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ABSTRACT OF THE DISSERTATION

Mapping Highly Nonconvex Energy Landscapes in Grammar and Curriculum Learning

by

Maria Pavlovskaia

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2017

Professor Song-Chun Zhu, Chair

We introduce Energy Landscape Maps (ELMs) as a new and powerful analysis tool of non-

convex problems to the machine learning community. An ELM characterizes and visualizes

an energy function with a tree structure, in which each leaf node represents a local min-

imum and each non-leaf node represents the barrier between adjacent energy basins. We

construct ELMs using an advanced MCMC sampling method that dynamically reweights

the energy function to facilitate efficient traversal of the hypothesis space. By providing an

intuitive visualization of energy functions, ELMs could help researchers gain new insight into

the non-convex problems and facilitate the design and analysis of non-convex optimization

algorithms. We demonstrate this on two classic machine learning problems: clustering with

Gaussian mixture models and biclustering.
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CHAPTER 1

Introduction

In a typical machine learning problem, the goal is to identify a model in a hypothesis space

that optimizes a pre-specified energy function. Many machine learning problems involve non-

convex optimizations, such as the learning of multilayer neural networks, mixture models and

probabilistic grammars. Typically, local search techniques such as gradient descent (e.g.,

backpropagation for training neural networks) and coordinate descent (e.g., expectation-

maximization for learning mixture models) are employed to find a local minimum in the

energy landscape. Analysis of the properties of such non-convex energy landscape is much

less studied.

We introduce Energy Landscape Maps (ELMs) as a new and powerful analysis tool of

non-convex problems to the machine learning community. ELMs are also known as dis-

connectivity graphs in physics [BK97, WMW98]). An ELM characterizes and visualizes the

energy function with a tree structure, in which each leaf node represents a local minimum

and each non-leaf node represents the barrier between adjacent energy basins. Figure 2.1

shows an example ELM and the energy landscape it represents. We adopt and extend the

algorithms proposed in the literature [Zho11, AL10] to efficiently construct ELMs using an

advanced MCMC sampling strategy. Specifically, we employ a MCMC sampler to traverse

the hypothesis space; unlike traditional MCMC sampling, we divide the hypothesis space

into subregions and reweight the energy function at each subregion in a way that the en-

ergy of a subregion frequently visited by the sampler would be increased. The reweighting

scheme helps the sampler to frequently transit across energy barriers and efficiently traverse

the hypothesis space. Based on the resulting Markov chain, we can discover local minima of

the energy function as well as estimate the energy barriers between them, from which the

1



ELM can be constructed.

ELMs provide an intuitive visualization of energy functions, which could help researchers

gain new insight into the non-convex problems and facilitate the design and analysis of non-

convex optimization algorithms. We demonstrate the utility of ELMs in analyzing two classic

machine learning problems: clustering with Gaussian mixture models and biclustering. We

illustrate how the shape and complexity of ELM is influenced by (a) the input data generated

from different ground-truth models, and (b) the hyperparameters of the energy function. We

also visualize the behavior of a variety of learning algorithms using ELMs.

Many machine learning problems involve non-convex optimizations. A representative

example that we study is unsupervised learning of dependency grammars. A dependency

grammar models the dependency relations between the words of a sentence and is widely

used in natural language syntactic parsing [Mel88, Col99, KMN09]. In unsupervised learning,

one tries to recover a dependency grammar from a set of unannotated sentences that are

generated from the grammar. The learning objective is typically the posterior probability

of the dependency grammar. Since the parse of each training sentence is latent and the

number of possible assignments of a parse is huge, the energy function of unsupervised

dependency grammar learning is highly non-convex. Typically, local search techniques such

as the expectation-maximization algorithm are employed to find a local optimum grammar.

Significant progress has been made over the past ten years in designing new algorithms and

regularization techniques to improve the learning accuracy [KM04, HJM09]. On the other

hand, analysis of the properties of the highly non-convex energy landscape is much less

studied, which would nonetheless facilitate the analysis and design of dependency grammar

learning algorithms.

We demonstrate the utility of ELMs in analyzing unsupervised dependency grammar

learning, in particular the curriculum learning technique which has been successfully applied

in learning dependency grammars [BLC09, SAJ10]. Curriculum learning divides the learning

process into multiple stages and each stage involves learning a more complex grammar than

the previous stage which culminates in the target grammar in the final stage. By plotting the

ELM of each curriculum stage, we show that the effectiveness of a curriculum is a result of

2



starting with a highly smoothed energy function and then gradually reducing the smoothness

over the curriculum stages, as hypothesized by Bengio et al. [BLC09].

The rest of this thesis is organized as follows. In Chapter 2, we discuss background mate-

rial on Energy Landscape Maps, And-Or graphs, and the Wang-Landau algorithm. We also

present a general-purpose distance metric in the hypothesis space which is used in our ELM

construction. Chapter 3 discusses the ELM construction algorithm for high-dimensional

continuous spaces and various tests for convergence. In section 3.3, we present our experi-

mental results on the Gaussian mixture model fitting problem and the biclustering problem

respectively. Chapter 4 introduces the dependency grammar and presents our experimen-

tal results. Chapter 5 presents some theoretical results on PAC learning of And-Or Graph

spaces. Chapter 6 concludes our work and present avenues for future research.
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CHAPTER 2

Background

2.1 ELM

In [BK97], Becker proposed visualizing multi-dimensional energy surfaces with a ”discon-

nectivity graph”, which we refer to here as an ELM. The graphs are constructed from the

local minima of an energy landscape; the local minima and displayed as leaves and their en-

ergies are displayed as the y-axis position of the leaves. The graphs are divided into distinct

branches which connect at the minimum energy threshold of any path between the local

minima as shown in Figure 2.1.

The ELM allows us to visualize the topological characteristics of high-dimensional energy

spaces. It partitions the the energy space into ”energy wells”, the basins of attraction of the

local minima as shown in Figure 2.11. The branches of the ELM reflect the connectivity of

the energy wells, which characterize the shape of the high-dimensional energy function.

Figure 2.2 shows several examples of energy function topologies and the resulting ELMs.

These allow us to view important characteristics of the space, including 1. the number of low-

energy local minima, the energy differences between the local minima, the energy barriers

between the global minima and nearby local minima. These characteristics determine the

efficacy of learning algorithms in the space; for instance, if there are multiple low-energy

local minima with high energy barriers separating their energy basins, most MCMC-style

algorithms will become ”stuck” in the local minima resulting in slow convergence speeds.

4



Figure 2.1: An energy function and the corresponding ELM. The y-axis of the ELM is the

energy level, each leaf node is a local minimum and the leaf nodes are connected at the ridges

of their energy basins.

Figure 2.2: Sample landscape topologies and corresponding ELMs presented in increasing

order of difficulty for learning the global optimum [BK97]. (top) Single minimum with weak

noise (middle) funnel energy function with one global minimum (bottom) multiple global

minima with large energy barriers.

5



2.2 AOG

A stochastic AND-OR graph (AOG) consists of a hierarchical structure with alternating

layers of And-nodes and Or-nodes. An AND node represents a probabilistic composition

of its child nodes. An OR node represents a stochastic choice among its child nodes and a

leaf node represents an observable random variable. AOGs are an extension of constituency

grammars in natural language parsing [MS99] and have been employed in computer vision

to model objects [ZM06] and events [PJZ11].

The AOG is an alternative visual representation of grammar production rules. In the

context of image grammars, It is used to represent the hierarchical decomposition for scene

level, to object level, to part level and finally to pixel level. Figure ?? shows the AOG model

for the hierarchical decomposition of a clock from the object level to the template level.

An AND node represents a decomposition of an entity into its parts. This corresponds

to the grammar rule A→ A1A2 . . . An. For example, a clock face can be decomposed into a

frame, 12 numbers and two clock hands so it can be represented as an AND node as seen in

Figure 2.3.

An OR node represents a decomposition into alternative possible sub-structures. This

corresponds to the grammar rule A → A1|A2| . . . |An. For example, this can include the

views of a single object from different angles (such as the front and side views of a human

face) or alternative parts that can make up an object (such as different types of clock faces

as seen in Figure 2.3).

A terminal node is an instance of a base-level dictionary element. In the context of

image grammars, this can for example be an image patch, a part template, or a primitive.

The terminal nodes can occur at any level of the graph hierarchy and correspond to the

production rule A→ a.
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Figure 2.3: AOG model for the hierarchical decomposition of a clock from the object level

to the template level.

2.2.1 Special cases of AOGs

1. A Gaussian mixture model can be seen as a special case of AOG. The root node of the

AOG is an OR node that makes choice among the mixture components. Each child of the

OR node is a AND node representing a Gaussian distribution. The child nodes of each AND

node are leaf nodes representing the mean vector and covariance matrix.

2. A coherent bicluster [MO04] can be seen as a special case of AOG. The root node of

the AOG is an AND node with two child nodes, representing the composition of the two

dimensions of the bicluster. Each of the two child nodes is an OR node, whose child nodes

represent the indexes of the rows or columns of the bicluster.

3. A dependency grammar (DG) is a recursive AOG with an infinite depth. It is a

context-free grammar that requires its grammar rules to take the form of ROOT → A,

A→ AB, A→ BA or A→ a, where ROOT is the start symbol, A and B are nonterminals,

and a is a terminal.
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(a) (b)

Figure 2.4: (a) An AOG with root node A. Node A is an AND-node containing two child

nodes B and C. The nodes B and C are OR-nodes each containing three children, which

are terminal nodes. The terminal nodes {a, b, c, d, e, f} are elements of the dictionary L(A)

for the AOG. (b) Recursive AOG structure with 2 layers of AND nodes and 2 layers of OR

nodes. With a branching number of 3, this AOG contains 10 And-nodes, 30 Or-nodes, and

81 leaf nodes.
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2.3 Distance Measure in the Hypothesis Space

The hypothesis space H is the set of all possible models that may be learned. We want

to minimize an energy function that is defined on the hypothesis space: E : H → R. In

order to define local minima of the energy function, we must define a distance metric on the

hypothesis space H.

In this section, we define a general-purpose weak distance metric that we used in our

experiments. Our metric is general-purpose in the sense that it is applicable to a large

variety of probabilistic models, including the two types of models studied in this paper. An

important feature of our metric is that it measures the distance between two models in terms

of their strong generative capacity, i.e., the difference of the models in assigning values of both

observable and latent variables. This is very useful for analyzing machine learning problems

in which the distribution over latent variables is important (e.g., unsupervised learning of

probabilistic grammars in which the parse tree is the latent variable). In comparison, many

existing metrics either only consider the distribution of observable variables (e.g., the total

variation distance), or directly compare the model structures and parameters and therefore

distinguish models that are practically equivalent (e.g., the L1 distance of model parameters).

Our metric is also efficient to compute without the need to traverse all possible assignments

of the observable and latent variables.

2.3.1 AND-OR Graph Space

We introduce the stochastic AND-OR graph (AOG) [ZM06] as an overarching model with a

large variety of probabilistic models as special cases. The distance metric that is defined on

the AOG space is then applicable to the hypothesis spaces of all the subclasses of AOG.

2.3.2 Distance Measure of AOGs

We recursively define the distance metric D between two N -level AOGs by defining the

metric on each type of node. It can be shown that D is a weak distance metric in the sense

9



A

p1 p2 p3 pn

a1 a2 a3 an

B

q1 q2 q3 qm

b1 b2 b3 bn

Figure 2.5: Two OR nodes A and B with children {a}I and {b}J and branch probabilities

{p}I and {q}J where I = {1, . . . , n} and J = {1, . . . ,m}.

that it satisfies non-negativity, positive-definiteness, and symmetry but does not satisfy the

triangle inequality.

Metric for OR Nodes: The distance between two OR nodes is a function of the distances

between pairs of their closest children.

Let A and B be OR nodes with children {a}I and {b}J and branch probabilities {p}I

and {q}J where I = {1, . . . , n} and J = {1, . . . ,m} with n ≤ m as show in Figure 2.5. We

iteratively construct K to be an injective mapping between the index sets I and J . Let

(i, j) = arg min
(k,l)
{D(ak, bl)} , (2.1)

that is ai and bj are the closest pair of child nodes. Then we define K(i) = j. Next we remove

i and j from their index sets, find the next closest pair of child nodes and obtain K(i′) = j′.

We repeat this until the first index set is empty (the mapping will not be surjective if n < m).

The distance between the parent nodes A and B is

D(A,B) := 1−
n∑
i=1

min(pi, qK(i))
(
1−D(ai, bK(i))

)
.

Metric for AND Nodes: The distance between two AND nodes is a function of the

distances between their children. Let A and B be AND nodes with children {a}ni=1 and

{b}mj=1 as show in Figure 2.6.
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Figure 2.6: Two AND nodes A and B with children {a}ni=1 and {b}mi=1.

The distance between the parent nodes A and B is

D(A,B) := 1−
∏
i,j

max(ε, 1−D(ai, bj))

for some fixed 0 < ε < 1.

Metric for Terminal Nodes: Any positive-definite, symmetrical distance measure D that

satisfies D(A,B) ∈ [0, 1] ∀A,B can be used to define the distance between terminal nodes.

In particular, if the terminal nodes are in a metric space with a metric d∗, then we may use

the measure D(A,B) = 2
π

tan−1(d∗(A,B)).

2.3.3 Example Distance Calculation

Let G and G′ be two AND-OR graph fragments with start nodes S and S ′ as shown in figure

2.7. We can assume that the hypothesis space H consists of two-level AND-OR graphs with

terminal nodes A,B,C,D,E, F .

Step 1: We calculate the distance between the terminal nodes. Since in this case we are

in a discrete space, D(A,A) = D(B,B) = · · · = D(F, F ) = 1 while D(A,B) = D(A,C) =

· · · = D(E,F ) = 0.
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Step 2: We calculate the distance between the parent nodes of the terminal nodes.

D(N,N ′) = 1− 0 = 1

D(N,M ′) = 1− (min(0.3, 0.4)D(A,A)

+ min(0.2, 0.3)D(B,B) + min(0.5, 0.3)D(C,C))

= 1− (0.3 + 0.2 + 0.3) = 0.2

D(M,M ′) = 1− 0 = 1

D(M,N ′) = 1− (min(0.3, 0.7)D(D,D)+

+ min(0.2, 0.3)D(E,E))

= 1− (0.3 + 0.2) = 0.5

Step 3: Since (N,M ′) have the minimum distance between them, we match N → M ′.

The next smallest distance is between M and N ′, so we match M → N ′.

Step 4: We calculate the distance between the start nodes S and S ′.

D(S, S ′) = 1− (max(ε, 1−D(N,M ′))) (max(ε, 1−D(M,N ′)))

= 1− (max(ε, 1− 0.2)) (max(ε, 1− 0.5))

= 1− (max(ε, 0.8)) (max(ε, 0.5))

= 0.6

assuming that we chose a sufficiently small ε such that ε < 0.5. Hence the distance between

the two AND-OR graph fragments is 0.6.

Comparison with the symmetric KL divergence We calculate the model distance using

KL divergence for comparison. First we generate all possible samples from each model and

compute the frequency histograms of each sample as shown in Figure 2.8. Then we compute

the symmetric KL divergence between S and S ′ using the equation

D(S, S ′) =

∑(
pi log pi

qi

)
+
∑(

qi log qi
pi

)
2
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where pi is the probability of sample i from the first AoG fragment and qi is the probability

of sample i from the second AoG fragment. Note that since certain samples (FA, FB, FB)

have probability 0 in the second AoG fragment, the equation evaluates to∞. Consequently,

we use a modified version

D(S, S ′) =

∑(
p′i log

p′i
q′i

)
+
∑(

q′i log
q′i
p′i

)
2

where p′i = max(pi, ε) and q′i = max(qi, ε). For ε = 10−10, we obtain D(S, S ′) = 5.58. How-

ever, there are two issues calculating the model distance using the symmetric KL divergence

approach.

• The calculated distance strongly depends on the chosen value of ε and approaches∞ as

ε→ 0. For example, D(S, S ′) = 0.93 for ε = 0.01 and D(S, S ′) = 17.09 for ε = 10−30.

• The distance does not reflect the structure of the model.

2.4 Wang-Landou

The objective of the Wang-Landau algorithm is to construct a Markov Chain that will

efficiently traverse a large state space Ω by frequently visiting each energy basin. This is

done by partitioning the state space into bins corresponding to energy basins and energy

levels, then constructing a chain that can visit every bin with equal probability, ie. it will

not become trapped at deep energy basins.

Let Ω be partitioned into disjoint subspaces Ω = ∪Ki=1Di corresponding to the energy

wells of the target function as shown in Figure 2.9.

The intuition for this algorithm is the following: we divide the hypothesis space Ω into

bins Bi as shown in Figure 2.11 (b) and attempt to draw samples from a target distribution

π(x) in such a way that there is equal number of samples in each bin. Let φ(x) = i for

i ∈ Bi be the mapping between the hypothesis space and the bin indices and let β(i) be the

probability mass of the i-th bin, β(i) =
∫
x∈Ωi

π(x) dx. We define a new probability function

π′(x) = π(x)/β(φ(x)) so that MC samples from π′(x) have equal density among all the bins.
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Figure 2.7: Shows the minimum-distance matching nodes in two AoG fragments. See section

2.3.3 for an example calculation of the distance between these fragments. In this example,

D(N,M ′) = 0.2, D(M,N ′) = 0.5 and so the AoG distance is D(S, S ′) = 0.6
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DA DB DC EA EB EC FA FB FCDA DB DC EA EB EC FA FB FC

G1 G2

Figure 2.8: Histograms of the possible outputs sampled from the graphs G1 and G2 with

start nodes S and S ′ shown in Figure 2.7. See section 2.3.3 for an example calculation of

the distance between these fragments using the symmetric KL divergence as the distance

measure. In this example, KL(S, S ′) = 5.5792 for ε = 10−10.

D1

D2

D3

D4

D6

Figure 2.9: State space Ω partitioned into disjoint subspaces Ω = ∪Ki=1Di corresponding to

the energy wells of the target function.
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We want to sample from π′(x), but need to iteratively refine our estimate of the unknown

probability mass function β(i) by stochastic gradient method [LLC07]. We use γti as the

probability mass estimate of bin i by incrementing log γti by 1 for every new sample in Di

at iteration t. As t → ∞, the weights γti converge to β(i), and the samples become equally

distributed among the bins.

We construct the Energy Landscape Map (ELM) using a modified version of the algorithm

proposed by Zhou [Zho11]. Zhou’s original algorithm is designed for discrete hypothesis

spaces. The algorithm performs a random walk over the basins of attraction of the energy

function E : H → R. The random walk is implemented similarly to the generalized Wang-

Landau (GWL) algorithm [LLC07, AL10] and has the advantage of rapidly traversing across

multiple local minima in high-dimensional spaces.

The Hypothesis space is partitioned into energy basins and the energy is partitioned into

unit intervals, which defines a natural partitioning of H × R into bins. The random walk

is a MCMC chain of samples (xt, E(xt)) that is constructed in such a way that it has equal

probability of visiting each bin in H× R. The algorithm goes as follows:

1. Initialize a sample x0 ∈ H and the bin weights γ0
i for the bins Bi ∈ H × R. Repeat

step 2-6:

2. At step t, sample y ∼ Q(xt, y) from some proposal distribution Q.

3. Perform steepest descent initialized with y to find the energy basin that y belongs to.

Let φ(y) be the index of the bin containing (y, E(y)).

4. Accept proposal y with probability α(xt, y) where

α(xt, y) = min

(
1, e−b(E(xt)−E(y))

γtφ(xt)

γtφ(y)

)
. (2.2)

5. If the proposal is accepted, increase the weight γt+1
φ(y) = γtφ(y) ∗ f for some constant f .

6. If xt and y belong to different basins, then perform ridge descent and update the

estimated upper-bound of the energy barrier between the two basins.
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Figure 2.10: The ridge descent algorithm is used for estimating the energy boundary between

basins Dk and Dl initialized at consecutive MCMC samples a0 = xt, b0 = xt+1 where a0 ∈ Dk

and b0 ∈ Dl.

Figure 2.12 (a) illustrates the Markov chain produced by the algorithm.

From the algorithm, we collect N samples x1, . . . , xN . Next we find the energy barri-

ers by ridge descent: We collect all consecutive pairs that move across two basins Ωkl =

{(xt, xt+1) st. xt ∈ Dk, xt+1 ∈ Dl}. For each basin pair k, l we choose (a0, b0) ∈ Ωkl with the

lowest energy (a0, b0) = argmin(a,b)∈Ωkl
[min(E(a), E(b))] . Next we iterate to find (at, bt):

at = argmina {E(a) : a ∈ Neighborhood(bt−1) ∩Dk}

bt = argminb {E(b) : b ∈ Neighborhood(at−1) ∩Dl}

until bt−1 = bt, as shown in Figure 2.10.

After enough samples are collected, we can construct the ELM based on the energy of

the basins that have been discovered and the estimated energy barriers between them. The

ELM tree is constructed recursively from the MCMC samples x0, . . . , xt in the following way:

1. the tree is initialized as a root node x0 2. For i = 1, . . . , k, if xi is not contained in the

tree, compute the barrier B(xi, xi−1), create a node at height B(xi, xi−1) on a parent branch

of xi−1, and add the leaf xi as show in Figure 2.13 (a). Otherwise if xi is contained in the

tree, merge the parent branches of xi and xi−1 at height B(xi, xi−1) as shown in 2.13 (b).
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B1 B2 B3 B4

B6 B7 B8
B5

D1 D3
D4

Barrier(D2,D3)

D2

Figure 2.11: Bins Bi ∈ H×R. The energy space R (shown as the y-axis) is partitioned into

uniform intervals. The hypothesis space H is partitioned into energy basins (shown as the

partitions along the x-axis).

Xt

Xt+1 Xt+2

Xt+3 Xt+4 Xt+5
Xt+6

Xt+7

Xt+8
Xt+9

B1
B2

Barrier(B1,B2)

Figure 2.12: Sequential MCMC samples xt, xt+1, . . . , xt+9. For each sample, we perform

gradient descent to determine which energy basin the sample belongs to. If two sequential

samples fall into different basins (xt+3 and xt+4 in this example), we estimate or update

the upper-bound of the energy barrier between their respective basins (B1 and B2 in this

example).
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Figure 2.13: Recursively constructing the ELM from MCMC samples (a) left: adding a node

(b) merging two branches.

2.5 Equal Domain Samplers
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CHAPTER 3

ELMs for high-dimensional continuous spaces

3.1 ELM Construction

We construct the Energy Landscape Map (ELM) using a modified version of the algorithm

proposed by Zhou [Zho11]. Zhou’s original algorithm is designed for discrete hypothesis

spaces. The algorithm performs a random walk over the basins of attraction of the energy

function E : H → R. The random walk is implemented similarly to the generalized Wang-

Landau (GWL) algorithm [LLC07, AL10] and has the advantage of rapidly traversing across

multiple local minima in high-dimensional spaces.

In addition to the local minima and the energy barriers between the energy wells, we can

also estimate the probability mass and the volume of each well. One the chain has converged

to a stationary distribution, we have ew
k
i →

∫
Bi p(x)dx where wki,j is the number of samples

in bin Bi at iteration k and energy level j. Hence the probability mass of Bi is approximated

by
∑

j e
wk

i . [Lia05a]. Similarly, given a sufficiently dense energy ladder (ie. the energy space

R is partitioned into sufficiently small intervals [u, u+ du], then we have

wj = Ω(u)e−udu.

As du → 0, the volume of the energy basin k is approximated by Vk =
∑

u Ωk(u)du =∑
uwk,je

u, as shown in Figure 3.1.

Many non-convex optimization problems are defined in a continuous space. We make

the following extensions to the algorithm in the continuous case. First, we perform gradient

descent or coordinate descent to identify the basin of each sample. Because the landscapes

that we study are smooth only in small neighborhoods, we use some optimizations of gradient
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Figure 3.1: Assuming that du is sufficiently small, the volume of the left energy basin is

approximated by V =
∑

u Ωk(u)du =
∑

uwk,je
u.

descent in order to better detect the local minima. In particular, we use coordinate descent,

and additionally use Armijo line search to determine the step size as shown in Figure 3.2. If

the hypothesis space H is a manifold in Rn, we perform projected gradient descent.

Second, to avoid erroneously identifying multiple local minima within the same basin

(especially when there is large flat regions), we merge local minima identified by gradient

descent based on the following criteria: (1) the distance between two local minima is smaller

than a constant ε; or (2) there is no barrier along the straight line between two local minima.

Third, when estimating the energy barrier based on two consecutive samples that fall into

different basins, since we cannot use ridge descent in the continuous space, we search for the

local maximum along the straight line between the two samples and use its energy to update

the upper-bound estimation of the energy barrier.

A significant portion of non-convex optimization problems involve latent variables. When

constructing the ELM for such problems, we use data augmentation [TW87] to improve the

efficiency of sampling. Specifically, in order to propose a new model xt+1, we first sample

the values of the latent variables Zt based on P (Zt|xt) and then sample the new model xt+1
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x’t

x’’t

v’ v

Figure 3.2: First two steps of projected gradient descent. The algorithm is initialized with

MCMC sample xt. v is the gradient of E at the point xt. Armijo line search is used to

determine the step size α along the vector v. x′t is the projection T (xt + αv) onto the

subspace Γ. Then x′′t is the projection T (xt + α′v′), and so on.
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based on P (xt+1|Zt). The proposal xt+1 is then either accepted or rejected based on the

same acceptance probability (Eq.2.2). Note that, however, our goal in ELM construction is

to traverse the hypothesis space instead of sampling from the probability distribution. When

enough samples are collected and therefore the weights in θt become large, the reweighted

probability distribution would be significantly different from the original distribution and the

rejection rate of the models proposed via data augmentation would become high. Therefore,

we mix the proposal approach based on data augmentation with random proposal (i.e.,

randomly sample a new model in the neighborhood of the current model), and we increasingly

rely on random proposal when the weights become large.

3.2 Tests for Convergence

3.2.1 MCMC convergence

The MCMC chain in the GWL algorithm converges to a stationary distribution over a long

enough time period [Lia05b]. However, an issue with the implimentation is determining

when the convergence occurs and how long of a burn-in period is necessary.

In the literature, there are several criteria (called convergence diagnistics) used to monitor

the convergence of MCMC samples. In the univeriate case, the Geweke diagnostic can be used

to test for convergence [Gew92] is done by splitting the samples into two batches and verifying

that their means are equal using a modified z-test. Alternatively, the Gelman and Rubin

criterion [GR92] uses independent parallel chains with different starting points to check

for convergence; if the chains converged, they should appear similar to one another. The

similarity is measured by calculating the between intra-chain and between-chain variances.

This method is generalized for multivariate distributions in [? ].

In our case, the convergence tests cannot be directly applied because the distance measure

on our hypothesis space H ⊂ Rn is not topologically equivalent to the Euclidean distance.

Therefore, we use Multidimensional Scaling to project the hypothesis spaceH into Rd (where

d ≤ n) with the Euclidean metric. We then use the Brooks and Gelman’s multivariate
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extension of the Gelman and Rubin criterion on m = 2 chains initialized at random starting

points to determine convergence within a small error tolerance.

3.2.2 ELM convergence

The convergence of the WL algorithm to a stationary distribution is a necessary but not

sufficient condition for the convergence of the Energy Landscape Map; we need another test

for the convergence of the ELM in structure.

An ELM constructed at time step k in the algorithm can be represented by:

• The set of local minima Mk = {mk
1, . . . ,m

k
n(k)} and

• The energy barrier matrix Bk where Bk(i, j) is the energy barrier between mk
i and mk

j .

By construction of the algorithm, Mk ⊆ Mk+1 for all k and |Mk| converges to the total

number of local minima in the energy landscape as the MCMC converges to the stationary

distribution with finitely many local minima. If all of the local minima are found at time

k = τ , the energy barrier matrices Bk have the same number of rows and columns for each

k ≥ τ . Additionally, for every (i, j) pair, Bk(i, j) is monotonically decreasing with time,

ie. Bk(i, j) ≤ Bk+1(i, j) for all k ≥ τ . We assume that the energy barriers have converged

if
∑

i,j |Bk(i, j) − Bk+N(i, j)| < ε ∗ |Mk| for some small threshold ε and large number of

iterations N . Consequently, we use the following algorithm to check for convergence:

1. Run m = 2 MCMC chains initialized with random starting values and discard the first

1,000 iterations.

2. Project the MCMC samples into Rd using MDS. Then check whether the chains have

converged to a stationary distribution using the multivariate extension of the Gelman

and Rubin criterion. If not, continue each chain for another 1,000 iterations and repeat

step 2.

3. Run the chains for another N iterations. If any new local minima are found, repeat

step 3.
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4. If at the last time step k the sum
∑

i,j |Bk−N(i, j) − Bk(i, j)| for both chains is less

than ε, terminate. Otherwise, repeat step 3.

We can further verify convergence by comparing the two ELMs that have been generated.

We define a distance measure DE between ELMs E(1) and E(2) to be

DE(E(1), E(2)) = αe(1/n) ∗
∑
i

d(θ
(1)
i , θ

(2)
f(i))

+ βe ∗ (1/n2)
∑
i,j

|B(1)(θ
(1)
i , θ

(1)
j )−B(2)(θ

(2)
f(i), θ

(2)
f(j))|

+ γe ∗ (1/n)||M (1)| − |M (2)||,

where the number of local minima in E(1) is greater or equal to the number of local min-

ima in E(2). θ
(i)
j is the jth local minimum, B(i) is the barrier matrix, and M (i) is the set

of local minima in the ith ELM, E(i). The function f(i) is a one-to-one mapping of the

indices of local minima in the first ELM to their matches in the second ELM and is defined

recursively as f(1) = argminj{d(θ
(2)
j , θ

(1)
1 ) | θ(2) ∈M (2)}, f(i) = argminj{d(θ

(2)
j , θ

(1)
i ) | θ(2)

j ∈

M (2) \ {θf(1), θf(2), . . . , θf(i−1)}}. The parameters αe, βe, γe are the weights corresponding

respectively to the distances between the local minima, the differences between the energy

barriers, and the differences between the number of local minima. Figures ?? (a), (b), (c)

show the distance and number of local minima found for two convering MCMC chains and

the resulting ELMs.

3.3 ELMs of Gaussian Mixture Models

An n-component Gaussian Mixture Model (GMM) G is a weighted mixture of n Gaussians.

The energy function that we use is the negative log of the posterior, given by E(G) =

− logP (G|zi : i = 1 . . .m) − logP (G) for m samples {zi}. We use a Dirichlet prior on the

weights of the model and the Normal-inverse-Wishart prior on the means and variances of

the model components.
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Figure 3.3: Convergence of ELMs generated from two MCMC chains C1 and C2 initialized

at different starting points: number of local minima found vs number of iterations for C1

and C2

Figure 3.4: Convergence of ELMs generated from two MCMC chains C1 and C2 initialized at

different starting points: distance DE(C1, C2) between C1 and C2 vs. number of iterations.
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Figure 3.5: Convergence of ELMs generated from two MCMC chains C1 and C2 initialized

at different starting points: The ELMs of C1 and C2 after convergence in 24,000 iterations.
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3.3.1 Energy and Gradient Computations

In order to use the Armijo line search gradient descent method, we find need to find the gra-

dient of the energy function. Suppose the mixture model has n components in d dimensions

with means µi and covariance matrices Σi for i = 1, . . . , n. Then energy function is E(G) is

E(G) = − logP (G|zi : i = 1 . . .m)− logP (G)

= −
m∑
i=1

log

(
n∑
j=1

wj
1√

det(2πΣj)
exp

[
−1

2
(zi − µj)T Σ−1

j (zi − µj)
])
− logP (G).

Since P (G) is the sum of a Dirichlet prior and a NIW prior, its partial derivates are triv-

ial to compute. It remains to compute the derivatives of logP (G|zi : i = 1 . . .m). Let

Nzi(Σj, µj) = 1√
det(2πΣj)

exp
[
−1

2
(zi − µj)T Σ−1

j (zi − µj)
]

and

fmm(zi) =
n∑
j=1

wj
1√

det(2πΣj)
exp

[
−1

2
(zi − µj)T Σ−1

j (zi − µj)
]

=
n∑
j=1

wjNzi(Σj, µj).

Then, for one fixed sample zi, we have the following partial derivatives.

Partial derivative with respect to each weight wj:

δ log fmm(zi)

δwj
=
δ log [wjNzi(Σj, µj)]

δwj

wjNzi(Σj, µj)∑n
k=1 wkNzi(Σk, µk)

=
Nzi(Σj, µj)∑n

k=1wkNzi(Σk, µk)
.

Partial derivative with respect to each mean µj:

δ log fmm(zi)

δµj
=

wjNzi(Σj, µj)∑n
k=1wkNzi(Σk, µk)

δ log [wjNzi(Σj, µj)]

δµj

=
wjNzi(Σj, µj)∑n
k=1wkNzi(Σk, µk)

Σ−1
j (µj − zi).

Partial derivative with respect to each covariance Σj:

δ log fmm(zi)

δΣj

=
wjNzi(Σj, µj)∑n
k=1wkNzi(Σk, µk)

δ log [wjNzi(Σj, µj)]

δΣj

=
wjNzi(Σj, µj)∑n
k=1wkNzi(Σk, µk)

[
δ

δΣj

log
1√

det(2πΣj)
− δ

δΣj

1

2
(zi − µj)T Σ−1

j (zi − µj)

]

=
wjNzi(Σj, µj)∑n
k=1wkNzi(Σk, µk)

1

2

[
δ

δΣj

log
1√

det(2πΣj)
Σ−Tj + Σ−Tj (zi − µj) (zi − µj)T Σ−Tj

]
.
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Then we can compute the gradient of − logP (G|zi : i = 1 . . .m) using the substitution

− logP (G|zi : i = 1 . . .m) = −
m∑
i=1

log

(
n∑
j=1

wj
1√

det(2πΣj)
exp

[
−1

2
(zi − µj)T Σ−1

j (zi − µj)
])

= −
m∑
i=1

log fmm(zi),

for which we have computed the partial derivatives above.

Note that we need to restrict the Σj matrices so that the each inverse Σ−1
j exists in order

to have a defined gradient. As the Σj are covariance matrices, they are guaranteed to be

semi-positive definite, so each eigenvalue is great or equal to zero. Consequently we only

need the minor restriction that for each eigenvalue λi of Σj, λi > ε for some ε > 0. However,

it is possible that after one gradient descent step, the new GMM parameters will be outside

of the valid GMM space, ie. the new Σt+1
j matrices will not be symmetric positive definite.

In order to project back into the GMM space, we project each Σt+1
j into the SPD space with

the projection

Psymm(Ppos(Σ
t+1
j )).

The function Psymm(Σ) projects the matrix into the space of symmetric matrices by

Psymm(Σ) =
1

2
(Σ + (Σ)T ).

Assuming that Σ is symmetric, the function Ppos(Σ) projects Σ into the space of symmetric

matrices with eigenvalues greater than ε. Because Σ is symmetric, then it can be decomposed

into Σ = QΛQT where Λ is the diagonal eigenvalue matrix Λ =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

 and Q

is an orthonormal eigenvector matrix. Then

Ppos(Σ) = Q


max(λ1, ε) 0 . . . 0

0 max(λ2, ε) . . . 0
...

...
. . .

...

0 0 . . . max(λn, ε)

QT
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ensures that Ppos(Σ) is symmetric positive definite and therefore both a valid covariance

matrix and invertible, which is required for gradient computations.

3.3.2 Bounding the GMM space

Suppose that we are given m samples zi for i = 1, . . . ,m from the Gaussian mixture model

G with weights {wj}, means µj and covariance matrices Σi. Assuming that m is sufficiently

large, we can estimate a boundary on the space of possible parameter for G. In the 1-

dimensional case, each mean µj is bounded by max(z1, . . . , zm) + εm on the upper end and

min(z1, . . . , zm) − εm on the lower end. By the central limit theorem, the parameter εm

can be set to 0 if m is sufficiently large. Each variance σ2
j can similarly be bounded by

σ2
j ≤ Var({zi}) = 1

m

∑
(zi − 1

m

∑
(zi))

2 + εm.

We generalize the bound to d-dimensional spaces in the following way: Let

c =
1

m

m∑
i=1

zi

be the mean of the samples {zi} and let

r = max
i

(||zi − c||L2)

be the L2 distance between the center c and the furthest sample. Then for a sufficiently

large sample size m, each mean in the GMM is bounded within a radius r+ εm of the center

c:

||µj − c||L2 < r + εm.

To bound the covariance matrices Σj, let Σ = Cov({zi}) and let Σ = QΛQT be the

eigenvalue decomposition of Σ where Λ =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

 and L = max(λ1, . . . , λn)+εm.

Then each eigenvalue of Σj is bounded by the maximum eigenvalue of Σ. That is, if Σj has
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(a) unbounded GMM space

(b) bounded GMM space

Figure 3.6: We sampled 70 data points from a 1-dimensional, 4-component GMM and ran

the MCMC random walk for ELM construction algorithm in the (a) unbounded (b) bounded

GMM space. The plots show the evolution of the location of the centers of each of the 4

components over time. The width of the line represents the weight of the corresponding

component.
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eigen-decomposition Σ = QjΛjQ
T
j and Λj =


λj1 0 . . . 0

0 λj2 . . . 0
...

...
. . .

...

0 0 . . . λjn

, then λji ≤ L.

3.3.3 A 2D Example

We computed the Energy Landscape Map of a highly separable (c = 2.4) 1-dimensional

4-component GMM in order to show the convergence of the ELM construction algorithm

to the correct solution. For this experiment, we varied two parameters: the means (µ1 and

µ2) of the first and second components. The remaining parameters (the weights and the

standard deviations, as well as the means of the 3rd and 4th components) were fixed. Figure

3.7 (a) shows the heat map of the ground truth energy landscape obtained by calculating

the energy on a grid with 0 ≤ µ1, µ2 ≤ 5. There are two low-energy local minima (A) and

(C) that correspond to the values of the means µ1 and µ2 in the true model and there are 6

shallow local minima. The asymmetry in the landscape is caused by the fact that that the

true model has different weights between first and second component.

We sampled 70 data points from the GMM and ran the ELM construction algorithm.

Figure 3.7 (a) shows that all local minima were identified. Additionally, it shows the first 200

MCMC samples that were accepted. The samples are clustered around the local minima, and

cover all energy basins. They are not present in the high energy areas away from the local

minima, as would be desired. Figure 3.7 (b) shows the resulting ELM and the correspondence

between the leaves and the local minima in the energy landscape. Figures 3.8 (a) and (b)

show the mass and the volume of the energy basins.

3.3.4 Experiments on Synthetic Data

We synthesize a 2-dimensional, 3-component GMM, draw n samples from it, and run our

algorithm to plot the ELM. We want to analyze how the separability and dimension of the

true model and the number of samples drawn from it affect the energy landscape. In order
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(a) (b)

Figure 3.7: (a) Energy Landscape for a 4 component 1-d GMM with all parameters fixed

except two means. Level sets are highlighted in red. The local minima are shown yellow and

the first 200 MCMC samples are shown in black (b) Learned ELM and corresponding local

minima from the energy landscape.
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(a) probability mass (b) volume

Figure 3.8: The probability mass and volume of the energy basins for the 2-d landscape

shown in Figure 3.7.
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to do this, we repeat the process with true models with varying dimensions, sample sizes

and separabilities. The separability of the GMM represents the overlap between separate

components of the model and is defined as c = min
(

||µi−µj ||√
nmax(σ1,σ2)

)
[DS00]. We also look at

the effect of partial supervision on the energy landscape by assigning ground truth labels to

a fraction of the samples in the sample space.

3.3.4.1 Comparing Different Ground-truth Models

Figure 3.9 shows some of the ELMs with the separability being {0.5, 1.5, 3.5} for n = 100

samples. The energy landscape becomes increasingly simple as the separability increases:

The number of local minima decreases as the separability increases. The landscape for the

high separability (c = 3.5) case has relatively small energy barriers between the high-energy

local minima and a pronounced low-energy global minimum. Conversely, the landscape for

the low separability has a structure with high energy barriers between local minima and

multiple local minima with similar energy to the global minimum. This indicates that the

complexity of learning the mixture model should increase as the separability decreases, as

we would expect.

The probability mass and volume of the 5 energy basins corresponding to the lowest-

energy local minima are shown in Figures 3.9 (a) and (b): the volume of the circle represents

the volume and mass values. The ratio of both the mass and the volume of the lowest energy

basin to the mass and volume of the remaining energy basins increases with separability. This

is also consistent with the intuition that high-separability landscapes high lower complexity,

as it is more likely that the global optimal solution can be found by gradient descent from

a randomly sampled starting point.

We examine the affects of partial supervision by assigning ground truth labels to a portion

of samples. Figure 3.10 shows the ELMs of a synthesized GMM (dimension = 2, number of

components = 3,separability c = 1.0, number of samples = 100) with {0%, 5%, 10%, 50%, 90%, 100%}

labelled data points. Figure 3.11 shows the number of local minima in the ELM for the la-

beling of 1, . . . , 100 samples. This shows a significant decrease in landscape complexity for
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(a) Probability mass

(b) Volume

Figure 3.9: ELMs for 100 samples drawn from GMMs with low, medium and high separability

(c = 0.5, 1.5, 3.5). The relative (a) probability mass and (b) volume of the energy basins

corresponding to the 5 lowest-energy minima are indicated by circle size around the local

minima.
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the first 10 labels, and diminishing returns from supervised input after the initial 10%.

3.3.4.2 Behavior of Learning Algorithms

Expectation-maximization (EM) is one of the most popular algorithms for learning a GMM

from data. K-means is another popular learning algorithm of GMM which can be seen as a

degraded variant of EM with hard assignments in the E-step and the assumption of identical

spherical Gaussian components. Two-step EM is a variant of EM proposed in [DS00] that

has proved performance guarantee under certain conditions. We study the behavior of these

algorithms and the Swedson-Wang cut algorithm by analyzing the distributions of their

learning results on the ELMs.

The Swedsen - Wang Cut (SW-cut) algorithm [SW87] [BZ05] is a MCMC method that

has much faster convergence rates than classic Markov Chain Monte Carlo methods such

as the Gibbs sampler [? ] in cases when model states are strongly coupled (such as the

Ising-Potts model) [Pot52]. The SW algorithm iterates on graphs in two steps:

1. Stochastically group the graph vertices into ’connected component’ clusters.

2. Jointly change the labels of all the vertices in each connected component.

To apply the SW-cute algorithm to the Gaussian the Mixture Model, we construct a graph in

the sample space by adding edges between all samples s1, . . . , sn that are within a threshold

distance of one another. The vertices are each initialized with a label l(si) ∈ {1, . . . ,m},

where m is the number of components in the GMM. The Mixture Model corresponding to a

given labelled state has weights wj = |{l(si) = j}|/n, means µj = n/wj
∑

i si ∗ 1(l(si) = j)

for j = 1, . . . ,m and variances Σj = Var({si|l(si) = j}) .

In the clustering step of the algorithm, connected components are formed by probabilis-

tically removing graph edges between each node pair si, sj with probability q(si, sj):

q(si, sj) = (d(si, sj)/M)1.5 if si and sj have the same label

= 1 otherwise
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Figure 3.10: ELMs with of synthesized GMMs (separability c = 1.0, nSamples = 100) with

{0%, 5%, 10%, 50%, 90%, 100%} labelled data points.
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Figure 3.11: Number of local minima versus the percentage of labelled data points for a

GMM with separability c = 1.0.

where M is the maximum distance between points in the sample space. Next, in the reas-

signment step, each connected component is flipped to a new label in the following manner:

For the connected component Ck, the m relabelings Ck
i , i = 1, . . . ,m are computed where

l(sj) = i if sj ∈ Ck
i . Next, we find the posterior probabilities of the GMMs corresponding to

each relabeling P (Ck
i ), and sample the new label i from the discrete distribution e−βP (Ck

i ). The

temperature parameter β allows us to do simulated annealing; we begin with a small β and

increase it over time it over time. We use the annealing pattern of β = 0.5, 0.8, 1.3, 2.5, 5.0, 9.0

for the following experiments.

For each synthetic dataset, we ran the three algorithms for 200 times and found the

energy basins of the ELM that the learned models belong to. Hence we obtain a histogram

of the learned models on the leaf nodes of the ELM for each learning algorithm as shown in

Figures 3.13 and 3.12.

Figure 3.13 shows a comparison between the k-means, EM and two-step EM algorithms

for n = 10 samples drawn from a low (c = 0.5) separability GMM. The results are scat-
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Figure 3.12: The distribution of samples from the k-means and EM algorithms on the ELMs

for low (c = 0.5) and high (c = 3.0) separability 2-dimensional 3-component GMMs.

Figure 3.13: The performance of k-means, EM and 2-step EM algorithms on the energy

landscape generated by drawing 10 samples from a GMM with low separability (c = 0.5)
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tered across different local minima regardless of the algorithm. This illustrates the difficulty

in learning a model from a landscape with many local minima separated by large energy

barriers.

Figures 3.14, 3.15, and 3.16 show a comparison of the EM, k-means, and SW-cut algo-

rithms for n = 100 samples drawn from low (c = 0.5), medium (c = 1.5) and high (c = 3.5)

separability GMMs. The SW-cut algorithm performs best in each situation, always con-

verging to the global optimal solution. In the low separability case, the k-means algorithm

converges to one of the seven local minima, with a higher probability of converging to those

with lower energy. The EM algorithm almost always finds the global minimum and thus

outperforms k-means. This can be explained by the fact that k-means is a degraded variant

of EM with extra assumptions that may not hold. However, in the high separability case,

the k-means algorithm converges to the true model the majority of the time, while the EM

almost always converges to a local minimum with higher energy than the true model. This

can be explained by a recent theoretical result showing that the objective function of hard-

EM (with k-means as a special case) is the summation of the standard energy function of

GMM with an inductive bias in favor of high-separability models [TH12, SCR12].

3.3.5 Experiments on Real Data

We ran our algorithm to plot the ELM for the well-known Iris data set from the from the UCI

repository [BM98]. The data set contains 150 points in 4 dimensions and can be modeled as a

3-components 4-dimensional GMM. The three components each represent a type of iris plant

and the true component labels are known. The points corresponding to the first component

are linearly separable from the others, but the points corresponding to the remaining two

components are not linearly separable.

Figure 3.17 shows the ELM of the Iris dataset. We visualize the local minima by plotting

the ellipsoids of the covariance matrices centered at the means of each component in 2 of

the 4 dimensions.

The 6 lowest energy local minima are shown on the right and the 6 highest energy local
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(a) EM (b) k-means (c) SW-cut

Figure 3.14: Low separability c = 0.5:histogram of EM, k-means, and SW-cut algorithm

results on the ELM.
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(a) EM (b) k-means

(c) SW-cut

Figure 3.15: Medium separability c = 1.5: histogram of EM, k-means, and SW-cut algorithm

results on the ELM.
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(a) EM (b) k-means (c) SW-cut

Figure 3.16: High separability c = 3.5: histogram of EM, k-means, and SW-cut algorithm

results on the ELM.

minima are shown on the left. The high energy local minima are less accurate models than

the low energy local minima. The local minima (E) (B) and (D), have the first component

is split into two and the remaining two (non-separable) components merged into one. The

local minima (A) and (F) have significant overlap between the 2nd and 3rd components and

(C) has the components overlapping completely. The low-energy local minima (G-L) all have

the same 1st components and slightly different positions of the 2nd and 3rd components.

The same experiment was performed labeling 0, 5, 10, 50, 90, and 100 percent of the

Iris data with the ground truth values. Figure 3.18 shows the global minimum of the energy

landscape for each experiment.

3.4 Mixtures of Bernoulli Templates

A Bernoulli template P ∈ {0, 1}n is an n-dimensional binary vector. A sample x generated

from P is an n-dimensional vector whose i-th coordinate xi is equal to Pi with a fixed

probability p and equal to 1 − Pi with probability 1 − p. That is, the sample drawn from

P is a noisy version of P . An m-component Mixture of Bernoulli Templates (MBT) B is a

weighted mixture of m Bernoulli templates defined by the set of templates {Pi} and weights
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Figure 3.17: ELM of the Iris dataset and corresponding local minima.

45



Figure 3.18: Global minima for learning the Iris Mixture Model with 0, 5, 10, 50, 90, and

100% of the data labelled with the ground truth values. Unlabeled points are drawn in grey

and the labelled points are colorized in red, green or blue.
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{wi|wi ∈ [0, 1]} for i ∈ {0, . . . ,m} with
∑
wi = 1. Samples sj are drawn from B by first

sampling a component Pi from the discrete distribution of weights {wi}, then sampling from

the template Pi as outlined above. We wish to compute the Energy Landscape Map of the

space of MBTs with a fixed noise level p. The energy function that we use is the negative

log of the posterior, given by E(B) = − logP (B|zi : i = 1 . . .M) for M samples {zi}, and

P (B|zi) =
m∑
i=1

wip
∑n

j=1 I(zi(j)=Pi(j))(1− p)
∑n

j=1 I(zi(j)6=Pi(j)),

where Pi(j) is the j-th component of the i-th Bernoulli template in B, and zi(j) is the j-th

component of the i-th sample.

We discretize the hypothesis space by allowing the weights to take values wi ∈ {0, 0.1, . . . , 1.0}.

In order to adapt the GWL algorithm to the discrete space, we use the coordinate descent

algorithm in lieu of gradient descent.

In [? ], Barbu proposes a Two-Round EM algorithm for learning MBTs with a perfor-

mance bound that is dependent on the number of components m, the dimension Beronouilli

template dimension n, and and noise probability p. We examine how the ELM of the hy-

pothesis space changes with these factors.

Experiment on synthetic data We synthesized Bernouilli templates which represent ani-

mal faces as show in Figure 3.19. Each animal face is a 9x9 grid with each cell containing up

to 3 sketches. The dictionary of sketches contain 18 elements, each of which is a straight line

containing the midpoints of vertices of a square of show in Figure 3.20. The Bernouilli tem-

plate can therefore be represented as a 18∗9∗9∗3 = 4374 dimensional binary vector. There

are 10 animals total, so we have a Bernoulli mixture model with the number of component

M = 10, dimension d = 4374 and a variable number of samples.

We construct the energy landscape maps of the Bernouilli mixture model for varying

numbers of samples n = 100, 300, . . . , 7000 and varying noise level p = 0, 0.05, . . . , 0.5, 0.55.

The number of local minima in each energy landscape is tabulated in Figure 3.21 (b) and

drawn as a heat map in Figure 3.21 (b). As expected, the number of local minima increases as

the noise level p increases, and decreases as the number of samples decreases. In particular,

with no noise, the landscape is convex and with noise p > 0.45, there are too many local
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(a) cat (b) chilchilla (c) dog (d) elephant

(e) goat (f) lion (g) monkey (h) mouse

(i) owl (j) rabbit

Figure 3.19: Animal face templates [low overlap]

Figure 3.20: Synthetic animal face picture dictionary consisting of 18 sketches.
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(a) landscape map

(b) number of local minima

Figure 3.21: Energy Landscape for varying values of p and number of samples in the

Bernouilli Templates model.

Figure 3.22: Number of local minima found for varying values of separation in the Bernouilli

Templates model.
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

(q) (r) (s) (t)

Figure 3.23: Mouse face templates [high overlap]

minima and the algorithm does not converge.

We repeat the same experiment using variants of a mouse face as shown in Figure 28. We

swap out components of the mouse face (the eyes, ears, whiskers, nose, mouth, head top and

head sides) for three different variants. We thereby generate 20 Bernouilli templates which

have relatively high degrees of overlap. We generate the ELMs of various Bernouilli Mixture

Models containing three of the generated templates and noise level p = 0. We calculate the

overlap of the 3-component mixture models and generate their ELMs. Then we plot the

number of local minima in the ELMs versus the degree of overlap as show in Figure 27. As

expected, the number of local minima increases with the degree of overlap, and there are too

many local minima for the chains to converge past overlap c = 0.5.

Experiment on real data

We use a data set consisting of binarized features in animal face pictures as shown in figure

3.25. These are generated by partitioning the image into n kxk square cells, convolving 8

Gabor filters (at 45 degree increments) with each subimage. The filter response is banarized

by thresholding. This produces an 8n dimensional binary sample. We chose m different

animals with N images of each animal represented in the sample set. We vary the noise level

p by changing the binarization threshold.
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Figure 3.24: Sample from the dog animal face template with noise p = 0.1

Figure 3.25: Animal face images and corresponding binary sketches indicates the existence

of a Gabor filter response above a fixed threshold.
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Figure 3.26: Deer face sketches

Figure 3.27: All faces
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Figure 3.28: ELM of three animal faces (dog, cat, and deer). We show the Bernouilli

templates corresponding to three local minima with large energy barriers.
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(a) SW-cut (b) EM

(c) k-means

Figure 3.29: Comparison of SW-cut, k-means, and EM algorithm performance on the ELM

of animal face Bernouilli Mixture Model.
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Figure 3.30: Intra-chain distance post burn-in period when no new local minima are found.

As the energy barriers converge, the intra chain distance approaches 0.

3.5 ELMs of Biclustering

Biclustering is the process of learning biclusters (i.e., sub-matrices) from a data matrix

[MO04]. It finds applications in a variety of domains, e.g., finding genes with similar ex-

pression patterns under subsets of conditions [CC00, GLD00, CDG04], finding people who

enjoy similar movies [YWW02], and finding correlations between words and phrases to learn

grammar rules [TH08].

We study a simple version of biclustering: identifying a single multiplicatively coherent

bicluster from a possibly noisy data matrix that only contains the target bicluster and its

transposition. There may be overlap between the bicluster and its transposition, and the data

matrix elements in the overlapped part are the summations of the corresponding elements

from the two biclusters. This biclustering problem becomes more difficult when there is more

noise in the data and when the two biclusters have more overlap.
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Energy: We use the energy function from [TH08], which contains two terms.

E(b) = −Coh(b)− α× Size(b)

Coh(b) measures the multiplicative coherence of the bicluster b, which corresponds to the

likelihood term; Size(b) measures the size of the bicluster b, which corresponds to the prior

term that favors a large bicluster; the hyper parameter α is the strength of the prior.

Experiment: We synthesized biclusters of size 10×10 with 11 levels of overlap between the

bicluster and its transposition. We then generated the data matrices based on the biclusters.

Random noise of level p was added into the data matrix. For each data matrix, we ran our

algorithm to plot the ELMs with different values of the hyperparameter α.

Figure 3.31 shows some of the ELMs with the overlap being {0%, 20%, 40%}, the hy-

perparameter α = {0.02, 0.06, . . . , 0.22} and the noise level p = 0.02. The local maxima

corresponding to the correct biclusters (either the target bicluster or its transposition) are

marked with solid red circles; the empty bicluster is marked with a gray circle; and the max-

imal bicluster containing the whole data matrix is marked with a solid green circle. These

ELMs can be divided into three categories. Category I: the true model is easily learnable;

the global maxima correspond to the correct biclusters and there are fewer than 6 local

minima. Category II: the prior dominates the energy function because of a very large α;

the true model cannot be learned. Category III: the landscape contains many local minima

at similar energy levels which correspond to sub-matrices of the correct biclusters because

α is too small; the true model cannot be learned, although it is possible (but difficult) to

obtain approximately correct solutions. Figure 3.32(a) shows the difficulty map (the division

of the three categories) with a larger range of overlap; Figure 3.32(b) shows the difficulty

map with no noise. It can be seen that as the overlap increases, the acceptable region (i.e.,

category I) of hyperparameter α decreases. Hence it becomes increasingly more important

to select an appropriate value of α when the biclusters are expected to overlap. Further, if

the biclusters overlap greater than 50%, they become hard to learn for any selection of α.

If the expected amount of bicluster overlap is know, constructing this type of difficulty map

for a simplified case may be useful in determining the appropriate α for the full problem. By
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comparing figure 3.32(a) and 3.32(b), we can see that with less noise, the learnable region

becomes wider and hence the learning algorithms would be less sensitive to the choice of α.

Experiment 2: We repeat the experiment with 3 biclusters of size 10 × 10 with 20%

pairwise overlap, and p = 0.1 noise. Figures 3.5 (a) and (b) show the energy landscape

with α = 0.1 and α = 0.15. The phase transition from region 1 (easily learnable landscape)

and region 2 (impossible to learn) happens between those values, indicating an increased

sensitivity to the α parameter for greater numbers of biclusters.
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(a)

Figure 3.31: Energy Landscape Maps for learning two biclusters with 0%,20%, 40% overlap

and hyperparameter α. Red: correct bicluster; Grey: empty bicluster; Green: maximal

bicluster.
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(a) Noise p = 0.02 (b) Noise p = 0.00

Figure 3.32: Difficulty map for biclustering (a) with noise (b) without noise. Region I: the

true model is easily learnable. Region II: the true model cannot be learned. Region III:

approximations to the true model may be learned with some difficulty.
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(a) α = 0.1

(b) α = 0.15

Figure 3.33: ELMs for 3 biclusters of size 10 × 10 with 20% pairwise overlap, and p = 0.1

noise.
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CHAPTER 4

Dependency grammar sampling

4.1 Dependency Grammar

Here we study a subclass of probabilistic context-free grammars called dependency gram-

mars. The space of dependency grammars is significantly smaller than that of probabilistic

context-free grammars and therefore is easier to explore. On the other hand, dependency

grammars are still expressive enough to represent many natural language phenomena and

have been widely used in natural language processing [Mel88, Col99, KMN09]. There has

been increasing interest in learning dependency grammars from data, in either a supervised

way (e.g. [Col99, Cha01]) or an unsupervised way (e.g., [KM04, HJM09]). By studying the

energy landscape of dependency grammars, we hope to gain some insight that could benefit

the research of dependency grammar learning.

A dependency grammar is a context-free grammar that requires its grammar rules to take

the form of ROOT → A, A→ AB, A→ BA or A→ a, where ROOT is the start symbol, A

and B are nonterminals, and a is a terminal. Figure 4.1(a) shows the grammatical structure

of the example sentence specified by a dependency grammar. Equivalently, we can represent

the grammatical structure specified by a dependency grammar using a set of dependencies,

as shown in Figure 4.1(b). Each dependency is a directed arc between two nonterminals.

4.1.1 Space size

Formally a dependency grammar is a tuple < S,N,R > where S is the start symbol for the

rewrite rules, N is the set of terminal symbols (such as words in the english langue) and R

is the set of rewrite rules {S → n|n ∈ N} ∪ {n → αn|α ∈ N} ∪ {n → nβ|β ∈ N}. The
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ROOT

VBZ

ROOT

VBG VBZ

VBG VBZ JJNNS

JJ NNS 

Learning probabilistic grammars is hard

(a) The parse tree representation

ROOTROOT

VBG JJ NNS VBZ JJ

Learning probabilistic grammars is hard

(b) The dependency representation

Figure 4.1: The grammatical structure generated by a dependency grammar.
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dependency grammar is uniquely defined by: 1. the transition probability matrix between

the terminal nodes 2. the vector of transition probabilities from the start node to each

terminal node 3. the left and right direction stop probabilities of each terminal node. Hence

the space of dependency grammars with n nodes has n2 + n + 2 ∗ 2 ∗ n dimensions. Since

the probability vectors are constrained to sum to 1, the valid dependency grammars form a

subspace of dimensionality n ∗ (n− 1) + n− 1 + 2 ∗ n.

4.2 Curriculum Learning of Dependency Grammar

Most of the existing automatic approaches to learning dependency grammar start with all

the sentences of a training corpus and try to learn the whole grammar. On the other hand,

humans learn the grammar of their native language in a very different manner: they are

exposed to very simple sentences as infants and then to increasingly more complex sentences

as they grow up. Such a learning strategy has been termed curriculum learning [BLC09].

Earlier research into curriculum learning of grammars produced both positive [Elm93] and

negative results [RP99]. More recently, Spitkovsky et al. [SAJ10] empirically showed that

curricula are helpful in unsupervised dependency grammar learning.

To explain the benefits of curricula, Tu and Honavar [TH11] suggested that an ideal

curriculum gradually emphasizes data samples that help the learner to successively discover

new grammar rules of the target grammar, which facilitates the learning. As an alternative

explanation, Bengio et al. [BLC09] hypothesized that a good curriculum corresponds to

learning starting with a smoothed objective function and gradually reducing the degree of

smoothing over the curriculum stages, thus guiding the learner to better local minima of

the energy function. In this section, we try to verify this second explanation by plotting

and analyze the series of ELMs from different curriculum stages of learning dependency

grammars.
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4.2.1 Natural language representation

We chose to study a Dependency Grammar learned from the natural English language.

We simplify this grammar to n nodes (corresponding to parts of speech such as Noun, Verb,

Adjective and Adverb) by removing the nodes that appear with least frequency. This is done

by drawing a large number of samples from the grammar and calculating the frequencies of

each terminal node, then removing the node that occurs the least frequently and rescaling the

remaining probability vectors to sum to 1. Thus we obtain a grammar with n2 +n+ 2∗ 2∗n

parameters which represents a simplified version of the English language grammar.

4.2.2 Energy Function and Gradient

The energy function for the dependency grammar specified by the parameter vector θ is

E(θ) =
∑
x∈D

logP (θ|x)

where D is the set of samples xi, i = 1, . . . ,m and

∑
logP (θ|x) =

∑
logP (x|θ) + logP (θ)

where logP (θ) is the Dirichlet prior. The probability P (x|θ) is the sum of the probabilities

of P (PT, x|θ) for each possible parse PT of the input sample x. The probability of every

parse is the product of all the grammar rules θr is invoked; if a grammar rule θr appears

k(r, PT ) times in the parse, then

P (x|θ) =
∑

P (PT, x|θ) =
∑
PT

∏
r

θk(r,PT )
r .

The gradient of this function can be computed analytically for gradient descent. The partial

derivative of logP (θ|x) with respect to the i-th parameter θi is

δ

δθi
logP (θ|x) =

δ

δθi

(∑
logP (x|θ) + logP (θ)

)
=

1

P (x|θ)
δ

δθi
P (x|θ) +

1

P (θ)

δ

δθi
P (θ)
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and

δ

δθi
P (x|θ) =

∑
PT

δ

δθi
P (PT, x|θ) =

∑
PT

δ

δθi

∏
r

θk(r,PT )
r

=
∑
PT

(∏
r 6=i

θk(r,PT )
r

)
k(i, PT )θ

k(i,PT )−1
i =

∑
PT

k(i, PT )

θi

∏
r

θk(r,PT )
r .

Note that after each gradient descent step, the new parameter vector θt+1 = θt +

αt~∇E(g(θt)) will likely be outside of the valid dependency grammar parameter space which

has the constraints 0 ≤ θi ≤ 1 for all i and
∑

i∈Ik θi = 1 for disjoint index sets Ik covering

the set {i = 1, 2, 3, . . . , n2 +n+ 2 ∗ 2 ∗n} where n is the number of nodes in the dependency

grammar.

In order to project the new parameter vector θt+1 back into the dependency grammar

space, we define the projection Psim(θ) =
∑

k Ps(θk1 , . . . , θkl) for simplex index sets Ik and

the simplex projection Ps(x). To efficiently compute Ps(x), we a modified version of Wang’s

fast simplex projection algorithm outlined in Algorithm [1].

4.2.3 Convergence issues

We found that the space generated by this a dependency grammar with n = 3 or more

nodes (n2 + n+ 4n parameters) cannot be efficiently traversed by the WL algorithm for the

following reasons:

• The number of local minima in the space is too large (number of local minima still

growing linearly after 100,000 iterations as shown in Figure 4.2.3)

• The complexity of the gradient computations grows exponentially with the sentence

length of each sample. As the gradient is typically computed over 100 times per

iteration and only approximately 10 percent of proposed MCMC moves are accepted,

it forms a bottle neck for the algorithm. This forces us to limit the maximum sentence

length of each sample.
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Algorithm 1 Probability Simplex Projection Algorithm

Input: ~x ∈ Rd

Output: ~y = Ps(~x) st.
∑
yi = 1 and ε ≤ yi ≤ 1

1: {Step 1} set [z1, . . . , zd] = SortInDescendingOrder([x1, . . . , xd])

2: {Initialize}

3: sum = 0

4: prevLambda = 0

5: currLambda = 0

6: loop i = 1, . . . , d

7: sum += zi

8: currLambda = (sum - 1) / (i + 1)

9: if zi ≤currLambda then

10: break

11: end if

12: prevLambda = currLambda

13: end loop

14: set yi = max(xi − prevLambda, ε) for i = 1, . . . , d

Output: ~y = [y1, . . . , yd]
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Figure 4.2: Dependency grammar not fully converging in the continuous space: 1. too many

local minima 2. performing gradient descent at each iteration is slow

Figure 4.3: Dependency grammar not fully converging in discrete space: 1. energy barriers:

the energy barrier convergence is very slow 2. extra local minima: multiple local minima in

the discrete space correspond to the same energy basin in the continuous space.
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4.2.4 Discretization of the hypothesis space

In order to address the issue of slow algorithm convergence, we discretize the parameter

space and use Zhou’s discrete version of the modified WL algorithm[Zho11]. Let Ωr be the

discretized parameter space with discretization r > 4:

Ωr = {~θ = [θ1, . . . , θk]|θi = q/r for q ∈ {1, . . . , r} and
∑
j∈Il

θj = 1}.

For example, for r = 10, and n = 4 nodes, the size of the discretized space is |Ωr| ≈

10n
2+n+4n = 1036.

In the discrete space, we perform coordinate descent (in lieu of gradient descent) to find

the local minima. Given θt = [θ1, . . . , θk] ∈ Ω, let θ
(i,j)
t = [θ1, . . . , θi− 1

r
, . . . , θj + 1

r
, . . . , θk] for

every ordered pair (i, j) in the same probability simplex i, j ∈ Ia. One coordinate descent

step s(θt) is given by

s(θt) = argmin(i,j)

(
E
(
θ

(i,j)
t

)
|i, j ∈ Ia for some a

)
= θt+1.

The coordinate descent algorithm terminates when θt = θt+1 for some t, indicating that θt

is a local minimum in the discrete space. We set the proposal probability Q(xt, y) to be

Q(xt, y) = 0 if |xt − y|L1 6=
2

r

= 1/Z if |xt − y|L1 =
2

r
and xt, y differ by two coordinates in the same probability simplex

for normalization constant Z = |{(i, j) st. i, j ∈ Ia, a = 1, 2, . . . }|.

When we attempt to run the naive implementation of the discretized algorithm, we find

that (1) there are multiple discrete local minima found that belong to the same energy basin

in the continuous space (2) the energies of a local minimum in the discrete space may be a

poor approximations to the energy of the corresponding local minimum in the continuous

space if the gradient is steep at the discrete local minimum. The resulting after 106 iterations

is shown in Figure 4.2.3.

To achieve faster convergence and a better approximation to the continuous space, we

employ a hybrid discrete-continuous approach. We run the main algorithm loop in discrete
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(r = 10) space with the following modifications. After each sample θt is accepted, we 1.

perform coordinate descent in the discretized space initialized with θt to find local minimum

θ∗t 2. perform gradient descent in the continuous space initialized with θ∗t to find the more

accurate local minimum θ′t. The use of the discrete space limits the number of local minima

and the number of gradient descent computations and the subsequent use of the continuous

space merges the discrete local minima belonging to the same continuous energy basin.

To improve the energy boundary estimations, we iteratively perform ridge descent on the

discrete mesh, then refine the discretization by a factor of 2 and repeat until convergence.

4.2.5 Curriculum Construction

We examine learning curriculums with the goal of increasing convergence speed to aid in

cases with constrained computational resources (such as running time). We design the

general curriculum as follows: the problem is split into curriculum stages, which are sub-

problems of increasing complexity, with the last stage consisting of the full problem. Next

we define the curriculum, which is the proportional allocation of computational resources to

each stage. For example, the ’average’ curriculum allocates equal computational resources

between each stage, and the ’linearly increasing’ curriculum allocates increasing resources to

later stages as seen in Table 4.1.

Table 4.1: Curriculum resources allocation by stage

stage 1 2 3 4 5 6 7

none 0 0 0 0 0 0 1

average 1 1 1 1 1 1 1

linearly increasing 1 2 3 4 5 6 7

linearly decreasing 7 6 5 4 3 2 1

exponentially increasing 1 2 4 8 16 32 64

exponentially decreasing 64 32 16 8 4 2 1

We first explore a curriculum based on sample sentence length. We construct a 3-node

dependency grammar and discretize it using discretization factor r = 10. We call this
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grammar θe. Next we sample m = 200 sentences D = {xi} from θe. We define Di ⊂ D to

be the set of all sentences xj containing i words or less. Let w(xj) be the word count of the

sentence xj, then Di = {xj|w(xj) ≤ i. The sets Di are nested (Di ⊂ Di+1) and ∪∞i Di = D.

The first stage of the curriculum is trained on the set D1, the second stage is trained on D2

and the k-th stage is trained on Dk. Figures 4.2.5 (a-g) show the Energy Landscape maps

of the curriculum stages 1 through 7.

Next we explore a curriculum based on the number of nodes n in the grammar. We

synthesize a 5-node dependency grammar and its simplifications to n = 4, 3, 2, 1 nodes with

discretization factor r = 10. We sample m = 200 sentences Dj = {xi} from each grammar

θj, j = 1, . . . , 5. The first stage of the curriculum is trained on the set D1, and the k-th stage

is trained on Dk. Figures 4.2.5 (a-d) show the Energy Landscape maps of the curriculum

stages 2 through 5. The ELM for Stage 1 is omitted because it is the same as the ELM in

Figure 4.2.5 (a) due to the convexity of the landscape.

For both the curriculum based on the sentence length and the curriculum based on the

number of nodes in the grammar, we observe that the Energy Landscape maps becomes

more complex in the later stages of the curriculum; the landscapes in the later stages are

flatter and have more local minima. In each figure, the closest local minimum to the global

minimum of the previous curriculum stage is highlighted in blue. It is evident that for stages

3-7 of the curriculum based on sentence lengths ( Figures 4.2.5 b-f ) and stages 3-5 of the

curriculum based on the number of nodes ( Figures and 4.2.5 b-d ), the global minimum

from curriculum stage n is close to the global minimum of stage n + 1. This provides an

explanation for the performance benefit of curriculum learning: early stages (which can be

learned more easily) provide a good starting guess for later stages, which allows later stages

to converge to a better local minimum, which also results in less computation time overall.

We tested curriculum learning with the second curriculum (n = 1, . . . , 5 dependency

grammar nodes) and a constrained total running time. Each successive stage of the curricu-

lum is initialized with the output from the previous stage. We allot s = 18, 000 seconds total

running time, and assign each successive stage twice as much time as the previous stage,

yielding the distribution: Stage 1 - 581s, Stage 2 - 1161s, Stage 3 - 2323s, Stage 4 - 4645s,
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(a) sentence length = 1 (b) sentence length ≤ 2

(c) sentence length ≤ 3 (d) sentence length ≤ 4

Figure 4.4: Curriculum based on training sample sentence length.

Stage 5 - 9290s. The exponentially increasing time in the curriculum design is chosen because

the complexity of the later stages requires more time to converge. We run the Wang Landau

algorithm n = 1, 000 times with this curriculum and find the energy basins of the ELM of

the complete 5-node dependency grammar that the learned models belong to. Hence we

obtain a histogram of the learned models on the leaf nodes of the ELM as shown in Figure

4.9 (b). For comparison, Figure 4.9 (a) shows the histogram of the models learned without

using the curriculum. The utilization of the curriculum results in more frequent convergence

to the global minimum as well as energy basins near the global minimum.
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(a) sentence length ≤ 5 (b) sentence length ≤ 6

(c) sentence length ≤ 7

Figure 4.5: (cont.) Curriculum based on training sample sentence length.
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(a) 1 node (b) 2 nodes

(c) 3 nodes

Figure 4.6: Curriculum based on number of nodes

(a) 4 nodes (b) 5 nodes

Figure 4.7: (cont.) Curriculum based on number of nodes
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Figure 4.8: Curriculum convergence. Yellow - no curriculum, red - exponentially decreasing,

green - linearly decreasing, pink - average, black - exponentially increasing, blue - exponen-

tially increasing
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(a) no curriculum

(b) exponentially decreasing curriculum

Figure 4.9: Distribution of learned grammars (a) without a learning curriculum (b) with

the exponentially decreasing curriculum. The blue bars histogram the number of learned

grammars belonging to each energy basin, the red arrow indicates the energy basin of the

ground truth solution.
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CHAPTER 5

PAC learning in the AOG space

In this chapter, we provide theoretical justifications for using the AOG model (rather than

flat models) for object, scene and even representation.

While compositional models are widely used in Machine Learning and there is empirical

evidence that compositional models need fewer training samples, there is no theoretical proof

in the literature as to why and in what cases they are better than flat representations. To

that end, we focus on the AOG graph (a type of compositional model) and provide PAC

learning bounds for the number of training samples necessary to guarantee that the model

is learned with high probability to a given degree of accuracy.

5.0.1 PAC Learning

Probably Approximately Correct (PAC) [Val84] learning concerns the ability of a probabilis-

tic algorithm to learn a solution from a known target set such that with high confidence the

error is small. To fully understand the concept for PAC learning, we must first introduce

some terminology.

The instance space X is the set of all objects in the learner’s world. In computer vision

applications, it can for example be the set of all arrays of sketches associated with x,y

coordinates in an image. A concept c over the instance space is a subset of the instance

space c ⊆ X. For instance, it can be the set of all sketches on an image that form the shape

of a cat face. Thus a concept can be thought of as a boolean function c : X → {0, 1} which

identifies all instances that adhere to a given rule. That is, in the previous example, c(x) = 1

if x is a cat face and c(x) = 0 otherwise. A concept class C is a set of concepts over X.
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In the PAC learning model, a learner is a function which takes some number of samples

drawn from an unknown target concept c and outputs a hypothesis h in the hypothesis

space H which is meant to approximate c. The hypothesis class is the space of concepts

that the learner may output and is typically a equal to or a subset of C. The performance

of the learner is judged based on how ’close’ the hypothesis h is to the target concept. More

formally, if D is a distribution over the instance space X, then the error of the learned

concept h is defined to be

error(h) = Prx∼D[c(x) 6= h(x)].

We say that the concept class C is PAC learnable if the exists an algorithm L such that

for every concept c ∈ C and every distribution D on the instance space X, then for every ε

and δ there exists an integer N(ε, δ) such that if the earner L is given N(ε, δ) independent

samples from c then it will output a hypothesis h such that with probability greater than

1− δ, it will satisfy error(h) ≤ ε. In other words, Probably (p > 1− δ), the algorithm will

learn a hypothesis that is Approximately Correct (error(h) ≤ ε). If a hypothesis class is

PAC learnable, then finding theoretical bounds on N(ε, δ) gives us the maximum number of

samples necessary to guarantee arbitrarily good performance for the learning algorithm.

In [BEH87], Blumer et al. prove that every finite hypothesis space is PAC learnable, and

furthermore that the number of samples N(ε, δ) necessary to learn a hypothesis within ε, δ

accuracy is bounded by

N(ε, δ) ≥ 1

ε
(ln |H|+ ln

1

δ
).

We define the capacity C(H) of a finite hypothesis space H to be ln(|H|). Therefore the

number of samples is directly proportional to the capacity of the hypothesis space and is

equal to

N(ε, δ) ≥ 1

ε
(C(H) + ln

1

δ
). (5.1)
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Figure 5.1: Visual representation of PAC learning concept definitions. Here the Sample

space is the space of all images. The concept class C is the set of all animals images and

the hypothesis class is the set of all sets of images. The target concept c ∈ C is the function

c(x) = 1 if x is an image of a lion and c(x) = 0 if x is not an image of a lion. The hypothesis

h is a function learned by some algorithm L from an input set of images {xi} sampled iid

from a distribution D over the sample space, and their labels c(xi). The error error(h) is the

integral over the distribution D of the shaded area in the image, that is
∫
D(x)

c(x) 6= h(x).
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5.0.2 AOG hypothesis space

We restrict our study to the case of the boolean AND-OR graph. The boolean AOG is

defined on the instance space X = {0, 1}n which represents binary reposes of imagine filters

(such as Gabor filters) corresponding to the n terminal nodes in the AOG. More formally,

the terminal nodes are boolean functions ti : I → {0, 1}, i = 1, . . . , n evaluated on the image

I. The AOG function g : X → {0, 1} is evaluated recursively on the nodes of the graph; an

AND node evaluates to 1 if and only if all of its children evaluate to 1, while an OR node

evaluates to 1 if at least one of its children evaluates to 1.

Every AOG g defines an equivalence class in the AOG space because every permutation

of child nodes for a given AND/OR node results in an equivalent AOG. Additionally, every

AND/OR could be split into two nodes; however, we avoid this scenario by allowing AND

nodes to have only OR node children and for OR nodes to only have AND/Terminal node

children.

We characterize AOG spaces by the following parameters (as illustrated in Figure 5.0.2):

• AOG depth d: the number of AND/OR node layer pairs

• AND node branching number ba: the maximum number of children of each AND node

• OR node branching number bo: the maximum number of children of each OR node

• Terminal node number k: size of the set of all terminal nodes.

The size of the AOG space is determined by these parameters, so the capacitance of an

AOG with depth d, branching numbers ba, bo and n terminal nodes is C(d, ba, bo, k) =

ln |H(d, ba, bo, k)|.

Theorem 1. The capacity of the AOG space is bounded by C(d, ba, bo, n) ≤ (babo)
d ln(n).

Proof. (by induction on the depth d) For the d = 1 case, the root node is an OR node with

at most bo children. Each of the children are AND nodes with at most ba children, which are
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Figure 5.2: Four parameters (d, ba, bo, n) characterizing AOG spaces. Depth d: the number

of AND/OR node layer pairs, branching number ba: the maximum number of children of

each AND node, branching number bo: the maximum number of children of each OR node,

terminal node number k: size of the set of all terminal nodes.

all terminal nodes. The terminal nodes have at most n variants, so there are at most nbabo

variants of the d = 1 AOG. Thus |H(1, ba, bo, n)| ≤ nbabo and therefore

C(1, ba, bo, n) = ln |H(1, ba, bo, n)| ≤ ln(nbabo) = (babo)
1 lnn.

Now suppose that |H(d, ba, bo, n)| ≤
(
nbabo

)d
for all d ≤ k. Then for the d = k + 1 case,

the top level OR node has at most bo children and each child is an AND node with at most

ba children. The bottom level children can have at most |H(k, ba, bo, n)| ≤ nbab
(k)
o variants,

hence

|H(k + 1, ba, bo, n)| ≤ n(bab
(k)
o )(babo) = nbab

(k+1)
o

and therefore

C(k + 1, ba, bo, n) ≤ bab
k+1
o lnn.

It follows by induction on d that C(d, ba, bo, n) ≤ (babo)
d ln(n) for all d ≥ 1.

The capacity bound can be further tightened by assuming part locality in the AOG

model. In real-world applications, the children of a node represent the parts which make

up the parent object and these parts are located in close spatial proximity of one another.

Therefore, we can restrict the AOG space by allowing only terminal nodes within a given

distance of one another to be children of the same node.
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Theorem 1. If the terminal nodes of a part can take on at most l values relative to the first

terminal node, then we say the AOG has part locality factor l. For an AOG with locality

factor l, the capacitance bound is

C(d, ba, bo, k, l) ≤ bd−1
a bdo ln(klbo−1).

Proof. (by induction on the depth d) For the base case where the depth d = 1, the first

terminal child node of each AND node has k variants, and the remaining ba − 1 child nodes

have at most l variants. Since there are bo AND nodes, the total number of variants is

bounded by

H(1, ba, bo, k, l) ≤
(
klba−1

)bo
.

Following the same inductive reasoning argument as outlined in the previous theorem, we

obtain

C(d, ba, bo, k, l) = ln |H(d, ba, bo, k, l)| ≤ bd−1
a bdo ln(klbo−1).

We compare the capacity of bounded AOGs to the capacity of equivalent k-DNFs for

which learning bounds are found in the literature. A 100-DNF has capacity on the order

of 10400. An equivalent AOG with depth d = 2 and branching numbers ba = bo = 5 has

capacity less than 5300. Furthermore, an AOG with part locality and the same parameters

can have capacity of less than 2600. Given that the number of training samples necessary to

approximately correctly learn the model is proportional to the capacity, it is clear that the

AOG model provides a huge computational advantage over the traditional k-DNF model.

5.0.3 Supervised Learning Bounds

AOGs can be learned recursively from the bottom up in the supervised learning case where

the graph structure is known and both the terminal nodes and the intermediate nodes have

been manually annotated in the training images. Here we provide bounds on the number of

training samples needed to PAC learn AND nodes and OR nodes of an AOG to a specific

accuracy if all of the child nodes have been annotated in the training set.
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Theorem 1. Suppose the number of samples necessary to PAC learn nodes {oi}bai=1 is ni(ε, δ).

Then a bound on the number of samples necessary to learn their parent AND node is given

by

n(ε, δ) ≤ max
i
ni(ε/ba, δ/ba).

Proof. Let µ be a distribution over the instance space X defining a measure over the space.

Let the concept C and the function f : X → {0, 1} correspond to the AND node we wish

to learn and let the concepts Ci and the functions fi : X → {0, 1} correspond to its child

nodes. Then f(x) = 1 iff fi(x) = 1 for all i = 1, . . . , ba. Because f is an AND node, the

concept C is the intersection of all of its child concepts: C = ∩iCi. The error of the learned

AND node is the measure of the symmetrical difference between the sets C and the set

Xf = {xi|f(xi) = 1}:

errorµ(C, f) = µ(Xf \ C) + µ(C \ Xf )

≤
∑

µ(Xfi \ Ci) +
∑

µ(Ci \ Xfi)

=
∑

errorµ(Ci, fi).

By assumption, we have a bound on the error of each child node is at most errorµ(C, f) ≤

ε/ba with probability greater of equal to 1 − δ/ba. Thus with probability greater than

(1− δ/ba)ba , the error of the parent node is bounded by

errorµ(C, f) ≤
∑
i

errorµ(Ci, fi) ≤
ba∑
i

ε/ba = ε.

By the Taylor expansion, (1 − δ/ba)ba ≥ 1 − δ, so with probability greater than 1 − δ, the

error or the learned parent AND node is bounded by ε.

Theorem 1. Suppose the number of samples necessary to PAC learn nodes {ai}boi=1 is ni(ε, δ).

Then a bound on the number of samples necessary to learn their parent OR node is given by

n(ε, δ) ≤
∑
i

ni(ε/ba, δ/ba).
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Proof. Let µ be a distribution over the instance space X defining a measure over the space.

Let the concept C and the function f : X → {0, 1} correspond to the OR node we wish to

learn and let the concepts Ci and the functions fi : X → {0, 1} correspond to its child nodes.

Then f(x) = 1 iff fi(x) = 1 for all i = 1, . . . , bo. Because f is an OR node, the concept C is

the union of all of its child concepts: C = ∪iCi. As in the previous theorem, the error of the

learned OR node is the measure of the symmetrical difference between the sets C and the

set Xf = {xi|f(xi) = 1}. Then by a similar argument, we get that with probability greater

than (1− δ/ba)ba ≥ 1− δ, the target concept is learned with error less than ε.
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CHAPTER 6

Conclusion

Energy Landscape Maps are a powerful tool for analyzing high-dimensional non-convex prob-

lems. The ELMs allow us to visualize a target energy function by representing its energy

basins and the energy barriers between them in a tree-like structure. This visualization re-

veals the number of local minima, the smoothness of the energy landscape, and the depth

of the energy basins; which all together provide insight into the complexity of the learn-

ing problem. The ELMs are constructed using an advanced MCMC sampling method that

dynamically re-weights the energy function to facilitate efficient traversal of the hypothesis

space. The hypothesis space is partitioned into regions based on the energy wells of the

energy function. The weights assigned to each region are updated proportionally to how

frequently the sampler has visited those regions. The mechanic of selecting samples in less-

visited regions with higher probability allows the sampler to frequently transit across energy

barriers and efficiently traverse the hypothesis space. From the samples generated from this

weighted random walk, we can discover local minima of the energy function, estimate the

energy barriers between them, and construct the ELM.

By providing an intuitive visualization of energy functions, ELMs could help researchers

gain new insight into the non-convex problems and facilitate the design and analysis of non-

convex optimization algorithms. In Chapter 4, We demonstrate this on two classic machine

learning problems: clustering with Gaussian mixture models and biclustering. We illustrate

how the shape and complexity of ELM is influenced by (a) the input data generated from

different ground-truth models, and (b) the hyperparameters of the energy function. We also

visualize the behavior of a variety of learning algorithms using ELMs. In Chapter 5, we

provide an example of ELMs being used to explain the effectiveness of curriculum learning
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of dependency grammars. By plotting the ELM of each curriculum stage, we show that the

effectiveness of a curriculum is a result of starting with a highly smoothed energy function

and then gradually reducing the smoothness over the curriculum stages, as hypothesized by

Bengio et al. [BLC09].
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