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ABSTRACT OF THE DISSERTATION

Task-Adaptive Scientific Error-Bounded Lossy Compression

by

Jinyang Liu

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2024

Dr. Zizhong Chen, Chairperson

Modern scientific simulation applications are capable of generating petabytes of data out-

puts in several hours, necessitating effective compression methods for efficient data storage,

analysis, and transmission. Error-bounded lossy compression has emerged as the most suit-

able strategy for managing these vast data volumes. It significantly reduces data size and

controls point-wise data distortion according to user requirements, making it crucial for

boosting the utility of scientific data.

However, existing error-bounded lossy compressors still have obvious limitations.

On the one hand, they have not fully exploited the correlations in the input data points to

optimize the compression rate-distortion. On the other hand, each of them cannot handle

all of the diverse inputs with varying characteristics and accuracy requirements well by pre-

senting consistent and satisfactory compression results. The core reason for the limitations

is that most of the existing compressors feature fixed designs of compression techniques,

frameworks, and/or pipelines, which makes them hard to adapt to diverse practical use

cases and users’ requirements.
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Aware of those various requirements for scientific data compression in different

real-world tasks, this dissertation explores multiple flexible error-bounded lossy compression

techniques and strategies for scientific data across three dimensions.

First, for efficiency-aware compression tasks, this dissertation proposes an interpolation-

based error-bounded lossy compressor, namely QoZ. QoZ can auto-tune its data predictor

based on various quality metrics, meanwhile offering multiple optimization levels to balance

compression ratio and speed for different use cases.

Secondly, for high-ratio compression, this dissertation presents FAZ, a hybrid error-

bounded lossy compressor combining data transform and prediction techniques. FAZ dy-

namically constructs and tunes its compression pipeline for each data set, employing either

wavelet-transform-based or interpolation-based data compression methods, to achieve opti-

mal compression rate-distortion for diverse scientific datasets.

Lastly, the dissertation explores the application of Deep Learning in scientific

data compression. Featuring a transformer-based super-resolution neural network for data

prediction, SRN-SZ is presented in this dissertation, demonstrating superior performance

on specific low-compressibility datasets compared to other scientific lossy compressors.
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Chapter 1

Introduction

1.1 Motivations and Challenges of Scientific Error-Bounded

Lossy Compression

The gigantic scale and exceptionally intense computation power of modern su-

percomputers have empowered the exascale scientific simulation applications to generate

tremendous amounts of data in short periods, bringing up significant burdens for distributed

scientific databases and cloud data centers. For instance, A one-trillion particle Hard-

ware/Hybrid Accelerated Cosmology Code (HACC) [31] can harness approximately 22PB

output data in a single simulation, and Community Earth System Model (CESM) [42] simu-

lation may generate 2.5PB data for a simulation task [78]. To this end, error-bounded lossy

compression techniques have been developed for those scientific data, and they have been

recognized as the most proper strategy to manage the extremely large amount of data. The

advantage of error-bounded lossy compression is primarily two-fold. On the one hand, it
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can reduce the original data to an incredibly shrunken size which is much smaller than the

compressed data size generated by a lossless compressor. In an analysis provided by [101],

on representative scientific datasets, state-of-the-art lossless compressors can only present

compression ratios 1 which are less than 3, but a typical error-bounded lossy compressor

SZ3 can have tens or hundreds of compression ratio on those datasets. On the other hand,

the error-bounded lossy compression can constrain the point-wise data distortion strictly

upon the users’ requirements. Figure 1.1 presents an example of compressing the pressure

field of Miranda dataset [1] by both non-error-bounded method (downsampling and tricu-

bic interpolation) and error-bounded method (by QoZ [65]). Under the same compression

ratio of 64 (so the same compressed data size), the decompression data from error-bounded

exhibits far better visualization quality than the one from tricubic interpolation.

(a) Original Data (b) Tricubic interpolation (c) QoZ

Figure 1.1: Visualized comparisons among Miranda-pressure data (a), non-error-bounded
decompressed data (b) (by downsampling and tricubic interpolation), and error-bounded
decompressed data (c) (by QoZ). The compression ratios for (b) and (c) are both 64.

1Compression ratio: The division of input data size by compressed data size.
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Attributed to the strength of error-bounded scientific lossy compression, it is lever-

aged in diverse scientific data management use cases, such as reducing memory footprint,

accelerating I/O, and reducing streaming intensity. In those different circumstances, the

requirements for error-bounded scientific lossy compressors also diverge. For example, in

cases of reducing storage space costs, users concentrate on optimizing compression ratios

with considerable tolerance of compression speed. But in order to reduce streaming inten-

sity, the compressors need to be fast enough to avoid introducing additional latency, whereas

the compression ratios can just be moderate. Intuitively, it would be a great idea to propose

a compressor design with both highly optimized compression ratios and fast compression

speed, so that it can satisfy a large variety of compression requirements. However, designing

a versatile error-bounded lossy compressor that delivers high compression ratios with suffi-

cient efficiency is quite challenging. First, to reach a high compression performance, general

techniques have to perform relatively simple data transform [61] or prediction within short-

range areas [55, 101, 5], which cannot take advantage of long-range data correlations, thus

leading to limited compression ratios. Second, to reach a high compression ratio, general so-

lutions are applying sophisticated techniques such as wavelet transform [49] or higher-order

SVD [11] on the full data input, which suffers from high computational costs, conflicting

with the high-performance objective. Last, due to the diversity of scientific domains and

varied characteristics, Many of the existing compressors failed to deliver stable and con-

sistent compression outcomes on a large range of scientific datasets. Therefore, existing

compressors have not covered all the requirements raised in essential practical use cases,

which calls for new research.
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In the rest of this chapter, this dissertation will first feature the technical back-

grounds of scientific lossy compression for readers’ better understanding of this dissertation,

and then stress the research routines and contributions of this dissertation.

1.2 Scientific Error-Bounded Lossy Compression Strategies

Multiple existing works in the field of scientific error-bounded lossy compression

have proposed a large diversity of compressor designs, and they contain various data pro-

cessing techniques. As an important background, in this section this dissertation presents

brief demonstrations for them.

1.2.1 Compressor archetypes

Existing error-bounded lossy compressors fall in diverse archetypes, such as prediction-

based – SZ3 [101, 58], transform-based – ZFP [61] and SPERR [49], and dimension-

reduction-based – TTHRESH [11]. In the following, those archetypes are featured.

Prediction-based compressor

A prediction-based scientific compressor [62, 47, 55, 58, 65] normally involves four

steps in its pipeline: point-wise data prediction, quantization, variable-length encoding,

and dictionary encoding. Data prediction is the most critical step in prediction-based

compressors because higher prediction accuracy can significantly reduce the size of the

encoded bitstream of prediction errors.
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Transform-based compressor

Data transform methods (e.g. Discrete Cosine Transform and Discrete Wavelet

Transform) have been adopted in several scientific lossy compressors [61, 48, 49]. After

transforming the original data into a new domain, the transformed coefficients often exhibit

substantially more compressibility than the original data. This fact enables the effective

usage of data transforms into scientific data compression.

Dimension-reduction-based compressor

Dimension reduction techniques such as Higher-order singular value decomposition

(HOSVD) can effectively decompose the high-dimensional (3D, 4D, or even more) input data

to a set of 2D matrices and a small core tensor, meanwhile bringing low errors. Therefore,

a scientific lossy compressor that integrates those dimension-reduction techniques can work

significantly well for high-dimensional scientific datasets.

Deep-learning-based compressor

Several different types of deep neural networks have also been leveraged in scientific

lossy compression. For example, some works [64, 33] apply autoencoders [12, 45] for creating

compact representations of data. Others [32, 36, 71] propose predictive neural networks for

prediction-based scientific lossy compression.

1.2.2 Compression techniques

Several important data processing techniques for scientific lossy compression are

demonstrated as follows. They serve as critical modules in scientific error-bounded lossy
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compression pipelines. For the conciseness of the dissertation, only the ones closely relevant

to the proposed compressor designs in this dissertation will be illustrated.

Data prediction

In prediction-based scientific error-bounded lossy compressors, data prediction

modules reconstruct the input data (both in compression and decompression) by differ-

ent methods, and as mentioned before it is the most critical module in the pipeline. With

this technique, the compressor can efficiently store the prediction error offsets instead of the

original data values. Supported by the error quantization technique (to be detailed later),

a high-accuracy data predictor can make the error offsets to be converted to mostly zeros

and close-to-zero integers, which leads to greatly optimized compression ratios for them.

Many existing data prediction methods leveraged in scientific error-bounded lossy

compressors are listed in Table 1.1. The most popular ones include Lorenzo predictor

[24, 82], linear regression [55], and spline interpolation [101].

Table 1.1: Predictors used in different lossy compressors
Predictor Compressor Domain # Values Used

Lorenzo SZ1-3 [24, 82, 58], FPZIP [62] General 1 or 3 or 7
Mean-value SZ2 [55] General Many

Linear Regression SZ2 [55] General 216
Spline Interpolation SZ3 [58], QoZ [65], FAZ [66] General 2 to 4

Scaled-Pattern Pastri [30] Quantum Chemistry Many
Temporal Smoothness MDZ [100] Molecular Dynamics 1

Multi-level MDZ [100] Molecular Dynamics Many
Mask-based CliZ [40] Climate 2 to 4
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Error quantization

Quantization means mapping continuous values into countable sets each repre-

sented by a discrete value. Rounding real values into integers is a typical example. Error

quantization is a popular technique for scientific error-bounded lossy compressors, especially

prediction-based ones because it can be used for both converting the data reconstruction

errors into easy-to-encode integers and guaranteeing the compression error bound. For

example, given a data reconstruction error r and an error bound e, the linear-scale quan-

tization computes the quantized error q = Round( r
2e), so that the difference between the

recovered error r
′

= 2eq and r will no larger than e. According to this fact, an error-

bounded lossy compressor can store q instead of r for adjusting the data reconstruction and

respecting the error bound.

Wavelet Transform

Wavelet transform, specifically the hierarchical multidimensional discrete wavelet

transform, is a useful data transform method for scientific data compression. In many cases,

it can effectively de-correlate and sparsify the input data to coefficients with higher com-

pressibilities. Example wavelet transforms leveraged in existing scientific lossy compressors

are the CDF9/7 [21] wavelet in SPERR [49] and Sym13 [23] wavelet in FAZ [66]. In those

compressors, the input data array is first preprocessed with wavelet transforms. Next, the

transformed coefficient array is further encoded with certain encoding algorithms such as

the SPECK [73] encoding algorithm for wavelet coefficients. The encoded bitstream usually

exhibits a significantly reduced size compared with the original data. One core limitation of
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wavelet transform is that the effective transforms often have a relatively high computational

cost and therefore apparently slow down the compression process.

Lossless encoding

Lossless encoding is also a critical technique in error-bounded lossy compression

that can help obtain a fairly high compression ratio in general because the intermediate

data from the previous steps (such as quantized errors) tends to be very sparse. Applying

lossless encoding on those intermediate data often brings much more reduced data size with

zero information loss. The lossless encoders used in scientific lossy compressors include

but are not limited to Huffman Encoding, Arithmetic Encoding, RunLength Encoding,

Fixed-length Encoding, and Embedded Encoding.

Deep neural networks

Since neural-network-based compression has been well developed and practicalized

for natural images and videos, several attempts have also been made to leverage neural

networks for the lossy compression of scientific data. In neural-network-based scientific

lossy compressors, the neural networks can serve as both data encoders and data predictors.

They can also be either offline-pre-trained by pre-acquired datasets or online-trained by

input data. Neural network-based compressors with online-trained networks can achieve

much better compression ratios and/or distortions than offline-trained networks but suffer

from lower throughputs due to the requirement of training for each separate input. Neural-

network-based compressors with offline-trained networks are free from per-input training

but also need to address the challenge of collecting trustworthy training datasets. No matter
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which scheme is used, neural-network-based scientific lossy compressors still must overcome

the limitation of low-speed neural networks, presenting a better balance of quality and

performance to fit the practical usage in high-performance scientific computing systems.

1.3 Evaluation Metrics for Scientific Lossy Compression

To quantitatively analyze and evaluate scientific lossy compressors, several well-

defined metrics have been widely adopted in the community of scientific data compression.

There are two main types of them: one is the compression ratio and bit rate which represents

the compressed data size, and the other contains multiple quality metrics for evaluating the

decompression data quality.

1.3.1 Compression ratio and bit rate

Compression ratio and bit rate directly measure the size of the compressed data.

Compression ratio is defined by the input data size divided by the compressed data size.

Specifically, for input data X and compressed data Z, compression ratio ρ is:

ρ =
|X|
|Z|

(1.1)

According to Eq. 1.1, a higher compression ratio means better (smaller) compressed size,

and vice versa. In the visualization of experimental results, researchers often plot curves

with another metric closely related to the compression ratio, namely the bit rate. Bit rate

is defined by the average number of bytes used in the compressed data to store each data

element for the input data, which can be expressed as (denote bit rate by b):
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b =
sizeof(x)

|Z|
(1.2)

in which x is an element of the input X, and sizeof() returns the byte size. Since the bit

rate is reciprocal to the compression ratio, a lower bit rate is better.

1.3.2 Quality metrics

Quality metrics work for measuring different aspects of the decompression data

quality by different comparison methods between the original data and the decompressed

data. There are quite a few mathematically defined metrics to model the data quality, and

the most representative and important ones among them are listed here.

PSNR

PSNR is a metric commonly used in the rate-distortion evaluation [83]. PSNR

measures the data distortion (i.e., compression errors) with mean-square errors according

to the following formula (vrange means the value range = max(X)-min(X)):

PSNR = 20 log10
vrange(X)√
mse(X,X ′)

(1.3)

SSIM

SSIM [93] is a significant metric commonly used to measure the visual quality of

decompressed data. The formula for calculating SSIM with input data X and decompressed

data X
′

is:

SSIM = 1
N

∑N
i=1 SSIMi(X,X ′) (1.4)
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SSIMi(X,X ′) is the calculation of SSIM for a local sliding window i, which is calculated

as follows:

SSIMi(X,X ′) =
(2µXµX′+c1)(2σXX′+c2)

(µ2
X+µ2

X′+c1)(σ2
X+σ2

X′+c2)
(1.5)

where µ is the mean, σ is the standard variance/covariance. For details, this dissertation

refers readers to read Wang et al.’s papers [93].

Auto-correlation of compression error (AC)

Auto-correlation of compression error (AC) is a very important metric concerned

by many application users. It is defined as follows.

AC =
E(ei−µi)(ei+k−µi+k)

σ2
(1.6)

where ei denotes the compression error at data point i and k is the lag (or offset) used to

calculate the auto-correlation. The lower the AC value, the higher the randomness of the

error correlation at adjacent data points. In general, the users expect to have a random

error correlation between adjacent data points (i.e., low AC values).

1.4 Contributions and Dissertation Organization

After deeply analyzing existing techniques and artifacts for scientific error-bounded

lossy compression, this dissertation believes that the best strategy for designing an effective

scientific error-bounded lossy compressor is to make it task-adaptive. In other words, its

design should be based on the awareness of its potential use cases, and only with this can it

be optimized in the most practical way for real-world usage. For example, there are several
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important users’ requirements for the scientific error-bounded lossy compression, for which

the existing works failed to fill in the blanks:

• Maximally reducing the data size with fast enough speed (whereas existing high-speed

compressors present under-optimized compression ratios);

• Optimize compression according to different quality metrics (whereas existing com-

pressors only deliver fixed outputs with certain inputs and parameters);

• Present consistently excellent compression ratio among a diversity of datasets (whereas

many delicately designed high-ratio compressors only perform well on a limited num-

ber of datasets);

To address the issues including but not limited to the above-mentioned ones, in this

dissertation, several scientific error-bounded lossy compressors with heterogeneous designs

and frameworks are proposed. They feature different trade-offs between compression ratios

and speeds, covering most of the existing scientific data compression use requirements.

1.4.1 Quality-metric-oriented high-performance lossy compression

The existing error-bounded lossy compressors are all developed based on inflex-

ible designs or compression pipelines, which cannot adapt to diverse compression quality

requirements and/or metrics favored by different application users. To resolve this issue, in

Chapter 2, this dissertation proposes a novel dynamic quality-metric-oriented error-bounded

lossy compression framework, namely QoZ. The detailed contribution is multi-fold. (1) QoZ

features a novel highly-parameterized multi-level interpolation-based data predictor with

dynamic interpolation schemes, which can significantly improve the overall compression
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quality with the same compressed size. (2) QoZ integrates an advanced auto-tuning module,

which can auto-determine the critical parameters of its interpolation-based data predictor

for optimizing the compression ratio and user-specified quality metrics during online com-

pression. (3) QoZ has 2 major released versions (1.0 and 2.0) and both of them have been

systematically evaluated by comparing its compression quality with multiple other state-

of-the-art compressors on various real-world scientific application datasets. Experiments

show that, compared with the second-best lossy compressor, QoZ 1,0 can achieve up to

70% compression ratio improvement under the same error bound, up to 150% compression

ratio improvement under the same PSNR, or up to 270% compression ratio improvement

under the same SSIM. Moreover, QoZ 2.0 can further improve the compression ratio by up

to 140% under the same error bound, and by up to 360% under the same PSNR. In par-

allel data transfer experiments on the distributed database, QoZ 2.0 achieves a significant

performance gain with up to 40% time cost reduction over other compressors.

1.4.2 Adaptive high-ratio compression with pipeline auto-tuning

Existing high-ratio scientific error-bounded lossy compressors are facilitated with

highly advanced and complicated data processing techniques, but none of them consistently

present outperforming compression ratios among scientific datasets of different character-

istics. In Chapter 3, this dissertation develops FAZ, a flexible and adaptive error-bounded

lossy compression framework, which projects a fairly high capability of adapting to diverse

datasets. FAZ can always keep the compression ratio and quality at the best level compared

with other state-of-the-art compressors for different datasets. Experiments show that com-

pared with the other existing lossy compressors, FAZ can improve the compression ratio by
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up to 120%, 190%, and 75% when setting the same error bound, the same PSNR, and the

same SSIM, respectively.

1.4.3 Improving low-compressibility scientific data compression with super-

resolution neural network

Among the diverse datasets generated by various scientific simulations, certain

datasets cannot be effectively compressed by any existing error-bounded lossy compressors

with traditional techniques. The recent success of Artificial Intelligence has inspired several

researchers to integrate neural networks into error-bounded lossy compressors. However,

those works still suffer from limited compression ratios and/or extremely low efficiencies.

To address those issues and improve the compression on the low-compressibility data, in

Chapter 4, this dissertation proposes SRN-SZ, which is a deep learning-based scientific error-

bounded lossy compressor leveraging the hierarchical data grid expansion paradigm imple-

mented by super-resolution neural networks. SRN-SZ applies the most advanced super-

resolution network HAT for its compression, which is free of time-costing per-data training.

In experiments compared with various state-of-the-art compressors, SRN-SZ achieves up to

75% compression ratio improvements under the same error bound and up to 80% compres-

sion ratio improvements over the second-best compressor under the same PSNR.

1.4.4 Organization

The next chapters of this dissertation are organized as follows: Chapter 2 proposes

a high-performance interpolation-based scientific error-bounded lossy compressor QoZ, which

is capable of auto-tuning its compression according to users’ targets. Chapter 3 demon-
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strates FAZ, a pipeline-auto-tuning-based scientific lossy compressor that achieves optimized

compression ratios on a wide range of scientific datasets. In Chapter 4, this dissertation

presents a novel exploration of leveraging deep learning techniques, specifically speaking the

transformer-based super-resolution network, in scientific error-bounded lossy compression.

Facilitated with the Hybrid-attention Transformer, the designed compressor SRN-SZ shows

excellent compression outcomes for low-compressibility scientific data.

1.5 Related Works

The related works of this dissertation are categorized into different specific topics,

and are covered in different sections of the following chapters, including Section 2.2, Section

3.2, and Section 4.2.
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Chapter 2

QoZ: Interpolation-Based

High-Performance Scientific

Error-Bounded Lossy

Compressoion

2.1 Overview

2.1.1 Motivations: Improving quality-oriented high-performance scien-

tific error-bounded lossy compression

The first critical research problem this dissertation would like to address is es-

tablishing and optimizing the quality-oriented high-performance scientific error-bounded

lossy compression. Existing high-performance error-bounded lossy compressors all have in-
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flexible designs, which cannot adapt to users’ diverse requirements for reconstructed data

quality. In addition to the strict error-bound constraint, the users may care about the

rate-distortion (i.e., the relationship between compression ratio vs. some specific quality

metric value) according to their post hoc analysis. Rate distortion may involve different

quality metrics in practice. For instance, peak signal-to-noise ratio (PSNR) [83] (equivalent

with normalized root mean squared error (NRMSE)) is a common quality metric to assess

the overall statistical distortion of the data [47, 82, 81, 10, 13, 75]. Structural Similarity

Index (SSIM) [93] is a perceptual metric that quantifies the visualization quality for a re-

constructed data snapshot, which has also been widely used to assess the reconstructed data

quality [9, 10, 8, 13, 83]. Low auto-correlation (AC) of compression errors [83, 103] is often

highly preferred by users because it is consistent with the white noise nature. In practice,

under the same error bound, the reconstructed data generated by various lossy compression

methods often exhibit different levels on these distortion quality metrics.

However, although some lossy compressors (such as MGARD [5] and Fixed-PSNR

based compression [81]) support preserving different quantity of interest (QoI) metrics (such

as L-infinity, L1-norm and L2-norm errors), they are just preserving a threshold of the

metric and none of them can dynamically optimize the compression based on diverse quality

metrics under a certain error bound. That is, given a particular error bound, each existing

high-performance lossy compressor always generates fixed compression and decompression

outputs, which leaves a significant gap for users to control the compression quality on

demand. Moreover, due to the concern for compression efficiency, the data modeling and

processing techniques integrated into existing high-performance compressors are presenting
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a nature of under-optimization of data reconstruction quality, which also brings a problem

to resolve. The research in this dissertation will target this two-fold research topic: First,

it will improve the decompression data quality of high-performance error-bounded scientific

lossy compression; Second, it will enable the scientific error-bounded lossy compression to

support optimization of different quality metric targets.

2.1.2 Challenges and contributions of QoZ

This chapter proposes a novel quality-metric-oriented error-bounded lossy com-

pression framework, namely QoZ, which faces several challenging issues. (1) Combining

the user-specified quality metric with error-bounded lossy compression requires an in-depth

investigation of various lossy compression models. (2) Based on a specified quality metric,

determining which steps or what parameters in the compression are tunable and critical

to the overall compression quality is non-trivial. (3) How to optimize the rate-distortion

with respect to the user-specified quality metric is non-trivial, since in this case, the com-

pression result regards a co-optimization of the compression ratio and the quality metric

instead of just maximizing the compression ratio. A straightforward method is using trial-

and-error search to run the compressor multiple times with different tunable parameters,

which inevitably introduces expensive computation costs [89, 88]. To the best of the au-

thor’s knowledge, the developed QoZ compressor is a fresh attempt to adaptively optimize

compression quality based on different quality metrics online under a particular error bound.

In order to make QoZ feature both high compression ratios and satisfactory speeds,

this dissertation has also developed a brand-new auto-tuning strategy and an anchor-based

level-wise hybrid interpolation predictor. Integrating extensively optimized interpolation
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predictors and auto-tuning modules, QoZ attains far better compression ratios and lower

distortions than other high-performance error-bounded lossy compressors with limited com-

pression speed degradation. QoZ is also substantially faster than other high-ratio compres-

sors. It achieves optimized throughput performance in a variety of use cases such as parallel

data transfer for large (distributed) databases. The contributions are attributed as follows:

• This dissertation carefully explores and designs the best-fit data predictor for building

the error-bounded lossy compression framework QoZ. Founded on theoretical analysis

and algorithmic optimizations, QoZ substantially upgrades the most critical step in

the quality-oriented compression – interpolation prediction, leading to an immensely

improved data prediction accuracy.

• This dissertation develops an efficient error-bounded lossy compression framework

that can dynamically optimize different inclined quality metrics in online compres-

sion. To this end, it leverages multiple advanced techniques, including block-wise

interpolation tuning, dynamic dimension freezing, and Lorenzo tuning, which can

substantially improve the adaptability of the auto-tuning for compression across a

broad spectrum of inputs.

• Solid experiments are performed using 6 real-world scientific datasets. QoZ signifi-

cantly outperforms state-of-the-art high-performance error-bounded lossy compressors

in terms of rate-distortion, while still having a decent speed beating other high-ratio

compressors. Consequently, it achieves the best throughput in distributed data trans-

fer over WAN based on the experiments. QoZ exhibits the least time cost in data

transfer for most scientific datasets with up to 40% time reduction.
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2.2 Related Work

In general, scientific data compression techniques can be divided into two categories

- lossless compression and lossy compression. Examples of existing lossless compressors for

databases are Gorilla [74] and AMMO [96] for time-series data, and traditional lossy data

compression methods include ModelarDB [39, 44] for time-series data and [47, 98, 28, 51]

for Geology spatial-temporal data. Besides that, error-bounded lossy compression has been

preferred and crafted to serve various scientific data reduction applications [13] and scien-

tific databases. To meet the requirement of scientists, the error-bounded lossy compression

needs to constrain the point-wise compression errors within a certain value, which differs

from compression techniques for traditional data such as JPEG-2000 [85] for image data

and h.265 [79] for video data. The error-bounded scientific compressors are classified into

four main categories: prediction-based, transform-based, dimension-reduction-based, and

neural-network-based. They also essentially utilize approaches to manage the data distor-

tion in line with user-specified error bounds.

The prediction-based compressors use data prediction techniques, like linear re-

gression [55] and dynamic spline interpolations [101]. Well-known examples are SZ2 [55] and

SZ3 [58, 101]. Transform-based compressors use data transformations to de-correlate the

data, then switch to compress the more compressible transformed coefficients. ZFP [61],

for example, is a typical example that employs exponent alignment, orthogonal discrete

transform, and embedded encoding. SPERR [49], a more recent work, leverages wavelet

transform for data compression. Dimension-reduction-based compressors apply dimension

reduction techniques, with (high-order) singular vector decomposition (SVD) being a case
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in point (for instance, TTHRESH [11]). Neural-network-based compressors [64, 29, 68, 33]

utilize neural network models like the autoencoder family [12, 45, 46].

Each compressor has its strengths and weaknesses, depending on the nature of

the input data and user needs. To enhance scientific error-bounded lossy compression, two

emerging approaches are raised to further refine the specialization of the compressor or to

boost its versatility. Regarding compressor specialization, MDZ [100], a prediction-based

compressor, is specifically tailored for molecular dynamics simulation data. SZx [95] offers

low-ratio lossy compression at incredibly high speeds. CuSZ [87], CuSZ+ [86] and FZ-GPU

[97] delve into GPU-based scientific lossy compression to quicken the compression process.

[41] aims at maintaining the quantities of interest (QoI) of the input data.

With all those evolving works taken into insight, there is still a lack of broad-

spectrum scientific error-bounded lossy compressors that can achieve both top-tier com-

pression quality and adequate compression speed. In this chapter, the proposed solution

endeavors to fill this gap: it pursues both high compression quality (by optimizing the

rate-distortion) and high execution throughput across a wide range of scientific datasets.

2.3 Problem Formulation of Quality-Metric-Oriented Scien-

tific Error-Bounded Lossy Compression

In this section, the research problem of quality-metric-oriented scientific error-

bounded lossy compression is mathematically formulated to clarify the research objective

for this chapter. Basically, it is a dual-objective lossy compression problem: meeting the

necessary condition (error-bound constraint) meanwhile optimizing the compression result
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in terms of the user-specified quality metrics. For example, Rate distortion is a very common

method to assess the lossy compression quality. Rate here refers to the bit-rate, which is

defined as the average number of the bits used to represent a data point after compression.

Obviously, the lower the bit rate, the better the compression result. Distortion measures

the difference between the original data and the decompressed data, and in literature, it is

mainly referred to as peak signal-to-noise ratio (PSNR) [83] (to be detailed later). Here, the

concept of the rate-distortion is extended to fit more generic distortion metrics such as SSIM

[93] and autocorrelation (AC) [83] of compression errors, which is a critical advancement to

optimize compression quality based on user’s requirement on data fidelity in practice.

The problem of quality-metric-oriented error-bounded lossy compression is formu-

lated as follows. Given an input data array (denoted by X) and a user-specified absolute

error bound e, the error-bounded lossy compression consists of a compressor C and a de-

compressor D. It generates the compressed data (denoted Z) and the decompressed data

(denoted X
′
), which strictly respects the error bound (denoted e) on each data point. For

each data value di, |di − d
′
i| ≤ e must be satisfied, where di∈X and d′i∈X ′ represent the

original data value and decompressed data value, respectively. This chapter aims to develop

a highly parameterized error-bounded lossy compression framework, which can auto-tune

the parameters to obtain the best rate-distortion in terms of different quality metrics such

as PSNR, SSIM, and AC (please refer to Section 1.3 for descriptions). This chapter denotes

the error bound by e and the user-specified quality metric by T . For a specific parame-

ter set θ and parameterized compressor Cθ and decompressor Dθ, QoZ can automatically

determine θ according to the optimization problem formulated as follows:
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θ = argOPT
θ

T (X,X
′
, Z)

s.t. Z = Cθ(X)

X
′

= Dθ(Z)

|xi − x
′
i| ≤ e,∀xi ∈ X

where OPT refers to a optimization operation (e.g., max, min) according to the

specific quality metric. Serving for this research target, the proposed error-bounded quality-

metric-oriented compression framework is demonstrated in Figure 2.1.
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Figure 2.1: The error-bounded quality-metric-oriented compression framework.

2.4 QoZ Design Framework

This section proposed an overview of the QoZ compressor. As an interpolation-

based scientific error-bounded lossy compressor, QoZ is designed for structured data grids

in types of floating points and integers. QoZ is adaptive to either one-dimensional (1D)

or multi-dimensional (2D, 3D, 4D ...) inputs, and exploits the dimension-wise spatial cor-
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relations and smoothness of them. The compression framework of QoZ is illustrated in

Figure 2.2. QoZ takes advantage of the SZ3 modular framework [58], which contains the

auto-tuning module, data prediction module, error quantization module, Huffman encoding

module, and the Zstd lossless module. The detailed demonstration of the QoZ compression

pipeline is as follows:

• Step 1: Auto-tuning. With a user-specified quality metric optimization target,

QoZ first auto-tunes its predictor configurations (to be featured in Section 2.6).

• Step 2: Data prediction: QoZ applies the auto-tuned data predictor on the whole

input, acquiring the prediction errors.

• Step 3: Linear quantization (error control): A linear error quantization module

quantizes the data prediction errors in step 2 to control the element-wise decompres-

sion error. For example, for each data value x and its prediction x
′
, the original error

is e = x− x
′

and the quantized error eq satisfies |eq − e| <= ϵ (ϵ is the error bound).

In this way, QoZ can use x
′
+ eq as the decompression of x which is bounded by ϵ.

• Step 4: Huffman encoding: The quantized prediction errors acquired from Step

3 are further encoded with Huffman encoding. A more concentrated distribution

of quantization errors will lower the encoded tree size, therefore the reduction of

prediction error is key to improving the compression ratio.

• Step 5: Lossless postprocessing: The encoded quantized errors and other meta-

data are losslessly compressed by Zstd [22] to further reduce the compressed size.
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QoZ leverages existing modules in stereotype prediction-based error-bounded com-

pression model (orange ones in Figure 2.2) and interpolation techniques (yellow ones in

Figure 2.2). Most importantly, our QoZ framework introduces several new modules and

significantly improved components (as marked in blue and pink), including interpolation

designs and auto-tuning techniques. In the data prediction module and the auto-tuning

module, new designs have been incorporated in QoZ to enhance the compression rate-

distortion substantially. With those new designs, first, QoZ has significantly improved the

interpolation-based data predictors in SZ3 [101, 58], introducing multiple refinements upon

the existing dynamic spline interpolation; Second, QoZ facilitates a novel auto-tuning mod-

ule for handling the optimization of interpolation configurations and boosting adaptability

for more datasets. Third, the compression speed of QoZ still maintains at a high level,

empowering it to well-fit efficiency-oriented tasks. Those newly proposed designs will be

demonstrated in the next sections, including Section 2.5 and Section 2.6.
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Figure 2.2: QoZ framework.
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2.5 QoZ Interpolation-Based Data Predictor

This section presents the developed interpolation-based data predictor used in the

QoZ framework. To optimize the compression with various compression quality require-

ments in terms of different quality metrics, the compression framework needs to be flexible

enough to provide multiple compression results under the same error-bound constraint or

the same compression ratio. As such, a flexible prediction method is critical to the QoZ

framework.

In the design, QoZ data predictor falls in the archetype of spline-interpolation-

based data predictor [58], because of the following two reasons:

• According to Zhao et al.’s study [58], the spline-interpolation-based predictor can

obtain outstanding compression qualities over many other existing lossy compressors

such as ZFP and SZ in most cases.

• The spline-interpolation-based prediction is executed based on a level-wise architec-

ture, which provides great potential for parameterization and auto-tuning.

In what follows, this section first introduces the theoretical and technical funda-

mentals of the spline-interpolation-based data predictor, then describes the developed QoZ

data predictor. These newly proposed designs are not only for the target of quality-metric-

driven compression but also improve the data prediction accuracy in lossy compression,

which will be detailed later.
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2.5.1 Basic spline-interpolation-based predictor

Compared to the traditional extrapolation methods such as the Lorenzo predic-

tor and regression models such as Linear regression, the interpolation-based predictor can

improve the prediction accuracy prominently, especially for smooth datasets, as presented

in Zhao et al.’s recent studies [58]. In the interpolation-based predictor, the data points

in a data array are predicted based on a fixed interpolation method with varied strides,

following a fixed propagation policy (as demonstrated in Figure 2.3 based on a 2D exam-

ple). The entire prediction procedure starts with the first data point (see Stage 1 in the

figure), which will be used to predict large-stride data points through the whole data array,

followed by a linear-scale quantization to make sure the reconstructed value is close to the

true data value within the expected error bound. Then, more data points would be pre-

dicted and quantized along another dimension alternatively, as demonstrated in the figure,

until all the data points are covered (see Stage K in the figure). Note that each interpola-

tion operation has to use the reconstructed data values (i.e., the approximated values after

prediction+quantization on that data point) instead of the original data values, in order to

make sure that the reconstructed data during the decompression would definitely respect

the expected error bound.

2.5.2 Optimizations of spline-interpolation-based data prediction in QoZ

The developed interpolation-based data predictor in QoZ eliminates several critical

limitations of the basic interpolation-based predictor.
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Figure 2.3: Illustration of the basic interpolation-based data predictor.

Anchor points: improving prediction by avoiding long-range interpolation

The first serious issue in the basic interpolation-based predictor is that it suffers

from considerably low accuracy in long-range interpolation. As mentioned previously, the

basic interpolation-based prediction method is executed in the order from large strides to

small strides. Since it does not control the maximum stride length, the prediction accuracy

would be fairly low when the interpolation spans a long distance in the data array. This

situation turns even worse especially when the data exhibits different smoothness or patterns

in different areas. In Figure 2.4, Here is an example to illustrate this serious situation of

the SZ3 which adopts the basic interpolation-based prediction method. It can clearly be

observed that there are more artifacts in the compression errors generated by SZ3 [58] than

by SZ2.1 [55] (using block-wise linear regression and Lorenzo predictor for data prediction)

under the same absolute error bound of 1E-2. This is mainly due to the fact that the

interpolation method cannot predict the distant data values accurately in SZ3, while SZ2

always predicts data points with their neighbors.

QoZ leverages grid-wise anchor points to avoid those inaccurate long-range in-

terpolations, which mitigates the inaccurate prediction issue effectively. Specifically, for

28



-0.01

-0.005

 0.005

 0.01

0

(a) Visualization of 
original data

(b) Error of reconstructed 
data (SZ2.1: error=1E-2)

(c) Error of reconstructed 
data (SZ3: error=1E-2)

Figure 2.4: Visualization of original data and compression error (Hurricane Cloud).

interpolation, anchor points are data points that are considered to be known in advance

and losslessly encoded and saved. These anchor points split the whole data array into many

blocks and all other data points would be predicted/reconstructed by other points within

a certain range, using the multi-level based interpolation method. Note that the storage

overhead introduced by saving the losslessly compressed anchor points would be nearly

negligible if an appropriate stride is set for the anchor point grid. The key advantage of

utilizing anchor points is that it may greatly improve the quality of the distortion metric,

which will be presented later on in Section 2.7.

Level-adapted interpolation and error bound auto-tuning

To have better prediction accuracy, the QoZ data predictor selects the best inter-

polation method at corresponding levels during the compression. As described previously,

the basic interpolation-based prediction method can be decomposed into multiple stages

(as shown in Figure 2.3). In QoZ design, These stages are performed on non-overlapping
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levels: stage 1 corresponds to level K, · · · , and stage K corresponds to level 1. There are

two important takeaways regarding these different interpolation levels.

• These interpolation levels may have different data patterns or characteristics from

each other, which motivates us to adopt different predictors on different levels.

• The compression quality of points at higher levels may affect the compression quality

of points at lower levels significantly, in that the prediction of points always relies on

the decompressed data points at higher levels.

Based on the above two critical takeaways, this dissertation develops the level-

adapted interpolation-based predictor as follows.

First, the QoZ interpolation-based predictor adopts diverse interpolation methods

at different levels. Specifically, the interpolation type includes both linear interpolation

and cubic spline interpolation. As mentioned in Section 2.5.1, the multi-dimensional in-

terpolation method is actually composed of multiple 1D interpolation operations. In a

high-dimensional data array (such as 3D), even for the same interpolation type, each in-

terpolation level may also involve multiple dimensions. As such, different sequences of the

dimensions may lead to different prediction qualities. As an example, for 3D data, there are

6 different dimensional sequences based on the three dimensions (dim0, dim1, and dim2):

012, 021, 102, 120, 201, and 210. Accordingly, considering the two types of interpolation,

there are a total of 12 prediction methods to select at each level.

Second, the QoZ interpolation-based predictor sets different error bounds for dif-

ferent levels. Such a design is motivated by the following important observation. In the

whole interpolation-based prediction, a large majority of the data points (75% in 2D case
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or 87.5% in 3D case) are at the lowest level (level 1), but they are mostly predicted by the

reconstructed data points from higher levels: a total of 25% of the data points in 2D case

or 12.5% of the data points in 3D case. Therefore, setting a smaller error bound at a higher

level may preserve a very good overall prediction accuracy, which improves the compression

quality in turn. Another important motivation is that having flexible and online-tuned level-

wise error bounds makes the metric-driven optimization of lossy compression possible, with

which the compressor can dynamically set error bounds to provide different compression

results according to different optimization targets.

In Figure 2.5, the key differences between QoZ and SZ3 are shown using an example

(based on a 2D data array). As shown in the figure, there are three key differences: (1) QoZ

adopts anchor points that can minimize the error propagation in the interpolation methods

from the top level to the lower levels; (2) QoZ dynamically tunes the parameters (i.e., error

bounds) at different levels, which can improve compression ratio in turn; (3) QoZ uses a

level-adapted interpolation method (highlighted in red font), which can further improve

compression ratio in turn. In the example illustrated in the figure, under error bound 0.05

QoZ interpolates along dim 0 → dim 1 at level 2 with cubic spline interpolation, while its

interpolation dynamically switches to dim 1 → dim 0 with linear spline interpolation under

error bound 0.1 at level 1. How to select the best-fit prediction method will be discussed

later on in Section 2.6 in detail.

In the implementation, there are two critical parameters ( α and β) to tune the

level-wise error bounds for the interpolation-based predictors. Specifically, given a global

error bound e, the error bound for the interpolation level l is:
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example).

el =
e

min(αl−1, β)
(α ≥ 1 and β ≥ 1) (2.1)

The availability and effectiveness of el is determined by the following policy:

• el ≤ e, ∀l. This is to make sure compression errors for all data points must be within

the user-set error bound e.

• e1 = e. This means that the compression of the data points at level 1 which involves

75% (87.5%) of data points in the 2D (3D) input uses the maximum acceptable error

bound (e) to optimize the compression ratio.

• el1 ≥ el2 when l1 < l2. Since every interpolation has to use lossy reconstructed data

instead of the original data (to respect error bound strictly during decompression),

32



the data reconstruction errors would be propagated to all data points at lower levels.

Thus, the error bound at higher levels should be smaller than those at lower levels.

It is worth noting that since QoZ is a dynamic quality-metric-driven lossy compressor, there

would be multiple choices for α and β based on the same input dataset and user-set error

bound, because of various user-specified quality metrics to target. Section 2.6.3 will present

how values of α and β are determined during the online compression.

2.5.3 Advancement of QoZ interpolation: QoZ 2.0 data predictor design

With the above interpolation-based data predictor designs, QoZ has already achieved

quite satisfactory data prediction accuracy and compression ratio, with which its first major

version: QoZ 1.0 is established. In what follows, this section would like to propose several

more advanced designs for interpolation-based data prediction, which are integrated into

the second major version of QoZ (QoZ 2.0). They are optional modules for data prediction

and provide additional trade-offs between compression ratio and speed.

More spline interpolation formulas

Interpolations in QoZ are based on certain spline interpolation formulas, which

interpolate each data point with its neighbors along one dimension. Those splines include

linear spline and cubic spline. Illustrated in Figure 2.6, the data value di on index i is going

to be predicted by a prediction pi with the known data points di−3, di−1, di+1, and di+3 in

its neighbours. The linear spline interpolation uses 2 of them with the following formula:

pi = 1
2di−1 + 1

2di+1
(2.2)
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The cubic spline interpolation formulas leverage all the 4 neighbor points, and the

formulas are deducted from 3 cubic spline functions (f1(x), f2(x), and f3(x)):

f1(x) f2(x) f3(x)

di–3

di–1 di+1

di+3

di

i–3 i–1 i+1 i+3i

value

idxi–2

di–2
di+2

i+2

pi

Figure 2.6: Illustration of 1D cubic spline interpolation.

f1(x) = a1(x−(i−3))3+b1(x−(i−3))2+c1(x−(i−3))+δ1

f2(x) = a2(x−(i−1))3+b2(x−(i−1))2+c2(x−(i−1))+δ2

f3(x) = a3(x−(i+1))3+b3(x−(i+1))2+c3(x−(i+1))+δ3

(2.3)

The spline functions f1, f2, and f3 have scopes of [i−3,i−1], [i−1,i+1], and

[i+1,i+3], respectively. The zero-order, first-order, and second-order interpolation con-

ditions are shown as follows:

f1(i− 3) = di−3; f1(i− 1) = di−1

f2(i− 1) = di−1; f2(i + 1) = di+1

f3(i + 1) = di+1; f3(i + 3) = di+3

f
′
1(i− 1) = f

′
2(i− 1); f

′
2(i + 1) = f

′
3(i + 1)

f
′′
1 (i− 1) = f

′′
2 (i− 1); f

′′
2 (i + 1) = f

′′
3 (i + 1)

(2.4)
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Since f1, f2, and f3 have 12 coefficients in total and Eq. 2.4 only has 10 conditions,

two more boundary conditions are needed. The traditional SZ3 and QoZ 1.0 cubic spline

interpolation [101, 65] applies the following ’not-a-knot’ conditions:

f
′′′
1 (i− 1) = f

′′′
2 (i− 1); f

′′′
2 (i + 1) = f

′′′
3 (i + 1) (2.5)

Then with Eq. 2.4 and Eq. 2.5, the prediction value of pi is:

pi = f2(i) = − 1
16di−3 + 9

16di−1 + 9
16di+1 − 1

16di+3
(2.6)

However, there are other choices for the 2 boundary conditions, which may lead

to different cubic spline interpolation formulas. QoZ 2.0 explores another set of boundary

conditions: the natural spline condition, which is:

f
′′
1 (i− 3) = 0; f

′′
3 (i + 3) = 0 (2.7)

Combining Eq. 2.4 and Eq. 2.7, the interpolation for predicting pi is:

pi = f2(i) = − 3
40di−3 + 23

40di−1 + 23
40di+1 − 3

40di+3
(2.8)

The experiments with multiple datasets under diverse error thresholds showed that

Eq. 2.2, Eq. 2.6, and Eq. 2.8 have distinct advantages. In different cases, each of them

is able to outperform others. Therefore, QoZ 2.0 employs all 3 of them and dynamically

selects from them for each task.

Integrating multi-dimensional spline interpolation

In SZ3 and QoZ 1.0 interpolation-based compressors, for each data point, the

interpolation is performed along a single dimension, so they need to switch the interpolation

directions during this process and arrange an order for those directions. In the following
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text, this interpolation method is named 1D-style interpolation. As an example, in Figure

2.7 (a), the 1D-style interpolation first proceeds interpolations along Dim0, then performs

the rest of the interpolations along Dim1.

Actually, The existing 1D-style interpolation has not fully exploited the multi-

dimensional continuity and smoothness of input data arrays, because all the interpolations

are constricted in a single-dimensional direction. To address this limitation, a new inter-

polation paradigm called multi-dimensional spline interpolation is proposed for QoZ 2.0,

which can take better advantage of data correlation across multiple dimensions. As shown

in Figure 2.7 (b), the multi-dimensional spline interpolation initially performs the 1D in-

terpolations for some data points as there are only 1D neighbors at the moment, then it

performs 2D interpolations for the remaining data points that already have neighbors in

two dimensions. The multi-dimensional spline interpolation is symmetric across all the

dimensions, meaning that it does not need a selection of dimensional order.

With the main concept of the QoZ 2.0 multi-dimensional spline interpolation in

mind, two questions remain: how should QoZ 2.0 carry out the multi-dimensional interpola-

tions specifically, and why does it outperform the 1D-style interpolations? To make answers

to those questions, the QoZ 2.0 multi-dimensional interpolation is featured as follows. For

each data point x, suppose Xi (1 ≤ i ≤ n) are all the available 1D interpolation results for

predicting x (which can either be linear interpolation or cubic interpolation and are along

all dimensions), the multi-dimensional interpolation result X
′

is a linear-combination of Xi:

X
′

=
n∑

i=1

αiXi (

n∑
i=1

αi = 1) (2.9)
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Theorem 1 With fine-tuned αi, X
′
would have a no higher prediction error than that of

the 1D-style interpolation Xi.

Proof. Without loss of generality, we can regard {Xi} and X
′

as random variables, in

which {Xi} are independent with each other. When dealing with smooth data inputs, the

{Xi} can be thought of as no-biased estimations of x, i.e. E(Xi) = x.

Now consider the X
′
. Since

∑n
i=1 αi = 1, it is easy to know that E(X

′
) = x,

so X
′

is still a non-biased estimation of x. Because Xi are independent with each other,

(X
′ − x) =

∑n
i=1 αi(Xi − x) follows the distribution of N(0, σ2), in which:

σ2 =
n∑

i=1

α2
i σ

2
i (2.10)

With the Lagrange method, based on the constraint
∑n

i=1 αi = 1,

minσ2 =

∏n
i=1 σ

2
i∑n

i=1 πi
≤ min{σ2

1, σ
2
2, ...σ

2
n} (πi =

∏n
j=1 σ

2
j

σ2
i

) (2.11)
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The minimum is obtained when:

α∗
i =

πi∑n
j=1 πj

(2.12)

As such, we have proved that, if the {αi} is selected based on Eq. 2.12, the

prediction error variance of the multi-dimensional interpolation X
′

will be no larger than

each of the 1D-style interpolation Xi according to Eq. 2.11. So, the average L-1 prediction

error will also be minimized.

How to determine α∗
i (i.e. how to estimate σ2

i ) will be detailed in Section 2.6.

Levarging interpolation re-ordering

After the proposal of natural cubic spline and multi-dimensional interpolation,

QoZ 2.0 also introduces interpolation re-ordering, which improves both prediction accuracy

and speed. It includes two aspects: the fast-varying-first interpolation and same-level cubic

interpolation. First, this section discusses the fast-varying-first interpolation. In the existing

implementation of 1D interpolations, the interpolations are executed axis by axis on the

input dataset, and along each axis, the interpolations are performed ’slice by slice’. The

’slice’ here means a slice of the data array along an interpolation axis. Figure 2.8 (a) presents

a 2D example for the order of interpolations adopted by QoZ 1.0 (and also SZ3): the

interpolations are performed in the sequence of numbers (1, 2, 3, · · · ). For the interpolation

along Dim0 in QoZ, it follows dim0-major order: the interpolation is executed along Dim0

with a higher preference compared with Dim1. However, when Dim1 is the fastest-varying-

dimension , this interpolation order may fall into a bad cache usage because it is successively

accessing data points located distantly in the memory. To resolve this issue, QoZ 2.0 re-
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arranges the interpolation order, having the interpolations first move along the fast-varying

dimension (the Dim1-major style as in Figure 2.8), as demonstrated in Figure 2.8 (b). The

interpolation position first traverses through Dim1 and then moves along Dim0. In this

way, the data points are accessed sequentially with shorter distances in the memory so that

the cache usage can be optimized, greatly saving the memory access cost.
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(a) QoZ 1.0 Dim0 interpolation order (b) QoZ 2.0 Dim0 interpolation order
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Figure 2.8: Comparison of QoZ 1.0 and QoZ 2.0 interpolation orders (Dim1 is the fastest-
varying dimension).

SZ3/QoZ1 1D cubic interpolation

QoZ 2.0 1D cubic interpolation  

QoZ 2.0 1D cubic interpolation

Figure 2.9: Illustration of same-level cubic interpolation.
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Next, QoZ 2.0 develops a new same-level cubic interpolation, which can further

improve prediction accuracy. In the traditional interpolation design [65, 101], at each inter-

polation level, the neighbor points of each data point to be interpolated are limited on the

higher levels (interpolation levels with larger strides). For the 1D cubic spline interpolation

applied on a data point with stride s, 4 neighbor points with distance s and 3s are used,

which have been predicted on the higher interpolation levels. As shown in Figure 2.9 (note

that s is the distance between each closest hollow and solid point), the first row shows

this interpolation method, in which all the hollow data points (on the current interpolation

level) are predicted by the solid data points (on higher interpolation levels). If it is able to

include more neighbors for each point (for example, the 2 white points with a distance of

2s to it), the prediction accuracy can be improved. As illustrated in the 2nd and 3rd rows

of Figure 2.9, instead of traversing through all the white data points in one step, QoZ 2.0

splits the 1D cubic spline interpolation into 2 steps. In the first step (the second row of Fig-

ure 2.9), half of the white points are interpolated by inter-level interpolation (the existing

interpolation) with 4 neighbor points. In the second round, the rest half of the white points

are interpolated by the same-level interpolation with 6 neighbor points for each, including

points interpolated on higher interpolation levels and the current interpolation level. With

this new interpolation, half of the data points are predicted with two more neighbor points

to achieve better prediction accuracy. Similar to the deductions in Section 2.5.3, for a data

point pi, with its 6 neighbor points di−3, di−2, di−1, di+1, di+2, and di+3 the same-level cu-

bic spline interpolation formula would be the following two. Eq. 2.13 is for the not-a-knot

cubic spline and Eq. 2.14 is for the natural cubic spline. The same strategy can also be
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extended to the multi-dimensional interpolation, splitting it into 2 steps each with roughly

halved data points.

pi = −1
6di−2 + 4

6di−1 + 4
6di+1 − 1

6di+2
(2.13)

pi = 3
62di−3− 18

62di−2 + 46
62di−1 + 46

62di+1− 18
62di+2 + 3

62di+3
(2.14)

2.6 QoZ Interpolation Auto-Tuning Module

This section describes the auto-tuning and optimization strategies for the proposed

QoZ data predictor in section 2.5. Regarding the above-mentioned parameterized level-wise

interpolation-based predictor, there are several remaining great challenging issues to resolve.

For example, what type of interpolation operation should be used on each interpolation

level? How does it set prediction parameters (α and β for computing level-wise error

bounds) in order to optimize the user-specified quality metric? To this end, QoZ also

involves an efficient online tuning method, which not only can select the best-fit predictor

and optimize the parameters at different levels based on diverse quality metrics but also

has a very low execution overhead such that the overall compression performance can still

be maintained well. The optimization strategies are detailed in the following text.

2.6.1 Auto-tuning preparation: the efficient uniform sampling in QoZ

In order to control the online analysis overhead, QoZ adopts a data sampling

method, which plays an important role in reaching a good trade-off between the accuracy

of the predictor/parameter selection and the computation overhead of this selection. To this

end, the sampled data should be small enough to keep a very low time cost for the analysis
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and they should be good representatives for the whole input data. As such, a uniform block-

based sampling method is proposed, which can catch not only the pattern of the local area

in the data but also the global picture of the data effectively. The sampling method is based

on fixed block size and fixed sampling stride, as illustrated in Figure 2.10 using an example

based on the CESM-ATM climate simulation dataset. The sampling rate (defined as the

percentage of the number of sampled data points over the total number of data points) is

determined by both block size and sampling stride. For instance, for a 2D dataset, if the

block size is 4×4 and the sampling stride is 10, the sampling rate will be 4×4
10×10=16%. In

the parameter tuning over the sampled data, the prediction step is performed separately on

each data block while the Huffman and dictionary encoding [22] are applied on the entire

aggregated quantization bins for accurate bit rate estimation.

Figure 2.10: Illustrating QoZ data sampling using CESM-ATM dataset (field FSUTOA).

2.6.2 Level-adapted selection of best-fit predictor

Unlike SZ3 [58] which uses a fixed interpolation method at different levels through-

out the whole data array, QoZ selects and applies the online-determined best-fit interpola-

tion method on different levels with very limited computational overhead compared with

the entire compression time. First, QoZ samples data blocks with the method introduced
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in section 2.6.1. Next, on each interpolation level, QoZ runs a few trial compression runs

with different interpolation/prediction methods (a.k.a., interpolators) over the sampled data

blocks. As mentioned previously, the candidate interpolators involve two different types of

interpolation and different dimension orders for a multi-dimensional input. As the total

number of dimension orders grows very fast with the dimension number of the data (e.g.

6 for 3D), being consistent with SZ3 [58], QoZ only tests 2 dimension orders: dimension

index increasing or decreasing, (e.g. 012 and 210 for 3D) as they cover the best choices in

almost all cases. Then, QoZ compares the mean absolute prediction errors (L1) and selects

the one with the lowest mean absolute prediction error as the best-fit interpolator for the

corresponding level. The reason it uses absolute error is that it is most closely related

to the compression ratio of quantization bins, which was verified in [55]. The selection of

interpolators does not need to be specifically tuned according to different quality metrics

because its purpose is to minimize prediction errors, which both benefit bit rate and quality

metrics. Since the interpolator selection is based on the sampled blocks, a tricky situation

is that when the sampled block size is smaller than the anchor point stride, the blocks

cannot cover some high interpolation levels. To solve this issue, QoZ applies the best-fit

interpolator selected on the highest level of the sampled blocks to all higher levels.

2.6.3 Quality metric oriented parameter auto-tuning

This subsection presents the technical details of the user-specified quality-metric-

oriented parameter auto-tuning algorithm in QoZ, which is critical to the user-specified

quality-metric-driven lossy compression. It includes constructing parameter candidates,

online compression result evaluation, and online parameter auto-tuning.
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Preparation: constructing parameter candidates

In the step of quality-metric-oriented parameter auto-tuning, QoZ optimizes the

level-wise interpolation error bound. The Formula 2.1 includes two critical parameters α and

β to determine the error bound setting for each level. According to masses of experiments

with different datasets across various domains, QoZ narrows the best parameter candidates

as follows: α ={1, 1.25, 1.5, 1.75, or 2} and β = {1.5, 2, 3, or 4}, because these values

cover the optimal or near-optimal settings of α and β in most cases without too many pairs

to test with. In the algorithm (to be shown later), the optimal combination of the α and

β will be determined online based on a lightweight compression result evaluation, which

brings little computational overhead.

Operation: online compression quality evaluation

Online optimization of the rate-distortion based on a user-specified quality metric

with different parameter settings is non-trivial. The key reason is that rate distortion

refers to the relationship between bit-rate and the user-specified quality metric. Thus,

accurately identifying the rate-distortion for a specific solution generally needs to collect

quite a few compression results based on different compression ratios and various levels

of data distortions. Specifically, given two different parameter sets (or solutions) each

corresponding to a particular compression result, determining which one is better requires

a meticulous analysis as described below. Suppose there are two solutions: setting I (α=1

and β=1.5) and setting II (α=2 and β=3). For a user-given error bound e, the setting

I gets the compression result of {bit rate= BI, PSNR=PI}, and the setting II gets the
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compression result {bit rate=BII, PSNR=PII}. If BI > BII and PI < PII, it can be easily

identified that II is better than I as II has lower bit rate (i.e., higher compression ratio)

and higher PSNR (higher reconstructed data quality) meanwhile. However, if BI > BII and

PI > PII or BI < BII and PI < PII (it is named sophisticated situation in the following

text), additional analysis is needed to determine which solution is superior.

QoZ adopts an efficient online comparison method to determine the better choice

for the sophisticated situation. Specifically, in this situation, QoZ uses another error bound

(denoted as e′) which has a small offset to e to perform a sampling-based trial compression

for solution B, which can obtain another compression result (i.e., a pair of bit rate and

quality metric (such as PSNR)): denoted as B′
II and P ′

II. Then, QoZ can determine the

better solution by checking the relationship between the solution I’s result (BI, PI) versus

the line constructed by (BII, PII) and (B′
II, P

′
II). If the PI is below the constructed line in

space, QoZ asserts that the setting II is better, and vice versa. The second error bound e′

used for computing B′
II and P ′

II is set to 1.2e if PI > PII or 0.8e if PI < PII. Such a design

can make BI lie in the range between BII and B′
II in most of the cases based on experience,

obtaining a very accurate judgment accordingly.

Table 2.1 summarizes all four situations for two comparative solutions I and II

based on different compression results. Their compression results are denoted as {BI, MI}

and {BII, MII}, respectively, where M refers to the quality metric (such as PSNR, SSIM,

AC). As shown in the table, QoZ can directly identify the better solution for cases 1 and

2. For cases 3 and 4, an additional sampling-based trial compression run would be done

for solution II with another error bound. Since all the trial compression runs are on top
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of sampled data, the computational overhead is very low, to be verified later. With this

well-designed evaluation method, QoZ can traverse all the candidate parameter sets and

select the best one for practical compression.

Table 2.1: Comparison cases of two compression results (BI ,MI) and (BII ,MII) for solution
I and II under the error bound e

Case# Case Comparison

1 BI <= BII and MI >= MII I is better

2 BI >= BII and MI <= MII II is better

3 BI > BII and MI > MII

compute (B′
II,M

′
II) with sol II and 0.8e

draw a line with the 2 points from sol II
check whether (BI,MI) is above or below

4 BI < BII and MI < MII

compute (B′
II,M

′
II)with sol II and 1.2e

draw a line with the 2 points from sol II
check whether (BI,MI) is above or below

2.6.4 QoZ 2.0 auto-tuning module

In addition to the fundamental auto-tuning strategies in QoZ 1.0, this dissertation

develops several advanced auto-tuning sub-modules in QoZ 2.0, which do quite well in

preserving and optimizing the compression quality by making the best use of the abundant

interpolation options offered by QoZ 2.0. Figure 2.11 displays all the components and

processes of the QoZ 2.0 auto-tuning module. This module inherits the interpolation error-

bound tuning process from QoZ 1.0 [65], while substantially upgrading the QoZ 1.0 ’global’

interpolation tuning. Specifically, QoZ 2.0 exploits several brand-new processes: dynamic

dimension freezing tuning, block-wise interpolation tuning, Lorenzo tuning, and a data

sampling/analysis process supporting those tuning processes. The remainder of this section

will present the detailed design of the auto-tuning-related components in QoZ 2.0.
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Figure 2.11: QoZ 2.0 auto-tuning module.

Data sampling and statistical analysis

The data sampling and statistical analysis is an auxiliary process of the QoZ 2.0

auto-tuning module. In this process, QoZ 2.0 uniformly samples a small portion from the

full data input (based on a hyper-parameter with the default sampling rate of 0.2%), and

then it performs the 1D interpolation (both linear and cubic) on those data points with

their neighbors along all dimensions. Afterward, the mean square errors (MSE) of the

interpolations along different dimensions can serve as the estimations of the interpolation

error variances (σ2
i ) described in Section 2.5.3. Thus, it can be used to determine the

most non-smooth dimension in the data for dynamic dimension freezing (Section 2.6.4) by

selecting the dimension with the largest interpolation MSE.

Global interpolation tuning

The global interpolation tuning process in QoZ 2.0 is derived from the predictor

tuning process proposed in QoZ 1.0, which aims to select the best-fit interpolation configu-

ration from different choices Specifically, at each interpolation level, the global interpolation

tuning process makes the following selection for the input data:
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• Existing in QoZ 1.0: The order of interpolation (linear or cubic);

• Existing in QoZ 1.0: The dimensional order (only for 1D-style interpolation);

• New in QoZ 2.0: The type of cubic spline (not-a-knot or natural, only for cubic);

• New in QoZ 2.0: The interpolation paradigm (1D-style or multi-dimensional);

• New in QoZ 2.0: Applying inner-level interpolation or not (only for cubic);

Similar to QoZ 1.0, the sampled data are used for performing compression tests

with all the available interpolation configurations. Then, QoZ 2.0 selects the interpolation

configuration with the lowest average absolute prediction error as the final tuning result.

Dynamic dimension freezing

The dynamic dimension freezing in QoZ 2.0 is designed to avoid inaccurate in-

terpolation predictions along non-smooth dimensions. For a multi-dimensional input data

array, it may present fine smoothness along some of its dimensions but present bad smooth-

ness along the other dimensions. In those cases, both the 1D-style and multi-dimensional

interpolation will fail in achieving high prediction accuracy as they will involve interpola-

tions along non-smooth directions. The dimension freezing is that, given one dimension,

QoZ 2.0 sets anchor points along those dimensions with stride 1 (without intervals) and

never performs interpolations along those dimensions. Figure 2.12 uses the interpolation

on a 3D data block as an example of dimension freezing. For a clear view, only the 1D

interpolations are shown. Figure 2.12 (a) is the normal 1D interpolations without a frozen

dimension, and Figure 2.12 (b) is the 1D interpolations with a dimension frozen, in which
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no interpolations are made along the frozen dimension. With this dynamic strategy, QoZ

2.0 does not require data smoothness along all dimensions to optimize its compression ratio.

According to experimental results, compared to the highly improved prediction accuracy

and greatly reduced quantization bin size, the storage overhead for additional anchor points

is affordable. To determine whether to freeze a dimension and which dimension should be

frozen, the auto-tuning module of QoZ 2.0 first specifies the most non-smooth dimension

in the input data array in the statistical analysis (Section 2.6.4), then separately tunes 2

optimized interpolation configurations with/without this dimension frozen. If freezing this

dimension presents a better compression ratio, QoZ 2.0 will freeze this dimension. Other-

wise, no dimension will be frozen and the normal interpolation paradigm will be executed.

Frozen
Dim

Known data points Unknown data points  

(a) Without frozen dimension (b) With frozen dimension

interpolation

Figure 2.12: Illustration of dimension freezing.

Tuning with Lorenzo predictor

Leveraged in SZ3 but excluded by QoZ 1.0, the dynamic-order Lorenzo predictor

designed in [103] is involved in QoZ 2.0, as it is still an essential supplement of interpolation-

based predictors for high-accuracy low-compression-ratio cases [101, 58, 66]. In the auto-
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tuning compression test process, after the auto-tuning module has acquired the optimized

interpolation-based rate-distortion pair and its corresponding configuration, the auto-tuning

module runs one more compression test with the Lorenzo predictor, then makes the selection

between the interpolation-based predictor and the Lorenzo predictor according to the pre-

given optimization target. Following the design in [66], a multiplicative coefficient is applied

to adjust the bit rate estimation of the Lorenzo predictor.

(a) Global eb tuning (b) Split into blocks (c) Tuning on sub-blocks (d) Block-wise configs

Figure 2.13: Block-wise interpolation tuning.

Block-wise interpolation tuning

If the interpolation predictor is finally selected after the Lorenzo tuning, the block-

wise interpolation tuning will fine-tune the interpolation configuration separately on each

data block. Various regions of the input data will exhibit different characteristics (such as

dimension-wise smoothness), which makes them adapt to different interpolation configura-

tions accordingly. To address this issue, QoZ 2.0 introduces the block-wise interpolation

tuning process into its auto-tuning module, dedicated to identifying the best-fit interpola-

tion configurations for diverse segments of the data. Figure 2.13 shows the details of the

QoZ 2.0 block-wise interpolation tuning. First, after the auto-tuning has globally deter-
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mined the level-wise interpolation error bounds (Figure 2.13 (a)), the input data array is

split into blocks (Figure 2.13 (b)) of the same size. On each data block, a sub-block (in

default has 4% of the full block size) is sampled out in the center of this block (Figure 2.13

(c)), and then the interpolation configuration for this block (Figure 2.13 (d)) is tuned by

the compression tests performed on the sampled sub-block. The block size for block-wise

interpolation tuning is a hyper-parameter in QoZ 2.0, and after primary experiments, the

default value is set to 32.

2.7 Evaluations of QoZ

To verify the effectiveness and efficiency of QoZ, systematical evaluations of QoZ

(including both of its 2 versions) together with five other state-of-the-art error-bounded

lossy compressors are presented in this section.

2.7.1 Experimental Setup

Experimental environment and datasets

All the evaluation experiments are conducted on the Purdue Anvil supercomputer

and the Argonne Bebop supercomputer. On the Anvil supercomputer, each computing

node features two AMD EPYC 7763 CPUs with 64 cores having a 2.45GHz clock rate and

256 GB DDR4-3200 RAM. The computing node used on the Bebop has the Intel Xeon

E5-2695v4 CPU with 64 CPU cores and a total of 128GB of DRAM.

In order to evaluate the compressors more comprehensively and systematically, 6

real-world scientific applications from diverse scientific domains that have been frequently
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used for the evaluation of scientific data error-bounded lossy compression [102] are involved

in the evaluation. The detailed information of the datasets is in Table 2.2. As suggested

by domain scientists, some fields of the datasets listed above are transformed to their loga-

rithmic domain before compression for better visualization.

Table 2.2: Information of the datasets in experiments

App. # files Dimensions Total Size Domain Type

RTM [43] 37 449×449×235 6.5GB Seismic Wave Floating points

SEGSalt [3] 3 1008×1008×352 4.2GB Geology Floating points

Miranda [1] 7 256×384×384 1GB Turbulence Floating points

SCALE-LetKF [2] 12 98×1200×1200 6.4GB Climate Floating points

CESM-ATM [42] 33 26×1800×3600 17GB Weather Floating points

JHTDB [52] 10 512×512×512 5GB Turbulence Floating points

Comparison of lossy compressors in evaluation

In the experiments, this dissertation compares QoZ with five other error-bounded

lossy compressors, which have been verified to have good compression quality and/or per-

formance in prior works [66, 58, 101, 65]. The six compressors can be categorized into

high-performance compressors and high-ratio compressors. The high-performance

compressors have relatively fast compression speeds with moderate compression ratios, in-

cluding SZ3.1 [58] and ZFP 0.5.5 [61]. The high-ratio compressors achieve a high compres-

sion ratio/quality with advanced data processing methods, therefore having relatively low

compression speeds. They are SPERR 0.6 [49], FAZ [66], and TTHRESH [11]. For QoZ, this

dissertation evaluates 2 versions of it: 1.1 (minor updates on 1.0) and 2.0. QoZ should be

categorized as a high-performance compressor because it exhibits comparable compression

speed with modern high-performance compressors.
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Experimental configurations and evaluation metrics

In the compression experiments, the error bound mode adopted is value-range-

based error bound (denoted as ϵ) [83], which is essentially equivalent to the absolute error

bound (denoted as e), with the relationship of e = ϵ · value range. This mode has been

broadly used in the lossy compression community [55, 58, 57, 103, 66].

This dissertation performs the evaluation based on the following key metrics:

• Speeds: Check the compression and decompression speeds of compressors.

• Compression ratio (CR) under the same error bound: Compression ratio is the metric

mostly cared for by the users. Given the input data X and compressed data Z, the

compression ratio CR is: CR = |X|
|Z| ( | | is the size operator).

• Rate-PSNR plots: Plot curves for compressors with the bit rate of the compressed

data and the decompression data PSNR.

• Rate-SSIM plots: Another rate distortion evaluation plotting bit rate and SSIM [93].

• Parallel throughput performance with compressors: Simulate and perform parallel

data transfer tests on the distributed scientific database on multiple supercomputers.

• Visualization with the same CR: Comparing the visual qualities of the reconstructed

data from different compressors based on the same CR.

53



2.7.2 Experimental Results

Compression speeds

To verify the categorization of compressors and examine the compression efficiency

of QoZ, Table 2.3 presents the compression and decompression speeds of comparison com-

pressors and QoZ (under error bound 1e−3, i.e., 10−3) on the Anvil machine. From the

table, readers can clearly observe that the high-performance compressors (SZ 3.1, ZFP 0.5.5,

and QoZ 1.1) have far better compression speeds than the high-ratio compressors (SPERR,

FAZ, and TTHRESH) with the gap of 3×-10×. Moreover, having a speed of around 70%

∼ 90% of QoZ 1.1, QoZ 2.0 can still be regarded as a high-performance compressor, achiev-

ing 2× ∼ 6× performance improvement over SPERR/FAZ, and 4× ∼ 17× performance

improvement over TTHRESH. This relatively high speed ensures the advantages of QoZ

on efficiency-oriented and high-ratio-preferred compression tasks. Figure 2.14 presents the

error bound-compression speed curves of each compressor on the 6 tested datasets ( the

x-axis is the negative log10 of the error bounded and the y-axis is the compression speed).

Those plots also prove that QoZ is much more efficient than the high-ratio compressors

(SPERR, FAZ, and TTHRESH) and has close performances to SZ3.

Compression ratios with the same error bounds

Compressing the datasets with the selected compressors under the same error

bounds, this dissertation lists all the compression ratios in Table 2.4 and 2.5. Table 2.4 is

a comparison among the high-performance compressors. QoZ 2.0 achieves the best com-

54



Table 2.3: Execution speeds (MB/s per CPU core) with ϵ=1e-3

Type Dataset SZ 3.1 ZFP 0.5.5 QoZ 1.1 SPERR 0.6 FAZ TTHRESH QoZ 2.0

C
o
m

p
re

ss
io

n

CESM 219 331 215 49 58 10 140
RTM 211 412 191 63 30 18 142

Miranda 163 416 157 35 29 28 140
SCALE 188 191 182 32 61 17 129
JHTDB 140 225 122 33 28 23 105
SegSalt 189 645 201 51 36 13 141

D
ec

om
p

re
ss

io
n CESM 661 584 689 92 101 53 513

RTM 786 622 626 124 64 108 510
Miranda 419 946 351 75 60 111 473
SCALE 610 553 567 68 140 53 450
JHTDB 376 425 243 70 59 60 330
SegSalt 592 1060 629 108 65 97 485

pression ratio in all cases. On the SegSalt dataset, QoZ 2.0 has a 40% ∼ 75% compression

ratio improvement over the second-best compressor. On the RTM, Miranda, and JHTDB

datasets, QoZ 2.0 achieves 20%-45% compression ratio improvements over the second-best.

On the CESM-ATM dataset, under the error bound of 1e-3, QoZ 2.0 has a compression

ratio of about 2.36× as high as the second-best (SZ3.1). With these considerable improve-

ments, this dissertation can assert that QoZ 2.0 is the best choice among high-performance

compressors regarding optimizing the error-bound-fixed compression ratio. This disserta-

tion also compares the compression ratios of QoZ 2.0 with the ones from the high-ratio

compressors in Table 2.5. It shows that QoZ 2.0 can obtain even higher compression ratios

than them in certain cases (e.g. on SCALE-LetKF and JHTDB). Note that the speed of

QoZ 2.0 is substantially faster than the high-ratio compressors, making it quite competitive

over them in speed-concerned use cases.
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Figure 2.14: Error bound-compression speed plots.

Compression rate-distortion

This section presents the evaluations of the compression rate-distortion with QoZ

2.0 and other high-performance compressors. The high-ratio compressors are capable of

achieving excellent compression rate-distortion by spending much more time cost than

high-performance compressors, therefore the comparison of rate-distortion would be fair

if and only if the high-ratio compressors are excluded, making it within the scope of high-

performance compressors to clearly examine how QoZ 2.0 has improved the compression

quality meanwhile maximally preserving the compression efficiency. In Figure 2.15, the bit

rate-PSNR curves of 4 high-performance compressors on 6 datasets are plotted and dis-

played (in which the rate-PSNR optimization targets are set for QoZ 1.1, FAZ, and QoZ

2.0). Apparently, QoZ 2.0 has dominated this evaluation term, achieving the best PSNR
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Table 2.4: Compression ratios of high-performance compressors (SZ, ZFP, QoZ 1.1 and QoZ
2.0)

Dataset ϵ SZ 3.1 ZFP 0.5.5 QoZ 1.1 QoZ 2.0 Improve (%)

RTM
1E-2 1764 62.9 2156 2701 25.3
1E-3 249 26.2 285 395 38.6
1E-4 55.3 14.3 58 71.1 22.6

Miranda
1E-2 574.6 46.6 977 1320 35.1
1E-3 168 25.6 181 258 42.5
1E-4 47.3 14.5 47.7 63.6 33.3

SegSalt
1E-2 856 59.1 1005 1484 47.7
1E-3 140.6 24.9 151 260 72.2
1E-4 38.2 14.9 35.9 61.7 61.5

SCALE
1E-2 167.3 14.5 160 186 11.2
1E-3 40.4 7.8 41.5 52.9 27.5
1E-4 14.1 4.6 13.4 15.4 9.2

JHTDB
1E-2 528.2 22.3 647 838 29.5
1E-3 73.2 9.8 77.8 101 29.8
1E-4 15.8 5 15.9 20.6 29.6

CESM-ATM
1E-2 373 18.2 263 675 81.0
1E-3 64.9 9.6 59.4 153 135.7
1E-4 22.9 5.8 21.7 38.9 69.9

under all bit rates on each dataset. This implies that, among the high-performance com-

pressors, QoZ 2.0 can always provide the best quality of decompressed data (in terms of

PSNR) under the same compression ratio, or can always yield the most compact compressed

data for a certain PSNR constraint. On the CESM-ATM dataset, under PSNR of 70, QoZ

2.0 reaches around 360% compression ratio improvement over the second-best QoZ 1.1. On

the SegSalt dataset under PSNR of 80, QoZ 2.0 achieves about 100% compression ratio im-

provement over the second-best QoZ 1.1. There are approximately 20% ∼ 80% same-PSNR

compression ratio improvements achieved by QoZ 2.0 on the other 4 datasets.

To evaluate the QoZ compression quality with more quality metrics, this disser-

tation also checked the SSIM of the decompressed results of each high-performance com-

pressor, and those results are illustrated in Figure 2.16. Like the cases for the PSNR, QoZ
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Table 2.5: Compression ratios of QoZ 2.0 and high-ratio compressors (SPERR, FAZ, and
TTHRESH)

Dataset ϵ SPERR 0.6 FAZ TTHRESH QoZ 2.0

RTM
1E-2 2187 2695 782 2701
1E-3 440 642 71.4 395
1E-4 84.1 119 23.7 71.1

Miranda
1E-2 971.4 996.5 447 1320
1E-3 243.9 263.5 142 258
1E-4 74.5 93.6 55.1 63.6

SegSalt
1E-2 1219.4 1639.6 291 1484
1E-3 228.9 388.9 99.5 260
1E-4 61.3 117.3 28.8 61.7

SCALE
1E-2 103.5 177.9 80.0 186
1E-3 35.5 51.8 18.9 52.9
1E-4 15 16.8 8.4 15.4

JHTDB
1E-2 639.8 726 373 838
1E-3 89.3 90.7 65.1 101
1E-4 19.9 20.2 17.1 20.6

CESM-ATM
1E-2 1221 292 83.5 675
1E-3 150 77.4 20.4 153
1E-4 35 26.3 8.7 38.9

2.0 undoubtedly presented the best SSIM under the same compressed size over all other

evaluated high-performance compressors. Under the same compression bit rate, on multiple

datasets including RTM, JHTDB, SCALE-LetKF, and SegSalt, there are 20% ∼ 40% SSIM

improvements from QoZ 2.0 over the second-best QoZ 1.1. The SSIM improvements can be

even much larger in the case of the CESM-ATM dataset.

In the analysis, the outstanding compression quality of QoZ 2.0 as a high-performance

compressor is attributed to 3 aspects: First, the advanced interpolation techniques de-

scribed in Section 2.5 have significantly raised the interpolation-based prediction accuracy

for smooth datasets such as RTM, Miranda, SegSalt, and JHTDB. Next, avoiding inter-

polations along non-smooth directions, the compression for datasets with non-smooth di-
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Figure 2.15: Rate-distortion (PSNR) plots of high-performance compressors.

mensions (e.g. SCALE-LetKF and CESM-ATM) have been obviously enhanced by the

dynamic dimension freezing technique (Section 2.6.4). Third, the block-wise interpolation

tuning (Section 2.6.4) fine-tunes the interpolation on each data block, further optimizing

the overall compression.

Lastly, this dissertation would like to claim that, in several cases, the compres-

sion quality (i.e. rate-distortion) of QoZ can be at least comparable with the high-ratio

compressors. In the comparisons between QoZ 2.0 and high-ratio compressors displayed in

Figure 2.17, although on the Miranda dataset (Figure 2.17 (b)) QoZ 2.0 has quality gaps to

the SPERR and FAZ, Figure 2.17 (a), (c) and (d) indicate that QoZ 2.0 may achieve close

or even similar rate-distortion to the high-ratio compressors, with a compression speed far

higher than them.
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Figure 2.16: SSIM of high-performance compressors.

Parallel data transfer test on the distributed database

So far, it has been analyzed how QoZ outperforms other high-performance com-

pressors in terms of compression quality. Furthermore, this section will examine whether it

can over-perform existing state-of-the-art error-bounded lossy compressors including high-

ratio compressors in real-world use cases in which the compression and decompression time

need to be taken into account. To this end, this dissertation has designed a real-world scale

parallel data transfer experiment on the distributed scientific database. In this experiment,

a distributed scientific database is established on multiple machines, and to accomplish

the target of fast data transfer and access between the super-computers, instead of costing

unacceptable time transferring the original exascale data, a lossy compressor compresses

and decompresses the data in parallel on the source and destination machine, and only
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Figure 2.17: Rate-PSNR of QoZ 2.0 and high-ratio compressors (QoZ 2.0’s speed is 2x-17x
of high-ratio compressors).

the compressed data with a highly-reduced size are transferred between the machines. The

total time cost of this task is the accumulation of the local data I/O time, compression

time, decompression time, and transfer time of the compressed data.

To convincingly prove the effectiveness of QoZ 2.0 for the parallel data transfer

task, this dissertation conducted the corresponding experiments under a certain configu-

ration. For a parallel test with p cores, the experiments augment the datasets by p times

then let each core compress and decompress the data in the original size. Using 2048 cores,

the experiments leveraged the 7 compressors to compress and transfer the datasets bidirec-

tionally between the Anvil and Bebop supercomputer, constraining the decompressed data

following the same distortion (PSNR = 80). The inter-machine data transfer is supported

by the Globus Transfer Service [15, 6, 14], which is an efficient and widely adopted data
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Table 2.6: Compression-based parallel data transfer throughput time (in seconds, 2048
cores, under PSNR=80). Inter-machine speed is the transfer speed of compressed data
between 2 machines.

Dataset Direction
Inter-machine

SZ3 ZFP QoZ 1.1 SPERR 0.6 FAZ TTHRESH QoZ 2.0
Improve

Speed (GB/s) (%)

CESM-ATM Anvil to Bebop 0.79 ∼0.91 1934 3221 1812 1560 1586 7752 1005 35.6
(41TB) Bebop to Anvil 0.95 ∼1.19 1614 2695 1553 1522 1544 8560 916 39.8

RTM Anvil to Bebop 0.58 ∼1.19 198 362 173 277 494 527 181 -4.8
(14TB) Bebop to Anvil 0.47 ∼1.04 189 524 166 296 474 560 182 -9.5

Miranda Anvil to Bebop 0.46 ∼1.04 49 84 44 72 87 121 39 11.3
(2TB) Bebop to Anvil 0.54 ∼0.82 46 117 49 71 86 120 43 6.5

SCALE-LetKF Anvil to Bebop 0.88 ∼0.94 873 1354 820 1037 782 2354 728 7.0
(13TB) Bebop to Anvil 1.05 ∼1.15 745 1181 707 1007 670 2002 624 6.8

JHTDB Anvil to Bebop 0.83 ∼1.15 567 826 527 645 583 835 417 20.9
(10TB) Bebop to Anvil 0.97 ∼1.18 486 707 473 648 574 883 366 22.7

SegSalt Anvil to Bebop 0.63 ∼1.18 163 289 174 221 251 393 137 15.9
(8TB) Bebop to Anvil 0.76 ∼1.06 167 241 153 213 265 300 132 14.0

transfer service in scientific research and education fields. Table 2.6 presents data transfer

speed and the time cost with each compressor for each dataset. On all of the datasets

tested, either QoZ 1.1 or QoZ 2.0 achieves the optimal data transfer time cost, and on most

of the datasets, QoZ 2.0 improves the optimal overall transfer time by 5% ∼ 40% over QoZ

1.1, and even more when compared to other compressors. Therefore, the optimized balance

of compression quality and efficiency of QoZ does contribute to its utility in real-world

large-scale parallel data transfer tasks.

Due to the computing resource limitation for executing the multi-core large-scale

data transfer tests and repeating them with different datasets, compressors, and configura-

tions, this dissertation has also designed a model for approximating the actual time costs

in those tasks. For a specific core number p and a data transfer speed s, the sequential

compression/decompression speed of the compression/decompression with the same per-

core data is used to estimate the parallel compression/decompression time cost, and the

approximated data transfer time is just the compressed data size divides the transfer speed

s. With those methods, for each dataset, the time costs are approximated under a variety
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of compression error bounds, then the time cost-PSNR curves are plotted and presented

in Figure 2.18. The compressor speeds are acquired on the Anvil machine introduced in

Section 2.7.1, the core numbers are 2048, and the data transfer speed is set to 1GB/s (ac-

cording to the experimental results in Table 2.6). From the plots, this dissertation can claim

that, for this task, QoZ 2.0 has the potential to keep an advantage over the other existing

compressors. On Miranda, CESM-ATM, and JHTDB datasets, with the approximations,

QoZ 2.0 exhibits the minimized time cost for each fixed PSNR. On RTM, SCALE-LetKF,

and SegSalt datasets, QoZ 2.0 may still always be the top-performing compressor and can

have the optimized time cost in wide ranges of PSNR.
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Figure 2.18: Parallel data transfer time approximation and decompression PSNR (simula-
tion on the Anvil supercomputer, p = 2048, s = 1GB/s).
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Case study: decompression visualizations

As an example of the effectiveness of QoZ compression, this section proposes a

case study of the compression tasks, visualizing the decompression outputs from various

high-performance compressors. The example data input is the QS field (getting logarith-

mized in preprocessing) from the SCALE-LetKF dataset, and it is compressed by QoZ 2.0,

QoZ 1.1, and ZFP (SZ3 is omitted in this test because QoZ 1.1 and SZ3 have close speeds

and QoZ 1.1 has better compression quality than SZ3) under similar compression ratios.

The visualizations of 2-D slices from the original data and decompressed data are presented

in Figure 2.19. In this case, among the decompression results with very close compression

ratios, the decompression result of QoZ 2.0 (Figure 2.19 (b)) achieves the lowest data dis-

tortion with the highest PSNR (56.8). Moreover, regarding the magnified regions in Figure

2.19, compared to the decompression results of QoZ 1.1 (Figure 2.19 (c), PSNR=52.7),

QoZ 2.0 has better preserved the local data patterns in the original input (Figure 2.19 (a)).

This case is an example to show the strong capability of QoZ 2.0 in providing high-quality

compression results with high compression speed.
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(a) SCALE-LetKF (QS) (b) QoZ 2.0 (CR=127,PSNR=56.8)

(c) QoZ (CR=126,PSNR=48.4) (d) ZFP (CR=118,PSNR=21.0)

Figure 2.19: Visualization of SCALE-QS field (logarithmized) and the decompressed data.
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Chapter 3

FAZ: Pipeline-Auto-Tuning-Based

High-Ratio Scientific

Error-Bounded Lossy Compression

3.1 Overview

3.1.1 Motivations and challenges: Pursuing extremely high-ratio scien-

tific error-bounded lossy compression

In the last chapter, QoZ has shown how to ensure high-quality scientific error-

bounded lossy compression with adequate compression efficiency. In this chapter, this

dissertation will switch to another aspect, demonstrating how it can pursue an extremely

high-ratio data compression with a hybrid of various data compression strategies when

efficiency is not a major concern anymore. This topic and its outcomes will be critical for the
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storage cost reduction tasks of scientific databases. Today’s high-performance computing

(HPC) applications are generating huge amounts of scientific data on exascale systems.

For example, the Gyrokinetic Toroidal Code (GTC) [60] which simulates the movement of

magnetic particles in a confined fusion plasma produces petabytes of data in a few hours [91].

Such unprecedented data volume and velocity lead to severe problems in data storage and

transmission, dictating an urgent need for effective high-ratio data compression.

State-of-the-art error-bounded lossy compressors, such as SZ3 [58, 101], ZFP [61]

and MGARD+ [57] have been effective in reducing storage requirement and alleviating

I/O pressure in many applications [56]. However, no single lossy compressor can provide

dominant compression quality for all the datasets due to their diverse characteristics. This

fact makes it a challenge for scientists to adopt error-bounded lossy compressors in their

practical use cases as numerous experiments are needed to identify the best-fit candidate,

leading to unexpected delays in scientific discoveries. Therefore, this dissertation plans to

propose a new work of scientific error-bounded lossy compression that merges heterogeneous

data compression techniques and can be highly self-adaptive to diverse compression tasks in

order to achieve an optimized compression ratio across a large variety of scientific datasets.

In particular, designing this highly flexible and inclusive compression framework

faces several critical challenges. First, it is non-trivial to organize the diverse compression

techniques in a single compression framework, as different techniques usually have distinct

data processing pipelines. For example, prediction-based compressors such as SZ3 [58] pro-

cess data in a point-by-point fashion, while transform-based compressors such as ZFP [61]

require block-wise processing for efficient decorrelation. Second, it is challenging to design a
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universal auto-selection and auto-tuning algorithm orchestrating all the heterogeneous data

processing modules. Last, it is always important to balance the effectiveness and efficiency

of auto-tuning to make it adaptive toward diverse user requirements.

3.1.2 Contributions of FAZ

Addressing the aforementioned research targets and challenges. this chapter pro-

poses FAZ, a flexible, modular, and auto-tuned compression framework that projects the

best adaptability of error-bounded compression to free scientists from trials and errors

when selecting lossy compressors. FAZ can achieve significantly better compression quality

on various application datasets over other existing works. This is especially attributed to

the adaptive design, in which FAZ leverages a fully adaptive compression pipeline whose

modules are mostly dynamically selected and auto-tuned during the compression. This

substantially differs from existing works which either depend on fixed compression pipelines

[54, 84] or suffer from strict auto-tuning and limited adaptability [103, 65]. The contribu-

tions of FAZ are summarized as follows:

• This dissertation carries out systematic and thorough compression characterization

and analysis on most of the representative scientific datasets to identify the pros and

cons of state-of-the-art lossy compression techniques, which is fundamental to the

subsequent design and optimization.

• This dissertation proposes a flexible modular error-bounded compression framework

FAZ, which integrates heterogeneous compression techniques and features an advanced

module for automatically tuning the best compression pipeline.
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• In experimental evaluations, FAZ outperforms all existing error-bounded lossy com-

pressors under the tested compression cases in various quality metrics. Compared

with the second-best lossy compressors, FAZ achieves compression ratios of up to

120% improvement under the same error bound, up to 190% improvement under the

same PSNR, and up to 75% improvement under the same SSIM.

3.2 Related Work

This section discusses the related works in two facets: existing error-bounded lossy

compressors and existing techniques for auto-selection/auto-tuning in lossy compression.

Multiple error-bounded lossy compressors have been developed for scientific data

reduction toward different use cases [13]. Existing lossy compressors mainly fall into

four categories – prediction-based, transform-based, dimension-reduction-based, and neural-

network-based. Prediction-based compressors leverage data approximation algorithms (e.g.,

linear regression [55] and dynamic spline interpolations [101]) to predict each data point and

then apply quantization or similar methods to control the data distortion based on user-

specified error bounds. Typical examples include FPZIP [62], SZ2 [55] and SZ3 [58, 101].

Transform-based compressors make use of transforms to decorrelate the data so that the

transformed coefficients are much easier to compress. One typical example is ZFP [61],

which adopts exponent alignment with orthogonal transform and embedded encoding. Sev-

eral other compressors including SSEM [76], VAPOR [20], and SPERR [49], adopts wavelet

transforms. Dimension-reduction-based compressors such as TTHRESH [11] depend on the

dimension reduction techniques such as (high-order) singular vector decomposition (SVD).
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Neural-network-based compressors [64, 29, 68, 33] adopt neural network models such as

autoencoder families [12, 45, 46].

Since many existing studies have shown that error-bounded lossy compressors gen-

erally exhibit distinct effects on different datasets, there exist a few studies to combine dif-

ferent compressors. Lu et al. [70] proposed a method to make a better choice between SZ

and ZFP by estimating their compression ratios based on the same error bound. Tao et al.

[84] proposed a more advanced algorithm that can select the better compressor (either SZ

or ZFP) based on the peak signal-to-noise ratio (PSNR), which is a more commonly used

data distortion metric in the community. Liang et al. [54] proposed a method to integrate

the ZFP compressor into the prediction stage of the SZ model and then select the better

predictor between them. These methods, however, are dependent on the specific off-the-

shelf compressors each with fixed compression pipelines and parameter settings, therefore

still have strict limitations to achieve higher compression quality.

Another well-researched topic is the auto-tuning of specific compressors. Zhao et

al. [103] improved the compression quality for SZ by developing an effective method to auto-

search the best parameter settings for data predictors. The QoZ [65, 67] proposed in Chapter

2 also projects a special capability of dynamically parameterizing the interpolation-based

data predictors and error settings according to flexible compression optimization targets.

However, they are all limited to just auto-tuning the parameters of data predictors. In

contrast, FAZ establishes a fully dynamic compression framework by including different

compression archetypes, which can obtain significantly improved compression quality for

most scientific datasets.
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3.3 Problem Formulation

This section formulates the research problem for high-ratio pipeline-auto-tuning-

based scientific error-bounded lossy compression. Unlike the traditional lossy compression

optimization strategies that rely on fixed compression pipelines or just parameter auto-

tuning, FAZ projects a flexible compression pipeline (denoted as P in the following text)

that can be auto-tuned across different compression archetypes at runtime. Every compres-

sion pipeline P is composed of several functional modules (denoted as {Mi}) each with a

set of parameters (denoted as {Θi}) to optimize. Those modules include (but are not lim-

ited to) data transform, data prediction, bit-stream encoding, and lossless post-processing,

each playing an important role in the whole framework. For the compression, this section

denotes the input data array as X and the compressed data as Z. For decompression, the

reconstructed data is denoted as X
′
.

Specifically, the research objective is to instantiate an optimized compression

pipeline P by (a) selecting outstanding data processing modules, (b) auto-tuning their

parameters based on the input dataset and user requirements, involving both compression

ratio and quality metrics, as shown below.

{Mi}, {Θi} = argOPT
{Mi}⊂M, Θ

T (X,X
′
, Z)

s.t. Pc, Pd = P({Mi}, {Θi})

Z = Pc(X), X
′

= Pd(Z)

|xi − x
′
i| ≤ e,∀xi ∈ X,x

′
i ∈ X

′

(3.1)

In Formula (3.1), T is an optimization target, which can be maximizing compression ratio

or optimizing the rate-distortion. In the rate-distortion, rate means bit-rate (the average
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number of bits per data value required in the compression) and distortion means a certain

distortion on data such as PSNR [83] and Structural Similarity Index Measure (SSIM) [93].

OPT refers to the optimization operation (e.g., max, min) according to the target. M is the

complete module set, P is the pipeline constructing method, Pc and Pd are the compressor

part and decompressor part of pipeline P , and e is the user-specified or deduced absolute

error bound.

3.4 Analysis of Existing Compressors

This section presents an in-depth analysis of existing state-of-the-art error-bounded

lossy compressors with several important takeaways, which form guiding principles for the

FAZ design. Specifically speaking, it answers the following key questions: (1) Which lossy

compressors exhibit the best compression ratio and quality on different datasets, and which

modules used by them take critical roles in obtaining the high compression rate-distortion?

(2) What are the limitations of those compressors and modules?

3.4.1 Introduction and investigation of high-ratio error-bounded lossy

compression strategies

To analyze and better understand the existing lossy compressors, this disserta-

tion has profiled the rate-distortion (PSNR) of several state-of-the-art error-bounded lossy

compressors including SZ3 [58, 101], SZ2.1 [55], ZFP0.5.5 [61], MGARD+ [57], QoZ [65]

and SPERR [49] on multiple scientific datasets each with diverse characteristics (details are

described in Section 3.7.1). In the results, it is observed that either QoZ or SPERR provides
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the best rate-distortion in all datasets, and due to space limitations, this section shows the

results in Figure 3.1 based on 4 of the datasets tested with. In the following, this section

briefly discusses their designs, as well as key insights into why they can work effectively on

lossy compression.

Interpolations

The interpolation-based data predictor used in SZ3 [101] has shown great effective-

ness in lossy compression because of the following reasons: First, the interpolation-based

data predictor has the ability to recover non-linear data patterns; Second, compared with

other data predictors such as Lorenzo [82], the formula of interpolation introduces lower

errors when data points are predicted by other predicted and error-bounded values, espe-

cially with large error bounds. Second, no coefficients need to be saved for decompression,

in contrast to some other data prediction methods such as linear-regression-based predic-

tor [55] that has to store certain amounts of coefficients for the data reconstruction. The

predictor of QoZ inherits these advantages from the SZ3’s interpolators and also projects

new important features, which in many cases improve the compression quality significantly

over SZ3 in turn due to two reasons. On the one hand, QoZ includes the anchor point

design (losslessly saving a sparse grid of data points), largely improving the data prediction

accuracy for the rest of the data points with negligible compression ratio loss. On the other

hand, QoZ parameterizes the interpolators to separately auto-tune the interpolator types

(linear or cubic), interpolation dimensional orders, and interpolation error bounds on each

interpolation level, therefore optimizing the prediction accuracy on those data points.
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Figure 3.1: Rate-distortion (PSNR) of compressors. In (a) and (b), SPERR is the best. In
(c) and (d), QoZ is the best.

Transforms

Another outstanding technique often used in lossy compressors is data transform.

A typical example is ZFP [61] which performs a near orthogonal transform at the 4d block

size for d-dimensional data. In comparison, on some datasets, a wavelet transform-based

compressor SPERR [49] exhibits much higher compression ratios than other state-of-the-

art compressors such as ZFP and SZ with the same data distortion. The key reason is

that as a transform-based data compressor, SPERR leverages a global multi-level discrete

wavelet transform (DWT) [35], which can decorrelate the input dataset in a global view for

a higher compression ratio. SPERR adopts a fixed wavelet transform – CDF9/7 [21], which

is popular in many other lossy compressors such as JPEG2000 image compression [85].
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3.4.2 Limitations of the existing strategies

In this subsection, the limitations of the above two strategies are discussed, based

on which this dissertation raises new design concepts for the FAZ compression framework.

Interpolation is not the universal solution

As Figure 3.1 (a) and (b) indicate, on some datasets, in terms of rate-distortion

the interpolation-based QoZ is not as good as the wavelet-transform-based SPERR which

does not integrate any data prediction modules. In the view of this dissertation, the reason

is two-fold: On one hand, the data variations in certain datasets are compatible with the

wavelet transforms very well, so the transformed coefficient arrays often exhibit a sharp

distribution with a high decorrelation nature. On the other hand, the SPECK (Set Parti-

tioning Embedded bloCK) encoder [73] adopted by SPERR is a classic encoding algorithm

particularly optimized for wavelet transformed coefficients.

Moreover, even for only prediction-based compressors, the interpolation-based pre-

dictor has performed worse than some traditional predictors on certain input data. As

analyzed in [101, 58], the interpolation-based predictor used by SZ3 does not perform as

well as the Lorenzo data predictor in some high accuracy (low error bound) compression

cases. This observation also goes with the improved QoZ interpolation-based predictor in

the experiments. Figure 3.2 shows some examples in terms of the rate-distortion (PSNR)

curves between QoZ versus SZ2.1. The input data are two snapshots from the Scale-LETKF

application and Hurricane application, and relatively small value range-based relative error

bounds [83] (lower than 1e-3) are used. In those cases, for the same PSNRs, SZ2.1 (us-
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ing the Lorenzo predictor in those cases) exhibits higher compression ratios than the QoZ

compressor that adopts interpolation-based predictors. This finding motivates us to merge

more types of data predictors other than interpolation into the FAZ.
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Figure 3.2: Interpolations (QoZ) vs Lorenzo (SZ2.1).
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Figure 3.3: Comparing QoZ (interpolations), SPERR (CDF9/7), and other wavelets (higher
PSNR is better).

A dynamic usage of wavelets is needed

There is an important finding about the wavelet transform in the error-bounded

lossy compression that the CDF9/7 wavelet used in SPERR is not always effective in de-
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correlating the dataset. Figure 3.3 shows several scattered points representing different

compression qualities (bit rate and PSNR) when replacing the CDF9/7 wavelet with other

wavelets in SPERR for the same compression task with fixed input and error bound, as

compared with QoZ and SPERR. Specifically, as the example shown in Figure 3.3 (a), when

compressing data of the Dark Matter Density field in the NYX dataset, SPERR suffers from

worse rate-distortion results than QoZ which does not use any wavelet modules. According

to Figure 3.3 (b), on the #2000 snapshot of the SEGSalt dataset, readers can observe that

there are quite a few other wavelets that can provide better compression quality. Those

observations motivate us to select the best-fit wavelet and auto-tune related parameters,

which may significantly improve the compression quality.

3.5 Overview of FAZ Design

This section presents an overview of the FAZ framework. The framework is based

on the SZ3 modular compression framework and perfected with the analysis and findings

described in Section 3.4.

3.5.1 Framework

Figure 3.4 presents the flexible modular design of the FAZ compression frame-

work, in which the modules are dynamically selected and combined for different inputs.

Such an adaptive design is a development from the SZ3 modular framework [58, 65] and

contrasts with the traditional fixed-compression-pipeline design [61, 49], which can lead to

significantly improved compression quality. As shown in Figure 3.4, there are 6 stages in
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the FAZ compression pipeline: pipeline auto-tuning, data transform, data prediction, error

controlling, bit-stream encoding, and lossless post-processing. Moreover, besides import-

ing multiple existing (the yellow ones in Figure 3.4) modules, compared to other existing

modular compression frameworks FAZ has involved several new modules (the blue ones in

Figure 3.4) for building the compression pipeline. Notice that there could be many ways

for combinations of the modules because some stages could be skipped in the pipeline. For

instance, the bottom two arrows skip the data transform stage and data prediction stage,

respectively, as shown in the figure. In addition to the above modules implemented in FAZ,

more new modules can also be included to adapt to new datasets or use cases, based on the

composable modular design. What compression modules (techniques) are adaptive to the

FAZ framework will be discussed in Section 3.6.
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Figure 3.4: FAZ compressor framework.

3.5.2 Modules in FAZ

This subsection describes all the functional compression modules used in FAZ,

including both newly involved modules compared to other existing modular compression

frameworks such as SZ3 [58] and other existing state-of-the-art modules.
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Newly involved modules

Pipeline auto-tuning module: This module is designed for dynamically select-

ing and tuning other functional modules to build the specific pipeline for each input data,

which is the key contribution of FAZ and will be detailed in Section 3.6. The auto-tuned

pipeline by this module could be diverse such as an interpolation-predictor-based com-

pression pipeline, a Lorenzo-predictor-based compression pipeline, a compression pipeline

integrating the optimized wavelet transform and the SPECK encoder, a hybrid compression

pipeline with wavelet transform and interpolation prediction, and so on.

Wavelet transform module: FAZ integrates a dynamic wavelet module. Both

forward wavelet transform (for data decorrelation) and inverse wavelet transform (for error

bounding) will be leveraged. The module inherits two types of wavelets. The first one is

the CDF9/7 wavelet which is used in some existing compressors such as SPERR [49]. The

other one is Sym13, which is a member of the symmetric wavelet family [23] and projects

the best compression quality in many cases based on a thorough characterization with 200+

different types of wavelets. Which of the two wavelets should be used during the compression

is dynamically determined by the auto-tuning module. To preserve the efficiency of auto-

tuning, FAZ just includes these two wavelets as they can cover the optimized choices for

most of the cases in the comprehensive characterization.

SPECK encoding module: Based on the experiments and analysis, directly

using the SPECK encoding for wavelet coefficients generated in the compression pipeline

can generally achieve better rate-distortion than compressing the coefficients with data

predictors. Therefore, this module is also included in FAZ for optimizing the rate-distortion.
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Other existing modules

Here, this subsection briefly introduces the modules that have been well-adopted

in existing works and also leveraged by FAZ.

Lorenzo prediction module: The experiment in section 3.4.2 shows the fact

that the multi-dimensional multi-layer Lorenzo predictor [82, 103] may outperform the

interpolation predictor in some cases, thus it is also included in FAZ for reaching the best

adaptability.

Interpolation-based data prediction module: FAZ adopts the anchor-point-

based Interpolation predictor, which is similar to the one used in QoZ [65]. Its hyper-

parameter tuning is also further optimized (to be detailed in Section 3.6).

Linear-scale error quantization module: Since data prediction and SPECK

encoding modules would bring unbounded errors in data reconstruction, FAZ leverages the

linear-scale data quantization module for bounding the compression errors. It is a typical

technique that has been used in many existing compressors such as SZ2 [55] and SZ3 [58].

Huffman encoding module: Used in FAZ for encoding and shrinking the size

of the error quantization bins from the error quantization module.

Zstd lossless module: FAZ applies Zstd [22] at the end of its pipeline to losslessly

compress the bit-stream for improving the compression ratio without distortion loss.

3.6 Pipeline Auto-Tuning in FAZ

To substantially improve the compression ratio and quality on the diverse input

data characteristics and user requirements brings great challenges to the selection of com-
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pression modules and parameters in FAZ. Since no static rules can cover all the cases, an

online pipeline auto-tuning module is designed and leveraged for the composition of com-

pression pipelines. Because of the masses of possible combinations of different modules and

parameter settings, it is very challenging to design an efficient auto-tuning method that

can always construct the best-fit compression pipelines for different datasets/use cases. To

address this challenge, FAZ proposes several optimization strategies.

3.6.1 Overall process of pipeline auto-tuning

The overall process of the pipeline auto-tuning module in FAZ is displayed in

Figure 3.5, which consists of four components: online statistical analysis for wavelet type

selection, variance-based block-wise data sampling, interpolation tuning, and rate-distortion

tuning. Briefly speaking, this module first runs a fast statistical analysis on the whole input

dataset to determine which wavelet should be used in the auto-tuning. Then, from the input

dataset, it samples a small portion of data, based on which the interpolation tuning and

rate-distortion tuning are applied to select and determine the parameters of the modules

in the pipeline. The interpolation tuning process to determine the level-wise interpolation

type and interpolation orders in FAZ is the same as the method used in QoZ [65]. We

describe the details as follows.

Figure 3.5: FAZ pipeline auto-tuning module. Yellow blocks indicate existing techniques
and blue blocks are proposed ones.
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3.6.2 Online statistical analysis for wavelets

The wavelet transform may significantly improve the rate-distortion for a variety of

datasets. However, its time cost is relatively high. To balance the performance and accuracy

of auto-tuning, FAZ endeavors to minimize the computational cost of wavelet transform in

the auto-tuning process. Therefore, FAZ applies an efficient statistical analysis to predict

which wavelet (CDF9/7 or Sym13) would be better for the given input data and then select

it to be used in the rate-distortion tuning, disregarding the other one dynamically.

Our designed analysis method (selection rule) is expressed as follows. FAZ selects

CDF 9/7 for rate-distortion tuning if and only if either of the following conditions is met:

(1) the smallest size among all dimensions in the input data array is lower than a threshold

(denoted by l); (2) The normalized variance of the input data array is larger than a threshold

(denoted σ). Otherwise, Sym13 will be selected.

This rule for wavelet selection is drawn from the experiments with masses of real-

world scientific datasets, and this dissertation suggests setting l and σ to 128 and 0.003 in

practice respectively. As shown in Figure 3.6, the datasets exhibiting better compression

quality with Sym13 are marked as red squares, and the ones exhibiting better compression

quality with CDF9/7 are marked as blue circles. In the plot, the datasets with each dimen-

sion size larger than 128 and normalized variances smaller than 0.003 always exhibit higher

compression quality with Sym13 wavelet (red points) than with CDF9/7 and vice versa.
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Figure 3.6: Sym13 vs CDF9/7. Blue circles (red squares) are better compressed with
CDF9/7 (Sym13).

3.6.3 Variance-based block-wise sampling

FAZ leverages an advanced variance-based data sampling method to reduce the

computational cost of auto-tuning. Specifically, it first splits the input data into small fixed-

size data blocks, then samples a certain number (based on a hyper-parameter controlling

the ratio of sampled data) of the blocks from them with the key feature that it samples

data blocks with the largest variances among all of them.

We discuss the design motivation of this design as follows. In fact, some input data

arrays have uneven data distributions such as having many zeros in a region. The proposed

data sampling method can avoid sampling too many zero data points therefore can obtain

higher accuracy in estimating the rate-distortion results compared with the data sampling

methods used in SZ3 [101, 58] and QoZ [65].
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3.6.4 Rate-distortion tuning

The most critical part of the FAZ pipeline auto-tuning process is the rate-distortion

tuning, which is closely relevant to the adaptability of FAZ as each compression module

(technique) that can be evaluated within the rate-distortion tuning process has the potential

of being leveraged in the FAZ framework. Different from the existing auto-tuning methods

such as the one in QoZ [65] which only tunes the interpolation predictors and their parame-

ters or SZ2.1 [55] which just selects data predictor types, the rate-distortion tuning in FAZ

is a more generalized quality metric driven auto-tuning method for the overall compression

pipeline covering multiple compression stages. Specifically, the rate-distortion tuning in

FAZ auto-tunes the data transform type (whether or which wavelet), data predictor type

(interpolation or Lorenzo), data encoder type (Huffman or SPECK), and their correspond-

ing parameters (the ones in interpolation and SPECK encoding). Moreover, as its name

implies, this tuning is based on a joint optimization of bit rate versus diverse user-specified

quality (distortion) metrics such as PSNR, SSIM, autocorrelation, and null (meaning just

maximizing compression ratio).

Figure 3.7 shows the entire process of FAZ rate-distortion tuning, including can-

didate pipeline generation, lightweight compression test, and rate-distortion evaluation.

Step 1: Candidate pipeline generation

In the candidate pipeline generation step, with different compression modules and

different parameter settings, FAZ builds up several compression pipelines as candidates. To

ensure each candidate pipeline correctly exposes the compression functionality, there are

certain rules for the combination of the modules in FAZ due to their characteristics:
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Figure 3.7: The rate-distortion tuning process. Blue blocks are related to newly proposed
techniques.

• At most one and at least zero data prediction/transform module can be leveraged.

• SPECK encoding should only be used on the wavelet coefficients.

• Error quantization needs to be applied after data prediction and SPECK encoding.

• Huffman encoding always needs to be applied to the error quantization bins.

Since FAZ also needs to determine several parameters in the rate-distortion tuning, pipelines

with the same structure but different parameter settings are regarded as different ones.

After careful experiments for balancing the speeds and compression qualities of FAZ, the

candidate set for each parameter is specified as follows:

• The α and β in QoZ interpolation: When compressing the non-transformed data, FAZ

follows the same setting as in QoZ [65]. When a wavelet module is applied, the α

candidates are reduced to {1.5,1.75} and β candidates are reduced to {2.0,3.0}.
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• The error threshold of SPECK encoding: Compared with SPERR [49] which fixes it

to 1.5e (e is the absolute error bound), FAZ selects it from {0.75e,1.0e,1.25e} when

the tuning target is not ”maximizing compression ratio” as in initial tests we’ve found

that applying smaller thresholds can lead to quite better rate-distortion. For the

”maximizing compression ratio” target, the candidate set is set to {1.5e,1.75e,2.0e}.

Step 2: Light-weight compression test

In this step, FAZ performs a lightweight compression test with each of the candi-

dates on the sampled data, obtaining the bit rate and distortion in this compression as the

estimation of those metrics for the practical compression. It will not cost a relatively lot of

time because the sampled data are very little (typically 0.5% of the whole input data).

Step 3: Rate-distortion evaluation

Last, an evaluator compares all the (bit-rate, distortion) pairs and eventually

selects the compression pipeline with the best (bit-rate, distortion) pair. The method

FAZ leverages for comparing the (bit-rate, distortion) pairs is mainly imported from QoZ

[65], as its proposed method is adaptive to heterogeneous compression pipelines. The brief

introduction for this method is: to pick up the better one from two (bit-rate, distortion)

pairs (b1,d1) and (b2,d2) generated by 2 pipelines is trivial if either b1 ≤ b2 and d1 ≥ d2

(the former is better) or b1 ≥ b2 and d1 ≤ d2 (the latter is better) holds (without loss of

generality this dissertation assumes that higher d is better). In other cases, FAZ will run

another compression test (on the sampled data) with one of the pipelines under a new error

bound, then apply a linear interpolation/extrapolation to determine which of the pipelines

can have a better distortion metric under the same bit rate.
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Beyond the above comparisons, FAZ has an additional feature for the evaluation:

the evaluator dynamically adjusts the bit rates from the pipelines with certain coefficients

depending on the pipeline types and error bounds. This design is derived from the finding

that the bit rate estimations generated by the compression tests on the sampled data blocks

are inaccurate for some types of compression pipelines. Therefore, some active adjustments

are needed in the evaluation step. Particularly, the bit-rate estimations for the pipelines

including wavelet transforms would be higher than the practical ones whereas the bit-

rate estimations for the pipelines including the Lorenzo predictor would be lower than the

practical ones. Testing with the snapshot of the QS field in the SCALE-LetKF dataset,

Figure 3.8 presents 2 examples of the estimated bit rates from compression tests and the

real compression bit rates with 2 compression pipelines: one leverages the CDF9/7 wavelet

transform together with the SPECK encoding, the other compresses the data by Lorenzo

predictor without a wavelet transform. In the plots of the figure, the x-axis is the log value

of the value range-based error bound and the y-axis is the bit rate. This figure exhibits

the different characteristics of the bit rate estimations for these 2 kinds of compression

pipelines: the estimations for the wavelet-based pipeline are higher than the real results

and the estimations for the Lorenzo-based pipeline are lower than the real ones. Moreover,

the gap between the estimated and real bit rates is large when the error bound is relatively

high but it will shrink when the error bound decreases.

To resolve this issue, based on those findings FAZ introduces 2 coefficients c1 <

1 and c2 > 1 calculated from piecewise linear functions of the value range-based error

bound (FAZ uses different functions for different wavelet types). Then for each raw bit
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Figure 3.8: Comparison of estimated bit rate (in compression test) and real bit rate with
different compression pipelines on SCALE-LetKF dataset (QS field).

rate estimation b1 of the wavelet-based compression pipeline and b2 of the Lorenzo-based

compression pipeline, the corresponding adjusted bit rates b
′
1 and b

′
2 for evaluation are:

b
′
1 = c1b1 and b

′
2 = c2b2. Figure 3.9 compares the rate-distortion (both PSNR and SSIM)

of FAZ leveraging the proposed bit-rate adjustment or not on the Hurricane dataset. The

plots verify that leveraging the specific bit-rate adjustment technique largely improves the

accuracy and stability of auto-tuning as well as the practical rate-distortion.
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Figure 3.9: Bit-rate adjustment on Hurricane dataset.
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3.7 Performance Evaluation

This section presents the evaluation results of FAZ compared with six other state-

of-the-art error-bounded lossy compressors. Those works are either leading related works

that are well-adopted and analyzed by many prior studies [55, 58, 61, 57, 103, 70], or the

most recent works with outstanding performance [65, 49]. The evaluations are conducted

thoroughly in multiple aspects and are based on seven widely used real-world scientific

datasets among different domains.

3.7.1 Experimental setup

Execution Environment: The experiments are performed on the Argonne Be-

bop supercomputer which features over 2,000 nodes, and they use the bdwall nodes of it

each having Intel Xeon E5-2695v4 CPU with 64 CPU cores and a total of 128GB of DRAM.

Evaluation Datasets: We evaluate the lossy compressors using seven real-

world scientific applications from different domains which have been frequently used for the

evaluation of scientific data error bounded lossy compression [102]:

• RTM: Reverse time migration for seismic imaging [43].

• SEGSalt: The 3D SEG/EAGE Salt model [3].

• NYX: A cosmological hydrodynamics simulation based on adaptive mesh [72].

• Hurricane: Simulation of Hurricane Isabel from the National Center for Atmospheric

Research [38].
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• SCALE-LetKF: Local Ensemble Transform Kalman Filter (LETKF) data assimilation

package for the SCALE-RM weather model [2].

• Miranda: Large-eddy simulation of multi-component turbulent flows via a radiation

hydrodynamics code [1].

The detailed information of the datasets is in Table 3.1.

Table 3.1: Information of the datasets in experiments

App. # fields Dimensions Total Size Domain

RTM 11 449×449×235 2.0GB Seismic Wave

SEGSalt 3 1008×1008×352 4.2GB Geology

Miranda 7 256×384×384 1GB Turbulence

SCALE-LetKF 13 98×1200×1200 6.4GB Climate

NYX 6 512×512×512 3.1GB Cosmology

Hurricane 13 100×500×500 1.3GB Weather

Comparison of lossy compressors in evaluation: The experiments compare

FAZ with six other lossy compressors, including four well-adopted state-of-the-art works

(SZ2.1, SZ3, ZFP0.5.5, MGARD+) [55, 58, 61, 57] and two very recent works: QoZ [65]

and SPERR [49] which have been verified to have over-performing compression ratios and/or

qualities compared to the others.

Experimental configurations: In the compression experiments, as broadly

used in the compression community [55, 58, 57, 103] the error bound mode adopted is

value-range-based error bound (denoted as ϵ). It is essentially equivalent to the absolute

error bound (denoted as e), with the relationship of e = ϵ · value range.

For the hyper-parameter configuration of FAZ, the sample block size is set to 64

and the anchor point stride (for interpolation predictors) is set to 32. For pipeline auto-
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tuning, 0.5% of the input data points are sampled. For all the other compressors, their

default configurations are applied.

Evaluation metrics: The evaluations for FAZ and comparison compressors are

based on several important metrics:

• Compression ratio (CR) under the same error bound: Compression ratio is the metric

mostly cared for by the users. Given the input data denoted as X, compressed data

denoted as Z, and | | is the size operator, the compression ratio CR is: CR = |X|
|Z| .

• Rate-PSNR plots: Plot the crucial bit rate and PSNR [83] curves for compressors.

• Rate-SSIM plots: Another rate distortion evaluation plotting bit rate and SSIM [93].

• Error visualization with the same CR: Comparing the visualizations of the compres-

sion errors from different compressors based on the same CR.

• Compression/decompression speed: Check the compression/decompression speeds of

compressors including FAZ to verify the computational costs.

• Parallel I/O performance: A parallel data transfer evaluation on a supercomputer.

3.7.2 Experimental results and analysis

Compression ratios with same error bounds

First, we’d like to compare the compression ratios of all lossy compressors under

the same certain error bounds. In the experiments, FAZ is auto-tuned with the target of

maximizing the compression ratio. Table 3.2 shows the compression ratios of the 7 lossy

compressors on the 7 datasets under 3 error bounds (1e-2, 1e-3, 1e-4). The last column
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(OurSol Improve) presents the improvements in compression ratio by FAZ compared

with the second-best compressors. It is observed that FAZ achieves the best compression

ratios under all of the cases. As an example, FAZ’s compression ratio is 130.6% higher than

the second-best compressor SPERR when the error bound is set to 1e-4 on RTM dataset,

and its compression ratio is 91.5% higher than the second-best compressor SPERR when

the error bound is set to 1e-4 on SEGSalt dataset. On the Miranda dataset, FAZ can

have a compression ratio at most 25.6% better than the second-best compressor. On other

datasets, it can also achieve 0-25% compression ratio improvements.

Table 3.2: Compression ratios under the same error bounds

Dataset ϵ
SZ SZ

ZFP
MGARD

QoZ SPERR
FAZ OurSol

2.1 3 + (Ours) Improve

RTM
1E-2 283.3 2041.6 110.9 234.2 2461.2 2687.5 3759.6 39.9%
1E-3 106.8 417.0 59.2 78.5 447.8 720.1 1245.0 72.9%
1E-4 54.4 118.1 35.0 38.3 122.3 223.0 514.3 130.6%

Miranda
1E-2 126.3 574.6 46.6 52.1 987.2 971.4 996.5 0.9%
1E-3 59.5 168.0 25.6 26.2 177.1 243.9 263.5 8.0%
1E-4 29.6 47.3 14.5 12.9 48.2 74.5 93.6 25.6%

SEGSalt
1E-2 187.8 856 59.1 107.6 907.4 1219.4 1639.6 34.5%
1E-3 50.8 140.6 24.9 35.2 151.9 228.9 388.9 69.9%
1E-4 25.3 38.2 14.9 18.9 38.2 61.3 117.3 91.4%

SCALE
1E-2 84.0 167.3 14.5 53.8 163.4 103.5 177.9 6.3%
1E-3 26.5 40.4 7.8 20.3 41.8 35.5 51.8 23.9%
1E-4 13.9 14.1 4.6 10.4 13.4 15.0 16.8 12.0%

NYX
1E-2 44.1 61.3 12.0 24.7 62.0 48.0 63.5 2.4%
1E-3 17.1 21.5 6.0 11.2 21.7 20.0 22.5 3.7%
1E-4 7.7 9.1 3.7 5.5 9.2 8.8 9.3 1.1%

Hurricane
1E-2 49.8 69.0 11.3 28.4 70.3 35.6 71.1 1.1%
1E-3 17.5 21.8 6.7 12.7 22.2 16.1 24.6 10.8%
1E-4 9.8 10.5 4.3 7.4 9.3 8.7 10.5 0%
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Rate-distortions

In this subsection, the evaluations of the compressors in terms of rate-distortion

are presented. For the distortion metrics, this dissertation has tested with both PSNR and

SSIM to examine whether FAZ has the adaptability to optimize various quality metrics

during compression.

Figure 3.10 is the rate-PSNR plots (x-axis is bit rate and y-axis is PSNR) of

the compressors on 6 datasets in which FAZ leverages the tuning target of PSNR. From

the plots, readers can easily observe that FAZ achieves the best rate-PSNR curve on all

shown datasets. Specifically, on the RTM dataset, FAZ has a 135%/190% compression ratio

improvement over the second-best compressor SPERR when the PSNR is about 90/110. On

the Miranda dataset, FAZ has a 40% compression ratio improvement over the second-best

compressor SPERR when the PSNR is about 85. On the Hurricane dataset, FAZ has a

25% compression ratio improvement over the second-best compressor SZ3 when the PSNR

is about 76. In terms of SSIM, Figure 3.11 provides the rate-SSIM plots of each tested lossy

compressor. From the plots, it can be concluded that on the experimented datasets FAZ

is still mostly the best choice for the SSIM metric. For example, on the SEGSalt dataset,

FAZ has a 70% compression ratio improvement over the second-best compressor SPERR

when the SSIM is about 0.8. On the SCALE-LetKF dataset, FAZ has a 75% compression

ratio improvement over the second-best compressor QoZ when the SSIM is about 0.98. On

the NYX dataset, FAZ has a 30% compression ratio improvement over the second-best

compressor MGARD+ when the SSIM is about 0.9.
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Figure 3.10: Rate-distortion (PSNR) of the compressors.

Visualizations

Figure 3.12 demonstrates the low compression errors of FAZ decompressed data.

This figure presents the original data visualization of the #3000 snapshot in the SEGSalt

dataset and 3 visualizations of the compression errors with 3 different lossy compressors

(FAZ, SPERR, and QoZ) under very close compression ratio (about 93-94). The error

visualizations are on the same scale (-0.015 to 0.015) and the compression errors of FAZ are

quite closer to zero (the green background) than the other 2 compressors, well preserving

the data values even under this high compression ratio.
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Figure 3.11: Rate-distortion (SSIM) of the compressors.

Ablation study of compression modules

The experimental results from different aspects have verified that FAZ has outper-

formed all the existing state-of-the-art works with respect to both compression ratios and

compression qualities. This section will take deep insights into why FAZ has become the

best and how the newly integrated modules contribute to the performance of FAZ. With

several systematic ablation studies, this dissertation can thoroughly analyze and understand

the reasons for the improvements from FAZ over existing works.

The first reason for the good performance of FAZ is the newly integrated wavelet

modules. Figure 3.13 (a) shows the rate-PSNR curves on the SEGSalt dataset with QoZ,

FAZ, and different configurations between them. From the plot, it can be observed each

additional module (Sym13 wavelet, parameter auto-tuning and SPECK encoding) has con-

95



(a) Original Data (b) FAZ(CR=93.3,PSNR=86.0)

(c) SPERR(CR=94.6,PSNR=75.6) (d) QoZ(CR=93.9,PSNR=68.6)

Figure 3.12: Visualization of data distortion under different compressors (SEGSalt dataset).

tributed to the compression quality of FAZ, among which the Sym13 wavelet has a significant

impact on improving the rate-distortion.

Another essential factor in FAZ is that it achieves the optimized compression rate-

distortion on various types of inputs by dynamically selecting different wavelet transform

types for data preprocessing. Figure 3.13 (b) is a bar chart showing the rates of data

snapshots on which FAZ applies a certain type of wavelet transform (CDF9/7, Sym13 or

not using wavelet) for each dataset under error bound 1e-3. It verifies that FAZ dynamically

selects the best-fit wavelet transform usage for each input data snapshot, and each usage

plays an important role in improving the rate-distortion. On RTM, SEGSalt, and Miranda
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datasets, Sym13 is the most effective wavelet transform, but on other datasets, CDF9/7

would be a better choice. Moreover, for certain data snapshots in SCALE-LetKF, NYX,

and Hurricane datasets, not applying a wavelet transform before the data prediction is the

optimized solution for their compression. Benefiting from this dynamic selection of wavelets,

the rate-distortions of FAZ outperform any other existing works.
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Figure 3.13: Ablation studies.

Compression speeds

In this part, this dissertation discusses the speed issues of FAZ comparing it with

different existing compressors. Firstly, the sequential compression and decompression speed

of FAZ and the others (under the error bound of 1e-3, in which QoZ and FAZ apply the

PSNR preferred mode) are presented in 3.3. From this table, readers can find a limitation

of FAZ and other wavelet-integrated lossy compressors: they will have relatively lower

speeds than the state of the arts without the wavelet transform module because the wavelet

transform itself has inevitably slow execution speed, especially for the Sym13 wavelet which

has a quite large kernel size (26). On the tested datasets, the speed of FAZ is between 0.15x
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and 0.45x of SZ3/QoZ, depending on the rate of data snapshots it applies wavelet transform

on and the type of wavelet it applies. Therefore, for speed-oriented use cases that may need

repetitive compression and decompression processes for the data, FAZ is possibly not a

favored compressor choice. Nevertheless, FAZ achieves comparable speed with SPERR,

and its speed would be acceptable for use cases in which the data are not compressed too

many times but for faster data transmission or better storage space saving the compression

ratio or rate distortion is more taken into account. In those cases, FAZ with the optimized

compression rate distortion can still be the best choice.

Table 3.3: Sequential speeds (MB/s) with ϵ=1e-3

Type Dataset
SZ SZ

ZFP
MGARD

QoZ SPERR
FAZ

2.1 3 + (Ours)

C
om

p
re

ss
io

n

RTM 207 147 556 142 129 8.5 21
Miranda 201 134 239 149 124 32.4 23
SEGSalt 187 134 394 138 128 34 19
SCALE 158 135 131 143 131 26 51
NYX 181 98 149 131 97 17.5 19

Hurricane 159 127 137 152 119 21 43

D
ec

om
p

re
ss

io
n RTM 452 410 996 210 388 20 40

Miranda 404 374 659 212 350 65 43
SEGSalt 394 363 732 213 328 69 45
SCALE 305 359 362 202 342 47 105
NYX 281 172 281 148 169 32 41

Hurricane 266 279 321 196 278 38 99

Figure 3.14 presents and compares some data dumping and loading performances

of FAZ and other compression solutions (QoZ, SPERR, and no compression) in the Hurri-

cane simulation with 1K-4K cores in which the decompression results are in similar PSNR

(73) and each core possesses a fixed amount of 1.3GB data. Due to the relatively low se-
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(a) Data dumping (b) Data loading

Figure 3.14: Parallel performance evaluation on Hurricane dataset (compression ratios on
bottom-left).

quential speeds of FAZ, its parallel performances are not quite competitive with QoZ in

this case. However, in large-scale parallel applications, FAZ can show some advantages in

terms of performance. We can observe that, with the best compression ratio (20.1) under

this PSNR, FAZ spends less time in data dumping and loading than leveraging SPERR or

no compressors. Although the parallel performance of FAZ is not as good as QoZ, when the

user needs a wavelet transform-related compressor for maximizing the compression ratio,

FAZ would still be the best choice in terms of both rate-distortion and parallel speeds.

99



Chapter 4

SRN-SZ: Scientific Error-Bounded

Lossy Compression with

Super-Resolution Neural Network

4.1 Overview

4.1.1 Motivations and challenges: Addressing the low-compressibility sci-

entific data compression with new technical routines

In the last 2 chapters, this dissertation details about how to construct effective and

efficient scientific data compression frameworks with relatively traditional data prediction

techniques. Besides that, This dissertation would also like to explore the possibility of

designing scientific lossy compressors with very up-to-date techniques. The fast-developing

neural networks have shown their strength in a lot of fields, including the compression of
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natural data such as images, videos, and so on. Naturally, it is worth exploring whether

they can be effective for scientific error-bounded lossy compression.

This dissertation first clarifies why deep learning techniques for scientific lossy

compression will be needed. Over the past dates, the scientific error-bounded lossy com-

pression has been well developed with fast-evolving compression frameworks on diverse tech-

nical fundamentals. The new compressors achieved profound compression ratio and quality

improvements over old works. However, if we switch our view to some other datasets, es-

pecially for the ones with quite lower compressibility, the newly proposed compressors did

not achieve as much improvement as users have expected (corresponding experimental re-

sults presented in Section 4.3). What is more embarrassing is that the low compressibility

data are often the bottleneck of the whole scientific database. Therefore, the challenge of

low-compressibility data needs to be seriously addressed, and it motivates this dissertation

to exploit new data modeling strategies, for example, deep learning neural networks.

There are several advantages and challenges for deep-learning-based scientific lossy

compression. The advantages are that neural networks have a high ability to model compli-

cated data and are adaptive to various data distributions. The challenges are also multi-fold.

First, a trained neural network mostly has a fixed structure, which means that it may not

be able to fit different compression requirements such as different error bounds. Second,

scientific datasets from different domains may show very distinct data patterns. Therefore,

the trained network in one scientific domain may be hard to apply to another. This mean-

while sets limits on the amount of training data, since a separate fine-tuning of the network

may be needed for every single domain.
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4.1.2 Contributions of SRN-SZ

Several attempts have been made to leverage neural networks in error-bounded

lossy compression. Autoencoder-based AE-SZ [64] and Coordinate network-based CoordNet

[32] are two typical examples. Those deep learning-based compressors may provide well-

optimized compression ratios in certain cases, but their limitations are still obvious. The

Coordinate network-based compressors [32, 36, 71] suffer from extremely low compression

efficiencies as they need to train a new network online for each input. Although autoencoder-

based compressors such as [64, 33] can leverage pre-trained networks to avoid per-input

training, their compression ratios cannot overperform SZ3 in most cases [64].

In order to address the issues of optimizing the low-compressibility data com-

pression and overcoming the limitations of deep-learning-based error-bounded lossy com-

pression, this chapter proposes SRN-SZ, which is a grand new deep-learning-based error-

bounded lossy compression framework. The core innovation of SRN-SZ is that it abstracts

the compression and decompression processes of scientific data grids into a hierarchical

paradigm of data grid super-resolution, which is the first work of integrating the super-

resolution neural network into the error-bounded lossy compressor. Compared with the

autoencoders and coordinate networks, the super-resolution networks have two-fold advan-

tages: Unlike coordinate networks, they can be pre-trained before the practical compression

tasks. At the same time, they do not generate any latent information that is required to

be stored for compression as the autoencoders. Benefiting from those advantages, SRN-SZ

achieves acceptable efficiencies and further improved compression ratios over the state-of-

the-art error-bounded lossy compressors on multiple low-compressibility datasets.
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The contributions of this chapter are detailed as follows:

• This dissertation proposes a new scientific error-bounded lossy compressor SRN-SZ, in

which the compression is performed by hierarchical data grid expansion implemented

with a hybrid of super-resolution networks and interpolations.

• Leveraging the Hybrid Attention Transformer (HAT) network, this dissertation de-

signs a specialized training pipeline with several adaptive techniques to optimize the

super-resolution quality of scientific data.

• This dissertation carries out systematical evaluations with SRN-SZ and 5 other state-

of-the-art scientific error-bounded lossy compressors on various scientific datasets from

different domains. According to the experimental results, SRN-SZ has achieved up

to 75% compression ratio improvements under the same error bound and up to 80%

compression ratio improvements under the same PSNR.

4.2 Related Work

This section discusses the related works of SRN-SZ in 3 categories: Traditional

scientific error-bounded lossy compression, deep learning-based scientific lossy compression,

and super-resolution neural networks.

4.2.1 Traditional scientific error-bounded lossy compression

Traditional scientific error-bounded lossy compressors can be classified into prediction-

based, transform-based, and dimension-reduction-based. The prediction-based compressors

utilize different data prediction techniques for the compression, such as linear regression
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(SZ2 [55]) and interpolations (SZ3 [101] and QoZ [65]). Transform-based compressors decor-

relate the input data by data transformation techniques so that the transformed data (a.k.a.,

coefficients) turn out to be much easier to compress than the original dataset; then it com-

presses the efficient domain to get a high compression ratio. Typical examples include ZFP

[61] leveraging orthogonal discrete transform and SPERR [49] integrating CDF 9/7 wavelet

transform. With dimension reduction techniques such as (high-order) singular vector de-

composition (SVD), dimension-reduction-based compressors such as TTHRESH [11] can

perform the data compression very effectively. Besides the CPU-based compressors, there

are also several GPU-specialized error-bounded lossy compressors have also been developed

and proposed for better parallelization and throughput. Typical examples are cuSZ [87, 86],

cuSZp [37], and FZ-GPU [97].

4.2.2 Deep-learning-based scientific lossy compression

The great success of the recent research of Artificial Intelligence techniques started

boosting the development of several other relevant research fields, including the scientific

error-bounded lossy compression. Several research works that leverage deep neural networks

in error-bounded lossy compression have been proposed [64, 32, 36, 71, 33]. There are mainly

2 archetypes: autoencoder-based compressors which store the autoencoder-encoded latent

vectors for compression, and coordinate network-based compressors which train networks

online for each input to map the data coordinates to data values. For autoencoder-based

compressors, AE-SZ is an example of integrating Slice-Wasserstein autoencoders, and Hayne

et al. [33] leverages a double-level autoencoder for compressing 2D data. Examples of

coordinate network-based compressors include NeurComp [71], CoordNet [32] and [36].
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4.2.3 Super-resolution neural networks

Following the SRCNN [26] which introduced a Convolutional neural network model

to the image super-resolution tasks, a large number of convolutional neural network mod-

els [17, 80, 4, 7, 59, 99] have been proposed for the super-resolutions. Because of the

development of Transformer [90] and its adaption to Computer Vision tasks [27, 69, 94],

vision-transformer-based neural networks like [16, 53, 18] have achieved state-of-the-art per-

formance on the image super-resolution task. Among those works, HAT [18] is the most

impressive one as it has the widest scope of feature extraction for reconstructing each data

point with a hybrid attention model and achieves state-of-the-art performance.

4.3 Problem Formulation and Backgrounds

4.3.1 Research target

The objective of SRN-SZ is to optimize the compression process with regard to a

certain optimization target: maximizing compression PSNR under each certain compression

ratio. Mathematically speaking, given the input data X, compressed data Z, decompression

output X ′, error bound e, and the target compression ratio T , SRN-SZ will optimize its

compressor C and decompressor D via the following optimization problem (Z = C(X) and

X ′ = D(Z)):

maximize PSNR(X,X ′)

s.t. |X|
|Z| = T

|xi − x′i| ≤ e, ∀xi ∈ X.

, (4.1)
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4.3.2 Challenge for error-bounded lossy compression: low-compressibility

datasets

Recently proposed scientific error-bound lossy compressors have succeeded in out-

performing the old state-of-the-art compressors dramatically. Compared with the historical

SZ 2.1 [55], SZ3 [58] has improved the compressor ratio by up to 460% [101] under the

same data distortion. With higher computational costs, wavelet-based compressors such as

SPERR [49] may have doubled or even tripled compression ratios compared with SZ3.

However, those exciting improvements in compression ratios are just concentrated

on datasets that generally project relatively high compression ratios (e.g. over 100). In

other words, the recent proposed works with advanced data compression techniques fail

to improve the compression for datasets with relatively low compression ratios to similar

extents as they have done in high-ratio cases. Figure 4.1 presents the bit rate-PSNR curves

from the compression of 4 scientific datasets with the representative existing error-bounded

lossy compressors: prediction-based SZ2 [55] and SZ3 [101, 58], SVD-based TTHRESH

[11], and wavelet transform-based SPERR [49] (the compression result of TTHRESH is not

shown in Figure 4.1 (b) as TTHRESH does not support 2D data input). For datasets like

the Miranda [1] (Figure 4.1 (a)). SZ3 has boosted the compression ratio of SZ2 by over

100%, and SPERR further achieves 2x-3x of the compression ratio over SZ3. However,

on other datasets, those 4 compressors have relatively low compression ratios. On certain

datasets such as NYX-Dark Matter Density and Hurricane-QRain (Figure 4.1 (c) and (d)),

the SPERR and TTHRESH have lower compression ratios than SZ3 does, though they are

designed with more complicated data processing techniques and higher computational costs.
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It is worth noting that the low-compressibility data snapshots are actually the

bottleneck of compression effectiveness because their compressed data size will obviously

occupy a very large portion of all data fields (having diverse characteristics) in a single

dataset. For example, compressing 100TB of data with a compression ratio of 100 will

generate 1TB of compressed data, which means that it can at most save the space of 1TB

when optimizing the compression. Nevertheless, if the original data has the same size of

100TB but only has a potential compression ratio of 5 (20TB compressed data), merely

improving the compression ratio by 10% will lead to around 1.8TB storage cost reduction.

Therefore, overcoming the limitation of existing compressors on low-compressibility data

will be significant for optimizing the overall compression process for a large variety of

scientific simulation datasets.

4.4 SRN-SZ Design Overview

SRN-SZ is a deep-learning-based error-bounded lossy compressor and is based

on a modular compression framework that integrates a hybrid data reconstruction model

with both interpolators and super-resolution neural networks. As shown in Figure 4.2, the

compression framework of SRN-SZ consists of 4 modules: Data grid sparsification, data

grid expansion, Huffman encoding, and Zstd lossless compression. Moreover, the super-

resolution neural networks are first pre-trained with a large-size dataset assorted from the

scientific database and then fine-tuned with domain-specific datasets before being leveraged

in the data grid expansion module of SRN-SZ. In the compression process of SRN-SZ, it

first extracts a sparse data grid from the original data input, next, this sparse data grid
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Figure 4.1: Rate-distortion (PSNR) of several existing error-bounded compressors.

is expanded step by step with super-resolution networks and interpolators, eventually to

a lossy reconstruction of the full-size input grid. Compared to existing deep learning-

based compressors which leverage autoencoder-like networks [64, 68] to generate compact

representations or coordinate networks [32, 36, 71] mapping data point indices to data

values, SRN-SZ has the advantages of both free from the storage cost for the compact

representations (required by autoencoders) and per-input network training (required by

coordinate networks).

This dissertation demonstrates the detailed compression algorithm of SRN-SZ in

Algorithm 1. Lines 1-2 correspond to data grid sparsification, Lines 3-10 correspond to
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Figure 4.2: SRN-SZ compression framework.

data grid expansion, and Lines 11-12 correspond to Huffman encoding and Zstd lossless

compression. To bound the point-wise compression error, the linear quantization is involved

in the data grid expansion module, and for clearness of demonstration, it is not displayed

in Figure 4.2.

4.5 SRN-SZ Compression Pipeline

This section describes the steps in the SRN-SZ Compression pipeline in detail.

Since the encoding and lossless modules of SRN-SZ are the same as the ones in SZ3 and

QoZ [101, 58, 65], the following subsections will mainly discuss the data grid sparsification

and data grid expansion.

4.5.1 Data grid sparsification

Having shown advantages in MGARD [5, 57], SZ3 [101, 58], and QoZ [65], SRN-SZ

adopts a level-wise hierarchical paradigm for its compression process. It starts from a sparse
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Algorithm 1 SRN-SZ Compression Algorithm
Input: Input data D, error-bound e, grid sparsification rate r, minimum SRN size s

Output: Compressed data Z

1: Sparsify D into D0 with rate r. Save D0 losslessly /*Data grid sparsification.*/

2: Set current reconstructed data grid D
′
← D0, Quantized errors Q← {}

3: while size(D
′
)! = size(D) do

4: if size(D
′
) ≤ s then

5: D
′
, q = Interp and Quantize(D,D

′
, e)/*Expand D

′
with interpolation.*/

6: else

7: D
′
, q = HAT and Quantize(D,D

′
, e) /*Expand D

′
with HAT network.*/

8: end if

9: Q← Q
⋃

q. /*Merge newly acquired quantized errors q.*/

10: end while

11: H ← Huffman Encode(Q). /*Huffman encoding*/

12: Z ← Zstd(H,D0). /*Zstd compression*/
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data grid sampled from the original input dataset. An example of 2D input data is shown

in Figure 4.3: certain data points are uniformly sampled from the full data grid with a

fixed stride. Those sampled data points in a sparsified data grid will be losslessly saved and

the rest data points will be reconstructed in the data grid expansion process. The reason

SRN-SZ losslessly saves the sparsified grid instead of directly reconstructing a lossy version

of it from scratch as SZ3 does is analyzed below. According to the comparison between

evaluations of SZ3 and QoZ [65], for the hierarchical level-wise data reconstruction, an

accurate base is essential for preserving the high reconstruction quality of the data points,

meanwhile only introducing negligible overhead storage space overhead. To balance the

compression ratio loss and data reconstruction accuracy, some tests are conducted and then

the dimension-wise rate of data grid sparsification is specified as 1
32 , i.e., reduce the data

grid to 1
32 along each dimension and then save the sparsified grid for the data grid expansion.

Full Data Grid Sparsified Data Grid
(Loselessly stored)

Figure 4.3: Data grid sparsification.
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4.5.2 Data grid expansion

Based on the sparsified data grid, the data grid expansion (i.e. reconstruction)

process is involved in both the compression and decompression of SRN-SZ. In the compres-

sion, the data grid expansion is executed for acquiring the reconstruction errors of data

points, and then those errors are quantized and encoded serving as the correction offsets

in the decompression. Moreover, During both the compression and decompression process

of SRN-SZ, the super-resolution and error-quantization in compression (or error correction

in decompression) are executed alternately, which can maximally preserve the accuracy of

data grid expansion. As presented in Figure 4.4, the data grid expansion is performed it-

eratively step by step, until the whole data grid has been reconstructed. In each step, the

reconstructed data grid is expanded by 2x along each dimension, therefore its implementa-

tion is compatible with both the deep learning-based super-resolution neural networks and

the traditional interpolation methods.

Sparsified Data Grid 2x Expansion Recovered Data Grid
(2x Expansion)

Figure 4.4: Data grid expansion.
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HAT super-resolution network

Super-resolution network is the most important data grid expansion technique in

SRN-SZ as it is always applied on the last iteration step of data grid expansion, which

contains the reconstruction for most of the data points in the input data (about 75% for

2D case and about 87.5% for 3D case). The network SRN-SZ leveraged is the HAT (Hybrid

Attention Transformer) network [18], which is a very recent proposed work for image super-

resolution and has been proven to be state-of-the-art. The network architecture of HAT

is illustrated in Figure 4.5. Developed from [53, 99], HAT is a very-deep residual [34]

neural network with transformers [90] as its basic components. HAT has 3 main modules:

the initial convolutional layers for shallow feature extraction, the deep feature extraction

module integrated with residual hybrid attention groups (RHAG), and a reconstruction

module leveraging the Pixel Shuffle technique [77]. The RHAG blocks in the HAT network

can be broken down into HAB (hybrid attention block), OCAB (overlapping cross-attention

block), and convolutional layers. The main advantage of HAT is that according to the

analysis presented in [18], the design of HAT empowers it to make use of a large region of

data points for computing each value in its super-resolution output. Therefore, both local

and global data patterns can be well utilized in the super-resolution process.

Although HAT was originally designed for the super-resolution of natural images,

this dissertation managed to adapt it to the scientific data grid expansion process in SRN-

SZ. Feeding an intermediate data grid with size X x Y (or X x Y x Z) into HAT, SRN-SZ uses

the super-resolution output of size 2X x 2Y (or 2X x 2Y x 2Z) from HAT as the data grid

expansion result in one step. Some key points in bridging the scientific data and the HAT
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Figure 4.5: HAT network.

network are: First, the input and output channels in HAT have been modified from 3 to 1.

Second, the input data grid is normalized to 0-1 before being fed into the network. Last,

for 3D data inputs, 2D HAT models can still be used, but the inputs are preprocessed into

2D slices (along all the 3 dimensions) instead of 3D blocks. The reason SRN-SZ applies 2D

networks for 3D data is that 3D HAT models suffer from extremely high computational time

costs for training and inference, presenting unacceptable flexibility and scalability. Figure

4.6 presents the details of performing 3D super-resolution with those 2D slices. Specifically,

with a partially reconstructed 3D data grid (blue points), SRN-SZ performs super-resolution

on it with the HAT network in 3 different directions: on top/bottom faces (red points), on

left/right faces (green points), and on front/back faces (purple points). The super-resolution

results on the edges are the average of 2 directions, and the point on the cubic center is

reconstructed by a multi-dimensional spline interpolation, which is introduced in [67] and

will be detailed in the next subsection and Figure 4.7 (b).
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Figure 4.6: 3D super-resolution with 2D slices.

interpolation-based data predictor

It is observed that, when the reconstructing data grid has a small size, the super-

resolution network can not work well. Therefore, on some initial steps of data grid expansion

in which the current data grid is smaller than a threshold (with a dimension shorter than

64), the traditional QoZ-based interpolation [65] is leveraged for the grid expansion which

can auto-tune the best-fit interpolation configurations and error bounds. In addition to

the QoZ interpolation, following the design proposed by [67], SRN-SZ also leverages several

advanced interpolation designs such as multi-dimensional spline interpolation. Figure 4.7

presents and compares these two interpolation methods, and SRN-SZ will dynamically

select the interpolation method for each interpolation level. This adaptive selection design

improves both the efficiency of SRN-SZ and the reconstruction quality in the early steps of

data grid expansion.
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Figure 4.7: Interpolations in SRN-SZ.

4.6 SRN-SZ Network Training

The super-resolution quality of the HAT network plays the most important role in

optimizing the compression ratio with controlled data distortion in SRN-SZ, and the core

of optimizing the super-resolution quality of the HAT is its training process. The HAT

networks in SRN-SZ are pre-trained offline both with an assorted dataset and domain-

specific datasets. This design contributes to the flexibility and adaptability of SRN-SZ.

Several strategies have been proposed for optimizing the training of the HAT networks in

SRN-SZ. Figure 4.8 proposes our designed HAT network training pipeline for SRN-SZ. In

the pipeline, each network is trained for two rounds: the general training from scratch and

the domain-specific training for fine-tuning. The following subsections describe the key

design of this pipeline.
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Figure 4.8: SRN-SZ network training pipeline.

4.6.1 Training data collection and preprocessing

This dissertation has collected training data snapshots from a variety of well-

known scientific simulations, including CESM-ATM [42], RTM [43], OCEAN, Miranda [1],

JHTDB [52], Hurricane-ISABEL [38], SCALE-LetKF [2], NYX [72], and so on. The full

list of the scientific simulations used by SRN-SZ for the HAT network training is shown

in Table 4.1. With those assorted data snapshots, this dissertation first decomposes 3D

data arrays into 2D data slices, next normalize them to [0,1] range, then split all over-sized

(over 480x480) slices into smaller slices (480x480) according to the setting in [18]. When

yielding the training data batches, the low-resolution, and high-resolution image pairs are

randomly cropped from those slices. The widely-used image data augmentation methods

like random flip and rotation are excluded from SRN-SZ network training as it is observed

that those data augmentation strategies will harm the quality of super-resolution with test

data. This assorted and pre-processed dataset will be used for general pre-training of the

HAT network.
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Table 4.1: Information of the scientific simulations for training data of SRN-SZ

App. Dimensions Per snapshot size Domain

CESM-ATM 2D 1800×3600 Climate

Hurricane 3D 100×500×500 Weather

JHTDB 3D 512×512×512 Turbulence

Miranda 3D 256×384×384 Turbulence

NYX 3D 512×512×512 Cosmology

OCEAN 2D 2400×3600 Oceanology

RTM 3D 449×449×235 Seismic Wave

Scale-LETKF 3D 98×1200×1200 Climate

4.6.2 Domain-specific fine-tuning

Datasets from different scientific domains and simulations would present diverse

patterns and characteristics. To make the trained network better adapt to more varied

inputs, SRN-SZ needs to fine-tune its super-resolution for certain scientific simulations that

are being intensively and consistently used for research and analysis. To address this issue,

SRN-SZ developed a domain-specific fine-tuning mechanism. After an initial training phase

with the assorted database, SRN-SZ picks up several additional data snapshots generated

by those simulations and then fine-tunes the network separately with each simulation data.

In this way, SRN-SZ can achieve improved compression ratios on multiple widely used

scientific data simulation datasets.

4.6.3 Denoise training with Gaussian random noise

As discussed in Section 4.5.2, the data grid to be expanded in SRN-SZ is a lossy

sample from the original data input. At the same time, SRN-SZ will need the super-
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resolution of it to fit the original input as much as possible. To simulate this process in the

training of the HAT networks in SRN-SZ for better super-resolution results, this dissertation

proposes denoise training in SRN-SZ. Specifically, instead of simply using full data grids

and the corresponding down-sampled data grids as the training data pairs, SRN-SZ adds

Gaussian noise to the down-sampled data grids before feeding them into the network in the

training phase. In this way, the trained network will be capable of de-noising the input for

more accurate super-resolution outputs. Moreover, it is observed that training networks

with intense noises will damage their effectiveness on low error-bound cases, so SRN-SZ

separately trains 3 base networks with different intensities of noises: strong noise (with

stand derivation of 1% of data range), weak noise (with stand derivation of 0.1% of data

range), and no noise. Those networks will correspondingly serve for different compression

cases: high error bounds (larger than 1e-2), medium error bounds (1e-4 to 1e-2), and low

error bounds (smaller than 1e-4).

4.7 Performance Evaluation

This section describes the setup of experiments, and it presents the experimental

results with in-depth analysis. This dissertation evaluates the SRN-SZ and compares it

with five other state-of-the-art error-bounded lossy compressors [58, 49, 65, 11, 66].
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4.7.1 Experimental setup

Experimental environment and datasets

The experiments are conducted on the Argonne Bebop supercomputer (for CPU-

based tests) and the ALCF Theta supercomputer (for GPU-based tests). On the Bebop

machine, its nodes of the bdwall partition are used, having an Intel Xeon E5-2695v4 CPU

with 64 CPU cores and a total of 128GB of DRAM on each. On the Theta machine, each

GPU node of it has 8 NVIDIA TESLA A100 GPUs.

6 data fields from 4 real-world scientific applications in diverse scientific domains

are selected for evaluation. Those datasets are frequently used for evaluating scientific

error-bounded lossy compression [102]. The information about the datasets and the fields

is detailed in Table 4.2. As suggested by domain scientists, some fields of the datasets listed

above are transformed to their logarithmic domain for better visualization. For fairness of

evaluation, the data snapshots used for the evaluations are never contained in the assorted

training dataset and their corresponding fine-tuning datasets. However, for optimizing the

compression, some data snapshots in the same data field (but from different runs of the

application or from different time steps) are used for training (especially for fine-tuning).

Table 4.2: Information of the datasets in experiments

Name # fields Dimensions Domain

CESM-ATM CLDHGH, FREQSH 1800×3600 Climate

Ocean TMXL 2400×3600 Oceanology

NYX Dark Matter Density 512×512×512 Cosmology

Hurricane QRain, QGraup 100×500×500 Weather
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Comparison of lossy compressors in evaluation

In the experiments, SRN-SZ is evaluated together with five other state-of-the-art

lossy compressors. Among those, 4 are the traditional error-bounded lossy compressors: SZ3

[58], QoZ [65], SPERR [49], and FAZ [66]. Another one is the deep learning-based AE-SZ

[64], which was verified in [64] to be one of the most effective autoencoder-based error-

bounded lossy compressors. This dissertation does not perform comparison experiments

with coordinate-network-based compressors due to the reason they suffer from very low

compression speed (much slower than SRN-SZ) as they need to perform a network training

process for each single compression task [32, 36, 71].

Network training configurations

The training of HAT networks in SRN-SZ applies the network structure and train-

ing configurations described in [18]. In each training phase (including general training

and domain-specific fine-tuning), the network is trained on 8 GPUs in 200,000 iterations

with a mini-batch size of 32. The initial learning rate is 2e-4 and will be halved on step

[100K,160K,180K,190K]. For the network training and compression of AE-SZ, this disser-

tation follows the configurations described in [64].

Evaluation metrics

In the compression experiments, the value-range-based error bound mode (denoted

as ϵ) is adopted, which is equivalent to the absolute error bound (denoted as e) with the

relationship of e = ϵ · value range. The evaluations are based on the following key metrics:
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• Decompression error verification: Verify that the decompression errors are strictly

error-bounded.

• Compression ratio (CR) under the same error bound: Compression ratio is the metric

mostly cared for by the users, for fair comparison, the compression ratios under fixed

error bounds are presented.

• Rate-PSNR plots: Plot curves for compressors with the compression bit rate and

decompression PSNR.

• Visualization with the same CR: Comparing the visual qualities of the reconstructed

data from different compressors based on the same CR.

• Ablation Study: Verify the effectiveness of each SRN-SZ design component separately.

4.7.2 Evaluation results and analysis

Verification of compression errors versus error bound

First of all, this dissertation verifies that the decompression errors from SRN-SZ

have strictly been constrained within the error bounds. To this end, it plots the histograms

of decompression errors for each compression task, and two of them (on the QRAIN and

QGRAUP fields of the Hurricane-ISABEL dataset) are presented in Figure 4.9. It can be

clearly observed that the decompression errors of SRN-SZ always respect the error bound (e)

in all cases with no out-of-bound abnormalities of point-wise decompression error. Having

examined the error-bounded feature of SRN-SZ, in the following subsections, this disserta-

tion will test, present, and analyze the compression ratios and qualities of SRN-SZ.
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Figure 4.9: Histograms of decompression errors from SRN-SZ.

Compression ratio under the same error bounds

The compression ratios of all lossy compressors under the same certain error

bounds (1e-3, 1e-4, and 1e-5) are presented in Table 4.3. An interesting fact is that, al-

though proposed later than SZ3, some new compressors (QoZ, SPERR, and FAZ) have not

raised the compression ratios well on the tested datasets. In contrast, SRN-SZ has quite

improved the compression ratios of error-bounded lossy compressors on almost all of the

tested compression cases, over a variety of datasets and error bounds. Particularly, under

the error bound of 1e-4 SRN-SZ achieves a 75% compression ratio improvement over the

second-best QoZ on the CLDHGH field of the CESM-ATM dataset, and under the error

bound of 1e-3 SRN-SZ achieves a 44% compression ratio improvement on the FREQSH field

of it. On other datasets, SRN-SZ can also get 3% to 20% compression ratio improvements.

Last, compared with other deep learning-based compressors, SRN-SZ has outperformed

AE-SZ in an overall assessment.
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Table 4.3: Compression ratio comparison based on the same error bounds

Dataset ϵ
SZ

QoZ SPERR
AE-

FAZ
SRN- Improve

3.1 SZ SZ (%)

CESM
CLDHGH

1E-3 19.2 18.8 18.9 16.8 16.0 32.6 69.8
1E-4 7.0 7.1 7.0 6.9 6.3 12.4 74.6
1E-5 4.3 4.1 4.2 4.1 3.8 6.0 39.5

CESM
FREQSH

1E-3 16.4 17.2 16.3 16.3 14.0 24.7 43.6
1E-4 6.4 6.6 6.5 6.5 5.9 10.4 57.6
1E-5 4.2 3.9 4.0 4.0 3.7 5.1 21.4

Ocean
TMXL

1E-3 25.3 24.9 21.7 23.4 15.5 29.4 16.2
1E-4 11.2 10.6 9.7 11.6 7.3 12.1 4.3
1E-5 6.5 6.6 6.1 7.0 4.7 7.0 0.7

NYX
DarkMatter

Density

1E-3 5.2 5.3 4.5 5.1 4.3 5.9 11.3
1E-4 3.4 3.4 3.1 3.3 3.0 3.7 8.8
1E-5 2.5 2.5 2.3 2.4 2.2 2.6 4.0

Hurricane
QRAIN

1E-3 10.0 10.3 6.9 10.3 10.1 11.2 8.7
1E-4 6.5 5.3 4.5 5.8 4.2 6.4 -1.5
1E-5 4.0 3.4 3.2 3.8 3.0 4.1 2.5

Hurricane
QGRAUP

1E-3 11.2 11.2 7.7 11.0 11.2 12.4 10.7
1E-4 6.6 5.5 4.8 6.2 4.7 6.0 -9.1
1E-5 4.0 3.5 3.3 3.9 3.3 4.3 7.5

Rate-distortion evaluation

Next, this dissertation presents and analyzes the rate-distortion evaluation of SRN-

SZ and other state-of-the-art error-bounded lossy compressors.

Figure 4.10 displays the rate-distortion evaluation results of each lossy compres-

sor on all datasets. In the plots, the x-axis is bit rate and the y-axis is PSNR. SRN-SZ

has the best rate-distortion curves on all the datasets. On the CESM-CLDHGH dataset,

SRN-SZ achieves 60% to 80% compression ratio improvement than the second-best SPERR

in the PSNR range of 70 ∼ 80. On the Ocean-TMXL dataset, SRN-SZ achieves ∼20%

compression ratio improvement than the second-best QoZ in the PSNR range of 60 ∼ 70.

Additionally, SRN-SZ overperforms all other compressors by about 5% to 15% compression

ratio improvements on the rest of the datasets.
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Those results show that, for certain datasets on which the traditional or autoencoder-

based lossy compressors can only present limited compression ratios, SRN-SZ has the po-

tential to optimize the compression of those datasets to a further extent, and the reasons

can be attributed to 3 terms. First, those datasets have complex data characteristics and

patterns for which traditional data modeling techniques cannot fit well. Second, the newly

proposed compression framework of SRN-SZ enables the compressor to directly leverage a

super-resolution network for the data prediction via data grid expansion (super-resolution)

instead of applying a redundant autoencoder model for which the latent vectors must be

stored (such as AE-SZ does). Third, the hybrid usage of interpolations and super-resolution

networks makes the interpolation compensate for the limitation of neural networks when

dealing with small data grids.
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Figure 4.10: Rate-distortion evaluation (PSNR).
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Visualization of decompressed data

As an example of the high compression quality of SRN-SZ, Figure 4.11 presents

several visualizations of the decompression results of CESM-CLDHGH data field from mul-

tiple compressors, together with the original data as the reference. For a fair comparison,

for each compressor, the data are compressed into a fixed compression ratio (around 32)

and then decompressed. According to Figure 4.11 (the visualization of AE-SZ is omitted

because it has poor quality with PSNR ≈ 53 under the specified compression ratio), in this

case, the decompression data of SRN-SZ has the lowest distortion from the original input,

with a PSNR of 68.5 which is 5 higher than the second-best FAZ. The zoomed regions also

show that SRN-SZ has best preserved the local data patterns as well. The local visualiza-

tion of SRN-SZ decompressed data is nearly identical to the original data, meanwhile, the

ones of other compressors suffer from some quality degradation.

Ablation study of network training strategies

For verifying and understanding how the design details of SRN-SZ contribute to the

overall compression quality, especially for the design components in the network pre-training

pipelines, this dissertation conducts several ablation studies for the network pre-training,

identifying and quantifying the contributions of the corresponding design components.

First, to examine the impact of domain-specific fine-tuning (described in Section

4.6.2) on the training of HAT networks in SRN-SZ. SRN-SZ is tested with networks free

of domain-specific fine-tuning and then its compression rate-distortion is compared to the

one from ordinary SRN-SZ. This comparison is detailed in Figure 4.12 with 2 examples
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(a) CESM-CLDHGH (Original) (b) SRN-SZ (PSNR:68.5,CR:31.6) (c) SZ3 (PSNR:59.7,CR:31.9)

(d) QoZ (PSNR:60.9,CR:31.6) (e) SPERR (PSNR:61.8,CR:31.9) (f) FAZ (PSNR:63.4,CR:31.4)

Figure 4.11: Visualization of reconstructed data (CESM-CLDHGH).

presented (on Ocean-TMXL and NYX-Dark Matter Density). It is shown that the domain-

specific fine-tuning process (the blue curves in Figure 4.12) can consistently improve the

compression rate-distortion over the SRN-SZ without a network fine-tuning process (the

orange curves in Figure 4.12).

Next, this dissertation addresses the importance of SRN-SZ denoise training by

analyzing and comparing the compression rate-distortion of SRN-SZ integrating fixed HAT

networks each trained with a certain intensity of noise. In Figure 4.13, the rate-PSNR curves

of SRN-SZ with HAT networks trained by 3 different levels of noise intensity (zero noise,

low noise of σ=1e-3, and high noise of σ=1e-2) are illustrated. Those compressors exhibit

127



2 4 6 8 10 12
Bit rate

40
50
60
70
80
90

100
110

PS
NR

 (d
B)

Fine Tuning
No Fine Tuning

(a) NYX-Dark Matter Density

0 1 2 3 4 5
Bit rate

50

60

70

80

90

100

PS
NR

 (d
B)

Fine Tuning
No Fine Tuning

(b) Ocean-TMXL

Figure 4.12: Ablation study for the domain-specific fine-tuning.

advantages over the others on different bit rate ranges. SRN-SZ with high-noise-trained

overperforms the other configurations when the bit rate is smaller than 0.4 (correspond-

ing to error bound > 1e-2). The low-noise-trained HAT network optimizes the SRN-SZ

compression under medium bit rates, and when the bit rate is large (error bound < 1e-4),

Leveraging networks trained with no noise achieves the best rate-distortion. Those results

prove that the error-bound-adaptive dynamic usage of differently-trained HAT networks

(with diverse noise intensities) essentially optimizes the compression of SRN-SZ.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Bit rate

50

60

70

80

90

PS
NR

 (d
B)

Zero Noise
Low Noise
High Noise

(a) CESM-CLDHGH

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Bit rate

45
50
55
60
65
70
75
80
85

PS
NR

 (d
B)

Zero Noise
Low Noise
High Noise

(b) CESM-FREQSH

Figure 4.13: Ablation study for the denoise training.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Scientific error-bounded lossy compression plays an irreplaceable role in ensuring

the high-performance management and analysis of exascale scientific data in cutting-edge

supercomputing systems. However, existing scientific error-bounded lossy compressors suf-

fer from several critical limitations, including but not limited to under-optimized compres-

sion ratios, unstable compression qualities, and fixed outcomes from varied requirements.

In order to enhance the utility of scientific error-bounded lossy compression in a larger

variety of real-world use cases, this dissertation presents several deep explorations into dif-

ferent aspects of scientific error-bounded lossy compression, proposing diverse designs of

task-adaptive scientific error-bounded lossy compressors. Those designs either feature high

versatility for general compression requirements or high optimization levels for specialized

compression tasks. They are applicable to a diversity of computing platforms and have over-

come several critical limitations of existing compressors. Consequently, they push forward
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the usability of scientific data compression to a brand new extent. The overall outcomes of

this dissertation can be summarized as follows:

• This dissertation develops an efficient error-bounded lossy compression framework

that can dynamically optimize different quality metrics in online compression. To

this end, this dissertation leverages multiple advanced techniques, including block-wise

anchor point structure, multi-level interpolation-based data prediction, level-wise pre-

dictor selection, and error-bound auto-tuning. this dissertation also develops a series

of optimization strategies including block-wise interpolation tuning, dynamic dimen-

sion freezing, and Lorenzo tuning, which can substantially improve the adaptability

of the auto-tuning for compression across a broad spectrum of inputs. Experiments

show that QoZ outperforms other high-performance error-bounded lossy compressors

in compression ratio by up to 140% under the same error bound, and by up to 360% un-

der the same PSNR. In parallel data transfer experiments on the distributed database,

QoZ achieves a significant performance gain with up to 40% time cost reduction over

the second-best compressor.

• This dissertation proposes FAZ, which has a highly flexible and adaptive design with

an effective pipeline auto-tuning method, leveraging effective data compression mod-

ules and avoiding their weaknesses. This dissertation evaluates FAZ and the other

state-of-the-art error-bounded lossy compressors with 7 real-world datasets on up to

4K cores. Regarding compression ratio and rate-distortion, FAZ outperforms all other

state-of-the-art error-bounded lossy compressors, achieving 120%, 190%, and 75% im-

provements under the same error bound, PSNR, and SSIM. FAZ also has comparable
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or better compression/decompression speeds compared with other wavelet-based lossy

compressors in sequential and parallel tests.

• This dissertation also introduces SRN-SZ, a deep learning-based error-bounded com-

pressor that leverages one of the most advanced super-resolution neural network

archetypes, namely HAT. SRN-SZ abstracts the data prediction process in compres-

sion into a hierarchical data grid expansion paradigm, enabling the utility of super-

resolution neural networks for lossy compression. To exploit the advantages of different

data reconstruction techniques, the data grid expansion in SRN-SZ is performed by

a self-adaptive hybrid method of super-resolution HAT networks and interpolations.

For the better adaptation of super-resolution networks to scientific data, SRN-SZ

integrates a carefully designed network training pipeline for optimizing the network

performance. In the evaluations, SRN-SZ outperforms all other state-of-the-art error-

bounded lossy compressors in terms of compression ratio and rate-distortion, achieving

up to 75% compression ratio improvements under the same error bound and up to

80% compression ratio improvements under the same PSNR.

5.2 Future Work

Scientific lossy compression is a fast-developing research field, therefore quite a

few open research problems still lie in this area. After all the demonstrations of research

achievements, this dissertation would like to present some discussion about certain unre-

solved research problems highly relevant to the research topics of this dissertation, which

can both be the future work of the author and inspire the readers for their research.
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5.2.1 New data prediction scheme for scientific compression

From Lorenzo data predictor, and linear regression, to spline-interpolation-based

data predictor, the widely-adopted SZ data compressor has substantially evolved over its

generations. The QoZ compressor proposed in Chapter 2 benefits a lot from the excellent

spline-interpolation-based data predictor and has updated it with several major develop-

ments, but admittedly it has not presented brand new designs of data prediction. Therefore,

a naturally raised question is, what would be the next-generation data predictor for scien-

tific error-bounded lossy compression that can outperform spline-interpolation-based data

predictor while having a comparable speed to it? The most challenging point is that spline-

interpolation costs very limited numbers of numerical operations for the prediction of each

data value, which makes a new high-accuracy design quite hard to match its efficiency. To

this end, we must make a careful (and even dynamic) selection of the neighbor points for

prediction and bring out well-established mathematical formulas. One idea is whether we

can better exploit the high-dimensional locality information of the input data, instead of

just leveraging 1D splines. Moreover, an adaptive design fitting different characteristics of

input data may also be needed.

5.2.2 Efficiency-aware compression auto-tuning

The compressors proposed in this dissertation contain a variety of auto-tuning

techniques and targets, but all of them focus on the optimization of compression ratio and

quality. In efficiency-sensitive real-world use cases, users may look forward to different

trade-offs between the compression quality and the speed. For example, one compressor
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may be applied to different input formats (static database or yielding data stream) and

different requirements (storage saving or fast processing), which calls for diverged needs of

compression speed and quality. If the auto-tuning module of one compressor can involve

its efficiency as a factor, it can serve better for a wider range of tasks that show distinct

natures. One core challenge is that more flexible designs of compression framework and

pipeline are needed to provide an adequate amount of efficiency levels. Another important

challenge is that the compressor will be used on diverse platforms, so for the speed-aware

compression auto-tuning a reliable strategy of compression speed profiling and/or estimation

across different platforms will be needed.

5.2.3 More efficient neural networks for scientific compression

Although neural networks have improved the compression ratio on certain scien-

tific datasets, their usage in practical cases is still limited because of their extremely high

computational cost and low speed. To address this issue, future research works will need

to deliver more scientific-customized designs of network structure and training/inference

schemes. For example, it is worth exploring how to find the best trade-off of effectiveness

and efficiency in pruning layers/weights and weight precision. Introducing new network

modules (e.g. layers and activation functions) that are better optimized for scientific data

can also boost the network’s effectiveness without computational cost overheads.
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