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Abstract lexical representations, which are activated in proportion

A connectionist model of auditory word perception
in continuous speech is described. The aim is to
model psycholinguistic data, with particular
reference to the establishment of lexical percepts.
There are no local representations of individual
words: feature-level representations are mapped
onto phoneme-level representations, with the
training corpus reflecting the distribution of
phonemes in conversational speech, Two
architectures are compared for their ability to
discover structure in temporally presented input.
The model is applied to modelling the phoneme
restoration effect and phoneme monitoring data.

Introduction

The recognition of a spoken word involves correctly
matching some representation derived from the acoustic
input, often of poor quality, with some stored
representation. The nature of the recognition problem is
partly determined by the frequency distribution of
clements in spoken language. This paper presents a
model of how these distributional statistics can effect the
recognition of spoken words. The aim is to capture as
much of the relevant psycholinguistic data as possible in
terms of statistical properties of streams of phonetic and
phonemic input, without adverting directly to
explanation at the word levell.

The process of lexical access

Speech sounds arrive over time and must be matched
against some kind of stored representation.
Psycholinguistic theories have variously proposed that
such input is represented in terms of features, phonemes,
morphemes and words. The Cohort Model (Marslen-
Wilson & Welsh 1978; Marslen-Wilson 1987) has
generated a “lexicalist-localist” tradition in which the
incoming signal is seen as directly contacting specific

1 We would like to thank the following: Geoff Lindsey
for advice concerning the phonemic and featural
descriptions, Steve Finch for assistance and advice with
bigram and trigram statistics, Alex Monaghan for the use
of the CSTR text-to-phonemes program, Ellen Bard,
Henry Thompson and Richard Rohwer for valuable
discussion.
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to their match with the input. These activated
representations then compete until one of them is
uniquely distinguished by the input and/or is integrated
into the ongoing interpretation of the utterance. That is, it
is assumed that contacting the lexical entry for the word
automatic, for instance, makes available all of its
associated information (pronunciation, orthography,
semantics, and so on) and that once awtomatic is alone in
the cohort (at some point during its third syllable), then it
exclusively determines processing from that point until
the end of the word.

Within this approach, less has been said about the
development of the representation which makes initial
contact with the lexical entry (/a/, /at/, /ata/... for
automatic). There are different claims concerning the
types of information which may influence the activation
of lexical representations, the effect of non word-initial
partial matches (/at/ in the input matching porter or short
in the lexicon), the mechanism which mediates
competition between activated lexical representations,
and the continuing role of representations which cease to
match the input. However, one computationally explicit
account, the TRACE model (McClelland & Elman
1986), based on the early Cohort Model, has captured
many aspects of human spoken word recognition in a
principled way and represents a coherent stance on the
issues mentioned above. For instance, constraining the
activation of lexical representations and segmenting the
continuous input are two major issues in spoken word
recognition, and TRACE provides a computationally
explicit answer to both.

Three aspects of TRACE suggest avenues for further
research. First, the implementation of TRACE is limited
to 15 different phonemes; it is desirable to be able to
model the full scale and richness of human word
recognition both to handle real discourse and to be able
to assess the model’s performance on actual stimulus
materials taken from psycholinguistic experiments.
Second, TRACE does not learn; TRACE's knowledge of
the language is confined to the word frequency values
which are built into its lexicon. Third, TRACE'’s lexical
level mediates influence between adjacent phonemic
material. An alternative possibility is that processing may
be adequately captured just by statistical dependencies at
the phonemic level. For example, there is a
TRACE/Cohort prediction that monitoring of a word-
medial phoneme, like /t/ in curtail should be facilitaied
to the extent that it lies on, or close to, the word’s
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uniqueness point: at this point only one lexical
representation remains in the cohort, the listener has all
the information necessary to identify the word and its
constituent phonemes. In a TRACE simulation, curtail
would become the most highly activated word node at or
just beyond the uniqueness point and would supply top-
down information to the phoneme-nodes representing its
constituent phonemes. If, however, it could be
demonstrated that the perception of the /t/ in curtail
could be captured by a model which had no local lexical
nodes, and had had no previous experience of the word
curtail, then we would be justified in preferring this
simpler explanation.

The model advanced below is motivated by the belief
that it is necessary to account for as much of the data as
possible on the basis of processing in which there are no
explicit exclusive lexical representations. The model
makes no distinction between representations of any
frequent sequence, whether it be specifically a
morpheme, a syllable, a word or an idiom. This model
builds on the recent departure from the lexicalist-localist
view of lexical access, involving a distributed
connectionist model, as described in the next section .
This perspective does not rule out the possibility that
explicit specific lexical representations might be
necessary to account for certain data. Only after
investigating exhaustively how much of the data can be
accounted for by a model which does not possess such
representations can the role of lexical representations in
explaining psycholinguistic data be properly assessed.

More recently a second computationally explicit
model of spoken word recognition has been presented by
Norris (1988), which employs an architecture also
investigated by Elman (1988, 1990). In Norris' model
feature-level representations of consecutive phonemes
are mapped onto local representations of words via one
layer of hidden units. Recurrent connections from the
hidden units copy their pattern of activity to a set of state
nodes which then re-present this pattern to the hidden
units at the next time-step. Thus the network has the
potenual 1o respond to patterns of phonemes across time.
(This approach is described in more detail below.)

Norris's model is architecturally more elegant than
TRACE. It learns the frequency of the words it can
recognize from its training set, and, as Norris (1988)
reports, it captures a range of “‘cohort behaviours”. In
simulations with miniature lexica the model generally
assigns a spread of activity to all words which are
congruent with the input up to and including the current
phoneme. At the uniqueness point of a word the model
generally opts overwhelmingly for that word and
maintains its level of activation until the end of that word
in the input. Again, three aspects of the model suggest
possible further research. First, the simulations which
Norris reports are all with small scale lexica (each word
which the model can recognize is given a specific output
node). Second, there is a considerable volume of
psycholinguistic data which addresses infra-lexical
processing (e.g. phoneme-monitoring) and which it is not
feasible to model using the activation levels assigned to
whole words which are the output of Norris’ model.
Third, the inclusion of a specifically lexical level, the
output level of Norris’ model, is unduly constraining on
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any wider model of sentence processing. It prevents the
model from learning sub-word regularities, except to the
extent that word-initial similarity occasions activation of
a cohort, and also super-word regularities, unless strings
like rhat's, or out of or good morning are lexicalized by
being given a dedicated output node.

The model we present in Section 4 resembles Norris’
model in network architecture and in involving a
mapping from feature-level descriptions. Crucially,
however, the model does not contain local
representations of words; a number of advantages spring
from this fact. Before describing the model, however, it
is necessary to motivate further the exclusion of local
lexical representations.

Seidenberg and McClelland’s model of
pronunciation

Considerable coverage of psycholinguistic data has been
achieved with Seidenberg and McClelland’s (1989)
connectionist modelling of word naming and visual word
recognition. In modelling naming, orthographic
representations are mapped onto phonological
representations; there are no local representations of
words, only weights between the three layers of nodes.
An extension of the model, involving an identity
mapping of the orthographic level, captures aspects of
visual word recognition. Crucially the training regime
reflects the frequency with which the words appear in the
language.

How can word recognition data be modelled when
there are no local representations of words and therefore
no activation levels which might be assigned to specific
words? As an example, Seidenberg and McClelland
argue that in tasks in which subjects are required to
discriminate between orthographically regular words
(e.g. fellow, tanker) and orthographically irregular
nonwords (e.g. farkte, jplerhn), their performance may
be accurately modelled by the accuracy with which an
identity mapping may be made between two
orthographic levels mediated by a layer of hidden units
and trained by back-propagation.

In the model of spoken word recognition described
below, an analogous approach is taken within the
auditory domain: feature-level representations are
mapped onto phoneme-level representations. The
training regime is taken from spoken discourse and
reflects the frequency with which speech sounds
corresponding to phonemes occur and co-occur in

spoken language.

The problem of learning the structure of
temporal sequences

Neural network methods have been developed largely to
learn to classify static patterns. Since many important
aspects of cognition involve processing temporally
structured sequences, there has been considerable
attention devoted to extending network methods to learn
the structure of time-varying sequences. One strategy is



simply to represent a “moving window” of past inputs
explicitly (used, for example in the NETTALK model of
reading (Sejnowski & Rosenberg 1987)). Explicit
buffering of past input can be avoided by using recurrent
connections which recirculate past input so that it may
continue to have an influence on network performance,
rather than being “flushed through” the network. There
has been much recent work on various ways in which
back-propagation can be generalized to recurrent
networks (Rumelhart, Hinton & Williams 1986; Almeida
1987; Pineda 1987; Pearlmutter 1990). In some of these
regimes, leaming occurs when the net has settled into a
stable pattern, and in some continuous time signals are
used. Rumelhart, Hinton & William’s original
suggestion, “back-propagation through time”, which
simply unfolds a recurrent network into many copies
arranged in a feed-forward architecture and applies
standard back-propagation to the result, is the most
appropriate for this kind of task. The more time-steps
back the network is unfolded, the better the network will
be able to learn to respond to temporally remote
information, but at greater computational expense.

The model

The model, illustrated schematically in Fig. 1, simply
consists of a mapping between two levels of
representation within the auditory modality — a feature
level and a phoneme level.

ololololoRs

input

Figure 1: Feature to phoneme mapping. The input is
a binary feature-level description of the current
segment. The output is the identity of the current
phoneme, the predicted next phoneme and a number
of previous phonemes,

Input is a bundle of features corresponding to the
segment at that point in time. This input is replaced by
successive bundles of features corresponding to
consecutive segments across time. The output is a
phoneme-level description of the current segment,
together with a prediction of the identity of the next
segment and a confirmation of the identity of the last
several phonemes. The simplest version of the model
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possesses a three-segment output window - current,
predicted and last.

Two phonemes may share a number of features (/p/
and /i/ are identical on all but one). In the hypothetical
case where two phonemes possess the same feature-level
instantiation (as a result of noise, for instance), the only
way in which they may be distinguished is by their
surrounding context: thus the phoneme designated * will
be classified as /s/ in /y e */ and as /f/ in /i */, given that
its feature-level description is ambiguous between /s/ and
/f/ and it has been trained on the words yes and if. In the
model, each phoneme possessed a unique feature-level
description. This resulted in “current” identifications
approximating to 100% and remaining at that level in the
“last” position, in which confirmation was expected. In
human speech perception, however, segments are often
underspecified since the signal is noisy, and information
relevant to the identification of any one segment is often
spread over several surrounding segments. In some of the
simulations below we rely on the addition of noise to the
signal during training to encourage the network to rely
on the phonemic context since the information may no
longer be encoded in a single segment.

The mapping in Fig. 1 may be achieved by means of
any one of a family of networks which are sensitive to
structure across time. The minimum sensitivity to such
structure involves replicating simple bigram
probabilities. The extent to which the networks under
study are sensitive to more than bigram probabilities is
an empirical question. Comparison with simple bigram
and trigram statistics is a powerful means of assessing
the performance of the models (although detailed
analysis is not reported here). Finally, it is important that
the network be tested with the full extent of the feature to
phoneme mapping in the language. Below we report
results using the Elman/Norris net and a feedforward net
incorporating a moving window.

The networks

The basic mapping between the two levels of
representation was achieved using a “cut-down” version
of back-propagation through time (Rumelhart, Hinton &
Williams 1986), unfolding the network once rather than
many times (Servans-Schreiber, Cleeremans &
McClelland 1989; Chater 1989) and thus sacrificing the
ability reliably to pick up long distance dependencies, in
exchange for speed of training. This “copyback”
structure (Fig. 2) was introduced by Elman (1988, 1990)
and Norris (1988) .

There were 11 input units, 15 hidden units, and hence
15 corresponding “‘copyback” units (which retained the
hidden unit activations from the previous timeslice) and
108 output units (coding the 36 phonemes at the
previous, current and next time-step). For a qualitative
comparison, a simple “moving-windows” architecture,
also with 15 hidden units (with 22 additional input units
representing the phonetic features at the previous two
time steps), was implemented. The architecture was that
of a standard feedforward network, trained with back-
propagation, where the input layer represents not just the
current phonetic input, but also the phonetic input at



previous time steps. In our simulations, the moving
window extended over three time-steps.

Three simulations are reported: the recurrent network
architecture was trained both on noisy and non-noisy
inputs, and the moving window architecture was trained
only on non-noisy input data. Using only the bigram
statistics of the stream of input data, and assuming that
error on the previous and current phoneme is 0, the best
total sum of squares error over the training corpus is
8044 steps. Of course, by considering higher order
statistics, better performance is possible, though a large
corpus is required to obtain reliable higher order
statistics.

This figure is comparable with the performance of the
networks: 8023 for the recurrent network trained on the
noise-free corpus, 9788 when the training data is noisy
and 7892 for the moving windows architecture with
noise-free input. The slight difference in performance
between the recurrent network and the moving windows
architecture results from better performance of moving
windows at outputting the previous phoneme - in this
architecture the phonetic input at the previous time step
is presented as part of the input, whereas the recurrent
network must learn to buffer this information. That
network performance is comparable with the results of a
bigram analysis does not of course imply that the
network is responding only to bigram structure - in fact,
it seems more likely that it is picking up some higher
order statistics of the input, while not perfectly
accounting for bigram statistics. This is currently being
tested by comparing network performance of the net on
real data versus nth-order approximations to that data.

@ @ @ C;;) @ output
Chidde,,

R

Figure 2. Structure of the Elman/Norris network.
Input is the feature-level representation of the
current segment. Output is the classification of the
current segment, prediction of the next segment, and
confirmation of the last several segments, The
copyback units re-present to the hidden units the
pattern of activation on those units at t-1.

In all the simulations reported, a learning rate of 0.1
was used, and momentum was not used. Each network
was trained until it began to show signs of overfitting —
training that resulted in a decrease of error for the
training set but led to increasing error for a separate test
set was disregarded. This required between 500 and 600
epochs. In some simulations, the phonetic input was
made noisy, by randomly changing 9% of the input
values from 0 to 1 or vice versa. The noise was generated

opyback™
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on-line and was different for every epoch of training. The
learning phase of the simulations was quite
computationally intensive, using 30-40 CPU hours on a
variety of SUN SPARC-based machines, using a
customized version of the Rumelhart and McClelland
(1988) simulation package.

The corpus and training regime

The initial, limited training data was derived from some
3490 words of spoken discourse, taken largely from the
LUND Corpus (Svartik & Quirk 1980). The discourse
was transcribed at the word level and included filled
pauses, false starts and corrections. The training set was
made up of 9097 phonemes and a test set of 3285
phonemes was used to test generalisation/overfitting. In
some later simulations the training data have been
generated from a 33,000 word phonemic dictionary,
containing frequency information; this allowed better
exposure to open-class words while sacrificing some of
the character of the distribution of closed-class words.

The phoneme-level descriptions

The utterances were converted to idealized phonemic
representations using the CSTR text-to-phoneme
program and employing 36 different phonemes based on
those of the CSTR Machine Readable Phonetic Alphabet.
The eight dipthongs were each converted to sequences of
two phonemes.

The feature-level descriptions

The phonemic transcription was then converted to an
idealized feature-level representation, consisting of the
following 11 features based on those of Jakobson, Fant
and Halle (1952): vocalic/non-vocalic, consonantal/non-
consonantal, voicedlunvoiced, discontinuous/continuant,
strident/mellow, nasalloral, diffuse/non-diffuse,
compact/non-compact, tensel/non-tense, gravelacule,
flat/plain. Thus the phonemes /s/ and /I/ were
represented on the respective features as below.

1 1

] 0 0 0 0 0 0 1 O
1= 1 01 1.0 01 0O O O O

All 36 phonemes were given a value of 1 or O for each
of the 11 features. The final form of the training corpus
was of a continuous stream of such feature-level
descriptions of segments, with no information being

given concerning word boundaries.

Behaviour of the networks

To illustrate the behaviour of the networks with unseen
discourse, consider the test string this is a test of the
model. When this was converted into sequences of
feature descriptions and given to the networks, all three
networks demonstrated sensitivity to phonotactic
constraints, with greater probabilities of predicting the



next phoneme in the short sequences of closed-class
words and in the unstressed syllable of model. The
models all predict the next phoneme more accurately
when the sequence is from normal discourse than when
the same phonemes are presented in random order. The
effect of training with noise was to depress the scores
given to phonemic hypotheses and to increase the
number of hypotheses which received a non-zero score.
In the simulation reported here, this increased noise did
not result in better performance in terms of the ranking of
the correct hypothesis within the total list of hypotheses.

It is easier to see the networks’ use of context in the
case of the classification of the current phoneme, where
all of the information necessary for the unique
identification of the phoneme is present on that
presentation. For the Elman/Norris net trained with
noise, performance was worse in the scrambled
phonemes case compared with the normal discourse case
(mean phoneme scores were 66.6 and 79.1, respectively;
(=235, df = 18, p = .031). We may conclude that in the
noise condition this network was relying on previous
context to identify the current phoneme; when this
context was aberrant, it hindered correct recognition. The
Elman/Norris net trained without noise and the moving-
window net both generated reduced mean “current”
phoneme scores for the scrambled input but neither of
the differences was significant.

Human listeners employ context both before and after
the phoneme in question. The aim of training with noise
was to force the network to rely on both “left” and
“right” context. The scores for the phoneme in “past”
position were compared on the normal and abnormal
discourse. While there was no significant difference
between the two mean scores for the ElIman/Norris net
trained without noise, the version trained with noise was
significantly worse on the abnormal discourse (means
were 82.7 and 63.2, respectively; t = 3.88,df=18,p=
.001.). The network was sensitive to right context in
classifying phonemes, and was misled by abnormal right
context.

Modelling psycholinguistic data

Phoneme restoration

Listeners' perception of degraded individual speech
sounds in words is often restored (Warren 1970).
Restoration is strongest when the intended phoneme and
the replacing sound (e.g. white noise, a click, silence) are

similar, and when replacement occurs after the
uniqueness point of the word. Otherwise the effect is not
compelling,

This was modelled by putting minimally different test
words, like got and gop, in the carrier sentence ...and the

next word is x and the next word is y and the..., For
frequent words like got, this, and yes, there was no

substantial restoration. For example, when the current
phoneme was /i/ in thif, the prediction for /s/ was 14 and

the prediction for /f/ was 4 (if is a frequent word); when

the current phoneme became /f/, it was scored at 98,

compared with 2 for /s/. The frequency of this was not

enough to overturn the bottom-up information.
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Restoration was observed, however, when the value of
the critical feature distinguishing /f/ and /s/ was replaced
by 0.5. Input, for the this/thif case, was then /8 i */ where
* was completely ambiguous between /f/ and /s/. In this
case, the current scores were 99 for /s/and 5 for /f/,
changing to 98 and 0 respectively at confirmation,

The model respects the input. It does not hallucinate
phonemes on the basis of word frequency. This captures
the effect more accurately than TRACE, in which lexical
level reinforcement restores any degraded phoneme and
even overturns bottom-up evidence, converting
vocabulaty to vocabulary

Phoneme restoration also occurred based purely on the
right context. When the input was /* e s/, in which * was
ambiguous between /y/ and /r/, the model restored the

fyl.

Monitoring for word-medial phonemes

Simulations were run to test whether the model predicted
the data from an experiment (Shillcock submitted) in
which subjects monitored for word-medial phonemes
like /p/ in repel or /p/ in lapel. Subjects in the experiment
took significantly longer to respond to phonemes in
monomorphemic words compared to matched prefixed
words.

The stimulus materials from the experiment were
embedded in the context ...and the next word is...and the
next word is... and presented to the three trained
networks, Activations for the critical phoneme in each
word (/p/ in repel) were recorded when that phoneme
was in “next”, “current” and “past” position. Only the
moving window network gave significantly different
mean activations for the monomorphemic words and the
prefixed words, mirroring the human data (97.7 and 98.7,
respectively; df = 14, t = 2.137, p = .05). This difference
occurred in the “current” position, reflecting the fact that
response times were facilitated if the sequence of
phonemes up to and including the critical phoneme
represented a prefix as opposed to a monomorphemic
word beginning. When activations in the simulations for
the individual stimulus items were compared with the
mean response times from the experiment, there was no
significant correlation. Shillcock (submitted) reports that
the best predictor (r = -.477) of the phoneme-monitoring
data was the (frequency-weighted) number of times the
sequence of phonemes up to and including the critical
phoneme (i.e. /r 1 p/ for repel) occurred in a large
phonemically transcribed dictionary (i.e. /r I p/ in script,
report, unrepentant..., all weighted by word frequency).
The networks were therefore not employing information
as relevant as the bigram and trigram information
available from a large phonemic dictionary. This may
reflect most on the size of the training corpus.

Conclusions

Initial testing of the model gives encouraging results,
with the various simulations from the different
architectures demonstrating desirable behaviours. Many
of its limitations may be due to the modest size of the
training corpus: the 3490 words in the corpus represented
905 different words. A very large corpus will be required



to ensure adequate coverage of the open-class
vocabulary. Training with a corpus of transcribed
discourse opens the possibility of studying what special
processing of the closed-class vocabulary may emerge;
the literature contains numerous claims concerning the
special status of the closed-class vocabulary compared
with the open-class vocabulary. Yet further work will be
required concerning the amount and nature of (idealized)
phonological reduction in the corpus.

Regarding network architecture, it may be that the
most promising avenue for future research lies in a
network which allows back-propagation through time for
several rather than just one time-step. We are currently
exploring this avenue.

The model described is seen as part of a larger model
incorporating semantic representations. The absence of
explicit, localist lexical representations is crucial, We
envisage a mapping from the phonemic output of the
model to semantic representations, mediated only by a
layer of hidden units, although this clearly raises a
serious binding problem in the absence of word boundary
information, This arrangement gives more scope than a
lexicalist-localist model for modelling the details of
effects in which homophones and partial homophones
produce brief erroneous priming.

In conclusion, it may be that many psycholinguistic
phenomena which have been taken to involve access to
specific representations of spoken words may be
explained in terms of the low-level statistical structure of
the phonetic/phonemic input, as picked up by a simple
neural network account. We are currently applying this
model to a range of other experimental phenomena.
There is a methodological imperative within
psycholinguistic research to allow “higher level”
interpretation of empirical data only when low level
explanations can be ruled out.
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