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Preface

Genetic algorithms were developed by John Holland in the early seven-

ties [Hol92]. They use an evolutionary metaphor to evolve solutions to problems

or model the evolutionary processes. A population of potential solutions work in

parallel to find optimal solutions in a large, complicated search-space. Genetic

algorithms are typically used as function optimizers for various sorts of engineer-

ing tasks and to investigate a wide range of adaptive processes such as learning,

economics, biology, etc.

Because genetic algorithms can effectively explore high-dimensional spa-

ces, I believe they have potential application to algorithmic composition. As my

literature review will show, previous work in this field have limited genetic al-

gorithms to symbolic music: usually music that can be described using Western

musical notation. The overwhelming majority of work in attempts to evolve en-

tire pieces of music rather than incorporating evolution into the form of the music

itself. This project investigates the algorithmic composition of non-symbolic mu-

sic: the algorithm works on the direct digital representation of the sounds rather

than on high level symbols. Both the compositional form of this music and the

local details of particular sounds will be dictated by the evolutionary process. The

compositional form is defined by an algorithmically generated world comprised of

multiple, changing environments. Particular sounds will exist in this world. The

local details are defined by the process of the sounds’ migration between envi-

ronments, their interaction with these environments, their reproduction, and the

population’s evolution over time.

xi



This thesis is organized so that it can be read by someone with no back-

ground in biological modeling. The first chapter provides an explanation of genetic

algorithms, develops a simple algorithm that evolves new tuning systems, and de-

scribes the impact of user bias on algorithm design. The second chapter reviews

research applying genetic algorithms to creative musical applications. The third

chapter describes a framework for evolving waveforms and a stochastic compo-

sitional framework that guides this evolution. Evolution in the time domain is

examined in detail; an evolutionary framework that operates in the spectral do-

main is proposed. The fourth chapter presents three different implementations of

the framework in flowcharts. The Fifth chapter characterizes the output of sev-

eral different algorithms that employ the framework: first a systematic comparison

of different sound populations and evolutionary parameters then a description of

several works created using the framework.

xii
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ABSTRACT OF THE DISSERTATION

Evolutionary Sound: a Non-Symbolic Approach to Creating Sonic Art With

Genetic Algorithms

by

Cristyn Magnus

Doctor of Philosophy in Music

University of California, San Diego, 2010

Professor Miller Puckette, Chair

The goal of this research is to explore the use of genetic algorithms to

evolve waveforms. Genetic algorithms are introduced with a simple application

that evolves novel tuning systems. Research involving the application of genetic

algorithms to musical situations is reviewed. A framework for applying genetic

algorithms is described in terms of virtual biology and virtual ecology. Virtual

biology applies the central concepts of genetic algorithms (genetic representation,

reproduction, fitness, mutation) to waveforms. Methods for implementing virtual

biology are described in detail for time-domain waveforms and are proposed for

spectral domain waveforms. Virtual ecologies replace the simple fitness function

of conventional genetic algorithms. These ecologies can be designed to produce

formal musical structure in an algorithm’s output. Several algorithms that em-

ploy the framework are described in detail. The output of a simple version of

the algorithm is systematically evaluated by running several fixed sets of sounds

and environments with active evolutionary parameters. Works produced by more

complex algorithms are evaluated subjectively. The success of this project is not

in this algorithm’s ability to make a population of sounds sound more like their

environment, but rather in its ability to create novel sounds that are intimately

tied to the process of their creation.

xvi



I

Overview of Genetic Algorithms

This chapter provides an introduction to genetic algorithms.1 Typical

applications for genetic algorithms are briefly described, the implementation of

a simple genetic algorithm is developed, the biases inherent in applying genetic

algorithms to particular applications are explored, and some specific examples of

these biases are examined.

1.1 Typical Applications

There are two common approaches to using artificial intelligence for prob-

lem solving. One is to use rule-based systems; the other is to use biological model-

ing. Rule-based systems have the benefit of being explicit and predictable. They

can be powerful and efficient in well-defined situations, but not all situations are

well-defined. Many problems are too complex to be easily defined; they change in

unexpected ways; they have unclear boundaries; etc. Biological modeling tends to

be more appropriate for such situations.

Biological modeling algorithms, such as genetic algorithms and neural

networks, are capable of adjusting themselves to achieve increasingly correct out-

1The bulk of this characterization seems to be common knowledge in the field. Much of my personal
background was acquired from undergraduate coursework in cognitive science. I’m not sure where to find
original written sources for this characterization, although similar characterizations (also sans citations)
can be found in the introductions of most of the sources in my bibliography.

1
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puts. This saves users from the tedious task of adding more and more rules to cover

special cases and to counteract the unexpected output discrepancies that result

from not fully characterizing the problem space. Although some researchers have

tried to use neural networks to produce music [TL91], in general neural networks

are more appropriate for learning and pattern recognition; genetic algorithms are

more appropriate for searching, optimizing, and generative tasks.

Genetic Algorithms were developed by John Holland [Hol92] in the early

seventies. They use an evolutionary metaphor to evolve populations of poten-

tial solutions in parallel. Genetic algorithms are well suited for solving adaptive

problems because they have the capacity to evolve and adjust to changing envi-

ronments. An obvious application of genetic algorithms is biological simulation.

For example, competing evolutionary models can be explored and compared. Op-

timization problems, particularly those with large-dimensional search-spaces, are

another common application, since genetic algorithms are efficient at reducing er-

ror. More importantly, a genetic algorithm can be applied to a problem space about

which we know little; this allows us to at least solve the problem and potentially

discover something about the space by examining the solution.

1.2 A Simple Genetic Algorithm

Genetic algorithms model the evolution of a population in a particular

environment. Each member of the population is represented by a chromosome that

is comprised of a series of genes. Each gene has two or more possible values, called

alleles, and is mapped onto a parameter of the problem space. The environment

is represented by a fitness function that evaluates each individual and assigns it a

fitness value. Following the evolutionary metaphor, fitter individuals have a higher

probability of passing on their genetic material to future generations. The fitness

values of the population members are normalized and converted into probabilities

of reproduction. Each offspring is produced by sexually combining two randomly
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6405 6218 6946 6775 6111 6324

genes

chromosome

Figure 1.1: A chromosome with six genes.

selected parents. The parent chromosomes are split at some crossover point and

the first part of one parent is spliced to the second part of the other. Reproduction

is accompanied by some probability that mutation, usually a flipped bit, will occur

in the offspring. Natural selection acts to preserve beneficial mutations; harmful

mutations are lost over time. Evolution is allowed to continue for a fixed number

of generations or until an individual that reaches some requisite fitness level is

produced.

1.2.1 Representation

To clarify this process, suppose that we want to use genetic algorithms to

come up with a new, interesting tuning system. To get this system, we will use a

genetic algorithm to evolve an ascending scale of eight notes. We can assume that

the first and last note of the scale will be fixed an octave apart. This means that

each chromosome in population will have 6 genes, one for each intermediate note of

the scale. The alleles of these genes will be integers between 6000 and 7200; when

divided by 100, these can straightforwardly be mapped to MIDI between C4 (60)

and C5 (72) with an offset in cents (figure 1.1). The genes of each chromosome

in our initial population will be a random value between 6000 and 7200. This

representation is useful because it represents pitch in a perceptually meaningful

way but is flexible enough to allow evolution of something besides the logarithmic

frequency relationships that we are used to hearing in tuning systems.
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2578213-664-171728-187fitness
function:

6405 6218 6946 6775 6111 6324

Figure 1.2: The negative intervals of this chromosome are summed and added to

3600 for a fitness value of 2578.

1.2.2 Fitness

The fitness function for this application will be quite straightforward.

Because we have assigned possible alleles such that the first gene (k0) cannot help

but be equal to or greater than 6000, we do not have to include this first interval

in our fitness calculation. For each subsequent gene ki, subtract the value of the

previous gene ki−1. The result will be negative if the two genes are not in an

ascending relationship. We will ignore all positive results, since we don’t care

about the size of the interval between note as long as they are ascending, then

sum the values over the length of the chromosome. Given a worst case scenario

in which the values oscillate between 6000 and 7200, this will give us a value of

-3600. Because it will simplify later calculations if our fitness values are positive,

we will add 3600 to the result, bringing our lowest possible fitness value up to zero

(figure 1.2). This will give us the fitness F .

Fj =
5∑

i=1

(ki − ki−1)
− + 3600

This gives us fitness values between zero and 3600. An individual that

perfectly fulfills our requirements will have a value of 3600. In order to calculate

each individual’s probability of producing offspring, we will convert each fitness

value Fj into a probability Pj. We do this by dividing the fitness value of each

chromosome by the sum of all fitness values in the population.

Pj =
Fj∑N
l=0 Fl
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1.2.3 Reproduction

Once we know the probability of reproducing for each individual, we

can produce the next generation. For each individual of the next generation, we

randomly select two parents. Since the chromosomes are 6 genes long, we will set

the crossover point to be between the 3rd and 4th genes, at the halfway point.

The first three genes (0–2) from the first parent will become the first three genes

of the offspring; the last three genes (3–5) from the second parent will become

the last three genes of the offspring (figure 1.3). The final step of reproduction is

mutation. For each gene, there is some probability, usually very low, that mutation

will occur. I don’t want to replace genes with random numbers, which might lose

any information that the genes may already contain, so instead my mutations will

add a random number between -50 and 50 to the mutating gene’s value. If the

result of the mutation would be less than 6000 or greater than 7200, the gene is

replaced by a random value (figure 1.4).

1.3 Modification to Algorithm and User Bias

The choice of genetic algorithm used to explore a space reflect the de-

signer’s bias. Although the method is flexible enough to be applied to a wide array

of problems, the form that this application takes will strongly reflect the designer’s

intuitions about the domain in question. This is most obvious in the designer’s

choice of fitness function. If I choose, for example, to use rules from western tonal

theory to evaluate members of a population, I am already using a model that can-

not be applied to world musics or even to much of the western art music written

in the last century. The choice of representation compounds this situation. If I

choose to represent music in terms of pitch, I place pitch in a hierarchical relation-

ship to other musical variables that excludes application of the model to musics

that stress rhythm, timbre, dynamics, etc., over pitch. This bias is amplified by

the designer’s attempts to choose mutation methods that are likely to raise fitness,
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a)

6405 6218 6946 6775 6111 6324

7026 6462 7114 6777 6104 7050

b)

6405 6218 6946

6777 6104 7050

6405 6218 6946 6777 6104 7050c)

Figure 1.3: a) Two parent chromosomes with dotted line representing crossover

point. b) Portions of parents to be transcribed to offspring. c) Offspring.

6405 6218 6946 6777 6152 7050

6405 6218 6946 6777 6104 7050a)

b)

Figure 1.4: a) Offspring before mutation. b) Offspring after mutation. Arrow

indicates mutated gene.
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rather than introduce new flaws. Any mutation method I introduce in this way

will reflect the features in which I am interested.

There are many biases built into the above sample algorithm. An obvious

one is the assumption that a scale ought to have seven novel pitches, culminating

with the first pitch repeated an octave up. This is an easy assumption for someone

trained in western music to make—if I hadn’t used seven pitches for simplicity’s

sake, I most likely would have been inclined towards twelve. This prevents my

algorithm from coming up with scales of other lengths that might be interesting

to work with. My decision to have a scale that starts and ends on C is a clear

outgrowth of years of practicing scales on the piano—always starting on C of

course; perhaps I wouldn’t have chosen C if I’d played a different instrument. I

can write this off as a practical consideration because I can always transpose the

scale, but my decision says something about my worldview nonetheless. But why

does my scale even have to be within an octave? If my goal is to create a new

tuning system with it new perceptual experiences, why am I constraining it to an

octave? Perhaps it would be interesting to develop a system that repeated every 2

octaves, or every tritone, or over some arbitrary interval that doesn’t necessarily fit

evenly into an octave. All of these assumptions about how tuning systems ought

to behave are direct results of my training and aesthetic preferences.

1.3.1 Fitness Function Bias

Fitness function bias can be clearly seen by comparing the work of Moroni

et al. [MMZG00] (see §2.2.4) and the work of McIntyre [McI94] (see §2.1.2). Both

use genetic algorithms to create harmony, but with different goals that can be seen

in the type of functions they choose.

Moroni et al. are concerned with developing a creative system and use

their harmonic fitness function as one of its components. Their fitness function is

based on physical theories of consonance and dissonance. This method attempts

to be neutral in that it uses a model of what everyone can physically hear rather
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than a particular style’s definition of dissonance and consonance. Furthermore, it

does not define functional relationships between consonant and dissonant chords,

as these are subject to change with style as well. By attempting to avoid style-

specific fitness functions, Moroni et al. hope to leave resulting compositions open

to influence by the user.

McIntyre is concerned with modeling harmonic production. Because the

concern is with modeling, an objective measure of success must be employed. This

leads him to use a fitness function based on rules of baroque, four-part harmony.

This is an ideal function for his purpose because the rules have already been de-

scribed by theorists and are generally agreed upon. If McIntyre were to use a

fitness function based on physical theories, there would be no clear answer as to

whether or not his system were successful. A consonant but uninteresting harmo-

nization might be declared successful for being consonant or it might be declared

unsuccessful for being musically uninteresting. By using rules from a well-studied

style of music, the resultant harmonizations will either clearly follow the rules or

they will not.2

1.3.2 Representation Bias

Throughout the literature (§II), there are two ways in which pitch and

rhythm are combined. In one, the chromosome’s genes represent slices of time,

usually sixteenth-notes or eight-notes, and each slice of time contains a pitch or a

rest. In the other, each gene is represented by a pitch/duration pair.

In the first case, there is a strong notion of beat. All notes will fall on

beats or beat subdivisions. There are two possible ways of interpreting neighboring

notes of the same pitch. They can either be considered notes of longer duration,

in which case repeated notes cannot be represented, or they can be considered

as repeated notes, in which case notes of longer duration cannot be represented.

2This is not to say that this method captures the musical style, only that it effectively follows the
rules. This is a reasonable way to test the success of the model; we can disagree about its ability to
capture style but not about its ability to follow rules.
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This method of representing time is effective at constraining notes to fall on beats,

which is important for many styles of music. However, it will never permit triplets

or other tuplets.3 Each pitch will be tied to a particular location in time and

mutations to particular genes will change pitches vertically but not disrupt the

temporal location of later notes (figure 1.5). This means that it is highly unlikely

that the melodic contour will remain the same while the rhythm changes.4 When

genes are tied to particular slices of time, a gene is either on the beat or not. If

a gene starts out on the beat, it will always be on the beat, and mutation will

not change this. This means that events can be consistently tied, for example, to

strong beats.

Because the second case represents each note with a pitch/duration pair,

the melodic contour and the rhythm can be evolved with more independence. If

the durations permitted by the algorithm are restricted to beats or beat subdi-

visions, this representation will be constrained to the same sorts of divisions as

the previous representation. However, this representation could potentially permit

rhythms that are unrelated to some beat structure.5 Another difference is that

this representation allows neighboring notes to repeat pitches without losing the

possibility for notes of varying duration. Unlike the first case, there is no clear indi-

cation of beat. When genes are tied to particular slices of time, a gene is either on

the beat or not. If a gene starts out on the beat, it will always be on the beat, and

mutation will not change this. This means that events can be consistently tied, for

example, to strong beats. In the case where genes represent pitch/duration pairs,

3One can imagine extending this method by adding more subdivisions, but it will always be con-
strained. Since each subdivision adds to the chromosome length, adding subdivisions will explosively
lengthen the chromosomes. The computer’s available memory, not to mention additional processing time,
will provide an upper limit to chromosome length and hence the number of subdivisions. Furthermore,
by adding too many subdivisions, you lose the beat-constraining benefits of this type of representation
without gaining the flexibility of the second type of representation.

4Since mutations, in this case, are applied independently to individual genes, several unlikely events
would have to occur. Each gene after the changed rhythm would have to be selected for mutation.
Each mutation gene would have to acquire the appropriate value to shift the melody in the appropriate
direction rather than replace it with something else. This is something like expecting monkeys with
typewriters to write Shakespeare.

5Unlike the first representation, this would not change the length of the chromosome. The available
durations would be limited by the number of bits the computer allocates to the data type we use to
represent duration (e.g. a float).
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c)

a)

b)

x& 44 x xx xx xx xx xx xx xx
& 44 q qq q qq q q

& 44 qq q qq q qq q
x& 44 x xx xx xx xx xx xx xx

Figure 1.5: a) A 4/4 bar of a chromosome whose genes represent sixteenth-note

slices of time. b) This chromosome’s output interpreted so that neighboring notes

of identical pitch represent longer durations. c) Two mutations to the previous

chromosome, resulting in changes to both melody and rhythm. These changes do

not affect other notes represented by the chromosome.
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a)

b)

& 44 q qq q qq q q
& 44 e.qq q qqq q q q.

Figure 1.6: a) A 4/4 bar of a chromosome whose genes represent pitch/duration

pairs. b) The gene after the first note’s pitch and rhythm have been mutated.

The mutated pitch results in a repeated note, whose repetitions have different

durations. The mutated rhythm shifts the rest of the measure by a sixteenth-

note, changing the position of each pitch while preserving the melodic contour and

changing the length of the entire melody.

this is not the case. If the rhythm of the first note is altered by mutation, the shift

in time will propagate down the gene, potentially causing drastic changes to the

overall metrical structure (figure 1.6).

1.3.3 Mutation Bias

The introduction of bias through mutation results from the designer’s at-

tempts to introduce domain-specific mutations. Two contrasting examples are seen

in the work of Wiggins et al. [WPPAT98] and McIntyre [McI94] (see §2.1.2). While

both are attempting to use genetic algorithms to write baroque four-part harmony

to an existing melody, Wiggins et al. attempt to build a great deal of knowledge

into the mutation operations, whereas McIntyre allows much more freedom.

Wiggins et al. provide a list of mutation functions that severely curtail

the potential values for each gene. These are perturb, which allows the voice to

move up or down a semitone, swap, which swaps the values of two voices, rechord,

which replaces a chord with a new one in which the melodic note is either root,

3rd, or 5th, phrase-start, which replaces each phrase beginning with a tonic in

root position on the downbeat, and phrase-end, which replaces the end of each
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phrase with a chord in root position. The bias is clear—the problem space has

been arranged so that only high-level mutations relating specifically to chords can

be used. Only the rechord and perturb mutations will allow the algorithm to

explore new harmonies. The rechord mutation assumes that dominant sevenths

will never occur, so these can only be reached by the perturb mutation. This is

highly unlikely because it can only move by semitones and will have to traverse a

great distance through low-fitness space in order to survive long enough to reach

a higher fitness level. The phrase-start and phrase-end functions effectively force

a specific structure on the members of the populations rather than allowing them

to evolve to some point that might differ from this structure but still follow rules

of baroque harmony.

McIntyre has one, simple mutation: the mutated pitch can be replaced

by any other pitch. This assumes that with enough freedom and a well-designed

fitness function, the rules of baroque harmony will be successfully implemented

by the algorithm. Unlike the perturb mutation function used by Wiggins et al.,

this function does not require unfit individuals to be preserved for multiple gener-

ations in order to reach a fitter value because notes can jump from one position

to another rather than having to move by semitone. Although many mutations

will be negative, these will be unlikely to be passed on to future generations. Ben-

eficial mutations will happen with enough frequency and be passed on to future

generations that the population as a whole will progress towards a higher fitness.

In this section I have explained how implementing genetic algorithms

inherently involves user bias. This will be relevant both in the literature review

(chapter II) and in descriptions of my own work (chapters III–V).



II

A Taxonomy of Genetic

Algorithm Applications in Music

2.0.4 Introduction

There are many researchers using genetic algorithms in computer music,

both as tools for engineering and as methods for achieving creative goals. Engi-

neering applications include designing synthesis systems [Gar00], setting synthe-

sis parameters to match particular sounds [CYH96], [FV94], [Hor95b], [Hor95a],

[Hor96], [HB96], [HBH92], [HBH93], [HC95], [VV93], [RV02], [Hor03], tuning

[HA96], synchronization of sound and animation [THG+93], recognition [FF99],

[Fuj96], polyphonic pitch detection [Gar01], and evolution of components in sys-

tems with more traditional architecture [Bey99], [Jac95]. We will not address these

in more depth here, as our primary interest is in creative applications.

Because of the diverse approaches taken towards using genetic algorithms

for musical applications, there are several useful ways in which these can be orga-

nized. Burton and Vladimirova [BV99] review this literature in terms of the type

of fitness function used. Here we address the work in terms of the researchers’

intents.

There are several approaches being taken towards achieving creative ends

using genetic algorithms. One is to assume that we must first model creativity in

13
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known musical situations before we can approach the much larger task of creating

a more comprehensive creative system. Another is to develop tools that perform

particular tasks that the designer believes will be useful to currently practicing

musicians. A third is to design tools or processes that can be applied to specific

creative ends; if they happen to be useful to other practitioners, that’s an added

bonus, but it is not the primary goal.

2.0.5 Variations on Genetic Algorithms

There are two variations on conventional genetic algorithms that are seen

throughout the literature: the genetic program and the interactive genetic algo-

rithm. Genetic programs [Koz92] differ from genetic algorithms in that they evolve

sequences of functions that act to produce and modify data rather than directly

evolving sequences of data. Interactive genetic algorithms replace the fitness func-

tion with a user who evaluates each member of the population and subjectively

assigns a fitness value. Because of this, a recurring problem for designers of in-

teractive genetic algorithms is the fitness bottleneck. This is essentially the limit

of the human capacity to rate each member of the population, resulting from the

requirement that each member of the population be listened to in real time—a

time-consuming and often tedious process.

2.1 Modeling and Simplified Applications

Many researchers assume that we must tackle simple problems to decide

what will and won’t work before investing the time and effort in creating more

comprehensive systems. More importantly, solving simple problems helps us to

refine our understanding of the processes involved; if a comprehensive system is

built from scratch, it is more difficult to discover why the system works the way it

does than if it is built from simple parts that have all been individually examined.
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2.1.1 Rhythm

Both Horowitz [Hor94] and Burton and Vladimirova [BV97] explore the

generation of rhythm. Their initial approaches are very similar; both represent

rhythm in terms of sequences of ones and zeros that occur on discrete time steps.

Individuals are collections of voices with different timbres that coöccur to build

more complex rhythmic textures. What distinguishes their approaches is their

fitness functions. Horowitz uses an interactive genetic algorithm. Because interac-

tive genetic algorithms require that users listen to and rate each individual in the

population, this can be taxing for the user. To ease the user’s work-load, higher-

level algorithms, such as syncopation, density, downbeat, etc., are used to shrink

the search space. Burton and Vladimirova use an ART (Adaptive Resonance The-

ory) neural network, rather than a user, to evaluate fitness. ART networks are

effective pattern recognizers—they categorize patterns and identify new pattern

categories without supervision. Fitness is assigned based on similarity to patterns,

with new patterns being designated for individuals that are sufficiently different

from existing patterns.

2.1.2 Harmonization

Investigations that model harmonization focus primarily on baroque, four

part harmony. Perhaps this is due to extensive effort that has been made by music

theorists to document rules for this style: the bulk of the effort in writing a suitable

fitness function has already been done. The standard representation is a fixed

length chromosome with each gene a set of four values, one for each voice. The

melody voice is pre-defined and is not subject to mutation.

A very simple sub-problem is that of finding the correct voicings of a chord

progression. Horner and Ayers [HA95] take this approach. They build knowledge

into their system by enumerating every possible voicing of each chord in the pro-

gression. The mutation function simply selects another voicing possibility. This

enumeration might seem excessive, but the approach clearly emulates the method
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taught to music theory students;1 it has a certain ecological validity. Because of its

simplicity, the system will almost always find an answer that satisfies the fitness

constraints.

McIntyre [McI94] addresses the harmonization problem directly. Rather

than encode extensive knowledge of theory into the mutation function, mutated

notes are replaced at random by any other note. This approach allows the pop-

ulation to converge relatively quickly. Although the output is rarely completely

true to the rules of baroque, four-part harmony, McIntyre seems satisfied that the

results are believable harmonies, consistent with the baroque style. One strength

is the ability of the algorithm to find multiple believable harmonies for a given

melody—this is note-worthy since rule-based systems tend to find the first result

that satisfies the rules and then stop before finding other potential results.

Wiggins et al. [WPPAT98] have attempted to build upon McIntyre’s

work. The authors clearly find the results dissatisfying and they conclude that

only a conventional rule-based system is capable of proper harmonization. It is

worth investigating this dissatisfaction in more detail, as the way in which a system

fails can tell us much about the system.

Wiggins et al. go to great lengths to encode as much knowledge as pos-

sible into the mutation functions. Rather than use a simplified version of the

codified rules of baroque, four-voice harmony, as McIntyre does, they extend the

fitness function a great deal. The excessive complexity of their domain-specific

mutations hamstrings the genetic algorithm by preventing it from exercising one

of its primary strengths: the ability to find solutions when the path is unclear.

By artificially limiting the spaces that can be reached by mutation to a list of

highly-specific possibilities, Wiggins et al. are presuming that they have already

completely codified in their mutation functions every possible operation that might

be necessary to achieve correct, baroque, four-part harmony. Because of the pre-

cision of these rules, if any necessary rule was left out, the search space would be

1This might not be the method taught to all music theory students, but it was at least the way I was
taught.
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so constrained that the population could not reach portions of the space2 that it

may need to pass through in order to reach an acceptable fitness level.

Wiggins et al. make it clear that the only acceptable fitness level is per-

fection and, based on their algorithm’s failure to achieve perfection, they conclude

that genetic algorithms are not appropriate for the “simulation of human musical

thought.” This conclusion is unjustified. First, when their results were graded

by a music theory professor, who was asked to grade them as he would his theory

students, he gave them “a clear pass.” Wiggins et al. do not make it clear why they

are dissatisfied with results that seem acceptable to a music theorist. Second, they

assume that modeling four-part harmonization in the baroque style, based on an

intricate rule-system defined years after-the-fact by theorists, will somehow have

clear implications for creativity. Despite the fact that baroque composers did not

have the benefit of a few hundred years of theory to carve rules in stone for them,

and therefore often failed to comply perfectly with these post-hoc rules, Wiggins

et al. declare that any approach that results in less than perfect compliance with

this artificial rule-system is an inappropriate model of creativity. For Wiggins et

al., any result that breaks even the most minute of rules is unsatisfactory. In taking

this position, Wiggins et al. set themselves against contemporary popular wisdom,

which holds that the ability to effectively break rules, rather than the ability to

perfectly adhere to rules, to be the hallmark of creativity.

2.1.3 Melody

There is surprising similarity between the approaches taken to mod-

eling melodic generation by Laine and Kuuskankare [LK94] and Johanson and

Poli [JP98]; this is all the more striking given their apparent unawareness of one

another’s work. Rather than use a straightforward genetic algorithm, both use

genetic programming (see §2.0.5). This allows melodies to vary in length. Because

of the desire to simplify the problem to one dimension, melodic sequences are rep-

2Space here is the space of which the search-space is a subset.
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resented as a sequence of pitches with no rhythmic representation; all notes are

assumed to be the same length, although Laine and Kuuskankare grant that longer

rhythms might be represented by sequences of identical pitches.

Johanson and Poli use a hybrid approach to fitness. The user can rate

fitness, as with an interactive genetic algorithm (see §2.0.5), or use a neural network

to evaluate fitness. Unlike the ART network used by Burton and Vladimirova (see

§2.1.1), which relies on the properties of the network itself to assign a fitness,

Johanson and Poli train back-propagation networks with the user’s past ratings

in order to create networks that will rate in a similar manner to the user. These

networks use shared weights for scalability so that they can evaluate melodies that

vary in length.

Brown [Bro04] uses the task of melodic generation to compare expert

systems with genetic algorithms. He compares randomly generated melodies and

melodies generated by rule-based algorithms. Then he uses populations of ran-

domly generated melodies and melodies generated by rule-based algorithms to

seed genetic algorithms that run for twenty generations. Each gene represents a

note. The genetic algorithms either apply no mutation, random mutations, musi-

cally meaningful mutations, and combinations of random and musically meaningful

mutations. The fitness function incorporates statistics from a library of analyzed

melodies. Rule-based procedures, unsurprisingly, produced melodies that were

consistent with the style in the fitness library, but Brown calls these melodies

“conservative.” Musical mutations make these melodies more interesting and sur-

prising. Other mutations reduce coherence. Twenty generations turned out to be

far too few to allow the populations seeded with random melodies to reach the

level of fitness the rule-based metlodies started with, though in that amount of

time musical mutations began to produce perceptible structural elements. Brown

acknowledges the problem, but unfortunately has failed to re-run his experiments

for long enough to produce results that could be meaningfully compared. A more

appropriate version of the study would let each case run until it minimized its er-
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ror. He could then compare both efficacy and the amount of processing necessary

to achieve it.

2.1.4 Other

The papers discussed below go a step further than the papers previously

discussed in this section. Although they are still modeling problems, they investi-

gate multiple musical dimensions or alternative uses for genetic algorithms in the

context of modeling musical creation.

In addition to their efforts in harmonization (see §2.1.2), Wiggins et al. use

genetic algorithms to create simple jazz solos with harmonic accompaniment. The

solo melodies are represented as a list made up of paired scale-degrees and dura-

tions, with non-scale notes forbidden. The harmonic accompaniments are repre-

sented by lists of triplets: root, chord type, duration. Unfortunately, as with their

attempts at harmonization, the combination of extremely specific mutations and

fitness functions comprised of large lists of rules led them to disappointing results.

Polito et al. [PDBB97] use genetic programming to create sixteenth-

century counterpoint from a user-defined cantus firmus. Rather than evolving

a single set of instructions, three sub-populations of instructions are evolved: one

for polyphony, one for imitation, and one to select portions of the cantus firmus

from which to generate new material.

Rather than evolve a lengthy excerpt along a single musical dimension,

Gibson and Byrne [GB91] focus on evolving four bars of four-part harmony. Unlike

the previous examples that evolve only harmony (see §2.1.2), they evolve rhythm,

melody, and harmony. To simplify the problem, the space is restricted to notes in

the C major scale and 3 chords: tonic, dominant, and sub-dominant. The problem

is broken down and addressed in series. First, a rhythm is evolved, then a melody,

then harmony. Instead of a rule-based fitness function, each sub-section is graded

by a neural-network that has been trained with four-bar segments in the desired

style. To provide for global structure, the melodic fitness assignment is made by
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two networks, one that evaluates melodic intervals and the other that evaluates

melodic structure.

Hörnel and Ragg [HR96] use genetic algorithms more indirectly. Their

research focuses on building neural networks capable of producing and harmonizing

simple folk melodies. A classic problem with neural networks is arriving at an

ideal network size: a network that is too large will learn quickly but be incapable

of generalizing; a network that is too small will generalize to some extent but

be unable to solve the problem. A genetic algorithm is used to add and remove

weights and units to neural networks to evolve an appropriately sized network that

is capable of both learning at an acceptable rate and generalizing.

Todd and Werner [TW99] [MKT03] use the context of melodic produc-

tion to explore the coëvolution of music producers and music critics. Producers

represent melodies with a fixed-length chromosome of pitches; critics represent ex-

pectancy with a transition matrix. Coëvolution reduces the ability of creators to

find easy ways to trick a stationary fitness function into giving a high score and

enhances diversity within the population and over the course of time.

Kirby and Miranda [MKT03] use a modified genetic algorithm to model

the cultural transmission of emotional meaning in music and the emergence of mu-

sical grammar. They use the metaphor of parents teaching children rather than

a reproductive metaphor. Children initially know nothing; adults teach by exam-

ple. The first generation of adults produce purely random combinations of riffs

and emotions. Children hear many melodies produced by their parent and gen-

eralize their own musical grammars linked to emotional meanings. After training

is completed, the adult is deleted. This is quite similar to asexual reproduction

in GA, with the random elements from the adult’s melodies and the child’s gen-

eralization from the melodies taking the place of mutation. Eventually, offspring

develop musical grammar and are able to produce increasingly complex music that

is characteristic of the music produced by the population.

Federman [Fed03] develops a system for predicting the next pitch in a
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melody and studies the rôle of representation in its efficacy. She compares four

different pitch representations that encode pitches using binary versus grey coding

and pitch versus a psychologically based representation of pitch. She concludes

that the type of encoding does not matter, but the representation that incorporates

relational features of previous notes performs much better than pitch alone.

Pazos et al [PSA+03] model collective music making from an anthro-

pological perspective using an interactive genetic algorithm. Groups of artificial

musicians collectively produce rhythmic themes. Each group of artificial musicians

is represented by a grid; each line is an individual’s chromosome. Chromosomes are

strings of evenly-spaced rhythmic units that are either on or off. When rhythms

are played, each individual in the group has it’s own density probability; whether

or not an on-note is played or not is based on this probability. Groups selected as

parents mate on an individual basis—that is, each individual in the group mates

with the corresponding individual in the other group, but with an independently

generated random crossover point.

2.2 General Tools for Artists

2.2.1 Timbre Exploration

There are three basic approaches taken to using genetic algorithms to

explore timbre. One is to modify some initial sound; another is to use genetic

algorithms to set parameters for some synthesis technique; the third is to evolve

populations of synthesizers that cooperate to create sound events.

The first approach is taken by Horner, Beauchamp, and Packard [HBP93],

who begin with an initial sound made with additive synthesis and derive a popula-

tion with a series of filtering and time-warping operations. These same operations

are used as mutation functions. Because this application is designed to help the

user find novel sounds, rather than known sounds, an interactive genetic algorithm

is used to direct the course of evolution.
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The second approach is taken by Johnson [Joh99] [Joh03] and Dahlst-

edt [Dah01] [BD03]. Johnson uses interactive genetic algorithms to set parameters

for Csound algorithms [Bou00]. To allow the evolution to proceed more quickly,

users are permitted to change parameters to help direct the course of evolution.

Dahlstedt takes this process a step further by designing an interface that deals

abstractly with synthesis parameters from any synthesis system. Two steps are

taken to help counteract the fitness bottleneck (see §2.0.5). First, parameters that

the user is satisfied with can be saved while allowing the rest of the genome to con-

tinue to evolve—this shortens the process by preventing successful settings from

being evolved away. Second, an abstract, visual representation of each individual

in the population is displayed, allowing the user to use visual information to speed

the evaluation process.

Bowcott [Bow90] uses biological modeling to generate musical events by

granular synthesis. Although this is not explicitly a genetic algorithm, it is suffi-

ciently similar to be addressed in this section. It can be interpreted as a combi-

nation of population modeling, in which the population potentially supports some

maximum number of individuals but the actual number of individuals fluctuates

depending on the distribution of resources, and a modified genetic algorithm, in

which reproduction is asexual and mutation is always in a favorable direction.

Each grain has a chromosome comprised of its synthesis type, which cannot be

modified by mutation, and a list of parameters used to generate an instance of the

type. The environment defines factors relating to the survival of various types and

how individuals will respond to other grains. The events generated by this process

change in time as the evolutionary process unfolds.

2.2.2 Development of Melodic Material

Development of melodic material is a difficult prospect and its success de-

pends a great deal on the algorithm-designer’s success in defining a problem-space

in which genetic algorithms can be fruitfully applied. Ralley [Ral95] attempts to
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design an interactive genetic algorithm that will develop any melodic idea. It takes

a user-supplied melody and uses it to seed a population that is generated based

on its statistical properties. The hope is that this will allow the algorithm to be

relatively style-neutral. Unfortunately, this approach results in a population with

very little biodiversity; as a result, the user has difficulty making the subjective

fitness evaluation.

By constraining their domain, Horner and Goldberg [HG91] have more

success with their thematic bridging algorithm. It is designed specifically for

minimalist-style phase music. Rather than use a subjective fitness function, the

fitness function is based on the initial and target melodies and the amount of time

that the user would like to have pass between them.

Biles [Bil94] also focuses on a particular style, allowing the use of mutation

functions that are stylistically relevant. An interactive genetic algorithm, called

GenJam, is used to generate jazz solos based on a tune. Two populations are used

to construct the melody: a population of measures, each made up of eight eighth

notes in 4/4, and a population of phrases that determine how the measures will be

arranged. Biles describes the results as “competent ‘with some nice moments’ ”

but is clearly dissatisfied with the time-consuming nature of the training process.

Biles and Eign [BE95] attempted, with equivocal results, to address the fitness

bottleneck by designing a system that allows multiple users to work in parallel to

rate the fitness of members of the population.

Instrument Design

Mandelis and Husbands [MH03] use interactive genetic algorithms to de-

sign virtual musical instruments—that is, control mappings for hardware inter-

faces such as data-gloves. The population is seeded with hand designed map-

pings. Crossover operations mix parameter values and mutation operators ran-

domly change one or more parameter values. Additional individuals can be added

to the population in between generational cycles.
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2.2.3 Interactivity

Given current processor speeds, the use of conventional genetic algorithms

for interactive applications is still impractical if the desired output is the result of

some number of generations rather than the process itself. Biles [Bil98] attempts

to do something of the sort by extending his previous work (see §2.2.2) to work in

a real time situation in which the program trades four bars with a live musician.

Although the program clearly grew out of work with genetic algorithms, in this

instantiation there is a population of one that asexually reproduces, with no fitness

measure and liberal mutation, to produce one offspring in real-time. It is essentially

no longer a genetic algorithm; it is a process for directly deriving new material from

from a seed by a series of mutations.

Further work by Biles [Bil03] results in a successful interactive perfor-

mance system. Using a process similar to genetic programming, soloist agents are

evolved either ahead of time or during a concert with audience feedback. These

agents randomly select phrases from their phrase population to perform pieces. The

phrase population is made of operators that are applied to the measure popula-

tion. Mutation operators with musical meanings drastically accelerate the training

process.

Spector and Alpern [SA94] approach the same problem using genetic pro-

gramming. Because the evolved program can run in real time, the time-consuming

evolutionary process does not have to occur between the program’s input and

output, as it would with a conventional genetic algorithm.

Nemirovsky and Watson [NW03] propose an three-layered audio-visual

improvisation system. The bottom layer (input) maps and transforms input data

from the outside world. The middle layer (structural) is a recurrent neural network

that processes the input and sends output to the top (perceptual) layer. The

perceptual layer consists of media operators that take input from each other as

well as the structural layer. Each of the three layers can be independently evolved

or the entire system can be evolved as a single chromosome. The user can choose
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to use IGAs to evolve the system offline or during performance or choose to use a

fitness function that can be described in terms of similarity to or difference from

another designated network.

2.2.4 Compositional Environments

Designing compositional environments is an inherently more complex task

than those previously described, as it involves some combination of the above

elements. Some unified system for codifying the various musical elements must be

developed, along with appropriate forms of mutation. Furthermore, it should be

designed with the awareness that the environment will be appropriate only for a

certain subset of musical styles.

A simple environment, designed by Degazio [Deg97], uses genetic pro-

gramming to evolve MIDIFORTH processes that produce compositions. The fit-

ness function combines objective fitness functions, such as following species coun-

terpoint rules, harmonic correctness, or meeting particular statistical criteria, with

the subjective user choice of the interactive genetic algorithm. For each generation,

the first parent is chosen from a set of 3 individuals designated by the user; the

second parent is chosen from the entire population based on the objective fitness

function. This substantially decreases the fitness bottleneck while allowing the user

to direct the course of evolution. Although this seems stylistically neutral in that

the user can use statistical criteria rather than the style-specific fitness options, it

is still restricted to styles of music that can be produced with MIDI and can be

effectively defined by the statistics used by the system.

Thywissen [Thy96], [Thy97], [Thy99] tries to “define a comprehensive

framework for musical evolution.” This is clearly a futile process, as numerous

decisions contrary to this goal must be made in the design process (see §1.3).

The system uses genetic algorithms to evolve components of a composition such

as melody, rhythmic structure, harmony, instrumentation, and form. Genes are

mapped onto a grammar that has been supplied by the user either as a series of
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rules or through importing an existing composition as a MIDI file. A hierarchical

model separately evolves phrases and systems. A conventional genetic algorithm

evolves phrases—sequences of notes and chords with their associated rhythms and

dynamics. Systems are series of phrases evolved through genetic programming; the

possible operators are transpose, retrograde, invert, augment/dimmute, and grow.

Although this seems to be fairly neutral, in that a user has stylistic control over

the resulting composition, it is clear that this system applies only to the subset

of styles that deal centrally with melody, harmony, rhythm, and fixed forms—it is

inappropriate for styles that focus on timbre rather than pitch, have open forms,

or incorporate visual elements; it almost certainly can’t handle text-setting, and

musique concrete is out of the question.

The system designed by Manzolli, Moroni, et al. [MMZG99], [MMZG00]

does not attempt to be stylistically neutral but instead embraces the notion of an

algorithmic compositional system whose output, although guidable by the user,

has a distinctive characteristic that is directly related to its processes. The system

works in real time, sending output via MIDI; its rhythm is determined by the

length of the generational cycle, which can be altered by the user in real-time.

The population is made up of four-note chords, but unlike the harmonization

attempts above (see §2.1.2), it relies on physical theories of consonance for its

harmonic fitness function. Two other fitness functions are used in conjunction

with the harmonic fitness function: melodic and vocal-range. The melodic fitness

function is based on distance of notes from some tonal center or attractor; the

vocal-range fitness function verifies that the notes of the chord fall within voice-

ranges set by the composer. These two fitness functions can be set by the user in

real-time, allowing the output to be sculpted by the user.3 Although the user has

considerable leeway in personalizing the output, the sound of the algorithm will

always be heard in the rhythm (which comes directly from the generation length),

in the types of harmonies evolved (which come directly from the consonance model

3Although its designers identify the system as primarily compositional, which it is, this system might
well be considered as a successful implementation of an interactive performance system as well.
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used), and in the tendency to converge towards the melodic fitness function’s tonal

center (when it remains stationary for a sufficient length of time).

Dahlstedt [BD03] describes a system that is more stylistically neutral

than Thywissen’s, but his output is still in MIDI, which restricts him to genres

that can be described by MIDI. Instead of having a chromosome that sequentially

translates into musical phrases, he evolves a tree that represents structural re-

lationships. Nodes contain operators that either combine subtrees vertically into

chords or horizontally into melodies. Leafs can store pointers to higher nodes in the

hierarchy, allowing recursive self-reference. Individual trees reproduce asexually,

with mutations affecting amplitude, duration, and transposition. All generations

are stored and used to produce a single piece.

2.3 Applications for Particular Works

Unlike previous examples, the research presented here is not intended to

result in models or tools that can be used and expanded upon by future research,

but rather to create particular musical works that are generated by genetic algo-

rithms that have been specifically designed for a work or series of works. My own

investigations fall into this category and are described more thoroughly in chapter

III. These algorithms are almost always heavily modified from conventional ver-

sions of the algorithm, relying often on complicated environments and interactions

between individuals.

Waschka [Was99] describes a process used to produce a series of pieces.

The population is seeded by some initial musical material. Two strategies are em-

ployed to retain biodiversity. First, fitness is unrelated to an individual’s charac-

teristics; it is assigned randomly. Second, individuals can skip generations. Each

generation of individuals produced by the algorithm is heard in succession. Al-

though a great deal of the form is produced by the evolutionary process, the resul-

tant works are individual enough to merit the algorithm’s use to create a series of
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pieces rather than one because of the composer’s influence over the initial musical

material.

Brooks and Ross [BR96] describe a piece by Brooks in which the algo-

rithm is modified by giving creatures activity-states. Creatures randomly rest,

forage, or mate. A resting creature is silent, while a mating or foraging creature

produces music. A creature’s music is different for each activity-state and is derived

from the set of characteristic chords and melodic phrases that are defined by its

chromosome. Rather than each individual in the generation reproducing at once,

an individual will only mate if its mating cycle coöccurs with the mating cycle of

another individual in its generation. This causes the generations to overlap. This

results in significant textural differences, since each generation is mapped onto a

different instrumental voice.

Dahlstedt and Nordahl [DN01] describe not a musical work but a bio-

logical simulation4 with a distinctive musical byproduct. The genetic algorithm is

modified by giving each individual two genes and by replacing the fitness function

with a square lattice in which individuals and resources occupy space. The two

chromosomes are a sound chromosome, which is a list of the individual’s preferred

notes, and a procedural chromosome, which is a list of instructions defining the

individual’s actions in the world. One of these instructions is a sing instruction,

which causes the individual to produce a note from its sound chromosome. Sound

exists in a square and dies out over time. Creatures with more life points—these

are acquired by entering a square containing food—produce louder sounds than

creatures with fewer life points. Creatures with enough life points can mate, so

long as a nearby creature has recently heard a sound from its sound chromosome.

An individual can survive reproduction, but a portion of its life points is removed

to create the offspring. As the process unfolds, patterns occur resulting from the

layers of many individual movement and sound production patterns. These change

gradually as the makeup of the population changes.

4I might call it an installation, but they don’t.
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Berry and Dahlstedt [BD03] describe a more sophisticated audio-visual

version of the Dahlstedt/Nordahl simulation, by Dahlstedt, Berry, and Haw. The

square lattice with randomly-distributed food is replaced by a randomly produced

landscape containing food, music-producing trees, and geological features such as

hills, valleys, and lakes. The population is seeded with both randomly-generated

individuals and pre-evolved individuals (these serve to guarantee that at least some

individuals in the population know how to eat). Genotypes determine appearance,

physical behavior, and musical behavior. The physical behavior chromosome de-

scribes a neural network that processes information from the environment and uses

that information to determine movements in the environment and the base pitch

values. The musical behavior chromosome contains thirty-five sound-synthesis pa-

rameters, dynamic filters, and function generators that produce complex timbral

and melodic patterns. The fitness function is implicit, rather than explicit—to

reproduce, individuals must be able to find food and attract partners. To mate,

two creatures must be close enough to each other physically, have high enough

energy levels, and have similar enough musical behavior chromosomes.
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Framework

This chapter describes several methods for applying genetic algorithms

to time-domain waveforms. These methods cover virtual biology (how can time-

domain waveforms be treated as genetic critters that mate and reproduce?), virtual

ecology (what sort of worlds can these critters inhabit?), and representation (how

are these critters in their world represented as art?).

The primary motivation for this work is to develop algorithms that act

directly on digitized waveforms to create sound works whose local and global form

are products of the evolutionary process in a changing environment. I believe

that this process is capable of producing novel and interesting works and that the

process will be perceptible in these works.

3.1 Virtual Biology

3.1.1 Genetic Representation

As discussed in chapter II, the chosen representation strongly reflects the

biases1 of an algorithm’s designer. In this case, I have no desire to deal directly

with pitches, loudnesses, or rhythms, but rather to deal with concrete sounds. Most

of the algorithm variations proposed here use waveforms, read in from standard

1These can be both implicit assumptions and intentional applications.

30
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audio files, as chromosomes. The waveforms can either be left in the time domain

or be converted to the spectral domain.

A common misconception is that we can help a machine learning algo-

rithm by preprocessing sounds and choosing only a few features on which to run

the algorithm. However, machine learning algorithms should be able to use any

feature present in the waveform—even features we don’t know about and are there-

fore incapable of giving to the algorithm through preprocessing. Preprocessing can

make the algorithm faster, by reducing the information it has to deal with, but by

doing so we reduce its potential. For a real-time application of genetic algorithms

to waveforms, we have to concern ourselves with computation time. For this rea-

son, I propose some representations that use limited features instead of the entire

waveform. There is less directional scope for evolution, but it will still occur.

Chromosomes and Genes in the Time Domain

Using time-domain waveforms as chromosomes has the benefit of leaving

the waveform intact. Time domain waveforms can be mapped onto genes in two

ways: each sample can be treated as a gene or segments of waveform can be

treated as genes. Sometimes it is best to use different mappings for different parts

of the algorithm: one mapping for fitness and another for reproduction. Because

this representation is in the time domain, it doesn’t allow for generalizations of

features over time. That is, a waveform can share pitch, timbre, and amplitude

characteristics with another waveform but be judged completely different from that

waveform if the two waveforms differ greatly in length, while two very different

sounding waveforms of the same length may be judged more similar. Sometimes

it is desirable to have time be an important component of evolution: it allows the

evolution of rhythms. A spectral domain representation should be used to make

time a neutral parameter.

Treating individual samples2 as genes has the benefit of being compu-

2Samples are the smallest meaningful unit of a digital waveform. A sample represents the amplitude
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Figure 3.1: A time-domain chromosome’s genes can either be mapped onto the

segments between zero crossings (left) or the individual samples (right).

tationally easy; we don’t have to figure anything out to end up with a string of

genes (although the size of the chromosome leads to high computational overhead

in any case). There are two major drawbacks to this representation. First, mu-

tations applied to single samples will be unintelligible: they will only introduce

noise. Second, sexual recombination will almost certainly produce discontinuities

in the offspring waveform, which will be heard as clicks. We can deal with the first

issue by always applying mutation functions to perceptually significant chunks of

neighboring genes. This leaves us with both mutations and sexual combination

causing clicks in the offspring. This can be remedied by adding an offset to mod-

ified segments of waveform to eliminate discontinuities. Usually, I use a linear

function for the offset so that both the starting and ending points of the edited

genes line up with the adjacent unedited genes. The alternative, which is to keep

adding constants to the waveform, can result in severe DC3.

The segments of waveform between zero-crossings4 work well as genes.

of the waveform at a point in time. At the standard CD sampling rate, there are 44100 samples per
second.

3DC is direct current. When DC is added to a waveform, it centers at some non-zero amplitude rather
than zero. It won’t sound any different, but unpleasant sounding artifacts (clipping) result from allowing
the waveform to have a higher amplitude than the digital representation permits. The alternative, which
is to shrink the amplitude of the waveform to prevent this from happening, would make the sounds too
quiet to hear if there is too much DC.

4Zero crossings are the places where the waveform crosses the x-axis.
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Figure 3.2: A time-domain chromosome spliced at a zero crossing.

Figure 3.3: A time-domain chromosome spliced at a sample with an offset to

prevent clicking.
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This means that chromosomes will not have a fixed number of genes, even if all

waveforms have the same length: a low pitched portion of a chromosome will have

fewer genes than a high pitched portion of a chromosome. Offspring produced using

this representation are relatively free from artifacts and sounds retain far more of

their sonic identity than they do with the samples-as-genes representation.

These methods of treating genes for producing offspring have tangible

effects on the sound of their offspring. Treating instantaneous samples as genes

with offsets allows the algorithm to splice and alter the waveform at any point in the

gene. When zero crossings are treated as gene boundaries, there are substantially

fewer points for splicing and altering the waveform. On the one hand, the former

allows much more potential for modification. It is possible, however unlikely, that

a population evolving with this method could eventually produce an offspring that

matched some target waveform. On the other, the restriction of the zero-crossing

method will increase the likelihood that there will be recognizable chunks in the

offspring waveform.

If edits only occur on zero crossings, the shortest edit possible will be

some chunk of waveform that has some shape5, otherwise edits can be as short as

a sample. In the later situation, the shape of the resultant waveform is a succession

of offsets and not based on any contributing sound at all. The resultant sound is

rather like noisy gurgles. In the former, the edits can be affected by DC and

inaudibly low frequencies. This will lengthen or shorten genes, depending on the

interaction between the phase of the low frequency and the rest of the sound. I find

the aesthetic result to be preferable in the zero-crossing case, since the resultant

sounds are more closely related to the starting population.

I prefer to use the samples-as-genes representation for calculating fitness

and the segment-between-zero-crossings-as-genes representation for reproduction.

Fitness is easiest to calculate as a pure waveform (see §3.1.3) but offspring sound

far better, particularly after many generations of evolution, when all edits occur

5Zero crossing edits can be one sample long only if the portion of waveform is at the Nyquist frequency
or has DC offset such that only one sample protrudes through zero with no other frequencies.
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at zero crossings.

Chromosomes and Genes in the Spectral Domain

My proposal for a spectral domain genetic algorithm is theoretical. Its

implementation is one of the next steps in this research program. There are two

fundamental ways of representing the spectral domain: either use the spectral

analysis as-is or process the data further and use the results. There are many

ways in which information can be processed to make genes. I will not go into

the myriad of mapping options for processed data; I will instead focus on spectral

genetic representation that uses the unprocessed spectral analysis result.

Genes in the spectral domain are three dimensional rather than two di-

mensional: time, phase, and magnitude. Phase and magnitude can be converted to

frequency and amplitude, but this isn’t necessary. The values are acquired through

Fast Fourier Analysis (FFT). The FFT algorithm analyzes successive windows of

time. The size of the window in samples determines the frequency resolution. The

analysis of the window yields a series of bins of ascending frequency, each with a

phase and a magnitude. There’s a trade of between window size (temporal resolu-

tion) and frequency resolution. Fourier analysis is incapable of finding frequencies

whose wavelengths are longer than the window. However, with long windows,

temporal resolution is sacrificed. Other than this, most of the original waveform

can be reconstructed by an inverse FFT. Windows can overlap to varying degrees.

We can use different degrees of overlap for waveforms of different length to have

fixed-lenght chromosomes. This allows a fitness function using a spectral domain

chromosome to generalize fitness over different lengths of waveform.

Processed Genes

There are two reasons to process genes: focus and speed. By breaking

down the waveform into one or two features, an algorithm can be designed that

ignores other aspects of the sound and evolves along the designated dimensions.
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Figure 3.4: A chromosome in the spectral domain. The vertical access is frequency;

the horizontal access is time; the shading represents magnitude. .

Processed genes have the potential to be faster for fitness calculation than wave-

forms. They might have a handful of genes per millisecond instead of 44.1 genes,

which is the number of samples per millisecond with CD quality audio.

I can imagine artistic reasons for wanting to constrain the fitness function

to well-defined and well-understood dimensions. One might want to evolve one or

two easily perceived dimensions. One might also want to apply fitness function to

a large number of variables (for instance, all of the various components of timbre

that have been defined to date), but specify weights for each variable as an explicit

part of the fitness function rather than use the weights implicit in the unprocessed

waveform.

For real-time versions of the algorithm, it is desirable to process the wave-

form to produce simpler genes. This makes calculating fitness less computationally

intensive. We can choose to tie our chromosomes to time, with the same rhythmic

consequences as a time-domain representation. Or, we can sample time variably

and have fixed-length chromosomes and allow the algorithm to generalize across

time, as with a spectral-domain representation. Processed genes can be amplitude

envelope, pitch of partials, or or some combination thereof.

Using the results of processing instead of the waveform itself only saves
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us time under some circumstances. The computation involved in processing the

waveform and applying the fitness function on the simpler chromosome has to

be faster than applying the fitness function to the waveform itself. Otherwise,

the good of the simpler chromosome is cancelled out by the trouble of getting it.

An expensive process can be worth it if fitness will be calculated many times on

each processed chromosome. For instance, in a world where critters look for self-

similarity in a mate (see §3.1.3), every time an individual reproduces, it calculates

the fitness of all other critters. This means that if there are n critters in the

population, fitness functions are calculated n2 times instead of n times.

It might also be possible to preprocess waveforms and maintain tempo-

rally linked processed and unprocessed chromosomes. Given the temporal shuffling

that occurs during sexual reproduction and mutation, this method would almost

certainly gradually desynchronize. Experimentation is necessary, but it might be

possible to maintain good enough synchronization to allow evolution to continue for

the duration of a work. I would certainly try this before processing each waveform

if I wanted to experiment with a large number of intensive processes (see above

regarding timbre).

Other Information in Chromosomes

In the simplest worlds, critters are only sound. In more complex worlds,

as those described in §3.2.2, critters have an additional chromosome. The chro-

mosome contains information on location, movement variables, and mating range.

Location signifies an individual’s location in the world. Movement variables encode

an individual’s possible movements. Mating range specifies the maximum distance

from the individual that another individual can be in order to be considered a

potential mate. For a ring world, I represent location as a single gene: degrees.

Mating range is also represented with a gene for degrees. For a plane, I would need

two genes: either x and y coordinates or angle and radius. My choice of planar

representation would depend on how I wanted to compute movement.
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Figure 3.5: Examples of chromosomes made from processed genes: amplitude

envelope (top); partials (bottom).

In my ring world, movement is a drunken walk around the ring. There

are genes for maximum movement (in degrees) in either direction. There are two

genes rather than one, since it allows the individual to prefer one direction over

the other. In extreme cases, it is possible to have individuals who can’t move at

all, or who only move in one direction. There are also genes that give a range

of time in which movement occurs, and a gene with the probability of resting for

some amount of time so that the resulting sound is not in constant motion.

Depending on the complexity of the world, this chromosome could encode

any number of relevant variables. Genes could encode sex, energy, place in the food

chain, etc. Without experimentation, it’s not clear how this would contribute to

sound. But, it would definitely open up more possibilities for modeling social

behaviors that might contribute to an implicit fitness function (see §3.1.3).

3.1.2 Time

In a conventional genetic algorithm, how chromosomes exist in time is

not an issue. Whether or not chromosomes are fixed length (which is standard) or
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Figure 3.6: Critters with other information in their chromosomes: each critter has

a mating range (dotted line) and a range of possible movement (arrows).

variable length, new generations replace old generations instantaneously. Because

my goal is to have the musical artifacts produced by the algorithm be the evolution

taking place rather than being the product of generations of evolution, time is an

important aesthetic factor. I think of time differently in versions of the algorithm

intended to produce musical works and versions of the algorithm intended for sound

installations.

For compositional use, the length of the chromosome is it’s lifespan. I’ve

experimented with both fixed-length and variable-length chromosomes. Fixed-

length chromosomes have discrete generations whose members all begin and end

simultaneously (figure 3.7). Variable-length chromosomes have arbitrary lengths

that lie within some fixed upper bound (figure 3.8). This allows individuals from

different generations to overlap, since they are replaced independently of the rest

of the population.

With this treatment of time, the primary difference between fixed-length
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Figure 3.7: Critters with fixed-length chromosomes all have the same lifespan,

regardless of waveform length.

and variable-length chromosomes is rhythmic. Pieces made using fixed-length

chromosomes have an inherent rhythm that is dictated by chromosome length.

Variable-length chromosomes tend to have an emergent rhythmic quality as well,

but the rhythms change over the course of the piece—sometimes gradually, some-

times quite dramatically.

For sound installations, I have made a real-time version of the algorithm.

Genetic algorithms, especially with the long chromosomes that result from using

real-world recorded sounds, are rather computationally intensive. Therefore, it is

impractical to treat time in the same way as I treat it for tape pieces. Sounds

cannot all play and reproduce at once. Furthermore, it might be desirable to have

a sparser soundscape than the soundscape that emerges from the tape version of

the algorithm, which plays all sounds in the population at all times.

Critters are played periodically. The frequency at which they are played

is based on their fitness, which is calculated when they are produced, rather than

recalculating it each time they attempt to mate.6 Fit individuals are played fre-

6This is relevant when critters evolve in changing, rather than static, environments (see §3.2.1). As
faster computers become available, there is no computational reason that fitness couldn’t be calculated
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Figure 3.8: Critters with arbitrary-length chromosomes overlap in lifespan. Their

waveform length is their lifespan.

Figure 3.9: Critters in real-time play periodically but their lifespan is unrelated to

their length. (Dashed boxes indicate the first playing of each sound.)
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quently; unfit individuals are played rarely.

Since reproduction is computationally intensive, only one individual re-

produces at a time. Each time an individual plays, it is added to the reproduction

cue. When an individual reproduces, all other instances of that individual are

removed from the cue. This guarantees that the offspring that occupies the indi-

vidual’s place in the population will be played at least once before it reproduces.

The frequency of playback and reproduction are multiplied by variables. This gives

me control over the relative sonic density of an installation.

3.1.3 Fitness

Explicit Fitness

The fitness function directs the course of evolution. It influences which

critters reproduce successfully and ultimately determines what genetic material

remains in the population as it converges. Fitness in genetic algorithms is usually

explicit: that is, it is defined by a fitness function. In more complex ecological

systems, there are other factors that result in implicit fitness.

A fitness function maps members of the population onto numbers repre-

senting fitness. The more fit a critter is, the more likely it is to reproduce. There

are many ways we could calculate fitness for waveforms—the choice is primarily

aesthetic. My goal is to present the process of evolution, not evolve some ideal

critter or evolve a critter that meets certain criteria. In the absence of a set of

criteria I’d like my critters to evolve towards, I have chosen a model that evolves

based on comparison to a waveform. This comparison can be the correlation be-

tween chromosomes or the sum of the difference between corresponding genes over

the length of the chromosome.

each time an individual reproduces. Although, general consensus from the nature/nurture debate seems
to be that early development plays a substantial role in an individual’s fitness, and that untapped genetic
potential isn’t readily activated by a better environment later in life.
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Waveforms as Fitness Functions

Any waveform can be used in the fitness function, but the sort of wave-

form chosen will cause different behaviors in the algorithm. We can choose an

arbitrary waveform, and the entire population will evolve towards that waveform.

Depending on the representation we choose for the chromosomes (see §3.1.4), dif-

ferent characteristics from the target waveform might manifest in the population.

The fitness function does not need to be restricted to a single waveform.

As discussed in §3.2.2, the function can change in time, in space, or by individual.

To use real-world sounds for evolution, I place one or more mics in the room and

map them onto the virtual space. An individual’s fitness is calculated by taking

the sample of real-world sound that begins when the sound is created and is the

length of the sound. With real-world fitness functions, the audience can impact

the course of evolution. Also, if the mics are placed in the vicinity of the speakers,

there will be a feedback situation in which sounds of the population itself become

part of the environment.

The fitness function doesn’t have to be explicitly tied to space. Individu-

als can carry a chromosome that represents a fitness function that will be applied

to potential mates: a personalized, social fitness, rather than an environmental

fitness. A simpler application of this principle is to have critters look for self-

similarity in a mate by applying themselves as a fitness function. This leads to

more biodiversity, since no sound is inherently unfit. It can also lead to a sort of

speciation, as sounds inbreed primarily with similar sounds. Often, I apply both

an environmental fitness function and a self-similarity function by calculating the

two fitnesses, applying weights to them so that one might have a stronger affect

than the other, and adding them together.

Other Fitness Functions

Although I’ve chosen to use sounds as fitness functions in my projects,

the possibility exists to use other things. Just as any sonic features can be used
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as genes (see §3.1.1), they can also be used as fitness functions. Fitness functions

can incorporate sonic features—tied to time or not.

Biodiversity

Sometimes the fitness function incorporates a biodiversity factor in ad-

dition to the measure of fitness. Some number between 0 and 1 is multiplied to

a critter’s fitness each time it reproduces. This makes it less likely for a few fit

individuals to dominate the next generation.

Implicit Fitness

Implicit fitness is based on ecology. It includes any factor that might

affect the ability of an individual to reproduce. For instance, a critter with a very

small range in which it’s willing to look for a mate might die without reproducing,

regardless of its calculated fitness. When this happens, it’s slot in the population

will be taken up by the offspring of other individuals. Life-span is another con-

tributor to implicit fitness. An individual that lives longer is more likely to be

chosen as another critter’s mate than a shorter individual with the same explicit

fitness.7 A critter with only one or two mating options will settle for an unfit crit-

ter that it probably wouldn’t have matted with in a more densely populated area.

More complex ecologies give rise to more factors that contribute to implicit fitness.

An appropriately designed ecology doesn’t require an explicit fitness function for

7Although it might seem counterintuitive for unfit individuals to have longer lifespans than fit individ-
uals, this has desirable effects on both evolution and perception. Evolutionarily, this adds a mechanism
to increase biodiversity in the population. Because unfit individuals are given more opportunities to
compete to mate, they have an implicit fitness increase that isn’t represented by the explicitly calculated
fitness function. Perceptually, fit sounds will be heard frequently even though fit individuals may be re-
placed by offspring often. Although the exact character of the offspring will differ fro the parents, there
will be a familial resemblance between the fit individuals and their offspring. The frequently occurring
fit sounds will be seen as instances of a single type despite individual differences. Effectively, the fit
type will be heard to play extremely frequently. Think of a field of clover—there are lots of different
plants but we see them as a single mass of clover that occupies a large part of our visual field. The unfit
sounds will occur rarely and will sound novel relative to the backdrop of fit sounds. Think of animals
that like clover. You’ll see some rabbits, bees, and butterflies. There are few enough of them relative to
the cloverThat is, unless you lack coyotes to eat the rabbits, in which case rabbits become so fit that you
see a field of rabbits on clover and individual rabbits lose significance.that you can tell individual kinds
from the constant backdrop of clover.
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Figure 3.10: Implicit fitness can result from length. The starred waveform on the

left is shorter than the starred waveform on the right. The heavy lines mark the

beginning of waveforms that start while the starred waveforms are playing. The

waveform on the left has five opportunities to reproduce, while the waveform on

the right has seven.

evolution to occur.

3.1.4 Reproduction

Reproduction is the process by which a critter is replaced by a new critter.

This section deals with the biological factors in reproduction. The details of who

reproduces and when are dictated by the fitness (§3.1.3) and the ecological of the

world in which reproduction occurs (§3.2.1).

Critters can reproduce either sexually or asexually. With asexual repro-

duction, new critters are the offspring of a single parent. Sexual reproduction is

used more often. Critters are the offspring of two parents. Sexual reproduction

has the potential to produce offspring that have beneficial aspects of both parents.
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Figure 3.11: Implicit fitness can result from proximity of other critters. The small

circles represent all the critters in the population. Consider the two outlined

critters. The dashed lines represent the ranges over which they’ll seek mates.

The one on the left has four potential mates; the one on the right has only one.

Assuming all critters have the same fitness, the potential mates on the left will

have a one in four chance of being chosen as mates, while the potential mate on

the right will be the guaranteed to be chosen as a mate.
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It also has the potential to produce offspring with the least beneficial aspect of

both parents, but these offspring will be unfit and will have a reduced chance of

propagating. Evolution has the potential to occur much more quickly.

Sexual reproduction splices the first part of one parent’s chromosome to

the second part of the other parent’s chromosome. Splicing occurs at the crossover

point. In critters with multiple chromosomes, the process is repeated for each

chromosome. Sexual reproduction manifests differently in the time domain and

the spectral domain, since the time domain has one-dimensional chromosomes and

the spectral domain has two-dimensional chromosomes.

New material can only be introduced by mutation. Mutation slightly

alters a few genes of the offspring. Mutation probabilities are usually very low.

Although mutations are the source of novelty, the underlying assumption is that

the gene pool already contains good genes and that mutation is only needed to

nudge the population out of local fitness maxima and to add biodiversity to the

gene pool as it converges.

Asexual Reproduction

Asexual reproduction is the simplest form of reproduction. An individual

simply is replaced by another version of a critter that has gone through the process

of mutation (§3.1.4). Since the probability of mutation is usually low, there’s no

guarantee that the offspring will differ from the parent. Evolution only occurs

if individuals are replaced by a random member of the population, with each

individual’s probability of taking a given slot in the population based on fitness.

In this case, the population will be changed to have many copies of the fittest

critters, some of which will have different mutations.

Time Domain Sexual Combination

Sexual combination is simply taking the first part of one parent’s wave-

form and the last part of the other parent’s waveform and splicing them together.
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a) b)

Figure 3.12: Asexual reproduction in the time domain. Note that a) parent and

b) offspring are the same.

The crossover point is where the cutting and splicing occurs. The crossover point

can either be fixed, usually at the half way point, or it can be random. In order

to preserve length with fixed-length chromosomes, the random crossover point is

the same for both parents.

What all this means varies with representation. We can calculate cross-

over point either with a samples-as-genes representation or with a waveform-

between-zero-crossings-as-genes representation. I usually use samples to calculate

the crossover point, then nudge the crossover point to the next zero crossing. With

variable-length waveforms, the half-way point isn’t necessarily the same for each

parent. The algorithm can either be set up to take half of each parent or to take

half of one parent and the same amount of the other parent. In the former case, this

results in a waveform that averages the length of the two parents. Eventually the

population will converge to a fixed length. In the later case, existing lengths can

propagate, but new durations can never be introduced through crossover. There

will be slight deviations in time from moving the crossover point to a zero crossing,

but these will almost always be imperceptible.

With random crossover points and variable-length chromosomes, a differ-

ent crossover point can be chosen for each parent. The resulting chromosome can

be arbitrarily short, or potentially as long as the two parents spliced end to end.

Musically, this results in much more rhythmic flexibility.
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a)

b)

c)

d)

e)

Figure 3.13: Sexual reproduction in the time domain with a fixed crossover point.

a) The halfway point is designated by a dotted line. b) The crossover point is

nudged to make edits occur at zero crossings. c) The beginning of one waveform

and the end of the other are taken. d) Offspring.
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a)

b)

c)

d)

Figure 3.14: Sexual reproduction in the time domain with a random crossover

point. a) The randomly selected crossover points are designated by a dotted line.

b) The crossover point is nudged to make edits occur at zero crossings. c) The

beginning of one waveform and the end of the other are taken. d) Offspring.



51

Time Domain Mutation

Mutation allows changes to be introduced into the population. This in-

troduces genetic material that will allow the population to reach a higher level

of fitness than it could using only the genetic material available within the initial

population. Some mutations are based on common gene transcription errors: var-

ious splicings of chromosome segments. Chromosome segments can be duplicated,

dropped, swapped, rotated, or reversed. Each mutation has it’s own characteristic

sound, but the splice itself has the same sonic quality as the sexual reproduction

edit. Other mutations change the shape of the waveform: amplify, exponenti-

ate, change length. They introduce change with a gradual quality that contrasts

musically with the abrupt changes that come from splicing.

Duplicate. A segment of neighboring genes can be duplicated some random

number of times (figure 3.15). Duplication preserves the sound of the mutated

waveform, but it changes the sound of the waveform more dramatically than the

other splicing mutations. If the mutation affects very short segments of waveform,

it can introduce pitch, even to a waveform that consists of only white noise. If the

mutation affects longer segments of waveform, it is perceived as rhythmic looping.

For fixed-length chromosomes, the end of the waveform is truncated.

Drop. A segment of neighboring genes can be dropped from any point in the

waveform (figure 3.16). This always shortens the waveform. For fixed-length chro-

mosomes, the end of the waveform is filled in with silence.

Swap and Rotate. Two segments of waveform can be swapped or rotated(figure

3.17). These are computationally the same, but conceptually different. Swapping

takes two neighboring, equal-lengthed chunks of waveform and swaps them. Ro-

tating cuts one chunk of wave form and pastes it someplace else in the waveform,

sliding the rest of the waveform into its position.
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a)

b)

c)

Figure 3.15: a) Offspring before duplication. The portion of the chromosome

selected for mutation is delineated by dotted lines. b) Offspring after mutation in

which selected genes have been duplicated. c) Offspring chromosome truncated for

fixed-length case.

a)

b)

Figure 3.16: a) Offspring before dropping. The portion of the chromosome selected

for mutation is delineated by dotted lines. b) Offspring after mutation in which

selected genes have been dropped. This mutation type is not used in the fixed-

length chromosome case.
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a)

b)

Figure 3.17: a) Offspring before swapping/rotating. The portion of the chro-

mosome selected for mutation is delineated by dotted lines. b) Offspring after

mutation in which selected neighboring genes have been swapped.

Reverse. A segment of waveform can be reversed (figure 3.18). It stays in the

same place, but is played backwards. For very short chunks of waveform, there

will be little perceptible change in sonic quality, but the fitness of the waveform

will almost always slightly change. For long chunks of waveform, the quality of

backwards playing will be perceptible.

Amplify. A segment of waveform can be amplified or attenuated (figure 3.19). If

there is an unchanging environment, over time, amplitude modifications can sculpt

the population to match the amplitude envelope of the target environment.

Exponentiate. A segment of waveform can be raised to a power (figure 3.20).

This is the most distorting of the mutations. I usually give it a much lower prob-

ability than the other mutations, it has a distinctive sound.

Change Length. A segment of waveform can be lengthened or shortened (figure

3.21). This both changes both the length of the segment and its pitch.
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a)

b)

Figure 3.18: a) Offspring before reversal. The portion of the chromosome selected

for mutation is delineated by dotted lines. b) Offspring after mutation in which

selected genes have been reversed.

Spectral Domain Sexual Combination

Sexual Combination in the spectral domain will introduce artifacts. There

is a particular sound to spectral domain processing. Reproduction in the spectral

domain should only be used if the intention is to evolve a population of sounds

that is increasingly overtaken by these artifacts.

Spectral domain chromosomes are three dimensional, and sexual combi-

nation can occur on any of the three dimensions. Time windows can be treated

as the primary axis of the chromosome, with the first part of one parent and the

second part of another parent combined. The result would very similar to the

reproduction in the time-domain waveform. Frequency can be treated as the pri-

mary axis, taking the high bins from one parent and the low bins from the other.

Or, the spectral information can be treated as the primary axis, taking the phase

from one parent and the magnitude from the other parent.

Spectral Domain Mutation

There are a myriad of mutation options in the spectral domain. All of

them will introduce artifacts. The spectral domain can borrow mutations from the
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a)

b)

c)

d)

Figure 3.19: a) Offspring before amplification. The portion of the chromosome

selected for mutation is delineated by dotted lines. b) Offspring after mutation

in which selected genes have been amplified. c) Offspring before mutation. The

portion of the chromosome selected for mutation is delineated by dotted lines. d)

Offspring after mutation in which selected genes have been attenuated.
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b)

a)

Figure 3.20: a) Offspring before exponentiation. The portion of the chromosome

selected for mutation is delineated by dotted lines. b) Offspring after the amplitude

selected genes has been raised to a power.

a)

b)

c)

Figure 3.21: a) Offspring before changing length. The portion of the chromosome

selected for mutation is delineated by dotted lines. b) Offspring after mutation

in which selected genes have been resampled by a random amount. c) Offspring

chromosome truncated for fixed-length case.
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time domain; the same mutations can apply in the frequency domain. Chunks of

spectral data can be shifted in time or frequency. Phase and frequency information

can be swapped. Neighboring bins can be flipped in frequency so that the highest

frequency becomes the lowest and vice versa. Etc.

3.2 Virtual Ecology

Virtual ecology refers to the worlds the sonic critters inhabit. In a con-

ventional genetic algorithm, the population is fixed in size, generations are discrete,

and the world is defined solely by the fitness function. All critters in the genera-

tion reproduce and are replaced by other critters at the same time. All critters are

assumed to occupy a single point that has a fixed fitness function. Worlds don’t

have to be defined so simply. Generations don’t have to be discrete. Critters can

have different lifespans; generations can overlap. There doesn’t have to be a single

fitness function for the whole world. Fitness functions can vary by both location

and time.

3.2.1 Population

Lifespan

In a conventional genetic algorithm, the population has a constant size

and generations are discrete. In the real world, population size varies and and, for

many species, generations overlap. If we are to have non-discrete generations, we

need to have some notion of lifespan. Individuals need some reason to live for some

amount of time and then die. There are several possible options for determining

lifespan. Lifespan can be genetically determined, environmentally determined, or

some combination of the two. A critter whose lifespan is the length of it’s soundfile

has a genetically determined lifespan. We could design a world in which critters

die because of some interaction with the environment, with no regard to genetics.

Or we could let lifespan be determined by explicit fitness, the interaction between
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genetics and the environment. These issues are discussed further in §3.1.2 and

§3.1.3.

Fixed vs. Variable Population Size

The computer’s memory is a limiting factor: there is a fixed maximum

size to any population. A world’s population size can either be fixed or variable.

If the population size is fixed, one individual must die for another individual to be

born. Otherwise, this is only an issue if the population reaches its maximum size.

In future work, I would like to explore variable population size. If the

population size is allowed to vary, something has to determine lifespan and some-

thing must determine how often individuals reproduce. We can eliminate fitness

functions entirely and design reproduction pressures in the world itself. Individuals

can look for particular features in a mate. I have experimented with self-similarity,

but there’s no reason individuals can’t have another chromosome that represents

the fitness function that defines their desired mate (see §3.1.3). The situation in

the world itself can influence lifespan. A predation model would accomplish this.

Features of the sound place individual sounds somewhere in the food chain, and

some notion of energy could allow reproduction without death for efficient preda-

tors, while others might reproduce fewer times. An attractive feature of variable

population size is the potential for unstable populations. There is no guarantee of

equilibrium: overactive predators can wipe out their food supply and starve. A

piece produced this way can have a natural ending instead of an arbitrary length.

Who Reproduces?

With a fixed-sized population, the algorithm must decide who gets to be

a parent. It’s not enough to have a fitness function; it has to be used. When an

individual dies, the fitness function can go to work twice, picking two parents whose

offspring will fill the individual’s place, or it can go to work once, finding a mate

for the dying individual. In the former case, fitter individuals will have greater
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presence in the next generation. In the later case, biodiversity is increased because

even the least fit individuals will reproduce at least once—fitter individuals will be

chosen as mates. The former will cause the population of sounds to change more

rapidly than the later.

3.2.2 Worlds

Although genetic algorithms are designed to explore large-dimensional

spaces, we can think of them as functioning in a metaphorical world with some di-

mensionality. Classical genetic algorithms exist in an unchanging, zero-dimensional

(single-point) world: there is only one environment, which is defined by a fitness

function, and it doesn’t change as a function of time. The real world isn’t like that.

We exist on a rough sphere. There are many biomes, and instances of the same

biome are physically separated (hence the dearth of penguins in the arctic). We

have a diversity of climates, sub-climates, and micro-climates. We have physical

barriers that can be crossed by some species and not by others (neighboring bod-

ies of water can share the same population of frogs, but their fish populations are

isolated—unless a flood connects them temporarily.). We have seasons and a much

slower cycle of global cooling and warming. We have rare sudden events that can

drastically change the entire environment (volcanos, meteors), and sudden events

that drastically impact some subset of species in an area that alter the micro-

climate (forest fires can create meadows by eliminating trees) or otherwise affect

implicit fitness (pollution can cause algae blooms that drastically reduce oxygen

in affected waters).

Since I’m interested in the artistic results of the process and not in using

genetic algorithms to solve some problem, different worlds are an attractive way to

affect the overall process and produce different sorts of artistic works. Changing

environments increase the possibility for musical surprises. Different worlds pro-

duce different large-scale forms. There are two fundamental ways in which a world

can be altered: its shape (dimensionality and topology) and its changeability.
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Dimensionality and Topology

A world can have any dimensionality the designer feels is worth imple-

menting. Naturally, practical considerations have a huge impact on what one

is willing to program. Since we’re dealing with sounds, speakers and the space

in which they’re installed are the primary constraining features. My first experi-

ments treated each speaker as an island. Critters had some probability of migrating

between islands, but they were otherwise separate. Each speaker had its own en-

vironment that did not interact in any way with environments of other speakers.

Finite but unbounded one-dimensional spaces allow environments and critters to

exist on a continuum. I have implemented a ring world which can be mapped onto

any speaker setup. One can imagine other one-dimensional topologies, such as a

line world between two speakers, or multiple rings in neighboring rooms that are

interconnected at the doors. Although it is hard to spatialize perceptibly with a

standard speaker setup, one could imagine mapping critters onto a plane projected

onto a room8, or (with appropriately placed speakers) a sphere. But, two and three

dimensional worlds have not yet been practical for one of my projects.

My ring-world maps a ring onto some number of mics and speakers. Each

critter has an additional chromosome that contains it’s location (in degrees), a

distance in which it’s willing to look for a mate (also in degrees), and variables

that define the motion it makes over it’s lifetime. Critters move with a drunken

walk that is defined by an amount of time between choosing a type of movement,

a probability of not moving at all (this is queried each time it looks for a new

movement type), a range of degrees it might move up, and a range of degrees it

might move down. The up and down ranges are different, so critters might move

with different speeds and directional tendencies. Since the world is continuous but

the mics are discrete, the fitness functions from each mic are spatially interpolated

so that a slightly different fitness function is applied at each point in space. When

8This would be perceptually relevant if there was a grid of speakers the plane was mapped onto instead
of a ring around the room. With the standard ring setup, the connectedness would affect evolution but
the sounds would still sound like they came from the sides of the room.
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a) b) c) d) e)

Figure 3.22: Ring worlds can be mapped onto multiple speaker configurations.

a) mono b) stereo c) quad d) and so on, as many speakers as you like e) a 3-D

space.

it comes time for an individual to mate, it will look for an individual within it’s

genetically encoded mating distance, rather than examine the entire population.

Changing Environments

I’ve explored several possibilities for changing environments. Changes can

be gradual or sudden. Fitness functions can incorporate self-similarity or sounds

from the real world. Fitness functions and types of change can be algorithmically

combined to create more complex environments. One can also imagine algorith-

mically changing the world’s topology or dimensionality, although I’ve not yet

encountered an artistic situation that called for me to implement this.

I usually combine gradual and sudden environmental changes with a sin-

gle algorithm. Gradual change can be implemented by algorithmically choosing

two fitness functions. The algorithm starts with one function, then gradually in-

terpolates it with the second fitness function. When only the second is left, the

algorithm chooses a third fitness function and the process continues. The algo-

rithm has variables that allow me to set a length of interpolation and an amount

of deviation to that duration (since real-world change isn’t like clockwork). Sudden

change instantly replaces the existing function with another. There is some ran-

dom amount of time between sudden changes. As with the interpolation duration,

this time is represented by a constant and a range of deviation. Sudden changes

pick two new fitness functions to interpolate between. Usually I choose deviations
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a)

b)

c)

d)

e)

f)

Figure 3.23: Worlds can have different geometries. a) the world of a conventional

genetic algorithm is a single point. b) a world with multiple islands. c) a continu-

ous, linear world. d) a ring world. e) a three-dimensional world. f) multiple rings

worlds.

such that sudden changes happen with more variability than gradual changes.



IV

Sample Implementations

This chapter provides some sample implementations of the framework

described in chapter III. Most of the material from chapter III is presented again,

but in a more formalized format: flow charts for specific applications with prose

explanations.

The first implementation is a simple algorithm for evolving fixed-length

chromosomes. This is the algorithm whose results will be presented in §5.1. The

other implementations expand on this basic algorithm. The second uses variable-

length chromosomes and a world with multiple, changing, island environments,

similar1 to the one used to produce the tape pieces in §5.2. The third evolves

variable-length chromosomes in a ring world and is similar to the real-time algo-

rithm in §5.2.4. For clarity, these implementations are somewhat less complicated

than the versions I’ve used for compositions.

1The algorithm is conceptually the same, but for the purpose of explanation, efficiency has been
sacrificed for clarity.
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Figure 4.1: Evolving fixed-length, time-domain waveforms in a single, unchanging

environment

4.1 A Simple Algorithm for Evolving Fixed Length, Time

Domain Waveforms in a Single, Unchanging Environ-

ment

4.1.1 The main program

The main program (figure 4.1) initializes the algorithm (1) and evolves the

population for G generations (2). A generation of evolution consists of calculating

the fitness for all individuals in the population (3), writing a generation to output

(4), then producing the next generation (5), then copying the offspring onto the
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parents (6).

4.1.2 Initialization

The initialization routine (figure 4.2) gets initialization parameters from

the user (1) then lays the groundwork for evolution. The user has a great deal of

control over the algorithm. The user chooses population files and an environment

file—these are .wav files. The user chooses population size (POP), number of

samples per generation (SAMP), normalization amplitude (N), number of gen-

erations of evolution (G), biodiversity modifier (B), probability of mutation (P),

range for number of genes mutated (Smin–Smax), range for degree of mutation

(Dmin–Dmax), and whether or not the algorithm uses a fixed or random crossover
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point. For each mutation-related variable, there is a different analogous variable

for each mutation. We store all of this information in an input file so we will not

have to manually enter it every time. There are multiple instances of each of the

starred variables (P, Smin, Smax, Dmin, and Dmax), associated with the differ-

ent mutation types—obviously each variable has a different name in the program,

but here we will refer to them more generally here to conserve space.

Once the user defined variables have been read in, the program reads

in the environment waveform (2). Since the environment might be shorter than

SAMP, we fill the rest of the chromosome with silence. We also want to normalize

the environment so that it and the population have the same peak amplitude (2c).

Then, we need to initialize the population (3). Finally, since we’ll need to know it

every time we calculate fitness, we find the magnitude of the environment

(4).

We make several assumptions here about the data. First, we assume that

the population files and the environment files are no longer than SAMP samples

long. Second, we assume that the user has preprocessed the files to make sure they

start and stop at zero. If the user fails to supply appropriate files, there will be

discontinuities in the output.

4.1.3 Calculate Population’s Fitness

We calculate the fitness of each of the pop individuals to create an array

fitness. We then normalize the array so its values can be used as probabilities.

For example, if we start with 5 individuals, each with a fitness of 0.5, we will

end up with 5 individuals, each with a fitness of 0.2.

Calculate Individual Fitness

Our fitness function treats chromosomes and the environment as SAMP-

dimensional vectors and finds the cosine of the angle between the chromosome and

the environment. This will give us higher numbers for more similar waveforms.
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First, we find the dot product of the individual and the environment. Then, we

use the same function as we used when initializing the environment to find the

magnitude of the individual waveform. Finally, we divide the dot product

of the individual and the environment by the magnitude of the individual

times the magnitude of the environment.

4.1.4 Write Output

After we’ve calculated each generation, we mix all of the individual wave-

forms together and append them to our output file we loop through each individual

and add its samples times its fitness to the output. Since we have mutations

that can change amplitude, we need to make sure our output doesn’t clip. Finally,

we write the output.

Prevent Clipping

Since we’re going to add every member of the population together on

output, we need to make sure it doesn’t clip (exceed an amplitude of 1) when we

write it to a waveform.

4.1.5 Produce Next Generation

To reproduce (figure 4.3), for each offspring (1), we select parents (2),

splice the first part of one parent to the second part of the other parent (3), then

apply mutations to the offspring (4). Once the entire next generation has been

generated, we move the offspring to the population slots so they can be parents

for the next generation.

Select Parents

Both parents are selected by the same method, which is based on fitness.

We don’t want to select the same parent twice; the algorithm selects two distinct

parents.
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Figure 4.3: Reproduction
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Select Individual Parent

Select an individual parent pseudorandomly out of the population with

each individual’s probability proportional to its fitness. To avoid using the same

parent twice, the second parent is redrawn as necessary so that it is not the same

as the first one.

4.1.6 Splice Parents

Sexual reproduction is essentially splicing the first part of one parent

with the second part of the other. First, we check whether the user has specified

a fixed or a random crossover point. If the crossover point is random, we

set it to a random number between 0 and 1; otherwise, we set it to 0.5. Then,

we convert the crossover point from a proportion of the chromosome to the

actual number of samples by multiplying it by the number of samples. We do not

want to splice where it will create a discontinuity in the resultant waveform, so we

move the crossover point for the first parent to the next zero crossing and the

crossover point for the second parent to the previous zero crossing. Then, we

make sure our offspring won’t exceed our chromosome length. If it would, we move

the second crossover point back to the previous zero crossing and check the

resultant length again. We continue this process until the offspring chromosome

will be an appropriate length. Then, we copy the first parent from its start up

through its crossover point and the second parent from its crossover point

to its end. Finally, if the offspring is too short, we fill the chromosome with silence.

4.1.7 Mutate Offspring

To mutate the offspring we step through each type of mutation and check

whether or not a random number between 0 and 1 is less than the mutation

probability. If it is, we apply the mutation; otherwise, we don’t.
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Find Segment to Mutate

For each mutation, the region the mutation applies to is chosen as follows.

We set the beginning point of the mutation to a random integer between 0 and

the difference between the chromosome length and the maximum mutation

length for that mutation. Then, we move the beginning point to the next zero

crossing. We set the end of the mutation to the mutation startpoint plus

the mutation length—a random number between that mutation’s minimum

mutation length and maximum mutation length.

4.1.8 Overwriting Duplication Mutation

We have fixed-length chromosomes, so we want to use a duplication mu-

tation that overwrites samples as it duplicates rather than one that lengthens the

entire chromosome. First, we find the region of the chromosome to which we’ll

apply the mutation Then, we set the number of duplications to a random in-

teger between the minimum and maximum number of possible duplications.

Then, we copy the portion of chromosome to be mutated into a buffer. Then, we

loop through each duplication, copying the buffer into the next segment of chro-

mosome. Once we’re done duplicating, we need to find the next zero crossing

in the waveform after the duplicated segments. Starting at that zero crossing, we

copy the rest of the waveform. Finally, we fill the end of the chromosome with

zeros to avoid having a discontinuity at the end of the chromosome.

4.1.9 Swap Mutation

The swap mutation swaps two segments of chromosome, so we select two

segments of chromosome for mutation. We make sure the two segments do not

overlap; if they do, we move the endpoint of the first segment so it maches the

startpoint of the second segment.

Then, we fill three buffers with our two designated segments and any

samples in between them. We copy the first buffer back into the chromosome so
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that it ends where the second segment ended. We copy the second buffer starting

where the first samples was copied from. Finally, we copy the third buffer between

the two.

4.1.10 Reversal Mutation

To reverse a portion of the chromosome, we start by selecting a segment

of chromosome. The segment is copied into a buffer. Finally, we copy it into the

chromosome backwards.

4.1.11 Amplify Mutation

To amplify, we choose a segment of chromosome to mutate, then select an

amplifier by choosing a random number between the minimum and maximum

possible amplifications. Finally, we loop through the affected samples, multiplying

the samples by the amplifier.

4.1.12 Exponentiate Mutation

Exponentiate works the same as amplification, except that instead of

multiplying the samples by some constant, we raise the samples to a power.

4.2 An Algorithm for Evolving Variable Length, Time Do-

main Waveforms in a World With Multiple, Changing,

Island Environments

The variable-length chromosome algorithm is based on the fixed-length

algorithm (§4.1). It has many of the same building blocks, but changed slightly to

deal with time (which we had been able to ignore in the fixed-length algorithm).

There are several new mutation functions that take advantage of variable-length

chromosomes (§4.2.5–4.2.7). The biggest structural change is in the introduction of
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multiple, changing environments. This requires changes throughout the algorithm,

as well as new functions to deal with the changing world (§4.2.8).

4.2.1 The Main Program

Individuals live in one of a fixed number of locations, each with its own

specified environment. As before, the main program (figure 4.4) starts by initial-

izing (1). In the fixed-length version, we specified length of evolution by number

of generations. This doesn’t make sense when we don’t have discrete generations.

Instead, we keep track of elapsed time, and evolve until we reach some user-

specified time (T). Then, we make sure all waveforms left in the population are

written to output (10).

Each individual has a lifetime equal to its length in samples and is re-

placed when it expires. Since their lifetimes vary individually, the times at which

individuals are replaced are staggered. At each iteration the next individual to

end and how many samples are left before it ends (3). The next individual

to end reproduces (4), the world is updated (6), and we write the next segment

of output (6)—through the end of the next individual to end. Finally, we

do our temporal bookkeeping: the number of samples left before the next

individual ends is added to each individual’s index (7) and converted into the

appropriate units and added to elapsed time (8).

4.2.2 Initialize

The initialization function starts by reading input files. We initialize each

location and each individual. Individuals are assigned to a random location, and

each individual’s index is set to 0. Both individual and environment waveforms

are normalized using the same function as we used for the fixed-length version of

the algorithm. The individual’s index keeps track of the point in the individual’s

waveform that corresponds to the current time in the world. Finally, the world’s

elapsed time is set to 0.
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Read Configuration File and Waveforms

The configuration file contains all user-defined variables and filenames

of environment and population waveforms. First, we find out how many loca-

tions (LOC) our world will have and open output files for each location. Then,

we read in user-defined variables: normalization amplitude (N), biodiver-

sity modifier (B), crossover type (C), parent type (PAR), minimum

amount of evolutionary time (T), sample rate (SR), seeds for the ran-

dom number generator (S1–S3), probability of gradual environmental

change (Penv), probability of catastrophic environmental change

(Pcat), increment of environmental change (Einc), and probability of

migration (Pmig). Then, we read in mutation probabilities for each muta-

tion: probability of mutation (P), minimum and maximum mutation sizes

(Smin, Smax), minimum and maximum degrees of mutation (Dmin, Dmax),

and, for each variable, the probability that it will change (Pchange) and

the amount of variation that variable can have if it changes (Vpm). Finally,

we read in our input files. We find out the maximum number of samples per

waveform (SAMP) and how many environmental files there are so we can allo-

cate memory. Then, we read in the environment files, the number of population

files (POP), and the population files themselves.

Initialize Location

We want each location to have its own sound. A location’s sound comes

from three sources: its mutation probabilities (which influence the character-

istic mutation sounds that are present in the location), its environmental waveform

(which provides evolutionary direction), and its subpopulation (which provides the

sonic materials the algorithm can act on). We randomly generate variables for each

location based on the variables provided by the user. First, we initialize mutation

variables: Each mutation’s probability of occurring is a random number

between 0 and its user-defined probability. The other mutation variables
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(Smin, Smax, Dmin, Dmax) are random numbers between their user-defined

minimum and maximum values. If the minimum is greater than the maximum we

swap them. As described in §3.2.2, each locaton’s environment will be defined by

two waveforms that are mixed together to produce the environment. Each time

the environment undergoes gradual change, the two waveforms are interpolated.

We randomly choose an initial waveform (9) and a target waveform (10) for the

location. We copy the initial waveform into the environment and set the degree

of interpolation to 0 (12). We set the environment’s length to the length

of the longer of the two constituent waveforms (13) then find the environment’s

magnitude (14) using the magnitude function we used for fixed-length chromo-

somes.

4.2.3 Find Next Individual to End

When an individual ends, it leaves the population. It ends when its

last sample has been written to output and it is analogous to biological death.

Finding the next individual to end is simple, but the function is the lynchpin

of the variable-length chromosome version of the algorithm. Instead of reproducing,

writing output, and performing any bookkeeping the algorithm might require at

the end of every generation, we do these things each time an individual ends.

4.2.4 Reproduction

The primary difference between reproduction in the variable-length chro-

mosome algorithm (figure 4.5) and reproduction in the fixed-length chromosome

algorithm (§4.1.5) is that only one individual at a time can reproduce. We select

parents (1), splice them into an offspring (2), mutate the offspring (3), then replace

the parent with its offspring (4). We set the individual’s index to 0 so it will start

playing from its beginning. Finally, we calculate the individual’s fitness (5) using

the same individual fitness function we used in the previous algorithm. Fitness

relative to the environment will be calculated only once: We don’t want to waste



76

select parents

splice parents 
onto offspring

mutate 
offspring

start

stop

swap parent 
& offspring

individual's 
index = 0

1

2

3

4

5

calculate 
individual's 

fitness
6

Figure 4.5: Reproduction



77

processing time by calculating fitness each time the environment changes, and

we don’t want discontinuities in the output when the environment changes.

The details of selecting and splicing parents are different, but the muta-

tion function is essentially the same as the fixed-length mutation function. The

mutation function loops through the possible mutations, checking which muta-

tions are applied to the offspring. There are three new mutation functions that

are introduced with variable-length chromosomes: dropping (§4.2.5), lengthening

duplication (§4.2.6), and changing length (§4.2.7).

Select Parents

This version of the algorithm allows the user to choose between two meth-

ods for selecting parents.2 We can use the same method as we used for fixed-length

chromosomes, chosing both parents based on fitness, or we can designate the in-

dividual being replaced as the first parent and select the second parent based on

fitness. If we use the latter method for chosing parents, we can calculate fitness

of the second parent based on self-similarity.3 To do this, we use the same fitness

function as before, but replace the environmental waveform with the first parent’s

waveform. As before, we make it impossible for the first parent to be selected as

the second parent. We normalize fitness, process it, and find the second parent,

all using the same functions that we used for fixed-length chromosomes.

Splice Parents

The primary difference in splicing parents with variable-length rather

than fixed-length chromosomes is how the algorithm deals with random crossover

points. With fixed-length chromosomes, both parents have the same crossover

point, regardless of whether it is fixed or random. Since we no longer need to

2Unlike the three new mutation functions, this isn’t a possibility introduced by variable-length chro-
mosomes. Rather, the first function was simplified as much as possible, and we are taking this algorithm
as an opportunity to introduce more possibilities.

3In practice, I often use fitness functions that combine self-similarity and environmental fitness.
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conserve length, random crossover points can be different for each parent.

We start by checking whether the user has specified a fixed or a random

crossover point. If it is random, we select a random crossover point

for each parent; otherwise, the crossover point is the halfway point for each

parent. We map the crossover points onto the lengths of the parents and nudge

the crossover points onto zero crossings using the same next and previous zero

crossing functions we used before. Then, we copy the first part of the first parent

and the second part of the second parent into the offspring. Finally, we find the

length of the offspring.

4.2.5 Drop Mutation

The drop mutation drops a segment of neighboring genes. The segment

of genes to be dropped is selected. The remainder of the waveform is moved

forward, overwriting the dropped portion of waveform. Finally, the individual’s

new length is calculated.

4.2.6 Lengthening Duplication Mutation

The lengthening duplication (figure 4.6) pushes the end of the waveform

out as it duplicates rather than overwriting. First, we find a segment of waveform

to duplicate, then we randomly select a number of duplications. We find

the offset that will be introduced by this number of duplications and check

that the resultant offspring won’t exceed our maximum waveform length. If

it does, we decrease the number of duplications and make sure that still lets

us have the minimum number of duplications. If decreasing the number of

duplications gives us a legal number of duplications, we double check the

maximum length again. Otherwise, we find a a new mutation segment and try

again.4

4We might throw in another step to prevent an infinite loop if the user has chosen unreasonable
variables. This step has been left out for the sake of simplicity.
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Once we have an appropriate segment for mutation, we copy it into a

buffer. Then, we copy the end of the waveform so that it starts where our du-

plications will end. For each duplication, we copy the buffer into the mutation,

updating the offset after each duplication. Finally, we update the individual’s

length, incrementing it by the offset.

4.2.7 Change Length Mutation

To lengthen a portion of waveform (figure 4.6), we start by selecting a

segment to mutate (1). We randomly select a lengthening multiplier (2), then

figure out how much that will offset the rest of the waveform (3). We copy the

portion of the waveform that we’re going to resample into a buffer (4) then move the

rest of the waveform to account for the offset (5). We copy three extra samples

into the buffer, since we’ll need them for interpolation. We also need indices to

step through the buffer and the offspring while we interpolate (6): imult will be

the fractional part of the index, which increments by the multiplier, while i will

be the integer part. We use four-point interpolation to resample the buffer as we

copy it into the waveform (8). Since we’re tracking the fractional and integer parts

of our index, we increment them by adding mult to imult (9) and checking if

the result is greater than one (9a). If it is, we add its integer part to i (9b) and

keep the fractional part as imult (9c). Finally, we calculate the individual’s new

length (10).

4.2.8 Changing Island World

There are three components to the changing world: catastrophic change,

gradual change, and migration. The changing world function is called each time an

individual reproduces. It checks whether or not there is catastrophic environmental

change in the individual’s location; if there is, it reinitializes the location. If not, it

checks if that location undergoes gradual environmental change and, if appropriate,

implements that change. Finally, it checks whether or not the next individual—at



80

start

stop

find begin, end, and 
length of waveform 
segment to mutate

mult = random float 
between Dmin and Dmax

offset = - (length - (length * 
mult))

copy samples begin 
to end-1 into buffer 0 

to length-1

copy samples end to 
samp-1 into samples 

end + offset to 
samp-1 + offset

for samples
begin to begin + 

(length*mult)-1 and 
buffer 0 to
length-1

i = begin;
imult = mult

sample = 
- ((mult*(mult-1)*(mult-2))/6) 

* buffer[i-1]
+ (((mult+1)*(mult-1)*
(mult-2))/2) * buffer[i]

- (((mult+1)*mult*(mult-2))/
2) * buffer[i+1]

+ (((mult+1)*mult*(mult-1))/
6) * buffer[i+2]

imult > 1 i += integer part 
of imult

imult = imult - 
integer part of 

imult

imult += imult

true

false

done

1

2

3

4

5

6

7

8

9b

9c

9

9a

length += offset
10

Figure 4.6: Change length mutation



81

this point, that individual’s offspring has taken its place—will remain in the same

location or spend its lifetime migrating.

Gradual Change

Gradual change makes each mutation variable take another step in a

random walk and interpolates the environmental waveforms a little further.

To change our variables, we start by moving through each variable of

each mutation and test whether or not that variable will change. Variables have a

random number between -Vpm and Vpm added to them. Then, we make sure our

variable is within the user-defined variable range. If the variable is outside its

designated range, we change the variable to its limit.

To interpolate waveforms, we start by increasing our degree of in-

terpolation by our interpolation increment. Then, we check whether or

our degree of interpolation has reached one. If it has, we need to interpolate to

another waveform. So, we move our target waveform into the initial waveform

position and select a new target waveform. We make our new initial waveform our

new environment and set the degree of interpolation to zero. If our degree

of interpolation is less than one, we mix the two waveforms to make our en-

vironment. We weight the target waveform by the degree of interpolation

and the initial waveform by one minus the degree of interpolation. Finally, we find

the magnitude of the new environment.

Migrate

We need to keep track of which individuals are migrating, where they

are migrating to, and where they are migrating from. We start by setting the

individual to migrating and choosing the individual’s destination. We don’t

want the individual to migrate to its current location, so we randomly choose from

one fewer than the number of locations. The individual will be considered

part of the destination location for reproductive purposes. Finally, we need
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to set variables that will enable us to write the migrating files to output: it will

need to fade out of its starting location and fade into its destination. We set

the individual’s fade to zero and set its fade increment to one divided by the

individual’s length.

4.2.9 Output

Write Segment

Every time an individual ends, we write the segment of output between

the last time an individual ended and the current time. We write each location to

its own output file. We start by initializing the segment of output to zero. Then,

we mix the waveforms at the location. For each individual, we check whether or

not it is migrating. If it is not migrating, we check whether or not it is in the

location; if it is, we write the individual, weighted by its fitness, to output.

If the individual is migrating, we see if it is migrating to or from the location.

In either case, we write the migrating individual to output, weighted by both its

fitness and its fade. Finally, we prevent clipping using a function similar to the

one we used in the fixed-length version of the algorithm, but operating between

zero crossings instead of generation boundaries. Finally, we write the segment to

output.

Write End

Since the individuals in the population don’t end simultaneously, we need

to write the remainder of any individuals left when the evolution stops. To do this,

we loop through the population until all individuals have finished. We swap the

next individual—which will have just finished playing—with the last individual

and decrease the size of the population by one, so that the finished individual is

no longer counted as part of the population. Then, we find the next individual

to end and write the intervening segment of output.
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4.3 An Algorithm for Evolving Variable Length, Time Do-

main Waveforms in a Real Time Ring World

4.3.1 The Main Program

I have implemented the realtime version of the program in Pure Data,

whereas the previous versions have been implemented in ansi c. Pure Data has its

own scheduler, so this implementation doesn’t deal with time in the same way as

the previous two. In the first two versions of the program (§4.1–§4.2), it was not

a problem if it took us several hours to generate a few minutes of music. Here,

it is an issue. Instead of using idealized, independent agents, we need to schedule

individuals to reproduce serially, since reproduction is computationally intensive

(1). They can otherwise operate in parallel (3). Each individual takes input from

microphones (2) and sends output to speakers (4).

This version of the program implements a ring-world topology, as de-

scribed in §3.2.2. The world is defined as a ring. The ring is mapped onto speakers

and microphones that occupy fixed locations in a performance space. Individuals
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occupy locations, specified by angle, on the ring. Individuals can move over the

course of their lifespan. Individuals’ non-sonic behaviors are defined by a second

chromosome (§4.3.4). Microphones define the environment in real time: each time

an individual is produced, its fitness is determined based on the environmental

waveform at its location that begins at its inception and is of the same length as

it.

4.3.2 Reproduction Timer

We want to make sure each individual plays at least once before being

replaced by its offspring. So, we add individuals to the end of a queue each time

they finish playing (§4.3.4), and reproduce from the beginning of the queue. The

reproduction timer operates when the program is running (1). It waits some ran-
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dom amount of time (2) then looks at the queue. First, we need to make sure there

are no duplicates of the next individual in the queue—if an individual reproduces,

we don’t want residual copies of that individual to cause the individual’s offspring

to reproduce before it’s had a chance to play (3). If the next individual in the

queue is playing, we wait for it to finish playing (4). Finally, we send a message to

the individual, having it reproduce (5).

4.3.3 Input and Output Weights

The ring world is represented by input and output weights. Each indi-

vidual will have a location on the ring. Both its input, which will be used to

calculate fitness, and its output, are weighted to represent this location. The

two IOs on either side of the individual receive weights that sum to one and that

depend proportionally on their two distances from the individual, and all other

IOs receive a weight of zero.

4.3.4 Individuals

With the exception of the reproduction scheduler, the individuals are

independent agents. They are initialized when the program starts (1), and there-

after inhabit their world, mating and reproducing, for as long as the evolutionary

process continues (2). There are two basic loops that produce an individual’s be-

havior. Over the long term, the individual calculates its fitness (3) then waits

until it is told to reproduce (4). When it is told to reproduce (4), it finds a mate

(8), splices with the mate (9), and mutates (10). Since individuals now have two

chromosomes (waveform and behavior), both chromosomes splice and mutate. The

behavior chromosome mutations are conventional mutations (§1.2.3, §1.3.3) that

add or subtract a tiny amount rather than the waveform-specific mutations de-

scribed in chapter III. The loop will repeat and the offspring’s fitness will be

calculated (3).

Over the short term, the individual waits some amount of time that is
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inversely proportional to its fitness—that is, a shorter amount of time if it is

fitter and a longer amount of time if it is less fit (5)—then plays (6) and adds

itself to the reproduction queue (7). The individual will play periodically until it

reproduces (4).

Initialize Individual

Individuals have two chromosomes. The first is the waveform, which

is read in by the initialization function (1). The second defines the individual’s

behavior in the world. Each individual has a range of mate search (2), a

location (3), a movement duration (4), a probability of standing in-

stead of moving (5), a maximum amount of clockwise movement (6), and

a maximum amount of anti-clockwise movement (7). All variables in the

second chromosome are randomly assigned when the initial population is created.

Except for location (4), which is between 0 and 359 degrees, all of the variables
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fall in some user-defined range.

Fitness

To calculate fitness, we have to find the individual’s input weights (1)

and mix the inputs to produce a single channel of input that corresponds to the

individual’s location (2). We treat the segment of incoming audio beginning when

we start testing fitness and having the same duration as the individual’s waveform

as the environmental waveform. Then, we can use the same fitness function as we

used in the first two algorithms (3).

Find Mate

Instead of having discrete islands, we have a continuous world. The in-

dividual’s behavior chromosome specifies its location and the range in which

it is willing to look for a mate. The individual’s mate is chosen randomply from

among all individuals within range degrees of the individual’s own location,

with each such individual’s probability proportional to its own fitness

4.3.5 Output

Since Pure Data handles time for us, we don’t have to explicitly mix the

outputs. Rather, each individual can play it’s waveform and the details will be

taken care of for us. When we play an individual’s waveform, we find weights

for its outputs (1). We play the waveform (2), and, for each output, multiply the

waveform by its weight for that output (3a).
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Results and Conclusions

5.1 Systematic Tests

I have implemented a very simple version of the algorithm for system-

atic tests of the framework. This algorithm, described in §4.1, has fixed-length

chromosomes and a single, unchanging environment. I will present the results of

running the algorithm with all of the mutation functions available to it, with fixed

and random crossover points, and with different random seeds for the same initial

conditions. Some dimensions, such as degree of mutation and the biodiversity mul-

tiplier, are not dealt with here, as they are not unique to this framework and their

behavior is well understood.1 Other dimensions relating to the complex worlds de-

veloped for musical compositions are not dealt with here, since their components

can’t be meaningfully isolated (see §5.2).

5.1.1 Test Sets

To better isolate the behavior of different components of the algorithm,

I used three test populations: noise, sinusoids, and real-world sounds. All samples

1Higher degree of mutation and higher mutation probability lead to faster evolution, but they tend
to be more readily attracted by local minima. Increasing biodiversity slows evolution and decreases the
probability that the population will fall into a local minimum. Typically, users of genetic algorithms
choose initial values then run the algorithm and observe its behavior. If the algorithm evolves too slowly
or falls into local minima too easily, these values can be changed until the algorithm reliably performs
as desired.

90
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were normalized to have a maximum amplitude of one. The chromosome length

was one second. There were 101 individuals in the noise population, 121 samples

in the sinusoid population, and 50 samples in the real-world population.

• The noise population is the most neutral test population. All waveforms are

constant-amplitude white noise. We do not expect the population to change

dramatically; all we can evolve from noise to noise. But, the quality of the

evolved noise tells us something about the algorithm’s behavior. Anything

that changes the quality of the noise—i.e. its amplitude envelope, pitch

characteristics, etc—will be a result of evolution and its representation.

• The sinusoid population is comprised of every audible, equal-tempered sinu-

soid.2 As with the noise population, the sinusoid waveforms have constant

amplitude. We expect to hear evolutionaryeffects on both pitch and loud-

ness. Although none of the mutations available to this algorithm can change

pitch, sinusoids provide evidence about which parents have been selected and

how they have been spliced together.

• The real-world sounds are sampled from a composition for percussion and

voice. This makes them a mix of harmonic, inharmonic, and noisy sounds of

varying amplitude. We expect this test set to shed light on how the algorithm

will behave with a varied initial population.

There are four environments: one synthesized sound and three real-world

sounds. The synthesized sound is a constant-amplitude glissando that covers the

same pitch range as the sinusoid population (gliss.wav). The real-world sounds

are a struck pot (pot.wav), a cricket (cricket.wav), and footsteps (footsteps.wav).

The struck pot is inharmonic and starts with a high amplitude and dies out over

the course of a second. The cricket is a short, pitched, tremolo—a little less than

half a second long—which will also serve to test how the algorithm deals with

2With A equal to 440Hz and assuming that 20Hz–20000Hz is the audible range



92

environments that are shorter than the generation. The footsteps are a couple of

noisy impulses over a bed of background noise.

5.1.2 Results

All test sets were run with 10 different seeds for 300 generations. Repre-

sentative examples of these runs are discussed below. The appendix contains the

configuration files for all example files. For ease of listening, all examples have been

edited to present the first 10 generations of evolution, generations , and generations

290–300. There is a second of silence between the each segment of output.

5.1.3 Seed

This algorithm is stochastic. We can make generalizations about how it

will behave under particular conditions, but nothing is guaranteed. Genetic algo-

rithms explore high-dimensional spaces, rife with local minima. Sometimes, several

runs of the algorithm with same starting conditions will result in more-or-less inter-

changeable results; sometimes the results will be wildly different. They will gener-

ally share features, such as the characteristic sounds from the mutations available

in the run and the sound of evolution itself, but on a more immediate level, they will

be different.3 I will present several runs from the same variables with different seeds

here. I will discuss other examples as they arise below. Examples real-walking-

all-c12.wav, real-walking-all-c13.wav, and real-walking-all-c18.wav have identical

populations, environments, and variables, but different seeds.

Example real-walking-all-c12.wav starts the same way as the others, a

mixture of recognizably real vocal and percussive sounds. Within a few genera-

tions the population develops an amplitude envelope that is loud in the first half

and quiet in the second half. By the middle, it seems to mix a sung pitch with

percussion. But, over the course of the 10 generations presented, the sung pitch

remains static relative to the percussion, which increases in density and intensity.

3To achieve musical results, it is helpful to run the algorithm multiple times with different seeds. In
5.2.1, I discuss two pieces chosen from 15 runs with identical starting conditions.
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The density increase is most likely from mutations (such as overwriting duplica-

tion) offsetting sections of similar individuals. Since the mutations do not line

up exactly, we hear several similar sounds instead of one loud sound. This run

of evolution seems to have evolved towards the noisy, background timbre of the

environmental sound, ignoring its amplitude envelope.

The difference between real-walking-all-c12.wav and real-...-c13.wav is al-

ready apparent after a few generations of evolution. In real-walking-all-c13.wav,

different sounds dominate the population. Instead of a relatively constant vocal

pitch and fairly metallic percussive sounds, several vocal sounds are prominent in

the population. The most audible of these is a glissando. There is a metallic per-

cussion sound, but it does not rise to prominence. By the middle portion of the run,

we start to hear the characteristic sound of several mutations. A repetitive pulse

(overwriting duplication) dominates the first half of the waveforms and a gritty,

distorted (exponentiation) voice dominates the second half of the waveforms. By

the end of 300 generations of evolution, we have something with amplitude and

timbre characteristics that are similar to the environment: background noise with

a smattering of amplitude peaks. One of the peaks retains the clear sonic character

of an original vocal sound.

Example real-walking-all-c18.wav starts like the others. Early on, differ-

ent sounds from the original population rise to prominence. By the middle portion,

its amplitude envelope more closely resembles the original amplitude envelope, with

quiet background noise and footstep-like peaks that correspond temporally to the

footsteps in the environment. However, by the end of 300 generations it has over

evolved, losing its footstep-like peaks. Timbrally, it has a different sound from the

other two runs, but the characteristic sound of the overwriting duplication remains.
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5.1.4 Crossover Point Without Mutation

The algorithm lets the user choose a fixed or a random crossover point.

Without mutations, with a perfectly fixed crossover point,4 the population should

converge to a population of identical individuals that are made from the first

part of an initial individual and the second part of an initial individual.5 The

same population, evolving under otherwise identical conditions, but with a random

crossover point, should converge more slowly. It will almost never converge to

identical individuals in the time frame of a typical composition. The individuals

in the population will be comprised of excerpts of many initial individuals.

Noise

Consider the population of constant-amplitude noise, with one example

from each environment for each type of crossover point. Four examples have a

fixed crossover point: noise-gliss-none-c1-6.wav evolving in the gliss.wav environ-

ment, noise-cricket-none-c1-3.wav evolving in the cricket.wav environment, noise-

pot-none-c1-0.wav evolving in the pot.wav environment, and noise-walking-none-

c1-0.wav evolving in the footsteps.wav environment. Four examples have a ran-

dom crossover point: noise-gliss-none-c0-4.wav evolving in the gliss.wav environ-

ment, noise-cricket-none-c0-7.wav evolving in thecricket.wav environment, noise-

pot-none-c0-0.wav evolving in the pot.wav environment, and noise-walking-none-

c0-0.wav evolving in the footsteps.wav environment.

We have conflicting expectations. On the one hand, we predicted above

that we would hear a difference between the fixed-crossover and random-crossover

cases. On the other hand, with a population of noise, all individuals are virtually

identical. Without mutation, we wouldn’t expect to perceive a difference between

the parts of various individuals, so we shouldn’t perceive a difference at all.

4The fixed crossover point isn’t completely fixed, since it’s nudged to correspond to the nearest zero
crossing.

5Since the waveforms are hermaphroditic, there’s no guarantee that they won’t be two halves of the
same individual
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The noise population behaves as expected with respect to crossover; it

does not behave in the way we would expect mutation-less noise to behave. With

a fixed crossover point, we hear two distinct halves for each generation (noise-

gliss-none-c1-6.wav, noise-cricket-none-c1-3.wav, noise-pot-none-c1-0.wav, noise-

walking-none-c1-0.wav). With a random crossover point, each generation has

a smoother amplitude envelope (noise-gliss-none-c0-4.wav, noise-cricket-none-c0-

7.wav, noise-pot-none-c0-0.wav, noise-walking-none-c0-0.wav). While the fixed-

crossover examples sound like noise after 300 generations of evolution, the random-

crossover examples sound filtered.

So, why do the populations of constant-amplitude noise not evolve to pop-

ulations of constant-amplitude noise? In all of the examples, the first generation

does have uniform amplitude. The fixed-crossover example noise-cricket-none-c1-

3.wav is a particularly telling example. Its first generation is uniform amplitude

noise; its last ten generations are uniform amplitude noise. But, in the middle it

is loud for the first half of each generation and quiet for the second half.

Recall that the algorithm outputs all individuals at once. They are

weighted by their fitness and mixed together. Also, with fixed-length chromo-

somes, if the individuals are too short they are padded with silence. Furthermore,

if the individuals are too long, they are truncated and, if they don’t end with a

zero crossing, their last few samples are overwritten with silence from the last zero

crossing to the end. This is essentially an implicit mutation that results from hav-

ing fixed-length chromosomes. All individuals have something in their first half,

since only the last half is affected by crossover-related shortening. Some individ-

uals eventually evolve a silent second half. When they are all mixed together, we

hear this as two distinct volume levels.

What has happened in noise-cricket-none-c1-3.wav, is that the population

evolved through a period in which some individuals ended with silence and others

were noise throughout. Then, it converged to individuals with noise throughout.

noise-pot-none-c1-0.wav exhibits a similar trajectory. We can tell it hasn’t quite
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converged, because the second half of each generation is slightly quieter than the

first half. This suggests that there are a few short individuals remaining in the pop-

ulation. Because this behavior results from fixed-length chromosomes, we wouldn’t

expect it to manifest in the variable-length algorithms; it does not manifest in any

of the pieces produced with the variable-length versions of the algorithm.

The filtering exhibited by the random-crossover examples is explained

by a loss of biodiversity, combined with slight temporal offsets that result from

nudging segments of waveform to line up zero crossings. Eventually, we have

multiple copies of the same waveform in the population, with different slight delays.

Digital filtering is an emergent phenomena of the output representation.

Finally, it is worth noting that all examples are louder after 300 genera-

tions of evolution than they were initially. This is because the output is weighted

by fitness. We expect a fitter population to be louder than an unfit population.

Sinusoids

Consider the population of constant-amplitude sinusoids, with one ex-

ample from each environment for each type of crossover point. Four examples

have a fixed crossover point: sin-gliss-none-c1-4.wav evolving in the gliss.wav en-

vironment, sin-cricket-none-c1-0.wav evolving in the cricket.wav environment, sin-

pot-none-c1-0.wav evolving in the pot.wav environment, and sin-walking-none-c1-

6.wav evolving in the footsteps.wav environment. Four examples have a random

crossover point: sin-gliss-none-c0-3.wav evolving in the gliss.wav environment, sin-

cricket-none-c0-3.wav evolving in the cricket.wav environment, sin-pot-none-c0-

0.wav evolving in the pot.wav environment, and sin-walking-none-c0-0.wav evolv-

ing in the footsteps.wav environment.

With a fixed crossover point, we expect to hear the population evolve

towards two-part individuals. With a random crossover point, we expect the pop-

ulation to evolve towards multi-part individuals. Since the initial population has

121 different pitches, we expect to hear this in terms of pitch. The fixed-crossover
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examples should converge to two pitches; the random-crossover examples should

converge to many pitches. Initially, we should hear a chord of 121 pitches. We

should hear convergence as chords of decreasing complexity. As the population

converges, we should less complex chords. Since we expect fixed-crossover evo-

lution to converge more quickly, we expect monophonic, alternating pitches by

the end of the examples. Since we expect random-crossover evolution to converge

more slowly, we expect successions of simple chords in later generations. Finally,

we expect to see the same fixed-length-chromosome shortening behavior that we

saw in the noise examples.

Since the sinusoid population has more audibly different sonic building

blocks to work with than the noise population has, we might expect to find behavior

in the populations to reflect their environments. But, it is important to note that

the fitness function considers phase, not just pitch. An individual with the same

pitch as the environment, but completely out of phase will be less fit than an

individual with a different pitch whose waveform occasionally corresponds to the

environment. It would be naive to assume that sinusoids evolving with random

crossover points in the gliss.wav environment with random crossover points would

converge a sequence of ascending sinusoids.

The sinusoid population behaves as expected in all respects. The fixed-

crossover samples start with one pitch and move to another halfway through. In

most of these, the second parent is forced into silence by the final generation, but

sin-walking-none-c0-0.wav retains some pitch from its second parent. The random-

crossover samples become strings of pitches. They don’t, however, fulfil the naive

expectation that they will become ascending pitches. It would be surprising if they

did.

The sinusoid population allows us to clearly hear biodiversity. With all

of the examples, the initial population gives us a very complex chord: all members

of the population have different pitches. With time, all of the examples become

less complex chords. The fixed-crossover samples usually converge to identical
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individuals before they reach the last 10 generations of their 300 generations of

evolution. sin-cricket-none-c1-0.wav converges to two individuals. The random-

crossover examples converge to a handful of individuals; their output is a succession

of fairly simple chords by the end of 300 generations of evolution. The random-

crossover examples converge .

Real-World Sounds

Consider one exemplar from each environment for each type of crossover

point. We have four sounds with a fixed crossover point: real-gliss-none-c1-0.wav

evolving in the gliss.wav environment, real-cricket-none-c1-4.wav evolving in the

cricket.wav environment, real-pot-none-c1-2.wav evolving in the pot.wav environ-

ment, and real-walking-none-c1-8.wav evolving in the footsteps.wav environment.

Four sounds have a random crossover point: real-gliss-none-c0-0.wav evolving in

the gliss.wav environment, real-cricket-none-c0-4.wav evolving in the cricket.wav

environment, real-pot-none-c0-2.wav evolving in the pot.wav environment, and

real-walking-none-c0-3.wav evolving in the footsteps.wav environment.

It is difficult to tell, just by listening, which real-world examples have

a fixed crossover point and which have a random crossover point. The fixed-

crossover samples have more clarity—partly from loss of biodiversity and partly

from containing material from fewer members of the initial population—but this

doesn’t confront the listener the way it does, for example, when two sinusoids are

spliced together.

The patterns of loud beginnings and soft endings exhibited by the noise

and sinusoid samples holds only for the random-crossover examples. Even then, it

is much less pronounced. In general, the amplitude envelopes of real-world exam-

ples behave much more like one would expect based on the envelopes of the fitness

functions. Real-world sounds evolving in the cricket environment have a fairly

consistent amplitude relative to the same population with other environments.

Sounds in the pot.wav environment tend to be louder in the beginning and quieter
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towards the end. Sounds in the footsteps.wav environment tend to be fairly quiet,

with peaks corresponding to the footsteps in the environment. These peaks don’t

always overlap exactly with the environmental peaks; for instance, real-walking-

none-c1-1.wav has a much wider peak than real-walking-none-c1-8.wav. However,

the algorithm can only work with the genetic material in the population, so without

mutation, there is no way for it to do much better.

The real world sounds seem to take on other environmental qualities. For

instance, real-walking-none-c1-8.wav sounds far more like the environment at it’s

final generation than it did at it’s first generation. It is noisy, and it’s amplitude

peak sounds similar to the environmental footsteps. Compare this to real-pot-

none-c1-2.wav, which evolved in the pot.wav environment, which is inharmonic

but not at all noisy. The sound that emerges through evolution isn’t noisy either.

The population does not always take on the characteristics of the environment:

sometimes necessary genetic material is lost through chance early in evolution;

sometimes it was not there to start with.

5.1.5 Mutation Functions

Each of the mutation functions (§3.1.4) results in a characteristic output.

In general, qualities from the initial population are preserved and qualities of the

environment and of the mutation functions are added to the output as evolution

progresses. Multiple mutation types can be used at the same time—in fact, I

generally enable most mutations for compositions—but, for clarity we will only

consider the results of their use when applied alone. Since we are experimenting

solely with the single-location, fixed-length algorithm, we can only examine the

mutation functions that operate on that algorithm: amplify, exponentiate, reverse,

swap, and overwriting duplicate. These results provide enough insight into the

algorithm’s behavior that one can extrapolate how other mutations will function

enough to use them compositionally.
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5.1.6 Mutation by Amplification

Noise

The behavior of noise with the amplification mutation is disappointing if

one expects the population to match the environment. This is hard to do with a

population whose members initially sound the same: the only variation can come

from mutation. When we have a small population and small mutation increments,

the population is susceptible to random effects.

However, evolution occurs in both the fixed-crossover (noise-gliss-amp-

c1-0.wav, noise-pot-amp-c1-0.wav, noise-walking-amp-c1-0.wav, noise-cricket-amp-

c1-0.wav) and random-crossover (noise-pot-amp-c0-0.wav, noise-cricket-amp-c0-

0.wav, noise-gliss-amp-c0-0.wav, noise-walking-amp-c0-0.wav) cases. In all of the

fixed-crossover examples, the population evolves towards a loud first half and a

quiet second half as described in §5.1.4. In all of the random-crossover examples,

it evolves to a relatively constant amplitude sound by the end of 300 generations,

although both noise-gliss-amp-c1-0.wav and noise-pot-amp-c1-0.wav are slightly

louder early in the waveform. This is clearly the result of mutation. Another

noteworthy feature, which I think adds musicality to the algorithm, is that evolu-

tion isn’t always steady. Even with a population of noise, the 10 generations from

the middle of noise-gliss-amp-c1-0.wav sound noticeably different from each other;

some are muffled, some are brighter, etc.

The random-crossover examples sound more alike, both between environ-

ments and between generations. We can convince ourselves that noise-pot-amp-c0-

0.wav, which evolves in the pot.wav environment, acquires an amplitude envelope

reminiscent of a struck pot: a sharp onset with a decay. But, this is clearly

confirmation bias: the other environments noise-cricket-amp-c0-0.wav, noise-gliss-

amp-c0-0.wav, noise-walking-amp-c0-0.wav) evolve towards similar amplitude en-

velopes.



101

Sinusoids

The fixed-crossover sinusoid runs (sin-cricket-amp-c1-2.wav, sin-cricket-

amp-c1-8.wav, sin-pot-amp-c1-2.wav, sin-walking-amp-c1-0.wav, sin-gliss-amp-c1-

0.wav) exhibit the same amplitude behavior as the fixed-crossover noise runs: loud

beginnings, quiet endings. Except, instead of evolving back towards a constant

amplitude, all of the sample runs evolved towards silence for the second half. It’s

not clear if this is because of differences between the populations or the result

of random chance. In the final 10 generations of evolution, we see slight am-

plitude variation in the resulting population. Since we started with a constant

amplitude, this probably results from the mutation. These runs furnish us with

another example of random seed effects: Examples sin-cricket-amp-c1-2.wav and

sin-cricket-amp-c1-8.wav have the same environment and variables, but they con-

verge to different pitches.

The variable-length sinusoid runs (sin-cricket-amp-c0-1.wav, sin-walking-

amp-c0-0.wav, sin-gliss-amp-c0-0.wav, sin-pot-amp-c0-7.wav) are sonically more

interesting. Initially, they resemble the variable-length runs without mutation:

complex chords converging to sequences of pitches. The amplitude mutation has a

more pronounced effect on these runs. The sinusoids evolved in the footsteps en-

vironment (sin-walking-amp-c0-0.wav) develop a similar amplitude envelope, with

peaks near the footsteps and softer noise throughout. We never reach the point

where the background sounds are as soft as they are in the environment, but the

coincidence of amplitude peaks is noteworthy. Furthermore, we can safely assume

that this isn’t confirmation bias, since we don’t see a peak corresponding to the

last footstep from the other environments. In all of the runs, we evolved silence

at the end of the samples. Again, this is probably the result of mutation, since

even though the fixed-length runs without mutation tended towards silent endings,

the variable-length runs without mutation did not have this pronounced an effect.

Given the population of sinusoids, we would expect the population to tend towards

silence both when the environment is silent and when the sinusoids are out of phase
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with the environmental sounds. We see some of this behavior in the middle of the

glissando run (sin-gliss-amp-c0-0.wav), which has pronounced peaks and troughs

throughout the resultant waveform. The pot (sin-pot-amp-c0-7.wav), cricket (sin-

cricket-amp-c0-1.wav), and footsteps (sin-walking-amp-c0-0.wav) evolve towards

sounds that are loud at the beginning and soft at the end. This has some corre-

spondence to their environment’s amplitude envelopes: the cricket.wav is a short

sample, the pot.wav fades out, and the footsteps.wav waveform is quiet throughout

except for the footsteps themselves.

Real-World Sounds

In general, the real-world population exhibits the same mutation behav-

ior as the noise and sinusoid populations. The primary difference is that the sonic

diversity within individuals gives the algorithm more to work with. Consider the

random-crossover examples real-gliss-amp-c0-0.wav, real-pot-amp-c0-2.wav, real-

walking-amp-c0-5.wav and real-cricket-amp-c0-4.wav and the fixed crossover exam-

ples real-pot-amp-c1-0.wav, real-pot-amp-c1-4.wav, real-pot-amp-c1-5.wav, real-

cricket-amp-c1-0.wav, real-pot-amp-c1-8.wav, real-gliss-amp-c1-

1.wav, real-walking-amp-c1-3.wav, real-gliss-amp-c1-5.wav, real-walking-amp-c1-

9.wav. In all cases, the resultant amplitude envelopes vary widely. The behavior

exhibited in almost all of the examples from the sinusoid and noise populations,

in which they evolve loud beginnings and quiet endings, is absent. This suggests

that the behavior from the other populations results from lack of amplitude di-

versity the initial populations. This lack of diversity makes it impossible for small

changes in amplitude to make enough of a difference to the individual’s fitness to

allow the population to leave whatever local minimum it’s stuck in and acquire a

very different amplitude envelope.

This set of starting conditions also gives us some interesting examples of

different evolutionary outcomes resulting from changes to the random seed. First,

the differences are more noticeable with fixed-crossover reproduction. With ran-
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dom crossover, the population becomes fairly homogenous sounding. With fixed

crossover, different recognizable sounds rise to prominence. Consider the examples

real-pot-amp-c1-0.wav, real-pot-amp-c1-4.wav, real-pot-amp-c1-5.wav, and real-

pot-amp-c1-8.wav that evolved in the pot.wav.wav environment. real-pot-amp-c1-

0.wav converges to a point in which the first half of the individuals in the population

is almost silent, and the second half is voice and cymbal. real-pot-amp-c1-4.wav

converges to a point in which there is sound throughout; all percussion, but the

first half is a couple of wood instruments being hit, and the second half is a more

metallic percussive sound. real-pot-amp-c1-5.wav converges to a point in which

the first half of the individuals is a quiet hum, and the second half is voice com-

bined with a single percussive hit. real-pot-amp-c1-8.wav converges to a rattling,

scraping sound. real-gliss-amp-c1-1.wav converges to ascending vocal pitches with

a high metallic percussive sound, while real-gliss-amp-c1-5.wavconverges to two vo-

cal sounds: the first is a high glissando up and the second is a lower sustained pitch.

real-walking-amp-c1-3.wav and real-walking-amp-c1-9.wav are interesting because

they converge to have different sounds for their first halves (a single metallic per-

cussive sound vs. two wooden percussive sounds) but the same sound for their

second halves (a metallic percussive sound mixed with voice).

5.1.7 Mutation by Exponentiation

Noise

The populations of noise evolved with the exponentiation mutation (noise-

cricket-pow-c0-0.wav noise-pot-pow-c0-0.wav noise-walking-pow-c0-0.wav noise-gliss-

pow-c0-0.wav noise-cricket-pow-c1-2.wav noise-pot-pow-c1-0.wav noise-gliss-pow-

c1-0.wav noise-walking-pow-c1-0.wav) sound substantially like other populations

of evolved noise. They evolve towards a slightly filtered sound.
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Sinusoids

In all cases ( sin-cricket-pow-c0-4.wav sin-cricket-pow-c0-8.wav sin-gliss-

pow-c0-1.wav sin-gliss-pow-c0-4.wav sin-pot-pow-c0-0.wav sin-walking-pow-c0-

0.wav sin-cricket-pow-c1-1.wav sin-walking-pow-c1-0.wav sin-gliss-pow-c1-0.wav

sin-pot-pow-c1-0.wav), sinusoids evolved with the exponentiation mutation have

the same large-scale features as are exhibited by evolution in general (§5.1.4).

What’s noteworthy is that the characteristic sound of the mutation can be heard

in places. Unlike other evolutionary runs with sinusoids, which retain their crisp,

sinusoid character, these runs are slightly distorted at points. This is particularly

evident during the middle ten generations of most runs, before the population has

converged to a point where fewer mutated genes are present.

These examples also present several instances of differing outcomes from

the same variables, with different random seeds. sin-cricket-pow-c0-4.wav and sin-

cricket-pow-c0-8.wav evolve towards a high-pitched local minima with shortened

waveforms, but they converge to different places. sin-cricket-pow-c0-4.wav con-

verges to a chirping pitch followed by a low pitch, with a scraping sound. I believe

the scraping sound to have resulted from mutation, since it doesn’t sound at all

sinusoidal. sin-cricket-pow-c0-8.wavconverges to something that sounds rather like

a pitchy, high pitched toilet plunger being used. sin-gliss-pow-c0-1.wav and sin-

gliss-pow-c0-4.wav both converge to ascending pitches. This is noteworthy, since

both evolved in the gliss.wav environment. However, sin-gliss-pow-c0-4.wavhas

more discrete pitches than sin-gliss-pow-c0-1.wav.

Real-World Sounds

The real-world sounds evolved with the exponentiation mutation (real-

cricket-pow-c0-6.wav, real-gliss-pow-c0-0.wav, real-pot-pow-c0-2.wav, real-pot-pow-

c0-8.wav, real-walking-pow-c0-3.wav, real-cricket-pow-c1-0.wav, real-cricket-pow-

c1-2.wav, real-gliss-pow-c1-0.wav, real-pot-pow-c1-2.wav, real-walking-pow-c1-6.wav,

and real-pot-pow-c1-7.wav) also exhibit the characteristic sounds of the mutation.
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Distortions are evident later in each run, much lie in the sinusoid runs, that are

not evident in examples without the exponentiation mutation. Examples real-pot-

pow-c0-2.wav and real-pot-pow-c0-8.wav, evolved in the pot.wav environment, and

real-cricket-pow-c1-0.wav and real-cricket-pow-c1-2.wav, evolved in the cricket.wav

environment, are more examples of different seeds resulting in different outcomes.

5.1.8 Mutation by Reversal

Noise

The examples of noise evolved with the reversal mutation ( noise-cricket-

rev-c0-6.wav, noise-gliss-rev-c0-0.wav, noise-pot-rev-c0-0.wav, noise-walking-rev-

c0-0.wav, noise-cricket-rev-c1-4.wav, noise-gliss-rev-c1-4.wav, noise-pot-rev-c1-

0.wav, and noise-walking-rev-c1-0.wav) also sound substantially like other popula-

tions of evolved noise. It is noteworthy that, despite the inability of the mutation

to change amplitude, the population has still evolved amplitude variation. Af-

ter some amount of evolution, the population also sounds rather filtered. This is

probably for the same reasons as it sounds filtered without any mutation at all

(§5.1.4).

Sinusoids

The populations of sinusoids evolved with the reversal mutation and

random crossover points (sin-cricket-rev-c0-1.wav, sin-walking-rev-c0-0.wav, sin-

gliss-rev-c0-5.wav, and sin-pot-rev-c0-0.wav) share many of the same features as

those evolved without mutation (§5.1.4). However, the populations of sinusoids

evolved with the reversal mutation and fixed crossover point (sin-cricket-rev-c1-

8.wav, sin-walking-rev-c1-0.wav, sin-gliss-rev-c1-0.wav, and sin-pot-rev-c1-0.wav)

are markedly different. The populations converge to points with quite a lot of

amplitude variation. Although the reversal mutation doesn’t allow the algorithm

to explicitly change amplitude, it does allow phase to be changed, which could

contribute to this affect.
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Real-World Sounds

The real-world sounds provide the best examples of the characteristic

sound of the reversal mutation. Because they don’t converge as quickly, the ran-

dom=crossover examples (real-cricket-rev-c0-0.wav, real-gliss-rev-c0-9.wav, real-

pot-rev-c0-0.wav, and real-walking-rev-c0-8.wav) are thicker and more complex,

making it more difficult to hear this characteristic sound. The fixed crossover

examples (real-cricket-rev-c1-7.wav, real-gliss-rev-c1-9.wav, real-pot-rev-c1-8.wav,

and real-walking-rev-c1-3.wav) demonstrate the sound more clearly.

Despite the relative lack of clarity, the characteristic sound of the re-

versal mutation is still evident in the random-crossover examples. real-cricket-

rev-c0-0.wav exhibits a reversed percussive sound a few generations in, and it

remains prominent throughout evolution. real-gliss-rev-c0-9.wav has a reversed

vocal sound, that is also introduced early and lasts throughout the individual; in

this case, it is edited through crossover and is shorter by the end of the exam-

ple. All four of the random-crossover examples exhibit much shorter mutations

throughout. These have the characteristic sound of the reversal mutation, but are

much harder to perceive as the same sounds throughout. This either because they

leave the population quickly so we don’t grow to recognize them, or because they

are so short that we can’t recognize the source.6

The fixed-crossover examples tend to converge to a few similar members,

so the characteristic sounds of the mutation tends to be easier to hear throughout

the sound sample. In real-cricket-rev-c1-7.wav, a backwards vocal sound emerges

fairly early. It seems to fade in, growing in loudness over several repetitions. This

suggests that the mutation that produced the sound happened fairly early on,

and that the mutated genes gained prominence in the population. Example real-

gliss-rev-c1-9.wav has a reversed percussive sound that appears early in evolution.

That particular mutation is eliminated from the population, but another reversed

6I find it much easier to follow a gene-segment through evolution if it is from a recognizable source,
than if I can’t assign a type to it.
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percussive sound appears later in evolution and persists to the end. In addition,

there are some reversed vocal sounds that do not sound reversed. Sustained sounds

rarely sound reversed when they are reversed, but if they have slight amplitude

variation throughout, reversal often manifests as repeated attacks of the sound.

Example real-walking-rev-c1-3.wav doesn’t exhibit any obvious reversals during

the first 10 generations. By the middle 10 generations, a metallic percussive sound

has been reversed. By the last 10 generations, multiple reversals have occurred, and

the multiple-attack effect manifests. It is hard to hear much of the mutation early

in real-pot-rev-c1-8.wav, but by the end there are some clearly reversed sounds, as

well as the multiple-attack effect.

5.1.9 Mutation by Swapping

Noise

The noise examples evolved with the swapping mutation and random

crossover point (noise-cricket-swap-c0-0.wav, noise-gliss-swap-c0-0.wav, noise-pot-

swap-c0-0.wav, and noise-walking-swap-c0-0.wav) are not markedly different from

the examples with no mutation at all (§5.1.4). However, the fixed-crossover point

examples (noise-cricket-swap-c1-3.wav, noise-cricket-swap-c1-8.wav, noise-gliss-

swap-c1-0.wav, noise-pot-swap-c1-0.wav, and noise-walking-swap-c1-0.wav)

demonstrate the mutation more clearly. Unlike their mutation-less counterparts,

they do not evolve loud beginnings and quiet endings. Because they have the

ability to move portions of waveform from one point in time to another, their

amplitudes are far more varied.

For instance, noise-cricket-swap-c1-3.wav and noise-cricket-swap-c1-8.wav

vary only by seed. Example noise-cricket-swap-c1-3.wav is loud with decreasing

amplitude for its first half, and soft with increasing amplitude for it’s second half.

Example noise-cricket-swap-c1-8.wav begins similarly, but it’s second half is fairly

constant amplitude throughout, except an extremely quiet waveform segment has

been edited in towards the end. Example noise-gliss-swap-c1-0.wav has a much
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more jagged amplitude envelope than the other examples.

Sinusoids

The random-crossover sinusoids evolved with the swapping mutation (sin-

cricket-swap-c0-4.wav, sin-gliss-swap-c0-0.wav, sin-pot-swap-c0-0.wav, and sin-

walking-swap-c0-0.wav) are quite different from the sinusoids evolved without mu-

tation (§5.1.4). Swapping increases the amount of edits made to individuals. Just

as random-crossover runs sound more fragmented than fixed-crossover runs, runs

with the swapping mutation are more fragmented than runs without the swap-

ping mutation. Runs converge to washes of sinusoids of different pitches spliced

together, instead of converging to simpler sequences of pitches.

The fixed-crossover sinusoids evolved with the swapping mutation (sin-

cricket-swap-c1-3.wav, sin-gliss-swap-c1-0.wav, sin-pot-swap-c1-0.wav, and sin-

walking-swap-c1-5.wav) provide a clearer picture of the swapping mutation’s be-

havior, since the population converges to the point where most of what we can

hear are copies of the same individuals. What we end up with has wide ampli-

tude variation and many different pitches. Although amplitude variation can’t be

introduced by the mutation itself, silence can creep in at the ends of waveforms.

Once we can copy any part of the waveform and splice it anywhere else, silence

can be introduced anywhere in the waveform. Despite the sound of editing, there

is very little pitch variation in the waveforms at the end of evolution. Sometimes

the waveform is a combination of a single pitch and silence (sin-walking-swap-c1-

5.wav), sometimes the waveform is composed of a couple of pitches and silence

(sin-gliss-swap-c1-0.wav, sin-cricket-swap-c1-3.wav), and sometimes there are mul-

tiple pitches and silences in parallel (sin-pot-swap-c1-0.wav). In this last case, the

population hasn’t converged many versions of the same individuals; there are two

or more waveforms represented in the population.
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Real-World Sounds

Real-world sounds with the swapping mutation exhibit many of the same

features as sinusoids. One crucial difference is that it’s easier to tell where the

swapped components of a sound came from if we know the original samples well

enough. The random-crossover examples (real-cricket-rev-c0-0.wav, real-walking-

rev-c0-1.wav, real-gliss-rev-c0-0.wav, and real-pot-rev-c0-0.wav) don’t converge

enough for us to tell what edits happened to make the waveforms in the pop-

ulation. However, we can discern the characteristic sound of the mutation. In

each of these examples, the population evolves towards a texture of dense cuts

and splices. This mutation also lets the population evolve a varied amplitude

envelope, which shares features with the environmental amplitude envelope. For

instance, by the end of 300 generations of evolution, real-walking-rev-c0-1.wav has

acquired a few peaks but is relatively soft throughout, much like the walking.wav

environment it evolves in. Whereas real-gliss-rev-c0-0.wav has a rather jagged en-

velope, but it tends towards a higher amplitude envelope than the other examples,

which corresponds to the gliss.wav environment. The pitch profiles also develop

correspondences with the environments. The walking.wav environment has low

background noise and real-walking-rev-c0-1.wav evolves to a noisy texture, clearly

from percussive instruments; the vocal sounds have been weeded out of the popu-

lation.

The fixed crossover examples (real-cricket-rev-c1-1.wav, real-walking-rev-

c1-3.wav, real-gliss-rev-c1-0.wav, and real-pot-rev-c1-0.wav) give us a clearer pic-

ture of what happens to individuals. In real-cricket-rev-c1-1.wav, one of the most

prominent sounds early in evolution is a vocal [i] sound. In the middle section, we

can hear that a small snipped has been swapped out of the [i] sound, giving us

two articulations of the vowel. By the end of evolution, I can hear at least 5 small

pieces of this sound spread throughout the waveform. In real-gliss-rev-c1-0.wav,

by the middle 10 generations, we hear some skipping that results from a part of

the sound being swapped with something unobtrusive. By the end, we hear that
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most of the intelligible sounds have been swapped away, and the resulting sound

is rather choppy. Example real-pot-rev-c1-0.wav also evolves towards fragmented

waveforms, although by the end of 300 generations of evolution, its constituent

sounds are recognizable. By the middle ten generations, real-walking-rev-c1-3.wav

has converged to the point where most of its individuals begin with a struck cymbal

mixed with voice and end with another cymbal followed by two percussive sounds

that sound as though they have already been edited by the mutation. By the last

10 generations of evolution, the sonic material that had been only in the second

half of the individuals seems to dominate the entire individual.

5.1.10 Mutation by Duplication

Noise

The examples of noise evolved with the duplication mutation do not be-

have substantially differently from previous noise examples. Both the examples

evolved with a random crossover point (noise-cricket-odup-c0-7.wav, noise-gliss-

odup-c0-0.wav, noise-pot-odup-c0-0.wav, and noise-walking-odup-c0-0.wav) and

the examples evolved with a fixed-crossover point (noise-cricket-odup-c1-6.wav,

noise-gliss-odup-c1-2.wav, noise-pot-odup-c1-0.wav, and noise-walking-odup-c1-

0.wav) grow somewhat pitchier over the course of evolution. We might expect

their amplitude envelopes to behave like the amplitude envelope of noise evolved

with the swap and reverse mutations, since the three mutations involve editing.

But, it does not. It behaves more like the amplitude envelopes evolving with the

amplify and exponentiate mutations. This might be because duplication can only

stretch the point of the mutation; it cannot move material from one place to the

other.

Sinusoids

The random-crossover examples (sin-cricket-odup-c0-3.wav, sin-gliss-

odup-c0-0.wav, sin-pot-odup-c0-1.wav, and sin-walking-odup-c0-0.wav) and fixed
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crossover examples (sin-cricket-odup-c1-0.wav, sin-pot-odup-c1-0.wav, sin-gliss-

odup-c1-0.wav, and sin-walking-odup-c1-0.wav) of sinusoids evolving with the over-

writing duplication mutation begin to exhibit the characteristic sound of the muta-

tion: an echoing quality. Although it does not audibly affect the waveform, another

characteristic of the mutation is that it sometimes introduces substantial DC offset

by duplicating a segment of waveform that happens to have low enough frequency

to be skewed in either positive or negative. This is seen in sin-pot-odup-c0-1.wav,

sin-walking-odup-c0-0.wav, and sin-gliss-odup-c1-0.wav.

Real-World Sounds

The effect of the overwriting duplication is clearest with real world sounds,

both with random crossover points (real-cricket-odup-c0-2.wav, real-cricket-odup-

c0-4.wav, real-gliss-odup-c0-0.wav, real-pot-odup-c0-3.wav, and real-walking-odup-

c0-9.wav) and with fixed crossover points (real-gliss-odup-c1-3.wav, real-cricket-

odup-c1-0.wav, real-pot-odup-c1-3.wav, real-pot-odup-c1-5.wav, real-walking-

odup-c1-3.wav, and real-pot-odup-c1-2.wav). In all cases, the sounds gain more

rhythmic repetitions as evolution progresses. As in previous cases, fixed crossover

runs converge more quickly than random-crossover runs. However, the character-

istic sound of the mutation is more noticeable, and mutations near the crossover

point can smear sounds more readily to the other side. The end result is that it is

more difficult to discern the first and second halves of the individuals.

We hear both real-pot-odup-c1-2.wav and real-pot-odup-c1-3.wav, which

differ only in their random seed, converge to fairly quiet percussive sounds, with

real-pot-odup-c1-2.wav quieter than real-pot-odup-c1-3.wav. Example real-pot-

odup-c1-5.wav, which also shares the same variables but has a different seed, con-

verges to a louder vocal sound. real-pot-odup-c1-2.wav exhibits a single duplication

fairly early in evolution. The mutation has been applied to a fairly long segment

of waveform, and manifests as something a percussive tremolo. Midway through

evolution, we hear a similar tremolo in the voice, but it is quickly drowned out
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by percussive sounds. These percussive sounds exhibit mutation applied to much

shorter segment of waveform and with many more duplications. The sounds take

on a buzzing quality. By the end of evolution, most of the mutations have died

out; the metallic percussive sound the population converges to has a bit of a rattle

in its tail, but otherwise just sounds much like an unmodified sample. real-pot-

odup-c1-3.wav has a similar trajectory to real-pot-odup-c1-2.wav, but the details

are different. Vocal sounds are more prominent than percussive sounds in the

beginning, although they both end with a percussive sound with slight mutation.

Recall that since there is no amplification from mutation, the only source of am-

plitude variation is weighted fitness. Examples real-pot-odup-c1-2.wav and real-

pot-odup-c1-3.wav are quite similar, but it is clear that neither of them converged

to a very fit population. They ended up in similar local minima, because fitter

sounds were lost to chance. Example real-pot-odup-c1-5.wav converges to a louder

sound: a vocal sound much like those that are evident in the middle generations of

real-pot-odup-c1-2.wav and real-pot-odup-c1-3.wav. It is interesting to note that

real-pot-odup-c1-2.wav and real-pot-odup-c1-3.wav converge to an amplitude en-

velope that is similar to the environment, but that real-pot-odup-c1-5.wavhas a

more similar spectrum.

Example real-cricket-odup-c1-0.wavconverges to a point that is fairly sim-

ilar in spectrum, length, and amplitude to its environment. In the middle ten

generations, one can clearly hear the competition between two sounds: a repeti-

tive buzz followed by a voice and a voice with repetition applied to a fairly long

segment of waveform. Both sounds are present in the middle ten generations, but

one is louder, and then the other. In the end, the buzz followed by a voice wins.

In the final ten generations, this the only audible sound present in the population.

It has a buzzier quality, suggesting that it has mutated somewhat since its earlier

instantiation.

Example real-gliss-odup-c1-3.wav still has the characteristic sound of the

mutation: various tremolos and buzzes, depending on the length of the affected
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segment. However, unlike evolution in the pot.wav environment, the evolution in

the gliss.wav environment tended to select for heavily mutated samples. Although

in the middle ten generations, there is a prominent vocal glissando, by the end of

evolution, the population has converged to a very buzzing sound, whose original

samples can hardly be identified. It is tempting to say they were originally per-

cussive, but the mutation has enough impact on the timbre that the last part of

the sound could just as easily be heavily transformed vocal sounds.

Example real-walking-odup-c1-3.wav converges to a point at which the

original sounds are overwhelmed by the buzzing character of the mutation. Given

the starting sounds available to the algorithm, this is a fair approximation of the

background noise in the environment. The amplitude is also similar, with two loud

peaks at the beginning, and a shorter peak midway through the sound.

The random-crossoer examples generally sound more denatured than the

fixed-crossover examples. Example real-cricket-odup-c0-4.wav evolves to a point

in which the sound is an unrecognizable gurgle. This suggests many edits in all

prominent members of a diverse population. Example real-cricket-odup-c0-2.wav,

which has evolved in the same environment with a different seed, converges a

great deal more. The characteristic repetitive sound of the mutation is present

throughout, but the resultant sound is pitched.

Example real-gliss-odup-c0-0.wav converges to a fairly noisy sound. Like

real-cricket-odup-c0-4.wav, it has a gurgling quality, suggesting that the popula-

tion has not converged. The amplitude envelope is the loud beginning and quieter

endings that have characterized many of the amplitude envelopes in previous ex-

amples. As I suggest above, this is amplitude characteristic seems to characterize

a collection of very common local minima.

Example real-pot-odup-c0-3.wav converges to a loud beginning and soft

ending. However, it doesn’t have the same shape as the envelopes that are char-

acteristic of the local minima above. Since the environment is a struck pot, this

envelope would have been selected for by evolutionary pressures. The population
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converges to a point in which it is primarily composed of a repeated vocal sound.

The real-walking-odup-c0-9.wav example converges to very quiet, crack-

ling noise with a peak at the beginning. Again, this is fairly similar, both in timbre

and envelope, to its environment.

5.2 Creative Works

I’ve produced several tape pieces using my genetic algorithm framework.

Run5 and run12 are two pieces that present different runs of the same underly-

ing algorithm on the same population. Run16 uses the same algorithm as run5

and run12 Snapshots is a CD-length tape loop composed from multiple runs of a

different instantiation of the algorithm. An untitled real-time installation uses a

substantially different algorithm; in order to function in real time, it manages time

and presents sounds in a substantially different manner than the tape pieces.

5.2.1 Run5 & Run12

Run5 and run12 are two pieces evolved from the same population with

the same initial conditions. Run5 is 3’54 and is for stereo (two channels of sound).

Run12 is 10’ and is for quad (four channels of sound). Both evolve the same popu-

lation of sounds gathered from around my apartment: toys, playground equipment,

pots, pans, stemware, bottles, coins, pebbles, etc. Run5 [Mag03c] was presented

in concert on November 6, 2003 at UCSD and on April 13, 2006 at Mills College.

Run12 was presented in concert on November 10, 2003 at UCSD and included on

the Sound check one[Mag03b] CD.

These were the first real pieces I made using genetic algorithms. I de-

veloped the framework as I saw compositional need. I started with an otherwise

conventional genetic algorithm (described in [Mag03a]). I wanted the results to be

rhythmically variable, so I replaced fixed-length critters using discrete generations

with variable-length critters using overlapping generations (pg. 38 ff.). Based on
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my experiments in §5.1, I knew that all of the mutations I had developed would

be sonically interesting. I gave every mutation the same probability except expo-

nentiate, which I made less probable because in large doses it can alter the sounds

more drastically than the others.

I did not want these compositions to have a linear trajectory. I wanted

something with an organic form. So, I set out to develop a world that changed in

time. I let the environment interpolate between sounds, occasionally shifting to

an entirely different sound (pg. 61 ff.). I wanted the world to map onto speakers,

so I let each speakers have its own environmental conditions (pg. 60 ff.). These

environmental conditions were the fitness functions and variables tied to each en-

vironment. I liked the sounds of each mutation over different chunk sizes.7 I

wanted the potential for them to manifest in different ways in the same piece. A

hodgepodge of all possibilities at once would not be as musically compelling. I

thought it would be better to present periods in which mutations had one musical

character followed by mutations with another character. Mutation probabilities

and chunk sizes were given bounds, not fixed values. Each mutation had its own

randomly assigned chunk size and probability. New values are selected each time

the changing-world algorithm triggers a cataclysmic change.

I wanted the speakers to interact—anything less would just be separate

pieces that happened to play at the same time out of different speakers—so I de-

veloped a system that allowed sounds to migrate between speakers (pg. 60 ff.). An-

other relic of the original algorithm was the method for selecting parents (pg. 58 ff.).

Each time an individual dies, another individual replaces it in the population. The

replacement individual is the offspring of two parents chosen from the population

based on fitness. This means that sounds might play without reproducing even

once. When I composed these pieces, I had not considered the possibility of having

the replaced individual always be a parent.

The output representation of the population was based on fitness. Indi-

7Chunk size here is in terms of number of zero crossings, as described in Chapter III, rather than
time-based chunks, as described in chapterIV.
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viduals’ amplitudes were weighted by their fitness, then the entire population was

recorded into a sound file with a channel for each location (pg. 38 ff.). I wanted

the potential for musical surprises. With this representation, unfit sounds can lurk

unheard in the population and appear when the environment changes. For this

potential to be tapped, the unfit sounds can’t be allowed to die out. This meant

it was extremely important to maintain biodiversity. So, I used a biodiversity

modifier, that would make sounds less fit each time they reproduced, giving less

fit sounds better odds of reproducing (pg. 44).

Each of these took several hours to calculate. To get run5, I ran the

algorithm repeatedly with the same starting conditions then sat down a few days

later with the results and picked the one I liked best. All of the runs were pleasant

to listen to and shared certain qualities, but run5 were selected for presentation

because it was particularly engaging. After the concert, most people told me that

they liked it, but that they wished it were longer. Run12 was generated in the

same way, but with more generations of evolution.

Both run5 and run12 evolved in four-location environments. I chose

my two favorite locations for run5, and presented all locations in run12. This

decision was both practical and aesthetic. The concert on which run5 was first

presented had two speakers; the concert for run12 had four speakers. I could have

just evolved two locations for run5, but I liked the idea of presenting a partial

view of the world. Evidence of the unpresented locations creeps into the presented

locations through migration, but the entire process doesn’t confront the listener.

Both pieces sound repetative and rhythmic on the surface. Closer atten-

tion reveals a thick texture of aperiodic sounds that somehow give the illusion of

periodicity. This compound rhythm changes over the course of the piece. The

shape repeats with rhythmic deviations.

Because multiple copies of fit sounds appear in the population, at some

parts of the pieces there are hints of effects created by digital delay. These effects

are subtle and intermittent.
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There’s a thrilling moment almost two minutes into run5 where a periodic

whistling sound—I think it’s the rubbed rim of a piece of stemware—blooms out of

the background textures, plays a few times at different volumes, then disappears.

The sound appears and disappears in five seconds. Since run5 only presents two

of four co-evolved channels, one might think this is the result of migration from

an unheard channel. However, the same phenomena occurs for different sounds in

several places in run12. Migration changes a sound’s environment, and drastically

changing the environment is necessary to produce the drastic change in fitness that

foregrounds previously unheard sounds.

In addition to these blooming moments that pop up in both pieces, sounds

constantly fade in and out over long periods of time in both pieces. For instance,

there is a sound of a rattling lid on a glass container that takes 30 seconds to appear

in run5 that takes another 30 seconds to disappear. It returns over three minutes

into the piece and stays around in various guises until the end of the piece. Most

of the sounds that make up the periodic texture come and go over long periods

of time. The listener can focus on any one sound and hear it gradually change

in time and recognize it when it comes back later in the piece. This results from

gradually changing environments.

5.2.2 Run16

Run16 was a piece developed in collaboration with saxophone improviser

Tracy McMullen for a performance on January 31, 2004, as part of the Powering

Up/Powering Down festival at UCSD. Ideally, we would have wanted to use an

interactive algorithm. However, when we developed this piece, the algorithm could

not run in real-time. But, we knew that a real-time algorithm changing only

through evolution wouldn’t ever catch up with the playing. It would always evolve

towards the sound world she was creating, and gain features from it if she stayed

there long enough. But, she would generally be a moving target. This meant that

we could simulate interaction using the same underlying algorithm as I used for
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run5 and run12.

We recorded several sessions of Tracy improvising on her own. I edited

two types of material from these sessions: discrete sounds and larger phrases.

Since Tracy’s playing in the performance would be a moving target, the collection

of large phrases could be used as a pool of potential fitness functions. My thought

was that evolving toward a succession of Tracy-like phrases would be close enough

to evolving towards Tracy’s actual playing.

The initial population was comprised of discrete sounds. Since longer

sounds are produced either from the duplication mutation or from the random

crossover points in sexual reproduction, evolutionary pressures should cause the

discrete sounds in the initial population to gradually build up phrase-like struc-

tures.

I produced several runs of the algorithm with samples of Tracy’s playing.

I chose my favorite run for the performance. We rehearsed with other runs so

Tracy would be improvising with a previously unheard tape. We rehearsed with

other runs to simulate a live run of the algorithm in anticipation of eventually

developing a real-time version.

5.2.3 Snapshots

Snapshots is a tape piece intended for installation. It was commissioned

by Adrienne Jenik for her Specflic installation at UCSD on October 28, 2005. It

was also presented in the Artpool gallery in Budapest on April 10–12, 2006, as

part of the EvoWorkshops 2006 conference. An excerpt of it is included in the

Process Revealed DVD, which was released as part of the 4th European Workshop

on Evolutionary Music and Art.

Snapshots is roughly the length of a CD and is intended for looping . A

CD-lengthed loop was a practical decision. I wanted it to be as long as possible

and still fit on a CD; I could have made it a more regular time — an even hour,

for instance — but I didn’t want its looping to predictably align with the clock.
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Rather than evolve the same set of sounds once, Snapshots presents mul-

tiple runs of the same algorithm on subsets of the same set of sounds. The sounds

are all sampled from technological artifacts: bleeps, bloops, rings, fans, machinery,

buttons, etc. The variables are the same for each run, allowing initial conditions

to send the algorithm in different evolutionary directions.

In previous versions of the algorithm (§5.2.1–5.2.2), I had mutations avail-

able for editing and changing amplitude. The duplicate mutation can make

pitches where there were none, but it can’t change pitch. I wanted the algorithm

to have the potential to change pitch. So, I added the change length muta-

tion (§3.1.4).The introduction of the change length mutation is perceptible:

there are places in the piece where pitches can be heard to drift as evolution pro-

gresses.

I wanted to explore ways of introducing biodiversity with something more

integral to the act of reproduction than the biodiversity modifier (pg. 44). I

changed the reproduction model so that each individual reproduced at least once:

an individual would be one of the parents of the individual that would replace it.

The other parent would be chosen based on fitness (pg. 58 ff.).

The algorithm was run many times and I chose some of the runs to

splice together to make the piece. As with run5, I ran the algorithms with four

discrete locations, then chose two channels for each run I presented. I modified

the algorithm from the one used for run5 and run12 so I could run the algorithm

for a particular time period rather than for a set number of generations. The

algorithm ran until it reached the designated end point, then continued to run

without reproduction until each member of the population had finished playing.

I edited the runs together: some of them I faded out early; some of them played

their entire length; some areas overlap quite a lot; others have no overlap.

Beyond the surface quality resulting from the sounds chosen for the ini-

tial population, the run5 and run12 pieces and Snapshots share sonic qualities.

Snapshots is made from multiple evolutionary runs, each of which shares the same
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formal structure as run5 and run12. There is a repetative, rhythmic quality. The

rhythms constantly change. Each repetition is different from the last. Sometimes

the changes are slight; the piece evolves gradually for a time. Sometimes another

member of the population has risen to prominence. Sometimes it stays for a mo-

ment then disappears; sometimes it stays for a while, and another period of gradual

evolution begins.

5.2.4 Real-Time Installation

I am currently developing a real-time version of the algorithm as part

of a collaborative installation with Sean Griffin, Miya Masaoka, and others.The

installation examines mythos and pseudoscience that have grown up around Nean-

derthals since their discovery in . My component of the installation evolves samples

of Neanderthal speech and song in the context of a modern Homo Sapien gallery.

The samples are from poems and songs written by Sean Griffin in Mousterian, a

conjectural Neanderthal language. The piece is designed to be installed in a space

ringed by speakers. The ring world that the sounds inhabit is mapped onto the

ring of speakers (see §3.2.2).

The out-of-time versions of the algorithm were programmed in ansi c and

were free to be fairly ideological. The only constraint on the algorithm was my

patience. Since I could always run the algorithm when I went to bed or left the

house, this wasn’t much of a constraint. The real-time version is programmed in

Pure Data with some custom objects written in c. The constraints are considerable

and I have had to sacrifice ideology.

Pure Data calculates data a block at a time. If the computer is able to

calculate everything it’s asked to calculate within the time a block takes to play,

the output is seamless. If the computer is asked to calculate too much, it will delay

output of the block, causing a popping sound. To some extent, I can get around

this with larger block sizes, but this introduces latency. The evolutionary process

is relatively forgiving of latency, but I don’t want to rely on this too heavily in a
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version of the algorithm intended for real-time.

In an ideal world, all critters would be identical agents who interact with

their idiosyncratic representations of the world. Over their lifespan, they would

act in the world, then they would mate and produce offspring to take their place

in the population when they reached the end of their lifespan. Unfortunately,

reproduction is computationally expensive. Individuals have to find a mate and

reproduce, then their offspring has to undergo mutation. These operations are

easiest to implement in Pure Data as instantaneous processes: they have to happen

in a single block. Computational constraints already require me to use much

smaller populations than I used in out-of-time versions of the algorithm. I have had

to place constraints on the length of an individual because reproduction of a single,

long individual, can cause glitches. I can’t risk multiple critters reproducing at the

same time. So, I have developed a real-time algorithm that takes reproductive

agency from individuals in the population and uses a single, central, reproduction

module.

Only one critter at a time reproduces. Critters can’t reproduce unless

they’ve been played at least once. When they play, they are added to a queue if

they aren’t already in it. As soon as one individual finishes reproducing, the next

individual in the queue starts reproducing. The individual looks for a mate within

some mating distance specified by the individual’s data gene. Once the pool of

potential mates is determined, mate choice is random based on fitness.

Rather than play once with volume weighted by fitness, sounds play pe-

riodically over their (much longer) lifespans. Fit sounds play more frequently than

unfit sounds. All mutations described in §3.1.4 are available to the algorithm.

The rhythmic nature of evolution manifests in the real-time algorithm,

but it changes more slowly than the tape version. The repetitions are regular over

the course of an individual. Instead of hearing a gradually changing aggregate of

all sounds, rhythms of individuals can be heard as such. This perception changes

somewhat as the population converges. Because individuals look for mates nearby,
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there is a tendency for inbreeding. As nearby individuals converge, groups sound

more like channels from the tape pieces.

The fitness function uses the output of the fiddle object from Pure Data.

The fitness is the correlation between the individual’s pitch and the environment’s

pitch plus the correlation between the individual’s amplitude envelope and the

environment’s amplitude envelope. The environment is the environment of the

room in which the piece is installed. It is fed to the algorithm by mics placed around

the room and mapped onto the evolutionary space (see §3.2.2). It is important

to note that since speakers are playing into the room and mics are sampling from

the room, the sounds of the population playing through the speakers are part of

the environment the sounds themselves evolve in. This acts as a sort of social

evolutionary force.

I’ve experimented with the installation in several environments and have

found it to be quite responsive. It is more responsive to the amplitude component of

fitness than to pitch. When the environment is dense, the population grows dense.

When the environment is sparse, the population grows sparse. Since there is a

feedback between the population and the environment, there is a point where there

will be balance—the density of the population stays the same without appreciable

sounds in the environment besides the sound from the speakers. Turning down the

speaker volume will cause the population to grow sparse.

The tape pieces are intended for much shorter periods of presentation

than the real-time installation. As such, the installation evolves much further—it

pushes the boundaries of the algorithm and brings to light constraints on its usage.

First, the algorithm cannot create; it can only modify. Second, extreme periods of

evolution eventually degrade the signal.

The algorithm can only evolve sounds that are descended from starting

sounds. Eventually, biodiversity is lost. If there is even one unfit individual in the

population that is carrying genes not present in the fit individuals, those sounds

have the potential to enter the rest of the population if the environment changes
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such that that individual becomes fit. Once that individual dies, its sounds are

lost forever. If the environment changes, the population can only adjust to it using

sounds remaining in the gene pool.

The above claim about sounds in the population following the density of

the environment only holds to a point. Loud sounds get shorter and softer relatively

easily. If the environment is silent for too long, it loses its ability to spring back and

become dense. If there are any long individuals in the environment, they will parent

many offspring when the population becomes dense again and the population will

spring back quickly. Offspring can range in length from arbitrarily short to the

length of both parents. In practice, most offspring fall in the middle. But, the

population only needs one arbitrarily short individual to become incredibly fit to

bring down density if the environment calls for short, sparse sounds. Since the

length of the offspring can, at best, be the combined lengths of both parents, it

takes much more time to evolve long individuals once they’ve all become very

short.

Loss of biodiversity affects timbre even more. In one experimental session,

I ran the algorithm in a room with several friends who were studying, watching TV,

and talking. The population of sounds were speech based, and they maintained a

speechy timbre. At some point, people stopped talking and started approaching

the mics and making noises in a deliberate attempt to affect the sounds produced

by the algorithm. Mostly people clapped, made clicking noises with their tongues,

and PTHBed. After 5–10 minutes, the population responded to the impulses by

becoming gritty. Consonants were relatively fit, but vowels weren’t. The vowels

sounds were lost. People decided they didn’t like the sound and tried singing long

tones and humming. There were not any harmonic sounds left in the population to

benefit from the new environment. Since there were no vowels left to benefit from

the new environment, the only way to get pitched sounds would be to rebuild them

from the consonants through mutation. This is possible, assuming the environment

stays the same. Since the odds of mutation are low, it would take a very long



124

time to build pitchy sounds solely through mutation. And the sounds that were

build this way would still have some timbral print of the consonants they were

constructed from.

After very long periods of evolution—on the order of days—all sounds

degrade. Initially, edits are far enough apart to leave identifiable ssegments of

sound between them. If edits can happen at any zero crossing, eventually most

zero crossings in the waveform will have been the site of an edit at some point over

the course of evolution. Intelligibility, or recognizable timbres and snippets from

the original sounds, will be lost. This process is even quicker—on the order of

hours—if edits are allowed to happen anywhere in the waveform and not restricted

to zero-crossings. The resultant sounds are staticy growls.

This means there are practical constraints on the installation: it can’t run

forever with impunity. It can run in a gallery setting where it is turned off at night

and started up fresh every morning. If it’s going to be left running for long periods

of time, there will need to be some algorithmic mechanism to counter degredation.

I will probably add a counter that keeps track of how many generations have

occurred for a particular agent. After a certain number of generations, instead

of reproducing, the original sound from the initial population, or some other new

sound, can be introduced to the population and the population can continue to

evolve.

5.3 Future Directions

The evolutionary framework described here has a demonstrated potential

to produce a myriad of aesthetic sonic artifacts. Here are some directions I’d like

to take this work in, as the future permits.

• One of my first concerns is to find a way to modify the algorithm to restore

reproductive agency to individual sounds. The most obvious way to do this is

to replace the control objects in Pure Data that implement reproduction and



125

mutation instantaneously with signal objects that implement reproduction in

time. This should distribute the computations over the life of an individual

so that it will no longer matter if multiple individuals reproduce at the same

time.

• Explore the use of sonic features instead of waveforms as fitness functions.

• Explore implicit fitness functions. I would like to explore a system that uses

purely implicit fitness functions. In my review of the literature (§2.3), I de-

scribe works by Brooks and Ross [BR96], Dahlstedt and Nordahl [DN01], and

Berry and Dahlstedt [BD03] that create sound works using simulated worlds.

All of them use synthesized sounds, but I think it would be interesting to

develop simulated worlds along these lines that use the genetic basis devel-

oped in §3.1.1. They might result in pieces with different formal behaviors

than those whose form comes from evolving in an algorithmically generated

world (as in §3.2.2).

• It would be interesting to make an online installation that harvests sounds

for evolution—either uploaded from users or from public domain or creative

commons websites. They could be initial population or the fitness function.

• Deriving form from process is an important part of using this evolutionary

framework, but Snapshots demonstrates that larger forms that incorporate

evolutionary segments can be aesthetically rewarding. I would like to explore

the use of this framework to produce tape pieces whose formal structure is

different from the one dictated by the evolutionary process. For instance,

I’d like to make a piece that evolves backwards: reverse all of the initial

samples, run the algorithm as normal, then reverse the result. I’ve done some

experiments with this. It is especially interesting with speech. The result is

intelligible words that gradually are constructed from fragmented babble. It

might be interesting to combine forwards and backwards evolution. It might

be nice to just use a short snippet of evolved sounds in the body of another
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tape piece.

• The metaphor of evolution in particular environments suggests site-specific

pieces. I’d like to do a series of site-specific pieces that use sounds recorded

at Geocache sites. At each site, I would record sounds and use them as my

initial population. I would evolve a 3-5 minute piece using an algorithm

similar to the one used in Snapshots (§5.2.3). The piece would be burned to

a CD then left as a hitchhiker in the cache where it was recorded. People

who find the CD would be invited to burn themselves a copy, but to leave

the original CD in another cache.

• It would be nice to develop a system based on my work with Tracy McMullen,

that would let the performer play with their own samples and have those

samples respond to what they are doing in the performance. Given the

speed at which the algorithm responds to the environment, I think a slightly

faster version of the algorithm could be adapted for performance. It could

be seeded with prerecorded samples or take samples from the performance.

The later could be done either manually or algorithmically.

• I’ve experimented with an algorithm in which a sub-population is created

from automatically sampled sounds; each newly sampled sound replaces the

oldest sound in the sub-population so that all samples are relatively recent.

The rest of the population is, in effect, the working population. Only the

working population mates and plays back; but individuals in the working

population only select mates, based on fitness, from the auto-recorded sub-

population. This means recent sounds are always introduced into what is

played back, while memories of past sounds remain in the algorithm’s out-

put. This could be interesting for either an installation or live performance.



Appendix

The tables below provide details regarding the parameters that vary between ex-

amples discussed in §5.1. The following program variables are held constant for

all examples discussed in §5.1. All waveforms in the populations are normalized

before processing. All examples run for 300 generations. The biodiversity modifier

is 0.95 for each example.
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