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Abstract

Humans have an impressive ability to rapidly process global information in natural scenes to infer 

their category. Yet, it remains unclear whether and how scene categories observed dynamically 

in the natural world are represented in cerebral cortex beyond few canonical scene-selective 

areas. To address this question, here we examined the representation of dynamic visual scenes 

by recording whole-brain blood oxygenation level-dependent (BOLD) responses while subjects 

viewed natural movies. We fit voxelwise encoding models to estimate tuning for scene categories 

that reflect statistical ensembles of objects and actions in the natural world. We find that this 

scene-category model explains a significant portion of the response variance broadly across 

cerebral cortex. Cluster analysis of scene-category tuning profiles across cortex reveals nine 

spatially-segregated networks of brain regions consistently across subjects. These networks show 

heterogeneous tuning for a diverse set of dynamic scene categories related to navigation, human 
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activity, social interaction, civilization, natural environment, non-human animals, motion-energy, 

and texture, suggesting that the organization of scene category representation is quite complex.

Keywords

fMRI; dynamic scene category representation; voxelwise encoding model; cluster analysis

Introduction

A primary aim of visual neuroscience is to shed light on how the human brain represents 

diverse information in natural scenes. Behavioral research on scene perception suggests 

that humans categorize scenes to more efficiently process the wealth of information in 

visual scenes (Greene & Oliva, 2009; Konkle, Brady, Alvarez, & Oliva, 2010; Rousselet, 

Joubert, & Fabre-Thorpe, 2005). Therefore, it is likely that information on scene categories 

is represented across cortex. Consistent with this notion, previous neuroimaging studies 

have demonstrated that the category of a visual scene could be classified among a limited 

number of basic categories (e.g., beaches, forests, mountains) based on blood-oxygen level­

dependent (BOLD) responses in classical scene-selective regions (parahippocampal place 

area, PPA; retrosplenial complex, RSC; and occipital place area, OPA), object-selective 

lateral occipital complex (LO), and anterior visual cortex (R. A. Epstein & Morgan, 

2012; Jung, Larsen, & Walther, 2018; Walther, Caddigan, Fei-Fei, & Beck, 2009; Walther, 

Chai, Caddigan, Beck, & Fei-Fei, 2011). A common approach in these studies was to 

operationally define visual scenes into few non-overlapping categories. However, natural 

scene categories might show varying degrees of statistical correlation, and a real-world 

scene might be characterized under several distinct categories. In addition, because these 

studies used static scenes, they did not possess the necessary tools to demonstrate how 

dynamic scene categories are represented in the human brain.

To examine the statistics of natural scene categories, a recent study (Stansbury, Naselaris, 

& Gallant, 2013) used a data-driven algorithm to procure a broad set of scene categories 

wherein potential similarities between the categories were also taken into account. In this 

approach, each scene category is defined as a list of presence probabilities for a large array 

of constituent objects that appear within natural scenes. Once the algorithm learns a set 

of categories, the likelihood that a given scene belongs to each of the learned categories 

can be inferred based on the objects within the scene. This scene category model has been 

reported to yield improved predictions of single-voxel BOLD responses in classical face- 

and scene-selective areas compared to an alternative model based on the presence of a few 

diagnostic objects that frequently appeared in the presented natural images (Stansbury et al., 

2013). This result raises the possibility that object co-occurrence statistics form the basis of 

scene category definitions above and beyond individual objects present in scenes.

Stansbury et al. defined categories of static scenes via their constituent objects and focused 

on category responses in classical scene-selective regions like many prior studies on scene 

representation (R. A. Epstein & Morgan, 2012; Jung et al., 2018; Walther et al., 2009, 

2011). Yet, several recent studies imply that much of anterior visual cortex might be 
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organized by differential tuning of voxels for actions within visual scenes (Çukur, Huth, 

Nishimoto, & Gallant, 2016; Tarhan & Konkle, 2020). In fact, real-world scenes contain 

dynamic interactions between objects and actions leading to more elaborate categories 

(Greene, Baldassano, Esteva, Beck, & Fei-Fei, 2016), and they have been reported to elicit 

widespread responses across visual cortex (Deen, Koldewyn, Kanwisher, & Saxe, 2015; R. 

A. Epstein & Baker, 2019; Isik, Koldewyn, Beeler, & Kanwisher, 2017; Maguire et al., 

1998). Therefore, it is likely that natural scene categories based on co-occurrence of objects 

and actions are represented across broadly distributed networks in the human brain.

Here, we sought to learn high-level features that capture scene-category information in 

dynamic visual scenes, and to examine how this information is represented across cerebral 

cortex. We first recorded BOLD responses while subjects viewed a large set of natural 

movies that contained 5252 distinct objects and actions. To identify scene-category features, 

we employed a statistical learning algorithm that learned a large set of categories on the 

basis of the co-occurrence statistics of objects and actions in the natural world. We then 

used the learned scene categories within a voxelwise modeling framework (Çukur et al., 

2016; Çukur, Nishimoto, Huth, & Gallant, 2013; Huth, Nishimoto, Vu, & Gallant, 2012; 

Nishimoto et al., 2011) to estimate scene-category tuning profiles in single voxels across 

cerebral cortex. Subsequently, we performed a clustering analysis in order to reveal large­

scale networks of brain regions that differ in their scene-category tuning.

Materials and Methods

Experimental Design

Subjects.—Five healthy human subjects (all male, ages 25–32 years) with normal or 

corrected-to-normal vision participated in this study. MRI data were collected in five 

separate scan sessions: three sessions for the main experiment, one session for acquiring 

functional localizers, and one session for acquiring anatomical data. Experimental protocols 

were approved by the Committee for the Protection of Human Subjects at the University of 

California, Berkeley. All subjects gave written informed consent prior to scanning.

MRI protocols.—MRI data were collected on a 3T Siemens Tim Trio scanner (with a 

32-channel head coil) located in the Brain Imaging Center at the University of California, 

Berkeley. T2*-weighted functional data were acquired using a gradient-echo echo-planar 

imaging sequence with the following parameters: repetition time (TR) = 2 s, echo time 

(TE) = 31 ms, a water-excitation pulse with flip angle = 70°, voxel size = 2.24 × 2.24 

× 3.5 mm3, field of view = 224 × 224 mm2, and 32 axial slices spanning across the 

entire brain. Anatomical scans were performed with a T1-weighted magnetization-prepared 

rapid-acquisition gradient-echo sequence with the following parameters: TR = 2.30 s, TE = 

3.45 ms, flip angle = 10°, voxel size = 1 × 1 × 1 mm3 and field of view = 256 × 256 × 192 

mm3.

Main experiment.—Whole-brain BOLD responses were recorded while subjects passively 

viewed two hours of color natural movies. The movies were compiled by combining 10–20 

s movie clips selected from the Apple QuickTime HD gallery and YouTube.com (Nishimoto 

et al., 2011). The stimulus was separated into two independent sets. The first set was used 
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to train voxelwise encoding models and it consisted of 12 separate runs of 10 min each. 

Each clip appeared only once in the training set. The second set was used to test the 

performance of fit models, and it consisted of 9 runs of 10 min each. Each 10 min run 

was composed of the same ten 1 min blocks, but the presentation order of the blocks were 

randomly shuffled in each run. Each 1 min block was presented 9 times in total and the 

respective BOLD responses were averaged across repeats. The movies (512 × 512 pixels) 

were presented at a 24° × 24° visual angle, using an MRI-compatible projector (Avotec) 

and a custom-built mirror system. A fixation spot (0.16° × 0.16°) with alternating color (3 

Hz) was overlaid onto the movies. Note that the dataset reported here was also analyzed 

in several other studies (Çelik, Dar, Yılmaz, Keleş, & Çukur, 2019; Çukur et al., 2016; 

Çukur, Huth, Nishimoto, & Gallant, 2013; Huth et al., 2012). The experimental stimuli 

are available at https://crcns.org/data-sets/vc/vim-2. Subject data and labeled stimuli are 

available at https://crcns.org/data-sets/vc/vim-4.

Functional localizers.—Functional localizer and retinotopic mapping data were acquired 

separately from the main experiment. Localizers for category-selective regions of interest 

(ROIs) were acquired in six 4.5 min runs, each divided into 16 blocks. Each block lasted 16 

s and contained 20 static images from each of the following categories: human faces, human 

body parts, non-human animals, household objects, spatially scrambled objects, and places. 

These category blocks were displayed in a different order in each run. Each image was 

displayed for 300 ms, and 500 ms blank periods were inserted between consecutive images. 

To sustain vigilance, subjects were instructed to press a button when two consecutive images 

were identical. The localizer for area V5/MT+ was acquired in four 90 s runs, each divided 

into 6 blocks. Each block contained 15 s of continuous or temporally scrambled natural 

movies (Tootell et al., 1995). Retinotopic mapping data were acquired in four 9 min runs. 

The runs contained clockwise or counter-clockwise rotating polar wedges, and expanding or 

contracting rings, respectively (Hansen, Kay, & Gallant, 2007).

Data preprocessing.—The FMRIB Linear Image Registration Tool (FLIRT) from FSL 

5.0 (Jenkinson, Bannister, Brady, & Smith, 2002) was used for functional alignment. First, 

intra-run transformations were estimated to align volumes within each run. A template 

volume was then generated for each run as the temporal average of the aligned volumes. 

In each subject, the template volume of the first run in the first experimental session 

was selected as the target template. Afterwards, inter-run transformations were estimated 

between the template of each run and the target template. The transformations for intra-run 

and inter-run alignment were combined, and finally applied on fMRI data in a single 

step. Following alignment, low-frequency drifts in BOLD responses were removed from 

each voxel using a median filter with a 120 s temporal window. Lastly, each voxel’s 

response was normalized to zero mean and unit variance across time. No temporal or 

spatial smoothing was applied to the functional data collected in the main experiment. The 

functional localizer data were also motion-corrected and aligned to the target template of 

the main experiment. The localizer data were smoothed using a Gaussian kernel of 4-mm 

full-width at half-maximum (Spiridon, Fischl, & Kanwisher, 2006).

Çelik et al. Page 4

Cortex. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://crcns.org/data-sets/vc/vim-2
https://crcns.org/data-sets/vc/vim-4


Definition of functional ROIs.—Standard procedures (Spiridon et al., 2006) were used 

to define functional ROIs in each subject. Functional localizer data were examined to 

identify contiguous groups of voxels that showed significantly stronger responses to a 

specific stimulus category according to standard contrasts (t test, p < 10−4, uncorrected). 

Places versus isolated objects contrast was used to define the PPA in the parahippocampal 

gyrus (Aguirre & D’Esposito, 1997; R. Epstein & Kanwisher, 1998), the RSC in the 

retrosplenial sulcus (Maguire, 2001), and the OPA in the temporal-occipital sulcus (Dilks, 

Julian, Paunov, & Kanwisher, 2013). In addition, faces versus objects contrast was used to 

define the fusiform face area (FFA) (Kanwisher, McDermott, & Chun, 1997) and occipital 

face area (OFA) (Gauthier, Tarr, et al., 2000). Human body parts versus objects contrast was 

used to define the extrastriate body area (EBA) (Downing, Jiang, Shuman, & Kanwisher, 

2001). Objects versus spatially scrambled objects contrast was used to define the lateral 

occipital complex (LO) (Malach et al., 1995). Continuous versus temporally scrambled 

movies contrast was used to define the area V5/MT+ (Tootell et al., 1995). Last, the 

retinotopic mapping data were used to define the early visual areas (V1–4) following 

standard procedures (Engel, Glover, & Wandell, 1997; Hansen et al., 2007).

Visualization on flatmaps.—The organization of scene category representation across 

cortex was visualized by using flattened cortical maps. Individual subjects’ flatmaps were 

generated from their anatomical data (T1-weighted brain scans) using Caret5 software (Van 

Essen et al., 2001). Information about the cluster memberships of individual voxels was 

projected onto the flattened cortical maps by aligning functional and anatomical data, using 

the Pycortex package (Gao, Huth, Lescroart, & Gallant, 2015).

Voxelwise Scene Category Models

An encoding model was used to measure voxelwise tuning for scene categories (Figure 1). 

In addition, a control model based on parts of scenes was used to measure voxelwise tuning 

for object and action components of natural scenes. The performances of these two models 

were compared in terms of the variance they explained in recorded BOLD responses.

Scene-category model.—A comprehensive model of scene categories that build on 

constituent objects and actions in scenes is lacking. Thus, to objectively identify the features 

of the scene-category model, we used a data-driven approach based on the latent Dirichlet 

allocation (LDA) algorithm (Blei, Ng, & Jordan, 2003; Phan & Nguyen, 2007). LDA was 

originally proposed to uncover latent topics from a large text corpus on the basis of word 

co-occurrence statistics (Blei et al., 2003). A recent study (Stansbury et al., 2013) used LDA 

to learn scene categories from a database of natural images based on object co-occurrence 

statistics. Here, we used the LDA algorithm to learn dynamic scene categories that capture 

co-occurrence statistics of not only objects, but also actions in dynamic natural scenes.

LDA was performed on a large training corpus of movie scripts and scene annotations 

containing 5252 distinct object and action categories (see Training corpus for details). 

Scene-category features were learned that capture the co-occurrence statistics of objects 

and actions in this corpus. Each scene-category feature was a 5252-dimensional vector 

that reflected the probability of occurrence for individual objects and actions within the 
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respective scene category. Given the list of objects and actions in a novel scene, an LDA­

based inference procedure can also be performed to calculate the probability that the scene 

belongs to a particular scene category. This procedure was performed on each 1-s clip of the 

movies, yielding for each clip a probability distribution over the scene-category features.

Representative scene-category features are shown in Figure 1. The features correspond 

to natural scene categories that capture the co-occurrence of multiple objects and actions 

frequently encountered in the real world. For example, one feature reflects information about 

urban street scenes: “in a street view, a bus is driven on a road while a truck, a park appears 

in the background” (C1 in Figure 1). Another feature reflects information about a roadway 

scene: “a car is driven by a driver on a road” (C2 in Figure 1).

Training corpus.—A training corpus was compiled to learn the features of the scene­

category and part-of-scene models. This corpus consisted of the annotations in the Microsoft 

COCO data set (Lin et al., 2014), the Microsoft Research video description corpus 

(Chen & Dolan, 2011), and subtitles of 4068 documentaries. Raw text in the compiled 

corpus contained 26 million words in approximately 700,000 separate entries. Standard 

preprocessing routines were applied including tokenization, stemming, removal of frequent 

stop words, and part-of-speech tagging (Bird, Klein, & Loper, 2009) to only retain objects 

(i.e., nouns) and actions (i.e., verbs). Following preprocessing, the corpus contained 10 

million words with a vocabulary of nearly 28,000 words. The vocabulary was further 

reduced to 5252 objects and actions that commonly appeared in both the corpus and the 

movie descriptions provided by Amazon Mechanical Turk workers.

Stimulus time courses.—To project the movies onto the features of the scene-category 

model, objects and actions that appeared in each 1-s clip were manually labeled. During 

labeling, the WordNet lexicon (Miller, 1995) was used to take into account hierarchical 

relationships among object and action categories (Huth et al., 2012). For instance, for a 

clip containing the object “dog”, labels for superordinate categories “canine”, “carnivore”, 

“mammal”, “animal”, “organism”, and “living thing” were also assigned. Next, the LDA 

algorithm was used to infer the distribution of model features in each 1-s movie clip based 

on the constituent object and action labels. The distributions were aggregated across clips to 

form the stimulus time course.

High-level semantic features in natural visual stimuli may be partly correlated with low-level 

motion-energy features, including spatiotemporal frequency, spatial position, and orientation 

(Çukur et al., 2016; Çukur, Nishimoto, et al., 2013; Lescroart, Stansbury, & Gallant, 

2015). To reduce spurious correlations, a motion-energy regressor was appended to the 

scene-category model. The motion-energy features were previously shown to account for 

BOLD responses elicited by natural movies in early visual areas (Nishimoto et al., 2011). 

To calculate the motion-energy features of the movies, the movie frames were filtered with 

2,139 spatiotemporal Gabor wavelets at 3 temporal frequencies (0, 2, and 4 Hz), 6 spatial 

frequencies (0, 1.5, 3, 6, 12, and 24 cycles/image) and 8 directions (0, 45, 90, …, 315 

degrees). The nuisance regressor characterized the total motion energy as the summed output 

of 2,139 Gabor filters.
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Statistical Analysis

Model fitting.—A voxelwise modeling framework was used to measure single-voxel 

tuning in individual subjects (Çukur et al., 2016; Çukur, Huth, et al., 2013; Çukur, 

Nishimoto, et al., 2013; Ester, Sprague, & Serences, 2020; Han et al., 2019; Huth et al., 

2012; Serences & Saproo, 2012; Wen et al., 2017). In this framework, each voxelwise 

model contains a set of weights that reflect the effect of individual model features on the 

voxel’s responses. Because model weights are signed, they do not only capture response 

magnitude but also differentiate between relative increases and decreases in responses. For 

the scene-category model, the direction in which a given scene-category feature effects 

BOLD responses will therefore be captured in the sign of the corresponding model weight. 

Note that subsequent clustering analyses are also based on fit model weights. As such, 

the differentiation between characteristic response increases/decreases will be reflected 

in functional cluster definitions. Models were fit to optimally predict measured BOLD 

responses (Figure 1, see https://github.com/icon-lab/SPIN-VM). Fitting was performed on 

7200 s of training data using linear regression with l2-regularization. The stimulus time 

course was temporally down-sampled to match the temporal sampling rate of BOLD 

responses. To capture hemodynamic delays, separate finite-impulse-response (FIR) filters 

were appended to each feature. These filters introduced temporal delays of two, three, 

and four samples (or equivalently 4, 6, and 8 s). The FIR coefficients were fit together 

with the model weights. A 20-fold cross validation procedure was used to determine the 

optimal regularization parameter (λ) for each voxel. In each fold, voxelwise models were 

trained on a randomly sub-sampled set (at a rate of 90%) of the training data. Model 

performance was then measured on the held-out 10% of the training data. Performance was 

taken as the correlation coefficient (Pearson’s r) between the measured and predicted BOLD 

responses. Raw correlation coefficients are biased downward by noise in the measured 

BOLD responses (David & Gallant, 2005). Hence, correlation coefficients were corrected 

for noise bias following the procedure detailed in (Huth et al., 2012). The optimal λ for 

each voxel was selected to maximize average model performance across cross-validation 

folds. Voxelwise models were refit using this optimal λ on the entire training data. The 

performance of the fit models was then evaluated on 540 s of test data using a 10,000-fold 

jackknife resampling (at a rate of 80%) procedure. Prediction scores were measured on 

jackknife samples. Significance level was taken as the proportion of jackknife samples with 

negative scores. Corrections for multiple comparisons were conducted using false-discovery­

rate (FDR) control (Benjamini & Yekutieli, 2001).

Control Models

Part-of-scene model.—To identify object-action components of natural scenes, we used 

a data-driven approach based on the non-negative matrix factorization (NMF) algorithm 

(Lee & Seung, 1999; Pedregosa et al., 2011). An original application of the NMF algorithm 

was extraction of sparsely distributed, additive semantic features from a large text corpus 

(Lee & Seung, 1999). Here, NMF was performed on the same training corpus as LDA 

to learn part-of-scene features that reflect object and action components of natural scenes 

(Supp. Figure 1). Each part-of-scene feature was a 5252-dimensional vector that reflected 

the probability of occurrence for individual object and action categories. Given a novel 
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scene, an NMF-based inference procedure was performed to express the distribution of part­

of-scene features within that scene. This procedure was performed on each 1-s clip of the 

movies, yielding for each clip a distribution over the part-of-scene features. Representative 

part-of-scene features are shown in Figure 2.

Gist model.—We used voxelwise gist models to measure tuning for low-level spatial 

features in the movies. While early visual areas are commonly assumed to represent low­

level features of visual scenes (Grill-Spector & Malach, 2004), it remains unclear what 

specific information in natural scenes is represented in PPA, OPA, and RSC (R. A. Epstein, 

2014). Recent studies suggest that these areas might represent both low-level spatial features 

(Kravitz, Peng, & Baker, 2011; Park, Brady, Greene, & Oliva, 2011; Watson, Hartley, & 

Andrews, 2014), and high-level semantic features (Çukur et al., 2016; Huth et al., 2012; 

Stansbury et al., 2013; Walther et al., 2009).

Voxelwise gist models were fit to measure tuning for spatial layout and texture of visual 

scenes. The gist features were shown to be effective in capturing the global spatial properties 

such as openness, expansion, and texture of natural scenes (Oliva & Torralba, 2001). To 

calculate the gist features of the movies, the movie frames were first down-sampled to 256 

× 256 pixels. A total of 512 gist features were then computed in 16 image blocks, each 

containing 4 spatial scales and 8 orientations per scale (Oliva & Torralba, 2001).

Model selection.—Humans can perceive a vast number of scene categories as well as 

constituent object and action categories within scenes (Çukur et al., 2016; Huth et al., 2012; 

Stansbury et al., 2013). However, because the spatiotemporal resolution of fMRI is coarse, 

BOLD responses will admit sensitive examination of only a portion of these categories 

(Stansbury et al., 2013). Thus, we separately identified the set of scene-category and the set 

of part-of-scene features that best explain measured BOLD responses across subjects.

To do so, we incremented the number of features learned by the LDA (for the scene category 

model) and NMF (for the part-of-scene model) algorithms from 10 to 200. We fit separate 

voxelwise models for each distinct number of features, and we measured the relative number 

of significantly predicted cortical voxels across subjects. We find that the optimal number of 

features is 180 for the scene-category model and 190 for the part-of-scene model (Figure 3). 

Because the optimal numbers of features were very close across models, the scene-category 

model with 180 features and the part-of-scene model with 190 features (as control model) 

were used in subsequent analyses.

We also note that although the best performance for the scene-category model is attained 

with 180 features, a reduced model based on 60 features has a close performance. The 

difference between these two models in terms of the number of significantly predicted 

cortical voxels was less than 0.02% across subjects. Yet the smaller number of features in 

the reduced model offers an advantage in visualization and interpretation of scene category 

representations. Thus, we used this reduced model in cluster analysis and subsequent 

visualization on the cortical surface.
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Cluster Analysis.—The natural movies used here span a broad variety of complex real­

world scenes. The movies contain static scenes involving objects such as urban views or 

landscapes and complex, dynamic scenes that involve both objects and actions such as 

locomotion or social interaction. A core issue that this report addresses is how these various 

scene categories are represented in the brain. To investigate this issue, we performed cluster 

analysis on voxelwise tuning profiles (i.e., vectors of model weights) for scene categories. 

Because the specific areas that are involved in scene category representation remain unclear, 

the cluster analysis included all cortical voxels significantly predicted by the scene-category 

model (p < 0.05, FDR corrected). Clusters were obtained via the k-means algorithm, where 

similarity of voxelwise tuning profiles was measured using Euclidean distance (James, 

Witten, Hastie, & Tibshirani, 2013). To avoid unstable clustering solutions, we employed 

k-means++ with smart initialization of cluster centers (Arthur & Vassilvitskii, 2007). Lastly, 

each cluster center was taken as the mean tuning profile across voxels within that cluster.

To examine the consistency of clusters across subjects, we performed a cluster analysis 

on each subject separately and obtained individual-subject cluster centers. Only the 

significantly predicted voxels (p < 0.05, FDR corrected) in each subject were included in 

individual-subject level analyses. We also performed a cluster analysis after pooling voxels 

across subjects and obtained group-level cluster centers. To prevent bias due to across­

subject variability in signal-to-noise ratios of fMRI data and brain sizes, a fixed number of 

voxels were selected from each individual subject in the group-level analysis. A minimum of 

10222 significantly predicted voxels were obtained for subject S3 (p < 0.05, FDR corrected), 

therefore a total of 51110 voxels were included across all five subjects. Across-subject 

consistency was then assessed by measuring the similarities between individual-subject 

cluster centers and also by measuring the similarities between individual-subject cluster 

centers and the group-level cluster centers. Similarity was taken as the correlation coefficient 

(Pearson’s r) between the cluster centers.

A critical hyperparameter for cluster analysis is the number of voxel clusters to recover. We 

determined the number of voxel clusters using an unsupervised procedure. This procedure 

measured the proportion of explained variance in tuning profiles by the respective cluster 

centers. To do this, the total variance in tuning profiles was measured across all voxels. 

Then, within-cluster variances in tuning profiles across voxels were identified within each 

cluster. Subsequently, the difference between the total variance and the sum of within-cluster 

variances across clusters was calculated. The proportion of explained variance in tuning 

profiles was taken as the ratio of this difference to the total variance (James et al., 2013). The 

optimal number of clusters was selected as the number beyond which the improvement in 

explained variance fell below one percent, since at that point clusters started to differentiate 

between subjects as opposed to functional selectivity profiles.

Scene categories that elicit differential responses across voxel clusters were manually 

labeled (see Figure 4). Labeling for each scene category was performed by visual inspection 

of the top five movie frames that yielded the maximum probability for that category. To 

ensure reliability of the scene category labels, four healthy adult males who were naïve as to 

the purposes of the study were asked to rate the labels. A 5-point Likert scale was used to 

measure labeling accuracy. The raters were asked to inspect the movie frames for each scene 
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category, rate the assigned labels for accuracy (1 = inaccurate, 3 = moderately accurate, 5 

= accurate), and provide their own labels. Rater consistency was measured by pooling all 

ratings and calculating the average and standard error of the mean (SEM). Cluster labeling 

was also based on the same four raters’ suggestions by majority voting.

Control for stimulus sampling bias.—Separate scene categories in natural movies may 

contain a shared subset of objects or actions. For instance, the object “human body” and 

the action “jumping” can take part in “a concert” scene as well as in “a sports activity” 

scene. Thus, the scene-category features learned here might show correlations in terms of 

their distribution over objects and actions. In turn, these correlations may bias the voxelwise 

tuning profiles for scene categories and subsequent cluster analysis on these profiles. To 

assess whether our results are biased by this potential confound, we performed an additional 

cluster analysis based on the stimulus time course of scene-category features. To control 

for temporally lagged stimulus correlations, we generated multiple time courses for scene­

category features temporally delayed by lags from −5 to 5 s. We averaged these time courses 

to obtain an aggregate stimulus matrix (time × scene-category features). We then performed 

cluster analysis on the aggregate stimulus matrix to group movie clips into clusters based on 

their scene category distributions. Stimulus cluster centers were taken as the mean profile 

of scene-category features across movie clips within each cluster. Finally, we compared the 

variance explained in voxelwise tuning profiles by the voxel cluster centers to that explained 

by the stimulus cluster centers. For this comparison, each voxel was assigned to a stimulus 

cluster center that was most similar to its tuning profile.

Power Analyses

Several a priori power analyses were conducted for statistical assessment of model 

prediction scores. As in the main analyses, prediction score was taken as the correlation 

coefficient between measured and predicted BOLD responses. First, to determine the 

minimum detectable effect size for single-voxel prediction scores, a Monte Carlo procedure 

of 1000 iterations was performed. During each iteration, “measured” and “predicted” BOLD 

responses were simulated as sets of random samples from a bivariate normal distribution. 

The set size was taken as 270 to match that of the test set used in the main analyses. 

Both variables in the normal distribution had zero mean and unit variance. The effect size 

was systematically controlled by varying the correlation between the two variables. Given 

a measured-predicted response set, responses for a single voxel were resampled without 

replacement using a 10,000-fold jackknife resampling (at a rate of 80%) procedure to 

calculate significance level (p). Power was taken as the percentage of Monte Carlo iterations 

with significant test results (p < 0.05). For a desired power level of 0.8, the minimum 

detectable effect size in single-voxel prediction scores was 0.05.

Second, a Monte Carlo simulation was performed to detect the minimum detectable effect 

size for differences in single-voxel prediction scores between two competing models. In 

this case, two distinct bivariate normal distributions were used to simulate prediction scores 

from the two models, respectively. For the first model taken as a reference, the correlation 

between the variables in the bivariate distribution was set to zero. For the second model, 

the correlation between the variables in the bivariate distribution was systematically varied. 
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Given a pair of measured-predicted response sets from the two models, responses were again 

resampled without replacement 10,000 times at a rate of 80% to calculate significance level 

(p). Power was taken as the percentage of Monte Carlo iterations with significant test results 

(p < 0.05). For a desired power level of 0.8, the minimum detectable effect size in difference 

of single-voxel prediction score between two models was 0.05.

Lastly, a Monte Carlo simulation was performed to detect the minimum detectable effect 

size in ROI-level prediction scores between competing models. Note that the smallest ROI 

examined in this study contained more than 10 voxels. Therefore, simulations were run 

for a hypothetical ROI with 10 voxels. The simulations for between-model differences in 

single-voxel prediction score were expanded to include 10 independent voxels. In each 

iteration, significance level was calculated after averaging prediction scores across 10 voxels 

within the ROI. Power was taken as the percentage of Monte Carlo iterations with significant 

test results (p < 0.05). For a desired power level of 0.8, the minimum detectable effect size in 

ROI-level difference in prediction score between two models was 0.02.

A separate power analysis was conducted for statistical assessment of cluster-center 

correlations across subjects. As in the main analyses, similarity was taken as the correlation 

coefficient between the cluster centers. To determine the minimum detectable effect size, 

a Monte Carlo procedure of 1000 iterations was performed. During each iteration, cluster 

centers were simulated as sets of random samples from a bivariate normal distribution. 

The number of clusters was taken as 9 to match the number of clusters used in the 

main analyses. Both variables in the normal distribution had zero mean and unit variance. 

The effect size was systematically controlled by varying the correlation between the two 

variables. Cluster centers were resampled without replacement using a 10,000-fold bootstrap 

resampling procedure to calculate significance level (p). Power was taken as the percentage 

of Monte Carlo iterations with significant test results (p < 0.05). For a desired power level 

of 0.8, the minimum detectable effect size in cluster center correlations was 0.055. Effects 

measured in the main analyses were only deemed significant if they exceeded the minimum 

detectable effect sizes identified by these a priori power analyses.

Results

To investigate the nature of high-level scene information that is represented across the 

cerebral cortex, we recorded BOLD responses while subjects passively viewed 2 h of natural 

movies. We used voxelwise modeling to assess scene representations in single voxels. We 

fit a scene-category model to measure tuning for scene categories (e.g., an urban street, a 

forest) that reflect co-occurrence statistics of objects and actions in natural scenes. Model 

performance was evaluated by calculating voxelwise prediction scores on BOLD responses 

reserved for this purpose. Prediction scores were assessed in PPA, OPA, and RSC, as well as 

several other classical functional ROIs including intraparietal sulcus (IPS), posterior superior 

temporal sulcus (pSTS), fusiform face area (FFA), extrastriate body area (EBA), human MT 

(V5/MT+), lateral occipital complex (LO), visual retinotopic area V7, and early visual areas 

(RET: V1–V3). We also fit a part-of-scene model that acted as a control model. This model 

measures tuning for scene components (e.g., a car, a road, or a driving action) that reflect 

constituent objects and actions in natural scenes (see Supp. Figure 1).
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The scene-category and part-of-scene models significantly predict BOLD responses both 

at the group- and the individual-subject levels (jackknife test; p < 0.05 (FDR corrected), 

prediction score (r) > 0.05). Yet, we find that the scene-category model outperforms 

the control model in single voxels distributed across much of cortex (jackknife test; p 

< 0.05, Δr > 0.05). Among voxels that are significantly predicted by either of the two 

models, the proportion of voxels in which the scene-category model outperforms the control 

model is given in Table 1 (Δr > 0.02; see Supp. Table 1 for the proportion of voxels 

where the control model outperforms the scene-category model). The scene-category model 

shows dominant performance in PPA, OPA, RSC, IPS implicated in spatial attention, 

and pSTS implicated in representing human-object interactions. In contrast, the control 

model appears relatively dominant, albeit to a lesser degree, in face-selective FFA and 

object-selective V7. Meanwhile, the two models show relatively balanced performance in 

RET, LO, MT+, and EBA. Thus, scene-category representations are more dominant in brain 

regions involved in various aspects of scene processing, and scene-category and object 

representations are equally dominant in many other visual areas except some specialized 

object-selective regions. Overall, these results suggest that many cortical regions represent 

holistic information about scene categories beyond information conveyed by constituent 

object and action components. Therefore, functional selectivity as measured by the scene­

category model was further examined in subsequent analyses to assess scene category 

representations across cortex.

Organization of Scene Category Representation Across the Cerebral Cortex

Several previous studies provided evidence that category representations are organized into 

a multi-dimensional semantic space distributed systematically across the cerebral cortex 

(Haxby et al., 2011; Huth et al., 2012). We have recently shown that this organization is 

apparent even within classical category-selective areas, such as FFA and PPA, resulting 

in several spatially-segregated functional voxel clusters with distinct semantic tuning 

profiles in each ROI (Çukur et al., 2016; Çukur, Huth, et al., 2013). Collectively, these 

results imply that representation of scene category information shows a more fine-grained 

cortical organization than typically assumed (Grill-Spector & Weiner, 2014). Therefore, 

we hypothesized that scene categories that reflect the co-occurrence statistics of objects 

and actions are systematically represented in multiple spatially-segregated functional voxel 

clusters across the cerebral cortex.

To examine the cortical organization of scene category representation, we performed cluster 

analysis on voxelwise tuning profiles that were estimated by the scene-category model. 

We first determined the optimal number of voxel clusters by examining the variance in 

tuning profiles that was explained by cluster centers (see Materials and Methods). The 

optimal number of voxel clusters was determined as nine (see Supp. Figure 2). These nine 

clusters were identified by pooling voxels across subjects. But it was not clear how similarly 

these clusters were expressed in individual subjects. Thus, we examined the inter-subject 

consistency of cluster centers by assessing the correlation coefficient between individual­

subject cluster centers. We find that the individual-subject cluster centers are significantly 

correlated across subjects (r = 0.52 ± 0.02, mean ± sem across subjects; bootstrap test, p < 

0.05) and they are significantly correlated with the group cluster centers (r = 0.70 ± 0.03; 
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p < 0.05). These results suggest that scene category representation is organized into nine 

functional voxel clusters consistently in each individual subject. Because the cluster centers 

are highly consistent across subjects, to facilitate inter-subject comparisons and enhance 

sensitivity, we used the group-level clustering in subsequent analyses.

We expected these 9 voxel clusters to be tuned to different scene categories and that there 

would be a meaningful pattern providing a sensible functional interpretation. To determine 

these differences, we measured the average response of each cluster to 20 scene categories 

frequently observed in daily life (Figure 4). These 20 categories were labeled by the authors 

and rated by four healthy adult males (non-authors). Rater consistency was very high (4.71 

± 0.06; 1 = inaccurate labeling, 5 = accurate labeling, lowest category = 3.75 ± 0.48) across 

categories. Figure 5 shows the average responses of each cluster. Clusters were named based 

on the same four raters’ suggestions. Cluster 1 contains 12% ± 2% (mean ± sem across 

subjects) of the significantly predicted voxels across subjects on average, and yields greater 

responses to scenes showing navigation, such as a car driven on a road or a pedestrian 

walking, and in a lesser degree, to scenes showing a mountain or a seaside. Reduced 

responses are observed for scenes depicting verbal communication, which mostly contain 

close-up views of human faces (p < 0.05, bootstrap test).

Clusters 2–4 contain 9% ± 2%, 11% ± 2%, and 8% ± 2% of the significantly predicted 

voxels across subjects on average, respectively. These yield greater responses to scenes 

showing humans and human-made environments and artifacts, such as a person jumping, 

cycling or walking outdoors, and humans engaged in verbal communication (p < 0.05). 

Reduced responses are observed for scenes that contain landscapes such as a mountain or 

a seaside view (p < 0.05). More specifically, Cluster 3 yields greater responses to scenes 

depicting social communication, such as verbal or textual communication (p < 0.05) and 

Cluster 4 yields greater responses to urban scenes with human-made environments and 

artifacts, such as vehicles, train stations, or trains (p < 0.05). For these two clusters, reduced 

responses are observed for scenes showing natural environments or non-human animals (p < 

0.05).

Cluster 5 contains 15% ± 3% of the significantly predicted voxels across subjects on 

average, and yields greater responses to scenes showing natural environments such as a 

mountain, a body of water, or aquatic animals (p < 0.05). Cluster 6 contains 7% ± 2% of 

the significantly predicted voxels across subjects on average, and yields greater responses to 

scenes showing non-human animals (p < 0.05). For these two clusters, reduced responses are 

observed for scenes showing humans and human-made environments (p < 0.05).

Clusters 7 and 8 contain 12% ± 2% and 13% ± 3% of the significantly predicted voxels 

across subjects on average, respectively. These yield greater responses to low-level features 

of the movies. More specifically, Cluster 7 yields greater responses to motion-energy in the 

movies, such as a scene showing a person involved in a sports activity or in locomotion; or 

an animal or a vehicle in motion. Reduced responses are observed for static scenes such as 

a mountain view (p < 0.05). Cluster 8 yields greater responses to texture in scenes such as 

dynamic text on a smooth background or a flying object against a cluttered background (p 
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< 0.05). Finally, Cluster 9 contains 13% ± 1% of the significantly predicted voxels across 

subjects on average, but these voxels are not selective for any particular scene category.

Regions of fMRI signal dropout are shown in dark gray. Conventional ROIs identified 

using separate functional localizers are labeled and marked with white boundaries. Major 

anatomical landmarks and sulci are also shown: central sulcus, CeS; cingulate sulcus, 

CiS; collateral sulcus, CoS; inferior frontal sulcus, IFS; intraparietal sulcus, IPS; inferior 

temporal sulcus, ITS; middle temporal sulcus, MTS; prefrontal cortex, PfC; postcentral 

sulcus, PoCeS; precuneus, PrCu; superior frontal sulcus, SFS; superior temporal sulcus, 

STS; temporo-parietal junction, TPJ.

Cortical Maps of Scene Category Representation

To visualize the distribution of scene category tuning across cerebral cortex, we projected 

the clusters onto the cortical flatmaps of individual subjects (Figure 6). The distribution 

of voxel clusters across the cerebral cortex reveals that scene category representation is 

organized in nine spatially-segregated networks of brain regions. We named the networks 

according to their respective scene-category tuning as revealed by inspection: navigation, 

human activity, social interaction, civilization, natural environment, non-human animal, 

motion-energy, texture, and low-category selectivity networks.

Navigation: This network shows high selectivity for navigational scenes and is distributed 

broadly across occipital, posterior parietal, and ventral temporal cortices. The navigation 

network overlaps with scene-selective areas PPA, OPA, and RSC. It also includes voxels 

located in posterior subregions of IPS and some voxels located near superior and posterior 

primary somatosensory cortex (S1F), regions that have been associated with visual attention 

(Culham & Kanwisher, 2001; Posner, Sheese, Odludaş, & Tang, 2006).

Human Activity: Networks related to animacy, such as human activity, social interaction, 

civilization, and non-human animals, are distributed broadly across occipital, posterior 

parietal, and ventral temporal cortices. The human activity network includes several 

previously identified functional areas in occipitotemporal cortex that represent human faces 

and bodies, such as FFA, OFA, and EBA (Kanwisher, 2010). The human activity network 

also overlaps with MT+ and the posterior bank of the inferior temporal sulcus (ITS), two 

areas suggested to be involved in processing of biological motion (Thompson, Clarke, 

Stewart, & Puce, 2005).

Social Interaction: The social interaction network includes areas that have previously 

been associated with processing of social information and theory of mind (Saxe, 2006). 

More specifically, within temporal cortex, this network includes voxels located in pSTS, an 

area previously linked to face perception, human motion and actions, and social interaction 

(Deen et al., 2015; Isik et al., 2017). The social interaction network also includes voxels in 

parietal cortex that run along the anterior regions of precuneus (PrCu), an area previously 

associated with social cognition (Cavanna & Trimble, 2006). Finally, it also includes voxels 

in frontal cortex that are located in the inferior frontal sulcus face patch (IFSFP) which 
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has previously been linked to visual speech processing (Calvert & Campbell, 2003; Tsao, 

Moeller, & Freiwald, 2008).

Civilization: The civilization network shows high selectivity for human-made artifacts and 

environments. It neighbors the social interaction network and includes voxels near pSTS, 

which has previously been linked to the representation of actions involving human-made 

objects (Kable & Chatterjee, 2006).

Non-human Animal: The non-human animal network is broadly distributed across several 

ventral temporal areas near FFA and EBA, and includes voxels that are located in V7 

and V3B. The non-human animal network also includes voxels located in the postcentral 

sulcus (PoCeSu). These regions have previously been associated with the representation of 

non-human animals (Huth et al., 2012; Mruczek, Von Loga, & Kastner, 2013).

Others: The remaining networks that predominantly represent motion and form 

information in visual scenes are broadly distributed across striate, extrastriate, 

occipitotemporal, and parietal cortices. The natural environment network includes voxels 

within occipital cortex, mainly in retinotopically organized early visual areas (V1-V4). The 

texture network also largely overlaps with retinotopically organized early visual areas, as 

expected. Lastly, the motion-energy network includes voxels located in V3A, V7, EBA, and 

MT+, as well as anterior IPS and superior bank of PoCeSu.

Distribution of Networks within Conventional Functional ROIs

Previous neuroimaging studies have suggested several brain areas in ventral temporal cortex 

that are homogeneously tuned for specific categories, such as face-selective area FFA and 

scene-selective areas PPA, OPA, and RSC (Kanwisher, 2010). However, recent studies have 

indicated that these classical ROIs consist of several functional subdomains with differential 

tuning for individual object and action categories (Çukur et al., 2016; Çukur, Huth, et 

al., 2013; Weiner, Sayres, Vinberg, & Grill-Spector, 2010). Thus, it is possible that some 

ROIs might contain distinct functional subdomains that exhibit differential tuning for scene 

categories. To test this functional heterogeneity hypothesis, we examined the relative size 

of the nine scene-category networks within functional ROIs. Specifically, we measured the 

percentage of voxels that belong to each network in PPA, OPA, RSC, FFA, EBA, MT+, 

pSTS, LO, V7, and retinotopically organized early visual areas (Figure 7).

First, we examined the proportion of networks within scene-selective areas PPA, OPA, 

and RSC. We find that the navigation network is dominant in PPA (74% ± 6%, mean 

± sem across subjects, p < 0.05, bootstrap test, FDR corrected), OPA (70% ± 6%, p < 

0.05), and RSC (61% ± 10%, p < 0.05). This result is consistent with previous reports 

suggesting that voxels in these areas respond selectively to stimuli that contain scenes 

depicting navigation (R. A. Epstein, 2008). In addition to the navigation network, there is 

a considerable proportion of voxels in RSC (26% ± 8%, p < 0.05) that respond selectively 

to stimuli that fall into the civilization network. Several previous reports suggest that RSC 

might play a different role in representation of scenes compared to PPA and OPA (Malcolm, 

Groen, & Baker, 2016). Whereas PPA and OPA are assumed to represent local scene 
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information, RSC is hypothesized to represent the broader environment likely to capture 

navigationally-relevant information in the surroundings (R. A. Epstein, 2008). Because the 

presence and locomotion of humans can serve navigational cues in the real world, the larger 

portion of civilization network in RSC might be a reflection of the distinct functional role of 

RSC.

Functional Heterogeneity in Scene Selective Areas

We recently provided evidence that PPA, OPA, and RSC each contain two functional 

subdivisions that differ in their responses to static scenes that show human-made artifacts 

such as buildings, furniture, instruments versus dynamic scenes that show human and 

animal locomotion and vehicles (Çukur et al., 2016). That previous study aimed to 

examine the organization of object and action category representation within scene-selective 

areas, whereas the current study examines the large-scale organization of scene category 

representation across the cerebral cortex. Therefore, we hypothesized that there would 

be two distinct functional subdomains in PPA, OPA, and RSC. To test this hypothesis, 

we performed an additional ROI-wise cluster analysis based on voxelwise scene-category 

tuning profiles (not shown). We find that ROI-wise cluster analysis identifies two functional 

subdomains in PPA, RSC, and OPA. The first subdomain is tuned for static scene categories 

such as urban or natural environments, and the second subdomain is tuned for dynamic 

scene categories such as human and animal locomotion, and vehicles in motion. Therefore, 

our current set of results are generally consistent with our previous study that identified 

functional subdomains within scene-selective ROIs.

Functional Heterogeneity across Cerebral Cortex

We expect functional heterogeneity to be a prevalent feature across the cerebral cortex, 

rather than being restricted to the scene selective areas. Therefore, we examined the 

distribution of networks within FFA, EBA, MT+, and pSTS. In FFA, we find that the human 

activity (61% ± 10%, p < 0.05) and the social interaction (23% ± 6%, p < 0.05) (representing 

scene categories related to verbal communication and entertainment; see Figure 6) are the 

two leading networks. In EBA and MT+, the human activity network and the motion-energy 

network occupy a relatively larger portion compared to the remaining networks (44% ± 

7% in EBA, p < 0.05; 38% ± 6% in MT+, p < 0.05). In pSTS, voxels are more broadly 

distributed across the human activity, social interaction, and civilization networks (22% ± 

8%, p < 0.05; 36% ± 8%, p < 0.05; and 30% ± 9%, p < 0.05; respectively). This result 

is in line with previous findings that pSTS is selective for visual stimuli related to social 

perception, including the perception of faces, biological motion, others’ actions and mental 

states, and linguistic processing (Deen et al., 2015).

In addition, we examined functional heterogeneity in LO. LO has been associated with 

the representation of a number of different scene categories (Grill-Spector, Kourtzi, & 

Kanwisher, 2001; Kim & Biederman, 2011; Lowe, Rajsic, Gallivan, Ferber, & Cant, 2017). 

In line with previous findings, we find that voxels in LO are broadly distributed across the 

human activity, motion-energy, texture, and non-human animal networks (37% ± 4%, p < 

0.05; 30% ± 3%, p < 0.05; 16% ± 5%, p < 0.05; and 10% ± 4%, p < 0.05; respectively).
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Next, we examined retinotopically-organized visual areas that are known to be selective for 

low-level structural features (Grill-Spector & Malach, 2004). As expected, we find that the 

motion-energy network predominates in V7 (54% ± 4%, p < 0.05). However, a large number 

of voxels in V7 fall into the navigation, non-human animal, and texture networks (16% ± 

7%, p < 0.05; 13% ± 6%, p < 0.05; and 11% ± 4%, p < 0.05; respectively). Meanwhile, early 

visual areas V1–3 are largely dominated by the texture network (68% ± 8%, p < 0.05).

In summary, scene-category tuning that we measured within functional ROIs is largely 

consistent with previously reported response profiles of these areas. Yet, we find that none 

of the examined ROIs represent a single network. Instead, multiple networks are present in 

all the ROIs tested. This result implies that selectivity of voxels within conventional ROIs 

is more diverse than commonly assumed, thus providing further support for the functional 

heterogeneity hypothesis (Çukur et al., 2016; Çukur, Huth, et al., 2013).

Control Analyses

Theoretical and behavioral accounts suggest that scene categories are partly correlated with 

global spatial features of natural scenes such as openness, expansion, or roughness, and that 

human observers might leverage these properties to rapidly categorize visual scenes (Greene 

& Oliva, 2009; Oliva & Torralba, 2006). Neuroimaging studies have also debated whether 

PPA represents scene categories or rather correlated low-level spatial features that differ 

systematically across scene categories (Kravitz et al., 2011; Park et al., 2011; Watson et al., 

2014). If the features of the scene-category model are partly correlated with low-level spatial 

features, then the scene-category model estimated in PPA, OPA, and RSC might be biased.

To rule out this potential confound, we performed several control analyses. First, we fit a 

separate control model—the gist model—that measures tuning for spatial layout features 

(Oliva & Torralba, 2001). We find that while the gist model provides significant prediction 

scores in place-selective ROIs (0.14 ± 0.03 in PPA, 0.15 ± 0.02 in OPA, and 0.13 ± 0.04 

in RSC; jackknife test, p < 0.05 (FDR corrected)), the scene-category model is superior to 

the gist model in each ROI (0.38 ± 0.03 in PPA, 0.41 ± 0.01 in OPA, and 0.35 ± 0.03 in 

RSC; jackknife test, p < 0.05). Second, to ensure that heterogeneity of scene-category tuning 

across the cerebral cortex is not biased by heterogeneity of tuning for low-level spatial 

features, we compared the average prediction score of the scene-category model and the 

gist model within the brain networks that were identified by the scene-category model. We 

find that the scene-category model outperforms the gist model in all networks (jackknife 

test, p < 0.05 (FDR corrected), Δr > 0.02), except for the texture network that mainly 

spans across retinotopically-organized early visual areas (jackknife test, p = 0.23; Figure 

8). This finding is consistent with the notion that early visual areas respond preferentially 

to low-level spatial features in natural scenes, whereas downstream visual areas respond 

preferentially to high-level features including scene categories (Grill-Spector & Malach, 

2004). Taken together, our results suggest that tuning for low-level spatial features captured 

by the gist model cannot fully account for scene-category tuning in scene-selective areas, 

and more broadly across the cerebral cortex.

Previous evidence suggests that scenes that are classified into the same basic-level 

category (e.g., street, beach, mountain) by human observers tend to possess characteristic 
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distributions across scene gist features (Oliva & Torralba, 2006). We therefore performed 

another control analysis to assess the degree of correlation between the scene categories 

and the gist features. To characterize the distribution of gist features of visual scenes, we 

performed principal component analysis (PCA) on gist features of natural images from a 

large public database (Xiao, Hays, Ehinger, Oliva, & Torralba, 2010). The first 20 gist 

PCs were retained that explained more than 80% of the total variance of gist features in 

the movies. The movies were projected onto the gist PCs, and Pearson’s correlation was 

then measured between individual scene categories and gist PCs (Figure 9). On average, 

we find no significant correlation between scene categories and gist PCs (|r| = 0.05; p = 

0.35, bootstrap test). Only few scene categories (verbal communication, mountain view, 

pedestrian, text) show modest correlations with the first five gist PCs. To ensure that the 

scene-category models are not biased by these correlations, we performed a control analysis 

where we included nuisance regressors that characterized the time course of the first five gist 

PCs. Scene-category models were fit, and voxel cluster centers were computed. We find that 

the cluster centers obtained with and without nuisance regressors are nearly identical (r = 

0.93 ± 0.01, mean ± sem across subjects; bootstrap test, p < 0.05). This result affirms that 

the differences in scene-category tuning between the brain networks cannot be explained by 

tuning for low-level spatial features in the stimulus.

Discussion

The aim of this study was to investigate representation of dynamic visual scenes across 

the human brain. To do this, we fit a scene-category model to measure voxelwise tuning 

for hundreds of scene categories, where categories were learned inductively as statistical 

ensembles of objects and actions in natural scenes. We find that this scene-category model 

explains a significant portion of the response variance broadly across cerebral cortex. We 

then performed cluster analysis on voxelwise tuning profiles across cortex. Consistently 

across subjects, we find nine spatially-segregated networks of brain regions that differ in 

terms of their scene-category tuning. These networks represent a broad variety of natural 

scene categories related to navigation, human activity, social interaction, civilization, natural 

environment, non-human animals, motion-energy, and texture.

At a rudimentary level, our results on the spatial organization of scene-category 

representation suggest a certain degree of functional specialization (Kanwisher, 2010). For 

instance, areas selective for natural scenes (PPA, OPA, and RSC) are within the navigation 

network; areas selective for human faces (FFA), bodies (EBA), and social interaction (pSTS) 

are within the human activity, social interaction, and civilization networks. Yet, an in-depth 

examination reveals that many conventional ROIs show significant functional heterogeneity. 

In particular, high-tier areas including FFA, EBA, MT+, RSC, and pSTS each comprise 

several functional subdomains with differential tuning for scene categories. This result is 

consistent with two recent studies from our lab analyzing the same natural movies dataset 

considered here that have identified spatially-segregated subdomains in FFA, PPA, OPA, 

and RSC, with differential tuning for object categories (Çukur et al., 2016; Çukur, Huth, et 

al., 2013). Çukur et al. had identified two subdomains within PPA, OPA, and RSC, which 

differentially responded to dynamic vs. static scenes (Çukur et al., 2016). Similarly, we 
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observe clusters within RSC, and to a lesser extent in PPA and OPA, that differentially 

respond to scenes related to navigation (i.e., dynamic) and civilization (i.e., static).

Large parts of not only visual but also nonvisual cortex have been shown to be semantically 

selective to various categories of objects and actions in a previous study that performed 

voxelwise modeling on the natural movies dataset analyzed here (Huth et al., 2012). In 

that previous study, 1705 salient object and action categories in the movies were labeled 

manually, and then used as binary stimulus features during model fitting. Here we instead 

used a descriptive learning algorithm to construct scene categories on the basis of detailed 

co-occurrence statistics of 5252 common objects and actions that were carefully compiled 

based on movie descriptions provided by Amazon Mechanical Turk workers and a large 

text corpus. Each scene category was taken as a 5252-dimensional vector containing the 

probability of occurrence for individual objects and actions within that category. These 

descriptive features likely increased our sensitivity to capture differences in selectivity for 

distinct scene categories. For instance, considering a scene where a woman is holding an 

umbrella while crossing the street on a rainy day and another scene where a woman is 

holding a cell phone and talking to a man, ‘woman’ and ‘hold’ would come across as 

two salient features commonly present in both scenes. A model that measures selectivity 

for salient objects and actions would then predict highly similar responses to these scenes. 

In contrast, here we can observe a higher-level functional division between these two 

scenes as the former would elicit responses from navigation and civilization clusters while 

the latter would elicit responses from human activity and social interaction clusters. This 

result suggests that scene categories represent nonlinear features beyond a simple linear 

superposition of objects and actions. While the model proposed by Huth et al. can be more 

sensitive to changes at the object/action level, our model is more sensitive to changes at the 

scene-category level.

Another recent study showed that the anterior visual cortex represents scene categories that 

capture co-occurrence statistics of objects in a large collection of natural images (Stansbury 

et al., 2013). Here, in addition to using dynamic movies instead of static images, we have 

also taken into account actions (not only objects) while determining our scene-category 

features. Furthermore, while Stansbury et al. mostly focused on anterior visual cortex and 

Çukur et al. focused either on FFA or classical scene-selective regions, here we further 

considered MT+ and pSTS (Çukur et al., 2016; Çukur, Huth, et al., 2013; Stansbury et 

al., 2013). This allowed us to identify additional functional subdivisions according to scene 

category tuning: social interaction, human activity and civilization networks in pSTS and 

human activity and motion-energy networks in MT+. Finally, we were able to identify 

a more varied selection of action-related scene categories such as ‘locomotion’, ‘sports 

activity’, and ‘pedestrian’ whereas Stansbury et al. only had a broad ‘people moving’ 

category. Hence, our study is based on a fundamentally more diverse set of scene categories 

that include actions derived from dynamic movies in addition to objects and that are 

represented not only in anterior visual cortex but also in MT+ and pSTS.

Here we focused on the representation of scene categories based on co-occurrence statistics 

of objects and actions. However, it has been suggested that at least some scene categories 

might have discriminating structural features (Oliva & Torralba, 2001, 2006). Therefore, it 
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is possible that scene-selective areas do not represent scene categories exclusively, but also 

other structural features that might be systematically related to scene categories (Andrews, 

Watson, Rice, & Hartley, 2015; Watson et al., 2014). To rule out this confound, we ran 

control analyses showing that scene category tuning in scene-selective areas cannot be 

attributed to tuning for low-level spatial texture and layout features, and that heterogeneity 

of scene-category tuning across neocortex cannot be simply explained by heterogeneity 

of tuning for these low-level features. Our results add to a growing body of evidence 

that suggests that high-tier visual areas yield differential responses to images of distinct 

scene categories, even when the stimuli are controlled to minimize potential correlations 

between high- and low-level features (Schindler & Bartels, 2016). That said, it is difficult 

to compile natural stimuli in which feature correlations are completely removed, so it is 

inherently challenging to disentangle the contributions of low- and high-level features to 

the organization of scene category representation (Groen, Silson, & Baker, 2017; Lescroart 

et al., 2015). Further research is required to examine whether, and to what extent, other 

structural features such as subjective spatial distance (Lescroart et al., 2015), distance to 

and orientation of large surfaces (Lescroart & Gallant, 2019), spatial expanse (Kravitz et al., 

2011; Op de Beeck, Haushofer, & Kanwisher, 2008), or space-defining properties (Mullally 

& Maguire, 2011) contribute to the representation of scene categories.

In this study, we leveraged co-occurrence statistics of objects and actions to investigate 

the organization of scene category representation across the cerebral cortex. Because 

early visual areas predominantly represent low-level visual features of scenes, such as 

contrast and texture, a scene-category model may not be ideally suited to these areas. 

A comprehensive assessment of scene representation across the entire cerebral cortex 

thus requires a hierarchical model that contains features ranging from elementary visual 

properties to object parts, entire objects, and up to scene categories. Recent studies have 

utilized convolutional neural networks to extract hierarchical features of natural visual 

scenes (Agrawal, Stansbury, Malik, & Gallant, 2014; Cadieu et al., 2014; Cichy, Khosla, 

Pantazis, Torralba, & Oliva, 2016; Eickenberg, Gramfort, Varoquaux, & Thirion, 2017; 

Groen et al., 2018; Güçlü & van Gerven, 2015; Khaligh-Razavi & Kriegeskorte, 2014; 

Yamins et al., 2014). These studies compared network features at different levels in 

terms of their success in predicting responses across visual cortex, and they reported 

that the optimal network level progressively increases towards later visual areas. Although 

our scene-category model does not explicitly leverage low-level features, the functional 

organization revealed by voxelwise scene-category tuning profiles is consistent with the 

cortical hierarchy suggested by these previous reports.

In the scene-category model, each category is defined according to a canonical set of objects 

and actions that typically occur within that category. Yet, previous reports suggest that not 

only the category of objects but also the spatial distribution of objects within a scene alters 

responses in scene-selective areas (Green & Hummel, 2006; Kim & Biederman, 2011; Kim, 

Biederman, & Juan, 2011). Unlike Stansbury et al., joint consideration of object and action 

categories in our model carries some implicit information about the spatial distribution 

of objects (e.g., woman + drive + car versus woman + load + car). However, explicit 

incorporation of scene layout features would likely further help improve model performance.
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A number of cortical networks identified in this study manifest tuning for contemporary 

scene categories such as “car driven on a road”. It is unlikely for evolution to have 

sculpted representations of categories that humans have started encountering in present­

day environments. Note, however, that visual representations in the human brain do 

not solely reflect evolution-driven hard-wired aspects of sensory processing. Instead, 

they also reflect influences from circumstantial factors including sensory experience and 

functional affordance (Barrett, 2012). Expertise in discriminating exemplars of specific 

visual categories is thought to alter cortical representations (Tanaka & Curran, 2001). For 

example, expertise for cars and birds has been associated with increased responses to these 

objects in FFA (Bilalić, 2016; Gauthier, Skudlarski, Gore, & Anderson, 2000). Furthermore, 

many brain regions examined here have been implicated in the representation of functional 

affordances of objects and scenes. For instance, RSC has been reported to represent whether 

a scene boundary impedes potential navigation (Ferrara & Park, 2016), whereas PPA has 

been linked to object and scene texture representation (Lowe et al., 2017). Therefore, it 

is likely that the human brain develops through experience and environmental interactions 

to code ecologically-important, contemporary scene categories. Yet, we cannot definitively 

rule out the possibility that scene representations might be influenced by intermediate visual 

features beyond those examined here. Future studies on scene representation are warranted 

to shed further light on this issue.

Representation of low-level structural aspects of visual stimuli (e.g., depth and texture) 

is largely driven by automatic, bottom-up processing (Andrews et al., 2015). In contrast, 

representation of high-level semantic aspects is influenced by higher cognitive processes and 

semantic abstraction (Henderson & Hollingworth, 1999). To elicit robust responses from 

high-level brain regions, here we used an engaging natural movie stimulus, and our subjects 

were all trained psychophysical observers. Still, some subjects might have inherently 

maintained lower vigilance than others, which could contribute to across-subject variability. 

In particular, the scene-category model showed relatively lower performance in S2 compared 

to remaining subjects (see Table 1). In control analyses, we compared the performance of 

the scene-category model against the gist model that measures tuning for low-level spatial 

features. We find that the scene-category model yields substantially higher performance than 

the gist model in all subjects, except S2 for which the performance improvements with 

the scene-category model are relatively lower. Thus, a potential explanation for apparent 

variability in S2 is relatively limited high-level engagement during movie watching.

The VM framework aims to sensitively measure tuning profiles of single voxels in 

individual subjects. For the natural vision experiment conducted here, the tuning profiles are 

characterized over a high-dimensional space containing hundreds of scene-category features. 

To maximize sensitivity of VM models, we conducted prolonged experiments in individual 

subjects extending over multiple scan sessions. This procedure substantially increases the 

amount and diversity of fMRI data collected per subject, and enhances the quality of 

resulting VM models (Çelik et al., 2019). At the same time, given experimental limits, 

it inevitably constrains the number of subjects that can be recruited. While inclusion of 

additional subjects might help improve statistical power, the current set of results presented 

were observed to be highly robust across subjects. We conducted an a priori power analysis 

Çelik et al. Page 21

Cortex. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to draw robust inferences about statistical assessment of prediction scores. We found that the 

outcome of this analysis justifies the results presented in this study.

In summary, we find that cortical areas in visual and nonvisual cortex show heterogeneous 

tuning for a diverse set of scene categories, and that they are clustered into nine functional 

networks according to scene-category selectivity. These findings primarily indicate a broader 

organization of scene representation across the cerebral cortex than typically assumed. 

Our results also add to a growing body of evidence suggesting a systematic functional 

organization based on a multi-dimensional semantic space spreading across and extending 

beyond conventional functional ROIs (Haxby et al., 2011; Huth et al., 2012). The current 

study supports the idea that information about statistical ensembles of objects and actions is 

an important contributing factor to the semantic space.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Latent Dirichlet Allocation (LDA) is used to uncover scene-category features.

• These features reflect statistical ensembles of not only objects, but also 

actions.

• Nine spatially-segregated cortical networks with heterogeneous scene­

category tunings.

• Scene category representation is more complex than typically assumed.
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Figure 1. Overview of the voxelwise modeling framework.
a, Whole-brain BOLD responses were recorded while subjects passively viewed two hours 

of natural movies. b, A scene-category model was fit to individual voxels to assess scene 

category representations of natural movies across neocortex. Model features were extracted 

via unsupervised learning on a large corpus of natural scene annotations. Scene-category 

features (C1, C2 etc.) were extracted using latent Dirichlet allocation (LDA) in order to 

capture co-occurrence statistics of objects and actions in dynamic natural scenes. Each 

model feature is defined as a list of probabilities that reflect the likelihood of individual 

objects and actions occurring in a scene. (Font weights for object-action categories reflect 

their respective probabilities.) c, Salient objects and actions in each 1-s clip of the movies 

were labeled manually. The movies were then projected onto scene-category features to 

determine stimulus time courses. Regularized linear regression was used to fit voxelwise 

models that optimally predict BOLD responses in individual voxels. The estimated model 

weights characterize the tuning of individual voxels for distinct model features.
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Figure 2. Examples of part-of-scene (P1–P5) features.
The non-negative matrix factorization (NMF) algorithm was used to identify the part-of­

scene features that reflect constituent object and action components of natural scenes such as 

“a bus”, “a car”, “driving”, “road”, and “a motorcycle”. Each model feature was expressed 

as a 5252-dimensional vector that reflected the probability of occurrence for individual 

object and action categories. In this example, a total of 80 features were learned. For each 

feature, seven most probable object and action categories are listed with their probabilities 

(here indicated as differences in font weights).
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Figure 3. Identifying the set of model features that best explain BOLD responses across subjects.
The number of features to be extracted by LDA was systematically varied from 10 to 

200 in 20 steps. For each number of features, voxelwise models were fit and the relative 

number of cortical voxels that was significantly predicted was measured (p < 0.05, FDR 

corrected). To determine the optimal number of features, these measurements in each subject 

were normalized to yield a sum of 1 across 20 steps (to account for individual differences 

in the brain volume and signal-to-noise ratios in BOLD responses). Next, the normalized 

measurements were averaged across subjects. This matrix shows the number of cortical 

voxels that were significantly predicted by the scene-category model for individual subjects 

(S1–S5) and across subjects (Across). The red square indicates the optimal number of 

features, which is 180 for the scene-category model.
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Figure 4. Examples of scene categories that elicit differential responses across voxel clusters.
We determined twenty distinct scene categories frequently observed in daily life that 

elicited differential responses across voxel clusters. Representative scene categories among 

this set are shown along with frames from five movie clips with the highest projections 

onto each category. Scene categories were manually assigned labels to summarize 

the main scene category information that they captured, including verbal and written 

communication, entertainment (e.g., playing game, dancing, singing), human female and 

male, text, anthropomorphic animal, sports activity, locomotion (e.g., jumping, cycling, 

skiing), pedestrian, car driven on a road, and flying objects (e.g., airplane, insect, bird). 

These labels were rated by four healthy adult males (non-authors) as a reliability measure.
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Figure 5. Predicted responses to scene-category features in voxel clusters.
Clustering of voxels according to their scene-category tuning profiles identified nine 

functional clusters. To identify scene category information represented in each cluster, we 

measured the average predicted response (mean ± sem across subjects) of each cluster to 60 

scene-category features. Results are shown for a subset of scene categories that capture the 

key response differences across clusters. Cluster 1 (dark brown) responds to scene categories 

depicting navigation (e.g., human locomotion and vehicles) and landscapes (e.g., a mountain 

or seaside view). Clusters 2–4 respond to humans and human-made environments: Cluster 

2 responds to actions of humans and anthropomorphic animals; Cluster 3 responds to 

human communication and broadly to social interactions; Cluster 4 responds to human-made 

environments and artifacts such as vehicles. In contrast, Cluster 5 responds broadly to 

natural environments, while Cluster 6 responds to non-human animals. Cluster 7 responds 

to motion-energy in the movies and Cluster 8 responds to texture in visual scenes. Cluster 

9 contains the voxels that showed low scene category selectivity in this experiment. The 

clusters were manually assigned names to reflect their response characteristics.
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Figure 6. Organization of scene category representation across neocortex.
To examine the cortical distribution of scene category representation, each cortical voxel in 

each subject was assigned a color according to its cluster membership. Voxel colors were 

then projected onto cortical flatmaps. Projections obtained for all five subjects are shown. 

Scene category representation is organized into nine spatially-segregated networks of brain 

regions. Dark-brown voxels represent scene categories related to navigation (see Figure 5). 

Red-blush voxels represent scene categories related to human activity, social interaction, 

and civilization (e.g., human-made artifacts and environments). Dark-blue and orange voxels 

represent scene categories related to natural environments and non-human animals. Light­

blue voxels show low scene category selectivity. Voxels that were not significantly predicted 

by the scene-category model are shown in gray.
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Figure 7. Distribution of networks of brain regions within conventional ROIs.
Previous work from our lab (Çukur et al., 2016; Çukur, Huth, et al., 2013) suggests that 

voxels within ROIs defined by conventional localizers do not belong to a single network, 

but rather are associated with multiple different networks. To address this question, we 

assessed the distribution of networks within PPA, OPA, RSC, FFA, EBA, MT+, pSTS, LO, 

V7, and RET. Bar plots for each ROI indicate the percentages of voxels (mean ± sem 

across subjects) that belong to the nine networks. Asterisks indicate percentages that are 

significantly different than zero (p < 0.05, bootstrap test, FDR corrected). Most of the ROIs 

examined here contain multiple subdomains with distinct scene-category tuning. This result 

suggests that scene category representations in many functional ROIs are more diverse than 

commonly assumed.
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Figure 8. The prediction scores of scene-category and gist models in each network.
To control whether heterogeneity of scene-category tuning across neocortex was biased 

by heterogeneity of tuning for low-level spatial features of natural scenes, we compared 

the prediction scores of the scene-category and gist models within the networks that were 

identified by the scene-category model. Bar plots show prediction scores (mean ± sem 

across subjects). The scene-category model outperforms the gist model in all networks 

(jackknife test, p < 0.05, Δr > 0.02), except for the texture network that mainly spans across 

early visual areas (jackknife test, p = 0.23). Note that the largest difference in prediction 

scores is observed within the navigation network, which was found to largely overlap 

with scene-selective areas PPA, OPA, and RSC. This result suggests that differences in 

scene-category tuning between the identified networks cannot be fully attributed to tuning 

for low-level spatial features.
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Figure 9. Correlation between the scene-category features and the gist features.
Heterogeneity of scene-category tuning across neocortex could potentially be biased by 

heterogeneity of tuning for low-level spatial features that differ systematically across scene­

categories. To rule out this bias, the degree of correlation between the 20 scene-category 

features and the first 20 PCs of gist features was calculated. a, Correlation among scene 

categories and gist PCs presented in matrix form (see color legend). A few scene categories 

including verbal communication, mountain view, pedestrian, and text show moderate 

correlations with the first five gist PCs (see bottom panel for a bar plot of correlations 

of the verbal communication and mountain view categories with the gist PCs). These PCs 

assess global spatial properties of natural scenes, such as roughness, openness, verticalness, 

mean depth, and expansion. Even so, the majority of scene categories that elicit differential 

responses between the networks have negligible correlations with the gist PCs.
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Table 1.

Proportion of voxels where the scene-category model outperforms the control model.

% voxels S1 S2 S3 S4 S5 Aggregate

RET 53.68 27.26 24.76 33.43 74.44 42.71±9.42

V7 56.96 5.71 16.48 63.35 39.06 36.31±11.17

LO 50.00 5.26 3.45 87.93 65.00 42.33±16.64

MT+ 49.42 8.54 22.92 56.36 48.97 37.24±9.17

EBA 53.38 2.40 11.84 64.81 45.06 35.50±12.09

FFA 16.13 7.32 6.25 52.17 30.77 22.53±8.61

PPA 88.46 62.71 72.92 90.00 74.56 77.73±5.12

OPA 79.41 6.00 46.15 100.00 90.74 64.46±17.22

RSC 65.45 91.30 82.43 79.17 68.57 77.38±4.70

IPS 61.33 18.53 40.43 76.67 69.91 53.37±10.63

pSTS 25.34 24.13 33.45 63.83 47.52 38.85±7.51

Percentage of voxels where the scene-category model outperforms the control model among voxels significantly predicted by either of the two 
models is calculated for eleven ROIs for all subjects (Δr > 0.02). Aggregate values are reported as mean ± SEM across five subjects.
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