when the canonical Vertex object iterates over it.
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3.6 Summary

Facade targets the performance problem caused by object-base representation mismatch in
Big Data systems. Due to the excessive object creation in a managed Big Data system, the
overhead of using objects to both represent and manipulate data becomes a performance
bottleneck. Facade mitigates the mismatch using a compiler and runtime support. Facade
achieves high efficiency by performing a semantics-preserving transformation of the data
path of a Big Data program to statically bound the number of heap objects representing

data items.

The design of Facade crosses the layers of compiler and runtime system, exploiting native
memory to represent data objects instead of using static analysis to eliminate them. It is in-
tentional with the goal to improve practicality. On one hand, the design enables our compiler
to perform simple local (method-based) code transformation, making it possible for Facade
to scale to a large codebase. On the other hand, the combination of code transformation and
the leveraging of the native memory support from a commercial JVM eliminates the need
to modify the JVM, enabling Facade to scale to a very large heap. The experimental results
demonstrate that the generated programs are more (time and memory) efficient and scalable

than their object-based counterparts.

Admittedly, to use Facade, a considerable amount of user effort is needed to understand
the program and provide a correct list of data classes as well as iteration markers (i.e.,
iteration_start () and iteration_end() calls). While the markers are often well-defined
in a Big Data platform, the user should understand such semantic information by profiling
the application (as we did in our experiments) to distinguish data classes (e.g., classes that
have a large number of runtime objects) from control classes. The Facade compiler will assist
users in identifying the list of data classes by throwing compilation errors when assumptions
(Section 3.4.1) are violated. Users are then to refactor the violating classes to make the
application Facade-transformable. However, although we had never studied any of these

frameworks before this work, we found that the majority of the manual effort was spent on
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profiling each system to understand the data path and setting up the execution environments
(e.g., on average, it took us a day worth of work for each framework). Once we identified an
initial set of data classes, the effort to specify iterations and annotate boundary classes was
almost negligible. It would have taken much less time had the developers of these frameworks

used Facade themselves.

One interesting direction of future work is to adapt Facade to Scala, which powers the entire
Apache Spark [181, 182] framework. All techniques can be conceptually applied to optimize
Scala programs seamlessly since they also rely on the JVM. One challenge is that there are
many compiler-generated objects in Scala that do not exist in Java; leaving all of them in
the heap would still cause large GC overhead. We need to modify the Scala compiler and

develop techniques to identify those objects for native allocation.

Since Facade can also reduce the memory footprint of a program, the transformed program
may likely need fewer machines to process a dataset compared to the original program.
Hence, it is interesting to perform additional experiments to understand how much Facade

can reduce resource usage while achieving the same analytical task (e.g., answering a query).

57



CHAPTER 4

Mitigating Garbage Collection Mismatch

Popular data processing frameworks such as Hadoop [35], Spark [182], Naiad [130], or
Hyracks [51] are all developed in managed languages, such as Java, C#, or Scala, primar-
ily due to the automatic memory management feature provided by the garbage collector
(GC). However, the fact is garbage collection is prohibitively expensive. GC can account
for close to 50% of the execution time of these systems, severely damaging system perfor-

mance [55, 77, 118, 119, 133, 135].

A critical reason for slow GC execution is that object characteristics in Big Data systems
do mot match the heuristics employed by state-of-the-art GC algorithms. In this chapter,
we present our solution for the object behavior mismatch by designing a more suitable GC,
namely Yak, for Big Data systems. Yak was built to intelligently adapt to object character-
istics of Big Data systems, and thus, can efficiently handle large volume of objects in these

systems.

We first discuss the mismatch in more details (Section 4.1), followed by an extensive study
of object characteristic in real systems (Section 4.2). Then we introduce the design and
implementation of the system in full in Section 4.3 and Section 4.4. Experimental results
on real systems are presented in Section 4.5 before we make some concluding remarks in

Section 4.6
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4.1 The Garbage Collection Mismatch

As discussed in Section 2.2, state-of-the-art GCs are all built upon the conventional gener-
ational hypothesis which simply states most objects die young — most recently allocated
objects are also most likely to become unreachable. The hypothesis holds true for many large
applications, which make heavy use of short-lived temporary data structures, and thus, gen-
erational GCs are efficient: most GC runs scan a small portion of the heap while being able
to reclaim significant amount of memory. However, Big Data applications behave differently.

The behavior can be summarized as two paths, two hypotheses.

Evidence [55, 86, 135] shows that a typical data processing framework often has a clear
logical distinction between a control path and a data path, discussed earlier in Section 2.3.
As a summary, the control path has a complex logic to drive the execution flow. (e.g.,
performs cluster management and scheduling, establishes communication between master
and worker nodes); the data path primarily consists of data manipulation functions (e.g., data
partitioning, built-in operations such as Join or Aggregate, and user-defined data functions

such as Map or Reduce) that can be connected to form a data processing pipeline.

These two paths follow different heap usage patterns. While the generational hypothesis
holds for the control path of a data-intensive application, it does not holds for the data path,
where most objects are created. Specifically, on one hand, most control objects, since created
only to drive the program logic, not only small in number, but also have short life spans
On the other hand, data objects, exhibits strong epochal behavior. Their lifetime aligns well
with each epoch — a piece of data manipulation code which is repeatedly executed. These
objects are often created en masse at the beginning of an epoch, stored in large structures
(to represent input data), and stay alive throughout the epoch (for processing), which is

often not a short period of time.

This mismatch leads to the fundamental challenge encountered by state-of-the-art GCs in

data-intensive applications. Since newly-created (data) objects often do not have short life
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spans, and thus, unexpectedly survive several GC runs, much of GC effort is spent for tracing

a huge number of objects, while they are not immediately reclaimable.

4.2 Object Characteristics in Real Systems

We have also conducted several experiments to verify the non-generational property of data
items in Big Data applications. Figure 4.1 depicts the memory footprint and its correlation
with epochs when Page Rank (PR) and Connected Components (CC) were executed on
GraphChi [108] to process the Twitter graph [107] on a machine with 2 Intel(R) Xeon(R)
CPU E5-2630 v2 processors running CentOS 6.6. The default Parallel Scavenge GC was

used.

GraphChi is a high-performance disk-based graph processing system. In this system, graph
data is partitioned into different shards, defined by a vertex interval. Each shard is first
loaded into memory in each iteration, followed by the creation of many vertex objects to
represent the data. These objects are long-lived and frequently visited to perform vertex
updates. They cannot be reclaimed until the next vertex interval is processed. There can
be dozens to hundreds of GC runs in each interval. The processing of an interval forms an

epoch.

In this experiment, GraphChi finished respectively, in 2337 and 3227 seconds, of which 1289
(55.2%) and 1324 (41.1%) seconds were spent on GC. Each epoch lasts about 20 seconds (PR)
and 40 seconds (CC), denoted by dotted lines in Figure 4.1. We can observe clear correlation
between the end point of each epoch and each significant memory drop (Figure 4.1 (a)) as
well as each large memory reclamation (Figure 4.1 (b)). During each epoch, many GC runs

occur and each reclaims little memory (Figure 4.1 (b)).

For comparison, we also measured the memory usage of programs in the DaCapo benchmark
suite [46], widely-used for evaluating JVM techniques. Figure 4.2 shows the memory footprint
of Eclipse under large workloads provided by DaCapo. Eclipse is a popular development IDE

and compiler front end. It is an example of applications that have complex logic but process
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Figure 4.1: Memory footprint for the first 160 seconds of the executions when GraphChi
runs PR (top) and CC (bottom). Each dot in (a) represents the memory consumption mea-
sured right after a GC; each bar in (b) shows how much memory is reclaimed by a GC;
dotted vertical lines show the iteration boundaries.

small amounts of data. GC performs well for Eclipse, taking only 2.4% of total execution time
and reclaiming significant memory in each GC run. We do not observe epochal patterns
in Figure 4.2. Furthermore, while other DaCapo benchmarks may exhibit some epochal
behavior, epochs in these programs are often not clearly defined and finding them is not

easy for application developers who are not familiar with the system codebase.

Strawman Can we solve the problem by forcing GC runs to happen only at the end of

epochs? This simple approach, unfortunately would not work due to the multi-threaded
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Figure 4.2: Eclipse execution (GC takes 2.4% of time).

nature of real systems. In systems like GraphChi, each epoch spawns many threads that
collectively consume a huge amount of memory. Waiting until the end of an epoch to conduct
GC could easily cause out-of-memory crashes. In systems like Hyracks [51], a distributed
dataflow engine, different threads have various processing speeds and reach epoch ends at
different times. Invoking the GC when one thread finishes an epoch would still make the GC
traverse many live objects created by other threads, leading to wasted effort. This problem
is illustrated in Figure 4.3, which shows memory footprint of one slave node when Hyracks
performs word counting over a 14GB text dataset on an 11-node cluster. Each node was
configured to run multiple Map and Reduce workers and have a 12GB heap. There are no
epochal patterns in the figure, exactly because many worker threads execute in parallel and

reach the end of an epoch at different times.

The two-paths-two-hypotheses phenomenon Big Data systems naturally motivates the need
of developing a hybrid memory manager which can better manage objects in two different
paths. The epochal behavior data objects is more suitable for region-based memory man-
agement — objects created in an epoch are allocated in a memory region and efficiently

deallocated as a whole when the epoch ends.

Next, we will introduce our solution mitigating the mismatch by having two different man-

agement techniques coexist in harmony in one system, Yak.
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Figure 4.3: Hyracks WordCount (WC) execution (GC takes 33.6% of time).

4.3 Design Overview

The overall idea of Yak is to split the managed heap into a small control space (CS) and a
much larger data space (DS), based on the key observation of a clear distinction between a
control path and a data path, and use different mechanisms to manage these spaces. Objects
created in the control path are allocated in the CS and subject to regular tracing GC. The
lifetimes of objects in the data path often align with epochs creating them. They are thus

allocated in the DS and subject to region-based memory management.

We present below two major design issues as well as our solutions.

Issue 1: When to Create & Deallocate DS Regions? A region is created (deallocated)
in the DS whenever an epoch starts (ends). This region holds all objects created inside the
epoch. An epoch is the execution of a block of data transformation code. Note that the
notion of an epoch is well-defined in Big Data systems. For example, in Hyracks [51], the
body of a dataflow operator is enclosed by calls to open and close. Similarly, a user-defined

(Map/Reduce) task in Hadoop [35] is enclosed by calls to setup and cleanup.

To enable a unified treatment across different Big Data systems, Yak expects a pair of
user annotations, epoch_start() and epoch_end(). These annotations are translated into
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two native function calls at run time to inform the JVM of the start/end of an epoch.
Placing these annotations requires negligible manual effort. Even a novice, without much
knowledge about the system, can easily find and annotate epochs in a few minutes. Yak
guarantees execution correctness regardless of where epoch annotations are placed. Of course,
the locations of epoch boundaries do affect performance: if objects in a designated epoch
have very different life spans, many of them need to be copied when the epoch ends, creating

overhead.

Often, the framework declared callbacks (on which developers cannot make mistakes) are
already good enough for Yak to achieve performance gains. Once the managed heap is created
(during JVM'’s bootstrapping), we reserve a range of virtual addresses as the DS. The actual
memory will not be committed until needed. Each epoch is assigned a region, which consists

of a set of fixed-length memory pages.

In practice, we need to consider a few more issues about the epoch concept. One is the nested
relationships exhibited by epochs in real systems. A typical example is GraphChi [108], where
a computational iteration naturally represents an epoch. Each iteration iteratively loads and
processes all shards, and hence, the loading and processing of each memory shard (called
Interval in GraphChi) forms a sub-epoch inside the computational iteration. Since a shard
is often too large to be loaded entirely into memory, GraphChi further breaks it into several

subIntervals, each of which forms a sub-sub-epoch.

Yak supports nested regions for performance benefits — unreachable objects inside an inner
epoch can be reclaimed long before an outer epoch ends, preventing the memory footprint
from aggressively growing. Specifically, if an epoch_start() is encountered in the middle
of an already-running epoch, a sub-epoch starts; subsequently a new region is created, and
considered a child of the existing region. All subsequent object allocations take place in
the child region until an epoch_end () is seen. We do not place any restrictions on regions;

objects in arbitrary regions are allowed to mutually reference one another.
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The other issue is how to create regions when multiple threads execute the same piece
of data-processing code concurrently. We could allow those threads to share one region.
However, this would introduce complicated thread-synchronization problems; and might also
delay memory recycling when multiple threads exit the epoch at different times, causing
unnecessary memory pressure. Hence, we propose thread-local regions — Yak creates one
region for each dynamic instance of an epoch. When two threads execute the same piece of
epoch code, they each get their own regions, and thus, can allocate objects and deallocate

the region without having to worry about synchronization.

Overall, at any moment of execution, multiple epochs and hence regions could exist. They
can be partially ordered based on their nesting relationships, forming a semilattice structure.
As shown in Figure 4.4, each node on the semilattice is a region of form (r;;,t;), where r;
denotes the j-th execution of epoch r; and ¢, denotes the thread executing the epoch. For
example, region (re;,t1) is a child of (ry,t;), because epoch 7y is nested in epoch 7y in
the program and they are executed by the same thread ¢;. Two regions (e.g., (ri1,t;) and

(r1a,t2)) are concurrent if their epochs are executed by different threads.

for (..) {

epoch_start(); <CS 7 *>
while (..) {
epoch_start(); / j \\
for (..) { <ri1,t1> <rip,t> - <ri,, ty>
epoch_start();
r2

epoch_end ()  <rp;, t1> <rp3, ty> <rpy, ty>
}
epoch_end() ;

} <rss3 ’ t1> <ri3y ’ t2> <:I:'3w ; tn>
epoch_end() ;

(a) (b)

Figure 4.4: An example of regions: (a) a simple program and (b) its region semilattice at
some point of execution.

Issue 2: How to Deallocate Regions Correctly and Efficiently? A small number
of objects may outlive their epochs, and have to be identified and carefully handled during

region deallocation. For example, GraphChi allocates many array objecys during sub-sub-

65



Chapter 4. Mitigating Garbage Collection Mismatch

epochs to hold vertex data, and these arrays are not released until the end of a sub-epoch
when the updated data is written back to disk. We do not want to solve this problem by
an iterative manual process of code refactoring and testing, which is labor-intensive as was
done in Facade [135] or Broom [86]. Yak has to automatically accomplish two key tasks: (1)

identifying escaping objects and (2) deciding the relocation destination for these objects.

For the first task, Yak uses an efficient algorithm to track cross-region/space references
and records all incoming references at run time for each region. Right before a region is
deallocated, Yak uses these references as the root set to compute a transitive closure of

objects that can escape the region (details in §4.4.2).

For the second task, for each escaping object O, Yak tries to relocate O to a live region
that will not be deallocated before the last (valid) reference to O. To achieve this goal, Yak
identifies the source regions for each incoming cross-region/space reference to O, and uses
them to find their closest common ancestor on the region semilattice. More precisely, we
define a Join operation on the semilattice that takes as input a set of nodes and returns
their least upperbound. This upperbound gives us the region or space into which we should
relocate O. For example, in Figure 4.4, joining (ra1,t1) and (ryy,t;) returns (ryq,t;), while
joining any two concurrent regions returns the CS. Intuitively, if O has references from its
parent and grand-parent regions, O should be moved up to its grand-parent. If O has two
references coming from regions created by different threads, it has to be moved to the CS

for efficiency.

Upon deallocation, computing a transitive closure of escaping objects while other threads are
accessing them may result in an incomplete closure. In addition, moving objects concurrently
with other running threads is dangerous and may give rise to data races. Yak employs a
lightweight “stop-the-world” treatment to guarantee memory safety in deallocation. When
a thread reaches an epoch_end(), Yak pauses all running threads, scans their stacks, and
computes a closure that includes all potential live objects in the deallocating region. These

objects are moved to their respective target regions before all mutator threads are resumed.

66



Chapter 4. Mitigating Garbage Collection Mismatch

4.4 Implementation

We have implemented Yak in Oracle’s production JVM OpenJDK 8 (build 25.0-b70). In
addition to implementing our own region-based technique, we have modified the two Just-
in-Time (JIT) compilers (C1 and Opto), the interpreter, the object/heap layout, and the
Parallel Scavenge collector (to manage the CS). Below, we discuss how to split the heap and
create regions (§4.4.1); how to track inter-region/space references, how to identify escaping
objects, and how to determine where to move them (§4.4.2); how to deallocate regions
correctly and efficiently (§4.4.3); and how to modify the Parallel Scavenge GC to collect the
CS (§4.4.4).

4.4.1 Region & Object Allocation

Region Allocation When the JVM is launched, it asks the OS to reserve a block of virtual
addresses based on the maximum heap size specified by the user (i.e., via -Xmx). Yak divides
this address space into the CS and the DS, with the ratio between them specified by the
user via JVM parameters. Yak initially asks the OS to commit a small amount of memory,
which will grow if the initial space runs out. Once an epoch_start() call is encountered,
Yak creates a region in the DS. A region contains a list of pages whose size can also be

specified by a JVM parameter.

Heap Layout Figure 4.5 illustrates the heap layout maintained by Yak. The CS is the
same as the old Java heap maintained by a generational GC, except for the newly added
remember set. The DS is much bigger, containing multiple regions, with each region holding

a list of pages.

The remember set is a bookkeeping data structure maintained by Yak for every region and
the CS space. It is used to determine what objects escape a region r and where to relocate

them. The remember set of CS helps identify live objects in the CS. The remember set of a
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l—Y oung Generation—*+—0Id Generation—*

Control Eden S1 | S2 Tenured Rem.
Space Set
| Card Table | [ (new)
P L, p L —| p Rem. | | Region
Data age age cos age Set 4
Space
(new)

Rem. | | Region

Page —» Page (= ...—» Page Set 4

Figure 4.5: The heap layout in Yak.

region/space r is implemented as a hash table that maps an object O in r to all references

to O that come from a different region/space.

Note that a remember set is one of the many possible data structures to record such refer-
ences. For example, the generational GC uses a card table that groups objects into fixed-sized
buckets and tracks which buckets contain objects with pointers that point to the young gen-
eration. Yak uses remember sets, because each region has only a few incoming references;
using a card table instead would require us to scan all objects from the CS and other regions

to find these references.

Allocating Objects in the DS When the execution is in an epoch, we redirect all allo-
cation requests made to the Eden space (e.g., young generation) to our new Region_Alloc
function. Yak filters out JVM meta-data objects, such as class loader and class objects, from
getting allocated in the region. Using a quick bump pointer algorithm (which uses a pointer
that points to the starting address of free space and bumps it up upon each allocation), the
region’s manager attempts to allocate the object on the last page of its page list. If this page
does not have enough space, the manager creates a new page and appends it to the list. For
a large object that cannot fit into one page, we request a special page that can fit the object.

For performance, large objects are never moved.
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Functions Description
ADDR(0) Returns the address of an object
OFFSET(f) Returns the offset of an object field
SPACE(T) Returns the range of the addresses of a region
REGION(0) Reads object header and returns region ID
TARGET(ref) Returns the pointee of a reference ref
MovVE(o, r) Moves object o to region r
JOIN(rq, 72) Joins two regions based on the semilattice
DEQUEUE(q) Removes top object from a queue and returns it
ENQUEUE(o, q) Adds an object o to a queue ¢
THREADS() Returns a set of all running threads
SCANSTACK(t, ) Scans local stack of thread ¢

and returns reachable objects of r from ¢
PAUSEOTHERTHREADS() | Pauses all other threads
RESUMEPAUSEDTHREADS() | Resumes all paused threads

Table 4.1: Auxiliary functions used in Algorithms 1 — 4

4.4.2 Tracking Inter-region References

Overview As discussed in Section 4.3, Yak needs to efficiently track all inter-region /space
references. At a high level, Yak achieves this in three steps. First, Yak adds a 4-byte field
region into the header space of each object to record the region information of the object.
Upon an object allocation, its region field is updated to the corresponding region ID. A

special ID is used for the CS.

Second, we modify the write barrier (i.e., a piece of code executed with each heap write
instruction a.f = b) to detect and record heap-based inter-region /space references. Note that,
in OpenJDK, a barrier is already required by a generational GC to track inter-generation

references. We modify the existing write barrier as shown in Algorithm 1.

Finally, Yak detects and records local-stack-based inter-region references as well as remote-
stack-based references when epoch_end () is triggered. These algorithms are shown in Lines 1
— 4 and Lines 5 — 10 in Algorithm 3. A list of auxiliary functions and their descriptions are

shown in Table 4.1.

69



Chapter 4. Mitigating Garbage Collection Mismatch

Algorithm 1: The write barrier a.f = b.
Input: Expression a.f, Variable b

1 if ADDR(O,) ¢ SPACE(CS) OR ADDR(0Oy) ¢ SPACE(CS) then
2 if REGION(O,) # REGION(O;) then

3 Record the reference ADDR(O,) + OFFSET(f) REGION©Da), ADDR(Op) in the
remember set rs of Op’s region
4 ... // Normal OpenJDK logic (for marking the card table)

Details We describe in detail how Yak can track all inter-region references, following the
three places where the reference to an escaping object can reside in — the heap, the local
stack, and a remote stack. The semantics of writes to static fields (i.e., globals) as well as
array stores are similar to that of instance field accesses; we omit the details of their handling.

Copies of large memory regions (e.g., System.arraycopy) are also tracked in Yak.

(1) In the heap. An object O, can outlive its region r if its reference is written into
an object O, allocated in another (live) region 7’. Algorithm 1 shows the write barrier to
identify such escaping objects Op. The algorithm checks whether the reference is an inter-
region/space reference (Line 2). If it is, the pointee’s region (i.e., REGION(O})) needs to

update its remember set (Line 3).

Each entry in the remember set is a reference which has a form a — b where a and b are the
addresses of the pointer and pointee, respectively, and r represents the region the reference
comes from. In most cases (such as those represented by Algorithm 1), r is the region in
which a resides and it will be used to compute the target region to which b will be moved.
However, if a is a stack variable, we need to create a placeholder reference with a special
r, determined based on which stack a comes from. We will shortly discuss such cases in

Algorithm 3.

To reduce overhead, we have a check that quickly filters out references that do not need to be
remembered. As shown in Algorithm 1, if both O, and O, are in the same region, including
the CS (Lines 1 — 2), we do not need to track that reference, and thus, the barrier proceeds

to the normal OpenJDK logic.
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(2) On the local stack. An object can escape by being referenced by a stack variable
declared beyond the scope of the running epoch. Figure 4.6 (a) shows a simple example. The
reference of the object allocated on Line 3 is assigned to the stack variable a. Because a is

still alive after epoch_end (), it is unsafe to deallocate the object.

1 Thread t :
> // epoch_start
ra = ... sa = A.f;
2 //epoch_start +a.g = new 0Q);
s b = new B(Q); s //epoch_end
o if  (/*condition */) A 6
5 a = b; 7 Thread t':
6 } s //epoch_start
7 // epoch_end op = A.f;
8 C = a; b = p.g;
np.g = ¢C;

12 // epoch_end

(a) (b)

Figure 4.6: (a) An object referenced by b escapes its epoch via the stack variable a; (b)
An object O created by thread t and referenced by a.g escapes to thread ¢’ via the load
statement b = p.g.

Yak identifies this type of escaping objects through an analysis at each epoch_end() mark.
Specifically, Yak scans the local stack of the deallocating thread for the set of live variables
at epoch_end() and checks if an object in r can be referenced by a live variable (Lines 1
— 4 in Algorithm 3). For each such escaping object O, Yak adds a placeholder incoming
reference, whose source is from r’s parent region (say p), into the remember set rs of r
(Line 4). This will cause O,,, to be relocated to p. If the variable is still live when p is about
to be deallocated, this would be detected by the same algorithm and O,,, would be further

relocated to p’s parent.

(3) On the remote stack. A reference to an object O created by thread ¢ could end up
in a stack variable in thread t'. For example, in Figure 4.6 (b), object O created on Line 4

escapes t through the store at the same line and is loaded to the stack of another thread
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t" on Line 10. A naive way to track these references is to monitor every read (i.e., a read

barrier), such as the load on Line 10 in Figure 4.6 (b).

Yak avoids the need for a read barrier, whose large overhead could affect practicality and
performance. Before proceeding to discuss the solution, let us first examine the potential
problems of missing a read barrier. The purpose of the read barrier is for us to understand
whether a region object is loaded on a remote stack so that the object will not be mistakenly
reclaimed when its containing region is deallocated. Without it, a remote thread which
references an object O in region r, may cause two potential issues when r is deallocated

(Figure 4.7).

Figure 4.7: Examples showing potential problems with references on a remote stack: (a)
moving object D is dangerous; and (b) object E, which is also live, is missed in the transi-
tive closure.

Problem 1: Dangerous object moving.  Figure 4.7 (a) illustrates this problem. Variable v
on the stack of thread ¢y contains a reference to object D in region (ro,t1) (by following
the chain of references starting at object A in the CS). When this region is deallocated, D
is in the escaping transitive closure; its target region, as determined by the semilattice, is
its parent region (riy,t1). Obviously, moving D at the deallocation of (rq1,¢;) is dangerous,
because we are not aware that v references it and thus cannot update v with D’s new address

after the move.
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Problem 2: Dangerous object deallocation. — Figure 4.7 (b) shows this problem. Object E
is first referenced by D in the same region (ro1, ). Hence, the remote thread ¢, can reach
E by following the reference chain starting at A. Suppose t; loads F into a stack variable v
and then deletes the reference from D to E. When region (rs;,t;) is deallocated, E' cannot
be included in the escaping transitive closure while it is being accessed by a remote stack.
FE thus becomes a “dangling” object that would be mistakenly treated as a dead object and

reclaimed immediately.

Solution. Yak’s solution to these problems is to pause all other threads and scan their
stacks when thread t deallocates a region r. Objects in 7 that are also on a remote stack need
to be explicitly marked as escaping roots before the escaping closure computation because
they may be dangling objects (such as E in Figure 4.7 (b)) that are already disconnected from
other objects in the region. §4.4.3 provides the detailed algorithms for region deallocation

and thread stack scanning.

4.4.3 Region Deallocation

Algorithm 3 shows our region deallocation algorithm that is triggered at each epoch_end().
This algorithm computes the closure of escaping objects, moves escaping objects to their

target regions, and then recycles the whole region.

Algorithm 2: Scanning the stack of thread ¢.

Input: Thread ¢, Region r to be deallocated
Output: Map(Var, Object) stackObj

stackObj < {}
foreach Variable var € t.Stack do
L if REGION(Oyq,) = r then

U

L stackObj < stackObj |J {var, Oyer}

5 return stackObj

Finding Escaping Roots There are three kinds of escaping roots for a region r. First,

pointees of inter-region/space references recorded in the remember set of r. Second, objects
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Algorithm 3: Region deallocation.

Input: Region r, Thread ¢

=

Map(Var, Object) stackObjs < SCANSTACK(t, )
foreach (var, O,) € stackObjs do
if REGION(O,,,) = r then
r.parent

Record a placeholder reference ADDR(var) ———— ADDR(O,q,) in 7’8
remember set rs

W N

I

PAUSEOTHERTHREADS()
foreach Thread t' € THREADS() : t' #t do
Map(Var, Object) remoteObjs <— SCANSTACK(t', 1)
foreach (var, Oy,) € remoteObjs do

if REGION(O,,) = r then

cs :
10 Record a placeholder reference ADDR(var) —>ADDR(O,q,) in 7's
remember set 7s

© 00 N o w;

11 CLOSURECOMPUTATION( )
12 RESUMEPAUSEDTHREADS()
13 Put all pages of r back onto the available page list

referenced by the local stack of the deallocating thread t. Third, objects referenced by the

remote stacks of other threads.

Since inter-region/space references have already been captured by the write barrier (§4.4.2),
here we first identify objects that escape the epoch via t’s local stack, as shown in Lines 1 —

4 of Algorithm 3. Auxilary function SCANSTACK is shown in Algorithm 2.

Next, Yak identifies objects that escape via remote stacks. To do this, Yak needs to synchro-
nize threads (Line 5). When a remote thread ¢’ is paused, Yak scans its stack variables and
returns a set of objects that are referenced by these variables and located in region r. Each
such (remotely referenced) object needs to be explicitly marked as an escaping root to be

moved to the CS (Line 10) before the transitive closure is computed (Line 11).

No threads are resumed until ¢ completes its closure computation and moves all escaping
objects in r to their target regions. Note that it is unsafe to let a remote thread ¢’ proceed
even if the stack of ¢’ does not reference any object in r. To illustrate, consider the following

scenario. Suppose object A is in the CS and object B is in region 7, and there is a reference
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from A to B. Only A but not B is on the stack of thread ¢ when r is deallocated. Scanning
the stack of ¢’ would not find any new escaping root for r. However, if ¢’ is allowed to proceed
immediately, ¢’ could load B onto its stack through A and then delete the reference between
A and B. If this occurs before ¢t completes its closure computation, B would not be included

in the closure although it is still live.

After all escaping objects are relocated, the entire region is deallocated with all its pages put

back onto the free page list (Line 13).

Closure Computation Algorithm 4 shows the details of our closure computation from the
set of escaping roots detected above. Since all other threads are paused, closure computation
is done together with object moving. The closure is computed based on the remember set
rs of the current deallocating region r. We first check the remember set rs (Line 1): if rs is
empty, this region contains no escaping objects and hence is safe to be reclaimed. Otherwise,

we need to identify all reachable objects and relocate them.

We start by computing the target region to which each escaping root O, needs to be promoted
(Lines 2 — 4). We check each reference addr U Oy in the remember set and then join all the

regions 1’ based on the region semilattice. The results are saved in a map promote.

We then iterate through all escaping roots in topological order of their target regions (the
loop at Line 5). The order is based on the region semilattice (e.g., CS is ordered before any
DS region). For each escaping root Oy, we perform a breadth-first traversal inside the current
region to identify a closure of transitively escaping objects reachable from O, and put all
of them into a queue gray. During this traversal (Lines 8 — 23), we compute the regions to
which each (transitively) escaping object should be moved and conduct the move. We will

shortly discuss the details.

Identifying Target Regions When a transitively escaping object O’ is reachable from
only one escaping root Oy, we simply use the target region of O, as the target of O’. When

O’ is reachable from multiple escaping roots, which may correspond to different target re-
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Algorithm 4: Closure computation.
Input: Remember Set rs of Region r

if The remember set rs of r is NOT empty then

=

2 foreach FEscaping root O, € rs do
3 foreach Reference addr T—,>ADDR(Ob) in rs do
L promote[Oy] <— JOIN (r', promote[Oy])

5 foreach FEscaping root O, in topological order of promote[O,] do

6 Region tgt < promote[ O]

7 Initialize queue gray with { Oy}

8 while gray is NOT empty do

9 Object O < DEQUEUE(gray)

10 Write tgt into the region field of O

11 Object O* <~MOVE(O, tgt)

12 Put a forward reference at ADDR(O)

13 foreach Reference addr =>ADDR(0O) inr’s rs do

14 Write ADDR(O*) into addr

15 if © # tgt then

16 Add reference addr = ADDR(O*) into the remember set of region
tgt

17 foreach Outgoing reference e of O* do

18 Object O < TARGET(e)

19 if O is a forward reference then

20 L Write the new address into O*

21 Region ' <— REGION(O')

22 if ¥ =r then

23 L ENQUEUE(O', gray)

24 else if ' # tgt then

25 Add reference ADDR(O*) N ADDR(O') into the remember set of
region 1’

26 Clear the remember set rs of r

gions, we use the “highest-ranked” (based on the topological ordering of regions in the region

semilattice) one among them as the target region of O'.

The topological order of our escaping root traversal is key to our implementation of the
above idea. By computing closure for a root with a “higher-ranked” region earlier, objects

reachable from multiple roots need to be traversed only once — the check at Line 22 filters
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out those that already have a region r’ (# r) assigned in a previous iteration of the loop
because the region to be assigned in the current iteration is guaranteed to be “lower-ranked”
than r’. When this case happens, the traversal stops further tracing the outgoing references

from O'.

Figure 4.8 (a) shows a simple heap snapshot when region (rq1, 1) is about to be deallocated.
There are two references in its remember set, one from region (ry;,?;) and a second from
(r12,t2). The objects C' and D are the escaping roots. Initially, our algorithm determines
that C' will be moved to (ryy,¢;) and D to the CS (because it is reachable from a concurrent
region (119, to)). Since the CS is higher-ranked than (rq1,¢;) in the semilattice, the transitive
closure computation for D occurs before C, which sets E’s target to the CS. Later, when

the transitive closure for C' is computed, £ will be ignored (since it has been visited).

rsces,»> = {1} r'Sccs,*> = {2,3}

rS<r,,t> = {}

(b)

Figure 4.8: An example heap snapshot (a) before and (b) after the deallocation of region
(ra1, 1)

Updating Remember Sets and Moving Objects Because we have pause all threads,
object moving is safe (Line 11). When an object O is moved, we need to update all (stack
and heap) locations that store its references. There can be three kinds of locations from
which it is referenced: (1) intra-region locations (i.e., referenced from another object in r);
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(2) objects from other regions or the CS; and (3) stack locations. We discuss how each of

these types is handled by Algorithm 4.

1. Intra-region locations. To handle intra-region references, we follow the standard
GC treatment by putting a special forward reference at O’s original location (Line 12).
This will notify intra-region incoming references of the location change — when this
old location of O is reached from another reference, the forward reference there will be

used to update the source of that reference (Line 20).

2. Objects from another region. References from these objects must have been recorded
in r’s remember set. Hence, we find all inter-region/space references of O in the re-
member set rs and update the source of each such reference with the new address O*
(Line 14). Since O* now belongs to a new region tgt, the inter-region/space references
that originally went into region r now go into region tgt. If the regions contain such
a reference are not tgt, such references need to be explicitly added into the remember

set of tgt (Line 16).

When O’s outgoing edges are examined, moving O to region tgt may result in new
inter-region/space references (Lines 24 — 25). For example, if the target region r’ of a
pointee object O’ is not tgt (i.e., O’ has been visited from another escaping root), we

need to add a new entry ADDR(O*)%ADDR(O’) into the remember set of r’.

3. Stack locations. Since stack locations are also recorded as entries of the remember set,
updating them is performed in the same way as updating heap locations. For example,
when O is moved, Line 14 would update each reference going to O in the remember
set. If O has (local or remote) stack references, they must be in the remember set and

updated as well.

After the transitive closure computation and object promotion, the remember set rs of region

r is cleared (Line 26).
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Figure 4.8 (b) shows the heap after region (rq,¢;) is deallocated. The objects C, D, and
E are escaping objects and will be moved to the target region computed. Since D and F
belong to the CS, we add their incoming references 2 and 3 into the remember set of the CS.

Object F' does not escape the region, and hence, is automatically freed.

4.4.4 Collecting the CS

We implement two modifications to the Parallel Scavenge GC to collect the CS. First, we
make the GC run locally in the CS. If the GC tracing reaches a reference to a region object,

we simply ignore the reference.

Second, we include references in the CS’ remember set into the tracing roots, so that corre-
sponding CS objects would not be mistakenly reclaimed. Before tracing each such reference,
we validate it by comparing the address of its target CS object with the current content in
its source location. If they are different, this reference has become invalid and is discarded.
Since the Parallel Scavenge GC moves objects (away from the young generation), Yak also
needs to update references in the remember set of each region when their source in the CS

is moved.

4.5 FEvaluation

This section presents an evaluation of Yak on widely-deployed real-world systems.

4.5.1 Methodology and Benchmarks

We have evaluated Yak on Hyracks [51], a parallel dataflow engine powering the Apache As-
terixDB [32] stack, Hadoop [35], a popular distributed MapReduce [65] implementation, and
GraphChi [108], a disk-based graph processing system. These three frameworks were selected
due to their popularity and diverse characteristics. For example, Hyracks and Hadoop are

distributed frameworks while GraphChi is a single-PC disk-based system. Hyracks runs one
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JVM on each node with many threads to process data while Hadoop runs multiple JVMs on

each node, with each JVM using a small number of threads.

For each framework, we selected a few representative programs, forming a benchmark set
with nine programs — External Sort (ES), Word Count (WC), and Distributed Grep (DG)
for Hyracks; In-map Combiner (IC), Top-word Selector (TS), and Distributed Word Filter
(DF) for Hadoop; Connected Components (CC), Community Detection (CD), and Page Rank

(PR) for GraphChi. Table 4.2 provides the descriptions of these programs.

FW P Description
ES | Sort a large array of data that cannot fit in main memory
Hyracks WC | Count word occurrences in a large document

DG | Find matches based on user-defined regular expressions

IC | Count word frequencies in a corpus using local aggregation
Hadoop TS | Select a number of words with most frequent occurrences
DF | Return text with user-defined words filtered out

CC | Identify strongly connected components (label propagation)
GraphChi || CD | Detect communities (label propagation)
PR | Compute webpage rankings (SpMV kernel)

Table 4.2: Our benchmarks and their descriptions.

Table 4.3 shows the datasets and heap configurations in our experiments. For Yak, the heap
size is the sum of the sizes of both CS and DS. Since we fed different datasets to various
frameworks, their memory requirements were also different. Evidence [48] shows that in
general the heap size needs to be at least twice as large as the minimum memory size for
the GC to perform well. We selected the heap configurations shown in Table 4.3 based on
this observation — they are roughly 2x — 3x of the minimum heap size needed to run the

original JVM.

FW H Dataset ‘ Size ‘ Heap Configs
Hyracks Yahoo Webmap 72GB 20GB, 24GB
Hadoop StackOverflow 37GB | 2&1GB, 3&2GB

GraphChi || Sample twitter-2010 | E = 100M, V = 62M 6GB, 8GB

Table 4.3: Datasets and heap configurations used to run our programs; for Hadoop, the
configurations a&b GB are the max heap sizes for each map (a) and reduce task (b).
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In a small number of cases, the JVM uses hand-crafted assembly code to allocate objects
directly into the heap without calling any C/C++ function. While we have spent more than
a year on development, we have not yet performed any assembly-based optimizations for
Yak. Thus, this assembly-based allocation in the JVM would allow some objects in an epoch
to bypass Yak’s allocator. To solve the problem, we had to disable this option and force all
allocation requests to go through the main allocation entrance in C++. For a fair comparison,
we kept the assembly-level allocation option disabled for all experiments including both Yak
and original GC runs. We saw a small performance degradation (2-6%) after disabling this

option in the JVM.

We ran Hyracks and Hadoop on an 11-node cluster, each with 2 Xeon(R) CPU E5-2640 v3
processors, 32GB memory, 1 SSD, running CentOS 6.6. We ran GraphChi on one node of
this cluster, since it is a single-PC system. For Yak, we let the ratio between the sizes of the
CS and the DS be 1/10. We did not find this ratio to have much impact on performance as
long as the DS is large enough to contain objects created in each epoch. The page size in
DS is 32KB by default. We performed experiments with different DS-page sizes and report
these results shortly. We focus our comparison between Yak and Parallel Scavenge (PS) —

the Oracle JVM’s default production GC.

We ran each program for three iterations. The first iteration warmed up the JIT. The per-
formance difference between the last two iterations were negligible (e.g., less than 5%). This

section reports the medians. We also confirmed that no incorrect results were produced by

Yak.

4.5.2 Epoch Specification

We performed our annotation by strictly following existing framework APIs. For Hyracks,
an epoch covers the lifetime of a (user-defined) dataflow operator (i.e., via open/close);
for Hadoop, it includes the body of a Map or Reduce task (i.e., via setup/cleanup). For
GraphChi, we let each epoch contain the body of a sub-interval specified by a beginSubInterval

callback, since each sub-interval holds and processes many vertices and edges. A sub-interval
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creates many threads to load sliding shards and execute update functions. The body of each
such thread is specified as a sub-epoch. It took us about ten minutes to annotate all three
programs on each framework. Note that our optimization for these frameworks only scratches
the surface; vast opportunities are possible if both user-defined operators and system’s built-

in operators are epoch-annotated.

4.5.3 Latency and Throughput

Figure 4.9 depicts the detailed performance comparisons between Yak and PS. Table 4.4
summarizes Yak’s performance improvement by showing Overall run time, as well as GC

and Application time and Memory consumption, all normalized to those of PS.

FW Overall GC App Mem

Hyracks | 0.14 ~ 0.64 | 0.02 ~ 0.11 0.31 ~ 1.05 0.67 ~ 1.03
(0.40) (0.05) (0.77) (0.78)

Hadoop | 0.73 ~ 0.89 | 0.17 ~ 0.26 1.03 ~ 1.35 1.07 ~ 1.67
(0.81) (0.21) (1.13) (1.44)

GraphChi | 0.70 ~ 0.86 | 0.15 ~ 0.56 0.91 ~ 1.13 1.07 ~ 1.34
(0.77) (0.38) (1.01) (1.21)

Table 4.4: Summary of Yak performance normalized to baseline PS in terms of Overall
run time, GC time, including Yak’s region deallocation time, Application (non-GC) time,
and Memory consumption across all settings on each framework. The values shown depict
Min ~ Max and (Mean), and are normalized to PS. A lower value indicates better perfor-
mance versus PS.

For Hyracks, Yak outperforms PS in all evaluated metrics. The GC time is collected by iden-
tifying the maximum GC time across runs on all slave nodes. Data-parallel tasks in Hyracks
are isolated by design and they do not share any data structures across task instances. Hence,
while Yak’s write barrier incurs overhead, almost all references captured by the write barrier
are intra-region references and thus they do not trigger the slow path of the barrier (i.e.,
updating the remember set). Yak also improves the (non-GC) application performance —
this is because PS only performs thread-local allocation for small objects and the allocation
of large objects has to be in the shared heap, protected by locks. In Yak, however, all objects

are allocated in thread-local regions and thus threads can allocate objects completely in
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Figure 4.9: Performance comparisons between PS and Yak on various programs.

parallel. Lock-free allocation is the major reason why Yak improves application performance
because large objects (e.g., arrays in HashMaps) are frequently allocated in such programs.
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Figure 4.10: Memory footprints collected from pmap.

For Hadoop and GraphChi, while Yak substantially reduces the GC time and the overall
execution time, it increases the application time and memory consumption. Longer applica-
tion time is expected because (1) memory reclamation (i.e., region deallocation) shifts from
the GC to the application execution, with Yak, and (2) the write barrier is triggered to
record a large number of references. For example, Hadoop has a state object (i.e., context)
in the control path that holds objects created in the data path, generating many inter-
space references. In GraphChi, a number of large data structures are shared among different
data-loading threads, leading to many inter-region references (e.g., reported in Table 4.5).

Recording all these references makes the barrier overhead stand out.

We envision two approaches that can effectively reduce the write barrier cost. First, existing
GCs all have manually crafted/optimized assembly code to implement the write barrier. As
mentioned earlier, we have not yet investigated assembly-based optimizations for Yak. We
expect the barrier cost to be much lower when these optimizations are implemented. Second,

adding extra annotations that define finer-grained epochs may provide further performance
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improvement. For example, if objects reachable from the state object can be created in
the CS in Hadoop, the number of inter-space references can be significantly reduced. In
this experiment, we did not perform any program restructuring, but we believe significant
performance potential is possible with that: it is up to the developer to decide how much
annotation effort she can afford to expend for how much extra performance gain she would

like to achieve.

Yak greatly shortens the pauses caused by GC. When Yak is enabled, the maximum (deal-
location or GC) pauses in Hyracks, Hadoop, and GraphChi are, respectively, 1.82, 0.55, and
0.72 second(s), while the longest GC pauses under PS are 35.74, 1.24, and 9.48 seconds,

respectively.

As the heap size increases, there is a small performance improvement for PS due to fewer
GC runs. The heap increase has little impact on Yak’s overall performance, given that the

CS is small anyways.

4.5.4 Memory Usage

We measured memory usage by periodically running pmap to understand the overall memory
consumption of the Java process (for both the application and GC data). Figure 4.10 com-
pares the memory footprints of Yak and PS under different heap configurations. For Hyracks
and GraphChi, memory footprints are generally stable, while Hadoop’s memory consump-
tion fluctuates. This is because Hadoop runs multiple JVMs and different JVM instances are
frequently created and destroyed. Since the JVM never returns claimed memory back to the
OS until it terminates, the memory consumption always grows for Hyracks and GraphChi.
The amount of memory consumed by Hadoop, however, drops frequently due to the frequent

creation and termination of its JVM processes.

Note that the end times of Yak’s memory traces on Hadoop in Figure 4.10 are earlier than the

execution finish time reported in Figure 4.9. This is because Figure 4.10 shows the memory
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trace of the node that has the highest memory consumption; the computation on this node

often finishes before the entire program finishes.

Yak constantly has lower memory consumption than PS for Hyracks. This is primarily be-
cause Yak can recycle memory immediately when a data processing thread finishes, while
there is often a delay before the GC reclaims memory. For Hadoop and GraphChi, Yak
has slightly higher memory consumption than PS. The main reason is that there are many
control objects created in the data path and allocated in regions. Those objects often have
shorter lifespans than their containing regions and, therefore, PS can reclaim them more
efficiently than Yak. We plan to solve this problem by developing feedback-directed allocation
— if objects created by an allocation site keep getting allocated in regions but later copied
to the CS, these objects are likely to be control objects and their allocation sites can be

modified to directly allocate such objects in the CS in future executions.

Space Overhead To understand the overhead of the extra 4-byte field region in each
object header, we ran the GraphChi programs with the unmodified HotSpot 1.8.0 74 and
compared peak heap consumption with that of Yak (by periodically running pmap). We
found that the difference (i.e., the overhead) is relatively small. Across the three GraphChi

benchmarks, this overhead varies from 1.1% to 20.8%, with an average of 12.2%.

4.5.5 Performance Breakdown

Yak’s heap To provide a deeper understanding of Yak’s performance, Table 4.5 reports
various statistics on Yak’s heap. Yak was built based on the assumption that in a typical
Big Data system, only a small number of objects escape from the data path to the control
path. This assumption has been validated by the fact that the ratios between numbers in
#CSR and #TR are generally very small. As a result, each region has only very few objects
(%CSO) that escape to the CS when the region is deallocated.

Sensitivity with page sizes Figure 4.11 depicts execution time (top row) and memory
(bottom row) performance of Yak, when different page sizes are used on GraphChi with 8GB
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Program || #CSR | #CRR | #TR | %CSO | #R

Hyracks-ES 2051 243 3B | 0.0028% | 103K
Hyracks-WC 2677 4221 | 213M | 0.0043% | 148K
Hyracks-DG 2013 16 2B | 0.0034% | 101K

Hadoop-IC 60K 0 2B 0% | 598

Hadoop-TS 60K 0 2B 0% | 598

Hadoop-DF 33K 0 1B 0% 598

GraphChi-CC 53K 25K | 653M | 0.044% | 2699
GraphChi-CD 22K 14M | 614M 1.3% | 2699
GraphChi-PR 4K 24K | 548M | 0.060% | 2699

Table 4.5: Statistics on Yak’s heap: numbers of cross-space references (CSR), cross-region
references (CRR), and total references generated by stores (TR); average percentage of
objects escaping to the CS (CSO) among all objects in a region when the region retires;
and total number of regions created during execution (R).

heap. Execution time under different page sizes does not vary much across all three programs,

while the peak memory consumption generally goes up when page size increases.

Scalability To understand how Yak and PS perform when datasets of different sizes are
processed, we ran Hyracks ES with four subsets of the Yahoo Webmap with sizes of 9.4GB,
14GB, 18GB, and 44GB respectively. Figure 4.12 shows that Yak consistently outperforms

PS and its performance improvement increases with the size of the dataset processed.

The write barrier and region deallocation are the two major sources of Yak’s application
overhead. As shown in Figure 4.9, region deallocation time accounts for 2.4%-13.1% of total
execution time across the benchmarks. Since all of our programs are multi-threaded, it is
difficult to pinpoint the exact contribution of the write barrier to execution time. To get
an idea of the sensitivity to this barrier’s cost, we manually modified GraphChi’s execution
engine to enforce a barrier between threads that load sliding shards and execute updates.
This has the effect of serializing the threads and making the program sequential. For all three
programs on GraphChi, we found that the mutator time (i.e., non-pause time) increased by
an overall of 24.5%. This shows that the write barrier is a major bottleneck, providing strong

motivation for us to hand optimize it in assembly code in the near future.
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Figure 4.11: Yak performance comparisons on GraphChi between different page sizes
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were sorted by Hyracks ES on a 24GB heap

4.5.6 Comparison with G1

Garbage First (G1) [67] is an emerging, high-performance collector that is expected to become
the default production GC, replacing the PS. G1 also features a space-partitioned heap with
many fixed-size regions. The runtime collects statistics on each region and direct GC effort
on regions with highest percentage of dead objects (hence the name Garbage First), avoiding

the cost of whole-heap tracing.
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Figure 4.13: Performance comparisons between G1 and Yak on Hyracks

We extensively compared Yak with G1 using Hyracks as a case study. We used the same

three programs — External Sort (ES), Word Count (WC), and Distributed Grep (DG) on

the same cluster mentioned earlier. For input, we used three different subsets of the Yahoo

Webmap [4] with sizes of 14GB, 19GB, and 28GB. Two heap configurations used were 20GB

and 24GB. Yak’s configuration stayed unchanged (e.g., ratio of CS/DS is 1/10 and page

size is 32KB). Each program is run 3 times and the median is reported. Table 4.6 gives

a summary of performance of both G1 and Yak, normalized to that of PS. We report the
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detailed breakdown of runtime median between G1 and Yak in Figure 4.13. For simplicity

and better constrast, the bars of PS are omitted from the figure.

Overall GC App Mem
G1]0.13 ~0.67 | 0.02 ~0.10 0.19 ~ 1.07 0.86 ~ 2.42
(0.43) (0.06) (0.68) (1.33)
Yak | 0.12 ~ 0.62 | 0.01 ~ 0.08 0.16 ~ 1.04 0.37 ~ 1.03
(0.40) (0.04) (0.64) (0.74)

Table 4.6: Summary of G1 and Yak performance normalized to baseline PS. Each cell
shows Min ~ Max and (Mean), and are normalized to PS. Lower is better.

The experiment shows G1 is able to mitigate the GC overhead. Under G1, the system
sees great improvement. GC only accounts for 3-18% (mean 7%) of the execution time,
saving more than half (i.e., 57%) of the end-to-end time. The ability to direct GC effort on
regions with mostly dead objects enables the runtime strategically and efficiently reclaim
memory. Despite such performance, Yak still constantly outperforms G1. Comparing to G1,
we have seen on average 10.6% running time reduction (and up to 31.1%), and 1.5-26.3x
(mean 6.9x) GC time reduction. Moreover, unlike G1 where we see an increased of the peak
memory consumption due to the accumulation of stale data, the peak memory consumption
on Yak has been reduced also. On average, Yak uses 35.71% less memory, suggesting Yak

can scale to much larger input datasets.

4.6 Summary

While GC has been extensively studied, existing research centers around the generational
hypothesis, improving various aspects of the collection/application performance based on
this hypothesis. Yak, in contrast, is a high-throughput, low-latency GC tailored for managed
Big Data systems. Yak adapts to the two very different types of object behavior (generational
and epochal) observed in modern data-intensive workloads. Yak is the first hybrid GC that
splits the heap into a control space (CS) and a data space (DS), which respectively employ

generation-based and region-based algorithms to automatically manage memory.

90



Chapter 4. Mitigating Garbage Collection Mismatch

Yak offers an automated and systematic solution, requiring zero code refactoring. Yak asks
the developer to mark the beginning and end points of each epoch in the program. This
is a simple task that even novices can do in minutes, and is already required by many Big
Data infrastructures (e.g., the setup/cleanup APIs in Hadoop). Objects created inside each
epoch are allocated in the DS, while those created outside are allocated in the CS. Yak
manages all data-space objects using epoch-based regions and deallocates each region as a
whole at the end of an epoch, while efficiently tracking the small number of objects whose
lifetimes span region boundaries. Yak uses a lattice-based promotion algorithm to migrate
escaping objects during region deallocation. This handling completely frees the developers
from the stress of understanding object life spans, making Yak practical enough to be used
in real settings. Since the number of objects to be traced in the CS is very small and only
escaping objects in the DS need tracing, the memory management cost can be substantially

reduced compared to a state-of-the-art generational GC.
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CHAPTER 5

Mitigating Data Transfer Mismatch

The key problem with existing serialization/deserialization (S/D) libraries is that, within an
existing JVM, there are no alternative routes to transfer objects other than first disassembling
and pushing them down to a different binary format, and then reassembling and pulling them
back up into a remote heap. We advocate to build a “skyway” between managed heaps so

that data objects no longer need to be pushed down to a lower level for transfer.

We will start with an empirical study of data transfer cost (Section 5.1), followed by an
overview of our solution to reduce such cost in Section 5.2. Section 5.3 includes several
implementation details of the system. After that, we present our experimental results in

Section 5.4, before closing this chapter in Section 5.5.

5.1 Serialization/Deserialization Costs in Real World

In existing serializers, the number of times serialization/deserialization functions are invoked
is proportional to the dataset cardinality; every data transfer can easily require several
millions invocations, potentially taking a significant fraction of the execution time. To un-
derstand the serialization/deserialization costs in the real world, we have performed a set of
experiments using Apache Spark [182] as a representative platform. We execute Spark on
a small cluster of 3 worker nodes, each with 2 Xeon(R) CPU E5-2640 v3 processors, 32GB
memory, 1 SSD, running CentOS 6.8, connected via InfiniBand. We ran a Triangle Counting
(TC) algorithm over the Live Journal graph [42] that counts the number of triangles induced

by graph edges. It is widely used in social network analysis for analyzing the graph connec-
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tivity properties [164]. We used Oracle JDK 8 (build 25.71) and let each slave run one single
executor — the single-thread execution on each slave made it easy for us to measure the
breakdown of performance. The size of the input graph was around 1.2GB and we gave each
JVM a 20GB heap — a large enough heap to perform in-memory computation — as is the

recommended practice in Spark. Tungsten sort was used to shuffle data.
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Figure 5.1: Spark serialization/deserialization costs: (a) performance breakdown and (b)
bytes shuffled under the Java and Kryo serializer. partitions.

Figure 5.1(a) shows Spark’s performance under the Kryo and Java serializers. Before trans-
ferring data over the network, Spark shuffles and sorts records, and saves the sorted records
as disk files. The cost is thus broken down into five components: computation time, serial-
ization time (measured as time spent on turning RDD records into byte sequences), write
I/O (measured as the time writing bytes onto disk), deserialization time (measured as time
spent on reconstructing RDD record objects from bytes), and read I/O (measured as time
reading bytes). Since each JVM has a large heap compared to the amount of data processed,
the garbage collection cost is less than 2.1% and thus not shown on the figure. The network
cost is included in the read I/0O. Local Bytes and Remote Bytes in Figure 5.1(b) show the

number of bytes fetched from the local and remote RDDs, repectively.

One observation is that the invocation of serialization/deserialization functions accounts for
a huge portion (more than 30%) of the total execution time under both Kryo and the Java
serializer. Under Kryo, the invocations of the serialization and deserialization take 18.2%

and 14.1% of the total execution time, respectively; under the Java serializer, these two take
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16.3% and 17.8%. The actual write and read /O time is much shorter in comparison, taking
1.4% and 1.1% under Kryo, and 2.3% and 9.9% under the Java serializer. The read 1/0 is
significantly increased under the Java serializer primarily because the Java serializer needs
to read many type strings. For example, serializing an object containing a 1-byte data field
can generate a 50-byte sequence [168] — in addition to its own field and the fields in its
superclasses, the serializer needs to (1) write out the class name and (2) recursively write out
the description of the superclasses of the object’s class until it reaches java.lang.0Object

(i.e., the root of all classes).

Another observation is that the S/D process is a bottleneck that cannot be easily removed
by upgrading hardware. Unlike other bottlenecks such as GC (that can be eliminated almost
entirely by using a large heap) or I/O (that can be significantly reduced by using fast SSDs
and InfiniBand networks), S/D is a memory- and compute-intensive process that turns heap
objects into bytes and vice versa. The inefficiencies inherent in the process strongly call for

system-level optimizations.

5.2 Skyway Design Overview

To combat data transfer mismatch, we propose Skyway to enhance the JVM, as shown in
Figure 5.2. By building a direct connection between two managed heaps, we would avoid
completely the process of serialization and deserialization that are required to transform
data format. We advocate transferring object graphs as-is from heap to heap, enabling them
to be used on a remote node right after the transfer. Specifically, given a root object o
specified by the application (e.g., the RDD object in Spark), the Skyway-enhanced JVM
performs a GC-like heap traversal starting from o, copies every reachable object into an
output buffer, and conducts lightweight adjustment to machine-dependent meta data stored
in an object without changing the object format. This output buffer can then be copied as

a whole directly into the remote heap and used almost immediately after the transfer.
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The benefit provided by Skyway to existing and future Big Data systems is two-fold: (1)
Skyway completely eliminates the cost of accessing fields and types, saving computation
costs; and (2) the developer does not need to handcraft any S/D functions, yet enjoying

efficient data transfer.

Sending Machine Receiving Machine
Object domain Skyway Object domain

ary] NN N )| )8 6]

N
N
N

Jeserialization

-] |

Binary domain Binary domain

N % .
Machine dependent meta data, reference, etc.
. B Machine independent representation of meta data, reference, etc.

(3 _IMachine independent object data —>  Object reference

Figure 5.2: Skyway’s overview.

Next we explain how Skyway is designed towards three performance goals — correctness,

efficiency, and ease of integration. Figure 5.3 shows the system architecture of Skyway.

App App
Node A Node B

Skyway lib Skyway lib

(INAC) awnuny Aems

Figure 5.3: Skyway’s system architecture. Purple and orange rectangles represent input
(in-heap) buffers and output (native) buffers, respectively; objects flow along red arrows.
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5.2.1 Correctness

Skyway adjusts machine-specific parts of each transferred object to guarantee execution
correctness. First, Skyway fills the type field of an object header with an automatically
maintained global type-ID during sending, and later replaces it with the correct type repre-
sentation on the receiving node. The details are presented in §5.3.1. Second, Skyway replaces
the references stored in all non-primitive fields of an object with relativized references during
sending, and turns them back to the correct absolute references during receiving. The details
are presented in §5.3.2. Finally, certain meta data such as GC bits and lock bits need to be
reset when objects are moved to another machine. Skyway resets these flags at sending, and

does not need to access them at receiving.

Skyway also provides support for heterogeneous clusters where JVMs on different machines
may support different object formats. If the sender and receiver nodes have different JVM
specifications, Skyway adjusts the format of each object (e.g., header size, pointer size, or
header format) when copying it into the output buffer. This incurs an extra cost only on
the sender node while the receiver node pays no extra cost for using the transferred objects.
For homogeneous clusters, such platform-adjustment cost is not incurred on any nodes. The
only assumption Skyway uses is that the sender and the receiver use the same version of
each transfer-related class — if two versions of the same class have different fields, object
reading would fail. However, this assumption is not unique for Skyway; all other serializers

assume the same.

5.2.2 Efficiency

Skyway uses a GC-like traversal to discover the object graph reachable from a set of root
objects specified by developers. A naive approach could transfer each object individually
as it is being visited during the traversal. This approach, however, would generate a great
number of small network packets, leading to performance degradation. To improve efficiency,

Skyway uses buffering — Skyway copies every object encountered during the traversal into
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a buffer on the sending node (i.e., output buffer) and streams the buffer content to the
corresponding buffer(s) on the receiving node (i.e., input buffer). Both output and input
buffers are carefully designed for efficiency concerns. Multi-threaded data transfer is also

supported (cf. §5.3).

Skyway output buffers are segregated by receivers — objects with the same destination are
put into the same output buffer. Only one such output buffer exists for each destination.
The output buffer can be safely cleared after its objects are sent. Skyway input buffers are
segregated by senders, so that data objects coming from different senders can be written
simultaneously without synchronization. Note that the heap of a receiver node may actually
contain multiple input buffers for each sender, each holding objects sent in a different round
of shuffling from the sender. Skyway does not reuse an old input buffer unless the developer
explicitly frees the buffer using an API — frameworks such as Spark cache all RDDs in

memory and thus Skyway keeps all input buffers.

Output buffers are located in off-the-heap, native memory — they will not interfere with
the GC, which could reclaim data objects before they are sent if these buffers were in the
managed heap. Input buffers are allocated from the managed heap so that data coming from
a remote node is directly written into the heap and can be used right away. Furthermore,
while each input buffer is shown as consuming contiguous heap space in Figure 5.3, we allow
it to span multiple small memory chunks for two reasons. First, due to streaming, the receiver
may not have the knowledge of the number of sent bytes, and hence, determining the input-
buffer size is difficult. Second, allocating large contiguous space can quickly lead to memory
fragmentation, which can be effectively mitigated by using smaller memory chunks. Details

can be found in §5.3.3.

Streaming is an important feature Skyway provides for these buffers: for an output buffer, it
is both time-inefficient and space-consuming if we do not send data until all objects are in;
for an input buffer, streaming would allow the computation to be performed in parallel with

data transfer. Supporting streaming creates many challenges, e.g., how to adapt pointers
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without multiple scans and how to manage memory on the receiver node. Details can be

found in §5.3.2.

5.2.3 Ease of Integration

Skyway aims to provide a simple interface for application developers. Skyway should support
not only the development of brand new systems but also easy S/D library integration for
existing systems such as Spark. To this end, Skyway provides a set of high-level Java APIs

that are directly compatible with the standard Java serializer.

Skyway provides SkywayObjectOutputStream and SkywayObjectInputStream classes that
are subclasses of the standard ObjectOutputStream and ObjectInputStream. These two
classes create an interface for Skyway’s (native) implementation of the readObject and
writeObject methods. A SkywayObjectOutputStream/SkywayObjectInputStream object
is associated with an output/input buffer. We have also created our SkywayFileOutput-
Stream / SkywayFileInputStream and SkywaySocketOutputStream/ SkywaySocketInput-
Stream classes — one can easily program with Skyway in the same way as programming with

the Java serializer.

Switching a program from using its original library to using Skyway requires light code
modifications. For example, we do not need to change object-writing/reading calls such as
stream.writeObject (o) at all. The only modification is to (1) instantiate stream to be a
SkywayFileOutputStream object instead of any other type of ObjectOutputStream objects
and (2) identify a shuffling phase with an API function shuffleStart. Since all of our output
buffers need to be cleared before the next shuffling phase starts (§5.3), Skyway needs a mark
from the developer to know when to clear the buffers. Identifying shuffling phases is often
simple — in many systems, a shuffling phase is implemented by a shuffle function and the
developer can simply place a call to shuffleStart in the beginning of the function. Also
note that, user programs written to run on Big Data systems mostly do not directly use S/D

libraries and hence can benefit from Skyway without changes.
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Finally, Skyway provides an interface that allows developers to easily update some object
fields after the transfer, such as re-initializing some fields for semantic reasons. For example,
the code snippet below updates field timestamp in the class Record with the value returned
by the user-defined function updateTimeStamp when a Record object is transferred. Of
course, we expect this interface to be used rarely — the need to update object data content

after a transfer never occurs in our experiments.

1 /*Register the update functionx*/
2 registerUpdate (Record.class, Record.class.getField("timeStamp"),
SkywayFieldUpdateFunctions.getFunction(SkywayUpdate.class, "

updateTimeStamp", " () [B");

4 class SkywayUpdate{
5 /*The actual update function*/
6 public byte[] updateTimeStamp (){

7 return new byte []{0};

5.3 Implementation

We implemented Skyway in Oracle’s production JVM OpenJDK 1.8.0 (build 25.71). In
addition to implementing our object transfer technique, we have modified the classloader
subsystem, the object/heap layout, and the Parallel Scavenge garbage collector, which is the
default GC in OpenJDK 8. We have also provided a Skyway library for developers.

5.3.1 Global Class Numbering

Skyway develops a distributed type-registration system that automatically allows different
representations of the same class on different JVM instances to share the same integer 1D.

This system completely eliminates the need of using strings to represent types during data
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transfer (as in the standard Java serializer) or the involvement of human developers to

understand and register classes (as in Kryo).

Skyway type registration runs inside every JVM and maintains a type registry, which maps
every type string to its unique integer ID. The driver JVM assigns IDs to all classes; it
maintains a complete type registry covering all classes that have been loaded in the cluster
and made known to the driver since the computation starts. Every worker JVM has a registry
view, which is a subset of the type registry on the driver; it checks with the driver to obtain
the ID for every class that it loads and does not yet exist in the local registry view. An

example of these registries is shown in Figure 5.4.

Algorithm 5 describes the algorithms running on the driver and worker JVMs. The selection
of the driver is done by the user through an API call inserted in the client code. For example,
for Spark, one can naturally specify the JVM running the Spark driver as the Skyway driver,
and all the Spark worker nodes run Skyway workers. Fault tolerance is provided by the
application — e.g., upon a crash, Spark restarts the system on the Skyway-equipped JVMs;
Skyway’s driver JVM will be launched on the node that hosts Spark’s driver.

At the beginning, the driver populates the registry by scanning its own loaded classes after
the JVM finishes its startup logic (Lines 4 — 8). Next, the driver switches to background by
running a daemon thread that listens on a port to process lookup requests from the workers

(Lines 10 — 19).

Skyway uses a pull-based communication between the driver and workers. Upon launching
a worker JVM, it first requests (Line 22) and obtains (Line 12) the current complete type
registry from the driver through a “REQUEST VIEW” message. This provides each worker
JVM with a view of all classes loaded so far in the cluster at its startup. The rationale behind
this design is that most classes that will be needed by this worker JVM are likely already
registered by the driver or other workers. Hence, getting their IDs in a batch is much more

efficient than making individual remote-fetch requests.
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Figure 5.4: Type registries used for global class numbering.

We modify the class loader on each worker JVM so that during the loading of a class, the
loader obtains the ID for the class. The loader first consults the registry view in its own
JVM. If it cannot find the class, it goes on to communicate with the driver (Lines 29 — 34)
by a “LOOKUP” message with the class name string. The driver returns the ID if the string
exists in its own registry or creates a new ID and registers it with the class name (Line 18).
Once the worker receives this ID, it updates its registry view (Line 34). Finally, the worker
JVM writes this ID into the meta object of the class (Line 35). In the JVM terminology, a
meta object is called a “klass” (as shown in Figure 5.4). We add an extra field in each klass

to accommodate its ID.

During deserialization, if we encounter an unloaded class on the worker JVM, Skyway in-
structs the class loader to load the missing class since the type registry knows the full class
name. While other options (e.g., low-collision hash functions such as the MD and SHA fami-
lies) can achieve the same goal of assigning each class a unique 1D, Skyway cannot use them

as they cannot be used to recover class names.
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Algorithm 5: Driver and worker algorithms for global class numbering.

1
2
3
4
5

® N O

10
11
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13
14

15
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23
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25
26
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28
29
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32
33
34

35

/* Driver Program */
/*Part 1: right after the JVM starts up*/
JVMSTARTUP() /*Normal JVM startup logic*/
/*Initialize the type registry*/
globallD < 0
registry < EMPTY MAP
foreach class k loaded in the driver JVM do
L registry < registry U {(NAME(k), globallD++)}

/*Part 2: a daemon thread that constantly listens™*/
while Message m = LISTENTOWORKERS() do
if m.type == “REQUEST VIEW then

L SENDMSG (m.workerAddr, registry)

else if m.type == “LOOKUP” then
/*The content of a “LOOKUP” message from worker to driver is a class
string™/
id < LOOKUP(registry, m.content)
if id == Null then
id < globalID++
L registry < registry U {(m.content, id)}

| SENDMSG(m.workerAddr, id)

/* Worker Program™/
/* Part 1: inside the JVM startup logic*/
SENDMSG (driverAddr, COMPOSEMSG(“REQUEST _VIEW”, Null, myAddr))
Message m = LISTENTODRIVER()
/*The content of a “LOOKUP” message is the registry map*/
registry View <— m.content

/* Part 2: after the class loading routine*/

clsName <— GETCLASSNAME()

metaObj < LOADCLASS(clsName)

id < LOOKUP(registryView, clsName)

if «d == Null then

SENDMSG (driverAddr, COMPOSEMSG(“LOOKUP”, clsName, myAddr))
Message m = LISTENTODRIVER()

/*The content of a message from driver to worker is an ID*/

id < m.content

registry View <— registry View U {(clsName, id)}

WRITETID (metaObj, id)
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Comparing with the standard Java serializer that sends a type string over the network to-
gether with every object, Skyway sends a type string at most once for every class on each
machine during the whole computation. Naturally, the number of strings communicated
under Skyway is several orders-of-magnitude smaller. Comparing with Kryo, Skyway auto-
matically registers all classes, and eliminates the need for developers to understand what

classes will be involved in data transfer, leading to significantly reduced human effort.

5.3.2 Sending Object Graph

When writeObject(root) is invoked on a SkywayObjectOutputStream object, Skyway
starts to traverse and send the object graph reachable from root. Algorithm 6 describes
the single-threaded logic of copying the object graph reachable from a user-specified root,

and we discuss the multi-threaded extension later in this section.

At a high level, Skyway mimics a BFS-based GC traversal. It maintains a queue gray holding
records of every object that has been visited but not yet processed, as well as the location
addr at which this object will be placed in the output buffer ob. Every iteration of the main

loop (Line 8) processes the top record in gray and conducts three tasks.

First, based on the object-address pair (s, addr) retrieved from gray, an object s is cloned
into buffer ob at a location calculated from addr (Line 10). CLONEINBUFFER would also
adjust the format of the clone if Skyway detects that the receiver JVM has a different
specification from the sender JVM, following a user-provided configuration file that specifies
the object formats in different JVMs. Second, the header of the clone is updated (Lines 12 —
22). Third, for every reference-typed field f of s, Skyway pushes the referenced object o into
the working queue gray if o has not been visited yet and then updates f with a relativized
address (i.e., 0’s position in output buffer), which will enable a fast reference adjustment on

the receiver machine (Lines 15 — 27).

As objects are copied into the buffer, which is in native memory, the buffer may be flushed

(i.e., the streaming process). A flushing is triggered by an allocation at Line 10 — the

103



Chapter 5. Mitigating Data Transfer Mismatch

allocation first checks whether the buffer still has space for the object s; if not, the buffer
ob is flushed and the value of ob.flushedBytes is increased by the size of the buffer.

Algorithm 6: Copying the object graph reachable from object root and relativizing
pointers for a single thread.
Input: Shuffling phase ID sID, a top object root, output buffer ob

1 ob.allocableAddr < 0

2 Word w <~ READ(root, OFFSET BADDR)

3 pID < HIGHESTBYTE(w)

/*root has not been visited in the current phase*/

I

5 if pID < sID then

6 /*gray is a list of pairs of objects and their buffer addresses™*/
7 gray < {(root, ob.allocableAddr)}

8 | while gray # 0 do

9 Object-Address pair (s, addr) < REMOVETOP(gray)

10 CLONEINBUFFER(s, 0b, addr — ob.flushed Bytes)

11 /*Update the clone of s in the buffer*/

12 WRITE(addr, OFFSET BADDR, 0)

13 RESETMARKBITS(addr)

14 WRITE(addr, OFFSET KLASS, s.klass.tID)

15 foreach Reference-typed field f of s do

16 Object 0 « s.f

17 if 0 #Vull then

18 Word v - READ(0, OFFSET BADDR)

19 phaselD < HIGHESTBYTE(v)

20 if phaselD < sID then

21 /* o0 has not been copied yet*/ newAddr < ob.allocableAddr
22 WRITE (0, OFFSET _BADDR, CoMPOSE(sID, newAddr))
23 PusHTOQUEUE(gray, {(o, newAddr)})

24 ob.allocableAddr += GETSIZE(0)

25 else

26 L newAddr < LOWEST7TBYTES(v)

27 WRITE(addr, OFFSET(f), newAddr)

28 else

29 oldAddr <— LOWEST7BYTES(w)

30 WRITEBACKWARDREFERENCE(0ldAddr)

31 SETTOPMARK()

Reference Relativization Imagine that a reference field f of an object s points to an

object o. Skyway needs to adjust f in the output buffer, as o may be put at a different
104



Chapter 5. Mitigating Data Transfer Mismatch

address on the receiver node. Skyway replaces the cloned field f with the relative address in
ob where o will be cloned to. This will allow the receiver node to easily calculate the correct
absolute value for every reference in an input buffer, once the input buffer’s starting address

is determined.

We first describe the overall relativization algorithm, and then discuss how Skyway addresses

the three challenges caused by streaming and multi-phase data shuffling.

As shown on Lines 15 — 27 of Algorithm 6, for each reference-type field s.f, Skyway follows
the reference to find the object (0). Skyway determines whether o has been visited in the
current data-shuffling phase; details are discussed shortly. If not (Line 20), we know o will
be cloned to the end of the output buffer at location ob.allocableAddr. We use this location
to fill the baddr field of o (Line 22), and bump up ob.allocableAddr by the size of o to keep
tracking the starting address of the next cloned object in ob. If 0 has been visited (Line 26),
we retrieve its location in the output buffer from the lowest seven bytes of the baddr field in
its object header, which we will explain more later. We then update the clone of f with this

buffer location newAddr at which the clone of o will be or has already been placed (Line 27).

The first challenge is related to streaming. When Skyway tries to update f with the output-
buffer location of o’s clone (f points to o), this clone may have been streamed out and no
longer exists in the physical output buffer. Therefore, Skyway has to carefully store such
buffer-location information, making it available throughout a data-shuffling phase. Skyway
saves the buffer location in the header of the original object, not the clone, using an extra
field baddr. The modified object layout is shown in Figure 5.5(a). When o is reached again
via a reference from another object o/, the baddr in o will be used to update the reference

in the clone of o'.

The second challenge is also related to streaming. The buffer location stored in baddr of an
object s and in its record in gray-queue both represent the accumulative bytes that have
been committed to other objects in output buffer before s. However, when Skyway clones o

into the buffer, it needs to account for the streaming effect that the physical buffer may have
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Figure 5.5: Skyway object layout in the heap (a) and an output buffer (b). This is an
Integer array of three elements on a 64-bit HotSpot JVM. mark contains object locks,
hash code of the object, and GC bits. klass points to the meta object representing the
object’s class. What follows is the data payload — three references to Integer objects.
baddr and tID are both added by Skyway.

been flushed multiple times. Therefore, Skyway subtracts the number of bytes previously
flushed ob.flushedBytes from addr when computing the actual address in the buffer to which
s should be copied (Line 10).

The third challenge is due to multi-phase data shuffling. Since one object may be involved
in multiple phases of shuffling, we need to separate the use of its baddr field for different
shuffling phases. Skyway employs an sID to uniquely identify a shuffling phase. Whenever
Skyway updates the baddr field, the current s/D is written to as a prefix to the highest byte
of baddr. Thus, Skyway can easily check whether the content in a baddr field is computed
during the same phase of data shuffling (i.e., valid) or an earlier phase (i.e., invalid). Examples
are on Lines 2 — 5 and Lines 19 — 20 of Algorithm 6. In the former case, if root has already
been copied in the same shuffling phase (due to a copy procedure initiated by another root
object), Skyway simply creates a backward reference pointing to its location in the buffer
(Line 30). Skyway provides an API function shuffleStart that can be used by developers

to mark a shuffling phase. sID is incremented when shuffleStart is invoked.

Header Update Lines 12 — 14 update the header of the cloned object in buffer. Following
Figure 5.5, Skyway first clears the baddr field of the cloned object; this field will be used later
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to restore the object on the receiver side. Second, Skyway processes the mark word in the
header, resetting the GC and lock bits while preserving the object hashcode. Since hashcodes
are used to determine the layout of a hash-based data structure (e.g., HashMap or HashSet),
reusing them on the receiver side enables the immediate reuse of the data structure layout
without rehashing. Third, Skyway replaces the klass pointer with the type ID stored in the

klass meta object (Line 14).

Root Object Recognition After copying all objects reachable from root into the buffer,
we set a top mark, which is a special byte indicating the starting point of the next top-level
object. The reason for setting this mark is the following. For the original implementation
of writeObject, an invocation of the function on a top object would in turn invoke the
function itself recursively on the fields of the object to serialize the referenced objects. The
deserialization process is exactly a reverse process — each invocation of readObject in the
deserialization processes the bytes written in by its corresponding invocation of writeObject
in serialization. However, Skyway’s implementation of writeObject works in a different way
— one invocation of the function on a top object triggers a system-level graph traversal that
finds and copies all of its reachable objects. Similarly, Skyway’s readObject also reads one

object from the byte sequence instead of recursively reading out all reachable objects.

Although on the receiver side we can still compute all reachable objects for a root, this
computation also needs a graph traversal and is time-consuming. As an optimization, we
let the sender explicitly mark the root objects so that the receiver-side computation can be
avoided. This is achieved by top marks. With these top marks, Skyway can easily skip the
lower-level objects in the middle and find the next top object. Note that this treatment does
not affect the semantics of the program — all data structures reachable from top objects are

recovered by the system, not by the application APIs.

Support for Threads Algorithm 6 does not work in cases that multiple threads on one
node try to transfer the same object concurrently (i.e., shared objects). Since each data-

transfer thread has its own output buffer and the baddr field of a shared object can only
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store the relative buffer address for one thread ¢ at a time, when other threads visit the object
later, they would mistakenly use this address that is specific to t. To solve the problem, we
let the lower seven bytes of baddr store both stream/thread ID (with the two highest bytes)

and relative address (with the five lowest bytes).

When an object is first visited by ¢, ¢’s thread ID is written into baddr together with the
address specific to t’s buffer. When the object is visited again, Skyway first checks whether
the ID of the visiting thread matches the thread ID stored in its baddr. If it does, baddr of
the object is used; otherwise, Skyway switches to a hash table-based approach — each thread
maintains a thread-local hash table; the object and its buffer address for the thread are
added into the hash table as a key and a value. Compare-and-swap (CAS) is used to provide

thread safety when updating each baddr.

This approach prevents a thread from mistakenly using the object’s buffer address for another
thread. An object will have distinct copies in multiple output buffers when visited by different
threads; these copies will become separate objects after delivered to a remote node. This

semantics is consistent with that of the existing serializers.

5.3.3 Receiving Object Graph

With the careful design on sending, the receiving logic is much simpler. To receive objects
from a sender, the receiver JVM first prepares an input buffer, whose size is user-tunable,
for the sender in its managed heap to store the transferred objects. A subtle issue here is
that a sender node may use multiple streams (in multiple threads) to send data to the same
receiver node simultaneously. To avoid race conditions, the receiver node creates an input
buffer for each stream of each sender so that different streams/threads can transfer data
without synchronizations. We create oversized buffers to fit large objects whose size exceeds

the size of a regular buffer.

After the input buffer is filled, Skyway performs a linear scan of the buffer to absolutize

types and pointers. For the klass field of each object, Skyway queries the local registry view
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to get the correct klass pointer based on the type ID and writes the pointer into the field.
For a relative address a stored in a reference field, Skyway replaces it with a + s where s is

the starting address of this input buffer.

There is one challenge related to streaming. Since Skyway may not know the total size of
the incoming data while allocating the buffer, one buffer of a fixed length may not be large
enough. Skyway solves this by supporting linked chunks — a new chunk can be created and
linked to the old chunk when the old one runs out of space. Skyway does not allow an object
to span multiple chunks for efficiency. Furthermore, when a buffer contains multiple chunks,
the address translation discussed above needs to be changed. We first need to calculate which
chunk ¢ a relative address a would fall in. Then, because previous chunks might not be fully
filled, we need to calculate the offset of a in the ¢-th chunk. Suppose s; is the starting address
of chunk 7 and hence, s; 4 offset is the final absolute address for a. This address will be used

to replace a in each pointer field.

As each input buffer corresponds to a distinct sender, we can safely start the computation to
process objects in each buffer for which streaming is finished. This would not create safety
issues because objects that come from different nodes cannot reference each other. However,
we do need to block the computation on buffers into which data is being streamed until the

absolutization pass is done.

Interaction with GC After receiving the objects, it is important for the Skyway client on
the receiver JVM to make these objects reachable in the garbage collection. Skyway allocates
all input buffers in the old generation (tenured) of the managed heap. In Skyway, we use the
Parallel Scavenge GC (i.e., the default GC in OpenJDK 8), which employs a card table that
groups objects into fixed-sized buckets and tracks which buckets contain objects with young
pointers. Therefore, we add support in Skyway that updates the card table appropriately to

represent new pointers generated from each data transfer.
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5.4 Evaluation

To thoroughly evaluate Skyway, we have conducted three sets of experiments, one on a
widely-used suite of benchmarks and the other two on widely-deployed systems Apache
Spark [182] and Apache Flink [37]. The first set of experiments focuses on comparing Skyway
with all existing S/D libraries — since most of these libraries cannot be directly plugged into
a real system, we used the Java serializer benchmark set (JSBS) [153], which was designed
specifically to evaluate Java/Scala serializers, to understand where Skyway stands among
existing S/D libraries. JSBS was initially designed to assess single-machine S/D. We modified

this program to make it work in a distributed setting; details are discussed shortly.

In the second and third set of experiments, we modified the Spark and Flink code to replace
the use of Kryo and the Java serializer (in Spark) and built-in serializers (in Flink) with
Skyway in order to assess the benefit of Skyway to real-world distributed systems. All of
our experiments were run on a cluster with 11 nodes, each with 2 Xeon(R) CPU E5-2640 v3
processors, 32GB memory, 1 100GB SSD, running CentOS 6.8 and connected by a 1000Mb /s
Ethernet. Each node ran 8 job instances. The JVM on each node was configured to have a

30GB heap.

5.4.1 Java Serializer Benchmark Set

The JSBS contains several workloads under which each serializer and deserializer is re-
peatedly executed. Each workload contains several media content objects which consist of
primitive int and long fields as well as reference-type fields. The driver program creates
millions of such objects, each of which is around 1KB in JSON format. These objects are
serialized into in-memory byte arrays, which are then deserialized back to heap objects. To
understand the cost of transferring the byte sequences generated by different serializers, we
modified the benchmark, turning it into a distributed program — each node serializes these
objects, broadcasts the generated bytes to all the other nodes, and deserializes the received

bytes back into objects. To execute this program, we involved five nodes and executed this
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process 1000 times repeatedly. The average S/D time for each object and the network cost

are reported.
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Figure 5.6: Serialization, deserialization, and network performance of different S/D li-
braries. Although we have compared Skyway with 90 existing libraries, we include in this
figure Skyway and 27 fastest-performing libraries. The last bar is simply a placeholder of
the 63 libraries that perform slowly.

We have compared Skyway exhaustively with 90 existing S/D libraries. For simplicity, we
excluded from the figure 63 slower libraries whose total S/D time exceeds 10 seconds. The
performance of the fastest 28 libraries is shown in Figure 5.6. Skyway, without needing any

user-defined S/D functions, is the fastest of all of them. For example, it is 2.2x faster than
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Figure 5.7: Size of serialized object by different libraries.

Kryo-manual, which requires manual development of S/D functions. It is more than 67x

faster than the Java serializer, which is also not shown in the figure.

Colfer [63] is the only serializer whose performance is close to (but still 1.5x slower than) that
of Skyway. It employs a compiler colf(1) to generate serialization source code from schema
definitions to marshal and unmarshal data structures. Hence, the use of colf(1) requires
user-defined schema of data formats, which, again, creates a practicality obstacle if data

structures are complicated and understanding their layouts is a daunting task.
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Skyway’s faster S/D speed is achieved at the cost of greater numbers of bytes serialized.
Figure 5.7 shows the number of bytes genereated by each S/D library in the JSBS. On
average, Skyway generates 50% more bytes than existing serializers. However, as shown
earlier in Figure 5.6, the increased data amount does not cause the network cost to change
much even on a 1000Mb/s Ethernet, whereas the computation cost in S/D is significantly

reduced, beyond 20%.

5.4.2 Improving Apache Spark with Skyway

Experience We have modified Spark version 2.1.0 (released December 2016) to replace
the use of Kryo-manual with the Skyway library. Spark was executed under Hadoop version
2.6.5 and Scala version 2.11. Our experience shows that the library replacement was rather
straightforward — to use Skyway, we created a Skyway serializer that wraps the existing
Input/OutputStream with our SkywayInput/OuputStream objects. We modified the Spark
configuration (spark.serializer) to invoke the Skyway serializer instead of Kryo. Since data
serialization in Spark shuffles orders of magnitude more data than closure serialization,
we only used Skyway for data serialization. The Java serializer was still used for closure
serialization. The entire SkywaySerializer class contains less than 100 lines of code, most
of which was adapted directly from the existing JavaSerializer class. The number of lines
of new code we wrote ourselves was only 10: 2 lines to wrap the I/O stream parameters, 3
lines to modify calls to readObject, and 5 lines to specify tuning parameters (e.g., buffer

size).

Programs and Datasets We ran Spark with four representative programs: Word Count
(WC), Page Rank (PR), Connected Components (CC), and Triangle Counting (TC). Word
Count is a simple MapReduce application that needs only one round of data shuffling.
The other three programs are iterative graph applications that need to shuffle data in each
iteration. We used four real-world graphs as input — Live Journal (LJ) [42], Orkut (OR) [26],
UK-2005 (UK) [50], and Twitter-2010 (TW) [107]; Table 5.1 lists their details.
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For PR over Twitter-2010, Spark could not reach convergence in a reasonable amount of
time (i.e., 10 hours) for all configurations. We had to terminate Spark at the end of the
10th iteration and thus the performance we report is w.r.t. the first 10 iterations. All the
other iterative applications ran to complete convergence. We have experimented with three

serializers: the Java serializer, Kryo, and Skyway.

Graphs | #Edges | #Vertices | Description

LiveJournal [42] 69M 4.8M | Social network
Orkut [26] 117TM 3.0M | Social network
UK-2005 [50] 936M 30.5M | Web graph

]

Twitter-2010[107 1.5B 41.6M | Social network

Table 5.1: Graph inputs for Spark.

Spark Performance Figure 5.8 reports the running time comparisons among three seri-
alizers over the four input graphs. Since different programs have very different performance
numbers, we plot them separately on different scales. For each dataset, WC and CC finished
much more quickly than PR and TC. This is primarily due to the nature of the application
— WC has one single iteration and one single round of shuffling; it is much easier for CC
(i.e., a label propagation application, which finishes in 3-5 iterations) to reach convergence

than the other two applications that often need many more iterations.

It is the same reason that explains why Skyway performs better for PR and TC — since they
perform many rounds of data shuffling, a large portion of their execution time is taken by
S/D and thus the savings in data transfer achieved by Skyway are much more significant for

these two applications than the other two.

A detailed summary of each run-time component is provided in Table 5.2. Network time is
included in Read. On average, Skyway makes Spark run 36% and 16% faster than the Java
serializer and Kryo. Compared to the Java serializer, Kryo achieves most of its savings from
avoiding reading/writing type strings since Kryo relies on developers to register classes.
As a result, the I/O in network and local reads has been significantly reduced. Skyway,
on the contrary, benefits most from the reduced deserialization cost. Since the transferred

objects can be immediately used, the process of recreating millions of objects and calling
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Figure 5.8: Spark performance with Java serializer, Kryo, and Skyway.

their constructors is completely eliminated. Furthermore, it is worth noting, again, that
Kryo achieves its benefit via heavyweight manual development — there is a package of more
than 20 classes (several thousands of lines of code) in Spark developed to use Kryo, while
Skyway completely eliminates this manual burden and simultaneously achieves even higher

performance gains.
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Figure 5.9: Ratio between the number of bytes generated by Skyway and the number of
bytes generated by Java serializer and Kryo.

System Overall Ser Write Des Read Size
Kryo | 0.39 ~0.94 | 0.33 ~ 0.89 0.12~0.83 0.11 ~0.55 0.01 ~0.03 0.31 ~ 1.09
(0.76) (0.59) (0.61) (0.26) (0.02) (0.52)
Skyway | 0.27 ~ 0.92 | 0.19 ~ 1.29 0.12 ~ 1.61 0.04 ~ 0.43 0.01 ~0.05 0.20 ~ 3.13
(0.64) (0.62) (0.97) (0.16) (0.02) (1.18)

Table 5.2: Performance summary of Skyway and Kryo on Spark: normalized to baseline
(Java serializer) in terms of Overall running time, Serialization time, Write I/O time,
and Deserialization time, Read I/O time (including the network cost), and the Size of
byte sequence generated. A lower value indicates better performance. Each cell shows a
percentage range and its geometric mean.

Because the number of bytes generated in the benchmark suite varies dramatically from

one program as well as and from one input dataset to another (e.g., from dozens GBs to
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thousands GBs), we plot the ratio between the number of bytes generated by Skyway and
that of Java serializer and Kryo instead in Figure 5.9. On average, the number of bytes
transferred under Skyway is about the same as the Java serializer, but 77% more than Kryo
due to the transferring of the entirety of each object. The increased data size is also reflected
in the increased write I/O. Skyway’s read I/O time is shorter than that of the Java serializer.
This is primarily due to the elimination of object creation — we only need one single scan of
each buffer instead of reading in individual bytes to create objects as done in Kryo. Skyway’s

read 1/0 is longer than that of Kryo because Kryo transfers much less bytes.

Header optimization To understand what constitutes the extra bytes produced by
Skyway, we analyzed these bytes for our Spark applications. Our results show that, on
average, object headers take 51%, object paddings take 34%, and the remaining 15% are taken
by pointers. Since headers and paddings dominate these extra bytes, we have implemented
an aggressive space optimization — during serialization, we take off the header (except the
type ID and the hashcode) and padding of each object and only copy its payload into the
buffer. The receiver node cannot directly use data upon receiving them — we need one extra
copy for each object to add its header as well as some computation to calculate the size of
the padding needed for the object. Compared to Skyway, this space optimization reduces the
amount of serialized data by 40%, and thus reduce the read and write time as well. However
this is at the cost of much increased deserialization time (by 20%). However, since the time
spent on read/write I/O is much smaller than the S/D time, this optimization actually causes

the overall execution time to increase by 7%.

Memory Overhead To understand the overhead of the extra word field baddr in each
object header, we ran the Spark programs with the unmodified HotSpot and compared peak
heap consumption with that of Skyway (by periodically running pmap). We found that the
difference (i.e., the overhead) is relatively small. Across our four programs, this overhead

varies from 2.1% to 21.8%, with an average of 15.4%.
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5.4.3 Improving Apache Flink with Skyway

We evaluated Skyway with the latest version of Flink (1.3.2, released August 2017) executing
under Hadoop version 2.6.5. Flink has both streaming and batch processing models. Here

we focus on the batch-processing model, and particularly, query answering applications.

Flink reads input data into a set of tuples (e.g., rows in relational database); the type
of each field in a tuple must be known at compile time. Flink can thus select a built-in
serializer for each field to use when creating tuples from the input. Flink falls back to the
Kryo serializer when encountering a type with neither a Flink-customized nor a user-defined
serializer available. Since the read/write interface is clearly defined, we could easily integrate

Skyway into Flink.

We used the TPC-H [163] data generator to generate a 100GB dataset as our input. Next,
we transformed 5 representative SQL queries generated by TPC-H into Flink applications.
The description of these queries can be found in Table 5.3. They were selected due to the

diverse operations they perform and database tables they access.

Description

QA | Report pricing details for all items shipped within the last 120 days.

QB | List the minimum cost supplier for each region for each item in the database.
QC | Retrieve the shipping priority and potential revenue of all pending orders.
QD | Count the number of late orders in each quarter of a given year.

QE | Report all items returned by customers sorted by the lost revenue.

Table 5.3: Descriptions of the queries used in Flink.
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8 10000
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Figure 5.10: Flink performance with Flink’s built-in serializer and Skyway.
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Overall ‘ Serialization Write Deserialization Read Size
0.71 ~ 0.88 0.56 ~ 1.06 0.51 ~ 1.76 058 ~0.82 049 ~1.13 1.23 ~ 2.03
(0.81) (0.77) (0.96) (0.75) (0.61) (1.68)

Table 5.4: Performance improvement summary of Skyway on Flink: normalized to Flink’s
built-in serializer. Each cell shows a percentage range and its geometric mean. A lower
value indicates better performance.

Figure 5.10 shows Flink’s performance improvement using Skyway. Performance summary is
also shown in Table 5.4. In Flink, the amount of time in deserialization (8.7%) is much less
than that in serialization (23.5% on average). This is because Flink does not deserialize all
fields of a row upon receiving it — only those involved in the transformation are deserialized.
Despite this lazy mechanism, Skyway could improve Flink’s performance by, an overall of
19%, compared to Flink’s built-in serializer. The total number of bytes written by Skyway is
also higher than the baseline — on average, Skyway emits 68% more bytes. It is worth noting
that Skyway is compared with Flink’s highly optimized built-in serializer; it is statically
chosen and optimized specifically for the data types involved in the queries, and has been

shown to outperform generic serializers such as Kryo.

5.5 Summary

This chapter presents Skyway, a JVM-based technique that can directly connect managed
heaps of different (local or remote) JVM processes. Under Skyway, objects in the source heap
can be directly written into a remote heap without changing their formats. Skyway provides
performance benefits to any JVM-based system by completely eliminating the need (1) of
invoking serialization/deserialization functions, thus saving CPU time, and (2) of requiring

developers to hand-write serialization functions.

Skyway addresses the inefficiencies in data transfer much more efficiently than all the existing

libraries in three aspects as follows.

e First, Skyway, by changing the JVM, transfers every object as a whole, completely

eliminates the need of accessing individual data fields. Furthermore, since the hashcode
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of an object is cached in the header of the object, transferring the entirety of each object
preserves the original hashcode of the object, so that hash-based data structures can
be used on the receiver node without rehashing—a process that takes a great amount

of time in traditional serialization/deserialization.

e Second, Skyway represents types by employing an automated global type-numbering
procedure — the master node maintains a registry of all types and their IDs, and each
worker node communicates with the master to obtain IDs for its classes upon class
loading. This process enables all classes across the cluster to be globally numbered
without any developer intervention and thus each ID can be used to uniquely identify

the same class on different nodes.

e Third, Skyway employs an efficient “relativization” technique to adjust references. As
objects are copied into the output buffer, pointers stored in them are relativized in
linear time—they are changed from absolute addresses to relative addresses. Upon
receiving the buffer, the Skyway client on the receiver node performs another linear

scan of the input buffer to absolutize the relative information in the buffer.

Skyway may push more bytes over the network than other serialization/deserialization li-
braries, because it transfers the entirety of each object yet others do not transfer object
headers. However, much evidence [142, 180] shows that bottlenecks in real systems are
shifting from I/O to computing, and hence, we believe this design strikes the right design
tradeoff—the savings on the computation cost significantly outweigh the extra network 1/0

cost incurred by the extra bytes transferred on a modern network.

It is important to note that Skyway is not a general-purpose serializer. Our insight why
Skyway would work well for Big Data processing is two-fold. First, data processing appli-
cations frequently shuffle many millions of objects and do so in strongly delimited phases.
Hence, sending objects in batch without changing their formats provides significant execution
efficiency—it not only reduces the format-changing efforts, but also enables computation on

the receiver node to be performed simultaneously with objects being streamed in. Second,
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the use of modern network technology enables extra bytes to be quickly transferred without

incurring much overhead.
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Related Work

6.1 Software Bloat Analysis

Bloat exists widely in object-oriented Big Data systems and incurs a severe performance
penalty when large amounts of data are processed. Software bloat analysis [33, 125-128, 150,
169, 171-176] attempts to find, remove, and prevent performance problems due to inefficien-
cies in the code execution and the use of memory. Prior work [127, 128] proposes metrics
to provide a performance assessment of the use of data structures. Their observation that a
large portion of the heap is not used to store data is also confirmed in our study. Our work
proposes optimizations specifically targeting the problems we found and our experimental

results show that these optimizations are very effective.

Work by Dufour et al. [73] uses a blended escape analysis to characterize and find excessive
use of temporary data structures. By approximating object lifetimes, the analysis has been
shown to be useful in classifying the usage of newly created objects in the problematic areas.
Work by Xu et al. [172] detects memory bloat by profiling copy activities, and their later
work [171, 175] looks for high-cost-low-benefit data structures to detect execution bloat.

Facade performs effective optimizations to remove bloat in data-intensive environments.

Dufour et al. propose dynamic metrics for Java [71], which provide insights by quantifying
runtime bloat. Mitchell et al. [128] analyzes structure behavior according to the flow of infor-
mation, though using a manual technique. Their aim is to allow programmers to place judg-

ments on whether certain classes of computations are excessive. Their follow-up work [127]
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introduces a way to find data structures that consume excessive amounts of memory. Work
by Dufour et al. finds excessive use of temporary data structures [72, 73] and summarizes
the shape of these structures. They employ a blended escape analysis, which applies static
analysis to a region of dynamically collected calling structure with observed performance
problem. By approximating object effective lifetimes, the analysis has been shown to be

useful in classifying the usage of newly created objects in the problematic program region.

JOLT [150] is a VM-based tool that uses a new metric to quantify object churn and identify
regions that make heavy use of temporary objects, in order to guide aggressive method
inlining. Jin et al. [101] studies performance bugs in real-world software systems. These bugs
are analyzed to extract efficiency rules, which are then applied to detect problems in other
applications. Nistor et al. [138] detects performance problems using similar memory-access
patterns. Object Equality Profiling [123] is a run-time technique that discovers opportunities
for replacing a set of equivalent object instances with a single representative object to save

space. Xu [169] proposes a technique to find reusable data structures.

These work, unfortunately, cannot scale to large data-intensive systems that have a large
codebases or a large heap due to the well-known limitation of static and dynamic analyses.
Our work shares the same goal of removing system bloat but is designed with scalability and
practicality in minds to work with large-scale, distributed frameworks that have to process

massive amounts of data.

6.2 Reducing the number of objects via program analysis

Traditional optimization techniques for object-oriented programs use various approaches to
reduce the number of heap objects and their management costs, ranging from programming
guidelines [80] through static program analyses [49, 61, 68, 70, 83, 84, 90, 114, 152, 166, 167,

176] to low-level systems support [170].

Object inlining [70, 114] is a technique that statically inlines objects in a data structure into

its root to reduce the number of pointers and headers. Free-Me [90] adds compiler-inserted
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frees to a GC-based system. Pool-based allocation proposed by Lattner et al. [109-111] uses
a context-sensitive pointer analysis to identify objects that belong to a logical data structure
and allocate them into the same pool to improve locality. Design patterns [80] such as
Singleton and FlyWeight aim to reuse objects. However, these techniques have limited
usefulness in Big Data systems that exhibit strong epochal behavior. Even if we can reuse
data objects across iterations, the number of heap objects in each iteration is not reduced

and these objects still need to be traversed frequently by the GC.

Shuf et al. [152] propose a static technique that splits objects into prolific types—types that
have large numbers of instances— and non-profilic types, to enable aggressive optimizations
and fast garbage collection. Objects with prolific types are allocated in a prolific region, which
is frequently scanned by GC (analogous to to a nursery in a generation collector); objects
with non-prolific types are allocated in a regular region, which is less frequently scanned
(analogous to an old generation). The insight is that the instances of prolific types are usually
temporary and short-lived. Facade and Yak both are motivated by a completely opposite
observation: data classes have great numbers of objects, which are often long-lived; frequently
scanning those objects can create prohibitively high GC overhead. Hence, in Facade we
allocate data records in native memory without creating objects to represent them, and in
Yak data objects are allocated in data space that is non-GCed. Moreover, Facade adopts a

new execution model and does not require any profiling.

Facade shares similarity with object pooling which is a well-known technique for reducing
the number of objects by reusing a set of objects. For example, Java 7 supports the use of
thread pools to save thread instances. Our facade pool differs from traditional object pooling
in three important aspects. First, while they have the same goal of reducing objects, they
achieve the goal in completely different ways: Facade moves data objects out of the heap to
native memory while object pooling recycles and reuses instances after they are no longer
used by the program. Second, the facade pool has a bound; we provide a guarantee that the
number of objects in the pool will not exceed the bound. On the contrary, object pooling

does not provide any bound guarantee. In fact, it will hurt performance if most of the objects
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from the pool cannot be reused, because the pool will keep growing and consume a lot of
memory. Finally, retrieving/returning facades from/to the pool is automatically done by the
compiler while object pooling depends on the developer’s insight—the developer has to know

what objects have disjoint lifetimes and write code explicitly to recycle them.

6.3 Region-based Memory Management

The epochal behavior of the data path which we call the epochal hypothesis is not a new
concept. This hypothesis has been leveraged in region-based memory management. Region-
based memory management was first used in the implementations of functional languages [31,
162] such as Standard ML [91], and then was extended to Prolog [120], C [81, 82, 88, 96],
Java [60, 146], as well as real-time Java [45, 53, 105]. In these, objects created in an epoch

are allocated in a memory region and efficiently deallocated as a whole when the epoch ends.

One drawback of these work is that they focus on the detection of region-allocatable objects,
assuming that a new programming model will be used to allocate them and there already
exists a modified runtime system (e.g., a new JVM) that supports region-based allocation,
limiting their usefulness and practicality. On the contrary, Facade is a non-intrusive tech-
nique that compiles the program and allocates objects based on an existing JVM, without
needing developers to write new programs as well as any JVM modification. Yak, while re-
sults in a new JVM, does not require developers to use a new API for object allocation and

deallocation.

Furthermore, existing region-based techniques need either sophisticated static analyses [31,
45, 53, 68, 81, 82, 86, 88, 154, 159]. Specifically, these analyses examine the whole program to
identify region-allocable objects, which cannot scale to Big Data systems that all have large
codebases and thus, cannot scale to Big Data systems that all have large code bases. Or they
require heavy human intervention: developers are required to use a brand new programming
model, such as region types [45, 53], or heavy manual refactoring [86, 135], to guarantee that

objects created in an epoch are indeed unreachable at the end of the epoch. Our work does
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not rely on any heavy interprocedural analyses exactly because of that. Yak is a pure dynamic
technique that easily scales to large systems and requires only straightforward marking of
epochs from users. The design of Yak frees developers from the burden of understanding

object lifetimes to use regions.

6.4 Garbage Collection

Yak belongs to the extensive family of tracing garbage collectors [40, 43, 44, 47, 48, 48, 52,
59, 62, 67, 78, 98, 104, 124, 148, 155, 156]. At first glance, Yak is similar to generational
GC in that it promotes objects reachable after an epoch and then frees the entire epoch
region. However, the regions in Yak have completely different and much richer semantics
than the two generations in a generational GC. Consequently, Yak encounters completely
different challenges and uses a design that is different from a generational GC. Specifically,
in Yak, regions are thread-private; they reflect nested epochs; many regions could exist at
any single moment. Therefore, to efficiently check which objects are escaping, we cannot rely
on a traditional tracing algorithm; escaping objects may have multiple destination regions,

instead of just the single old generation.

Connectivity-based garbage collection (CBGC) [97] is a family of algorithms that place
objects into disjoint partitions by performing conservative, static connectivity analyses on the
object graph. A connectivity analysis can be based on types, allocations, or the partitioning
introduced by Harris [93]. HiStar [183] organizes space usage into a hierarchy of containers
with quotas. Any object not reachable from the root container is garbage collected. Garbage
First (G1) [67] is a generational algorithm that divides the heap into many fixed-size small
regions and gives higher collection priority to regions with more garbage. N-Generational
Garbage Collector (NG2C) [54] is an extension of the G1 collector. It extends the 2-generation
heap layout with a young and an old generation into an N-generation heap layout. While
CBGC, G1, NG2C, and Yak each uses a notion of region, each has completely different
semantics for the region and hence a different design. For example, objects inside a G1

region are not expected to have lifespans that are similar to each other.
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NumaGiC [85] is a new GC for “Big Data” on NUMA machines. It considers data location
when performing allocation and collection. However, as a generational GC, NumaGiC shares
with modern GCs the problem of unnecessarily traverse a large volume of data objects in

the heap, which could inevitably cause long pauses during the execution.

Another orthogonal line of research on reducing GC pauses is building a holistic runtime
for distributed Big Data systems [118, 119]. The runtime collectively manages the heap on
different nodes, coordinating GC pauses to make them occur at times that are convenient
for applications in a centralized manner. Different from these techniques, Yak focuses on

optimizing memory management efficiency on each node.

Zing [5] is a high-performance Java runtime developed by Azul for large heaps. It uses
the Continuously Concurrent Compacting Collector (C4) [158] that aims to reduce latency
induced by garbage collection in real-time analytics — it does not need to stop the mutators
for space compaction. However, it is still a generational algorithm and needs to scan most of
the heap in each GC run. Yak aims for batch-processing programs and thus, was optimized

for throughput. Furthermore, stop-the-word period for region deallocation is very short.

6.5 Effort in programming languages community

Most of the existing efforts for language development focus on providing support for data
representation (such as the PADS project [79, 122] or [41, 94]). Expanded types in Eiffel
and value types in C# are used to declare data with simple structures. Value types can be
stack allocated or inlined into heap objects. While using value types to represent data items
appears to be a promising idea, its effectiveness is actually rather limited. For example, if
data items are stack allocated, they have limited scope and cannot easily flow across multiple
functions. One the other hand, always inlining data items into heap objects can significantly
increase memory consumption, especially when a data structure grows (e.g., resizing of a

hash map) and two copies of the data structure are needed simultaneously. Moreover, these
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data items are no longer amenable to iteration-based memory management—they cannot be

released until their owner objects are reclaimed, leading to significant memory inefficiencies.

Yu et al. propose a programming model [178] for distributed aggregation for Big Data sys-
tems. A number of high-level declarative languages for data-intensive computation have been
proposed in the last decade, including Sawzall [144], Pig Latin [141], SCOPE [56], Hive [160],
and DryadLINQ [179]. Rust [2] is a systems programming language designed by Mozilla that
advocates for the elimination of garbage collection. Rust enforces ownership propagation

through new syntax and type system to prevent memory issues.

Our work is at a lower (i.e., system) level of the computing stack, and thus, complements
these work. For example, Skyway can optimize programs written in Rust to reduce data

transfer cost.

6.6 Memory Management Optimizations in Big Data Systems

A variety of data computation models and processing systems have been developed in the
past decade [35, 51, 56, 64, 65, 100, 141, 144, 160, 177-179, 182]. MapReduce [66] has inspired
much research on distributed data-parallel computation, including Hyracks [51], Hadoop [35],
Spark [182], and Dryad [100]. It has been extended [177] with Merge to support joins and

adapted [64] to support pipelining.

There exists also a large body of work on optimizing data-intensive applications, but focus
on domain-specific optimizations, including, for example, data pipeline optimizations [30,
51, 56, 57, 89, 100, 108, 140, 179, 184] , query optimizations [64, 69, 112, 129, 139, 141}, and
Map-Reduce-related optimizations [29, 66, 116, 144, 160, 161, 177].

Cascading [6] is a Java library built on top of Hadoop. It provides abstractions for developers
to explicitly construct a dataflow graph to ease the challenge of programming data-parallel
tasks. Similarly to Cascading, FlumeJava [57] is another Java library that provides a set of

immutable parallel collections. These collections present a uniform abstraction over different
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data representations and execution strategies for MapReduce. StarFish [95] is a self-tuning
framework for Hadoop that provides multiple levels of tuning support. At the heart of the
framework is a Just-In-Time optimizer that profiles Hadoop jobs and adaptively adjusts

various framework parameters and resource allocation.

These frameworks are all developed in managed languages and perform their computations
on top of the managed runtime. Hence, these systems can benefit immediately all of our
work. Facade and Yak can reduce memory management cost both in term of space overhead

and garbage collection effort. Skyway significantly speeds up data shuffling tasks.

Recently, there has been much interest in optimizing memory management in language run-
times for efficient data processing [55, 77, 86, 118, 119]. These works are largely orthogonal
to all of our work. Although Yak and Skyway also fit in the category of language runtime
optimizations. ITask [77] provides a library-based programming model for developing inter-
ruptible tasks in data-parallel systems. I'Task solves the memory management problem using
an orthogonal approach that interrupts tasks and dumps live data to disk. Tungsten [22] is an
effort under the Spark [182] umbrella that aims to explicitly manage memory and eliminate

the overhead of the JVM object model and GC.

Bu et al. studied several data processing systems [55] and showed that a “bloat-free” design
(i.e., no objects allowed in data processing units), which can make the system orders of
magnitude more scalable. This insight has inspired work, like Broom [86], lifetime-based
memory management [117], as well as our work of Facade and Yak. Broom aims to replace
the GC system by using regions with different scopes to manipulate objects with similar
lifetimes. Broom ask developers to explicitly use Broom APIs to allocate objects in regions.
Deca [117] is very similar to Facade. It is a conservative transformation technique that tries
to group and inline objects with same expected lifetime into large byte arrays. Deca also
requires heavyweight code refactoring from the user. After our work, most recently, Kedia
et al. [103] and project Snowflake [143] propose safe manual memory management for C#

by adding a delete operator to free memory explicitly. An exception is thrown if the program
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dereferences a pointer to freed memory. Flare [76] transforms Spark programs for moderate-

sized workload using C memory layout and C-like semantics.

While promising, most the work requires extensive programmer intervention, much negated
the benefits of managed languages. Users of Facade must annotate the code and determine
“data classes” and “boundary classes” to use the compiler. Despite the compiler already
does a lot of heavy lifting behind the scene to make the transformation easy, user effort is
considerable. Comparing to those, Yak is much more user-friendly. It was designed to free
developers from the burden of understanding object lifetimes to use regions, making region-
based memory management part of the managed runtime by requiring only the identification
of epoch starts and ends, making region-based memory management part of the managed

runtime, a vital choice for the adoption in real world.

Furthermore, it is worth noting that a lot of these work was designed specifically for a
particular system. For example, Broom is designed specifically for Naiad’s actor semantics.
Flare [76] also tries to transform Spark program into C program but it is limited to only the
Spark system, same as Deca. Our work is much more general than these, providing benefits

to any JVM-based language such as Java, Scala, C# or Python.

6.7 Object Sharing in the OS

Skyway is related to a range of work in the system community. The idea of sharing memory
segments across processes has been studied in the OS design [58, 74, 92, 115, 147]. An object
can exist in different address spaces, allowing the system to share memory across simultane-
ously executing processes. Mach [147] introduces the concept of a memory object mappable
by various processes. The idea was later adopted in the Opal [58] and Nemesis [92] operating
systems to describe memory segments characterized by fixed virtual offsets. Lindstrom [115]
expands these notions to shareable containers that contain code segments and private mem-

ory, leveraging a capability model to enforce protection. Although most contemporary OSes
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allow one process to be associated with a single virtual address space, there exist systems

that support multiple virtual address space abstractions.

The idea of multiple address spaces has mainly been applied to achieve protection in a
shared environment [58, 74, 157]. More recently, to support the vast physical memory whose
capacity may soon exceed the virtual address space size supported by today’s CPUs, Space-
JMP [74] provides a new operating system design that promotes virtual address spaces to
first-class citizens, which enables process threads to attach to, detach from, and switch be-
tween multiple virtual address spaces. Although this line of work is not directly related to
Skyway, they share a similar goal of achieving memory efficiency when objects are needed
by multiple processes. XMem [165] is a JVM-based technique that shares heap space across
JVM instances. Unfortunately, none of these techniques target object transfer in distributed

systems, which Skyway aims for.

Distributed shared memory (DSM) enables physically separated memories to share the same

logical address space. Skyway can also be used to improve data transfer in DSM systems.
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CHAPTER 7

Conclusions and Future Directions

As modern computing progresses into the era of Big Data, developing systems that can
scale efficiently to massive amounts of data is a key challenge faced by both researchers
and professionals. When building infrastructure system for Big Data processing, a managed
language such as Java or Scala is prevalently of choice due to simple programming interface

and automatic memory management, enabling a fast software development cycle.

However, due to the mismatches between the ancient runtime abstractions and the charac-
teristic of modern Big Data workloads, the cost of the runtime system has been magnified

and became the performance bottleneck.

This dissertation tackles those mismatches via a series of solutions spanning different levels
of the computing stack, leveraging compiler and runtime system techniques to improve many
different aspects of Big Data processing including memory efficiency, scalability, latency, and
throughput. Specifically, at the compiler level, Facade solves the memory usage mismatch
due the grossly excessive object creations in Big Data systems. Facade transforms existing
programs into a new execution model that breaks away from the long-held object-oriented
principle which uses objects for both data storage and data manipulation. Under Facade’s
model, data are stored in native memory pages, not in managed heap. To operate on those
data, Facade maps each such data item to a facade object in the heap, which then direct
access to native memory. Facade guarantees via transformation that the number of heap-
based facade objects are statically bounded regardless of how much data items a program

must process; each facade object can be reused to represent multiple data items.
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At the system level, Yak mitigates the mismatch between the heuristic used by state-of-the-
art garbage collectors and the runtime object behaviors in Big Data systems. Although gen-
erational hypothesis assumes objects are short-lived and is the foundation on which garbage
collectors are built upon to manage all objects, only a small number of runtime objects in
Big Data applications conform to such conventional wisdom. Instead, most of the objects
follow what we called “epochal hypothesis” — their lifetime aligns well with an epoch, which
is a computational event. Epochal behavior is much better managed by region-based memory
management techniques. Yak is the first hybrid garbage collector that marries generational
GC and region-based techniques so that they can co-exist harmoniously in one single system
to manage memory. Yak offers an automated and systematic solution, requiring zero user
effort. Objects created in an epoch are allocated in memory regions that are not managed
by the generational GC. These memory regions are deallocated as a whole as the end of the
epoch. Yak automatically tracks, identifies, and moves region-allocated escaping objects at

region deallocation point.

Skyway is also a solution built inside virtual machine, tackling the mismatch between slow
serialization interface and frequent data shuffling across worker nodes in clusters. The high
data transfer costs in distributed environment come from the lengthy and expensive process
of pushing objects in heap format down to lower-level byte format in serialization procedure
on the sender; and pulling byte sequence up to managed heap in deserialization procedure
on the receiver. Skyway is tailored for Big Data sytems, advocating transferring objects as-is
without changing much for their format. Objects are made immediately available in remote
nodes, significantly reducing the data transfer costs, and improving work pipelining further

by overlapping computation with transferring.

Although Facade, Yak, and Skyway are designed targeting a different mismatch, and thus,
having different performance goals built-in, they are not isolated. On the contrary, they are
complementary to each other. They are parts of one cohesive, organized research agenda to
strive for efficient and scalable Big Data processing. This line of work has sparked interests

and follow-up efforts across several communities of programming languages, systems, and
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software engineering as well as attracted attentions from industrial entities such as Oracle

and Huawei.

Some potential future expeditions could be pursued sharing the overarching goal of building
a Big-Data-friendly runtime system that let developers enjoy the managed language features

without sacrificing much of performance as techniques in this dissertation are as follows:

e System solutions in emerging environments. NVM (non-volatile memory) is an
emerging technology [27]. The embrace of NVM in Big Data systems is inevitable —
NVM offers larger capacity compared to DRAM and consumes less energy compared
to SSD. With NVM, it is possible to satisfy the high memory requirement of Big Data
systems with a small number of computer nodes while simultaneously reducing energy
costs. However, naively using NVM will result in significant performance degradation
because NVM’s access latency is much higher (e.g., 2-4x) than that of DRAM. The
key challenge is thus how to develop intelligent data placement and migration policies
that can minimize performance overhead. Using hybrid memories in Big Data is further
complicated because Big Data systems often run on top of a managed runtime with
built-in memory management components such as the GC which is not aware of the
physical memories. To efficiently support Big Data processing over hybrid memories,
a series of runtime techniques that can make holistic allocation/migration decisions

across multiple layers of the compute stack is required.

e Leveraging machine learning in memory management. Poor JVM performance
on new workloads is due to the discrepancy between the design, what was known
and the characteristic of workload which is unknown. For instance, the development
of modern garbage collectors is based on the generational hypothesis — the heap
is divided into an old and a young generation and the GC runs frequently in the
young generation to move long-lived objects to the old generation while infrequently
performing full-heap collection. However, as shown earlier, as new workloads (e.g., data
analytics or machine learning) emerge, the generational hypothesis does not hold any

more, leading to poor performance in memory management. Machine learning has been
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shown to be able to effectively react to unseen data with no explicit assumptions about
the data. The use of supervised or unsupervised learning can open up opportunities to
learn models that reflect the object characteristics under different (seen and unseen)
workloads. The learned models can be used to predict object lifetimes to significantly
reduce the cost of memory management. As an example, an object-lifetime model can
be used to guide the object allocation so that objects can be segregated based on
their expected lifetimes upon their creation without the need to perform expensive
runtime migration. A model learned over the object access patterns can help with data
placement — infrequently used objects will be placed in NVM to minimize energy
costs while data that are frequently accessed stay in DRAM to utilize its fast access
speed. These ideas of embedding learned models in a system may open up massive

opportunities for developing compilers and runtime systems for emerging workloads.

Automated data persistence in Big Data systems. In-memory dataflow engines
such as Apache Spark often cache data (e.g., RDDs) in memory to speed up iterative
algorithms and recovery upon faults. However, users are burdened with the task of
explicitly invoking APIs (such as persist() in Spark) on the RDDs of their choice to
cache or uncache them. On the one hand, holding everything in memory accelerates
computation at the cost of memory blowup. On the other hand, recomputing a dataset
instead of caching it can save storage space at the cost of performance sacrifice. Striking
a balance is a difficult task, especially for long-running analytical applications with
complicated workflow. Currently, the decision of whether or not to cache a dataset is
made entirely at compile time, and thus the system cannot adapt effectively at run time
to the execution environment and the data characteristics. Developing support at the
system level that can automatically identify caching opportunities would be extremely
useful, as this would remove burden from the developer’s shoulders, and simultaneously
improve performance. A preliminary experiment in Spark shows that a performance
gain of up to 44% can be achieved if the system can automatically cache and uncache

data at run time. It is interesting to develop and throughout evaluate such technique.
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