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A method is developed for constructing the Lagr~gi~ 

that describes the interaction of classical soliton solutions. 

We applied it to the Abeli~ Higgs model in (1 + 2) dimensions 

~d Georgi-Glashow model in (1 + 3) dimensions, ~d various 

features of the relev~t Lagr~gi~s are investigated. 
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I. Introduction 

A great deal of progress has been made in field theory by 

investigating classical solutions to field equations. These solu­

tions fall into two categories: The instantons(l) of finite action 

in Euclidean space-time, and the solitons(2) of finite energy in 

the real space-time. Instantons determine the structure of vacuum(3), 

whereas the solitons correspond to particle states which are inaccessi-

ble through perturbation theory. Field theories with soliton solutions 

have been intensively studied, and methods have been developed for 

computing the lowest order (in h) quantum corrections.(4) Although 

these methods have yielded a number of interesting results, they 

suffer from the following restrictions: 

a) They are semi-classical in nature and they always involve 

an expansion in powers of Planck's constant. It would be nice to 

find alternative approximation methods or failing that, at least to 

formulate the problem in a manner independent of any approximation 

scheme. 

b) Progress has been made in cases where the classical solu-

tion can be given in closed form. This is, in general, not possible 

except for the notable case of the two dimensional sine-Gordon 

equation. (5) Many soliton problems involving pair creation, 

scattering, etc. are not tractable (again excluding some two dimen­

sional mOdels).(6) 

These difficulties would be eliminated if one could construct 
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a field theory governing the interaction of solitons. One could then 

treat problems involving creation and destruction of solitons. This 

has been achieved in the two dimensional sine-Gordon equation; where 

it is known that the theory can be transformed into the massive 

Thirring model. (7) The fermions of the Thirring theory are the 

solitons of the sine-Gordon theory, and they can be studied as Thirring 

quanta. 

In this paper, we construct local field theories of solitons in 

3 and 4 dimensions. We have applied our method to the known gauge 

theory soliton solutions of scalar quantum electrodynamics in (1 + 2) 

dimensions and the Georgi-GlaShow(8) model in (1 + 3) dimensions. 

The former are vortices(9) and the latter are static monopole 

solutions. (10) These models will be the subject matter of this paper. 

Our approach to field theory will be through functional inte­

gration.(ll) In particular, we shall focus on the contribution to 

the functional integral from topological configurations of the scalar 

Higgs field. Such a configuration will be called a "kink"; it 

carries a non-zero winding number in the appropriate dimensional 

space. The contribution of a kink will be equivalent to a "bare" 

or point like soliton. The kinks naturally form world lines, and 

the functional integral over all,kinks reduces to a sum over all 

possible particle trajectories. We then have a Feynman "world 

line,,(12) description of solitons which can easily be transcribed 

into the language of field theOry(13), yielding a Lagrangian for 

solitons. 

The final result has several unusual features. One such feature 
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is the appearance of the inverse of the original coupling constant. 

For example. the monopole charge is inversely proportional to the 

coupling constant in the non-Abelian model. A similar inversion of 

the coupling constant takes place in the sine-Gordon and Thirring 

equivalence. (7) Another unexpected phenomenon is that these mani­

festly renormalizable theorIes lead to soliton Lagrangians which, on 

the surface. look non-renormalizable. However, this may be a case of 

deceptive appearances. 

Finally, an intrigueing and attractive feature of our derivation 

is that it goes through even when there is no spontaneous symmetry 

breakdown in the original theory! In this case. there are clearly 

no classical solutions. and it is not clear what our soliton field 

theory represents. In the case of the Abelian Higgs model in (1 + 2) 

dimensions, we argue that the solitons always eX,ist but they are con-

fined in the absence of spontaneous symmetry breakdown. We end the 

paper with a speculative discussion about the connection between 

spontaneous symmetry breakdown and confinement in the non-Abelian 

model in (1 + 3) dimensions. 
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II. Topology of the Abelian Higgs Model in (1 + 2) Dimensions 

The Lagrangian density of this model is 

(2.1) 

where F = d A - d A • ~ = 0.1.2; metric = (+.-.-). and t is the 
~v ~ v v ~ 

complex Higgs field. The standard generating functional is given 

by the following integral: 

(2.2) 

The source term for the t field is omitted to keep the formulas 

from getting lengthy; however. if so desired. it can be reintroduced 

at any stage of the development. Also. for reasons of later convenience. 

we have introduced a source for the gauge invariant field strength 

F~v' rather than the gauge dependent potential A~. 

Finally. for the sake of definiteness. we have picked the ,Landau 

gauge. although any legitimate gauge choice would do. 

We are interested in the topology of the Higgs field. t. For 

simplicity. first consider the static case. where t is time 
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independent. Let; = (xl ,x2 ) be a space point, and consider an .. 
infinitesimal closed curve around r. If one makes a trip around this 

curve and arrives back at the starting point, the phase of ~ has 

to change by 2~n, where n is an integer. If n = 0, the point; is 

a regular point, and if n # 0, it is a kink of winding number n. 

A simple example of a kink of winding number n located at ; = ° 
is 

where tan a 

ina const. e (2.3) 

If ~ is time dependent, we still can use the above definition at 

a fixed time, and let the position of the kink be a function of time. 

Therefore, the position of the kink forms a trajectory in space-time, 

which can be conveniently parametrized by some (arbitrary) internal 

parameter, T. By continuity, the winding number must be constant over 

the trajectory, and so the topological structure of the Higgs field 

can be characterized by giving the equations of the trajectories 

as functions of the internal parameters Tt as 

(2.4) 

·along with the corresponding winding numbers nt' where t 

N = total number of kinks. 

1,2,··· ,N, 

We have left the sense in which the trajectory it; dcucriued 
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arbitrary. This could be fixed by, for example, taking T an 

increasing function of time. Instead, however, it is best to allow 

for trajectories traveling backwards in time and to identify them 

with forward traveling trajectories with opposite sign of winding 

number. 

The alert reader may have noticed that we have tacitly assumed 

the kink trajectories to be timelike. However, in the functional 

integral, space and light like trajectories must also be included, 

and for these trajectories there may be some problems in defining 

the winding number. A simple way out of these difficulties is to 

continue the functional integral (2.2) to Euclidean space and thus 

avoid any possible problems resulting from the Minkowski metric. 

The gauge transformations which leave the Lagrangian invariant, 

-iA 
~ .. e ~, 

(2.5) 

fall into two classes: 

Any transformation which changes either the location of the 

kink trajectory or its winding number will be called a singular 

transformation, whereas the transformations which leave the topological 

properties of ~ intact will be called regular transformations. An 

example of a singular transformation is the gauge transformation 

which straightens out the kink described by Eq. (2.3): 
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-ina , .. e , 

tJ.A =.l...()A 
IJ e IJ' 

b.Ao = 0, tJ.A = -..!!... 
x2 

1 e 2 + 2 , 
xl x2 

tJ.A2 
n xl 

=- 2 2 e 
xl + x2 

(2.6) 

Strictly speaking, the singular transformation given above is 

not a gauge transformation at the origin. In fact, b.AIJ carries a 

singular tube of flux located at the origin: 

.. 2 2 1/2 
where r = (xl ,x2 ), r = (Xl + x2 ) . 

(2.7) 

This result is verified by the use of Stokes' theorem applied 

to a small circle around the origin in the (x
l

,x
2

) plane. Alternatively, 

to avoid the singularity at the origin, replace the second set of 

transformations in Eq. (2.6) by the following: 

Xl 
tJ.A =..!!... f( r) "2 ' 

2 e r 
(2.8) 
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where fer) is zero at the origin and rapidly goes to one away from 

the origin; for example, take 

fer) 
2 

r 

The original transformations (2.6) are now considered as the 

limit of (2.8) as £+0. Eq. (2.7) is now replaced by 

From (2.9), f/(r) tends to 2w times a two dimensional delta 

function in the limit £+0, and we recover Eq. (2.7). Notice that 

(2.9) 

(2.10) 

since the transformation of , is unchanged, the new transformations 

are still singular in the topological sense defined earlier. The 

only difference between Eq.'s (2.7) and (2.8) is that the latter smoothes 

out the delta function. Later on, this smoothing will be used 

to avoid at least temporarily the divergence difficulties resulting 

from the point-like structure of the bare solitons. 

We have so far considered only time independent kink trajectories, 

but it is easy to generalize to arbitrary trajectories. Let 

xIJ = iIJ(T) be a typical trajectory, and consider a fixed point 

on this trajectory corresponding to T = TO' Given the tangent 

at that point, we can rotate the coordinate system so that the tangent 
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points in the time direction, and simply notice that (2.7) is valid 

in this coordinate system. The argument applies to any point on 

the trajectory, and the result can be written in a covariant form: 

6F a (6A ) - a (6A ) 
~v ~ v v ~ 

where £~VA is the complete antisymmetric tensor. 

-i -0 In the special case x =0, x =" we recover Eq. (2.7). We 

also note that this result is invariant under non-singular gauge 

transformations, and so it does not rely on the detailed angular 

dependence given in Eq. (2-3), but only on the winding number n. 

(2.11) 

Eq. (2.11) is easily generalized to several kink trajectories 

i~(.£) with their winding numbers n£: 

(2.12) 

where the integration is over the complete trajectory of the kink. 

If one wishes to avoid singular functions, one can replace the delta 

function on the right by a smooth function like (2.9) and finally 

consider the limit £+0. Finally, Eq. (2.12) is independent of the 

choice of parameter " as it should be. 
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III. Soliton Lagrangian From 

Abelian Higgs Model: 

The First Version 

The functional integration over ~ in Eq. (2.2) runs over all 

configurations containing arbitrary number of kinks with all possible 

winding numbers and trajectories. From now on, only kinks with 

winding numbers n=±l will be considered in the functional integral 

over ~, and kinks with higher winding number will be assumed to form 

by the coalescing of kinks with winding number ±l. In any case, 

classical solitons with Inl >1 are known to be unstable. If they 

do exist quantum mechanically, they would probably emerge as bound 

states of fundamental solitons with n=±l. 

In this section, our goal is to extract the contribution due 

to kinks from the functional integral. What remains is an integration 

over ~ with no topological configurations. This can be achieved by 

means of a Singular transformation of the type described in section 2, 

which "straightens out" all the kinks. This singular transformation 

is not a pure gauge transformation, and there is a contribution to 

flux given by Eq. (2.12) which has to be taken into account. It 

(14) 
is this contribution that is usually missed in standard treatments; 

for example, in going over to the "physical gauge" Im(t)=O, the 

singular nature of the transformation involved is usually overlooked. 

Carrying out the singular transformation described above, we have the 

following result: 
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(3.1a) 

where, 

and, 

a (AA ) - a (AA ) = 6F 
~ v v ~ ~v 

(3.1b) 

Let us explain the origin of various terms in this equation. 

In the functional integration over ~, the bar over D restricts the 

function space to fields without kinks, and therefore, the integration 

over ~ has to be complemented by explicit functional integration 

over the kink trajectories xl' and summation over the total number of 

kinks N. The winding number n takes on the values ±l, and if 
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trajectories traveling backwards in time are also included, n can be 

taken to be +1, as explained earlier. The factor of liN! avoids the 

overcounting problem due to the fact that kinks are indistinguishable. 

Finally, the contribution of kinks to the Lagrangian is given by (3.16). 

The next step is to do the summation over the trajectories in 

closed form. This can best be accomplished by the Lagrange multipljer 

method: We introduce a Lagrange multiplier field G (x) = - G (x) 
~v v~ 

and another auxilliary field B (x) and make. use of the following identity: 
~ 

(3.2) 

where 

This identity can be verified by first integrating over G, 

picking up a functional delta function, and then integrating over 

B. Strictly speaking, there should be a normalization constant on 
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the right hand side of the equation; however, this constant cancels 

when Green's functions are computed and so it is dropped for simpli-

city. 

If Eq. (3.2) is substituted into Eq. (3.la), it turns out that 

the integrations over the particle trajectories can be done vith the 

help of the following equivalence theorem relating particle dynamics 

to field theory: 

where X(x) is a complex scalar field. The physical meaning of this 

equation is simple: Both sides are equal to the vacuum-vacuum 

transition amplitude of theory consisting of charged scalar particles 

of mass m in the presence of an external electromagnetic field 

QIJ (x), and hence, they are equal to each other. The right hand side 

of the equation is the standard field theoretic functional integral 

for this process and needs no explanation. The left hand side is 

the quantum mechanical path integral over the trajectories of charged 

particles a la Feynman. The expression in the exponenet is the 

parametrization invariant form of the Lagrangian of a charged point 
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particle in an external electromagnetic field. To see this, let 

T = t = time, making use of parametrization independence, and observe 

that 

(3.4 ) 

... d'" 
where V = dt x(t) = velocity. 

For a full treatment of the correspondence between particle 

dynamics based on classical trajectories and field theory, the reader 

is referred to footnote (13). For the sake of completeness, we 

present a brief formal derivation of (3.3) in the appendix. 

Upon substitution of (3.3) and (3.2) in (3.1), the folloving 

result is obtained: 

where, 
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This is the soliton Lagrangian promised earlier. As yet, it 

is not in a useful form, since the system has constraints. These 

constraints can be gotten rid of by integrating over one of the 

auxilliary fields, and depending on the choice of the auxilliary 

field, we obtain two Lagrangians different in appearance but 

completely equivalent in physical content. We present them in 

the next section. 
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IV . Soli ton Lagrangian From 

Abelian Higgs Model: 

Later Versions 

Let us define a new field V~ by 

A +B =V. 
~ ~ ~ 

(4.1a) 

Written in terms of V~ and B~, the Lagrangian of Eq. (3.5b) with the 

source term becomes 

+ I~ X 2ni GV~xI2 
a~ + e £~v~ 

(4.1b) 

This expression is quadratic in H = a B - a B , and there-
~v ~ v v \l 

fore, the functional integral over H~v is a Gaussian and can be done 

easily. However, since 
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0, 

only that part of G~v + J~v that satisfies 

will contribute. Note that Eq. (4.1) is invariant under gauge 

transformations 

iA 
X .... e X, 

(4.2) 

(4.3) 

(4.4) 

Hence, (4.3) can be imposed as a gauge condition. Since the external 

field J~v is at our disposal, we impose (4.3b) on both J and G 

separately for convenience, and carry out the integration over H 
~v 

Again, dropping an insignificant normalization constant, we obtain 

the following result: 

Z(J) 

(4.5a) 

where, 
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- (a v - a v )} + J J~v - 2J~v (a v ) 
~ v v ~ ~v ~ v 

If the gaug~ constraint on G could be eliminated, the 
~v 

(4.5b) 

integration over this variable would be a Gaussian and easy to do. 

We eliminate the constraint by adding a Lagrange multiplier term to 

." (X). 
f?. JG . 

(4.6) 

where ~ is a real scalar field to be integrated ,over. With the 

help of this trick, the integration over G is done, and the 

Lagrangian is cast into the following final form: 

Z(J) f DV f Ii~ f D~ exp {if d3
x ill (x)} 

(4.7a) 
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,tl 

and, 

d 
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_ 2 JIIV (a v ) + lallxl2 
II v 

8 2 2 -3/2 
n [1 + ~ Ix(xi)1 ] 
i e 

We now make some comments about Eq. (4.7): 

(4.7c) 

a) The field G had to be scaled to eliminate the coefficient 
IIV 

of the quadratic term in G before doing the functional integral. 

The factor d is the Jacobian tbat results from tbis scaling. The 

product is over all space time points, and so it is well-defined 

only for a lattice theory and becomes singular in the continuum limit. 

. . (15) Such s1ngular factors are well-known 1n the literature; they 

contribute only to higher order terms (loops) and they are usually 

needed to eliminate other singular contributions. 

b) The field ~ is unphysical and decouples on the mass shell. 
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It can be eliminated from the Lagrangian by a suitable gauge trans-

formation on x. 

c) The ~ integration is supposed to be over functions with no 

kinks. One way to ensure this is to transform from the gauge 

a VII 0 
II 

to the physical gauge 

Im(~) O. 

As a result, one picks up an additional Jacobian factor 

similar to (4.7c). Or, one could define a new field ~ by 
t 

~ = ~t + h 

and imagine a perturbation expansion in powers of ~t. Such 

an expansion is kink free, since any small fluctuation of ~ 

around the average value h cannot prOduce any kinks. 

(4.8) 

(4.9) 

(4.10) 

d) If we translate the field ~ as in Eq. (4.10), we find the 

standard Higgs result that the vector field V has acquired a mass 
II 

(4.11) 
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The theory has the unusual feature that the coupling of the 

vector field to the Higgs field is proportional to e, whereas its 

coupling to the soliton field Xis proportional to lie. Both e 

and its inverse are present in the Lagrangian, and any perturbation 

expansion in either direct or inverse powers of e seems out of question. 

However, a semiclassical expansion in the number of loops may still 

be all right. 

e) Our derivation leading up to Eq. (4.7) nowhere made use 

of the equations of motion or, for that matter, of the existence 

of spontaneous symmetry breaking. Had we started with a Higgs 

self coupling given by 

instead of 

(4.12a) 

(4.12b) 

the vector meson, instead of acquiring the mass given by Eq. (4.11), 

would stay massless. Without spontaneous symmetry breaking there are 

no classical soliton solutions to the field equations. However, our 

derivation goes through, and we face the paradoxical situation of 

having a soliton field whereas semiclassically there is none. 

f 11 ~s· In the absence of resolution to this paradox goes as 0 0. • 

Our 

ak · the exchange of the zero mass vector meson gives symmetry bre 1ng, 

rise to Coulomb interaction between charges, which, in three dimen:;ion:;, 
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grows logarithmically with distance. This interaction confines the 

electric charge of the solitons, and single soliton states cannot 

emerge as free particles. In the presence of spontaneous symmetry 

breaking, the vector meson acquires a finite mass, the long range 

confining interaction disappears, and the solitons are liberated. 

f) Although we started with a renormalizable, in fact, super-

renormalizable Lagrangian in 3 dimensions, we ended up with a 

Lagrangian that looks, at least superficially, non-renormalizable. 

Also, the external source J is coupled to a composite field in lJ\I 

(4.7b), and there are additional singularities due to the singular 

Jacobian of Eq. (4.7c). It may be that these effects cancel each 

other to restore renormalizability. Notice that the singular graphs 

come from expanding in powers of lIe, whereas graphs proportional 

to direct powers of e are still renormalizable. We shall return to 

this question again at the end of this section. 

Now turn to Eq. (3.5b), and eliminate BlJ' instead of AlJ' in 

favor of V through Eq. (4.1a). We also adopt the gauge lm(~) = 0 
lJ 

instead of the Landau gauge, and let 

2-1/2 ~ Re(~) - h. r 

The Lagrangian of (3.5b) becomes 

(4.13) 
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2 1/>2 In. • 
.I (X)(x) = _ .l.. F FIlV _ L ( ..L + ...!. I/> )2 

A 4 IlV 4 2 e r 

- Gllv(a V - a v - F ) 
II v v II IlV 

The integral over VII is a Gaussian and can be done after the 

change of variable 

V ... (1 + ~ I/> )-1 V 
II IIlyr II 

which introduces a Jacobian given by 

where d', given by Eq. (4.9), is the singular factor that goes 

with the gauge Im(l/» = o. These two factors cancel each other, 

(4.14) 

(4.15) 

(4.16) 

and we have the following result which is free of singular factors: 

Z(J) 

(4.17a) 
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where, 

1 IlV 
,2 1/>2 In. • 

.., F F 1\ (..L + ...!... )2 
~G = - T lJv - T 2 e 'fr 

1 
2wi vA 12 + a x + - [; ,G X • II e IlVI\ 

(4.l7b) 

The next step is to do the integration over Fllv ' after choosing 

the gauge 

(4.18) 

The result is written most conveniently in terms of a vector 

field WlJ dual to Gil: Defining 

(4.19) 

we have: 

Z(J) 

(4.20a) 
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where. 

",2 2 
(..L+IIly",) 

2 e r 

-2 
1 (1 + ~ "') (a w _ a w )2 -II Illy r \IV V\I 

This is the second form of the soliton Lagrangian. and we 

comment upon it. 

a) it2 is more suitable for investigating soliton-soliton 

interaction in the strong coupling limit IIly/e2«l. whereas J{l 

(4.20b) 

is useful for investigating the interaction of the Higgs scalar in 

the weak coupling limit e2 /1Ily«1. We therefore have two complimen­

tary pictures of the same basic interaction. To see this more clearly. 

let us "freeze" the field "'r by letting). ...... in which limit one 

can set "'r = 0: 

~2 - -+- (a W _ a W )2 
). .. ... 4 \I V V \I 

(4.21) 
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This is the usual Lagrangian describing the interaction of a 

complex scalar field with a massive neutral vector meson. and 

perturbation theory can be used in the strong coupling limit dis-

cussed above. The field W is the "dual" of the original fi eld 
\I 

A\I' as can be seen from the respective couplings of the external 

source J to A and W • 
\IV \I \I 

b) The mass of the soliton (X particle) is zero at the level 

of tree graphs. and the lowest order (in lie) loop contributions 

come from the graphs of Figures 1 and 2. If we denote the contri­

butions of graphs 1 and 2 to the self-energy by r l •2(p). we have. 

2 
Illy 

2 e 

2 2 2 P k - (p.k) 
222 2 

k (p - k) (k - Illy) 

The first contribution is finite. and the second one is 

linearly divergent. If we believe the derivation leading to 

Eq. (4.20). there is no counter term available to cancel this 

divergence! The only counter terms allowed are the ones already 

present in the original Lagrangian of Eq. (2.1). and the only 

(4.22) 

infinite counter term is the mass counter term for the Higgs scalar. 

which does not cure the divergence problem mentioned above. In 

reaching this paradox. however. we have tacitly assumed that the 

Lagrangian given by Eq. (4.21) is not normal ordered with respect 

to any of the fields. On the basis of gauge invariance alone. we 
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know that in the quartic term given by 

(4.22) 

the factor Ixl 2 should not be normal ordered. In fact, it is well 

known that the graph given by Fig. 4 is needed to cancel the diver-

gence of the graph of Fig. 3. However, there is no such argument 

against normal ordering the factor V VV in Eq. (4.22); on the con­
V 

trary, normal ordering would eliminate the divergent graph given by 

Fig. 2, and the lowest order contribution to the soliton mass would 

then be finite. We are therefore led to the conjecture that the 

factor ~ in the interaction term given by Eq. (4.22) should be 
V 

normal ordered. However, such a prescription cannot be simply 

postulated; if true, it must follow naturally from the derivation 

of Eq. (4.20). Unfortunately our derivation has been too heuristic 

to answer such delicate questions about operator ordering. Strictly 

speaking, the functional integrals we are dealing with exist only on 

a space-time grid, and the limit when the grid size goes to zero 

requires careful analysis. We hope to carry out this program and 

settle the question of normal ordering in the future. 

A final remark: If this model is imbedded in (1 + 3) dimensions, 

the soliton trajectories become surfaces traced out by strings, and 

our methods should be able to derive the dynamics of Nielsen-Olesen 

strings. 
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v. Monopoles in the Non-Abelian 

Model in (1 + 3) Dimensions 

Our starting point is the Georgi-Glashow model 1n (1 + 3) 

dimensions: 

where, 

The SU(2) (isospin) index i runs from 1 to 3, and the space-

time indices V and v run from 0 to 3. Our metric is (+, -, -, -). 

The generating functional Z is given by the following: 

Z(J) 

In general, C is a composite field buH t out of A and ~ ,and it 

can- carry various indices, and 6 is the Faddeev-Popov factor. 

We wish to transform from the Landau gauge to the physical 
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(Abelian) gauge, where the Higgs field ~a(x) points along a fixed 

direction in isospin space, which, following the usual convention, 

will be taken to be a = 3. Such a transformation is singular since 

it destroys the topological structure of ~, which results from the 

presence of kinks similar to those given by Eq. (2.3). A static 

kink located at t = 0 looks like 

a 

~a=:!" 1;1 I~I, a 1,2,3, 

or it is related to the above form through non-singular gauge 

transformations. The sign. in front is the sign of the "charge" of 

. (10) t' ft' the kink. The static monopole solutIon to the equa lons 0 rno lon 

In 

has the topological structure of the kink described above, and the 

charge of the kink is proportional to the charge of the monopole. 

general, we have to allow for arbitrary kink trajectories of the type 

given by Eq. (2.4), and the resulting complications are best handled 

by defining a topological (magnetic) current(16): 

(5.4) 

-a a b b)-1/2 a I 1-1 where ~ = ~ (~~ = ~ ~ - The topological current, k~, 

is invariant under non-singular gauge transformations and it is 

conserved: 

o. (5.5) 
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Furthermore, k~ vanishes everywhere except on the trajectory 

of a kink. This can easily be verified by lining up ~a along a 

fixed direction. This argument breaks down at the position of the 

kink, where there is a delta function contribution. Consider a 

static kink and integrate kO over a volume V around the position of 

this kink. It is shown in reference (16) that 

e (5.6) 

In the general case, consider a set of kink trajectories 

with corresponding charges nt ±l. Then, 

(5.8) 

where i(.) = JL i(.) and the integral is over the trajectory of the 
d. 

kink. This equation summarizes all the relevant topological properties 

of the Higgs field. 

Now transform into the physical gauge. Although this can be 

done directly, we proceed indirectly and define the following fields: 
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(5.9c) 

-a -a e Eabc Ab~c. where DlJ~ = alJ~ + lJ~ 

Transforming into the physical gauge is the same as expressing 

the Lagrangian in terms of the fields defined by Eq. (5.9), which is 

what makes these fields so useful. Since ~ and F ,the electromagnetic 
lJV 

tensor of 't HOOft,(lO) are gauge invariant, they can, in the absence 

of kinks, be evaluated in the physical gauge 

(5.10) 

without losss of generality. The result is 

It then follows that A3 is the electromagnetic potential. If 
lJ 

Ha is also evaluated in the same gauge,one finds 
\l 

(5.12) 

There are only two independent isospin components of H: because 

These transform homogeneously under the electromagnetic gauge 
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transformations (rotations around the 3rd direction in isospin space), 

and it is natural to regard them as the charged components of Aa and 

define 

Eq.'s (5.9) are then the components of Aa expressed in a gauge 
lJ 

covariant manner. 

lJ 

So far, we have assumed the absence of kinks. If they are 

present, Eq. (5.11) is no longer correct, and it mus·t be replaced 

by the following gauge invariant identity(16): 

(5.14) 

F = a A 
lJV lJ v (5.15) 

Where, 

A 
lJ 

1 =-
e 

In the absence of kinks, ~a can be lined up along the 3rd 

direction; N vanishes and Eq. (5.11) is recovered. However, lJV 

if kinks are present, N does not vanish, and instead the 
lJV 

following equatfon hOlds: 

k • 
lJ (5.16) 
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Combining this equation with Eq. (5.8), we arrive at that 

set of Maxwell equations whose source is the magnetic current k~ 

~ £~vQII (3 F 0) _ 3 F~v 
2 v Qp V 

= k = 
~ 

411 
e 

Notice that the magnetic current depends only on the trajectories 

of kinks (monopoles) and not on the detailed dynamics of the system. 

The other set of Maxwell equations whose source is the electric 

current j~ can be derived by varying the Lagrangian (5.1) with 

respect to A A3: 
IJ ~ 

where, 

3 F~v 
v 

(5.18) 
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Having both pairs of Maxwell equations at hand, we wish to 

~ 

const.ruct a Lagrangian, which, when A~ and cp are fixed and treated 

as external fields, will have the pair (5.11) and (5.18) as their 

classical equations of motion. Instead of this indir€'ct approA.ch, 

had we directly expressed (5.1) in terms of A± and A , we would 
IJ IJ 

have gotten Eq. (5.18) correctly, but we would have missed the 

source term in Eq. (5.11). 

The problem of constructing the Lagrangian for given electric 

. (11) and magnetic currents j and k has been solved by Schwlnger 
IJ IJ 

and by Zwanziger.(18) We shall follow Zwanziger's approach, in 

which one introduces another vector potential B , in addition to 
IJ 

A
IJ

, and FIJV is expressed as follows: 

F 
IJV 

3 A 
IJ v 

(5.19) 

where n is an arbitrary fixed four vector. The monopole Lagrangian 

can now be written as the sum of several terms: 

., (x'x •• x ) = ~ + ., + , + , + ~ 
;.,. '1' 'N 'Ly d\e d\.m d\.c ...... H· 

(5.20a) 

., and I:. are the electric and mar:netic parts of the interaction 4J'\ e m 

Lagrangian, and otH is the Higgs Lagrangian. 

The magnetic interaction is simple: 
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(5.20b) 

where k is given by Eq. (5.8). The electric interaction is a bit 
IJ 

more complicated since the corresponding current given by (5.18) 

depends on A itself: 

This term would be read off directly from the original 

Lagrangian (5.1). lc' the part of the Lagrangian that includes 

only the charged vector mesons, can also be read off from (5.1): 

t..C 

Finally, Lr is the free Lagrangian for the electromagnetic 

fields given by Zwanziger: 

(5.20c) 

(5.20d) 

1 
- -8 (a A IJ v 

1 - -8 (a B IJ v 
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1 [n (alJAv _ aVAIJ + 
- 4n2 IJ 

1 [n (alJBv _ aVBIJ _ 
- 4n2 IJ 

E 
IJvae aaBe))2 

E 
IJvae 2 

aaAe)) . (5.20e) 

The generating functional is obtained by integrating over the 

fields " A
IJ

, B
IJ

, A~, as well as x's, the trajectories of monopol~s~ 

in a manner similar to Eq. (3.1): 

N r ;! f ___ ITI Di
t 

exp {i f d4
x[J(x)C(x) 

N=O .. 

(5.2la) 

where d· is the Faddeev-Popov factor of the physical gauge, similar 

to d and d' of the previous section: 

(5.2lb) 

The integration over the monopole trajectories can be carried out 

with the help of Eq. (3.3): 
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Z(J) 

(5.22a) 

where, 

~ (x) 
11 l.y + "-e + ~c 

(5.22b) 

In the above equation, the first three terms are the same as in 

Eq. (5.20), but the magnetic interaction gets replaced by the last 

term, where the field 11 is a complex scalar monopole field. 

Eq.'s (5.20) and (5.22) express the final form of the action 

for monopole solitons of Georgi-Glashow model. Many of the comments 

made at the end of sections 3 and 4 also apply here. Renormalization 

and problems associated with the ordering of operators are left as 

open questions. There are also additional problems connected with 

Lorentz invariance due to the appearance of a fixed four vector n. 

At the beginning of our investigation, we had hoped to establish 

a duality between electric and magnetic potentials suggested by 

various authors.(19) However, our final expression does not 

exhibit such a symmetry, at least not in any obvious fashion, and 

it remains to be seen whether there is still a hidden symmetry that 

has escaped us. 
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VI. Conclusions and Future Directions 

In this paper, we have studied Abelian and non-Abelian gauge 

theories with Higgs mechanism which are known to possess non-trivial 

solutions (solitons). We have developed a method which enables one 

to construct a field theory of solitons and thereby bring out the 

hidden soli t'on content of the original theory. The method works 

even when ~here is no spontaneous symmetry breaking and no classical 

solution. In this case the solitons are probably confined. In 

the non-Abelian model in (1 + 3) dimensions, there is an exciting 

possibility suggested by Mandelstam and 't Hooft. (20) When the sign 

of h2 in Eq. (5.1) is reversed, it may be that the monopole develops 

a tachyonic mass. This would result in a spontaneous violation of 

magnetic charge conservation and hence electric charge would be 

confined. To test this possibility, one has to compute the mass of 

the monopole in some approximation scheme like the expansion in the 

number of loops. Again, it is necessary to resolve the renormaliza-

tion problem before attempting such a calculation. 

Finally, we would like to stress that we have only considered 

kinks of the Higgs field. In non-Abelian gauge theories, the components 

of the vector potential Aa themselves can have non trivial topological 
)J 

structure, and a Higgs field may not be needed. Again, this may be a 

promising line of future research. 
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Appendix 

To establish Eq. (3.3), one needs as a preliminary step to 

show the equivalence of the reparametrization invariant Lagrangian 

of a particle in an external field QIl(x) and the Feynman form for 

the same Lagrangian: 

(A.I) 

f dT (- ~ m
2 -.~ i2(T) + QIl[x(dl ilJ(T»). 

(A.2) 

We note that since (A.I) is invariant under reparametrization, 

a definite choice of parameter T must be made before it can be used 

on the left hand side of Eq. (3.3). A convenient way of doing this 

is to set 

(A.3) 

Here f(T) is an arbitrary but fixed function of T. In (A.3) 

we have neglected an overall constant inedepndent of the dynamical 

variables, as we have done throughout the paper. Since Zl is 

independent of f, we can "average" over f as follows: 
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where, 

is independe~t of m and vill be dropped. Doing the integral over 

f in (A.4) with the help of the delta function, we get 

which establishes the equivalence of (A.l) and (A.2). 

We now consider the boundary conditions at T = ±~ and 

the range of the parameter T. Since there is no source for the 

soliton field, the X(T) will be taken to be closed traJectories. 

We can therefore impose the condition 

i (T), 
II 

where 0 and T are the endpoints of the range of T; i.e., 

(A.4) 

(A.5) 

(A.6) 

(A.1) 

(A.B) 
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Since ~f is not reparametrization invariant, the functional 

integral over x must also include an integration over all possible 

values of T. These comments can be put together in the form of 

the following equation: 

... 
Zl(Q) f dT 

o T 
J Dx 

T 1 "2 1 2 exp {i f dT ( - - x tT) -2 m 2 
0 

(A.9) 

The circle through the integral sign reminds us of the 

boundary condition x (0) = x (T). The factor liT in the integration 
II II 

over T is needed to avoid overcounting. The point T o is arbi-

trary and can be placed anywhere along the trajectory, and so the 

same geometrical curve is overcounted in a way proportional to its 

length T because of the arbitrariness of the location of the point 

T = O. The divergence at T = 0 is not serious since it only contri-

butes to the normalization constant; it can be eliminated by dividing 

Zl by its value at zero external field. 

We have so far considered only a single trajectory; however, the 

sum over all trajectories indicated in Eq. (3.3) can easily be done: 

Z L 
N=O 

..!... 
N! 

(t •. 1U) 



-43-

where Zl is given by (A.g). The passage from Eq. (A.IO) to field 

theory (or rather, the reverse) is given in reference 13, and for 

the sake of completeness, we give a very brief review of their 

derivation. One first passes from the Lagr&lgian form of (A.9) 

to the following Hamiltonian form: 

CD 

Zl I~T J nx J Dp 

T 

f dT 
• 1 2 2 

exp {i [p·x + "2 (p - Q) - m j}, 
0 

where p (T) is the- canonically conjugate variabl.e to the position 
~ 

(A.H) 

coordinate x (T). Feynman's fundamental result for quantum mechanics 
~ 

as an integral over classical paths tells us that 

Z = I 

. fy. [~v] where, with p and x now operators satls lng x,p 

(A.12) 

ig~V 

(A.13) 

It is also well known that the boundary condition imposed by closed 

trajectories translates into a trace over the Hilbert space of the 

Hamiltonian H. 

Up to a normalization, (A.12) gives 

Zl Tr (log H) (A.14 ) 
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which substituted into (A.IO), leads to the result 

Z(Q) exp [Tr(log H)] det (H). (A.15) 

However, if one carries out the functional integration over the 

field X on the right hand side of Eq. (3.3), upon identifying the 

partial derivative a~ with iP~, one obtains precisely Eq. (A.15). 

Eq. (3.3) is therefore established. 
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Figure Captions 

Figure 1. A self-energy contribution to the vortex. The solid line 

represents a point vortex and the wavy line is the massive, 

... 
\l 

Figure 2. A self-energy contribution to the vortex due to lack of 
19C• Montonen and D. Olive, Cern preprint TH.2391 (Sept. 1977). normal ordering. 

!,landelstam. private cOllll'lunication. 
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Non-Abelian Gauge Theories. talk given at the Washington I~eeting 

of the American Physical Society, April 1977. C. 't Hooft, 

On the Phase Transition Towards Permanent Quark Confinement, 

Institute for Theoretical Physics preprint (University of Utrecht, 

Dec. 1977). 

Figure 3. A contribution to the self-energy of the photon in scalar 

QED. The wavy line is the photon, and the dotted line is 

a charged boson. 

Figure 4. A contribution to the self-energy of the photon in scalar 

QED due to lack of nOrTh~l ordering. This graph cannot be 

thrown out since it combines with the graph of Figure 3 to 

form a gauge invariant result. Gauge invariance requires 

no normal ordering. 
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