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ABSTRACT OF THE DISSERTATION

Probing neural circuitry and large-scale brain dynamics underlying cognitive deficits
associated with schizophrenia

by

Robert Kim

Doctor of Philosophy in Neurosciences

University of California San Diego, 2020

Professor Terrence J. Sejnowski, Chair

Schizophrenia is a complex neuropsychiatric disorder characterized by a wide range of

clinical manifestations. Even though the etiology of schizophrenia is not known, the heteroge-

neous nature of the disorder strongly suggests that multiple pathways and brain areas are affected

by a combination of internal and external factors. These factors include and not limited to:

psychological, genetic, social, and environmental determinants. Cognitive impairment is one of

the commonly observed clinical manifestations of schizophrenia. Working memory, which is an

ability to encode and hold information over a short period, is severely impaired in schizophrenia.

(1) Characterizing how such deficits manifest in large-scale dynamics and (2) understanding

xv



the pathophysiology and circuit mechanisms behind working memory deficits associated with

schizophrenia are the two main questions that I address in my dissertation.

To answer the first question, I employed a method based on nonlinear systems theory

to quantify large-scale dynamical states of time-series data and to identify dynamically distinct

subgroups (Chapter 2). I demonstrate that the method, which utilizes delay differential analysis

(DDA), can effectively extract features reflective of significant state changes and detect subgroups

with similar features. Applying the method to brain signals obtained from a large cohort of

schizophrenia patients further revealed subgroups with distinct dynamical characteristics aligned

with neurophysiological and clinical parameters.

To answer the second question, I first developed a biologically realistic computational

model based on spiking recurrent neural networks (RNNs) capable of learning cognitive tasks

that involve working memory (Chapter 3). By taking advantage of a close relationship between

continuous and spike RNNs that emerges under certain conditions, the method provides an ex-

tremely simple platform that can be utilized to investigate how power-efficient network dynamics

lead to complex cognitive computations. By employing the framework, I uncover and character-

ize important circuit mechanisms critical for working memory maintenance in Chapter 4. The

uncovered microcircuitry underscores the importance of disinhibitory gating exerted by specific

subtypes of inhibitory interneurons, further confirming recent experimental findings.

Overall, my dissertation provides important computational tools for probing both micro-

and macro-scale circuit dynamics associated with cognitive deficits in schizophrenia.
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Chapter 1

Introduction

1.1 Schizophrenia pathophysiology

1.1.1 Background

Schizophrenia is often referred to as a heterogeneous disorder due to its wide spectrum of

clinical manifestations along with many underlying etiologies, most of which are not yet known.

The dopamine hypothesis, which postulates that overstimulation of dopaminergic receptors

(mainly D2 receptors) leads to psychotic symptoms, is one of the first hypotheses to attempt

to unravel the neural basis of schizophrenia. However, this hypothesis is largely based on

the observation that antipsychotic medications prescribed for psychosis display D2 receptor

antagonism activities, and does not explain other schizophrenia-related phenotypes such as social

memory deficits and cognitive impairment.

In order to explain the clinical features that cannot be explained by the dopamine hy-

pothesis, a more plausible hypothesis, known as “glutamate hypothesis,” was developed. This

hypothesis stipulates that hypofunction of glutamatergic signaling leads to decreased excita-

tory input to parvalbumin (PV) inhibitory interneurons. The decreased excitatory input then

results in underdevelopment of PV interneurons leading to reduced overall inhibition mediated

1



by γ-aminobutyric acid (GABA) and enhanced glutamate-mediated excitation. The resulting

excitation-inhibition imbalance disrupts synchronous oscillations that are associated with at-

tention, memory, and cognition. Even though the glutamate hypothesis requires decreased

glutamate receptor activities, it is plausible that intrinsic abnormalities in PV interneurons without

glutamatergic dysfunction could also lead to cognitive deficits.

In this section, I review several studies that illustrate the importance of PV interneurons

in not only generating synchronous network activity (in both cortex and hippocampus) but also

establishing normal development of cognitive functioning.

1.1.2 PV interneurons are key mediators of the intrinsic hippocampal

theta rhythm

Although numerous studies have shown that GABAergic interneurons play an important

role in generating theta oscillations intrinsic to the hippocampus [SER+13], which type of

interneurons contributes to the induction of the hippocampal theta rhythm and the effect of

inactivation of these interneurons on the theta oscillations have not been studied extensively. A

recent study by [AHM+] employed optogenetics to selectively activate or silence interneurons

that express PV and somatostatin (SOM) in the CA1 region [AHM+]. Adeno-associated viral

vector with genes encoding for either archaerhodopsin (ArchT) or modified channelrhodopsin

(ChETA) was injected into the intact hippocampus of PV-Cre and SOM-Cre mouse lines. The

group observed that a continuous stimulation (using a continuous light pulse lasting 10 seconds)

of PV interneurons expressing ChETA was able to drive the spontaneous oscillation frequency

to the theta range (close to 8 Hz). On the other hand, when a continuous light pulse lasting

30 seconds was employed to inactivate PV interneurons expressing ArchT (which alters pH to

inhibit synaptic transmission [EGZW+16]), the frequency and power of the ongoing theta rhythm

decreased significantly, and recovered to the theta range again when the inactivating light pulse

was terminated.

2



When SOM interneurons expressing ChETA were activated by light pulses (fixed duration

of 50 ms) at various frequency settings (2 - 20 Hz), [AHM+] observed only minor changes

in the baseline spontaneous oscillation frequency (4.7 ± 0.2 Hz) and power. Interestingly, a

significant increase in the oscillation strength (not in the theta range) was observed when the pulse

frequency was close to the baseline oscillation frequency. This suggests that SOM interneurons,

when stimulated at the ongoing rhythm of the hippocampal network, have the ability to modulate

network oscillations. Silencing the SOM interneurons (via ArchT and 30 seconds of continuous

light) exerted a small effect on the ongoing theta oscillations.

1.1.3 PV interneurons drive cortical gamma oscillations

[CCM+09] employed optogenetics to investigate how inhibitory neurons in the cortex

modulate cortical gamma rhythm by selectively activating FS-PV neurons and regular-spiking

(RS) excitatory cells in the somatosensory cortex in vivo [CCM+09]. By injecting adeno-

associated viral vector expressing channelrhodopsin-2 (ChR2) in the barrel cortex of PV-Cre

and αCamKII-Cre (which targets RS cells), the group was able to demonstrate reliably light-

dependent activation of these cells and observed prominent inhibitory postsynaptic potentials

(IPSPs) in RS cells during light activation of fast-spiking PV (FS-PV) neurons.

Next, [CCM+09] stimulated FS-PV cells (in PV-Cre line) and RS cells (in αCamKII-Cre

line) with 1-ms light pulses at various frequencies ranging from 8 Hz to 200 Hz, and measured

local field potential (LFP), an indirect measure of local network synchronicity. When the FS-PV

interneurons were activated by light pulses in the gamma range (20 - 80 Hz), a strong increase

in gamma LFP power was observed. On the contrary, gamma LFP power enhancement could

not be observed when the RS cells were driven by gamma range light pulses. Instead, the RS

cells responded to a lower frequency stimulation (8 - 24 Hz). These findings suggest that FS-PV

inhibitory neurons, not excitatory cells, are critical for generating cortical gamma oscillations.

In order to investigate the role of cortical gamma rhythm in information processing,
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[CCM+09] performed whisker stimulation during gamma oscillations (established by 40 Hz

light pulses in the PV-Cre mice) and measured the number of spikes by RS cells. The RS cell

spikes were significantly reduced during gamma-induced LFP peaks and increased during LFP

troughs indicating that cortical gamma oscillations gate sensory responses. This study, combined

with the study discussed in the previous section (Section 1.1.2), provides strong evidence that

inhibitory interneurons are indispensable for creating neural network synchronicity in both cortex

and hippocampus.

1.1.4 Loss of hippocampal PV interneurons disrupts synchronous activi-

ties and results in social memory deficits

Both studies discussed in the previous sections (Sections 1.1.2 and 1.1.3) explored the role

of PV interneurons in generating hippocampal theta and cortical gamma oscillations. However,

these studies did not look into the behavioral effects that might result from the inactivation/loss

of PV interneurons. Using a mouse model of 22q11.2 deletion syndrome (also known as Di-

George syndrome), [PND+16] characterized the loss of PV interneurons limited to CA2 of the

hippocampus in this mouse model and how this loss of inhibitory cells translated to impaired

social memory. The 22q11.2 deletion is accompanied by a wide variety of clinical symptoms

(heart abnormalities, immune system dysfunction, and renal anomalies), and it has also been

linked to a significant increase in risk for psychiatric disorders such as schizophrenia and bipolar

disorder. The mouse model of the 22q11.2 deletion, Df(16)A+/−, has also been characterized

by similar neuropsychiatric phenotypes (learning deficits and working memory impairment)

[SXB+08].

[PND+16] first quantified the density of PV interneurons in different areas of the hip-

pocampus from Df(16)A+/− mice using immunohistochemical staining. Interestingly, a signif-

icant decrease in PV interneuron density, relative to the wild-type (WT) control mice, in area

CA2 of 8-week old Df(16)A+/− mice was observed. However, the loss of interneurons was
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not observed in younger (4-week old) Df(16)A+/− mice, implying an age-dependent reduction

in PV interneurons (i.e., the number of interneurons decreased over time in the mutant mice).

To characterize the effects of CA2 PV interneurons at the circuit level, the group measured

postsynaptic potentials (PSPs) in CA2 pyramidal neurons, which receive excitatory inputs from

Schaeffer collaterals (SCs) in CA3. Since SCs are regulated by CA2 PV interneurons, the

excitatory postsynaptic potential (EPSP) amplitude of the CA2 pyramidal cells in response to

stimulation of SCs was significantly larger in Df(16)A+/− mice compared to the amplitude seen

in WT control mice. These findings are summarized in Fig. 1.1. Furthermore, the addition of

GABA antagonists increased EPSPs for both Df(16)A+/− and WT mice (no significant difference

in peak EPSP amplitude).
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Figure 1.1: [PND+16] stimulated Schaeffer collaterals and measured EPSPs at CA2-pyramidal
cells. The EPSP peak amplitude was higher in Df(16)A+/− mice (B) compared to the amplitude
observed in control mice (A). The lack of inhibitory drive from the CA2-interneurons to the
Schaeffer collaterals resulted in greater excitatory drive to the CA2-pyramidal cells. CA2-IN =
CA2-interneuron; SC = Schaeffer collaterals; CA2-PN = CA2-pyramidal neuron; S = stimulation
site; R = recording site.

Because Df(16)A+/− mice lack inhibitory drive from CA2 PV interneurons, one might
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hypothesize that stimulation of Schaeffer collaterals would result in more frequent firing of CA2

pyramidal cells. However, [PND+16] observed an opposite trend: no action potentials were

detected in Df(16)A+/− CA2 pyramidal cells after stimulation. The group also observed that the

resting membrane potential of the pyramidal neurons in Df(16)A+/− mice was hyperpolarized.

These findings indicate that the hyperpolarized resting potential of the Df(16)A+/− CA2 pyramidal

neurons was able to override and suppress the overall increase in excitatory signaling that resulted

from the loss of PV interneurons. This finding is important in that reduction in inhibitory

interneurons does not necessarily result in enhanced excitability and can alter the intrinsic

properties of the excitatory neurons (i.e., hyperpolarized resting potential).

Next, the group found a strong relationship between social memory impairment and

silenced pyramidal neurons (caused by loss of PV interneurons). When a Df(16)A+/− mouse

was re-exposed to the same mouse that it was exposed to in the previous trial, the mutant mouse

spent more time exploring the “familiar” mouse. On the other hand, the exploration time was

significantly decreased in WT mice. Based on these results combined with a previous study

that also observed social memory deficits in mice whose CA2 pyramidal cells were completely

silenced [HS14], the study concluded that the decreased density of PV interneurons in CA2 led to

silencing of CA2 pyramidal neurons and impaired social learning.

1.1.5 NMDA receptors in PV interneurons are important for cortical

gamma rhythm and cognitive behaviors

Previous sections covered the importance of PV interneurons in promoting synchronous

network activity and normal cognitive function. Although dysfunction of inhibitory neurons has

been suggested to be directly involved with cognitive impairment [PND+16, LHV05], how this

dysfunction arises in the first place is not yet fully understood.

Motivated by the previous works on the effect of NMDA receptor (NMDAR) blockers

on cortical gamma rhythm, [CMS+12] created a mouse line (PV-Cre × NR1f/f) that lacks
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the NMDAR subunit NR1 in PV-expressing cells to study the role of NMDAR in the normal

development of PV interneurons [CMS+12]. The group confirmed the deletion of NMDAR by

whole-cell recordings of PV cells in hippocampal slices of PV-Cre/NR1f/f mice. The deletion did

not affect the number of PV interneurons implying that NMDARs are not required for survival of

PV interneurons.

In order to characterize the functional features of the PV interneurons in PV-Cre/NR1f/f

mice, [CMS+12] introduced ChR2 into FS-PV cells. When light pulses in the gamma frequency

range were used, a significant increase in gamma LFP power in layers 2/3 and 4 of the primary

somatosensory cortex was observed in control mice (anesthetized). However, the gamma LFP

enhancement was considerably reduced in PV-Cre/NR1f/f mice (anesthetized), suggesting that

FS-PV neurons deficient of NMDA receptors lack the ability to induce cortical gamma oscillations.

Interestingly, the loss of cortical gamma rhythm was not observed in both genotypes of awake

behaving mice. Next, the group performed various behavioral tests (open field test, prepulse

inhibition (PPI), T-maze test, and contextual/cued fear conditioning) to investigate how FS-PV

cells without NMDAR contribute to behavioral/cognitive impairment. Of all the behavioral tests

that they ran, only the contextual and cued fear conditioning test revealed a significant learning

deficit in PV-Cre/NR1f/f mice.

1.1.6 Metabotropic glutamate receptors are critical for PV interneuron

development

[CMS+12] demonstrated that NMDA receptor dysfunction can alter intrinsic properties

of PV interneurons and disrupt cortical gamma rhythm [CMS+12]. To further probe the effect of

glutamatergic signaling on inhibitory neurons, a more recent study by [BPDK+15] investigated

the importance of metabotropic glutamate receptor-5 (mGluR5).

The group first generated PV-Cre/mG5f/f mice that lacked mGluR5 in PV-expressing

neurons. Then, the number of PV interneurons in the hippocampus (CA1, CA3, and dentate
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gyrus), prelimbic cortex, and caudate putamen of the mutant and control mice were quantified.

Surprisingly, the group found a region-specific decrease in PV interneurons in PV-Cre/mG5f/f

mice: the number of PV neurons was significantly reduced in CA3, prelimbic cortex, and puta-

men. In addition, the number of synaptic contacts between interneurons and putative pyramidal

cells was also significantly diminished. To study how this loss of PV neurons leads to neural

network dysfunction, [BPDK+15] recorded auditory event-related potentials (ERPs) using elec-

trocorticography (ECoG). The average ERP waveform from the mutant mice (compared to the

waveform from the control mice) revealed a distinct decrease in amplitude at 40 ms post-stimulus.

Similar auditory ERP abnormalities have been reported from previous human clinical studies on

schizophrenia and bipolar disorder. These findings suggest that mGluR5 is crucial for maturation

and possibly survival of PV interneurons along with normal neural network development.

Behavioral and social phenotypes of PV-Cre/mG5f/f mice were next characterized via

various tests (three-chamber novel object recognition, three-chamber social recognition, PPI, and

Barnes maze test). PV-Cre/mG5f/f mice displayed impaired social recognition as evidenced by

decreased exploration time during three-chamber novel object/social recognition tests. In order

to find out if other memory modalities were similarly impaired, the group also assessed spatial

memory using the Barnes maze, and discovered no spatial memory deficits in the mutant mice.

This unique pattern of phenotypes displayed by PV-Cre/mG5f/f mice closely mimics the clinical

features of neuropsychiatric disorders such as schizophrenia. In addition, the mutant mice also

showed markedly elevated repetitive behaviors and PPI.

The above study paints a convincing picture of the role of glutamatergic pathway in

interneuron development. The findings that mGluR5 is directly involved with maturation of

interneurons suggest that NMDA signaling (potentiated by mGluR5) does contribute to develop-

ment of normal PV inhibitor cells as proposed by [CMS+12]. However, based on the severity of

behavioral phenotypes observed in mice deficient of mGluR5, the study showed that mGluR5

does more than simply enhancing NMDA receptors and plays other roles (not yet known) critical
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for PV interneuron development.

1.2 Microscale computational method: recurrent neural net-

work model

1.2.1 Background

Previous studies have shown that working memory deficits often observed in schizophre-

nia could be attributed to excitation and inhibition (E/I) imbalance [FG18, Keh08]. As discussed

in the previous section (Section 1.1), studies employing animal models have identified hypofunc-

tion of NMDA receptors on PV interneurons as one of the possible etiological components of

schizophrenia [FG18, NZJ+12, PND+16, MSB+18]. Furthermore, a recent study by [ZBC+18]

underscored the importance of spike timing in maintaining working memory. A computational

RNN model that incorporates excitatory neurons and different subtypes of inhibitory interneurons

can be a promising tool for elucidating how dysfunction of a subpopulation of inhibitory neurons

could lead to working memory impairment.

1.2.2 Continuous-variable rate RNN

Continuous-variable rate RNNs, where recurrently connected units communicate via

continuous signals (instead of discrete action potentials), have been widely utilized to uncover

circuit mechanisms critical for performing various cognitive tasks [MSSN13, SYW16, Mic17].

Units in a continuous rate RNN are usually governed by the following set of equations:
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τττ
dxxx
dt

=−xxx(t)+wwwrrr(t)+wwwinuuu(t)+ξξξ (1.1a)

rrr(t) = σ(xxx(t)) =
1

1+ exp(−xxx(t))
(1.1b)

ooo(t) = wwwoutrrr(t)+b (1.1c)

where τττ ∈ R1×N refers to the synaptic time constants, xxx ∈ RN×T represents the synaptic current

variable from N units across T time-points, rrr ∈ RN×T is the firing rates estimated by passing

the synaptic current values (xxx) through a nonlinear activation function (sigmoid in this case),

wwwin ∈RN×Nin defines connection weights from the time-varying inputs (uuu ∈R1×T ) to the network,

and www ∈ RN×N contains connection weights between N units. The output of the network (ooo ∈

R1×T ) is a linear combination of all the firing rates specified by the output connection weight

matrix, wwwout ∈ R1×N , and the bias term, b. A schematic diagram illustrating a network producing

a positive output signal upon receiving an input pulse is shown in Fig. 1.2.

Output
o

Input
u

t
win wout

w

Figure 1.2: Schematic diagram illustrating a continuous RNN receiving a brief input pulse
(green). The network consists of excitatory (red) and inhibitory (blue) units connected to one
another (connection patterns specified by www). The network output (purple) is a linear combination
of the unit activities.

Rate RNNs can be trained to produce output signals (ooo) closely resembling target signals

(zzz ∈ R1×T ) associated with a specific task. A loss function (L), which measures how close
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the RNN output signals are to the target signals, is employed to train and assess if the RNNs

successfully learned the task. For example, the mean squared error (MSE) can be used to define

the loss function:

L =
1
T

T

∑
t=1

(z(t)−o(t))2 =
1
T

T

∑
t=1

(z(t)− (wwwoutrrr(t)+b))2 (1.2)

where T is the total number of time points in a single trial.

Since the set of equations that govern the units (Eq. (1.1)) are continuous and differentiable,

a gradient-descent supervised method, known as backpropagation through time (BPTT; [Wer90]),

is often used to train rate RNNs to perform cognitive tasks [SYW16, YJS+19]. Given a set of n

model parameters (θθθ ∈ {θ1,θ2, . . . ,θn}), the gradient-descent algorithm tunes and optimizes the

parameters to minimize the loss function (L) in an iterative manner:

θ
(i+1)
j = θ

(i)
j −η

∂L(i)

∂θ
(i)
j

 (1.3)

In Eq. (1.3), θ
(i)
j is the j-th model parameter at iteration i, and η is the learning rate, which

controls the rate of the convergence of the gradient descent. The model parameters include the

synaptic time constants (τττ), recurrent connectivity structure (www), readout weights (wwwout), and bias

(b). Therefore, we have θθθ ∈ {τττ,www,wwwout ,b}.

For each model parameter, BPTT needs to compute the gradient (partial differential in

Eq. (1.3)). For the readout weights (wwwout), the gradient can be computed by simply differentiating

the loss function (Eq. (1.2)) with respect to wwwout :
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∂L
∂wwwout

=
1
T ∑

t
(−2) · (z(t)−wwwoutrrr(t)−b) · rrr(t) (1.4a)

=
2
T ∑

t
rrr(t) · (wwwoutrrr(t)+b− z(t)) (1.4b)

=
2
T ∑

t
rrr(t) · (o(t)− z(t)) (1.4c)

Similarly, differentiating the loss function with respect to the bias term (b) leads to the

same gradient as Eq. (1.4c).

For the recurrent connections (www), computing the gradient is more involved. First, the

gradient of the loss function at time t (Lt) is defined as

∂Lt

∂wik
=

∂Lt

∂r(i)t

∂r(i)t

∂x(i)t

∂x(i)t

∂wik
(1.5)

where r(i)t is the rate activity of unit i at time t, x(i)t refers to the synaptic activity of unit i at time t,

and wik ∈ www is the synaptic weight from unit k to unit i. For the first gradient on the righthand

side (i.e., ∂Lt/∂r(i)t ), the loss function needs to be first rewritten as:

Lt =
1
T

(
zt−

(
N

∑
j=1

w( j)
outr

( j)
t +b

))2

(1.6a)

=
1
T

zt−

w(i)
outr

(i)
t +

N

∑
j=1
j 6=i

w( j)
outr

( j)
t +b




2

(1.6b)
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Differentiating Eq. (1.6b) with respect to r(i)t results in:

∂Lt

∂r(i)t

=− 2
T
·w(i)

out ·

zt−

w(i)
outr

(i)
t +

N

∑
j=1
j 6=i

w( j)
outr

( j)
t +b


 (1.7a)

=− 2
T
·w(i)

out · (zt−ot) (1.7b)

The second gradient on the righthand side of Eq. (1.5) (i.e., ∂r(i)t /∂x(i)t ) can be computed

using Eq. (1.1b):
∂r(i)t

∂x(i)t

= σ(x(i)t ) · (1−σ(x(i)t )) (1.8)

Lastly, the third gradient on the righthand side of Eq. (1.5) (i.e., ∂x(i)t /∂wik) can be

computed by first substituting α = ∆t/τττ into the discretized version of Eq. (1.1a) (using Euler

approximation method):

xxxt = (1−α)xxxt−1 +α(wwwrrrt−1 +wwwinuuut−1)+ξξξ (1.9)

Focusing only on unit i leads to:

x(i)t = (1−α)x(i)t−1 +α

(
N

∑
j=1

wi j · r
( j)
t−1 +www(i)

in uuut−1

)
+ξξξ (1.10)

Applying the chain rule results in:

∂x(i)t

∂wik
=

t

∑
t ′=1

(
∂x(i)t

∂x(i)t ′

∂x(i)t ′

∂wik

)
(1.11)

Due to the recurrent nature, ∂x(i)t /∂x(i)t ′ can be expressed as

∂x(i)t

∂x(i)t ′
=

t

∏
q=t ′+1

∂x(i)q

∂x(i)q−1

(1.12)
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Substituting Eq. (1.12) into Eq. (1.11) leads to

∂x(i)t

∂wik
=

t

∑
t ′=1

{ t

∏
q=t ′+1

∂x(i)q

∂x(i)q−1

 ∂x(i)t ′

∂wik

}
(1.13)

The gradient of the loss function with respect to wik can be calculated by summing over all the

time points:
∂L

∂wik
=

T

∑
t=1

∂Lt

∂wik
=

T

∑
t=1

(
∂Lt

∂r(i)t

∂r(i)t

∂x(i)t

∂x(i)t

∂wik

)
(1.14)

1.3 Macroscale computational method: delay differential

analysis

1.3.1 Background

Unlike RNN models which focus on local neural circuits, delay differential analysis

(DDA) attempts to characterize collective, large-scale neural dynamics to provide an integrated

view of the systems that give rise to the emergent phenomena of behavior and cognition. For

example, DDA was able to identify abrupt changes in brain signals when unexpected, deviant

auditory tones were given to test participants. Interestingly, these changes were significantly

attenuated in patients diagnosed with schizophrenia ([LSK+19]). In addition, DDA was able

to detect dynamical state changes on electrocorticography (ECoG) signals 1-2 hours preceding

idiopathic generalized seizures for a few patients (Fig. 1.3; [LWCS17]). More importantly, some

of the seizure onset times marked by clinicians were several minutes later than the nonlinear

dynamical changes detected by DDA (Seizure #1 in Fig. 1.3). These findings suggest that DDA

might provide a more consistent method to detect seizures.
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Figure 1.3: DDA output values from the seizure onset ECoG channels (determined by clinicians)
increase significantly (green arrows) ˜1 hour before each clinical seizure onset. Dotted vertical
lines (inset) indicate clinical seizure onset times.

1.3.2 Delay differential analysis (DDA)

DDA is based on delay differential equations (DDEs), which relate a derivative signal

ẋ(t) to a signal x(t− τn) non-uniformly delayed in time (Fig. 1.4). For brain signals, such as

electroencephalography (EEG) and ECoG, the following three-term, second-order DDA model

have been shown to be effective at capturing important nonlinear dynamics:

ẋ(t) = a1xτ1 +a2xτ2 +a3x2
τ1
= f (a,xτ1,xτ2) (1.15)

In Eq. (1.15), xτi indicates a delayed version of the original time-series (i.e., x(t− τi)).

Supervised structure selection performed on various EEG signals ([LHW+13, LWH+13]) via

repeated random subsampling cross-validation resulted in selection of Eq. (1.15) and helped

determine τ1 and τ2. Therefore, the three estimated parameters (a1, a2, and a3) along with the

least square mean error (ρ =
√

∑(ẋ− f (a,xτ1,xτ2))
2) are referred to as DDA features.
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Figure 1.4: DDA performs a functional mapping between a differential embedding and a delay
embedding. τ ∈ N0 is the time delay and a ∈ R are DDA features

In a classification framework, the DDA features can be computed for each time-series

signal in a dataset with two data classes. Due to the sparsity of the model, a simple linear algebra

operation, such as singular value decomposition (SVD), can be employed to find the optimal

hyperplane that separates the two classes in the four dimensional DDA feature space. For each

data sample, the shortest distance from the optimal hyperplane is then computed. Using these

distance values, the classification performance can be computed via the area under the receiver

operating characteristic (ROC) curve [KK97].
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Chapter 2

Defining subtypes of schizophrenia using

unifying dynamical-systems biomarkers

This chapter focuses on characterizing large-scale systems dynamics related to information

processing and higher-order cognitive functions. Using a method based on nonlinear dynamical

systems theory, I present a new algorithm capable of capturing large-scale dynamical states from

complex time-series signals and identifying dynamically distinct subgroups. By applying the

algorithm to a large dataset of brain signals obtained from schizophrenia (SZ) patients, I also

characterize nonlinear dynamical features associated with psychosocial and cognitive dysfunction

associated with SZ.

The work presented in Sections 2.3.1 and 2.3.2 is currently being prepared for publication:

Claudia Lainscsek, Robert Kim, Gregory A. Light, and Terrence J. Sejnowski. Dynamical

clustering and reconstruction of nonlinear state distributions from noisy signals using DDA.

The work presented in Section 2.3.3 is currently being prepared for publication: Robert

Kim, Claudia Lainscsek, Aaron L. Sampson, Michael L. Thomas, The COGS Investigators, Neal

R. Swerdlow, David L. Braff, Terrence J. Sejnowski, and Gregory A. Light. Defining subtypes of

schizophrenia using unifying dynamical-systems biomarkers.
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2.1 Introduction

Electroencephalography (EEG) is a highly utilized method to measure electrical sig-

nals generated from brain processes that exhibit complex and nonlinear dynamics. Due to its

non-invasive nature along with high temporal resolution, EEG is especially useful for moni-

toring abnormal changes in the brain’s cortical dynamics. Even though many previous studies

have investigated EEG signals associated with neuropsychiatric disorders (Alzheimer’s dis-

ease [LKJ+07, Jeo04, SAE15, GRA15]; Parkinson’s disease [YM16, MLP+01, PJR01]; epilepsy

[YZLC11, YZLW12, LCC+15]), identifying disease-specific nonlinear signatures in these signals

and relating these markers to cognitive impairment still remain as a challenge to be addressed.

Methods that employ linear analysis have been widely used to analyze signals obtained

from EEG. However, the underlying central nervous system that generates the brain signals is

considered to be a network of many interconnected nonlinear dynamical systems. Therefore,

linearization in an attempt to approximate these systems may discard relevant nonlinear infor-

mation. In order to better capture large-scale dynamical dysfunction and systems-level changes

present in neuropsychiatric diseases, computational methods based on nonlinear dynamics and

systems theory recently emerged as a promising tool in neuroscience [Bre17]. One such method is

delay differential analysis (DDA). DDA can be used to extract nonlinear dynamical features from

time-series data via a functional mapping where a derivative embedding is expressed in terms of

a delay embedding. The first-order derivative is related to a nonlinear function of non-uniformly

delayed versions of the time-series data. An embedding maps a low dimensional time-series to a

high dimensional object that contains information about all the state variables of an unknown,

underlying dynamical system without having access to all the systems variables [Tak81]. In

layman’s terms, DDA seeks to find out how past events (delay embedding) contribute to changes

that are occurring in the present (derivative embedding). The features that connect these two

embeddings are then used to characterize the underlying nonlinear dynamics.
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Previous studies have shown that DDA can be used to extract disease-specific dynami-

cal features (Parkinson’s movement data [LRS+12, LHW+13a], electrocardiogram recordings

[LS13], and electrocorticogram (ECoG) data associated with epilepsy [LWCS17b]). More re-

cently, we have shown that DDA can be used to identify unique nonlinear dynamical architectures

hidden in a large dataset of EEG signals obtained from SZ patients [LSK+19]. SZ is a debilitating

psychiatric disorder characterized by a wide range of clinical manifestations [SSM+97, JS15],

and developing non-invasive biomarkers that can be utilized to identify subgroups within the

heterogeneous disorder remains challenging. Motivated by this problem, we developed a new

algorithm that employs DDA features to identify dynamically distinct subgroups present in

time-series signals. Given a time-series dataset with varying degrees of nonlinear dynamics,

our algorithm can not only identify dynamically distinct subgroups, but also reconstruct the

distribution of the dynamical states in the data. In this chapter, I first present the clustering method

and the simulation experiments that I designed to validate the algorithm. Next, I present the

results that I obtained from applying the method to the Consortium on the Genetics of Schizophre-

nia (COGS-2) dataset containing EEG signals from non-psychiatric comparison (NC) and SZ

participants.

2.2 Materials and methods

2.2.1 Delay differential analysis (DDA)

Given a time-series signal (x(t)), DDA employs delay differential embeddings that relate

a derivative signal (ẋ(t)) to signals non-uniformly delayed in time (x(t− τn)):

ẋ =
I

∑
i=1

ai

N

∏
n=1

x(t− τn)
mn,i (2.1)
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where τn is the delay time constant, I specifies the number of terms in the DDA model, and

∑n mn,i is the maximum order of the model. The derivative signal (ẋ) was estimated using central

difference approximations [MM05].

Throughout this chapter, the following three-term, second-order DDA model will be used

to compute DDA features:

ẋ(t) = f (a,xτ1,xτ2) = a1xτ1 +a2xτ2 +a3x2
τ1

(2.2)

where xτi = x(t− τi). Unsupervised structure selection performed on various time-series data

via repeated random subsampling cross-validation resulted in selection of Eq. (2.2) and helped

determine the two delay time constants, τ1 and τ2 [LHW+13b, LWCS17a, LMP+14]. Singular

value decomposition (SVD) was performed to determine the coefficients (a1, a2, and a3) in

Eq. (2.2) [PTVF92]. The three estimated parameters (a1, a2, and a3) along with the least squares

error (ρ =
√

∑(ẋ− f (a,xτ1,xτ2))
2) are what we refer to as DDA features.

2.2.2 Dynamical clustering algorithm

In order to identify subgroups with similar dynamical states, we first extracted DDA

features from time-series signals using the model mentioned above (Eq. (2.2)). Here, we assume

that the signals originate from two classes (red and blue in Fig. 2.1A). Next, we developed a

genetic algorithm, a global search method based on the process of natural selection [Gol89],

to identify non-representative samples from the two groups. Our genetic algorithm method is

designed to identify local minima instead of global minima. A sample in a group was deemed

non-representative if its DDA features were closer to the DDA features of the other class.

More formally, our genetic algorithm utilizes SVD to identify non-representative samples.

If the hyperplane computed from a small subset of the samples leads to poor classification

performance when applied to the rest of the data, then our algorithm returns these samples (orange
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and cyan in Fig. 2.1A) as non-representative samples. We applied our genetic algorithm 10,000

times, each time identifying ten non-representative samples (five from each group). Lastly, we

counted how many times each sample was selected as non-representative. The samples were then

sorted by these count values, which we refer to as dynamic index (DI) values (Fig. 2.1B). Thus,

low DI subgroups (red and blue in Fig. 2.1B) have DDA features that are well separated from

each other, while the DDA features from the high DI subgroups (orange and cyan in Fig. 2.1B)

are not distinguishable. Therefore, DI values can be used to not only reconstruct the underlying

distribution of the dynamical states, but also identify subgroups with similar dynamical properties.

Genetic

Algorithm

Repeat

...

High DI

High DI

Low DI

Low DI

A B

1

2

N

Figure 2.1: Schematic illustration of the algorithm to compute DI values. (A) Genetic algorithm
is applied to DDA features extracted from time-series signals with two class labels (red and blue)
to identify non-representative samples (orange and cyan). The process is repeated N = 10000
times. (B) For each sample, a DI value (the number of times it was selected as non-representative)
is computed. The higher the DI value, the more non-representative the sample is.

2.2.3 Simulation experiment overview

In order to validate our method, we performed two simulation experiments. For each

experiment, we generated two groups of time-series signals with a wide range of nonlinear

dynamics by varying the experiment-specific dynamical parameter (Fig. 2.2). The main objective

of each experiment was to use the DI values extracted from the time-series signals alone to

(1) estimate and reconstruct the distribution of the dynamical parameter values and (2) identify
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subgroups with similar dynamical features.
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Figure 2.2: Schematic illustration of the simulated experiments. Experiment-specific dynamical
parameter is varied in a manner that produces time-series signals with diverse nonlinear dynamics
with two class labels (left). DDA features and DI values are computed from the time-series
signals (center). The relationship between the computed DI values and the dynamical parameter
values can be characterized (right).

2.2.4 EEG dataset

After we validated our algorithm on simulation datasets, we applied our method to a large

dataset of EEG signals obtained from both NC and SZ participants. The dataset, the Consortium

on the Genetics of Schizophrenia (COGS-2), contains continuous EEG data collected from NC

(n = 753) and SZ subjects (n = 877) recruited from five COGS-2 study centers (University of

California San Diego, University of California Los Angeles, University of Washington, University

of Pennsylvania, and Mount Sinai School of Medicine) [LST+15]. EEG recordings (1 kHz

sampling rate) from a single electrode at the vertex (CZ) along with an auditory oddball sequence

were used to elicit mismatch negativity (MMN). The auditory sequence contained standard tones

(90% of stimuli, 50-ms) and deviant tones (10% of stimuli, 100-ms) generated in a pseudorandom

manner such that a minimum of two standard tones presented between deviant stimuli. EEG data

from each subject were segmented into 150 trials with duration of 550 ms (100 ms pre-tone and

450 ms post-tone periods).
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2.3 Results

2.3.1 Simulation experiment: chaotic Rössler system

For the first simulation study, the Rössler system was used to generate a large group of

time-series signals. The Rössler system is a simple nonlinear system whose output can be either

periodic or chaotic based on its three system parameters [R7̈6]. The system is defined by the

following set of ordinary differential equations (ODEs):

ẋ = −y− z

ẏ = x+ay (2.3)

ż = b− xz− cz

The Rössler system has been shown to be chaotic at a = 0.2, c = 5.7, and 0.37≤ b≤ 0.47

(Fig. 2.3A). Therefore, to generate two dynamically distinct groups of chaotic time-series signals,

we first fixed a and c at 0.2 and 5.7, respectively. Next, we generated two groups (G1 and G2)

of b values (1000 values in each group) randomly drawn from two overlapping chaotic regions:

0.37≤ b≤ 0.46 and 0.39≤ b≤ 0.47. The distributions of the two groups of b values followed

beta distributions such that G1 contained mostly low values (between 0.37 and 0.42) with a few

outliers (i.e., high b values), and G2 contained mostly high values (between 0.42 and 0.47) with

outliers in the low range. The distribution of the b values from each group is shown in Fig. 2.3B.

Lastly, for each b value, the Rössler system was numerically solved to extract x(t) as a chaotic

time-series signal with the integration step size of 0.04. For each b value, multiple “trials” (150

trials) of signals were generated using different random initial conditions. Each trial contained

570 time-points with random Gaussian noise (signal-to-noise ratio of 5 dB). Example time-series

signals generated in this manner are shown in Fig. 2.3B. Therefore, the dataset for this experiment
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contained 2,000×150 = 300,000 chaotic signals (150,000 from each group).
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Figure 2.3: (A) Bifurcation diagram for the Rössler system with a = 0.2 and c = 5.7. The
dynamical parameter (b) was varied between 0.37 and 0.47 (red dashed lines). (B) Distribution
of the dynamical parameter (b) values for each group and example output signals for the Rössler
experiment. (C) DI values extracted from the DDA features of the chaotic time-series signals
were strongly correlated with the b values. (D–F) DI values extracted from the signal amplitude
values (D), frequency features (E), and Lyapunov exponent estimates (F) were not correlated
with the b values. Spearman rank correlation values shown. Note that the correlation coefficient
for the second group (blue) is negative, because the DI values for low b values are considered
non-representative for this group.

In order to reconstruct the distribution of the dynamical parameter values (i.e., distribution

of the b values in Fig. 2.3B) using the chaotic signals alone, we first computed the four DDA

features from each signal using Eq. (2.2). Running our genetic algorithm on the computed DDA

features revealed that the samples from the overlapping region in the dynamic parameter space

had high DI values (i.e., likely to be selected as non-representative samples). In addition, the DI

values were significantly correlated with the actual b values (Spearman rank correlation, r = 0.67,

P < 0.0001 for G1; Spearman rank correlation, r = −0.85, P < 0.0001 for G2; Fig. 2.3C),

confirming that DDA features along with DI values could indeed capture dynamical states

underlying chaotic time-series signals. On the other hand, employing linear features (amplitude
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or frequency changes over time) to compute the DI values did not lead to accurate reconstruction

of the distributions (Fig. 2.3D and E). The amplitude features were composed of the minimum,

maximum, and mean values. For the frequency features, we considered 10 frequency bands

range from 0 Hz to 100 Hz. In addition, the DI values computed using the Lyapunov exponent, a

commonly used nonlinear feature for assessing if a dynamical system is chaotic [WSSV85], did

not recover the underlying distribution of the b values (Fig. 2.3F).

2.3.2 Simulation experiment: coupled dynamical systems

To test if our algorithm can reconstruct dynamical states from more complex and biological

systems, we generated another dataset derived from a spiking neural network model. A network

of Izhikevich spiking neurons governed by the following equations [Izh03] was employed to

simulate coupled dynamical systems:

v̇ = 0.04v2 +5v+140−u+ I

u̇ = a · (bv−u)

where v and u refer to the membrane potential and a recovery variable, respectively. When the

membrane voltage (v) reaches the action potential threshold (35 mV), then a spike is recorded and

v is reset to c. The recovery variable (u), which takes into account both inactivation of sodium

channels and activation of potassium channels, is reset to d when an action potential occurs.

Therefore, the model contains four constant parameters (i.e., a, b, c, and d). The variable I can be

used to deliver external currents or synaptic currents. The four parameters can be varied to create

neurons with distinct activity patterns. For example, a can be set to a low value to produce slow

membrane recovery, and d can be varied to control the amount of negative feedback from u to v.

The spiking neural network used in this chapter was composed of two types of neurons:

regular spiking (RS) excitatory neurons and fast spiking (FS) inhibitory neurons. The network
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contained 450 neurons (369 RS neurons and 81 FS neurons) sparsely connected to one another

(p = 0.20 connectivity probability for each unit). For the RS neurons, we used a = 0.01 and d = 8

to generate low firing activities. For FS neurons, a = 0.1 along with a small negative feedback

(d = 2) was used to simulate faster spiking activities often observed in cortical inhibitory neurons.

The parameters b and c were fixed at 0.13 and -65 mV, respectively (for both RS and FS neurons).
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Figure 2.4: (A) Schematic diagram illustrating the spiking neural network simulation. A brief
input pulse hyperpolarizes all the excitatory units in a network composed of 450 neurons (369
RS neurons and 81 FS neurons). The mean activity of the excitatory population constitutes the
network output signal. (B) Distribution of the dynamical parameter (a) values for each group and
example output signals. Yellow shades indicate the input pulse window. (C) DI values extracted
from the DDA features of the chaotic time-series signals were strongly correlated with the a
values. (D–F) DI values extracted from the signal amplitude values (D), frequency features (E),
and Lyapunov exponent estimates (F) were not strongly correlated with the a values. Spearman
rank correlation values shown. Note that the correlation coefficient for the second group (blue)
is negative, because the DI values for low a values are considered non-representative for this
group.

For this experiment, a brief input pulse was delivered to inhibit or hyperpolarize all the

excitatory units in a network (Fig. 2.4A). The average activity of the excitatory units was used

to compute the network output signal. The parameter a was chosen as the dynamical parameter.

For the RS neurons only, a was varied between 0.02 and 0.04 to create networks with varying

degrees of excitability. Similar to the first experiment, two groups of a values were generated such
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that the first group (G1) contained less excitable networks (n = 1000), while the second group

(G2) contained networks that were more excitable. Again, the two distributions of the a values

overlapped to create non-representative or outlier samples (Fig. 2.4B). For each spiking network,

we injected a short hyperpolarizing (i.e., inhibitory) input pulse to inhibit the excitatory units and

measured the output signal, estimated as the mean firing rate changes of the excitatory population

over time (Fig. 2.4C). This specific paradigm was used to simulate event-related potential (ERP)

signals commonly used to measure brain electrical signals in response to brief sensory stimuli.

Applying our algorithm to the output signals revealed that the DI values were highly

correlated with the dynamical parameter values (i.e., a values; Spearman rank correlation, r =

0.81, P < 0.0001 for G1; Spearman rank correlation, r =−0.72, P < 0.0001 for G2; Fig. 2.4D).

These findings suggest that DDA and DI values can capture nonlinear dynamics that are often

discarded by linear measures.

2.3.3 Functionally and dynamically distinct subgroups in the COGS-2

dataset

Both MMN and P3a (positive ERP component peaking at 250–300 ms after a stimulus

onset) have been shown to be significantly attenuated in SZ [LB05, LST+15, JS15]. Recently,

[TGH+17] showed that early auditory processing deficits (reflected by MMN, P3a, and reorienting

negativity) in SZ led to impaired cognitive and psychosocial functioning. The nonlinear DDA

features (a3 in Eq. (2.2)) extracted from individual subject deviant minus standard waveform

averages revealed that a3 averages along with MMN and P3a amplitude values were significantly

lower across the SZ subjects (mean t value = 10.8, mean Cohen’s d = 0.55; Fig. 2.5; [LSK+19]).

Averaging across subjects for a3 and ERP signals highlighted two distinct areas corresponding

to the two deviance-detection ERP components (i.e., MMN and P3a). Interestingly, the timing

of the two DDA peaks occurred before their corresponding ERP components (Fig. 2.5). For

example, the peak group difference in area 1 in Fig. 2.5B occurred 70 ms before the peak
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group difference in the ERP MMN window in Fig. 2.5A. Therefore, DDA captured significant

group differences preceding previously established ERP biomarkers associated with auditory

information processing.
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Figure 2.5: DDA identified dynamical state changes preceding each of the auditory deviance
response complex components. A. NC subjects demonstrated robust MMN and P3a components
as shown in the heatmap of the individual subject difference (deviant tone ERP - standard
tone ERP) average signals (top panel). MMN and P3a can be appreciated in the group-level
average signals (bottom panel). B. DDA a3 coefficient values averaged within each subject
revealed significantly decreased a3 in the schizophrenia participants (top panel). As with the
ERP results, the DDA group averages displayed two components with homologous waveform
morphology and severity of deficits in schizophrenia, but the DDA components (numbered in
the bottom panel) preceded their corresponding ERP peaks identified in A by 71 and 54 ms,
respectively. The shaded regions in the group average signals represent statistically significant
group differences. SZ, schizophrenia; NC, non-psychiatric comparison subjects.

Applying the clustering algorithm (see Section 2.2.2) to the DDA features revealed the

distribution of the DI values that gave rise to three dynamically distinct subgroups within the NC

and SZ cohorts (Fig. 2.6). For each cohort (NC and SZ subjects), there were highly representative

subjects (hNC and hSZ; dark dots in Fig. 2.6). The DI values of these participants were low as

their DDA features were indicative of their group dynamics. In addition, there were subjects with

high DI values (rNC and rSZ; light dots in Fig. 2.6) suggesting that the nonlinear features of

the subjects were non-representative of their group dynamics: DDA features of the SZ subjects
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with high DI values were similar to the DDA features of the NC cohort, while the nonlinear

dynamics of the NC subjects with high DI values were close to the DDA features of the SZ group.

Lastly, each cohort contained a “representative” subgroup whose DI values fell in between the

highly representative and non-representative subgroups (rNC and rSZ; Fig. 2.6). Therefore, our

dynamical clustering algorithm revealed three subgroups from each cohort.
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Figure 2.6: Distribution of the DI values computed from the COGS-2 dataset. Based on the DI
values, three dynamically distinct subgroups within each cohort were identified. Dark red and
dark blue groups indicate subgroups with low DI values, while the light red and light blue dots
represent subgroups with high DI values. The high DI subgroups contained non-representative
subjects. hNC, highly representative non-psychiatric comparison subjects; rNC, representative
non-psychiatric comparison subjects; nNC, non-representative non-psychiatric comparison
subjects; hSZ, highly representative schizophrenia; rSZ, representative schizophrenia; nSZ,
non-representative schizophrenia.

Next, we wanted to investigate if the dynamic subgroups identified by our algorithm

were distinct in the functional and clinical domains. Computing the average deviant minus

standard waveforms for each subgroup revealed that the DI values closely tracked the MMN and

P3a measures (Fig. 2.7). For the NC cohort, the highly representative subgroup (hNC) had the
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highest MMN and P3a amplitudes, while the MMN and P3a were significantly diminished for the

non-representative subgroup (Fig. 2.7A). For the SZ cohort, the waveform average of the highly

representative subgroup revealed almost non-existent MMN and P3a components (Fig. 2.7B).

Interestingly, the non-representative SZ subjects manifested prominent MMN and P3a signals

(Fig. 2.7B). These results indicate that DI values are strongly aligned with previously established

neurophysiological biomarkers (i.e., MMN and P3a).
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Figure 2.7: The average deviant minus standard waveform signals from the three dynamic
subgroups identified within the non-psychiatric comparison (A) and schizophrenia (B) cohorts.
SZ, schizophrenia; NC, non-psychiatric comparison subjects.

Does the highly representative subgroup within the SZ cohort have poor psychosocial

and cognitive functioning? Does the non-representative subgroup within the NC group carry

an increased risk for SZ? To address these questions, we investigated the cognitive test scores

from the computerized neurocognitive battery (CNB) developed by [GRH+10]. The battery

is designed to assess several important neurocognitive domains, including working memory,

attention, and mental flexibility [GRH+10, IBR+12]. More specifically, we analyzed a total

of ten tests: abstraction and mental flexibility, attention, verbal memory, face memory, spatial

memory, working memory, spatial processing, emotion identification, sensorimotor processing

speed, and motor speed. For each test (excluding sensorimotor processing speed and motor speed),

both accuracy and response reaction time measures were included for analysis. For sensorimotor

processing speed and motor speed measures, only response time was analyzed. Each measure
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was z-scored based on age-matched NC participants. Averaging across all the measures for

each participant within each dynamic subgroup revealed a downward trend going from the hNC

subgroup to the hSZ subgroup (Fig. 2.8). Within each cohort, the average z-scores were not

significantly different among the three subgroups, while the scores from the NC subgroups

were significantly greater than those from the SZ subgroups (Kruskal-Wallis test, H = 133.05,

P < 0.001; Dunn’s multiple comparison test with P < 0.05).
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Figure 2.8: Average computerized neurocognitive battery (CNB) measures from the dynamic
subgroups. Boxplot central lines, median; black circles, mean; bottom and top edges, lower and
upper quartiles; whiskers, 1.5*interquartile range; outliers not plotted; red line, linear fit through
the average values. hNC, highly representative non-psychiatric comparison subjects; rNC,
representative non-psychiatric comparison subjects; nNC, non-representative non-psychiatric
comparison subjects; hSZ, highly representative schizophrenia; rSZ, representative schizophre-
nia; nSZ, non-representative schizophrenia.
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2.4 Discussion

Understanding how multiple brain areas work together to produce emergent behavior and

cognition is one of the fundamental challenges that exist in the field of neuroscience. The brain’s

ability to precisely coordinate these areas in the face of a constantly changing environment is

important for maintaining normal psychosocial and cognitive functioning. SZ affects multiple in-

teracting dynamical systems (i.e., sensory processing and attention, working memory) subserving

cognition. The degree to which each system is affected may be related to the varying degrees

of cognitive impairment observed in these disorders. Therefore, the main focus of this chapter

was to characterize these degrees of impairment in the building blocks of cognition by relating

large-scale nonlinear state changes detected from brain signals to cognitive functioning.

I have shown that DDA is effective at extracting important nonlinear features which, in

turn, could be utilized to reconstruct the distribution of the nonlinear states underlying time-series

signals. Using two simulation experiments (Sections 2.3.1 and 2.3.2) containing time-series

signals with a wide range of nonlinear dynamics, I also demonstrated that our method based on

DDA can accurately estimate the ground truth distributions of the dynamical parameter values.

Furthermore, the findings from the second simulation experiment (Section 2.3.2), modeled after

local neural microcircuits, suggest that our method could be applied to brain signals empirically

measured via EEG or ECoG.

Motivated by our simulation experiments, we applied DDA and our clustering algorithm

to an EEG dataset obtained from large cohorts of NC and SZ participants (COGS-2). DDA

features computed from the EEG signals revealed important nonlinear dynamical state changes

corresponding to ERP components (MMN and P3a) associated with auditory information pro-

cessing. The DDA features were appreciable immediately in response to auditory stimuli (both

standard and deviant tones). Interestingly, DDA detected significant nonlinear activities preceding

MMN and P3a components, but the functional importance of these dynamical state changes
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remains to be investigated. Applying our clustering method to the dataset revealed previously

unidentified subgroups within each cohort. Within each cohort, we characterized three subgroups

based on the DI values computed from the DDA features. By probing their neurophysiological

and neurocognitive measures, we further demonstrated that our algorithm can detect subgroups

that are distinct in not only nonlinear dynamics but in functional and clinical domains.

The work presented in Sections 2.3.1 and 2.3.2 is currently being prepared for publication:

Claudia Lainscsek, Robert Kim, Gregory A. Light, and Terrence J. Sejnowski. Dynamical

clustering and reconstruction of nonlinear state distributions from noisy signals using DDA.

The work presented in Section 2.3.3 is currently being prepared for publication: Robert

Kim, Claudia Lainscsek, Aaron L. Sampson, Michael L. Thomas, The COGS Investigators, Neal

R. Swerdlow, David L. Braff, Terrence J. Sejnowski, and Gregory A. Light. Defining subtypes of

schizophrenia using unifying dynamical-systems biomarkers.
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Chapter 3

Simple framework for constructing

functional spiking recurrent neural

networks

A biologically plausible computational model could help elucidate neural mechanisms

required for performing higher-order cognitive functions. In this chapter, I present a simple

framework to construct biologically realistic spiking recurrent neural networks (RNNs) capable

of learning a wide range of cognitive tasks. The work presented here is reproduced and adapted

from: Robert Kim, Yinghao Li, and Terrence J. Sejnowski. Simple framework for constructing

functional spiking recurrent neural networks. Proceedings of the National Academy of Sciences,

116(45):22811–22820, 2019.

3.1 Abstract

Cortical microcircuits exhibit complex recurrent architectures that possess dynamically

rich properties. The neurons that make up these microcircuits communicate mainly via discrete
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spikes, and it is not clear how spikes give rise to dynamics that can be used to perform computa-

tionally challenging tasks. In contrast, continuous models of rate-coding neurons can be trained

to perform complex tasks. Here, we present a simple framework to construct biologically realistic

spiking RNNs capable of learning a wide range of tasks. Our framework involves training a

continuous-variable rate RNN with important biophysical constraints and transferring the learned

dynamics and constraints to a spiking RNN in a one-to-one manner. The proposed framework

introduces only one additional parameter to establish the equivalence between rate and spiking

RNN models. We also study other model parameters related to the rate and spiking networks to

optimize the one-to-one mapping. By establishing a close relationship between rate and spiking

models, we demonstrate that spiking RNNs could be constructed to achieve similar performance

as their counterpart continuous rate networks.

3.2 Introduction

Dense recurrent connections common in cortical circuits suggest their important role

in computational processes [GR95, FsSY+02, Wan08]. Network models based on RNNs of

continuous-variable rate units have been extensively studied to characterize network dynamics

underlying neural computations [SCS88, SA09, LB13, MSSN13, KC18, MO18]. Methods com-

monly used to train rate networks to perform cognitive tasks can be largely classified into three

categories: recursive least squares (RLS)-based, gradient-based, and reward-based algorithms.

The First-Order Reduced and Controlled Error (FORCE) algorithm, which utilizes RLS, has

been widely used to train RNNs to produce complex output signals [SA09] and to reproduce

experimental results [LB13, EPQD16, RHT16]. Gradient descent-based methods, including

Hessian-free methods, have been also successfully applied to train rate networks in a supervised

manner and to replicate the computational dynamics observed in networks from behaving an-

imals [MSSN13, BSR+13, SYW16]. Unlike the previous two categories (i.e., RLS-based and
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gradient-based algorithms), reward-based learning methods are more biologically plausible and

have been shown to be as effective in training rate RNNs as the supervised learning methods

[SYW17, Mic17, WKNK+18, ZCL+18]. Even though these models have been vital in uncover-

ing previously unknown computational mechanisms, continuous rate networks do not incorporate

basic biophysical constraints such as the spiking nature of biological neurons.

Training spiking network models where units communicate with one another via discrete

spikes is more difficult than training continuous rate networks. The non-differentiable nature of

spike signals prevents the use of gradient descent-based methods to train spiking networks directly,

although several differentiable models have been proposed [HS18, LDP16]. Due to this challenge,

FORCE-based learning algorithms have been most commonly used to train spiking recurrent

networks. While recent advances have successfully modified and applied FORCE training to

construct functional spike RNNs [ADM16, DCA16, TUKM16, NC17, KC18], FORCE training

is computationally inefficient and unstable when connectivity constraints, including separate

populations for excitatory and inhibitory populations (Dale’s principle) and sparse connectivity

patterns, are imposed [DCA16].

Due to these limitations, computational capabilities of spiking networks that abide by

biological constraints have been challenging to explore. For instance, it is not clear if spiking

RNNs operating in a purely rate-coding regime can perform tasks as complex as the ones rate

RNN models are trained to perform. If such spiking networks can be constructed, then it would

be important to characterize how much spiking-related noise not present in rate networks affects

the performance of the networks. Establishing the relationship between these two types of RNN

models could also serve as a good starting point for designing power-efficient spiking networks

that can incorporate both rate and temporal coding.

To address the above questions, we present a computational framework for directly

mapping rate RNNs with basic biophysical constraints to leaky integrate-and-fire (LIF) spiking

RNNs without significantly compromising task performance. Our method introduces only one
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additional parameter to place the spiking RNNs in the same dynamic regime as their counterpart

rate RNNs, and takes advantage of the previously established methods to efficiently optimize

network parameters while adhering to biophysical restrictions. These previously established

methods include training a continuous-variable rate RNN using a gradient descent-based method

[Wer90, MS11, PMB13, BBP13] and connectivity weight matrix parametrization method to

impose Dale’s principle [SYW16]. The gradient descent learning algorithm allowed us to easily

optimize many parameters including the connectivity weights of the network and the synaptic

decay time constant for each unit. The weight parametrization method proposed by [SYW16]

was utilized to enforce Dale’s principles and additional connectivity patterns without significantly

affecting computational efficiency and network stability.

Combining these two existing methods with correct parameter values enabled us to

directly map rate RNNs trained with backpropagation to LIF RNNs in a one-to-one manner. The

parameters critical for mapping to succeed included the network size, the nonlinear activation

function employed for training rate RNNs, and a constant factor for scaling down the connectivity

weights of the trained rate RNNs. Here, we investigated these parameters along with other

LIF parameters and identified the range of values required for the mapping to be effective. We

demonstrate that when these parameters are set to their optimal values, the LIF models constructed

from our framework can perform the same tasks the rate models are trained to perform equally

well.

3.3 Materials and methods

The implementation of our framework and the codes to generate all the figures in this

chapter are available at https://github.com/rkim35/spikeRNN. The repository also contains

implementation of other tasks including autonomous oscillation and delayed match-to-sample

(DMS) tasks.
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3.3.1 Continuous rate network structure

The continuous rate RNN model contains N units recurrently connected to one another.

The dynamics of the model is governed by

τττ
d dxxx

dt
=−xxx+W raterrrrate + IIIext (3.1)

where τττd ∈ R1×N corresponds to the synaptic decay time constants for the N units in the network

(see Section 3.3.3 on how these are initialized and optimized), xxx ∈ R1×N is the synaptic current

variable, W rate ∈ RN×N is the synaptic connectivity matrix, and rrrrate ∈ R1×N is the output of the

units. The output of each unit, which can be interpreted as the firing rate estimate, is obtained by

applying a nonlinear transfer function to the synaptic current variable (xxx) elementwise:

rrrrate = φ(xxx)

We use a standard logistic sigmoid function for the transfer function to constrain the firing rates

to be non-negative:

φ(xxx) =
1

1+ exp(−xxx)
(3.2)

The connectivity weight matrix (W rate) is initialized as a random, sparse matrix drawn

from a normal distribution with zero mean and a standard deviation of 1.5/
√

N ·Pc where Pc = 0.20

is the initial connectivity probability.

The external currents (IIIext) include task-specific input stimulus signals (see Section 3.6)

along with a Gaussian white noise variable:

IIIext =Winuuu+N (0,0.01)

where the time-varying stimulus signals (uuu ∈ RNin×1) are fed to the network via Win ∈ RN×Nin ,
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a Gaussian random matrix with zero mean and unit variance. Nin corresponds to the number

of input signals associated with a specific task, and N (0,0.01) ∈ RN×1 represents a Gaussian

random noise with zero mean and variance of 0.01.

The output of the rate RNN at time t is computed as a linear readout of the population

activity:

orate(t) =W rate
out rrrrate(t)

where W rate
out ∈ R1×N refers to the readout weights.

Eq. (3.1) is discretized using the first-order Euler approximation method:

xxxt =

(
1− ∆t

τττd

)
xxxt−1 +

∆t
τττd (W

raterrrrate
t−1 +Winuuut−1)

+ N (0,0.01)

where ∆t = 5 ms is the discretization time step size used throughout this study.

3.3.2 Spiking network structure

For our spiking RNN model, we considered a network of leaky integrate-and-fire (LIF)

units governed by

τm
dvvv
dt

=−vvv+W spkrrrspk + IIIext (3.3)

In the above equation, τm = 10 ms is the membrane time constant shared by all the LIF units,

vvv ∈ R1×N is the membrane voltage variable, W spk ∈ RN×N is the recurrent connectivity matrix,

and rrrspk ∈ R1×N represents the spike trains filtered by a synaptic filter. Throughout the study, the

46



double exponential synaptic filter was used to filter the presynaptic spike trains:

drspk
i

dt
= −

rspk
i

τd
i

+ si

dsi

dt
= − si

τr
+

1
τrτ

d
i

∑
tk
i <t

δ(t− tk
i )

where τr = 2 ms and τd
i refer to the synaptic rise time and the synaptic decay time for unit i,

respectively. The synaptic decay time constant values (τd
i ∈ τττd) are trained and transferred to our

LIF RNN model (see Section 3.3.3). The spike train produced by unit i is represented as a sum of

Dirac δ functions, and tk
i refers to the k-th spike emitted by unit i.

The external current input (IIIext) is similar to the one used in our continuous model (see

Section 3.3.1). The only difference is the addition of a constant background current set near the

action potential threshold (see below).

The output of our spiking model at time t is given by

ospk(t) =W spk
out rrrspk(t)

Other LIF model parameters were set to the values used by [NC17]. These include the

action potential threshold (-40 mV), the reset potential (-65 mV), the absolute refractory period

(2 ms), and the constant bias current (-40 pA). The parameter values for the LIF and the quadratic

integrate-and-fire (QIF) models are listed in Section 3.6, Table 3.1.

3.3.3 Training details

In this study, we only considered supervised learning tasks. A task-specific target signal

(zzz) is used along with the rate RNN output (ooorate) to define the loss function (L), which our rate

RNN model is trained to minimize. Throughout the study, we used the root mean squared error
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(RMSE) defined as

L =

√√√√( T

∑
t=1

(z(t)−orate(t))2

)
(3.4)

where T is the total number of time points in a single trial.

In order to train the rate model to minimize the above loss function (Eq. 3.4), we employed

Adaptive Moment Estimation (ADAM) stochastic gradient descent algorithm. The learning rate

was set to 0.01, and the TensorFlow default values were used for the first and second moment

decay rates. The gradient descent method was used to optimize the following parameters in the

rate model: synaptic decay time constants (τττd), recurrent connectivity matrix (W rate), and readout

weights (W rate
out ).

Here we describe the method to train synaptic decay time constants (τττd) using back-

propagation. First, the time constants are initialized with random values within the specified

range:

τττ
d = σ(N (0,1)) · τstep + τ

d
min

where σ(·) is the sigmoid function (identical to Eq. 3.2) used to constrain the time constants

to be non-negative. The time constant values are also bounded by the minimum (τd
min) and the

maximum (τd
max = τd

min + τstep) values. The error computed from the loss function (Eq. 3.4) is

then backpropagated to update the time constants at each iteration:

∂L
∂τττd =

∂L
∂rrr
· ∂rrr

∂xxx
· ∂xxx

∂τττd

The method proposed by [SYW16] was used to impose Dale’s principle and create

separate excitatory and inhibitory populations. Briefly, the recurrent connectivity matrix (W rate)

in the rate model is parametrized by

W rate = [W rate]+ ·D (3.5)
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where the rectified linear operation ([·]+) is applied to the connectivity matrix at each update step.

The diagonal matrix (D ∈ RN×N) contains +1’s for excitatory units and -1’s for inhibitory units in

the network. Each unit in the network is randomly assigned to one group (excitatory or inhibitory)

before training, and the assignment does not change during training (i.e., D stays fixed).

To impose specific connectivity patterns, we apply a binary mask (M ∈ RN×N) to Eq. 3.5:

W rate =
(
[W rate]+ ·D

)
�M

where � refers to the Hadamard operation (elementwise multiplication). Similar to the diagonal

matrix (D), the mask matrix stays fixed throughout training. For example, the following mask

matrix can be used to create a subgroup of inhibitory units (Group A) that do not receive synaptic

inputs from the rest of the inhibitory units (Group B) in the network (Fig. 3.10):

mi j =


0 i ∈ Group A, j ∈ Group B

1 otherwise

where mi j ∈M establishes (if mi j = 1) or removes (if mi j = 0) the connection from unit j to unit

i.

3.3.4 Transfer learning from a rate model to a spiking model

In this section, we describe the method that we developed to perform transfer learning

from a trained rate model to a LIF model. Once the rate RNN model is trained using the gradient

descent method, the rate model parameters are transferred to a LIF network in a one-to-one

manner. First, the LIF network is initialized to have the same topology as the trained rate RNN.

Next, the input weight matrix (Win) and the synaptic decay time constants (τττd) are transferred

to the spiking RNN without any modification. Lastly, the recurrent connectivity matrix (W rate)

and the readout weights (W rate
out ) are scaled by a constant number, λ, and transferred to the spiking
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network.

If the recurrent connectivity weights from the trained rate model are transferred to a

spiking network without any changes, the spiking model produces largely fluctuating signals

(as illustrated in Fig. 3.2B), because the LIF firing rates are significantly larger than 1 (whereas

the firing rates of the rate model are constrained to range between zero and one by the sigmoid

transfer function).

To place the spiking RNN in the similar dynamic regime as the rate network, we first

assume a linear relationship between the rate model connectivity weights and the spike model

weights:

W spk = λ ·W rate

Using the above assumption, the synaptic drive (d) that unit i in the LIF RNN receives

can be expressed as

dspk
i (t) =

N

∑
j=1

wspk
i j · r

spk
j (t)

≈
N

∑
j=1

(λ ·wrate
i j ) · rspk

j (t)

=
N

∑
j=1

wrate
i j · (λ · r

spk
j (t)) (3.6)

where wspk
i j ∈W spk is the synaptic weight from unit j to unit i.

Similarly, unit i in the rate RNN model receives the following synaptic drive at time t:

drate
i (t) =

N

∑
j=1

wrate
i j · rrate

j (t) (3.7)
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If we set the above two synaptic drives (Eq. 3.6 and Eq. 3.7) equal to each other, we have:

dspk
i (t) = drate

i (t)
N

∑
j=1

wrate
i j · (λ · r

spk
j (t)) =

N

∑
j=1

wrate
i j · rrate

j (t) (3.8)

Generalizing Eq. 3.8 to all the units in the network, we have

rrrrate(t) = λ · rrrspk(t)

Therefore, if there exists a constant factor (λ) that can account for the firing rate scale difference

between the rate and the spiking models, the connectivity weights from the rate model (W rate)

can be scaled by the factor and transferred to the spiking model.

The readout weights from the rate model (W rate
out ) are also scaled by the same constant

factor (λ) to have the spiking network produce output signals similar to the ones from the trained

rate model:

orate(t) = W rate
out · rrrrate(t)

≈ W rate
out · (λ · rrrspk(t))

= (λ ·W rate
out ) · rrrspk(t) = ospk(t)

In order to find the optimal scaling factor, we developed a simple grid search algorithm.

For a given range of values for 1/λ (ranged from 20 to 75 with a step size of 5), the algorithm

finds the optimal value that maximizes the task performance.
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3.4 Results

Here we provide a brief overview of the two types of recurrent neural networks (RNNs)

that we employed throughout this study (more details in Section 3.3): continuous-variable

firing rate RNNs and spiking RNNs. The continuous-variable rate network model consisted

of N rate units whose firing rates were estimated via a nonlinear input-output transfer function

[SCS88, SA09]. The model was governed by the following set of equations:

τ
d
i

dxi

dt
= −xi +

N

∑
j=1

wrate
i j rrate

j + Iext (3.9)

rrate
i = φ(xi) (3.10)

where τd
i is the synaptic decay time constant for unit i, xi is the synaptic current variable for unit

i, wrate
i j is the synaptic strength from unit j to unit i, and Iext is the external current input to unit

i. The firing rate of unit i (rrate
i ) is given by applying a nonlinear transfer function (φ(·)) to the

synaptic current variable. Since the firing rates in spiking networks cannot be negative, we chose

the activation function for our rate networks to be a non-negative saturating function (standard

sigmoid function) and parametrized the connectivity matrix (wrate
i j ∈W rate) to enforce Dale’s

principle and additional connectivity constraints (see Section 3.3).

The second RNN model that we considered was a network composed of N spiking units.

Throughout this study, we focused on networks of leaky integrate-and-fire (LIF) units whose

membrane voltage dynamics were given by:

τm
dvi

dt
=−vi +

N

∑
j=1

wspk
i j rspk

j + Iext (3.11)

where τm is the membrane time constant (set to 10 ms throughout this study), vi is the membrane

voltage of unit i, wspk
i j is the synaptic strength from unit j to unit i, rspk

j represents the synaptic

filtering of the spike train of unit j, and Iext is the external current source. The discrete nature of
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rspk
j (see Section 3.3) has posed a major challenge for directly training spiking networks using

gradient-based supervised learning. Even though the main results presented here are based on

LIF networks, our method can be generalized to quadratic integrate-and-fire (QIF) networks with

only few minor changes to the model parameters (Section 3.6, Table 3.1).

Continuous rate network training was implemented using the open-source software library

TensorFlow in Python, while LIF/QIF network simulations along with the rest of the analyses

were performed in MATLAB.

3.4.1 Training continuous rate networks

Throughout this study, we used a gradient-descent supervised method, known as Back-

propagation Through Time (BPTT), to train rate RNNs to produce target signals associated with a

specific task [Wer90, SYW16]. The method we employed is similar to the one used by previous

studies ([MS11, BBP13, SYW16]; more details in Section 3.3) with one major difference in

synaptic decay time constants. Instead of assigning a single time constant to be shared by all

the units in a network, our method tunes a synaptic constant for each unit using BPTT (see

Section 3.3). Although tuning of synaptic time constants may not be biologically plausible, this

feature was included to model diverse intrinsic synaptic timescales observed in single cortical

neurons [SKS+13, WSB+18, CTW+18].

We trained rate RNNs of various sizes on a simple task modeled after a Go-NoGo task

to demonstrate our training method (Fig. 3.1). Each network was trained to produce a positive

mean population activity approaching +1 after a brief input pulse (Fig. 3.1A). For a trial without

an input pulse (i.e., NoGo trial), the networks were trained to maintain the output signal close

to zero. The units in a rate RNN were sparsely connected via W rate and received a task-specific

input signal through weights (Win) drawn from a normal distribution with zero mean and unit
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Figure 3.1: Rate RNNs trained to perform the Go-NoGo task. A. Schematic diagram
illustrating a continuous rate RNN model trained to perform the Go-NoGo task. The rate RNN
model contained excitatory (red circles) and inhibitory (blue circles) units. B. Distribution of the
tuned synaptic decay time constants (Mean ± SD, 28.2 ± 9.4 ms; left) and the average trained
rate RNN task performance (right) from an example rate RNN model. The mean ± SD output
signals from 50 Go trials (dark purple) and from 50 NoGo trials (light purple) are shown. The
green box represents the input stimulus given for the Go trials. The rate RNN contained 200
units (169 excitatory and 31 inhibitory units). C. Rate RNNs with different network sizes trained
to perform the Go-NoGo task. For each network size, 100 RNNs with random initial conditions
were trained. All the networks successfully trained performed the task almost perfectly (range
96–100%; left). As the network size increased, the number of training trials decreased (Mean ±
SD shown; right).

variance. The network output (orate) was then computed using a set of linear readout weights:

orate(t) =W rate
out · rrrrate(t) (3.12)
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where W rate
out is the readout weights and rrrrate(t) is the firing rate estimates from all the units in

the network at time t. The recurrent weight matrix (W rate), the readout weights (W rate
out ), and the

synaptic decay time constants (τττddd) were optimized during training, while the input weight matrix

(Win) stayed fixed (see Section 3.3).

The network size (N) was varied from 10 to 400 (9 different sizes), and 100 networks

with random initializations were trained for each size. For all the networks, the minimum and

the maximum synaptic decay time constants were fixed to 20 ms and 50 ms, respectively. As

expected, the smallest rate RNNs (N = 10) took the longest to train, and only 69% of the rate

networks with N = 10 were successfully trained (see Section 3.6 for training termination criteria;

Fig. 3.1C).

3.4.2 One-to-one mapping from continuous rate networks to spiking net-

works

We developed a simple procedure that directly maps dynamics of a trained continuous

rate RNN to a spiking RNN in a one-to-one manner.

In our framework, the three sets of the weight matrices (Win, W rate, and W rate
out ) along

with the tuned synaptic time constants (τττddd) from a trained rate RNN are transferred to a network

of LIF spiking units. The spiking RNN is initialized to have the same topology as the rate

RNN. The input weight matrix and the synaptic time constants are simply transferred without

any modification, but the recurrent connectivity and the readout weights need to be scaled by

a constant factor (λ) in order to account for the difference in the firing rate scales between the

rate model and the spiking model (see Section 3.3; Fig. 3.2A). The effects of the scaling factor

is clear in an example LIF RNN model constructed from a rate model trained to perform the

Go-NoGo task (Fig. 3.2B). With an appropriate value for λ, the LIF network performed the task

with the same accuracy as the rate network, and the LIF units fired at rates similar to the “rates”

of the continuous network units (Section 3.6, Fig. 3.8). In addition, the LIF network reproduced
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the population dynamics of the rate RNN model as shown by the time evolution of the top three

principal components extracted by the principal component analysis (Section 3.6, Fig. 3.9).

BA Output
o

Input
u

t
win wrate

out

wrate

win wspk
out

wspk

λλ

C Rate RNNs LIF RNNs D E

0 200 400 600 800 1000

Maximum Synaptic Decay (ms)

M
ea

n 
S

yn
ap

tic
 

D
ec

ay
 (m

s)

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

Time (s)

-4

-2

0

2

O
ut

pu
t (

au
)

0 0.2 0.4 0.6 0.8 1

Time (s)

-1
0
1
2
3
4
5
6

Time (s)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

λ = 1 λ = 1/10 λ = 1/25

60

80

100

50 100 150 200 250 300 350 400

Network Size (N)

Ta
sk

P
er

f. 
(%

)

0

50 100 150 200 250 300 350 400

Network Size (N)

100

50

0
0S

uc
ce

ss
fu

l
LI

F 
M

od
el

s 
(%

)

0 200 400 600 800 1000
80

100

Ta
sk

P
er

f. 
(%

)

Maximum Synaptic Decay (ms)

Rate RNNs LIF RNNs

S
uc

ce
ss

fu
l

LI
F 

M
od

el
s 

(%
)

100

60

80

0 200 400 600 800 1000

90

Figure 3.2: Mapping trained rate RNNs to LIF RNNs for the Go-NoGo task. A. Schematic
diagram illustrating direct mapping from a continuous rate RNN model (top) to a spiking RNN
model (bottom). The optimized synaptic decay time constants (τττddd) along with the weight
parameters (Win, W rate, and W rate

out ) were transferred to a spiking network with LIF units (red and
blue circles with a dashed outline). The connectivity and the readout weights were scaled by a
constant factor, λ. B. LIF RNN performance on the Go-NoGo task without scaling (λ = 1; left),
with insufficient scaling (middle), and with appropriate scaling (right). The network contained
200 units (169 excitatory and 31 inhibitory units). Mean ± SD over 50 Go and 50 NoGo trials.
C. Successfully converted LIF networks and their average task performance on the Go-NoGo
task with different network sizes. All the rate RNNs trained in Fig. 3.1 were converted to LIF
RNNs. The network size was varied from N = 10 to 400. D. Average synaptic decay values
for N = 250 across different maximum synaptic decay constants. E. Successfully converted
LIF networks and their average task performance on the Go-NoGo task with fixed network size
(N = 250) and different maximum synaptic decay constants. The maximum synaptic decay
constants were varied from 20 ms to 1000 ms.

Using the procedure outlined above, we converted all the rate RNNs trained in the previous

section to spiking RNNs. Only the rate RNNs that successfully performed the task (i.e., training

termination criteria met within the first 6000 trials) were converted. Fig. 3.2C characterizes the

proportion of the LIF networks that successfully performed the Go-NoGo task (≥ 95% accuracy;

same threshold used to train the rate models; see Section 3.6) and the average task performance

of the LIF models for each network size group. For each conversion, the scaling factor (λ) was
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determined via a grid search method (see Section 3.3). The LIF RNNs constructed from the small

rate networks (N = 10 and N = 50) did not perform the task reliably, but the LIF model became

more robust as the network size increased, and the performance gap between the rate RNNs and

the LIF RNNs was the smallest for N = 250 (Fig. 3.2C).

In order to investigate the effects of the synaptic decay time constants on the mapping

robustness, we trained rate RNNs composed of 250 units (N = 250) with different maximum

time constants (τd
max). The minimum time constant (τd

min) was fixed to 20 ms, while the maximum

constant was varied from 20 ms to 1000 ms. For the first case (i.e., τd
min = τd

max = 20 ms), the

synaptic decay time constants were not trained and fixed to 20 ms for all the units in a rate RNN.

For each maximum constant value, 100 rate RNNs with different initial conditions were trained,

and only successfully trained rate networks were converted to spiking RNNs. For each maximum

synaptic decay condition, all 100 rate RNNs were successfully trained. As the maximum decay

constant increased, the average tuned synaptic decay constants increased sub-linearly (Fig. 3.2D).

For the shortest synaptic decay time constant considered (20 ms), the average task performance

was the lowest at 93.91± 7.78%, and 65% of the converted LIF RNNs achieved at least 95%

accuracy (Fig. 3.2E). The LIF models for the rest of the maximum synaptic decay conditions

were robust. Although this might indicate that tuning of τττddd is important for the conversion of

rate RNNs to LIF RNNs, we further investigated the effects of the optimization of τττddd in the last

section (see Section 3.4.4).

Our framework also allows seamless integration of additional functional connectivity

constraints. For example, a common cortical microcircuitry motif where somatostatin-expressing

interneurons inhibit both pyramidal and parvalbumin-positive neurons can be easily implemented

in our framework (see Section 3.3 and Section 3.6, Fig. 3.10). In addition, Dale’s principle is not

required for our framework (see Section 3.6, Fig. 3.11).
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3.4.3 LIF networks for context-dependent input integration

The Go-NoGo task considered in the previous section did not require complex cognitive

computations. In this section, we consider a more complex task and probe whether spiking RNNs

can be constructed from trained rate networks in a similar fashion. The task considered here is

modeled after the context-dependent sensory integration task employed by [MSSN13]. Briefly,

[MSSN13] trained rhesus monkeys to integrate inputs from one sensory modality (dominant color

or dominant motion of randomly moving dots) while ignoring inputs from the other modality. A

contextual cue was also given to instruct the monkeys which sensory modality they should attend

to. The task required the monkeys to utilize flexible computations as the same modality can be

either relevant or irrelevant depending on the contextual cue. Previous works have successfully

trained continuous rate RNNs to perform a simplified version of the task and replicated the neural

dynamics present in the experimental data [MSSN13, SYW16, Mic17]. Using our framework,

we constructed the first spiking RNN model to our knowledge that can perform the task and

capture the dynamics observed in the experimental data.

For the task paradigm, we adopted a similar design as the one used by the previous

modeling studies [MSSN13, SYW16, Mic17]. A network of recurrently connected units received

two streams of noisy input signals along with a constant-valued signal that encoded the contextual

cue (Fig. 3.3A; see Section 3.3). To simulate a noisy sensory input signal, a random Gaussian

time-series signal with zero mean and unit variance was first generated. Each input signal was

then shifted by a positive or negative constant (“offset”) to encode evidence toward the (+) or (-)

choice, respectively. Therefore, the offset value determined how much evidence for the specific

choice was represented in the noisy input signal. The network was trained to produce an output

signal approaching +1 (or -1) if the cued input signal had a positive (or negative) mean. For

example, if the cued input signal was generated using a positive offset value, then the network

should produce an output that approaches +1 regardless of the mean of the irrelevant input signal.

Rate networks with different sizes (N = 10,50, . . . ,450,500) were trained to perform the
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Figure 3.3: Rate RNNs trained to perform the contextual integration task. A. Diagram
illustrating the task paradigm modeled after the context-dependent task used by [MSSN13].
Two streams of noisy input signals (green and magenta lines) along with a context signal were
delivered to the LIF network. The network was trained to integrate and determine if the mean of
the cued input signal (i.e., cued offset value) was positive (“+” choice) or negative (“-” choice).
B. Rate RNNs with different network sizes trained to perform the contextual integration task.
The network size was varied from N = 10 to 500. For each network size, 100 RNNs with
random initial conditions were trained. The average task performance (top) and the proportion
of the successful rate models (bottom) are shown. A model was successful if its mean task
performance was ≥ 95%. C. Average number of training trials required for each network size.
As the network size increased, the number of training trials decreased (Mean ± SD shown).

59



task. As this is a more complex task compared to the Go-NoGo task considered in the previous

section, the number of units and trials required to train rate RNNs was larger than the models

trained on the Go-NoGo task (Fig. 3.3B and 3.3C). The synaptic decay time constants were again

limited to a range of 20 ms and 50 ms, and 100 rate RNNs with random initial conditions were

trained for each network size. For the smallest network size (N = 10), the rate networks could

not be trained to perform the task within the first 6000 trials (Fig. 3.3B).

Next, all the rate networks successfully trained for the task were transformed into LIF

models. Example output responses along with the distribution of the tuned synaptic decay

constants from a converted LIF model (N = 250, τd
min = 20 ms, τd

max = 50 ms) are shown in

Fig. 3.4A and 3.4B. The task performance of the LIF model was 98% and comparable to the rate

RNN used to construct the spiking model (Fig. 3.4C). In addition, the LIF network manifested

population dynamics similar to the dynamics observed in the group of neurons recorded by

[MSSN13] and rate RNN models investigated in previous studies [MSSN13, SYW16, Mic17]:

individual LIF units displayed mixed representation of the four task variables (modality 1,

modality 2, network choice, and context; see Section 3.6, Fig. 3.12A), and the network revealed

the characteristic line attractor dynamics (Section 3.6, Fig. 3.12B).

Similar to the spiking networks constructed for the Go-NoGo task, the LIF RNNs per-

formed the input integration task more accurately as the network size increased (Fig. 3.4D). Next,

the network size was fixed to N = 250 and τd
max was gradually increased from 20 ms to 1000 ms.

For τd
min = τd

max = 20 ms, all 100 rate networks failed to learn the task within the first 6000 trials.

The conversion from the rate models to the LIF models did not lead to significant loss in task

performance for all the other maximum decay constant values considered (Fig. 3.4E).

3.4.4 Analysis of the conversion method

Previous sections illustrated that our framework for converting rate RNNs to LIF RNNs is

robust as long as the network size is not too small (N ≥ 200), and the optimal size was N = 250
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Figure 3.4: LIF network models constructed to perform the contextual integration task.
A. Example output responses and spike raster plots from a LIF network model for two different
input stimuli (rows) and two contexts (columns). The network contained 250 units (188
excitatory and 62 inhibitory units), and the noisy input signals were scaled by 0.5 vertically for
better visualization of the network responses (purple lines). B. Distribution of the optimized
synaptic decay time constants (τττddd) for the example LIF network (Mean ± SD, 38.9 ± 9.3 ms).
The time constants were limited to range between 20 ms and 50 ms. C. Average output responses
of the example LIF network. Mean ± SD network responses across 100 randomly generated
trials shown. D. Successfully converted LIF networks and their average task performance across
different network sizes. The network size was varied from N = 10 to 500. The rate RNNs
trained in Fig. 3.3 were used. E. Successfully converted LIF networks with N = 250 and their
average task performance across different maximum synaptic decay constants (varied from
20 ms to 1000 ms).

for both tasks. When the network size is too small, it is harder to train rate RNNs and the rate

models successfully trained do not reliably translate to spiking networks (Fig. 3.2D and Fig. 3.4D).

In this section, we further investigate the relationship between rate and LIF RNN models and

characterize other parameters crucial for the conversion to be effective.
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Training synaptic decay time constants

As shown in Fig. 3.5, training the synaptic decay constants for all the rate units is not

required for the conversion to work. Rate RNNs (100 models with different initial conditions)

with the synaptic decay time constant fixed to 35 ms (average τd value for the networks trained

with τd
min = 20 ms and τd

max = 50 ms) were trained on the Go-NoGo task and converted to LIF

RNNs (Fig. 3.5). The task performance of these LIF networks was not significantly different

from the performance of the spiking models with optimized synaptic decay constants bounded

between 20 ms and 50 ms. The number of the successful LIF models with the fixed synaptic

decay constant was also comparable to the number of the successful LIF models with the tuned

decay constants (Fig. 3.5).

Other LIF parameters

We also probed how LIF model parameters affected our framework. More specifically, we

focused on the refractory period and synaptic filtering. The LIF models constructed in the previous

sections used an absolute refractory period of 2 ms and a double exponential synaptic filter (see

Section 3.3). Rate models (N = 250 and τd
max = 100 ms) trained on the sensory integration task

were converted to LIF networks with different values of the refractory period. As the refractory

period became longer, the task performance of the spiking RNNs decreased rapidly (Fig. 3.6A).

When the refractory period was set to 0 ms, the LIF RNNs still performed the integration task with

a moderately high average accuracy (92.8 ± 14.3%), but the best task performance was achieved

when the refractory period was set to 2 ms (average performance, 97.0 ± 6.6%; Fig. 3.6A inset).

We also investigated how different synaptic filters influenced the mapping process. We

first fixed the refractory period to its optimal value (2 ms) and constructed 100 LIF networks

(N = 250) for the integration task using a double synaptic filter (see Section 3.3; Fig. 3.6B light
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Figure 3.5: Optimizing synaptic decay constants is not required for conversion of rate
RNNs. The Go-NoGo task performance of the LIF RNNs constructed from the rate networks
with a fixed synaptic constant (τd = 35 ms; blue) was not significantly different from the
performance of the LIF RNNs with tuned synaptic decay time constants (τd

min = 20 ms, τd
max =

50 ms; green).

blue). Next, the synaptic filter was changed to the following single exponential filter:

τ
d
i

drspk
i

dt
=−rspk

i + ∑
tk
i <t

δ(t− tk
i )

where rspk
i represents the filtered spike train of unit i and tk

i refers to the k-th spike emitted by

unit i. The task performance of the LIF networks with the above single exponential synaptic

filter was 95.7 ± 7.3%, and it was not significantly different from the performance of the double

exponential synaptic LIF models (97.0 ± 6.6%; Fig. 3.6B).

Initial connectivity weight scaling

We considered the role of the connectivity weight initialization in our framework. In the

previous sections, the connectivity weights (W rate) of the rate networks were initialized as random,

sparse matrices with zero mean and a standard deviation of g/
√

N ·Pc, where g = 1.5 is the gain

term that controls the dynamic regime of the networks and Pc = 0.20 is the initial connectivity

probability (see Section 3.3). Previous studies have shown that rate networks operating in a
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Figure 3.6: Effects of the refractory period, synaptic filter, and rate RNN connectivity
weight initialization. A. Average contextual integration task performance of the LIF network
models (N = 250) with different refractory period values. The refractory period was varied from
0 ms (i.e., no refractory period) to 50 ms. The inset shows the average task performance across
finer changes in the refractory period. Mean ± SD shown. B. Average contextual integration
task performance of the LIF network models (N = 250 and refractory period = 2 ms) with the
single exponential synaptic filter (dark blue) and the double exponential synaptic filter (light
blue). Mean ± SD shown. C. Average contextual integration task performance of the LIF
network models (N = 250, refractory period = 2 ms, and double exponential synaptic filter) with
different connectivity gain initializations. Mean ± SD shown.

high gain regime (g > 1.0) produce chaotic spontaneous trajectories, and this rich dynamics

can be harnessed to perform complex computations [LB13, RHT16]. By varying the gain term,

we determined if highly chaotic initial dynamics were required for successful conversion. We

considered six different gain terms ranging from 0.5 to 3.5, and for each gain term, we constructed

100 LIF RNNs (from 100 rate RNNs with random initial conditions; Fig. 3.6C) to perform the

contextual integration task. The LIF models performed the task equally well across all the gain
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terms considered (no statistical significance detected).

Transfer function

One of the most important factors that determines whether rate RNNs can be mapped to

LIF RNNs in a one-to-one manner is the nonlinear transfer function used in the rate models. We

considered three non-negative transfer functions commonly used in the machine learning field to

train rate RNNs on the Go-NoGo task: sigmoid, rectified linear, and softplus functions (Fig. 3.7A;

see Section 3.6). For each transfer function, 100 rate models (N = 250 and τd
max = 50 ms) were

trained. Although all 300 rate models were trained to perform the task almost perfectly (Fig. 3.7B),

the average task performance and the number of successful LIF RNNs were highest for the rate

models trained with the sigmoid transfer function (Fig. 3.7C). None of the rate models trained

with the rectified linear transfer function could be successfully mapped to LIF models, while the

spiking networks constructed from the rate models trained with the softplus function were not

robust and produced incorrect responses (Section 3.6, Fig. 3.13).

3.5 Discussion

In the current study, we presented a simple framework that harnesses the dynamics

of trained continuous rate network models to produce functional spiking RNN models. We

identified a set of parameters required to directly transform trained rate RNNs to LIF models, thus

establishing a one-to-one correspondence between these two model types. Despite of additional

spiking-related parameters, surprisingly only a single parameter (i.e., scaling factor) was required

for LIF RNN models to closely mimic their counterpart rate models. Furthermore, this framework

can flexibly impose functional connectivity constraints and heterogeneous synaptic time constants.

We investigated and characterized the effects of several model parameters on the stability

of the transfer learning from rate models to spiking models. The parameters critical for the
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Figure 3.7: Comparison of the LIF RNNs derived from the rate RNNs trained with three
non-negative activation functions. A. Three non-negative transfer functions were considered:
sigmoid, softplus, and rectified linear (ReLU) functions. B. All 300 rate RNNs (100 networks
per activation function) were successfully trained to perform the Go-NoGo task. C. Of the 100
sigmoid LIF networks constructed, 94 networks successfully performed the task. The conversion
rates for the softplus and ReLU LIF models were 55% and 0%, respectively. Mean ± SD task
performance: 98.8 ± 4.7% (sigmoid), 88.3 ± 15.8% (softplus), and 59.7 ± 9.5% (ReLU).

mapping to be robust included the network size, choice of activation function for training rate

RNNs, and a constant factor to scale down the connectivity weights of the trained rate networks.

Although the softplus and rectified linear activation functions are popular for training deep neural

networks, we demonstrated that the rate networks trained with these functions do not translate

robustly to LIF RNNs (Fig. 3.7). On the other hand, the rate models trained with the sigmoid

function were transformed to LIF models with high fidelity.

Another important parameter was the constant scaling factor used to scale W rate and
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W rate
out before transferring them to LIF networks. When the scaling factor was set to its optimal

value (found via grid search), the LIF units behaved like their counterpart rate units, and the

spiking networks performed the tasks the rate RNNs were trained to perform (Fig. 3.2). Another

parameter that affected the reliability of the conversion was the refractory period parameter of

the LIF network models. The LIF performance was optimal when the refractory was set to 2 ms

(Fig. 3.6A). Training the synaptic decay time constants, choice of synaptic filter (between single

and double exponential filter), and connectivity weight initialization did not affect the mapping

procedure (Fig. 3.5 and Fig. 3.6B–C).

The type of approach used in this study (i.e., conversion of a rate network to a spiking

network) has been previously employed in neuromorphic engineering to construct power-efficient

deep spiking networks [CCK15, DNB+15, DZC+16, HE16, RLHP16, SYW+19]. These studies

mainly employed feedforward multi-layer networks or convolutional neural networks aimed to

accurately classify input signals or images without placing too much emphasis on biophysical

limitations. The overarching goal in these studies was to maximize task performance while

minimizing power consumption and computational cost. On the other hand, the main aim of

the present study was to construct spiking recurrent network models that abide by important

biological constraints in order to relate emerging mechanisms and dynamics to experimentally

observed findings. To this end, we have carefully designed our continuous rate RNNs to include

several biological features. These include (1) recurrent architectures, (2) sparse connectivity that

respects Dale’s principle, and (3) heterogeneous synaptic decay time constants.

For constructing spiking RNNs, recent studies have proposed methods that built on the

FORCE method to train spiking RNNs [KC18, TUKM16, DCA16, ADM16]. Conceptually,

our work is most similar to the work by [DCA16]. The method developed by [DCA16] also

relies on mapping a trained continuous-variable rate RNN to a spiking RNN model. However,

the rate RNN model used in their study was designed to provide dynamically rich auxiliary

basis functions meant to be distributed to overlapping populations of spiking units. Due to this
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reason, the relationship between their rate and spiking models is rather complex, and it is not

straightforward to impose functional connectivity constraints on their spiking RNN model. An

additional procedure was introduced to implement Dale’s principle, but this led to more fragile

spiking networks with considerably increased training time [DCA16]. The one-to-one mapping

between rate and spiking networks employed in our method solved these problems without

sacrificing network stability and computational cost: biophysical constraints that we wanted to

incorporate into our spiking model were implemented in our rate network model first and then

transferred to the spiking model.

While our framework incorporated the basic yet important biological constraints, there

are several features that are also not biologically realistic in our models. The gradient-descent

method employed to tune the rate model parameters, including the connectivity weights and the

synaptic decay time constants, in a supervised manner is not biologically plausible. Although

tuning of the synaptic time constants is not realistic and has not been observed experimentally,

previous studies have underscored the importance of the diversity of synaptic time scales both

in silico and in vivo [KC18, WSB+18, CTW+18]. In addition, other works have validated and

uncovered neural mechanisms observed in experimental settings using RNN models trained with

backpropagation [MSSN13, SYW16, CSFW17], thus highlighting that a network model can be

biologically plausible even if it was constructed using non-biological means. Another limitation

of our method is the lack of temporal coding in our LIF models. Since our framework involves

rate RNNs that operate in a rate coding scheme, the spiking RNNs that our framework produces

also employ rate coding by nature. Previous studies have shown that spike-coding can improve

spiking efficiency and enhance network stability [ADM16, DM16, AMDS18], and recent studies

emphasized the importance of precise spike coordination without modulations in firing rates

[ZBC+18, SAHD19]. Lastly, our framework does not model nonlinear dendritic processes which

have been shown to play a significant role in efficient input integration and flexible information

processing [UMBL15, YMW16, TUKM16]. Incorporating nonlinear dendritic processes into our
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platform using the method proposed by [TUKM16] will be an interesting next step to further

investigate the role of dendritic computation in information processing.

In summary, we provide an easy-to-use platform that converts a continuous recurrent

network model with basic biological constraints to a spiking model. The tight relationship between

rate and LIF RNN models under certain parameter values suggests that spiking networks could be

put together to perform complex tasks traditionally employed to train and study continuous rate

networks. Future work needs to focus on why and how such a tight relationship emerges. The

framework along with the findings presented in this study lays the groundwork for discovering

new principles on how neural circuits solve computational problems with discrete spikes and

for constructing more power efficient spiking networks. Extending our platform to incorporate

other commonly used neural network architectures could help design biologically plausible deep

learning networks that operate at a fraction of the power consumption required for current deep

neural networks.

Chapter 3, in full, is a reprint of the material as it appears in: Robert Kim, Yinghao Li,

and Terrence J. Sejnowski. Simple framework for constructing functional spiking recurrent neural

networks. Proceedings of the National Academy of Sciences, 116(45):22811–22820, 2019. The

dissertation author was the primary investigator and author of this paper.

3.6 Appendix

3.6.1 Implementation of computational tasks and figure details

In this section, I describe the details of the parameters and methods used to generate all

the main figures in the previous section.
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Fig. 3.1

A rate RNN of N = 200 units (169 excitatory and 31 inhibitory units) was trained to

perform the Go-NoGo task for Fig. 3.1B. Each trial lasted for 1000 ms (200 time steps with 5 ms

step size). The minimum and the maximum synaptic decay time constants were set to 20 ms

and 50 ms, respectively. An input stimulus with a pulse 125 ms in duration was given for a Go

trial, while no input stimulus was given for a NoGo trial. The network was trained to produce

an output signal approaching +1 after the stimulus offset for a Go trial. For a NoGo trial, the

network was trained to maintain its output at zero. A trial was considered correct if the maximum

output signal during the response window was above 0.7 for the Go trial type. For a NoGo trial,

if the maximum response value was less than 0.3, the trial was considered correct. For training,

6000 trials were randomly generated, and the model performance was evaluated after every 100

trials. Training was terminated when the loss function value fell below 7 and the task performance

reached at least 95%. The termination criteria were usually met at or before 2000 trials for this

task.

For Fig. 3.1C, rate RNNs with 9 different sizes (N =10, 50, 100, 150, 200, 250, 300, 350,

400) were trained. For each network size, 100 rate RNNs with random initial conditions were

trained on the Go-NoGo task.

Fig. 3.2

The rate RNN trained in Fig. 3.1B was converted to a LIF RNN using different scaling

factor (λ) values for Fig. 3.2B. The double exponential synaptic filter was used, and the gain term

(g) for the rate RNN initialization was set to 1.5. The LIF parameters listed in Table 3.1 were

used for all the LIF network models constructed in Fig. 3.2.
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Fig. 3.3

Rate RNNs with 11 different network sizes (N =10, 50, 100, 150, 200, 250, 300, 350,

400, 450, 500) were trained on the contextual integration task. For each network size, 100 rate

RNNs with random initial conditions were trained.

For the task design, the input matrix (uuu ∈ R4×500) contained four stimuli channels across

time (500 time steps with 5 ms step size). The first two channels corresponded to the modality 1

and modality 2 noisy input signals. These signals were modeled as white-noise signals (sampled

from the standard normal distribution) with constant offset terms. The sign of the offset term

modeled the evidence toward (+) or (-) choices, while the magnitude of the offset determined

the strength of the evidence. The noisy signals were only present during the stimulus window

(250 ms – 1250 ms). The last two channels of uuu represented the modality 1 and the modality 2

context signals. For instance, the third channel of uuu is set to one and the fourth channel is set to

zero throughout the trial duration to model Modality 1 context.

For each trial used to train the rate model, the offset values for the two modality input

signals were randomly set to -0.5 or +0.5. The context signals were randomly set such that either

modality 1 (third input channel is set to 1) or modality 2 (fourth input channel is set to 1) was

cued for each trial. If the offset term of the cued modality was +0.5 (or -0.5) for a given trial,

the network was instructed to produce an output signal approaching +1 (or -1) after the stimulus

window. The model performance was assessed after every 100 training trials, and the training

termination conditions were same as the ones used for Fig. 3.1.

Fig. 3.4

A network of N = 250 LIF units (188 excitatory and 62 inhibitory units) were constructed

from a rate RNN model trained to perform the context-dependent input integration task for

Fig. 3.4A. The scaling factor (λ) was set to 1/60. The double exponential synaptic filter was used,

and the gain term (g) for the rate RNN initialization was set to 1.5. The LIF parameters listed in
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Table 3.1 were used for all the LIF network models constructed in Fig. 3.4.

Fig. 3.5

Rate RNNs (N = 250) were trained on the Go-NoGo task with and without optimizing

the synaptic decay time constants (τττddd). For each condition, 100 rate RNNs were trained. For

the fixed synaptic decay constant condition, τd was fixed to 35 ms. For the tuned synaptic decay

condition, τd
min = 20 ms and τd

max = 50 ms.

Fig. 3.6

For Fig. 3.6A, all 100 rate RNNs (N = 250, τd
min = 20 ms, τd

max = 100 ms) trained in

Fig. 3.4E were converted to LIF RNNs with different values of the refractory period. The

following 20 refractory period values were considered: 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5,

5.0, 10, 15, 20, 25, 30, 35, 40, 45, 50 ms.

Fig. 3.7

The following softplus function was used:

r = log(exp(x)+1)

For the networks trained with the softplus and ReLU activation functions, the following

range of values for 1/λ was used for the grid search: 4 to 26 with a step size of 2.

3.6.2 Quadratic integrate-and-fire model

For the quadratic integrate-and-fire (QIF) model (Fig. 3.14), we considered a network of

units governed by

τm
dvvv
dt

= vvv2 +W spkrrrspk + IIIext
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The definitions of the variables are identical to the ones used for the LIF network model.

3.6.3 Code availability

The implementation of our framework and the codes to generate all the figures in this

work are available at https://github.com/rkim35/spikeRNN. The repository also contains

implementation of other tasks including autonomous oscillation and delayed match-to-sample

(DMS) tasks.

3.6.4 Data availability

All the trained models used in the present study are available at the following repository:

https://osf.io/jd4b6.
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3.6.5 Supplementary figures
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Figure 3.8: Comparison of the time-varying rates of the continuous-variable rate units
and the LIF units. A. A single Go trial was used to extract the rates from the rate RNN trained
in Fig. 3.1B. The firing rates of the LIF RNN constructed using the optimal scaling factor
(λ = 1/25) are shown on the right. The firing rates of the LIF units were normalized to range
from 0 to 1 for comparison. B. Distribution of the firing rates for a NoGo trial (left) and a Go
trial (right).
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Figure 3.10: Incorporation of additional functional connectivity constraints. A. Common
cortical microcircuit motif where somatostatin-expressing interneurons (SST; yellow circle)
inhibit both pyramidal (PYR; red circle) and parvalbumin-expressing (PV; blue circle) neurons.
B. Schematic illustrating the incorporation of the connectivity motif shown in A into a LIF
network model. The connectivity pattern was imposed during training of a rate network model
(N = 200) to perform the Go-NoGo task. There were 134 PYR, 46 PV, and 20 SST units. A
spiking model was constructed using the trained rate model with λ = 1/50. C. Example output
response and spikes from the LIF network model for a single NoGo trial. Mean ± SD firing rate
for each population is also shown (PYR, 3.08 ± 3.29 Hz; PV, 10.80 ± 8.94 Hz; SST, 25.50 ±
2.33 Hz). D. Example output response and spikes from the LIF network model for a single Go
trial. Mean ± SD firing rate for each population is also shown (PYR, 4.72 ± 5.89 Hz; PV, 9.30
± 8.16 Hz; SST, 27.05 ± 3.98 Hz). Box plot central lines, median; bottom and top edges, lower
and upper quartiles. E. LIF network model performance on 50 NoGo trials (light purple) and 50
Go trials (dark purple). Mean ± SD shown.
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network model performance on 50 NoGo trials (light purple) and 50 Go trials (dark purple).
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model for a single NoGo trial. D. Example output response (top) and spikes (bottom) from the
LIF network model for a single Go trial.
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Figure 3.12: The LIF network model employs mixed representations of the task variables.
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max = 100 ms). An

excitatory unit (red) and an inhibitory unit (blue) with mixed representation of three task
variables (modality 1, modality 2, and context) are shown as examples. The excitatory neuron
preferred modality 1 input signals with negative offset values, modality 2 signals with positive
offset values, and modality 1 context (left column). The inhibitory neuron also exhibited similar
biases (right column). B. Average population responses projected to a low dimensional state
space. The targeted dimensionality reduction technique (developed in [MSSN13]) was used
to project the population activities to the state space spanned by the task-related axes. For the
modality 1 context (top row), the population responses from the trials with various modality 1
offset values were projected to the choice and modality 1 axes (left). The same trials were sorted
by the irrelevant modality (modality 2) and shown on the right. Similar conventions used for the
modality 2 context (bottom row). The offset magnitude (i.e., amount of evidence toward “+” or
“-” choice) increases from dark to light. Filled and empty circles correspond to “+” choice and
“-” choice trials, respectively.
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Table 3.1: Parameter values used to construct LIF and QIF networks

LIF QIF
Membrane time constant (τm) 10 ms 10 ms
Absolute refractory period 2 ms 2 ms
Synaptic rise time (τr) 2 ms 2 ms
Constant bias current -40 pA 0 pA
Spike threshold -40 mV 30 mV
Spike reset voltage -65 mV -65 mV
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Chapter 4

Strong inhibitory signaling underlies stable

temporal dynamics and working memory

in spiking neural networks

The computational framework introduced in the previous chapter is applied to train re-

current networks on working memory (WM) tasks in order to characterize network dynamics

required for short-term memory maintenance. Impairment in WM has been consistently observed

in patients diagnosed with schizophrenia [Man03, VGH+16], and understanding circuit mech-

anisms underlying WM computations could shed light on the pathophysiology of the complex

disorder.

The work presented here is reproduced and adapted from: Robert Kim and Terrence

J. Sejnowski. Strong inhibitory signaling underlies stable temporal dynamics and working

memory in spiking neural networks. Preprint at https://www.biorxiv.org/content/10.

1101/2020.02.11.944751v1 (2020).
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4.1 Abstract

Cortical neurons process information on multiple timescales, and areas important for

working memory (WM) contain neurons capable of integrating information over a long timescale.

However, the underlying mechanisms for the emergence of neuronal timescales stable enough

to support WM are unclear. By analyzing a spiking recurrent neural network (RNN) model

trained on a WM task and activity of single neurons in the primate prefrontal cortex, we show

that the temporal properties of our model and the neural data are remarkably similar. Dissecting

our RNN model revealed strong inhibitory-to-inhibitory connections underlying a disinhibitory

microcircuit as a critical component for long neuronal timescales and WM maintenance. We also

found that enhancing inhibitory-to-inhibitory connections led to more stable temporal dynamics

and improved task performance. Finally, we show that a network with such microcircuitry can

perform other tasks without disrupting its pre-existing timescale architecture, suggesting that

strong inhibitory signaling underlies a flexible WM network.

4.2 Introduction

Temporal receptive fields and neuronal timescales are hierarchically organized across

the cortex [MBF+14, CKG+15]. Areas important for higher cognitive functions are capable of

integrating and processing information in a robust manner and reside at the top of the hierarchy

[MBF+14, CKG+15, CWKH16]. The prefrontal cortex (PFC) is a higher-order cortical region

that supports a wide range of complex cognitive processes including WM, an ability to encode

and maintain information over a short period of time [MED96, FA71]. However, the underlying

circuit mechanisms that give rise to stable temporal receptive fields strongly associated with

WM are not known and experimentally challenging to probe. A better understanding of possible

mechanisms could elucidate not only how areal specialization in the cortex emerges but also how

local cortical microcircuits carry out WM computations.
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Previous experimental studies reported that baseline activities of single neurons in the

primate PFC contained unique temporal receptive field structures. Using decay time constants of

spike-count autocorrelation functions obtained from neurons at rest, these studies demonstrated

that the primate PFC is mainly composed of neurons with large time constants or timescales

[MBF+14, FTMG17, CTW+18, WSB+18]. In addition, neurons with longer timescales carried

more information during the delay period of a WM task compared to short timescale neurons

[WSB+18]. A large-scale computational model where heterogeneous timescales were naturally

organized in a hierarchical manner that closely matched the hierarchy observed in the primate

neocortex has been proposed [CKG+15]. The framework utilized a gradient of recurrent excitation

to establish varying degrees of temporal dynamics [CKG+15]. Although their findings suggest

that recurrent excitation is correlated with area-specific timescales, it is still unclear if recurrent

excitation indeed directly regulates neuronal timescales and WM computations.

Recent experimental studies paint a different picture where diverse inhibitory interneurons

form intricate microcircuits in the PFC to execute memory formation and retrieval [KJL+16,

KD17, XLT+19, CC19, KPdA+19]. Both somatostatin (SST) and vasoactive intestinal peptide

(VIP) interneurons have been shown to form a microcircuit that can disinhibit excitatory cells

via inhibition of parvalbumin (PV) interneurons [PXH+13, TLR16]. Furthermore, SST and

VIP neurons at the center of such disinhibitory microcircuitry were causally implicated with

impaired associative and working memory via optogenetic manipulations [KJL+16, KD17, CC19,

KPdA+19]. Consistent with these observations, the primate anterior cingulate cortex, which is at

the top of the timescale hierarchy [MBF+14], was found to contain more diverse and stronger

inhibitory inputs compared to the lateral PFC [MGWL17]. A recent theoretical study also showed

that inhibitory-to-inhibitory synapses, although much fewer in number compared to excitatory

connections, is a critical component for implementing robust maintenance of memory patterns

[MRL18].

In order to characterize how strong inhibitory signaling enables WM maintenance and
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leads to slow temporal dynamics, we constructed a spiking RNN model to perform a WM task

and compared the emerging timescales with the timescales derived from the prefrontal cortex

of rhesus monkeys trained to perform similar WM tasks. Here, we show that both primate

PFC and our RNN model utilize units with long timescales to sustain stimulus information. By

analyzing and dissecting the RNN model, we illustrate that inhibitory-to-inhibitory synapses

incorporated into a disinhibitory microcircuit tightly control both neuronal timescales and WM

task performance. Finally, we show that the primate PFC exhibits signs that it is already equipped

with strong inhibitory connectivity even before learning the WM task, implying that a gradient of

recurrent inhibition could naturally result in functional specialization in the cortex. We confirm

this with our model and show that the task performance of RNNs with short timescales can be

enhanced via increased recurrent inhibitory signals. Overall, our work offers timely insight into

the role of diverse inhibitory signaling in WM and provides a circuit mechanism that can explain

previously observed experimental findings.

4.3 Materials and methods

4.3.1 Continuous rate RNN model

The spiking RNNs used in this chapter were generated by first training their counterpart

continuous-variable rate RNNs using a gradient descent algorithm. After training, the continuous

RNNs were converted to leaky integrate-and-fire (LIF) RNNs using the method that I presented

in the previous chapter [KLS19]. The continuous RNN model contained N = 200 recurrently

connected units that were governed by

τττ
ddd dxxx

dt
= −xxx+W raterrrrate + IIIext (4.1)

rrrrate =
1

1+ exp(−xxx)
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where 20 ms ≤ τττddd ≤ 125 ms ∈ R1×N corresponds to the synaptic decay time constants for the

N units in the network, xxx ∈ R1×N is the synaptic current variable, W rate ∈ RN×N is the synaptic

connectivity matrix, and rrrrate ∈ R1×N refers to the firing rate estimates of the units. A standard

logistic sigmoid function was used to estimate a firing rate of a neuron from its synaptic current

(x).

The external currents (IIIext) include task-specific input stimulus signals (see Section 4.3.2)

along with a Gaussian white noise variable:

IIIext =Winuuu+N (0,0.01)

where the time-varying, task-specific stimulus signals (uuu ∈ RNin×1) are given to the network via

Win ∈ RN×Nin , a Gaussian random matrix with zero mean and unit variance. Nin corresponds to

the number of input signals associated with a specific task, and N (0,0.01) ∈ RN×1 represents a

Gaussian random noise with zero mean and variance of 0.01.

A linear readout of the population activity was used to define the output of the rate

network:

orate(t) =W rate
out rrrrate(t)

where W rate
out ∈ R1×N refers to the readout weights.

Eq. (4.1) is discretized using the first-order Euler approximation method:

xxxt =

(
1− ∆t

τττddd

)
xxxt−1 +

∆t
τττddd (W

raterrrrate
t−1 +Winuuut−1)

+ N (0,0.01)

where ∆t = 5 ms is the discretization time step size used throughout this study.
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4.3.2 Training details

Adam (adaptive moment estimation), a stochastic gradient descent algorithm, was used

to update the synaptic decay variable (τs), recurrent connections (W rate) and readout weights

(W rate
out ). The learning rate was set to 0.01, and the TensorFlow default values were used for

the first and second moment decay rates. In addition, Dale’s principle (i.e., separate excitatory

and inhibitory populations) was imposed using the method previously proposed [SYW16]. For

re-training previously trained RNNs (Fig. 4.8), only the input weights (Win) were trainable, and

the recurrent weights and the readout weights were fixed to their trained values.

Two LIF RNN models were employed in this study by training rate RNNs on two different

tasks: delayed match-to-sample (DMS) and 2-alternative forced choice (AFC) tasks.

DMS RNNs

For the DMS RNN model, the input matrix (uuu ∈ R2×500) contained two input channels

for two sequential stimuli (over 500 time steps with 5 ms step size). The first channel delivered

the first stimulus (250 ms in duration) after 1 s (200 time steps) of fixation, while the second

channel modeled the second stimulus (250 ms in duration), which began 50 ms after the offset

of the first stimulus. The short delay (50 ms) allowed rate RNNs to learn the task efficiently,

and the delay duration was increased after training (see below). During each stimulus window,

the corresponding input channel was set to either -1 or +1. If the two sequential stimuli had the

same sign (-1/-1 or +1/+1), the network was trained to produce an output signal approaching +1

after the offset of the second stimulus. If the stimuli had opposite signs (-1/+1 or +1/-1), then

the network produced an output signal approaching -1. The training was stopped when the loss

function fell below 7, and the task performance was greater than 95%. After the rate RNNs were

successfully trained and converted to LIF networks, a subgroup of LIF RNNs that performed the

actual DMS paradigm used in the main text (i.e., delay duration set to 750 ms) with accuracy

greater than 95% were identified and analyzed. For Figs. 4.5, 4.6 and 4.7, a group of LIF RNNs
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that performed the DMS task with accuracy between 60% and 80% was used.

AFC RNNs

The input matrix (uuu ∈ R1×350) for the AFC paradigm was set to 0 for the first 200 time

steps (i.e., 1 s fixation). A short stimulus (125 ms in duration) of either -1 or +1 was given after

the fixation period. After the stimulus offset, the network was trained to produce an output signal

approaching -1 for the “-1” stimulus and +1 for the “+1” stimulus. The training termination

criteria were the same as those used for the DMS model above.

4.3.3 Spiking RNN model

For our spiking RNN model, we considered a network of leaky integrate-and-fire (LIF)

units recurrently connected to one another. These units are governed by:

τm
dvi(t)

dt
=−vi(t)+(xi(t)+ Iext(t))R (4.2)

where τm is the membrane time constant (10 ms), vi(t) is the membrane voltage of unit i at

time t, xi(t) is the synaptic input current that unit i receives at time t, Iext is the external input

current, and R is the leak resistance (set to 1). The synaptic input current (x) is modeled using a

double-exponential synaptic filter applied to the presynaptic spike trains:

xi =
N

∑
j=1

W spk
i j rspk

j

drspk
i

dt
= −

rspk
i

τd
i

+ si

dsi

dt
= − si

τr
+

1
τrτ

d
i

∑
tk
i <t

δ(t− tk
i )
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where W spk
i j is the recurrent connection strength from unit j to unit i, τr = 2 ms is the synaptic

rise time and τd
i refers to the synaptic decay time for unit i. The synaptic decay time constant

values and the recurrent connectivity matrix were transferred from the trained rate RNNs (more

details described in the previous chapter and in [KLS19]). The spike train produced by unit i is

represented as a sum of Dirac δ functions, and tk
i refers to the k-th spike emitted by unit i.

The external current input (Iext) contained task-specific input values along with a constant

background current set near the action potential threshold. The output of our spiking model at

time t is given by

ospk(t) =W spk
out rrrspk(t)

where the readout weights (W spk
out ) are also transferred from the trained rate RNN model.

Other LIF model parameters included the action potential threshold (-40 mV), the reset

potential (-65 mV), the absolute refractory period (2 ms), and the constant bias current (-40 pA).

Eq. (4.2) was discretized using a first-order Euler method with ∆t = 0.05 ms.

4.3.4 Electrophysiological recordings

Extracellular recordings, previously described in [QMSC11, MQSC11, CQM16], were

analyzed to validate our RNN model. The dataset contained spike-train recordings from four

rhesus macaque monkeys before and after they learned two DMS tasks. Briefly, for the pre-

training condition, the monkeys were rewarded for maintaining fixation on the center of the

screen regardless of the visual stimuli shown throughout the trial (Fig. 4.8a). For the post-training

condition, the monkeys were trained on two DMS tasks: spatial and feature DMS tasks. For the

spatial task (Fig. 4.1b), the monkeys were trained to report if two sequential stimuli matched

in their spatial locations. For the feature task, they had to distinguish if two sequential stimuli

matched in their shapes. The dataset included spike times from single neurons in the dorsal and

ventral PFC, but only the units from the dorsal PFC were analyzed for this study.
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4.3.5 Estimation of neuronal timescales

To estimate neuronal timescales, we computed the decay time constant of the spike-count

autocorrelation function for each unit during the fixation period [MBF+14]. For each unit, we

first binned its spike trains during the fixation period over multiple trials using a non-overlapping

50-ms moving window. Since the fixation duration was 1 s for the experimental data and our

model, this resulted in a [Number of Trials × 20] spike-count matrix for each unit. For the

experimental data, the minimum number of trials required for a neuron to be considered for

analysis was 11 trials. The average number of trials from all the neurons from the post-training

condition was 86.8 ± 35.1 (mean ± s.d.) trials. For the pre-training condition, the average

number of trials was 95.4 ± 44.4. For the RNN model, we generated 50 trials for each unit.

Next, Pearson’s correlation coefficient (ρ) was computed between two time bins (i.e., two

columns in the spike-count matrix) separated by a lag (∆). The coefficient was calculated for all

possible pairs with a maximum lag of 600 ms. The coefficients were averaged for each lag value,

and an exponential decay function was fitted across the average coefficient values (ρ̄) using the

Levenberg-Marquardt nonlinear least-squares method:

ρ̄(∆) = A
(

exp
(
−∆

τ

)
+B
)

(4.3)

where A and B are the amplitude and the offset of the fit, respectively. The timescale (τ) defines

how fast the autocorrelation decays and was used to estimate each neuron’s timescale.

The following inclusion criteria (commonly used in previous experimental studies) were

applied to the RNN model and the experimental data: (1) minimum average firing rate of

1 Hz during the fixation period for the experimental data and 2.5 Hz for the RNN model, (2)

0 < τ ≤ 500 ms, (3) A > 0, and (4) a first decrease in ρ earlier than ∆ = 150 ms. In addition,

the fitting was started after the first decrease in autocorrelation. For the experimental dataset,

325 dlPFC units from the post-training condition and 434 units from the pre-training condition
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satisfied the above criteria. For the DMS RNN model, 931 units from 40 good performance

RNNs and 604 units from 26 poor performance RNNs met the criteria. For the AFC model, 1138

units from 40 RNNs satisfied the criteria.

4.3.6 Cross-temporal decoding analysis

The amount of information encoded by each unit was estimated using cross-temporal

decoding analysis [SKS+13, SWFS17, WSB+18]. For both experimental and model data, a

Gaussian kernel (s.d. = 50 ms) was first applied to the spike-trains to obtain the firing rate

estimates over time. For each cue stimulus identity, each neuron’s firing rate timecourses were

divided into two splits (even vs. odd trials) and averaged across trials within each split. There

were 9 cue conditions (i.e., 9 spatial locations) for the spatial DMS task and 8 cue conditions (i.e.,

8 shapes) for the feature DMS task. Within each task, all possible pairwise differences in mean

firing rates between any two cue conditions for each neuron in each split were computed. Next,

Pearson’s correlation coefficient was determined for each pairwise difference condition between

the two splits (at each time point across neurons). The correlation coefficients from both tasks

(36 pairwise difference conditions for the spatial task and 28 conditions for the feature task) at

each time point were averaged after applying the Fisher’s z-transformation resulting in a single

measure we refer to as a discriminability or decodability score. The within-time discriminability

scores were computed from the correlation coefficients at t1 = t2 where t1 and t2 refer to the time

points used for the two splits.

Nonparametric cluster-based permutation tests were utilized to account for multiple

comparisons and to determine significant discriminability (Fig. 4.3a) and differences in discrim-

inability between short and long τ subgroups (Figs. 4.3 and 4.8) [MO07]. To identify significant

clusters in the cross-temporal matrices (Fig. 4.3a and Fig. 4.8c,f), cue stimulus condition labels

were randomly shuffled for 1,000 times within each split to construct the null distribution. A

point was considered significant if its value exceeded the 95th percentile of the null distribution,
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and the largest cluster size (i.e., number of contiguous points that were significant) from the data

was compared against the null distribution of the largest cluster size values to correct for multiple

comparisons. To determine if within-time decoding timecourses were significantly different

between long and short τ groups (Fig. 4.3b and Fig. 4.8c,f), τ group labels were randomly shuffled

for 1,000 times within each split and each task. Again, a time point was considered significant

if it was greater than the 95th percentile of the null distribution. Similar multiple comparison

correction, as described above, was applied.

Cross-temporal decoding matrices and within-time decoding timecourses for the dlPFC

data (Figs. 4.3 and 4.8) were smoothed for better visualization, but all statistical tests were

performed on unsmoothed data.

4.3.7 Connectivity rewiring method

For Fig. 4.4e, we characterized which connection type contributed the most to the long

neuronal timescales observed in the DMS RNN model by randomly shuffling connections

belonging to each type (I→ I, I→ E, E→ I, or E→ E) while preserving the original distribution

of the connection types. For the I→ I type, all the outward connections from each inhibitory unit

to other inhibitory units were first identified. These connections were then rewired randomly in a

manner that preserved their connection identity (i.e., I→ I). This procedure was repeated for the

other three synaptic types. For Fig. 4.5, all the synaptic weights corresponding to each connection

type were either decreased or increased by 30% without rewiring.

To quantify the amount of cue-specific information maintained during the delay period in

each of the four shuffling conditions (Fig. 4.4f), we performed the within-time decoding analysis

(see above) for all the units in each RNN per shuffling condition. This resulted in 40 within-time

decoding timecourses (one for each RNN) for each rewiring condition.
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4.3.8 Cue stimulus selectivity

In order to identify inhibitory units selective for each of the two cue stimuli (-1 or +1), we

computed a cue preference index (θ) for each unit using:

θi =
ri,+1− ri,−1

ri,+1 + ri,−1

where ri,+1 refers to the average firing rate of unit i across positive cue stimulus trials (50 trials)

during the cue stimulus window, while ri,−1 indicates the average activity across negative cue

stimulus trials (50 trials). Thus, θi > 0 indicates that unit i prefers the positive cue stimulus over

the negative stimulus. Based on this selectivity measure, two subgroups of inhibitory units (one

for θ > 0 and the other for θ < 0) were identified for each DMS RNN.

4.3.9 Spike-count Fano factors

The relationship between spike-count variability and neuronal timescales was investigated

by computing trial-to-trial spike-count Fano factors during the fixation period (Fig. 4.7). For

each unit included in the timescale analysis, the variance of the total number of spikes within

the 1-s fixation window across trials was first computed. The Fano factor was then calculated by

dividing the variance by the mean spike count. The trials used for computing the Fano factors

were identical as those used for estimating the neuronal timescales for both neural and RNN data.

4.3.10 Reconfiguring pre-trained RNNs

In Fig. 4.8g,h, the continuous-variable rate RNNs trained to perform the AFC and DMS

tasks were used. For Fig. 4.8g, only the input weights (Win) for the AFC RNNs were re-trained

via the same gradient descent algorithm to perform the DMS task. The I→ I connections were

either unaltered (yellow in Fig. 4.8g) or increased by 200% (orange in Fig. 4.8g). In Fig. 4.8h,
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only the input weights for the DMS RNNs were reconfigured to perform the AFC task. The

maximum number of training trials was set to 6,000 trials for computational efficiency.

4.4 Results

4.4.1 Spiking recurrent neural network model

To study how stable temporal dynamics associated with WM emerge, we trained a spiking

RNN model to perform a WM task. The model used in the present study is composed of leaky

integrate-and-fire (LIF) units recurrently connected to one another (see Section 4.3).

The WM task we used to train the spiking RNNs was a delayed match-to-sample (DMS)

task (Fig. 4.1a; see Section 4.3). The task began with a 1 s long fixation period (i.e., no external

input) followed by two sequential input stimuli (each stimulus lasting for 0.25 s) separated by a

delay period (0.75 s). The input signal was set to either -1 or +1 during the stimulus window. If

the two sequential stimuli had the same sign (-1/-1 or +1/+1), the network was trained to produce

an output signal approaching +1 after the offset of the second stimulus. If the stimuli had opposite

signs (-1/+1 or +1/-1), the network produced an output signal approaching -1.

Using a method that we had previously developed, we configured the recurrent connections

required for the spiking model to perform the task [KLS19]. Briefly, we trained continuous-

variable rate RNNs to perform the task using a gradient descent algorithm, and the trained

networks were then mapped to LIF networks. In total, we “trained” 40 LIF RNNs of 200 units

(80% excitatory and 20% inhibitory units) to perform the task with high accuracy (accuracy >

95%; see Section 4.3).

98



a

Fixation

1 s
Cue

0.5 s
Delay

1.5 s
Sample

0.5 s

Saccade
b

Cue

0.25 s

Delay

0.75 s

Sample

0.25 s

-1

0

1

-1

0

1

O
u

tp
u

t 
(a

u
)

O
u

tp
u

t 
(a

u
)

0

50

100

150

200

N
e

u
ro

n
 I
n

d
e

x

0

50

100

150

200

N
e

u
ro

n
 I
n

d
e

x

Time (s)

0 0.5 1.0 1.5 0 0.5 1.0 1.5

Time (s)

W
in

W

W
out

Figure 4.1: Recurrent neural network model and experimental data. a, Spiking recurrent
neural network (RNN) model contained excitatory (red circles) and inhibitory (blue circles)
units recurrently connected to one another. The model was trained to perform a delayed match-
to-sample (DMS) task. Each RNN contained 200 units (80% excitatory and 20% inhibitory),
and 40 RNNs were trained to perform the DMS task. The dashed lines (recurrent connections
and readout weights) were optimized via a supervised learning method. Example output signals
along with the corresponding spike raster plots from a trained RNN is shown. Gray shading,
stimulus window. b, Spatial DMS task paradigm used to train four rhesus monkeys [CQM16].
Extracellular recordings from the dorsolateral prefrontal cortex (green area) were analyzed.

4.4.2 Experimental data

To ensure that our spiking model is a biologically valid one for probing neuronal timescales

observed in the cortex, we also analyzed a publicly available dataset containing extracellular
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long timescales. a, Distribution of the firing rates during the fixation period was not significantly
different between the experimental data and the RNN model (P < 0.70, two-sided Wilcoxon
rank-sum test). b, Autocorrelation decay curves from example units with short (left) and long
(right) timescale values. c, Histograms of the distribution of the timescales from the experimental
data (n = 325; green), trained RNNs (n = 931; magenta), and random RNNs (n = 3963; light
magenta). Solid vertical lines represent median log(τ). d, Autocorrelation decay curves from
single units (light) and the population average autocorrelation (bold) for the dlPFC data, trained
RNNs, and random RNNs. For the random RNNs, only 20% of the total single unit traces
shown. Boxplot central lines, median; red circles, mean; bottom and top edges, lower and upper
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spike trains recorded from the dorsolateral prefrontal cortex (dlPFC) of four rhesus monkeys

[QMSC11, MQSC11, CQM16]. The monkeys were trained on spatial and feature DMS tasks. A

trial for both task types began with a fixation period (1 s in duration) during which the monkeys
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were required to maintain their gaze at a fixation target. For a spatial DMS trial, the monkeys

were trained to report if two sequential stimuli separated by a delay period (1.5 s) matched in

spatial location (Fig. 4.1b). For a feature DMS trial, the monkeys were required to distinguish if

two sequential stimuli (in the same spatial location) matched in shape. More details regarding the

dataset and the tasks can be found in Section 4.3 and in [QMSC11, MQSC11].

0

Time (s) Time (s)

T
im

e
 (

s
)

Split A

S
p

li
t 

B

Cue Delay

0 21

0

1

2

C
u

e
D

e
la

y

0 21

Cue Delay

D
e

la
y

C
u

e

Time (s)
0 0.5

Time (s)

T
im

e
 (

s
)

Cue Delay DelayCue

C
u

e

C
u

e
D

e
la

y

D
e

la
y

0.5

0 0.5
0

1.0

1.0

1

1.0

0

0.1

D
is

c
ri

m
in

a
b

il
it

y
 (

a
u

)
D

is
c

ri
m

in
a

b
il
it

y
 (

a
u

)
Time (s)

Time (s)

0 21

0 0.8

Long

Short

dlPFC

RNN

0

1.0

0.6

0

0.1

0.2

0.3

D
is

c
ri
m

in
a

b
ili

ty
 (

a
u

)
D

is
c
ri
m

in
a

b
ili

ty
 (

a
u

)

a b

0.8

0.4

0.2

0.4

-0.1

dlPFC short dlPFC long

RNN short RNN long

Long

Short

Figure 4.3: Long τ units maintain cue stimulus information during the delay period ro-
bustly. a, Cross-temporal discriminability matrices for the dlPFC data (top row) and the RNN
model (bottom row). Red contours indicate significant decodability (cluster-based permutation
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4.4.3 Long neuronal timescales in both RNN model and experimental data

Previous studies demonstrated that higher cortical areas consist of neurons with long,

heterogeneous timescales using the spike-count autocorrelation decay time constant as a measure

of a neuron’s timescale [MBF+14, CTW+18, WSB+18]. Here, we sought to confirm that our

spiking RNNs trained on the DMS task and the neural data were also composed of units with

predominantly long timescales. For each unit from our RNNs and the dlPFC, we computed

the autocorrelation decay time constant (τ) of its spike-count during the 1 s fixation period (see

Section 4.3) [MBF+14]. The baseline activities (average firing rates during the fixation period)

of the units that satisfied the inclusion criteria were comparable between the dlPFC data and

our model (Fig. 4.2a; see Section 4.3). Both data contained units with slow temporal dynamics

(i.e., long τ values) and short τ units whose autocorrelation function decayed fast (Fig. 4.2b).

Furthermore, the distribution of the timescales was heavily left-skewed for both data (Fig. 4.2c,d,

left and middle panels) underscoring overall slow temporal properties associated with WM. On

the other hand, random RNNs (sparse, random Gaussian connectivity weights) were dominated

by units with extremely short timescales (Fig. 4.2c,d, right panels), suggesting that the long τ

units observed in the trained RNNs were the result of the supervised training.

4.4.4 Long neuronal timescales are essential for stable coding of stimuli

Next, we investigated to see if units with longer τ values were involved with more stable

coding compared to short τ units using cross-temporal decoding analysis [SKS+13, SWFS17,

WSB+18]. Briefly, for each cue stimulus identity, the trials of each unit were divided into two

splits in an interleaved manner (i.e., even vs. odd trials). All possible pairwise differences (in

instantaneous firing rates) between cue conditions were computed within each split. Finally, a

Fisher-transformed Pearson correlation coefficient was computed between the pairwise differences

of the first split at time t1 and the differences of the second split at time t2 (see Section 4.3).
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Therefore, a high Fisher-transformed correlation value (i.e., high discriminability) represents a

reliable cue-specific difference present in the network population.

We performed the above analysis on short and long neuronal timescale subgroups from

the neural data and the RNN model. A unit was assigned to the short τ group if its timescale was

smaller than the lower quartile value. The upper quartile was used to identify units with large

τ values. There were 64 units in each subgroup for the experimental data. For the RNN model,

there were 230 units in each subgroup.

The cross-temporal discriminability analysis revealed that stronger cue-specific differences

(i.e., higher discriminability) across the delay period were present in the long τ subgroup compared

to the short τ subgroup for both data (Fig. 4.3a). The significant decodability during the delay

period for the dlPFC dataset mainly stemmed from the spatial task dataset (Fig. 4.9). The within-

time discriminability (i.e., taking the diagonal values of the cross-temporal decoding matrices)

for the long τ group was significantly higher than the discriminability observed from the short τ

group throughout the delay period for the RNN model (Fig. 4.3b). Although significant within-

time discriminability was not observed for the dlPFC data (Fig. 4.3b, top), [WSB+18] reported

significant within-time decodability during the delay period in the primate lateral prefrontal

cortex, consistent with our model findings.

4.4.5 Strong inhibitory connections give rise to task-specific temporal re-

ceptive fields

Neuronal timescales extracted from cortical areas have been shown to closely track the

anatomical and functional organization of the primate cortex [MBF+14, CKG+15]. For instance,

sensory areas important for detecting incoming stimuli house neurons with short timescales. On

the other hand, higher cortical areas, including prefrontal areas, may require neurons with stable

temporal receptive fields that are capable of encoding and integrating information over a longer

timescale.
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timescale values from the AFC and DMS RNNs. Each circle represents the average value
from one RNN. d, Average recurrent inhibitory synaptic strengths from the AFC and DMS
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indicates the mean timecourse averaged across 40 RNNs (and all units). Colored shading, ±
standard deviation (s.d.). Gray shading, cue stimulus window. Boxplot central lines, median;
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range; outliers not plotted. *P < 0.01, ***P < 0.0001 by Wilcoxon signed-rank test (c,d) or
Dunn’s multiple comparisons test (e).

To investigate if such functional specialization also emerges in our spiking model, we

trained another group of spiking RNNs (n = 40 RNNs) on a simpler task that did not require WM.

The non-WM task, which we refer to as two-alternative forced choice (AFC) task, required the

RNNs to respond immediately after the cue stimulus: output approaching -1 for the “-1” cue and

+1 for the “+1” cue (Fig. 4.4a; see Section 4.3). Apart from the task paradigm, all the other model

parameters were identical to the parameters used for the DMS RNNs.
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Figure 4.5: III →→→ III connectivity strength strongly mediates both neuronal timescales and
task performance. a, b, c, d, Timescales and task performance changes when I → I (a),
I → E (b), E → I (c), or E → E (d) connection strength was either decreased or increased
by 30%. Boxplot central lines, median; red circles, mean; bottom and top edges, lower and
upper quartiles; whiskers, 1.5*interquartile range; outliers not plotted. *P < 0.05, **P < 0.005,
***P < 0.0001 by Wilcoxon signed-rank test.

Because the AFC task paradigm did not require the RNNs to store information related

to the cue stimulus, we expected that these networks would exhibit faster timescales compared

to the DMS RNNs. Consistent with this hypothesis, the AFC RNNs did not contain as many

long τ units as the DMS RNNs (Fig. 4.4b), and the timescales averaged by network were also

significantly faster for the AFC RNNs (Fig. 4.4c).

To gain insight into the circuit mechanisms underlying the difference in the timescale

distributions of the AFC and DMS RNN models, we compared the recurrent connectivity patterns

between these two models. The most notable difference was the inhibitory synaptic strength,
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which was significantly greater for the DMS RNNs (Fig. 4.4d). In order to confirm if strong

inhibitory signaling led to the long timescales observed in the DMS model, we randomly rewired

all the connections belonging to each of the four synaptic types (I → I, I → E, E → I, and

E → E) and computed the timescales again (see Section 4.3). Of the four conditions, only

rewiring I → I synapses resulted in significantly shorter timescales than the timescales from

the intact DMS model (Fig. 4.4e), and the distribution of the timescales pooled from all 40

RNNs with I→ I connections shuffled resembled the distribution obtained from the AFC model

(Fig. 4.10). In addition, the amount of cue-specific information maintained during the delay

period (as measured by the within-time decoding timecourses) was the lowest for the I → I

rewired condition (Fig. 4.4f), suggesting that shuffling I→ I synapses was detrimental to memory

maintenance.

4.4.6 Inhibitory-to-inhibitory connections regulate both neuronal

timescales and task performance

Given our findings that I→ I connections are important for long neuronal timescales and

information encoding, we next investigated if I→ I synapses could be manipulated to provide

more stable temporal receptive fields and to improve WM maintenance.

Recent studies revealed that optogenetically stimulating SST or VIP interneurons that

specifically inhibit PV interneurons could improve memory retrieval [KD17, XLT+19, CC19].

Based on these experimental observations, we expected that strengthening I→ I synapses would

increase neuronal timescales and task performance of the DMS RNNs. To test this hypothesis,

we first generated another group of RNNs with poor DMS task performance (26 RNNs; mean

accuracy ± s.e.m., 71.77 ± 1.43 %). Next, we modeled the effects of optogenetic manipulation

of VIP/SST neurons by either decreasing or increasing I→ I synaptic strength (WI→I) in each

network by 30% (see Section 4.3). Decreasing the connection strength led to significantly shorter

timescales compared to the RNNs without any modification (Fig. 4.5a, left). Strengthening
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Figure 4.6: Two oppositely tuned inhibitory subgroups mutually inhibit each other for
WM maintenance. a, Cue preference selectivity (top) and input weights (Win; bottom) from
inhibitory units of an example DMS RNN. The selectivity index values are sorted in descending
order. b, Average inhibitory strengths (left) and number of inhibitory connections (right) within
and across two oppositely tuned inhibitory subgroups from all 40 DMS RNNs. c, Average task
performance of the DMS RNN model when the within-group or across-group inhibition was
increased by 30%. d, Average neuronal timescales of the DMS RNNs when the within-group
or across-group inhibition was increased by 30%. e, f, Schematic illustration of the circuit
mechanism employed by the DMS RNN model during the cue stimulus window (e) and delay
period (f). The positive cue stimulus was used as an example, and membrane voltage tracings
from example units are shown. Dark blue and dark red units indicate units that prefer the positive
cue stimulus, while the light blue and light red units favor the negative cue. For simplicity, only
recurrent inhibitory connections are shown. Boxplot central lines, median; red circles, mean;
bottom and top edges, lower and upper quartiles; whiskers, 1.5*interquartile range; outliers not
plotted. *P < 0.05, **P < 0.005, ***P < 0.0001 by two-sided Wilcoxon rank-sum test (b) or
Wilcoxon signed-rank test (c, d).

WI→I resulted in a moderate but significant increase in neuronal timescale (Fig. 4.5a, left). The

task performance of the RNNs followed the same pattern: decreasing WI→I severely impaired
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WM maintenance while increasing WI→I significantly improved task performance (Fig. 4.5a,

right). Increasing WI→I further did not correspond to a significant increase in timescale and task

performance (Fig. 4.11). For I→ E connections, only enhancing WI→E resulted in significant

changes in both timescale and task performance (Fig. 4.5b). Manipulating E→ I synapses did

not affect the task performance, but decreasing WE→I significantly shortened the timescales

(Fig. 4.5c). Altering the excitatory-to-excitatory connections did not produce any significant

changes (Fig. 4.5d). Overall, these findings suggest that I → I synapses tightly mediate both

temporal stability and WM maintenance. The findings also indicate that the main downstream

effect of I→ I connections is to disinhibit excitatory units.
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Figure 4.7: High trial-to-trial spike-count variability during the fixation corresponds to
long neuronal timescale. a, Schematic illustrating how high spike-count variability across
multiple trials can result in slow decay of the autocorrelation function. b, Comparison of the
spike-count Fano factors from the short and long τ groups in the neural data (left) and the
DMS RNN model (right). c, Average Fano factors from the DMS model with each of the
synaptic type either decreased (“-”) or increased (“+”) by 30% (Kruskal-Wallis test, H = 665.2,
P < 0.0001). d, Spiking activity of an example inhibitory unit during the fixation period across
5 trials. The trials were sorted by the number of spikes. Units that were strongly modulated
by the disinhibitory circuit mechanism showed highly dynamic baseline firing patterns across
trials. Boxplot central lines, median; red circles, mean; bottom and top edges, lower and upper
quartiles; whiskers, 1.5*interquartile range; outliers not plotted. ***P < 0.0001 by two-sided
Wilcoxon rank-sum test (b) or Dunn’s multiple comparisons test (c).
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4.4.7 Unique inhibitory-to-inhibitory circuitry for WM maintenance

So far, our results indicate that (1) microcircuitry involving specific I→ I connectivity

patterns is important for WM (Fig. 4.4e) and (2) I → I can be strengthened to enhance both

neuronal timescales and task performance (Fig. 4.5a). Here, we dissect the DMS RNN model to

elucidate how specific and strong I→ I connections lead to stable memory retention.

Focusing on inhibitory units only, we first characterized the cue stimulus selectivity from

each inhibitory unit in an example DMS network (see Section 4.3). Analyzing the selectivity

index values revealed two distinct subgroups of inhibitory units in the network: one group of

units favoring the positive cue stimulus and the other group selective for the negative stimulus

(Fig. 4.6a, top). The input weights (Win) that project to these units closely followed the selectivity

pattern (Fig. 4.6a, bottom).

Given these two subgroups with distinct selectivity patterns, we next hypothesized that

mutual inhibition between these two groups (across-group inhibition) was stronger than within-

group inhibition. Indeed, inhibition between the oppositely tuned inhibitory populations was

significantly greater (both in synaptic strength and number of connections) than inhibition within

each subgroup across all RNNs (Fig. 4.6b). To confirm that the behavioral improvement we

observed with I → I enhancement in Fig. 4.5a was largely due to the strengthened across-

group inhibition, we increased across-group and within-group I→ I connections separately (see

Section 4.3). The DMS RNN performance improved following enhancement of the across-group

inhibition, while increasing the within-group inhibition impaired performance (Fig. 4.6c). In

addition, across-group I→ I enhancement resulted in a significant increase in neuronal timescale

(Fig. 4.6d).

In summary, these findings imply that robust inhibition of oppositely tuned inhibitory

subpopulations is critical for memory maintenance in our RNN model. For example, a positive

cue stimulus activates the inhibitory subgroup selective for that stimulus and deactivates the

negative stimulus subgroup (Fig. 4.6e). Through disinhibition, a group of excitatory units that
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favor the positive cue stimulus also emerges. During the delay period, the inhibition strength

between these two inhibitory subgroups dictates the stability of the cue-specific activity patterns

generated during the stimulus window (Fig. 4.6f).

4.4.8 Circuit mechanism for WM generates units with long neuronal

timescales

The circuit mechanism (Fig. 4.6e,f) explains why enhancing I→ I connections results in

improved WM performance, but it is still not clear how this same mechanism also produces units

with long timescales.

Here, we first demonstrate that a high trial-to-trial spike-count variability during the

fixation period could give rise to slow decay of the spike-count autocorrelation function. If a

neuron exhibits highly variable activity patterns across trials such that it is highly active (i.e.,

persistent firing) in some trials and relatively silent in other trials, the Pearson correlation between

any two time bins within the fixation window could be large (Fig. 4.7a). On the other hand,

firing activities with a low trial-to-trial variability could result in a weak correlation between

two time bins. To directly test this positive relationship between trial-to-trial variability and

neuronal timescales, we computed spike-count Fano factors (spike-count variance divided by

spike-count mean across trials; see Section 4.3) for the short and long τ subgroups in both neural

and model data. The Fano factor values for the short timescale subgroup were significantly

smaller than the values obtained from the long τ group for both data (Fig. 4.7b). There was also

a significant positive correlation between the spike-count Fano factors and neuronal timescales

across all the units in both data (Spearman rank correlation, r = 0.25,P < 0.0001 for dlPFC;

r = 0.28,P < 0.0001 for RNN; Fig. 4.12).

Manipulating each of the four synaptic types (decreasing or increasing synaptic strength

by 30%) in our DMS RNN model revealed that I→ I connections strongly modulated the spike-

count Fano factors (Fig. 4.7c). Enhancing I→ I synaptic strength led to units with more variable
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spiking patterns across trials, whereas reducing the strength resulted in smaller Fano factors

(example shown in Fig. 4.13).

In our RNN model, strong I → I synapses give rise to both excitatory and inhibitory

units behaving in a highly variable manner during the fixation period (Fig. 4.7d). For instance,

an inhibitory unit selective for the positive stimulus could be partially activated in some trials

by chance (i.e., via random noise during the fixation period), and this, in turn, could silence a

portion of the negative stimulus inhibitory population (light blue circle in Fig. 4.7d). This leads

to variable firing activities across trials in inhibitory units. Furthermore, the dynamic activity

of the inhibitory population could be transferred to the excitatory population via disinhibition.

Therefore, I→ I connections play a central role in conferring the network with highly dynamic

baseline firing patterns, which then translate to high τ values.
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Figure 4.8: Strong III→→→ III connections intrinsic to prefrontal cortex. a, Passive task paradigm
used by [CQM16] to train the same four monkeys before they learned the DMS tasks (Fig. 4.1b).
b, Distribution of the neuronal timescales from the monkeys before (i.e., passive) and after
they learned the DMS tasks. c, Cross-temporal decoding matrices and within-time decoding
timecourses from the short and long τ subgroups. d, Passive task paradigm used to re-train
our DMS RNNs. Only the input weights (dashed lines with yellow shading) were trained. e,
Distribution of the input weights projecting to the two inhibitory subgroups tuned to the two cue
stimuli from all 40 DMS RNNs before (top) and after (bottom) re-training. f, Cross-temporal
decoding matrices and within-time decoding timecourses from the short and long τ subgroups
for the re-trained DMS RNNs. g, Task performance during re-training of the AFC rate RNNs
to perform the DMS task (left) and average performance at the end of training (right). The
task performance significantly increased when I→ I connections were strengthened (orange;
see Section 4.3). Shaded area, ± s.d. h, Task performance during re-training of the DMS rate
RNNs to perform the AFC task. Individual networks (light) and mean across 40 DMS RNNs
(bold). Boxplot central lines, median; red circles, mean; bottom and top edges, lower and
upper quartiles; whiskers, 1.5*interquartile range; outliers not plotted. Red contours indicate
significant discriminability (cluster-based permutation test, P < 0.05; see Section 4.3). Red lines
indicate significant differences in decoding between the short and long τ groups (cluster-based
permutation test, P < 0.05; see Section 4.3). ***P < 0.0001 by Wilcoxon signed-rank test.
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4.4.9 Strong I→ I is an intrinsic property of prefrontal cortex

Cognitive flexibility is one of the hallmarks of the prefrontal cortex [MC01, GR11]. If

higher-order areas are indeed wired with specific and robust I → I synapses that give rise to

stable temporal receptive fields, then what would happen to these connections during learning?

Would learning a new task disrupt the existing I→ I connectivity structure, thereby abolishing the

previously established timescale distribution? To answer these questions, we analyzed neuronal

timescales from the same monkeys before they learned the DMS task. For the pre-training

condition, the monkeys were trained on a passive task (Fig. 4.8a): they were trained to maintain

their gaze at a central fixation point throughout the trial regardless of the stimuli presented around

the fixation point [MQC07].

Surprisingly, the timescales from the spike-train data from the dlPFC of the same four

monkeys that learned the passive task were similar to the timescales obtained after the monkeys

learned the DMS task (Fig. 4.8b). In addition, the cue-specific information maintenance during

the delay period by long τ units was largely abolished, and the within-time decoding was similar

between long τ and short τ neurons (Fig. 4.8c). These findings suggest that the primate dlPFC was

already equipped with stable temporal receptive fields and that learning the DMS task resulted in

long τ neurons carrying more information during the delay period while preserving the network

temporal dynamic architecture.

Based on these findings, we reasoned that prefrontal cortical areas and other higher

cognitive areas are endowed with strong I→ I connections whose connectivity patterns do not

undergo significant plastic changes during learning. Instead, learning-related changes occur to the

connections stemming from upstream networks that project to these areas. To test this, we asked if

we could only optimize the upstream connections (i.e., input weights; Win) of the DMS RNNs to

perform a passive version of the DMS task (Fig. 4.8d; see Section 4.3). By freezing the recurrent

connections (W ), we ensured the previously observed distribution of the timescales (Fig. 4.2b)

was preserved. As expected, the distinct distribution of the input weights projecting to the two
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inhibitory subpopulations that we observed in Fig. 4.6a was “flattened” after re-training the DMS

RNNs to perform the passive task (Fig. 4.8e). Repeating the cross-temporal discriminability

analysis on the re-trained RNNs showed that the cue stimulus information during the delay period

was not maintained as robustly by long τ units (Fig. 4.8f). However, the long τ units still carried

significantly higher information than the short τ units throughout the delay window. Re-tuning

the recurrent connections instead of the input weights for the passive task disrupted the existing

timescale structure and resulted in significantly faster timescales (Fig. 4.14).

The above results from the experimental data and our model strongly suggest that higher

cortical areas might have intrinsically diverse and robust inhibitory signaling. This innate property,

in turn, would give rise to long neuronal timescales, and the incoming connections to these areas

could undergo plastic changes to support various higher cognitive functions that require integration

of information on a slower timescale. Along this line of thought, we hypothesized that the AFC

RNNs, which do not have strong inhibitory-to-inhibitory signaling, are not capable of performing

WM tasks by simply re-tuning the input weights only. With the recurrent architecture (W ) fixed,

we attempted to re-train the input weights of the 40 AFC RNNs to perform the DMS task, but

none of the networks could be trained successfully (yellow line in Fig. 4.8g). When we repeated

the re-training procedure with the I→ I recurrent connections strengthened (see Section 4.3), the

performance of the AFC RNNs significantly improved (magenta line in Fig. 4.8g). On the other

hand, the input weights of the DMS RNNs could be successfully tuned to perform the AFC task

(Fig. 4.8h), further confirming the hierarchical organization of these two RNN models.

4.5 Discussion

In this study, we provide a computational model that gives rise to task-specific spontaneous

temporal dynamics, reminiscent of the hierarchy of neuronal timescales observed across primate

cortical areas [MBF+14]. When trained on a WM task, our RNN model was composed of
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units with long timescales whose distribution was surprisingly similar to the one obtained from

the primate dlPFC. In addition, the long-timescale units encoded and maintained WM-related

information more robustly than the short-timescale units during the delay period. By analyzing

the connectivity structure of the model, we showed that a unique circuit motif that incorporates

strong I→ I synapses is an integral component for WM computations and slow baseline temporal

properties. Interestingly, I → I synaptic weights could be manipulated to control both task

performance and neuronal timescales tightly. Our work also provides mechanistic insight into

how I→ I connectivity supports memory storage and dynamic baseline activity patterns crucial

for long neuronal timescales. Lastly, we propose that the microcircuitry we identified is intrinsic to

higher-order cortical areas enabling them to perform cognitive tasks that require steady integration

of information.

Relating specific baseline spiking activities to the underlying circuit mechanisms has

been challenging partly due to the lack of computational models capable of both performing

cognitive tasks and capturing temporal dynamics derived from experiments. [BB19] employed

Poisson spiking neurons randomly wired to present a flexible WM model, whereas [MRL18]

used LIF RNNs constrained by experimental measurements to underscore the importance of

inhibitory connectivity in WM. These studies provide biologically plausible models that can

explain several experimental and behavioral aspects of WM, but it is unclear if units with stable

baseline temporal dynamics are recruited for performing WM maintenance in these models. It is

also possible to study neuronal timescales using continuous rate (i.e., non-spiking) RNNs which

have been widely used to uncover neural mechanisms behind cognitive processes [MSSN13,

SYW16, Mic17, OM19, YJS+19]. Although spontaneous firing rate estimates could be used in

place of spike counts to compute the autocorrelation decay time constants, our spiking RNN model

allowed us to (1) use the same experimental procedures previously used to estimate neuronal

timescales, (2) easily interpret and compare our model results with experimental findings, and (3)

uncover spiking statistics (spike-count Fano factors) associated with long neuronal timescales.
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Our work revealed that strong I→ I connections are critical for long neuronal timescales,

and we investigated the functional implication of such connections in WM-related behavior.

Despite the fact that excitatory pyramidal cells make up the majority of neurons in cortical areas,

inhibitory interneurons have been shown to exert greater influence at the local network level

[KF14, BBVF+17]. Furthermore, different subtypes of interneurons play functionally distinct

roles in cortical computations [PXH+13, KJL+16]. In agreement with these observations, recent

studies uncovered the importance of disinhibitory gating imposed by VIP interneurons [PHK+13,

KJA+16, KD17, KPdA+19]. Through inhibition of SST and PV neurons, VIP interneurons

have a unique ability to disinhibit pyramidal cells and create “holes” in a dense “blanket of

inhibition” [KJA+16]. Surprisingly, optogenetically activating VIP neurons in the PFC of mice

trained to perform a WM task significantly enhanced their task performance highlighting that

disinhibitory signaling is vital for memory formation and recall [KD17]. Similar to VIP neurons,

SST interneurons have also been shown to disinhibit excitatory cells for fear memory [CC19,

XLT+19]. Intriguingly, the connectivity structures of the RNNs we trained on a WM task using

supervised learning also centered around disinhibitory circuitry with strong I → I synapses

(Fig. 4.6). The strength of the I→ I connections was tightly coupled to the task performance of

the RNNs. Thus, our work suggests that microcircuitry specializing in disinhibition could be a

common substrate in higher-order cortical areas that require short-term memory maintenance.

Most notably, our results shed light on exactly how robust I→ I connections maintain

stable memory storage and long neuronal timescales. By dissecting our WM RNN model, we

found that strong mutual inhibition between two oppositely-tuned inhibitory subgroups was nec-

essary for maintaining stimulus-specific information during the delay period (Fig. 4.6). We also

illustrated that our model units that were strongly modulated by I→ I synapses displayed highly

dynamic baseline activities leading to both large trial-to-trial Fano factors and long neuronal

timescales (Fig. 4.7). Although we only considered two cue stimulus types (positive and negative

stimuli) for simplicity, our circuit model could be generalized to store more stimulus types. For
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example, another group of inhibitory units tuned to a third stimulus type could be added to our

circuit design, forming three mutually inhibiting groups. Interestingly, such a circuit mechanism

has been recently identified to generate categorical responses in barn owls [MM20]. Our findings

also suggest that baseline trial-to-trial spike-count variability and neuronal timescales are reli-

able indicators of the underlying circuit mechanisms: neurons with asynchronously occurring

synchronous firing patterns (i.e., high variability) could make up WM-related microcircuits.

Furthermore, we propose that these signatures are area-specific and do not undergo significant

changes during learning.

Although our model can capture several experimental findings, a few interesting questions

remain for future studies. For example, our spiking RNN model utilizes connectivity patterns

derived from a gradient-descent approach, which is not biologically plausible. It will be important

to characterize if more biologically valid learning mechanisms, such as reinforcement learning

or Hebbian learning, also generate spiking networks with heterogeneous neuronal timescales.

Another unexplored aspect is nonlinear dendritic computations. SST interneurons are known

for targeting dendrites of pyramidal cells, and such dendritic inhibition has been associated with

gating information [YMW16]. Incorporating dendritic processes into our model could elucidate

the computational benefits of dendritic inhibition over perisomatic inhibition during WM. In

summary, we have explored a neural circuit mechanism that performs logical computations over

time with stable temporal receptive fields.

Chapter 4, in full, is a reprint of the material as it has been written in a manuscript that has

been submitted for publication: Robert Kim and Terrence J. Sejnowski. Strong inhibitory signal-

ing underlies stable temporal dynamics and working memory in spiking neural networks. Preprint

at https://www.biorxiv.org/content/10.1101/2020.02.11.944751v1 (2020). The dis-

sertation author was the primary investigator and author of this paper.
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4.6 Appendix

4.6.1 Code availability

The code for the analyses performed in this work will be made available at https:

//github.com/rkim35/wmRNN.

4.6.2 Data availability

The trained RNN models used in the present study will be deposited as MATLAB-

formatted data in Open Science Framework, https://osf.io/md4wg.
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4.6.3 Supplementary figures
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Figure 4.9: Long τ units maintain cue stimulus information during the delay period of the
spatial DMS task. a, Cross-temporal discriminability matrices and the within-time decoding
timecourses from the short and long τ groups of the dlPFC data limited to the spatial DMS task.
b, Cross-temporal discriminability matrices and the within-time decoding timecourses from the
short and long τ groups of the dlPFC data limited to the feature DMS task. Gray shading, cue
stimulus window. Red contours indicate significant decodability (see Section 4.3; cluster-based
permutation test, P < 0.05). Red lines indicate significant differences in decoding between the
short and long τ groups (see Section 4.3; cluster-based permutation test, P < 0.05).
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Chapter 5

Conclusions

In this dissertation, I presented two methods for investigating local and large-scale dy-

namics linked to higher cognitive functions. The first method, which is built on delay differential

analysis (DDA), was used to characterize and identify brain signals with similar nonlinear large-

scale dynamics (Chapter 2). Applying the method to a large dataset consisting of brain signals

from both non-psychiatric comparison and schizophrenia participants revealed discrete subgroups

whose nonlinear dynamics were indicative of information processing and cognitive functioning.

The second method revolves around constructing spiking recurrent neural networks designed

to perform cognitive tasks commonly studied in neuroscience (Chapter 3). The utility of the

method was explored extensively in Chapter 4, where I showed how trained networks employed

inhibitory-to-inhibitory signaling to maintain information transiently. These findings, along with

previous experimental findings, suggest that (1) inhibitory interneurons from diverse classes play

an integral role in working memory maintenance, and (2) dysfunction of such inhibitory neurons

could lead to working memory impairment and other cognitive deficits seen in schizophrenia.

Bridging and establishing a relationship between micro- and macro-scale brain dynamics is a nat-

ural next step to understand how multiple interacting local circuits translate to distinct large-scale

dynamics.
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