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ABSTRACT 
 
Today’s typical multi-criteria decision analysis is based on classical expected utility theory that 
assumes a mythical “Rational Individual” immune to psychological influences such as 
anticipated regret.  It is therefore in conflict with rational individuals who trade-off some benefits 
and forgo the alternative with the highest total classical utility for a more balanced alternative in 
order to reduce their levels of anticipated regret.  This paper focuses on decision making under 
certainty.  It presents a reference-dependent regret model (RDRM) in which the level of regret 
that an individual experiences depends on the absolute values rather than the differences of the 
utilities of the chosen and forgone alternatives.  The RDRM best choice may differ from the 
conventional linear additive utility model, the analytic hierarchy process, and the regret theory of 
Bell and Loomes and Sugden.  Examples are presented that indicate that RDRM is the better 
predictive descriptor for decision making under certainty.  RDRM satisfies transitivity of the 
alternatives under pairwise comparisons and models rank reversal consistent with observed 
reasonable choices under dynamic or distinct situations.  Like regret theory, the RDRM utilities 
of all the alternatives under consideration are interrelated.  For complex trade-off studies regret is 
incorporated as an element of a cost-utility-regret analysis that characterizes each alternative in 
terms of its monetary cost, an aggregate performance utility, and a regret value.  This provides 
decision makers adequate information to compare the alternatives and depending on their values 
they may trade-off some performance and/or cost to avoid high levels of regret.  The result is a 
well-balanced alternative often preferred by reasonable decision makers to the optimal choice of 
classical multi-attribute utility analysis.  The model can readily be extended to incorporate 
rejoicing to suit decision makers who seek it.  The approach is illustrated using a hypothetical 
but realistic aircraft selection problem.     
 
 
Key words:  multi-attribute utility analysis, multi-criteria decision making, regret theory, 
transitivity, rank reversal, preference reversal, cost-utility analysis, Pareto optimum, analytic 
hierarchy process 
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1. INTRODUCTION 
 
Most people have experienced or can imagine the feeling of regret associated with choosing an 
alternative from a set of alternatives when a forgone alternative possesses one or more preferred 
attributes or criteria.  There is significant evidence from laboratory studies and real-world 
experience that humans often base their choices on comparisons across the alternatives under 
consideration and relative to “what might have been” under another choice [Plous, 1993; Hastie 
and Dawes, 2001].  Anticipated regret and its counterpart, rejoicing, tend to be important 
considerations in decision-making under both certainty and uncertainty.  However, humans must 
check these emotions from becoming irrational forces that prevent them from coping well with 
complex decisions.  With this perspective, a strategy such as minimax regret that is driven solely 
by regret may be considered deficient and/or irrational [Haszelrigg, 1996].  The classical 
Expected Utility Theory (EUT), which was  introduced by Bernoulli almost 300 years ago and 
provided an axiomatic foundation by von Neumann and Morgenstern [1953], also has 
shortcomings because it assumes a mythical “Rational Individual” devoid of psychological 
influences or emotions [Luce, 1992].  In the past fifty years noted psychiatrists, economists, and 
decision theorists have concluded that classical EUT fails to account for important 
psychological, cultural and organizational aspects of decision-making under uncertainty.  
Prospect theory [Kahneman and Tversky, 1979; Tversky and Kahneman, 1992], rank-dependent 
utility [Quiggin, 1982; Diecidue and Wakker, 2001], and regret theory [Bell, 1982; Loomes and 
Sugden, 1982 and 1986] have become recognized as viable alternatives.  We differentiate 
between the “Rational Individual” with a capital R and a capital C and the “rational individual” 
with lower case r and lower case i.  We use the expression “Rational Individual” to refer to the 
person who makes all decisions in accordance with classical EUT.  We use the expression 
“rational individual” to refer to the person who uses reason and emotions to make decisions in a 
systematic and logical manner with due consideration to the personal and social context.  The 
distinction between reason and emotion is problematic and the two often appear to be inseparable 
[Damasio, 1995].  For example, anticipated regret requires comparing the chosen and forgone 
alternatives. 
 

In this paper we consider the Multi-Criteria Decision Analysis (MCDA) problem of 
choosing the “best alternative” from a finite set of deterministic alternatives characterized by 
multiple criteria that may be qualitative, quantified with different units of measure, and conflict 
with each other.  Seldom does an alternative or solution exist that is as good as or better than the 
other alternatives for all criteria.  A Decision-Maker (DM) then has to choose his "best choice" 
from a set of Pareto-optimal alternatives.  Numerous methods have been developed for 
facilitating such decisions [Mollaghasemi and Pet-Edwards, 1997].  Each has its strengths and 
weaknesses.  Even though they have been applied to thousands of real-world problems, there is 
little serious ex-post analysis of their usefulness and validity [Corner and Kirkwood 1991].  In 
this paper we focus on the method based on the notion of multi-attribute utility [Keeney and 
Raiffa, 1976].  We refer to it as Multi-Attribute Utility Analysis (MAUA).  (Other commonly 
used names are multi-attribute value analysis [Buede, 2000] and multi-attribute utility theory 
[Clemen and Reilley, 2001].) 

 
It is seldom explicitly acknowledged that today’s typical MAUA includes the following 

assumptions and simplifications: 



3 

   
1. Emotions are not considered beyond the subjective assessment of the utilities and weights.  

Specifically, an alternative’s utilities do not depend on the other alternatives.  This requires 
no comparisons across alternatives or an individual who does not experience emotions such 
as regret and rejoicing.  The notion of regret-rejoicing is therefore in conflict with today’s 
typical MAUA.   

2. The utility of each criterion is independent of the other criteria.  This property, known as 
mutual preferential independence, is problem and modeling specific. 

3. Each alternative is characterized by a Multi-attribute Utility Function (MUF), U(ABi B) = U(uBi1 B, 
u Bi2 B,.., uBimB), such that ABi B is preferred to ABj B (we will denote it as ABi B f  ABj B ) if and only if U(ABi B) > 
U(ABj B).  The choice of a MUF plays a major role in the scoring and different ones can lead to 
conflicting results. 

4. Serious doubts have been raised about the validity and usefulness of using a single number to 
characterize complex alternatives.  Sharpe [1994: 57] states “Clearly, any measure that 
attempts to summarize even an unbiased prediction of performance with a single number 
requires a substantial set of assumptions for justifications.”   

 
Given the above assumptions and simplifications, it is no surprise that deviations from MAUA 
predictions cannot always be explained away as faulty data or a flawed analysis [See and Lewis, 
2002].  MCDA is a very active field of research and applications.  The basic concepts of utility 
theory, the adequacy of a MUF, and rationality are being revisited.  Extensions, revisions, and 
new approaches are being developed [Lootsma, 2000].   
 

This paper has two main thrusts that address the listed MAUA problems: the Reference-
Dependent Regret Model (RDRM) and Cost-Utility-Regret Analysis (CURA).  In RDRM, we 
assume that the level of regret that an individual experiences depends on the absolute values 
rather than simply the differences of the utilities of the chosen and forgone alternatives.  We 
propose it as a variant of the regret theory developed by Bell and Loomes and Sugden (referred 
to as RT-B/LS in this paper) for economic decisions under uncertainty.  RT-B/LS assumes that 
regret depends simply on the differences of the utilities of the compared alternatives.  In this 
paper we show that this difference between RDRM and RT-B/LS has verifiable implications for 
choosing the “best” from a set of deterministic alternatives.  Unlike the classical EUT, the RT-
B/LS and RDRM utilities are specified in the context of all the alternatives under consideration 
and are coupled through the anticipated regret that an individual experiences when intuitively or 
instinctively comparing alternatives.  We propose CURA as an extension of Cost-Utility 
Analysis (CUA) whereby each alternative is characterized in terms of its monetary cost, an 
aggregate performance/effectiveness utility, and an anticipated regret value.  The model can 
readily be extended to incorporate rejoicing to suit decision makers who seek it.  CURA 
addresses the needs of the DM who desires reasonably detailed information and visibility into the 
alternatives rather than a single number.   

 
The remainder of the paper is organized as follows.  In Section 2 we illustrate the 

limitations of the classical linear additive utility model and the need for a realistic MAUA model 
that incorporates rational emotions such as regret.  In Section 3 we develop RDRM and 
investigate its properties.  In Section 4 we propose CURA as a desirable MCDA method.  
Section 5 demonstrates the application of the proposed approach using a realistic trade-off study.  
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Concluding remarks are presented in Section 6.  Appendix A contains proofs of some properties 
of rank reversal in the RDRM.  An example of rank reversal in AHP that reasonable people 
consider irrational is included in Appendix B. 

 

2. A REVIEW OF CHOICE REGRET MODELS 
 

In this section we briefly examine the minimax loss criterion proposed by Savage [1951] and the 
regret theory model of Bell and Loomes and Sugden (RT-B/LS).  We begin by showing that the 
Conventional Linearly Additive Utility (CLAU) model cannot accommodate regret and therefore 
it has limited predictive descriptor capabilities.  (We use the qualifier “conventional” to 
differentiate between the linear additive model based on classical utility theory and those based 
on the recent developments mentioned in the Introduction.)  We illustrate these models using a 
simple selection problem that consists of three alternatives {AB1 B, AB2 B, AB3 B} with two criteria {CB1 B, 
CB2 B} as specified by Example 1 in Table I.  (It is adapted from Example 8.2 of Pomerol and 
Barba-Romero [2000: 208].)   
 

Table I.  Example 1 data   
 

 Utilities 
Alternatives CB1 B CB2 B 

AB1 B 0.20 0.80
AB2 B 0.40 0.40
AB3 B 0.80 0.20

Notes:  1. Criteria CB1 B and CB2B with higher utilities are preferred.   
2. Several sets of weights are considered in the text. 
3. To make the example concrete, the reader may wish to consider {AB1 B, AB2 B, AB3 B} to 
be three entertainment centers and {CB1 B, CB2 B} to be image and sound. 

 

2.1. The Conventional Linear Additive Utility Function  
 
Numerous MUFs have been proposed for aggregating the individual utilities into a single scalar 
utility.  The most widely used form is the CLAU function [Daniels, Werner, and Bahill, 2001].  
It is valid if and only if the criteria are mutually preferentially independent [Keeney and Raiffa, 
1976].  Consider Example 1 in Table I.  Within the CLAU model, the utility of alternative ABi B (i = 
1, 2, 3) is given by U(ABi B) =  wB1 B*UB1 B(ABi B) + (1 – wB1 B)*UB2B(ABi B) ≡  wB1 B*uBi1B + (1 – wB1 B)*uBi2B.  It is easy to 
verify that there are no weights with values 0 ≤ wB1 B ≤ 1 for which AB2B has higher utility than both 
AB1 B and AB3B.  The individual who bases his choice on the above model would choose either AB1 B or 
AB3 B even though they have the lowest utilities for criteria CB1 B and CB2B, respectively.  When faced 
with this choice many individuals would choose AB2 B in contradiction with the CLAU model.  
Some proponents of MAUA might argue that these people have misapplied the model or are 
confused about the assessment of their utilities.  We think that this argument addresses only a 
subset of the problems and is therefore of limited validity.  The CLAU model is a compensatory 
model and the poor performance of any criterion can be compensated by the other criteria.  We 
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concur that it should not be used when this property is not desired; “musts” need to be treated 
separately [Kepner and Tregoe, 1965].  However, as we discuss in the Introduction, there are 
important considerations such as emotions that affect many decisions and conventional MAUA 
does not address adequately and/or ignore.  The simple Example 1 illustrates that the CLAU 
model needs refinements to make it a better descriptive predictor or aid for MCDA.  Even 
Markowitz [1997] who on page 208 identifies himself as a proponent of classical EUT on  page 
209 questions its applicability to the making of decisions in which emotions are important 
influences because he recognizes the following as a serious shortcoming: 
 

“The modern notion of utility avoids any hedonistic interpretation of the utility curve.” 
 

2.2. Minimax Regret 
 
Minimax regret is a strategy for decision making under uncertainty whereby the DM chooses the 
alternative with the minimum worst possible outcome in order to minimize regret.  It requires 
knowledge only of the possible outcomes and not their probabilities.  It hypothesizes that a DM 
who chooses an alternative ABi B experiences a level of regret for state of nature SBk B equal to the 
difference between its best possible value and its actual value for ABi B, RBik B = MaxBj B(uBjk B) – uBik B.  The 
minimax regret decision rule is to choose the alternative ABi B with the minimum value of RBik B.  By 
identifying the states of nature with the criteria of the alternatives, minimax regret is directly 
applicable to MCDA under certainty.  Consider Example 1.  The associated regret matrix is 
given in Table II.  As expected, AB2 B is the recommended choice because it is the alternative with 
the minimum of the maximum regret values.  Depending on the context, this may be a more 
desirable choice than AB1 B or AB3 B, that as seen in Section 2.1, are the only possible highest utility 
choices of the CLAU model.  
 
 

Table II.  Minimax regret matrix for Example 1 
 

 Regret values   
Alternatives CB1 B CB2 B Maximum  

AB1 B 0.60 0.00 0.60  
AB2 B 0.40 0.40 0.40   ←  UMinimax choiceU 

AB3 B 0.00 0.60 0.60  

 
 

Because minimax regret is driven solely by regret, it lends itself to irrational choices.  For 
example, a small disadvantage in a single criterion regardless of its importance can eliminate 
alternatives with criteria that are both superior and of greater relative importance.  Given the 
undesirable properties of minimax regret, the notion of regret had been largely dismissed in 
decision analysis until the development of RT-B/LS.  As we discuss in the following section, 
RT-B/LS does not minimize the maximum regret; instead it trades-off regret against the classical 
utilities to identify a decision that balances benefits with regret in accordance with the DM’s 
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preferences.   
 

2.3. The Regret Theory of Bell and Loomes and Sugden (RT-B/LS) 
 
RT-B/LS incorporates the concepts of (1) regret and its counterpart, rejoicing, and (2) 
disappointment and its counterpart, elation, into EUT by means of a modified utility function that 
is the sum of the utilities for performance and psychological contributions.  Regret-rejoicing and 
disappointment-elation are psychological experiences that play important parts under different 
situations.  Disappointment and elation depend on the risk and opportunity of the selected action 
under a state of uncertainty [Browning and Hillson, 2004].  A rational individual feels some level 
of disappointment in a decision making under uncertainty when the outcome does not match up 
to expectations and he experiences elation when the outcome exceeds expectation.  Anticipated 
disappointment and elation are not considerations or influences for deterministic choices.  In 
contrast, a rational individual may experience regret and rejoicing when making decisions under 
certainty as well as uncertainty.  Since in this paper we focus on decision making under certainty 
we do not consider disappointment-elation. 
 

Consider two deterministic alternatives ABi B and ABj B with classical utilities uBik B and uBjk B, i.e. 
evaluated independent of the other alternatives.  Assume that ABi B has a higher total utility than ABj B 
but that it performs worse for some criteria CBk B, uBik B < uBjk B.  The individual who chooses ABi B may 
then experience regret because the performance of CBk B is worse than for the forgone alternative 
ABj B.  RT-B/LS assumes that the levels of regret and rejoicing depend only on the difference 
between the utility of "what is" and the utility of "what might have been" and not the absolute 
values.  To simplify the presentation and because experimental studies confirm that for most 
individuals regret has the greater impact [Mellers, 2000] we also omit rejoicing.  We note that 
rejoicing can be treated in an analogous manner to regret and considered as an element of the 
selection process by DMs who value rejoicing as well as regret.  The RT-B/LS model devoid of 
disappointment-elation and rejoicing reduces to the following functional form, 
 
       
   R(uBik B, uBjkB)  =        R(u Bjk B – uBik B), uBik  B< u Bjk     BEq. (1) 
                   0, otherwise 
 
where uBik B and uBjkB are the classical utilities.  Since the level of regret should increase as the 
difference between compared utilities increases, R(·) is a non-decreasing function.  RT-B/LS 
further assumes that R(·) is convex.  (We revisit this assumption in Section 3 where we show that 
it has problematic implications for MCDA.)  Using Eq. (1) the RT-B/LS utility of criterion CBk B for 
ABi B in the presence of ABj B is given by 

 
P

    U j

ik P =      uBik B – R(uBjk B – uBikB), u Bik  B< uBjk       BEq. (2) 
         uBik B, otherwise.  
 
The corresponding utility for ABj B is simply obtained by interchanging the indices i and j.  For the 
individual who experiences no regret, Eq. (2) reduces to the classical utility.  In contrast to 
classical utility theory, the utility of each alternative now depends on the other alternative.        
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RT-B/LS extends Eq. (2) in a natural manner to a set S of n ( )2≥ alternatives with m ( )2≥  

criteria.  For every criterion C BkB, a given alternative ABi B may have multiple contributions to regret 
that arise from comparing it with the other alternatives.  The RT-B/LS MUF averages Eq. (2) 
over all other (n-1) alternatives and weighs it over all of the m criteria: 

 

  P

U S

i
P

 = ∑
=

m

k 1

wBk B*[uBik B – (
1

1
−n

)*∑
=

n

j 1
R(uBjk B – uBik B)].       Eq. (3) 

 
The first term is the classical utility that measures a person’s preference of each alternative 
independent of the other alternatives.  The second term accounts for her anticipated regret over 
all the alternatives that she might have chosen.  It compares each alternative with the other (n-1) 
alternatives.  Following conventional MAUA, a DM now chooses the alternative with the highest 
total RT-B/LS utility.  The choice may differ from and be reasonably preferred to the alternative 
with the highest CLAU because it may be a more balanced choice since it reflects rational 
psychological influences such as regret and rejoicing. 
 

We now revisit Example 1 within the framework of the RT-B/LS model in Eq. (3).  To 
proceed with a quantitative illustration we assume (1) weights wB1 B = wB2B = 0.5, and (2) a convex 
regret function with the values in Table III.   
 

Table III.  RT-B/LS regret values for Example 1   
 

 x 0.00 0.20 0.40 0.60
 R(x) 0.00 0.01 0.17 0.83
  Note:  These values correspond to a convex function. 
 

Using Eq. (3) and the specified regret values, one finds that the RT-B/LS utilities for alternatives 
AB1 B, AB2 B, and AB3 B are UP

3
PB1 B= 0.29, UP

3
PB2 B= 0.32, and UP

3
PB3 B= 0.29, respectively.  The ranking is now in 

agreement with our hypothetical DM’s preferences, AB2 B f  AB1 B ~ AB3 B; i.e. AB2 Bis preferred to AB1 Band 
AB3 B and there is indifference between AB1 B and AB3 B.  This illustrates that RT-B/LS enhances the 
CLAU model.  However, in Section 3 we show that RT-B/LS exhibits intransitivity under 
pairwise comparisons and inconsistencies with some empirical evidence.  To resolve these 
problems, we formulate RDRM as a model of regret that depends on the absolutes values of the 
utilities of the compared alternatives.  

 
 

3.  A REFERENCE-DEPENDENT REGRET MODEL (RDRM) 

3.1. The Role of Anticipated Regret in MCDA 
 
In the previous two sections we showed that deterministic MCDA requires a model that 
explicitly incorporates psychological reactions such as anticipated regret.  To proceed we 
explicitly define our notion of regret for decision-making under certainty by tailoring Bell’s 
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[1982: 961] notion of anticipated regret for decision-making under uncertainty as follows.  In the 
process of choosing a deterministic alternative, a rational individual may decide to trade-off 
some benefits and forgo the alternative with the highest total value for a more balanced 
alternative in order to reduce his level of anticipated regret.  This behavior is in conflict with 
conventional MAUA and EUT.  As discussed in the Introduction, we consider it to be rational 
because most individuals value emotions as an important decision consideration along with cost 
and performance.  Before making a final decision, a good DM revisits the preferred solutions, 
analyzes potential problems, and evaluates disadvantages to ensure an acceptable level of regret.  
There are times when her choice may be more justifiable and hence more rationale than the 
highest-utility alternative identified by today’s typical MAUA.    
 

To motivate the need for modifications to RT-B/LS, consider the following two situations: 
 
- Case 1: Car A is rated “very high reliability” with classical utility of 1.0 out of a possible 1.0. 

       Car B is rated “high reliability” with a classical utility of 0.8. 
       For the other criteria the preference is Car A f  Car B. 

  
- Case 2: Car C is rated “average reliability” with a classical utility of 0.6 out of a possible 1.0. 
                   Car D is rated “below average reliability” with a classical utility of 0.4. 
        For the other criteria the preference is Car C f  Car D.  
 
One can imagine a person who feels worse in Case 2 than in Case 1 for having chosen the car 
with the lower reliability.  This behavior is inconsistent with RT-B/LS that predicts identical 
levels of regret for Cases 1 and 2 because the differences of the utilities of the compared 
reliabilities both equal 0.2.  More generally, real-world experience suggests that a person’s level 
of regret when he chooses a multi-attribute alternative often depends explicitly on the absolute 
values of the utilities of the chosen and forgone alternatives rather than simply the differences.  
We propose RDRM to account this behavior.  The RDRM then explains that the levels of regret 
experienced in Cases 1 and 2 are different because of the different classical utilities, (0.8 and 1.0) 
vs. (0.4 and 0.6).  The RDRM has similarities to prospect theory, which evaluates utility of 
monetary gains and losses with respect to a reference point.  We now proceed to develop RDRM, 
investigate some of its properties, and compare it in detail with RT-B/LS. 

 

3.2. Development of RDRM  
 
The RDRM assumes a regret function of the following functional form: 
 
 
  R(uBik B, uBjkB)  =       G(1 – u Bik B) – G(1 – uBjk B), uBik B<  u Bjk  B        Eq. (4) 
       0, otherwise 
 
where the utilities range between 0 and 1.  We refer to G(ּ) as the regret-building function.  It 
measures the level of regret referenced to the maximum possible utility normalized to 1.  Since 
the level of regret increases as the difference between the compared utilities increases, G(ּ) is a 
non-decreasing function.  For a non-linear form of G(ּ) a person’s regret level depends explicitly 
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on the utilities of the “what is” and the “what might have been” alternatives and not simply the 
differences.  Given the lack of data, a more general or complex dependence does not seem 
warranted at the present time.  In general, each criterion CBk B may be associated with a different 
regret-building function GBk B(ּ).  In this paper we assume a common function for all criteria under 
consideration.  The individual who chooses alternative ABi B from a set S of n ( 2≥ ) alternatives 
with m criteria is assumed to experience a total level of regret given by  
 

  P

RS
i  

P= (
1

1
−n

)*∑
=

n

j 1
∑
=

m

k 1

wBk B* max(G(1 – uBik B) – G(1 – uBjkB), 0).    Eq. (5) 

 

3.3. Selection of a Regret-Building Function 
 

Our objective is to select a simple and studied function G(ּ) that is flexible enough to 
realistically represent the wide range of levels of regret experienced in MCDA by individuals 
depending on their emotions, context, and alternatives.  There is no fundamental law of nature 
that requires this function to be concave or convex.  Even though RT-B/LS assumes a convex 
regret function, Loomes and Sugden [1982: 810] state: 
 

“On the face of it there seems to be no a priori reason for preferring any one of the 
assumptions to the others.  They are simply alternative assumptions about human 
psychology and a choice between them should be made mainly on the basis of empirical 
evidence.”   

 
In fact we think that it is very likely that a person may be regret adverse in one range and not in 
another depending on the utilities of the compared alternatives.   
 

The Wymore [1993] scoring function SSF1 meets our requirements.  It is given by 
 
 

   G(x) =          
(B/x) x)*S*(B ++ 21

1
  , x > 0        Eq. (6) 

                                     0, otherwise. 
 
 

G(ּ) ranges between 0 and 1: G(0) = 0, G(B) = 0.5, and G(∞ ) = 1.  The two parameters B and S 
characterize the shape.  The larger the value of S, the steeper G(ּ) is and the faster it approaches 
1.  The curve is convex for values below B and concave above it resulting in a shape that flattens 
both near 0 and 1.  We find this to be intuitively consistent with the levels of regret experienced 
by individuals.  It is interesting to note that it captures the behavior of the value function in 
prospect theory formulated by Kahneman and Tversky [1979].  The parameters B and S can be 
determined from regret data, when available, by setting one of the two variables in Eq. (4) equal 
to 1.  This significantly simplifies the analysis compared to a more general function of two 
variables.   
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 Figure 1 illustrates the flexibility and properties of G(ּ) for several values of B and S.   
 

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00

x

G
(x

)

(0.5, 4.0) (0.3, 4.0)
(0.7, 4.0) (0.5, 2.0)

 
 

Figure 1.  Curves corresponding to the Wymore scoring function with several values of S 
and B.  The curves are labeled by (B, S).  The curve (0.5, 4.0) over the range 0.0 to 0.6 
corresponds to the regret values in Table III. 
 
In a real-world application the analyst would determine these parameters by querying the 

DM about the levels of regret that he experiences for each criterion.  The RDRM function given 
by Eq. (4) cannot be drawn as a single curve because the level of regret depends explicitly on the 
compared utilities.  For a given set of parameters (B, S) the RDRM function represents a family 
of curves where each curve corresponds to a reference or chosen alternative with a different 
utility for the compared criterion.  Figure 2 shows regret effects for several different 
comparisons.  The data assumes a reference parameter B = 0.5, which we feel is appropriate for a 
utility scale with the following ratings [Lootsma, 1997: 83]:  0.90 - 1.0 for excellent, 0.89 - 0.70 
for very good to good, 0.69 - 0.50 for fair/good to fair, 0.49 - 0.4 for fair/poor, 0.39 - 0 for poor.  
The level of regret experienced by an individual depends on the absolute values of the criteria of 
the compared alternatives.  A chosen alternative with a criterion utility < 0.5 is judged as very 
painful when there is another alternative with a corresponding criterion utility > 0.5.  This is 
consistent with the experimental studies of emotions including anticipated regret reported by 
Mellers [2000].  The individual who heavily weighs regret when selecting an alternative with 
one or more criteria judged to be less than “good” may then instead select an alternative with all 
criteria judged to be at a minimum “good” rather than the alternative with the highest classical 
utility. 
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Figure 2.  Family of RDRM regret functions given by Eq. (4) using the Wymore scoring 
function SSF1 with parameters B = 0.5 and S = 4.0.  The curves correspond to reference or 
chosen alternatives with utilities for the compared criterion of 1.0, 0.8, 0.6, and 0.4, 
respectively. 
 

3.4. Some Implications of RDRM  

3.4.1. Reference-Dependence 
 
RDRM predicts different levels of regrets for the two motivational cases introduced in Section 
3.1.  Consider Figure 2.  The data points R(0.8, 1.0) and R(0.4, 0.6) correspond to levels of regret 
of 0.01 and 0.67 for Cases 1 and 2, respectively.  This is in contrast with RT-B/LS which 
predicts equal levels of regret for both cases given the equal utility differences of 0.2.  Different 
individuals experience different levels of regret and these would be modeled with different 
parameters B and S.   
 

There are recent experimental investigations of preference reversal that indicate that the 
experienced level of regret is reference-dependent.  Based on their investigations, Cubitt et al. 
[2004: 709] conclude:  
 

“We find a pattern of preference reversals that is inconsistent with all of the best-known 
explanations of the phenomenon proposed by economists, with the fundamental 
economic assumption of context-free preferences, and with several psychological theories 
of preference reversal.”   
 

We consider this as additional evidence in support of RDRM. 
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3.4.2.  Intransitivity  
 
Consider the three alternatives with three criteria specified by the decision matrix in Table IV.   
 

Table IV. Example 2.  An example of intransitivity in RT-B/LS 
 

  Criteria, Utilities  
Alternatives CB1 B CB2 B CB3 B 

AB1 B z y x 
AB2 B x z y 
AB3 B y x z 

Weights 1/3 1/3 1/3 
Note: With no loss of generality we assume utilities x > y > z. 

 
This is one of several examples that have been presented in the literature to illustrate that RT-
B/LS exhibits intransitivity [Starmer, 2000: 356].  Based on the symmetry of Example 2 we 
expect the three alternatives to be equivalent and a rational individual to be indifferent to any one 
of the three choices.  However, as we show below, pairwise comparisons within the framework 
of RT-B/LS lead to cyclic preferences but not within the framework of RDRM. 
 

3.4.2.1.  RT-B/LS Analysis  
We follow the analysis given by Starmer [2000: 356].  Consider Table IV and the preference 
between AB1 B and AB2 Bwithin the context of the pair {AB1 B, AB2 B}.  We compute the associated utilities 
using Eq. (3): 
 
  UP

2
PB1 B= 1/3*(x +y +z) – 1/3* R(x – z)     Eq. (7a) 

  UP

2
PB2 B= 1/3*(x +y +z) – 1/3* [R(x – y) + R(y – z)].   Eq. (7b) 

 
Combining the above expressions yields 
 

  UP

2
PB1 B – UP

2
PB2 B = (1/3)*[– R(x – z) + R(x – y) + R(y – z)].   Eq. (7c) 

 
An additional assumption of RT-B/LS is that R(ּ) is convex; i.e. R(x – z) > R(x – y) + R(y – z).  
This implies that the DM should prefer B BAB2 B f  AB1 B.  Applying the same reasoning to the two other 
pairs, one finds AB3 B f  AB2 B and AB1 B f  AB3 B.  The net result is cyclic preferences AB2 B f  AB1 B, AB3 B f  AB2 B, 
and AB1 B f  AB3 B.   
 

To show that this irrational ranking is associated with the process of pairwise comparisons, 
we directly compute the utilities of the alternatives for the set {AB1 B, AB2 B, AB3 B} using Eq. (3).  One 
finds that the three alternatives have equal RT-B/LS total utilities,  
 

UP

3
PB1 B = UP

3
PB2 B= UP

3
PB3 B= 1/3* (x + y + z) – 1/6*[R(x – z) + R(x – y) + R(y – z)].   Eq. (8) 
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The use of a MUF assigns a unique cardinal utility to each alternative and thereby eliminates 
intransitivity as a possibility.    

 
To make the example more concrete, we quantify it as follows:  x = 0.6, y = 0.4, z = 0.2, 

and the RT-B/LS regret function in table III.  The preference for the pair {AB1 B, AB2 B} is given by   
 
 P(AB1 B, AB2 B) ≡  UP

2
PB1B – UP

2
PB2 B= (1/3)*[– R(0.4) + R(0.2) + R(0.2)] = - 0.056.  

 
This implies AB2 B f  AB1 B.  Similarly, P(AB2 B, AB3 B) = - 0.056 implies AB3 B f  AB2 B and P(AB1 B, AB3 B) =  0.056  
implies AB1 B f  AB3 B.  This quantitatively illustrates intransitivity within RT-B/LS.  Saari [1999] 
illustrates the phenomenon of cyclic preferences by the interesting analogy of three equal forces 
acting on a point body along three planar directions with 120P

0
P symmetry.  When one considers 

the three forces as an ensemble, their equivalence is clear based on the symmetry.  However, if 
one of the forces is removed the symmetry is broken and it is no longer evident that the forces 
have equal magnitudes.   
 

3.4.2.2. RDRM Analysis 
We now pairwise compare the three alternatives using the RDRM regret values given by Eq. (5).  
The level of regrets experienced for choices AB1 Band AB2 Bin the context of the pair {AB1 B, AB2 B} are  

 
  RP

2
PB1 B = R(z, x) = (1/3)*[G(1 – x) – G(1 – z)],     Eq. (9a) 

 
  RP

2
PB2 B = R(z, y) + R(y, x) 

       = (1/3)*[G(1 – y) – G(1 – z)] + (1/3)* [G(1 – x) – G(1 – y)] 
           = (1/3)*[G(1 – x) – G(1 – z)].       Eq. (9b) 

 
The two RDRM regret levels are equal.  Following RT-B/LS, we assume that the RDRM utilities 
are obtained from the classical utilities by subtracting the RDRM regret values: UP

*2
PB1 B = UB1 B - RP

2
PB1 

Band UP

*2
PB2B = UB2 B - RP

2
PB1 B.  The equivalence between AB1 B and AB2 B is preserved.  Similarly, it follows that 

AB2 B ~ AB3 B and AB1 B ~ AB3 B.  For Example 2, RDRM with a common regret function for the three 
criteria preserves the equivalence of the three alternatives under pairwise comparisons.  In 
Section 3.4.3 we show that RDRM ensures the transitive pairwise rankings of three alternatives 
with any number of criteria ≥  3 because it satisfies the special property of additive transitivity; 
i.e. R(z, x) = R(z, y) + R(y, x).   
 

3.4.2.3. Intransitive Conjoint Measurements 
There has been much interest over the past 40+ years in intransitive preferences and a number of 
mathematical representations, known as intransitive conjoint measurements, have been proposed 
[Fishburn, 1991; Bouyssou and Pirlot, 1999].  The most general form is  
 

ABi B f  ABj B ⇔  P(ABi B, ABj B) ≡  P(p B1 B(uBi1 B, uBj1 B), pB2 B(u Bi2B, uBj2 B),…, pBmB(uBimB, uBjmB)) ≥  0,     Eq. (10) 
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where the pBk B are real-valued functions of two variables and P(ּ) is a non-decreasing real-valued 
function in all its arguments.  (The symbol ⇔  stands for “if and only if”.)  Intransitive 
preferences ABi B f  ABj B f  ABk B f  ABi B are accounted for by P(ABi B, ABj B) > 0,  P(ABj B, ABk B) > 0, and P(ABk B, ABi B) 
> 0.  Unless special properties are imposed on P(ּ), it is evident that Eq. (10) can result in 
intransitive preferences.  The functions that satisfy the additive transitivity property are the 
exception (see Section 3.4.3).  The RDRM regret function in Eq. (4) satisfies this property and 
thereby ensures transitive preferences for pairwise comparisons.  RT-B/LS does not because it 
assumes that R(ּ) is convex (see Section 3.4.2.1).  The Analytic Hierarchy Process (AHP) 
[Saaty, 2000] in both the ideal and distributive (original AHP) synthesis modes can result in 
intransitive preferences for pairwise comparisons [Triantaphyllou, 2000: 220].   
 

A basic assumption of MAUA is the existence of a MUF that assigns a cardinal utility to 
each alternative.  This avoids pairwise comparisons and ensures an unambiguous ranking for a 
set of three or more alternatives.  In contrast, a conjoint measurement is a binary relation of 
preference applicable specifically to pairwise comparisons.  Concerning its relevance to MCDA, 
Fishburn [1991: 117] states:  

 
“When a choice is required from a set of three or more alternatives, what justifies basing it 
on binary preferences, even when they are transitive?  This raises issues of the relationship 
between preference and choice, and that relationship is far from obvious…”   
 

Friedman [1999] in a very insightful and humorous paper advocates completely dropping 
pairwise comparisons and using a systems approach for decision-making. 
 

We find the use of intransitive conjoint measurements in MAUA to be disturbing for the 
following reasons.  It is paradoxical to incorporate intransitive preferences in a model that can 
only generate transitive rankings.  Conventional logic considers transitivity to be one of the 
axioms of rational individual choice.  It is hard to justify intransitive conjoint measurements as 
necessary for providing a better MAUA model.  Starmer [2000: 363], based on his review of 
experimental evidence, concludes:  
 

“The bottom line is that economists do not have a theory of non-transitive behavior that is 
consistent with the available evidence…”   

 
The RDRM offers a solution with the following desirable properties: (1) it incorporates more 
realistic and appropriate interactions among criteria and alternatives than the CLAU, AHP, and 
RT-B/LS models, and (2) it preserves transitivity under pairwise comparisons.   
 

3.4.3. Parallelism between Example 2 and a Voting Problem  
 
We now approach Example 2 from the perspective of a voting problem.  There is value to 
pursuing such an approach because the voting problem has been extensively studied for over 200 
years and it provides additional insight into intransitivity and cyclic preferences.  Consider the 
decision matrix in Table IV.  If we identify the three criteria with three voters {CB1B, CB2 B, CB3 B}, the 
three alternatives with three candidates {AB1B, AB2 B, AB3 B}, and the values x, y, z with the voters’ 
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preferences, Example 2 can be viewed as a voting problem.  Table V is the equivalent voting 
preference table.   
 

Table V.  Voting preference table for 3 voters and their rankings of 3 candidates   
 

Voter CB1 B Voter CB2 B Voter CB3 B 

AB2 B AB3 B AB1 B 

AB3 B AB1 B AB2 B 

AB1 B AB2 B AB3 B 

Notes: 1. The above preference table corresponds to the decision matrix in Table IV.  
 2. Each voter lists the candidates in order of decreasing preference.   

 
Each individual voter is internally consistent and satisfies transitivity.  For example, voter CB1 B 
prefers AB2B f  AB3 B f  AB1 B.  (One can imagine a voting ballot on which voter CB1 B could enter choices 
AB2 B, AB1 B, AB2 B (or some other equally irrational choices) for positions 1, 2, and 3, respectively.  
Given such voters and voting ballots, it would not be surprising to have election results that are 
inconsistent with the objectives of a democratic voting system.)  We now consider several voting 
schemes within the framework of pairwise comparisons.   
 
Majority rule.  The results of the votes are treated as follows:  
 
- 2 out of 3 voters prefer AB1 B to AB2B; the majority rule ranking is AB1 B fAB2 B. 
- 2 out of 3 voters prefer AB3 B to AB1B; the majority rule ranking is AB3 B f  AB1 B. 
- 2 out of 3 voters prefer AB2 B to AB3B; the majority rule ranking is AB2 B f  AB3 B. 
 
The above voting scheme results in cyclic preferences AB1 B f  AB2 B, AB3 B f  AB1 B,B Band AB2 B f  AB3 B.  It is a 
well-known result going back to Condorcet in the eighteenth century that intransitivity can 
emerge from group decisions even when the individuals making up the group are internally 
consistent.  The cyclic preferences arise from the use of pairwise comparisons and ordinal 
utilities.  This paradox and other peculiarities of ordinal voting systems have been formalized by 
Arrow [1951] in what is now commonly known as Arrow’s Impossibly Theorem [Barrow, 
1998].    
 
Vote tallying using RT-B/LS and RDRM.  Consider the RT-B/LS analysis in Section 3.4.2.1.  
We identify the utilities with the scores that each candidate receives in the pairwise comparisons.   
The outcome of the vote using the RT-B/LS utilities is cyclic preferences AB2B f  AB1 B, AB3 B f  AB2 B, 
and AB1 B f  AB3 B.  In contrast, from the analysis in Section 3.4.2.2 it follows that assigning voting 
scores based on the RDRM utilities results in a tie.  Both of these results can be formally derived 
as consequences of the following theorem due to Saari [1999: Theorem 3]: 

 
Saari‘s Theorem.  For any number of voters ≥  3 the pairwise rankings of three 
candidates {AB1 B, AB2 B, AB3 B} are transitive if the differences between the pairwise tallies 
satisfy the relationship (additive transitivity property) T(AB1 B, AB2 B) + T(AB2 B, AB3 B) = T(AB1 B, AB3 B). 

 
To establish the relevance of Saari’s theorem to Example 2, we identify T(AB1 B, AB2 B) with the 
difference between the RDRM utilities, T(AB1B, AB2 B) = UP

*2
PB2 B – UP

*2
PB1B,B Band similarly for the other two 
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pairs.  In Section 3.4.2.2 we showed that RDRM satisfies the additive transitivity property.  From 
Saari’s theorem it therefore follows that RDRM with a common regret function for all criteria 
ensures that the pairwise ranking of three alternatives with any number of criteria ≥  3 is 
transitive.  It also follows that conjoint measurements like RT-B/LS that do not satisfy the 
additive transitivity property violate transitivity under pairwise comparisons.   
 

3.4.4. Rank Reversal 

3.4.4.1. Example 1 Revisited 
We compute the RDRM regret values using Eq. (5) and the regret function given by Eq. (6) with 
B = 0.6 and S = 4.0 for both criteria.  We note that these parameters are selected to model a level 
of regret that results in rank reversal.  For comparison with the RT-B/LS results of Section 2.4 
we define the RDRM utilities by subtracting the RDRM regret values from the classical utilities 
in accordance with Eq. (3).  The corresponding RDRM utilities for alternatives AB1 B, AB2 B, and AB3 B 
are UP

*3
PB1 B = 0.14, UP

*3
PB2 B= 0.15, and UP

*3
PB3 B = 0.14.  The numerical values reflect differences between 

RDRM and RT-B/LS; but the rankings are consistent, i.e. AB2 B f  AB1B ~ AB3 B.  To illustrate rank 
reversal we drop AB3B.  The RDRM utilities of AB1 B and AB2B change to UP

*2
PB1 B = 0.27 and UP

*2
PB2B = 0.15, 

respectively.  The ranking has flipped to the preference AB1 B f  AB2 B.  Similarly, we drop AB3 Bfor the 
RT-B/LS analysis in Section 2.4 and obtain UP

2
PB1 B = 0.50 and UP

2
PB2 B = 0.32.  RDRM and RT-B/LS 

both exhibit rank reversal.   
 

3.4.2.2. The Rationality of Preference Reversal and Implications for Rank Reversal 
(Behavioral economists and psychologists refer to the human behavior as “preference reversal” 
rather than “rank reversal” to differentiate it from a possible mathematical artifact.)  Laboratory 
studies confirm that individuals (1) exhibit preference reversal, (2) select the best alternative 
among the Pareto optimal ones, and (3) avoid choosing dominated alternatives even on a single 
criterion [Saaty, 2000: 136].  Given these notions, we interpret the rank reversal in Example 1 as 
a change in preference from (AB2 B given AB1 B and AB3 B) f  (AB1 B given AB2 B and AB3 B) to (AB1 B given AB2 B) f  
(AB2 B given AB1 B).  Since A B3 B is dominant under CB1 B, dropping it changes the situation and an 
individual may rationally perceive the performance of AB1 B for criterion CB1 B to be significantly 
inferior in the presence of AB3 B than in its absence.  With this interpretation there is no violation of 
transitivity.  Because we have modeled regret, rank reversal appears as the consequence of a 
rational choice associated with a dynamic situation or two distinct situations.  When dealing with 
discrete choices under certainty, most rational individuals and decision theorists and practitioners 
are inclined to agree that valuation should not be separated from context.  We then deem 
reasonable that any credible MCDA model for both the normative and descriptive perspectives 
should satisfy the following three verifiable properties:    
 
Property 1 (Independence of dominated alternatives).  Consider two alternatives with ranking 
ABi B f  ABj B.  Adding an alternative that is dominated by ABi B or dropping an alternative that is 
dominated by ABj B should preserve the ranking ABi B f  ABj B.   
 
Property 2 (No imposed rank reversal).  The occurrence of rank reversal or rank preservation 
following adding or dropping an alternative should reflect an individual’s preference in response 
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to rational emotions such as anticipated regret.     
  
Property 3 (Negative side effects associated with inferior substitutions).  Replacing an 
alternative by one that it dominates may change the relative rankings of the other alternatives. 
 

Properties 1 and 2 are intuitively reasonable and we consider a rank reversal that violates 
them to be irrational or an abnormality.  Property 1 is consistent with Luce and Raiffa’s [1958: 
288] Axiom 6 and Axiom 7 for decision making under uncertainty.  It is important to note that 
that Arrow’s Condition 3 (Independence of irrelevant alternatives) is much more restrictive.  It 
requires that the ordering of any subset of alternatives is not altered by changes not in this subset.  
Property 1 applies to situations where dominated alternatives are added and/or dropped; it does 
not apply to adding or dropping non-dominated or Pareto optimal alternatives.  Numerous 
authors have refuted Arrow’s Condition 3 and identified it as a source of logical contradiction 
[Luce and Raiffa, 1958: 338].  Property 2 requires that the MCDA model explicitly includes 
rational emotions such as regret as an element of decision making.   

 
In Appendix A we prove that RDRM and RT-B/LS satisfy Properties 1 and 2.  However, 

some popular MCDA methods violate one or both of these.  Rank reversal in the AHP has been a 
hotly contested subject for almost twenty years [Dyer, 1990a and 1990b; Harker and Vargas, 
1990; Saaty, 1990 and 2000; Triantaphyllou, 2000].  We consider rank reversal in AHP to be a 
mathematical artifact rather than a model of true preference reversal in response to emotions 
such as anticipated regret because it does not satisfy Property 1 and Property 2.  For 
completeness, in Appendix B we reproduce an example of AHP rank reversal that most people 
would consider to be irrational [Dyer, 1990a].  The wide world of sports offers interesting 
examples of different ranking systems.  The 2002 Winter Olympics woman’s figure skating 
provided an exciting example of how rank reversal can occur in a scoring system and the 
impossibility of developing one that all participants and spectators would find satisfactory 
[Kujawski, 2003].  The CLAU model is in conflict with Property 2 because it leaves no room for 
rational emotions such as regret.   

 
Property 3 is somewhat counterintuitive because it allows hurting one alternative by 

reducing the performance of another one.  This cannot be considered desirable because it lends 
itself to manipulative practices.  However, it is justified by empirical studies and the real-world 
evidence that some individuals avoid choosing dominated alternatives even on a single criterion.  
(We speculate that given a credible MCDA model with Properties 1 and 2, Property 3 may be 
necessary for mathematical or logical consistency.)  To illustrate Property 3 we consider three 
alternatives ABi B, ABj B, and ABk B related as follows: (1) ABi B fABj B, and (2) classical utilities uBj1 B < uBi1 B, u Bj1 B < 
u Bk1B, and uBk1 B < uBi1 B.  Preference reversal may occur when ABk B is replaced by an inferior alternativeB 
BAP

*
PBk B even with the only difference uP

*
PBk1B < uBj1 B.  Before the substitution an individual may forgo 

choosing ABj B because it is dominated by ABk B for criterion CB1 B.  After substituting ABk Bwith AP

*
PBkB, ABj B is 

not dominated by AP

*
PBk B for criterion CB1 B.  This individual may then experience a reduced level of 

regret choosing ABj B and choose it rather than ABi B.  The situation is illustrated by an example in 
Tables VIa and VIb.   
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Table VIa.  Initial situation for illustration of Property 3 
 

 Classical 
utilities 

Regret
values 

Modified 
utilities 

 
Preference 

Alts. CB1 B CB2 B RBi B UP

3
PBi B  

AB1 B 0.90 0.60 0.20 0.55 AB1 B f  AB2 B 

AB2 B 0.65 0.80 0.25 0.48  
AB3 B 0.80 0.70 ---- ----  

Weights 0.50 0.50    
Note: Only essential data are shown. 

 
Table VIb.  After the substitution of AB3 B with an inferior alternative AP

*
PB3 B 

 

 Classical 
utilities 

Regret
values 

Modified 
utilities Preference 

Alts. CB1 B CB2 B RBi B UP

3
PBi B  

AB1 B 0.90 0.60 0.20 0.55  
AB2 B 0.65 0.80 0.15 0.58 AB2 B f  AB1 B 

AP

*
PB3 B 0.50 0.70 ---- ----  

Weights 0.50 0.50    
 
 
Note that (1) AB3B is not dominated by AB2 B, and (2) A*B3B is not dominated by AB1 B.  The noted rank 
reversal is therefore not in conflict with Property 1.  Property 3 complements Property 1.  In 
Appendix A we formally prove that RDRM and RT-B/LS are consistent with Property 3.   
 

In summary of this section, we have shown that RDRM satisfies the following properties: 
 

1. The level of anticipated regret depends explicitly on the utilities of the “what is” and the 
“what might have been” alternatives and not simply the difference.   

2. Regret is modeled in terms of a flexible yet simple function, a Wymore scoring function.  It 
is convex below a reference point and concave above it.  The shape depends on two 
parameters to be fitted to the level of regret experienced by the DM. 

3. Unlike classical utility theory, the utilities of all the alternatives under consideration are 
interrelated. 

4. Transitivity is preserved. 
5. Rank reversal occurs without recourse to intransitive conjoint measurements.  This reflects 

rank reversal as truly a rational preference reversal rather than a mathematical artifact.   
6. It can readily be extended to incorporate rejoicing. 
 
These properties are consistent with the available evidence and intuition for decision making 
under certainty.  We think that they constitute necessary conditions for having a good descriptive 
and/or normative MCDA model. 
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4. COST-UTILITY-REGRET ANALYSIS 

4.1 A Suitable Level of Detail for Trade Studies 
 
The standard process for complex trade-off studies, whether for systems engineering or other 
human endeavors, involves the following sequence of activities: 
 
1. Structure the problem for analysis. 
2. Generate solutions or identify acceptable alternatives. 
3. Analyze and characterize each alternative in terms of cost, performance, effectiveness, 

schedule, and risk in accordance with the defined structure.  For deterministic trade studies 
the criteria are specified by point values.  When dealing with probabilistic situations or 
uncertainty the criteria are treated as random variables and specified using probability 
distribution functions. 

4. Eliminate the alternatives that do not meet the technical, schedule and cost requirements.  
5. Eliminate the dominated alternatives.  This generally provides only limited relief because the 

Pareto-optimal set consists of all alternatives with at least one dominant criterion. 
6. Assess the preferences of the candidate alternatives.  This includes analyzing them for 

potential problems and robustness.  (Robustness considers the impact of different approaches 
and models in addition to the sensitivity to the weights and utilities.) 

7. Choose the “best alternative”. 
 
In this paper we focus on the last two activities, evaluation and choosing.  We assume that the 
first five activities have been completed and that we have a set of acceptable Pareto-optimal 
alternatives characterized by criteria that include cost, time to delivery, performance and 
effectiveness measures, available resources, and others as necessary.   

 
Most individuals find it difficult or impossible to intuitively choose a “best solution” from 

a set of several alternatives with more than three criteria because of one’s limited ability to 
visualize or think in a greater than three-dimensional space [Das, 1999].  MAUA transforms the 
MCDA problem from the multi-dimensional space into a one-dimensional scalar function.  
However, this has the following serious drawbacks: (1) It hides much of the available 
information, and (2) any model that attempts to characterize a multi-attribute alternative by a 
single number requires a substantial set of assumptions.  From his research of decisions under 
uncertainty, Shapira [1995: 51] concludes:  

 
“Although quantities were used in discussing risk and managers tend to seek precision in 
estimating risk most showed little desire to reduce risk to a single quantifiable construct.”   
 

Our experience is that similar behavior holds for MCDA under certainty.  Good DMs need and 
want adequate information and visibility into the alternatives rather than a single number when 
dealing with complex decisions.   For many years they have realized, what is now supported by 
empirical evidence, that analysis and intuition are both necessary for effective decision-making 
[Klein, 2003].  Based on these observations we specify the following four properties for a 
desirable MCDA method or decision tool for deterministic trade-off studies:  
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1. Provide adequate information and visibility into the alternatives rather than a single number. 
2. Results presented in terms of no more than four criteria for ease of interpretation.    
3. The ability to capture complex emotions such as regret and rejoicing. 
4. The flexibility to trade-off classical utility in order to avoid high levels of regret or seek high 

levels of rejoicing. 
 

Cost-Utility Analysis (CUA) satisfies the above first two properties [Petitti, 1994].  Under 
the umbrella of CUA we include cost-benefit analysis, cost-effectiveness analysis, and Cost as 
An Independent Variable (CAIV).  In its most general form, monetary cost is kept as a distinct 
element and the other criteria are grouped into one or more sets of related criteria that can be 
aggregated using the CLAU model or other methods [Tofallis, 1999].  The MCDA problem is 
thereby reduced to a smaller dimensionality space with the elements being cost and a small set of 
aggregate utilities characterizing performance and the “ilities”.  DMs are no longer presented 
with a “best alternative” where poor performance and/or low quality may be compensated by low 
cost.  They have visibility into the alternatives and can explicitly compare them in terms of 
monetary costs and a manageable set of composite utilities.  Due caution is still required.  DMs, 
designers, and analysts should heed the words of Hennesy and Patterson [1990; 70]:   

 
“Cost/performance fallacies and pitfalls are plentiful and have ensnared many … including 
ourselves.”   

 
To satisfy the other two properties we propose to treat regret and/or rejoicing as additional 
dimensions of the trade space and to explicitly incorporate it as an element within an extension 
of CUA that we refer to as Cost-Utility-Regret Analysis (CURA). 

 

4.2. Regret as a Dimension of the Trade Space 
 
Consider a set S ≡ {ABi B} of n Pareto-optimal alternatives specified in terms of monetary cost and 
m utilities associated with the performance and effectiveness parameters.  Since no alternative is 
absolutely better than any other one for all criteria, the individual who chooses an alternative A Bi B 
experiences a level of anticipated regret RP

S
PBi Bthat depends on the other alternatives.  We propose 

to compute RP

S
PBi B using the RDRM specified by Eq. (5) and to incorporate it as an element of the 

trade space.  Each alternative ABi B is then described by a (m + 2)-tuple of the form (CBi B, uBi1 B,…, uBimB, 
RP

S
PBi B).  We also aggregate the utilities into a single composite performance utility using the CLAU 

model.  Each alternative ABi B is then specified by the triplet ABi B ≡  (CBi B, UBi B, RP

S
PBi B) that satisfies the four 

properties of a desirable MCDA method specified in the previous section.  When rejoicing is an 
important value, it can be treated in an analogous manner to regret and included as an element of 
the evaluation vector.   
 

 The proposed approach offers several important benefits.  It avoids the difficulties, 
ambiguities, and pitfalls associated with aggregating the conflicting notions of cost, performance, 
and regret-rejoicing into a single number.  Since cost, performance, and regret-rejoicing are 
rarely preferentially independent, the CLAU model is unlikely to be appropriate.  There is no 
rigorous basis besides reasonable expectations for combining classical utility and regret into a 
single modified utility as proposed by RT-B/LS.  CURA mitigates these problems in a manner 
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that aids a rational indidual reach a preferred solution.  Using CURA, analysts and DMs are able 
to compare the alternatives on the basis of cost, composite performance/effectiveness utility, and 
anticipated regret-rejoicing.  This is highly desirable because the final decision is made by the 
DM using the CURA generated information rather than being the automatic result of a MCDA 
that provides a “best choice” based on a single number. 
 
 

5.  AN ILLUSTRATIVE APPLICATION 
 
To demonstrate the application of the approach developed in the previous sections we consider a 
slightly modified version of the aircraft selection problem developed by Sen and Yang [1998: 
73].  We modified the original data to better illustrate the aspects of RDRM and cost-utility-
regret analysis.  Our MCDA problem is defined by the data in Table VII.   
 
Table VII.  Data for the aircraft selection problem 
 

Alts.   Cost 
M$ 

Speed 
Mach 

Range   
10P

3 
PNM 

Payload 
10 P

3 
Pkg 

Dependability Maneuverability

A1 6.00 2.0 1.5 2.0 fair excellent 
A2 4.50 2.5 2.7 1.8 poor fair 
A3 6.50 1.8 2.0 2.1 good good 
A4 5.50 2.2 1.9 2.0 fair fair/good 

 
Given that the focus of the paper is on the evaluation and choosing activities of MCDA we 

assume that the classical utilities and weights of the performance criteria have been appropriately 
determined as shown in Table VIIIa.  We assume that for this important decision the DM values 
regret significantly more than rejoicing.  We compute (1) the aggregated performance utility of 
each alternative using the CLAU function and (2) the anticipated regret level associated with the 
choice of each alternative using RDRM given by Eq. (5) and Eq. (6) with B = 0.5 and S = 4.0.  
The results are given in Tables VIIIa and VIIIb.  Using these data, each alternative is 
characterized in terms of cost, performance utility, and regret as shown in Table IX.   

 
Table VIIIa.  Classical decision table for the aircraft selection problem   
 
   Criteria,  Utilities   Total 

Alts. Speed Range Payload Dep’ility Man’ility utility 

A1 0.60 0.50 0.60 0.50 0.90 0.635 
A2 0.95 0.90 0.40 0.30 0.50 0.583 
A3 0.40 0.75 0.80 0.70 0.70 0.640 
A4 0.75 0.60 0.70 0.50 0.60 0.618 

Weights 0.25 0.10 0.10 0.30 0.25  
Note:  1.  The classical total utility is computed using the CLAU function. 
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Table VIIIb.   RDRM regret levels for the aircraft selection problem   

 
   Criteria, Regret values     Total 
Alternatives Speed Range Payload Dep’ility Man’ility regret 

A1 0.11 0.44 0.10 0.15 0.00 0.13 
A2 0.00 0.00 0.76 0.62 0.43 0.37 
A3 0.77 0.21 0.00 0.00 0.06 0.23 
A4 0.01 0.11 0.01 0.46 0.10 0.18 

 
 

Table IX.  CURA characterization of the aircraft alternatives  
 

 Alternatives Cost 
M$ 

Performance 
utility 

Total 
regret 

 
 A1 6.50 0.635 0.13
 A2 4.50 0.583 0.37
 A3 6.00 0.640 0.23
 A4 5.50 0.618 0.18

 
 
Consider Table IX.  Each alternative is characterized by the triplet (Cost, Performance, 

Regret).  Each alternative is Pareto-optimal with its own strong points and drawbacks.  If regret 
were omitted, A1 would be dominated by A3 and it might be prematurely dropped as an option.  
Based solely on minimizing cost, the preferences are A2 f  A4 f  A3 f  A1.  Based solely on 
maximizing overall performance, the preferences are A3 f  A1f  A4 f  A2.  Based solely on 
minimizing regret, the preferences are A1 f  A4 f  A3 f  A2.  A3 has the best overall 
performance, but it causes the second highest level of regret.  This high regret level is a red flag 
that A3 may not be a well balanced alternative.  An examination of Tables VII or VIIIa reveals 
that A3 performs poorly on speed, an important criterion.  Table IX suggests that although A1 
almost ties A3 for best performance, A1 is the better balanced alternative.  A2 has the lowest 
performance and causes the most regret, but it is still a relevant alternative because it has the 
lowest cost and it may be of potential interest to the DM.  A4 has average values for cost and 
performance and a better than average value for regret.  The data in Table IX can be graphically 
represented as shown in Figure 3.  For ease of comparison, we transform cost into a cost index 
and regret into a regret index as follows: CI ≡  C*/Cost, RI ≡  R*/Regret, where C* and R* are 
ideal values less than the best (minimum) values of the compared alternatives.  All three 
parameters range between 0 and 1 and higher values are preferred.  What CURA achieves is to 
provide valuable and manageable information about each alternative to help a rational DM make 
a good choice.  Based on this data, a rational DM may opt to trade-off some performance and/or 
cost benefits in order to reduce the level of anticipated regret.   
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Figure 3.  Comparison of the four alternatives in Table IX.  High values are preferred. 

 

6. CONCLUDING REMARKS  
 
This paper is motivated by the evidence from real-life experiences and laboratory studies that: 
 
1. Anticipated regret and rejoicing are important considerations in decision making under both 

uncertainty and certainty. 
2.  People often tend to choose “balanced choices” rather than “optimal choices”, which is in 

conflict with classical EUT and today’s typical MCDA. 
3. Good DMs and analysts desire reasonably adequate information and visibility into the 

alternatives rather than automatic decision making based on a single number.   
 

The RDRM and its integration within a cost-utility-regret analysis are proposed and developed as 
an improved MCDA method that adequately addresses the above issues from both the normative 
and descriptive perspectives.  The applicability and usefulness of the proposed approach for 
complex trade-off studies is demonstrated using a hypothetical but realistic aircraft selection 
problem.   
 

The RDRM is a variant of the regret theory developed by Bell and Loomes and Sugden for 
economic decisions under uncertainty.  The level of regret (and/or rejoicing) that a person 
experiences is assumed to depend on the absolute values rather than simply the differences of the 
utilities of the chosen and forgone alternatives.  It is mathematically modeled as the difference of 
two Wymore scoring functions.  The utilities of the compared alternatives are coupled through 
the anticipated regret-rejoicing caused by the forgone alternatives.  This is a major difference 
with classical utility theory.  RDRM is a realistic predictive descriptor of decision making under 
certainty.  It explains some rational behaviors that conventional MAUA, RT-B/LS, and AHP 
cannot.  It ensures (1) transitivity of the alternatives under pairwise comparisons, and (2) rank 
reversal consistent with observed rational preference reversal.   
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CURA is proposed as an extension of cost-utility analysis that incorporates regret as a 

decision element.  Each alternative is characterized in terms of its monetary cost, an aggregate 
performance/effectiveness utility, and a regret measure.  A high level of regret is an indication 
that the alternative is not a balanced choice.  Complex situations are thereby reduced to a 
manageable decision problem.  CURA provides the information that a good DM needs to (1) 
rationally trade-off some cost and/or performance to avoid high levels of regret, (2) protect 
against decision traps associated with human intuition [Russo and Schoemaker, 1990; Sterman, 
2000: 30 and 38], and (3) avoid the fallacies and pitfalls of reducing decisions to a single number 
[Roy, 1999; Brown, 1999; Kujawski, 2003].  CURA can readily be extended to incorporate 
rejoicing for DMs who value it.  The final decision it is left to the DM; it is not the automatic 
result of a theoretical model that produces a “best choice” based on a single number. 
 

Researchers and practitioners of decision theory are increasingly accepting that emotions 
influence decisions and that in many situations individuals who act rationally do not follow the 
rules of classical EUT.  People often tend to choose “balanced choices” rather than the “optimal 
choice” provided by today’s typical MAUA.  MCDA under certainty, from both the normative 
and descriptive perspectives, should be a mathematically and logically valid tool that aids DMs 
select alternatives that best balance cost, performance, and rationale emotions of regret and 
rejoicing.  In this paper we propose an improved MCDA approach that integrates systems 
thinking, valid mathematical models, real-world experience, and behavioral psychology.  We 
consider it a springboard to develop and implement improved decision methods and practices for 
individual and group trade-off studies under certainty and uncertainty where psychological 
influences play an important part [Scott and Antonsson, 2000].  Trade-off studies are a key 
function of systems engineering [Edwards, 2001].  Systems engineers can and should play an 
important part in the development of MCDA methods that are better predictor descriptors and 
hence more rational than today’s approaches that are largely based on classical EUT.  This is an 
interesting time for decision theorists and analysts.  Sage’s assessment of the field is as 
appropriate today as when he wrote [Sage, 1981: 642]  

 
“The literature in this area is enormous.  But there is the need for effort to integrate it from 
the perspective of systems engineering…” 

 
 

APPENDIX A.  Proofs of Some Rank Reversal Properties of RDRM 
 
Theorem 1.  RDRM satisfies the property of “independence of dominated alternatives”. 
 
Proof. Consider a set and two of its alternatives with preference ABi B f  ABj B.  
 
1.  Adding an alternative ABk B that is dominated by ABi B.  From Eq (5) this does increase the level of 
regret associated with the choice of ABi Bbecause uBkj B ≤ uBijB for all criteria j = 1,…, m with the strict 
inequality being satisfied for at least one criterion.  From Eq. (5) the level of regret associated 
with the choice of ABj Bincreases if ABk B dominates ABi B for one or more criteria.  The RDRM utility of 
ABi B therefore remains unchanged while the RDRM utility of ABj B is reduced by the increase in the 
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level of regret.  The preference ABi B f  ABj B therefore remains unchanged.   
 
2.  Dropping an alternative ABk B that is dominated by ABj B.  The proof that preference ABi B f  ABj B 
remains unchanged is similar to the previous one and therefore omitted.   
 
Theorem 2.  RDRM satisfies the property of “no imposed rank reversal”. 
 
Proof.   From Eq. (5) it follows that rank reversal in RDRM depends on the regret-building 
function.  The RDRM regret-building function in Eq. (6) has two parameters that allow to model 
levels of regret experienced by different individuals.  In RDRM the occurrence of rank reversal 
then depends on the changes in the levels of regret experienced by an individual as a result 
adding or dropping an alternative.   
 
Theorem 3.  RDRM satisfies the property of “negative side effects associated with inferior 
substitutions”. 

 
Proof.   Without loss of generality we consider alternative ABk B and replace it with AP

*
PBk B where only 

criteria CBj B is reduced; i.e. classical utilities uBkjB < uP

*
PBkjB.  The only possible impact on alternative ABi B 

is to reduce its associated level of regret.  The impact is obtained using Eq. (5): 
 

  P

Ri
*

 – 
P P

Ri  
P= (

1
1
−n

)*wBj B* [max(G(1 – uBijB) – G(1 – uBkj B), 0)    

– max(G(1 – u BijB) – G(1 – uP

*
PBkjB), 0)].  Eq. (A.1) 

 
The RDRM utility is obtained by subtracting the regret level from the classical utility.  There are 
three different cases to consider and we apply Eq. (A.1) to each. 
 
(1) uBijB > uBkj B.  The RDRM utility of ABi B is unchanged,   
 
    UP

*
PBi B = P

 
P UBi B.       Eq. (A.2a) 

 
(2) u*Bkj B < uBij B< uBkjB.  The RDRM utility of ABi B is increased by eliminating the regret from ABk B and 
there is no regret from A* Bk B: 
 

  UP

*
PBi B –P

 
P UBi B  = (

1
1
−n

)*wB1 B* [G(1 – uBijB)  – G(1 – uBkj B)].   Eq. (A.2b) 

 
(3) uBijB < uBkj B and uBijB < uP

*
PBkjB.   The RDRM utility of ABi B is increased by reducing the regret from ABk B to 

AP

*
PBk B: 

 

  UP

*
PBi B –P

 
P UBi B P

 =
P (

1
1
−n

)*wBj B* [G(1 – uP

*
PBkjB) – G(1 – uBkj B)].   Eq. (A.2c) 

 
We now consider two alternatives ABi B f  ABmB and the substitution of AP

*
PBk Bfor ABk B with the 

classical utilities related as follows: uBmj B < uBijB, uBmj B < uBkj B, and uBmj B < uP

*
PBkjB.  The RDRM utility of ABi B is 

unchanged and the RDRM utility of ABmB is increased in accordance with Eq. (A.2c).  Rank 
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reversal will occur if UP

*
PBi B < UP

*
PBmB which using the above results reduces to  

   

  UBi B – UBmB < (
1

1
−n

)*wBj B* [G(1 – uP

*
PBkjB) – G(1 – uBkj B)]. 

 
This inequality is satisfied for select values of the classical utilities and parameters of the RDRM 
regret-generating function G(ּ).  A single case is sufficient to prove this theorem.  The analyses 
of the other situations that may lead to rank reversal are similar and are omitted.   
 
Note on proofs for RT-B/LS properties.  The proofs that RT-L/BS satisfies Properties 1, 2, and 
3 are similar to the RDRM ones and are therefore omitted.   
 

APPENDIX B.  An Example of Irrational Rank Reversal in AHP 
Consider the example and analysis in Tables Xa and Xb based on Dyer’s work [1990a: 252] 
using the original AHP.  Table Xa provides the ranking for the initial set of three alternatives, A2 
f  A1 f  A3.  Alternative A4, which is dominated by A2, is added to the set.  The alternatives 
are compared in Table Xb.  The ranking is now A1 f  A2 f  A4 f  A3.   
 

Table Xa.  Initial set of three alternatives for illustrating irrational rank reversal 
 
  Criteria, Utilities   

 Alts. C1 C2 C3 Rank 
 A1 0.1 0.9 0.8 2 
 A2 0.9 0.1 0.9 1 
 A3 0.1 0.1 0.1 3 
 Weights 1/3 1/3 1/3  

 
Table Xb.  The set of four alternatives after the addition of A4 
 
  Criteria, Utilities   

 Alts. C1 C2 C3 Rank 
 A1 0.1 0.9 0.8 1 
 A2 0.9 0.1 0.9 2 
 A3 0.1 0.1 0.1 4 
 A4 0.8 0.1 0.8 3 
 Weights 1/3 1/3 1/3  

 
 
Based on intuition and experience, a rational individual who chooses A2 should not 

experience any additional regret because of A4.  We therefore expect that the “before” and 
“after” utilities of A2 are identical.  In contrast, a rational individual who chooses A1 may 
experience an increase in his anticipated regret because A4 dominates A1 on criterion C1.  Most 
people would agree that the predicted AHP rank reversal is in conflict with the notion of rational 
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behavior.  Based on a literature search, this appears to be a new perspective on the shortcomings 
of rank reversal in AHP. 
 
 

ACRONYMS 
 
AHP  Analytic Hierarchy Process 
CAIV  Cost as An Independent Variable 
CLAU  Conventional Linearly Additive Utility 
CUA   Cost-Utility Analysis  
CURA  Cost-Utility-Regret Analysis 
DM  Decision Maker 
EUT  Expected Utility Theory 
MAUA Multi-Attribute Utility Analysis 
MCDA Multi-Criteria Design Analysis 
MUF  Multi-attribute Utility Function 
RDRM  Reference-Dependent Regret Model 
RT-B/LS Regret Theory of Bell and Loomes and Sugden 
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