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Abstract 

Linguistic negation can be comprehended with the inclusion 
(or absence) of features and categories associated with the 
senses in a single step. Under this view, there is no need for 
explicit logical operators, as the negating word or phase is 
treated no differently than any other word. Negation provides 
additional context, whereby visualizing negation as a 
trajectory in a distributed, grounded perceptual simulation 
space can easily characterize the comprehension of negated 
sentences. A mousetracking experiment was conducted to 
explore how this kind of process may be enacted in the brain 
and to tease apart hypotheses of logical manipulations vs. 
analogue signals performing this work. 
 
Keywords: language understanding, neural networks, 
situated cognition, mouse-tracking 

Introduction 
Negation occurs in all languages and is is an important 

part of everyday communication. Humans need it to express 
situations in which an object, person, state, or event is not 
present or even non-existent. Negation can be coded in a 
variety of ways.  In some cases, it is expressed 
suprasegmentally, for instance, in sarcastic remarks such as 
“I sure excelled in that class,” said by a student who just 
learned that his course grade was a D.  It can also be coded 
with affixes, such as the prefix “non-“, as in “The 
nonexistence of rules worries me.”  It can also be coded 
with words such as “not”, “none”, and “without”. Despite 
the ubiquity of negation, its processing has perplexed 
philosophers for centuries.  There is still a relatively poor 
understanding of how people contend with the meaning of 
simple negated statements such as “The eagle is not in the 
sky”.  

The processes that underlie the comprehension of a 
negated utterance has generated recent interest among 
psycholinguists. In pioneering work, Kaup, Yaxley, 
Madden, Zwaan, and Lüdtke, (2006) presented participants 
with sentences like, “The eagle was not in the sky,” then 
presented an accompanying picture. Participants had to 
respond whether the content of the picture had been 
mentioned in the sentence they had just read. The reasoning 
was that if participants perceptually simulate negation in the 
same way they simulate affirmative sentences, they should 
be quicker to respond “yes” to pictures that match the 
sentence (e.g., an eagle with its wings folded). Kaup and 
colleagues found that when participants read negated 
sentences, response times to a picture that matched the 

affirmative version of the proposition (eagle with wings 
spread) were faster than to a picture that actually matched 
the negated sentence, suggesting that a perceptual 
simulation of the affirmative proposition was created in 
response to negated sentences. The researchers then 
suggested that negation may be handled through a separate, 
special process, not through a perceptual simulation.  

Thus, the timecourse of understanding a negated sentence 
is not well understood. There are three possibilities as to 
how a final interpretation of the negation comes to be 
activated (Figure 1). The first possibility is a logical process 
discretely revises a fully activated affirmative interpretation 
(1A). The second scenario predicts a lag in activation of a 
negated sentence, simply because negation is more complex 
(1B). The third hypothesis is negation produces increased 
competition amongst the possible features the negated 
meaning could activate, forcing negation to be slower at 
first, but once one interpretation begins to form, making 
negation much faster compared to the affirmative version 
(1C). Note that this last hypothesis predicts only speed 
differences, and no spatial differences.  

 

 Figure 1: Each hypothesis shows predicted mouse 
trajectories on a computer screen. 

 
Each of these panels in Figure 1 can be thought of in 

terms of velocity: the speed and direction in which an 
interpretation is formed will be shared with motor systems 
during a response (Spivey, Grosjean & Knoblich, 2005). 
Thus, spatial and velocity metrics of a computer mouse will 
reveal which of the aforementioned hypotheses can best 
explain how a negated interpretation is formed.  In addition, 
a proof of concept model was created as a fundamental first 
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step in providing a groundwork for a one-stage process for 
linguistic negation. Although preliminary, proof of learning 
and some principles of perceptual simulation are 
demonstrated.  

 Inspired by Elman’s (1990) treatment of simple recurrent 
networks that learn linguistic sequences, one can 
conceptualize the dynamics of a negated sentence as 
forming a trajectory through the state space of the network. 
If each neuron is treated as a dimension, then the firing rates 
of all the neurons at any given time slice form a set of 
coordinates that index a location in the state space. 
Therefore, a string of words in a sentence necessarily forms 
a string of locations: a trajectory. Importantly, sensorimotor 
features can be integrated into a simple recurrent network 
(Howell, Jankowicz, & Becker 2005), creating dimensions 
that arise from perception and emerge in cognition. Simply 
put, the meaning of a word in this network is a distributed 
code of features and primitive perceptual categories. 

Whereas some previous networks use a single node with a 
priori instructions on performing the negation (e.g., Samad, 
1988), this network has no special instructions for the word 
not. Instead, when the network is presented with the words 
The coin is not heads-up, the network sees features on the 
last word that are instead associated with features on a tails-
up coin. Thus, not becomes a contextual modifier, signaling 
that the upcoming word is of an alternative or more diffuse 
meaning. More specifically binary-alternative negations can 
readily go to the alternative, and multiple-alternative 
negations (such as location, in which an object could be in 
any number of alternative places) become a blend of 
possibilities. 

First the network will be laid out and its properties 
examined for principles of how perceptual simulation must 
function under a framework of embodied semantics. Then, a 
mousetracking experiment will demonstrate that a one-stage 
process, with increased competition for negated sentences, 
best accommodates these and previous findings. 

Model 
The corpus consists of both affirmative and negated 

sentences, in even numbers. Eleven sentences were binary- 
alternatives (e.g. The coin is [heads-up/tails-up) and 12 
sentences were four-alternative (e.g. The child is 
[angry/annoyed/calm/content]). Some partial overlap was 
built into this corpus (i.e., with two of the binary-alternative 
pairs using glass as their noun). It is much less clear how the 
network would negate a multiple-alternative set in this case, 
and thus their examination is crucial to test the flexibility of 
this model. Further, some overlap must realistically be built 
in to mimic a realistic scenario. Learning rate was kept 
constant at a value of .09 and momentum was set at a value 
of .1 for the duration of training. 

The target perceptual features were constructed using 
binary targets, where the first-author rated each word as 
either having a particular feature or not. The features chosen 
were visual (33 features), proprioceptive (11 features), 
auditory (5 features), emotional (8 features) or related to 

olfaction/gustation (6 features). These 63 features targets 
were specified a priori but do not imply that these features 
are exactly their label, or must be in some predetermined 
arrangement. The target layer can be thought of as the 
environment and the things that are simply co-present with a 
particular word, and the important aspect is on the feature-
feature relationships, an not the label itself. The network 
was trained such that error consistently ranged from the 
minimum error of 1.9 x 10-7 to a maximum of .026. This 
was found to be the point at which the error became stable 
and could not improve any further.  

No error was fed back from the perceptual simulation 
layer on the, is and not. The network is doing word 
prediction, but it is also seeing and hearing features for the 
current word. Thus, the target layer for the input eagle in the 
sentence The eagle is flying, the corpus target predicts is and 
the perceptual simulation targets are, for example, feathers, 
eyes, and blue. Thus, the model is not doing any explicit 
prediction in the perceptual simulation layer. Rather, the 
most sophisticated assumption is that one needs to have 
some feature detectors and a modicum of perception to learn 
about words. 

Each axis is a particular feature’s activation, chosen 
automatically. The x-axis is always the most active noun 
feature for that sentence. The y and z-axes are chosen based 
on which features are non-overlapping perceptual targets. 
However, note that overlap between noun and adjective 
features do not always clearly delimit these boundaries. For 
example, Figure 2 is an illustrates the way the binary input 
string The shoe is (not) [tied/untied] traverses through a 
three dimensional coordinate feature space (stable, tough, 
moving). The shoe follows the same path for every sentence, 
going from stable, to stable and tough, to a location with 
partially active stable and moving features. This is already 
displaying an emergent property: the model was not told to 
activate any features for the, is and not; however, these 
words still carry some feature activations. Also note that the 
context layer of the network is reinitialized after each 
sentence is run through the network, and so activation for 
the cannot be due to carry over from the previous sentence. 
Due to the pattern of connections, these words cannot help 
but carry multifarious meaning. 

After is in Figure 2, the trajectories begin to diverge. 
Notice that both negated sentences overlap on not and that 
this location is approximately equidistant between two 
alternative locations. The shoe is tied and The shoe is not 
untied both end in a corner with stable being almost entirely 
active. The shoe is untied and The shoe is not tied end by 
deactivating stable and tough features, and activating 
moving features. Thus, when the network hears about a shoe 
being untied in either its negated or affirmative versions, it 
is able to comprehend a stable tough shoe, and then 
correctly simulate something akin to shoelaces moving 
around freely as one walks. 
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Figure 2: Sentence trajectory through feature activation 
space. Beginnings of sentence overlap until the noun. 

 
Figure 3 shows some nuance of how negating a sentence 

may subtlety change its meaning. The shoe is tied settles 
easily into a perceptual attractor, whereas The shoe is not 
untied shows a slightly different pattern of activation. The 
targets did not expressly tell the network that these two 
meanings were different in any way. However, looking at 
these trajectories, it appears that the network emergently 
decided that this particular negation should not activate the 
happy feature that the equivalent affirmative meaning 
activates. Thus, this network is capable of negating 
sentences and finding a meaning where primary features are 
extremely similar in their activations, but other less active 
features are susceptible to quirks, resulting in subtle, but 
quantifiable, flavoring differences. The tiny activations 
surrounding the major primarily activated features create the 
majority of flexibility in this system, while the primary 
features constrain and ensure similar interpretations for each 
sentence. 

 
 

 
 

Figure 3: Same sentence as Figure 2 with modified y-axis. 
 

It is much more difficult to see the primary activations of 
multiple-alternative negations in just three dimensions. 

Figure 4 shows a pair from the negation of the trained 
multiple-alternative sentence (The computer is (not) [blue, 
green, gray, white]). The network has learned to associate 
green primarily with a tangy taste, and blue with quietude. 
However, the negations go to 0, because their alternative 
meanings are not within this subset of features but would 
require plotting alternative feature activations. For this 
visualization, their meaning is in the absence of the primary 
distinctive features of green and blue. One of the differences 
between multiples and binaries lies in this diffusion of 
meaning. It will always be more difficult to capture the 
meaning of a negation of something like a location, where 
the range of alternatives is large or even infinite, or 
something like a color, which has finite labels but is a 
continuous physical substrate. Therefore, the meaning of not 
may actually primarily be a deactivation of the affirmative 
version’s primary features and subtle activation of diffuse 
alternatives. This makes any multiple-alternative negation 
much less stable, which could affect the encoding and 
subsequent retrieval accuracy of a negation (Anderson, 
Huette, Matlock & Spivey, 2010). 

 
 

 
 

Figure 4: Deactivation in negated meaning 
 

Even in this extremely small corpus, the network is 
capable of doing some degree of generalization, which 
previously has been a criticism of the perceptual simulation 
framework. For example, the network has never seen the 
sentence The egg is clean or The egg is dirty. It has 
encountered each one of those words though, and has 
associated features. Figure 5 shows appropriate perceptual 
features for these two novel affirmative sentences, but some 
less appropriate feature activations for the negated versions 
of these novel sentences. Though imperfect, the endpoint of 
…is not dirty is closer to the endpoint of …is clean, and the 
endpoint of …is not clean is close to the endpoint of …is 
dirty. As such, the previous graphs of oft-repeated sentences 
may be somewhat idealized versions of how a sentence is 
negated.  
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Figure 5: Example generalization in the network 

 

Discussion 
To allow for generalization, the meanings of sentences 

may be necessarily somewhat distinct between the 
affirmative and the (supposedly) equivalent negated form. 
Generalization is extremely powerful and indicates that once 
a small amount of statistical information is encountered and 
learned, almost anything can be negated as effortlessly as 
something that has been episodically encountered. When the 
network encounters a novel use of a word, it can easily 
simulate it, incorporating the surrounding context to create a 
brand new meaning. The productivity of language is a 
fundamental law in linguistics (REF?), and this model and 
framework holds promise for allowing a multitude of 
meanings that have never been directly encountered as well 
as their negations. 

Experiment 
Participants. Twenty-four participants were given partial 
course credit for their participation and run in accordance 
with IRB regulations. All were University of California, 
Merced, students, and all were prescreened to ensure normal 
or corrected to normal vision and audition. Participants with 
dyslexia or other reading disabilities were also excluded. 
Only right-handed or ambidextrous native American 
English-speakers were included in this study. 
 
Materials. All target sentences were recorded in the negated 
form, and all fillers were recorded exclusively in the 
affirmative form.  In both cases, a male speaker was used. 
To construct the affirmative versions, not was spliced out of 
the file at zero crossings, ensuring the voice sounded 
unaltered and natural. This was done to ensure there were no 
effects of priming, due to sentences being presented in both 
negated and affirmative forms. All pictures were simple 
clipart, modified in Adobe Photoshop to fit the location and 
state in which they were described. For example, a folded 
newspaper was presented on a rack, paired with the 

sentences The newspaper is [not] on the rack or The 
newspaper is [not] folded.  
Design. To test whether the affirmative state is competing 
with or being activated in parallel with the negated state, 
participants completed a modified forced-choice 
mousetracking task. Twenty-four stimuli pairs were 
constructed, where 12 pairs described locations of a noun 
(The towel is [not] on the bar/floor) and 12 pairs described 
states (The towel is [not] flat/crumpled). Two lists were 
constructed, whereby 6 pairs of each type were used as 
targets in List A, and the other 6 pairs of each type were 
used in List B (12 pairs, or 24 individual stimulus 
sentences). The targets consist of both Negated and 
Affirmative forms, 2 different states/locations, yielding 48 
targets. In addition, filler sentences with a different noun 
and location or state were constructed, such that the filler 
trials could consist of two choices with no overlapping 
information. The pairs not used as targets were used to 
construct these, randomly selecting from one of the 
state/location sentence endings. For example, a target trial 
contained a picture of a newspaper on a rack paired with a 
newspaper on a driveway, and the comparable filler trial 
paired a sentence describing a newspaper as folded (same 
picture of it folded on a rack) with a football on a field. 
Thus in list A, the newspaper was always presented as a pair 
of pictures for affirmative and negated spoken stimuli about 
the location, and the newspaper, described as folded, was 
always presented with audio and visual components of The 
motorcycle is broken (also a description of it's state). This 
kind of pairing was chosen such that the key manipulation 
of affirmative and negated was less salient, because 
sometimes the disambiguating information is in the noun 
(e.g. picture of a football and a newspaper), and at other 
times participants had to disambiguate based on the state or 
location (e.g. newspaper on driveway or rack). 
Procedure. The experiment began with five practice trials. 
Participants read instructions that told them to click a small 
red box located at the bottom middle of the screen. After 
clicking this box, it disappeared and a sentence played over 
headphones. After the sentence, two pictures appeared in the 
upper right and upper left parts of the screen. The location 
of the target picture was pseudo-randomized for each list. 
Participants were asked to move their mouse over one of the 
pictures to indicate which picture best matched the sentence 
(e.g. “The newspaper is on the rack” and a picture of a 
newspaper in an open newsrack or with a picture of a 
newspaper on a driveway as the response choices).  Moving 
the cursor to the top right or top left over the picture 
constituted a response (no click was required).  X,Y screen 
coordinates were sampled at approximately 67 Hz using 
Psyscope X (Cohen, MacWhinney, Flatt & Provost, 1993),  
along with the items on the screen, reaction times, and the 
eventual response. The tracking speed of the mouse was set 
to the third lowest setting in the Mac OSX operating system 
preferences, and chair height was set to the highest setting. 
Both of these constraints ensure motor movements come 
from the entire limb and are not localized to small wrist 
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movements, which could cause asymmetries in leftward and 
rightward movements. 
 
Mouse-Tracking Data. Variability in RT led to a different 
number of samples on each trial. To cut out this variability, 
each trial was time-normalized in increments of 2% of the 
total response time by means of linear interpolation (Spivey 
et al., 2005). This yielded 51 x,y samples per trial, which 
were then translated to a common starting point of (0,0). All 
responses to the left side of the screen were mirrored to the 
right such that all data could be pooled. To derive maximum 
deviations, a straight line from the start (0,0) to the response 
(last sample) was computed, and 51 points along that line. 
Then, Euclidean distance was found from every point on 
that line to every point on the trajectory (51 points on the 
line x 51 points on the trajectory equaled 2,601). Because 
Euclidean distance is an absolute value, points that deviated 
below the straight line were multiplied by -1, ensuring these 
points would not be interpreted as deviation toward the 
competing response. Then, we computed the minimum 
distance for each point and the maximum of those 
minimums is found. The resulting point from the trajectory 
is the maximum deviation. 

 
Results 

  Importantly, only correct trials were analyzed. Response 
accuracy was high for all participants, but there was a slight 
difference in accuracy by condition. For Affirmative trials, 
an average of 97% were correct (SD=3.5%), and for 
Negated trials, the average was significantly lower at 93% 
(SD=6.5%, paired samples t-test: t(23)=3.08, p=.005). As in 
previous research, Negated trials exhibited longer reaction 
times than Affirmative trials, confirmed by a paired samples 
t-test (Negated: M=3179ms, SD= 671ms; Affirmative: 
M=2608ms, SD=442ms; t(23)=-7.96, p<.0001). This finding 
is in line with previous research, aiding in the validation of 
this as a useful and informative design. 

The tests designed to address the three hypotheses were as 
follows: The proportion of time spent over the midline 
(Figure 1A), spatial deviations in the form of maximum 
deviation (Figure 1B), and instantaneous velocity, which 
should parallel one of the panels in Figure 1. Importantly, 
the third hypothesis (Figure 1C) only predicts velocity 
differences as a function of negated sentences competing 
with an affirmative simulation, but no spatial deviations. 

Slight deviations over the midline created a rather high 
proportion of total time spent on the side opposite the 
response. The proportion of time spent on the incorrect side 
of the midline for Negated stimuli was .317 (SD=.09) and 
for Affirmative stimuli the proportion was .29 of the toal 
time (SD=.1). This difference is non-significant (t(23)=-
1.307, p>.2). Further, these proportions may seem high, but 
to see if these were slight deviations or rather large 
attractions over the midline toward the incorrect response, a 
threshold of 10 pixels over the midline was used. In this 
analysis, the proportion of time spent more than 10 pixels 
past the midline in the wrong direction is .15 for both 

conditions (Affirmative SD=.12, Negated SD=.1, 
t(23)=.117, p=.91). This analysis demonstrates that these are 
slight deviations not to be confused with attraction toward a 
competing representation. 

The next analysis uses the maximum deviation metric to 
investigate spatial deviations between conditions. This 
measurement is the maximum pixels deviated from a 
straight line to the response. (Affirmative trials the mean 
was 285 (SD=184) and Negated mean was 299 (SD=189). 
This difference was non-significant (t(24)=-.775, p=.446).) 
This lack of spatial differences in combination with a lack 
of deviation over the midline, though null results, begin to 
point toward evidence for a parallel, one-stage process, not a 
process of revision. 

Instantaneous velocity was computed, shown in Figure 6 
by condition. This is simply the distance moved between 
one normalized timestep and the next. Therefore, along the 
x-axis, the 51 original timestamps become 50 time 
difference increments. On Negated trials (dashed lines), 
participants ramped up their speed at a slightly slower rate 
than on Affirmative trials (thus somewhat slower 
acceleration for Negated trials around timesteps 42 through 
45). Wojnowicz, Ferguson, Dale, and Spivey (2009) 
previously reported this pattern of slower acceleration for 
computer-mouse movements in trials that involved 
competition between simultaneously activated response 
options. Moreover, when they used Usher and McClelland’s 
(2003) differential equations to model this dynamic 
competition, they found that the slower acceleration during 
fierce competition was followed immediately by an abrupt 
bifurcation of activation profiles. This bifurcation caused an 
increased spike in activation dynamics in the simulation, 
and correctly predicted an increased spike in velocity for 
computer-mouse movements in the high-competition trials. 
Similar to Wojnowicz et al., the greater competition (and 
slower acceleration) in Negated trials (Figure 6) is 
immediately followed by a spike of greater velocity 
(timesteps 46-49). Essentially, when a negated sentence 
generates competition between the features of a perceptual 
simulation, that competition initially impedes the 
acceleration phase of the motor movement, but once the 
competition is resolved, the winning response alternative 
gathers extra speed in approaching its movement 
destination. 

 
Figure 6: Instantaneous velocity by condition 

2041



 
Discussion 

  A main effect of negation was found where RT is higher 
for negated sentences. No differences were found in 
maximum deviations, and fine-grained spatial differences 
appear to be a function of different velocities. The averaged 
velocities exhibit a slowing and then greater acceleration for 
negated versions, indicating a hypothesis is being formed 
and information about possible alternatives is accumulating. 
The acceleration toward the end of the trajectories indicates 
that some activation has already accumulated for the 
possibilities, and so it is easier to fully activate the winning 
possibility faster because it already has some partial 
activation. This scenario can also explain previous results, 
where subjects respond faster to a picture of an eagle in the 
sky when the sentence is "The eagle is not in the sky", sky is 
one of the possibilities having partial activation, thus 
slightly primes responses to the affirmative version of that 
picture. The slowing down of the trajectory during the 
middle phase of the trajectory indicates the negating word 
acts as a contextual modifier, allowing for integration of 
immediate context (i.e. the two picture possibilities in this 
experiment), accounting for the longer amount of time it 
takes to process a negated sentence. This is also reflected in 
the maximum deviations: the fillers adhere closer to a 
straight trajectory toward the response, because there is no 
partial overlap of information, and thus the participant could 
begin moving confidently toward the response once the 
noun was heard. The lack of an effect between the 
affirmative and negated maximum deviations suggests that 
there is no direct competition between those two responses. 

General Discussion 
Negation may appear to require special mechanisms and 

extra explanations to account for its variability. However, 
the data presented here suggest that negation needs nothing 
more than some eyes and ears to be learned. The 
computational model created here demonstrates that 
learning negation as a contextual modifier is possible, and 
future explorations will aid in experimental validation. The 
results of the mousetracking experiment provide additional 
evidence that existing theoretical frameworks of incremental 
constraint-based processing can easily accommodate 
negated, as well as affirmative statements. Further, 
preliminary evidence suggests a transient period of 
increased competition in processing a negated statement, 
accounting for the increase in reaction times. Importantly, 
this must be a competition between various features the 
negated simulation could be composed of, and is not a 
competition between affirmative and negated 
representations. 

Occam’s razor dictates the most parsimonious explanation 
is the best explanation, which would be a one-stage 
processing requiring no additional interfacing processes. 
One major issue for future work will be that this has no 
predictions the logical model does not also have, thus 
leaving only null results as evidence to the contrary. 

However, as is common knowledge, null results are not 
logically sound to rely upon, and so a defining property of 
the one-stage model could be sought after in the 
computation realm, to aid in discriminating these 
hypotheses. 

Many aspects of the current model need to be examined in 
greater detail and tested experimentally. For example, the 
perceptual simulation in this model is not predictive, but 
because of word prediction is mildly emergently predictive. 
Because “headsup” is partially activated when “coin” is the 
input, “coin” ever so slightly activates some of the features 
of headsup. Another example is that this is a contextual 
modifier, and thus the negation may modulate a velocity 
profile as a function of location in a sentence. Despite the 
need for future work, the current research further supports 
that comprehending negation can be achieved through 
perceptual simulation rather than logical operators.  
Linguistic negation is not logical, but rather a process of 
integrating context with grounded, distributed meaning.   
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