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ABSTRACT OF THE DISSERTATION 
 
 

Exploring Immune Cell Heterogeneity Through Single-Cell RNA Sequencing Analysis 
 

by 
 
 

Xinru Qiu 
 

Doctor of Philosophy, Graduate Program in Genetics, Genomics, and Bioinformatics 
University of California, Riverside, June 2023 

Dr. Adam Godzik, Chairperson 
 
 
Over the past decade, single-cell RNA sequencing (scRNA-seq) has revolutionized the 

field of transcriptomics, enabling the acquisition of unprecedented insights and fostering 

research that was previously unattainable. This advanced technology allows scientists to 

investigate the gene expression patterns of individual cells, providing unprecedented 

insight into cellular differences, changes, and functions. scRNA-seq enables researchers to 

examine the unique gene expression patterns of each cell, revealing the true extent of 

cellular heterogeneity. By revealing the molecular signatures of different cell types, 

scRNA-seq helps researchers understand the specific roles and functions of cells within a 

tissue or organism. This knowledge can be used to investigate how cells interact with each 

other, communicate, and influence their microenvironment. 

 The technology has also shed light on identifying rare and previously unknown cell 

types. These rare cells could have crucial functional roles in development, tissue 

homeostasis, or disease progression, which has advanced our understanding into biological 
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processes. Furthermore, scRNA-seq has provided valuable information about disease 

mechanisms by revealing the molecular underpinnings of complex diseases by 

investigating differences in gene expression between healthy and diseased cells. This 

information can be used to identify potential therapeutic targets, develop new treatments, 

and better understand disease progression. In cancer research, it has deepened our 

understanding of tumor heterogeneity, immune cell infiltration, and the discovery of new 

cellular subpopulations linked to drug resistance or metastasis. Additionally, scRNA-seq 

has been used to study individual cell responses to drug treatments, revealing molecular-

level mechanisms of drug resistance and laying the groundwork for personalized medicine. 

Despite these advances, challenges remain with scRNA-seq, such as technical 

issues concerning sensitivity, scalability, and data analysis. However, as experimental 

techniques and computational methods continue to improve, scRNA-seq is expected to 

become even more powerful and useful in the future. 

In this dissertation, we discuss scRNA-seq analysis and its application in various 

contexts. Chapter 1 serves as an introduction to scRNA-seq analysis, detailing current 

protocols, technologies, and computational methods. Chapter 2 focuses on the use of 

scRNA-seq in studying the immune system, examining different types of immune cells and 

their roles in health and disease. Chapter 3 presents our findings on abnormal immune cell 

subsets, functional pathway changes, and molecular signatures associated with sepsis 

patient outcomes. In Chapter 4, we compare single-cell transcriptomics data from sepsis, 

COVID-19, and SLE patients, exploring molecular pathways and potential biomarkers 

related to disease outcomes. We also investigate platelet-immune cell interactions and their 
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implications for disease severity. In Chapter 5, we examine the impact of smoking history 

on the tumor immune microenvironment (TIME) in lung cancer patients. Our findings 

reveal that smoking exacerbates T cell heterogeneity and alters gene expression patterns in 

immune cells, which may have implications for the efficacy of immune-based cancer 

treatments. 

In conclusion, this dissertation discusses the computational and statistical methods 

for scRNA-seq data analysis and its application in studying the immune system. Our 

research highlights the potential of scRNA-seq in understanding immune system diversity 

and its implications for patient prognosis, offering valuable insights that may lead to the 

development of new diagnostic tools and treatments. 
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CHAPTER 1 Introduction to Single-cell RNA Sequencing Analysis 

1.1 Introduction  

Transcriptomics is the study of the entire set of RNA transcripts produced by the genome 

of an organism, and it has become a vital tool for understanding gene expression and 

regulation. Over the years, several techniques have been developed for detecting and 

quantifying RNA transcripts. One of the first approaches that allowed scientists to detect 

and quantify RNA transcripts was a Northern Blot technique. It involved transferring RNA 

from a gel to a membrane, hybridizing it with a labeled probe, and visualizing the results 

using autoradiography (1). In the late 1990s, microarrays were developed, which enabled 

the simultaneous measurement of the expression of first hundreds and then thousands of 

genes. They used small pieces of DNA or RNA probes that were printed onto a glass slide 

and hybridized with labeled cDNA or RNA (2). RNA sequencing (RNA-Seq) is a more 

recent technology that uses next-generation sequencing to detect and quantify RNA 

transcripts (3). Since then, bulk RNA-Seq technologies have played a significant role in 

transcriptome profiling, enabling researchers to study transcriptional structures by 

simultaneously mapping transcribed regions, analyzing gene expression, and assessing 

dynamic range to determine the extent of gene expression. These technologies facilitate the 

discrimination between isoforms and alleles (4). However, bulk RNA-seq data provides 

average measurement of gene expression across all cells in a sample, which can obscure or 

mask the unique functions of individual cells (5). This limitation is particularly pronounced 

when cellular behavior varies greatly or is governed by rare cell types. Moreover, there 

may be considerable variation among individual cells, and a more detailed understanding 
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of cell heterogeneity is crucial for a full picture of the disease process. Investigating how 

metabolic, signaling, and transcriptional networks influence the interactions between 

individual cells and cell groups in various diseases is essential for understanding the 

underlying mechanisms of disease progression and developing effective therapies. Before 

the advent of single-cell transcriptomics, bulk transcriptomics served as the main technique 

for studying gene expression patterns in biological specimens. However, this method 

struggled to accurately reveal cellular heterogeneity, as it masked the unique transcriptomic 

information of individual cells. As a result, rare or transient cell states often went 

undetected. This limitation made it difficult to understand the intricate processes through 

which immune cells process information, react to infections or other stimuli, and display 

varied responses when confronted with different threats. 

In 2009, the pioneering study on single-cell RNA-seq (scRNA-seq) was published 

by Tang et al., in which they developed a method for sequencing the transcriptome of 

individual blastomeres and oocytes (6). Since then, a growing number of modified and 

improved single-cell RNA sequencing technologies have come out. These have made 

substantial improvements in areas like sample collection, single-cell capture, barcoded 

reverse transcription, cDNA amplification, library preparation, sequencing, and 

streamlined bioinformatics analysis (7). Nature Methods named scRNA-seq "Method of 

the Year" in 2013, which shows how important it is in the field. These single-cell 

approaches have provided unprecedented molecular detail, revealing insights into the inner 

workings of multicellular systems and previously unattainable processes. 
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1.2 Currently Available Single-cell RNA-sequencing Protocols and Technologies 

 

Figure 1.1 Overview of single-cell RNA sequencing workflow. 

A schematic diagram illustrating the significant steps in the scRNA-seq process, such as 
cell isolation, library preparation, sequencing, and data analysis. Figure generated by using 
BioRender. 
 

Several scRNA-seq protocols have been developed, each with their own strengths and 

weaknesses. The main steps in scRNA-seq are preparing the tissue, isolating and capturing 

a single cell, preparing the library, sequencing and primary analysis, and then visualizing 

and interpreting the data (Figure 1.1) (8, 9). The protocols can differ in one or more aspects 

(Table 1.1) (10).  
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1.2.1 Tissue preparation and quality control 

Tissue preparation and cell isolation are the initial steps in preparation prior to library 

preparation. Clumped cells or cells with high death rates can confound data and lead to 

wrong conclusions from the experiment. Non-adherent cells, such as peripheral blood 

mononuclear cells (PBMCs), can be easier to handle for single-cell processing than 

adherent cells from organ tissues. Dissociation protocols include mechanical dissection, 

which involves cutting, dicing, and pipetting the tissue to break it up and separate single 

cells (11).  Enzymatic protocol, is a method in which tissue is incubated with various 

enzymes, such as collagenase, trypsin, dispase, and elastase, to cleave protein bonds and 

extracellular matrix (12).  

After the tissue is ready, density gradient centrifugation and filtration can be used 

to separate cells by size, shape, and density (13). The presence of dead cells can introduce 

confounding results to the analysis, and various fluorescence dyes are available to remove 

dead cells using flow cytometry (14). Flow cytometry or magnetic bead-based isolation 

can be used with antibody labeling for positive and negative selection to pick out certain 

cell subpopulations or cell types (15).  

Single-cell sequencing experiments require a significant investment in time, money, 

sample material, and resources. Quality control measures throughout the tissue preparation 

process can ensure the following steps of the experiment are accomplished smoothly. 

Visual inspection of cell suspensions after tissue dissociation by brightfield microscopy 

can reveal debris, cell doublets, and larger aggregates (16). Flow cytometry can be used to 
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simultaneously analyze multiple metrics, including cell size, concentration, viability, cell 

doublets, and aggregates (17).  

1.2.2 Single-cell isolation  

Single-cell isolation protocols include high throughput single-cell profiling where 

researchers can examine up to tens of thousands of cells per experiment like droplet fluidics 

(18, 19), microwells (20, 21), and fluorescence activated cell sorting (FACS) (22). Low 

throughput single-cell profiling methods include robotic micromanipulation (23), flow 

sorting technologies. Low-cost methods include manual cell picking/micromanipulation 

(24), and serial dilution. The method that can preserve tissue spatial context is laser capture 

microdissection (LCM) (25) (Table 1.1).  

Different scRNA-seq technologies use different isolation protocols, which each 

have their own pros and cons. For example, the droplet fluidics platform uses 

compartmentalization of individual cells in droplets using a microfluidics device followed 

by lysis and capture of target DNA and RNA, and it uses unique molecular identifiers 

(UMIs), and cell barcodes to enable cell and gene-specific identification, low-cost per cell. 

UMIs are short, random nucleotide sequences that are incorporated into the reverse 

transcription primers or adapters used during the library preparation process (18, 19).  In 

microwell-based methods, cells are isolated using microscopic wells etched into a solid 

surface, such as a microarray or a microplate. Each well is designed to capture a single cell, 

and the wells are filled with the necessary reagents for reverse transcription and cDNA 

synthesis. It supports imaging and short-term cell culture, and it is ideal for adherent cells. 
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Microwell-based methods can also utilize UMIs to enable cell and gene-specific 

identification, similar to droplet-based methods (20, 21). However, both droplet fluidics 

and microwells require specialized equipment. Another method is fluorescence-activated 

cell sorting (FACS), which applies microdroplets with single cells isolated using electric 

charge. It uses specific immuno-tagging of cell-surface markers to improve accuracy and 

has high throughput, but compared to other protocols, it requires specific 

antibodies/markers. Robotic micromanipulation uses robotic micropipettes to isolate single 

cells. It has high accuracy but low throughput.  

Flow sorting uses electric charge to isolate microdroplets containing single cells, 

so cell types are selected accurately by size, morphology, internal complexity, and protein 

expression by antibody labeling. Still, flow sorting depends on expensive, specialized 

equipment, and cells tend to be exposed to high pressure. Micromanipulation can separate 

different types of cells from mixed populations, but it is slow and needs a lot of cells to 

start with. LCM was applied as cells were cut from tissue sections with a laser under a 

microscope. It can preserve spatial context but is technically challenging and can 

potentially cause UV damage to RNA/DNA. 
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Table 1.1 Brief overview of scRNA-seq approaches 

Platform Isolation Strategy Throughput 
(Cell numbers) 

Full-
Length 

Coverage UMIs 

Refer

ence 

Fluidigm C1 
(SMART-seq) 

Microfluidics 10s - 100s Yes No (26) 

CEL-seq Plate-
based/microfluidics 

100s - 1000s No Yes (27) 

Quartz-Seq Plate-based 100s - 1000s Yes No (28) 

SMART-seq2 Plate-based 100s - 1000s Yes No (29) 

MARS-seq Plate-
based/microfluidics 

100s - 1000s No Yes (30) 

10x Genomics 
Chromium 

Droplet 1000s - 10,000s No Yes (31) 

inDrop-seq Droplet 1000s - 10,000s No Yes (19) 

MATQ-seq Plate-based 100s - 1000s Yes No (32) 

ddSEQ Droplet 1000s - 10,000s No Yes (18) 

BD Rhapsody Microwells 1000s - 10,000s No Yes (33) 

Seq-Well Nanowell array 1000s No Yes (34)  

SPLIT-seq Plate-based 1000s - 10,000s No Yes (35) 

 

1.2.3 Library preparation and quality control 

Library preparation is the next critical step in the single-cell sequencing workflow. There 

are now more  amplification techniques for single-cell profiling. Amplification techniques 
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are crucial for converting minute amounts of RNA into detectable signals, with each 

technology employing unique methods. Techniques range from PCR-based amplification 

(Fluidigm C1, SMART-seq2, ddSEQ, BD Rhapsody, Seq-Well, SPLIT-seq) to the use of 

the T7 RNA polymerase to perform linear isothermal amplification of cDNA by in vitro 

transcription (IVT) (CEL-seq, MARS-seq, Quartz-seq, inDrop-seq) and combinations of 

droplet-based cell isolation, barcoding, and PCR-based amplification (10x Genomics 

Chromium). Another method MATQ-seq, uses a multiple annealing and looping based 

amplification cycles (MALBAC), including quasilinear amplification and PCR (36).  

Full-length transcript scRNA-seq technologies, such as Fluidigm C1 (SMART-seq), 

Quartz-Seq, and SMART-seq2, are advantageous for capturing complete gene expression 

profiles and enabling the analysis of alternative splicing events. In contrast, UMI-based 

technologies like CEL-seq, MARS-seq, 10x Genomics Chromium, inDrop-seq, ddSEQ, 

BD Rhapsody, Seq-Well, and SPLIT-seq provide improved quantification accuracy by 

mitigating amplification biases and enabling the detection of PCR duplicates (Table 1.1). 

qPCR is typically used to quantitatively measure the quality and quantity of the 

prepared libraries in order to maximize the quality and output of the sequencing data. After 

the size and quality of the libraries have been measured, the right amount can be loaded for 

sequencing. The exact amount depends on the sequencing platform, library size, and flow 

cell (37). 
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1.3 Statistical and Computational Methods for Single-cell transcriptomics Analysis 

 

Figure 1.2: Schematic of single-cell RNA-seq analysis workflow 

The initial step in the workflow involves processing and aligning raw sequencing data to 
generate count matrices. These count data are then subjected to pre-processing and 
subsequent downstream analysis. 
 

Upon completion of the sequencing, the data undergoes a multi-step analysis process. In 

the case of single-cell sequencing, this process consists of primary, secondary, and tertiary 

analysis stages. The primary analysis involves data preprocessing steps for file conversion. 

The secondary analysis encompasses demultiplexing, alignment, and quality control (QC) 

measures. The tertiary analysis is concerned with data processing, including visualization 

and interpretation of the data (Figure 1.2). 
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1.3.1 Data preprocessing 

Raw sequencing data are typically generated in the form of FASTQ files, which 

contain the sequence reads and corresponding quality scores (38). Before aligning the reads 

to a reference genome or transcriptome, quality control (QC) steps are essential to assess 

the overall quality of the sequencing data and remove potential sources of error (39). 

Common QC procedures include filtering low-quality reads, trimming adapter sequences, 

and removing PCR duplicates (40). 

Following QC, the processed reads are aligned to a reference genome or 

transcriptome using specialized aligners. There are various aligners available, such as 

STAR (41), HISAT2 (42), and Kallisto (43), which use different algorithms and strategies 

to optimize alignment accuracy and speed. The choice of aligner depends on the specific 

scRNA-seq technology used, as some aligners are tailored to handle unique molecular 

identifiers (UMIs) or specific library preparation methods (44). 

Once the reads are aligned, gene expression quantification is performed to generate 

count matrices. The count matrix represents the number of reads mapped to each gene for 

each individual cell. Tools such as featureCounts (45) or HTSeq (46) are commonly used 

to quantify gene expression from aligned reads. For UMI-based scRNA-seq data, tools like 

UMI-tools (47) or Drop-seq tools (18) can be employed to generate count matrices while 

accounting for UMIs to reduce PCR duplicates and amplification biases.  

The resulting count matrices are the foundation for downstream analyses such as 

normalization, batch effect correction, dimensionality reduction, and differential 
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expression analysis, which enable the characterization of cell populations and the 

identification of cellular subtypes and gene regulatory networks. 

1.3.2 Quality Control of scRNA-seq data 

The main purpose of quality control (QC) in scRNA-seq analysis is to remove low-quality 

cells and doublets (48). To identify low-quality cells, we should examine the expected 

library size and the number of expressed genes. All cell types have an expected library size 

and a typical number of expressed genes. Cells that fall outside the expected range may be 

either poor-quality cells or technical artifacts such as dead or dying cells or multiple-cell 

aggregates that should be excluded from downstream analysis (49). To detect doublets, the 

number of genes per cell reflects the situation. For any given cell type, there is a typical 

expected number of expressed genes (n). While most viable single cells may fall into a 

natural distribution around this number, cells observed outside that distribution, e.g., with 

roughly twice that number (2n), may represent cells of interest warranting further 

investigation and characterization. Another QC metric is the proportion of reads that 

mapped to genes in the mitochondrial genome or reads that mapped to ribosomal RNAs 

(50). High proportions of mitochondria and ribosomes are a sign of low-quality cells, most 

likely due to more apoptosis. These cells may be excluded from downstream analysis. A 

third metric involves plotting genic unique molecular identifier (UMI) counts in 

descending order against cell barcodes, enabling the statistical identification of real cells 

and excluding noncellular barcodes (18). Cell barcodes above the threshold have genic 



12 
 

UMIs that represent real cells, while those below the threshold, typically representing 

empty beads, have genic UMI counts of 1-100. 

In addition to removing cells with poor quality and doublets, it is important to 

examine genes that might be artifacts. We further examine the UMI and gene distribution 

in the datasets and check the UMI distribution of individual genes in each dataset. In most 

cases, the proportion is < 0.1 (i.e., the UMIs of any gene are less than 10% of the total 

UMIs). If any gene has extremely high UMIs, we will consider removing it from the gene-

cell matrix as it is most likely artificial (51). 

1.3.3 Normalization and imputation 

In scRNA-seq analysis, it is important to take into account different types of differences, 

such as biological and technical factors, in order to correctly identify the heterogeneity of 

cell populations, find rare cell types, and find out how cells decide what to do with their 

lives (52). Biological differences can be caused by differences in cell types, cell states, cell 

sizes, or samples like age, gender, disease, or treatment. Technical factors can also 

introduce bias into the raw read counts, such as gene length, GC content, sequencing depth, 

and dropouts. Various normalization tools are commonly used in scRNA-seq data analysis 

to overcome these challenges. Transcripts per million (TPM) is a normalization method 

that accounts for differences in sequencing depth and library size between cells (53). TPM 

normalizes by dividing the count for each transcript by the total number of transcripts in 

that cell, then multiplying by the 106 scaling factor. 

𝑇𝑃𝑀 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑎𝑑𝑠	𝑚𝑎𝑝𝑝𝑒𝑑	𝑡𝑜	𝑡ℎ𝑒	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡/𝐿𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑡ℎ𝑒	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡	𝑖𝑛	𝑘𝑖𝑙𝑜𝑏𝑎𝑠𝑒𝑠

∑(𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑎𝑑𝑠	𝑚𝑎𝑝𝑝𝑒𝑑	𝑡𝑜	𝑡ℎ𝑒	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡/𝐿𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑡ℎ𝑒	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡	𝑖𝑛	𝑘𝑖𝑙𝑜𝑏𝑎𝑠𝑒𝑠)
∗ 10! 
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Fragments per kilobase of transcript per million (FPKM) is another normalization 

method that accounts for sequencing depth and gene length (53). FPKM normalizes by 

calculating the number of fragments mapping to each gene, dividing by the gene or 

transcript length, and multiplying by the 106 scaling factor. 

𝐹𝑃𝐾𝑀 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑎𝑤	𝑟𝑒𝑎𝑑𝑠	𝑜𝑟	𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡	𝑐𝑜𝑢𝑛𝑡𝑠

𝐿𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑡ℎ𝑒	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡	𝑖𝑛	𝑘𝑖𝑙𝑜𝑏𝑎𝑠𝑒𝑠		 ∗ ∑(𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑎𝑤	𝑟𝑒𝑎𝑑𝑠	𝑜𝑟	𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡	𝑐𝑜𝑢𝑛𝑡𝑠)
∗ 10! 

 

DESeq2 is a popular normalization tool that can also be applied to scRNA-seq data, 

the normalization method is based on the negative binomial distribution. It estimates size 

factors from the median-of-ratios method to normalize the counts (54). SCnorm is an R 

package and a normalization method that calculates scaling factors for each cell by fitting 

a quantile regression model (55). Seurat is a popular scRNA-seq analysis tool that includes 

normalization methods such as "LogNormalize" and "SCTransform" (56). LogNormalize 

is a global-scaling normalization method. In order to use this method, first divide the raw 

counts for each cell by the total counts for that cell, and then multiply the result by a scaling 

factor (the default is 105). Finally, the natural logarithm of the resulting value is computed. 

𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	

=𝑙𝑛 	0			
𝑇ℎ𝑒	𝑟𝑒𝑎𝑑	𝑐𝑜𝑢𝑛𝑡	𝑜𝑓	𝑔𝑒𝑛𝑒!	𝑖𝑛	𝑡ℎ𝑒	𝑐𝑒𝑙𝑙

	𝑇𝑜𝑡𝑎𝑙	𝑐𝑜𝑢𝑛𝑡𝑠	𝑝𝑒𝑟	𝑐𝑒𝑙𝑙	 × 	𝑆𝑐𝑎𝑙𝑖𝑛𝑔	𝑓𝑎𝑐𝑡𝑜𝑟	 + 1=	 

 
While SCTransform uses regularized negative binomial regression to learn gene-group 

specific factors (57). 

The drop-out effect is a common technical artifact in scRNA-seq. It happens when 

there isn't enough RNA in some cells to detect genes. This can lead to missing data and 
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inaccurate estimates of how much a gene is being expressed. It can be a big problem for 

scRNA-seq analysis. The drop-out effect happens because scRNA-seq usually only 

sequences a small amount of the RNA molecules in a cell, and the number of molecules 

from a gene that are sequenced determines whether or not that gene is found (49). To 

mitigate the effects of dropout, various computational methods have been developed, 

including imputation methods such as MAGIC (Markov Affinity-based Graph Imputation 

of Cells), which utilizes data diffusion to share information across similar cells and 

successfully denoise the cell count matrix, fill in missing transcripts, recover gene-gene 

relationships, and additional structures (58). SAVER (Single-cell Analysis Via Expression 

Recovery), applies a regularized regression prediction and empirical Bayes technique to 

extract the actual gene expression pattern from scRNA-seq data that is both sparse and 

noisy (59). And scImpute, a regularized regression prediction and empirical Bayes 

technique to extract the actual gene expression pattern from scRNA-seq data that is both 

sparse and noisy (60). 

1.3.4 Data integration and batch correction 

Analyzing scRNA-seq data can be challenging due to technical variability and 

differences between experimental conditions. Technical variability can be caused by 

several factors, including the use of different sequencing platforms, library preparation 

methods, and sequencing depth, which can introduce biases and affect the accuracy of gene 

expression quantification (61). Moreover, different experimental conditions, such as 

different cell types, cell states, and treatments, can result in significant differences in gene 
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expression patterns, making it difficult to compare data across different conditions (56). 

To address these challenges, integration and batch correction methods are used to combine 

data from multiple experiments or sources. This process helps to improve the resolution 

and sensitivity of scRNA-seq analyses by identifying shared variation across different 

datasets or samples and removing or reducing technical variability between experiments or 

samples (62). 

The principles that underlie many of the integration and batch correction methods 

involve identifying cell types, genes, or other features that are expressed similarly across 

different experiments or sources and removing the effects of technical variability (63). The 

ultimate goal of integration and batch correction methods is to improve the accuracy and 

sensitivity of downstream analyses, such as clustering, differential gene expression 

analysis, and pathway analysis. 

There are several scRNA-seq integration methods available, each with its own 

strengths and limitations. One popular method is Seurat Integration, which uses a canonical 

correlation analysis (CCA) approach to identify shared variation across different datasets 

and integrate them into a single dataset (56). Another integration method is Seurat Anchors, 

which uses a mutual nearest neighbor approach to identify shared cell types between a 

reference dataset and other datasets, and then integrates the data using CCA (64). Harmony 

is another integration method that employs an unsupervised approach, using a novel 

iterative algorithm that aligns single cell data in a shared low-dimensional space, thus 

preserving the inherent structure and relationships within the data (65). Scanorama aligns 

datasets based on the intersection of all genes, a conservative approach that minimizes 
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differences due to expression quantification methods (66). Lastly, MNN (mutual nearest 

neighbors) is a batch correction method that identifies and aligns similar cells from 

different batches by matching their nearest neighbors and adjusts the expression values to 

remove batch effects (67). 

1.3.5 Dimensionality reduction and clustering methods 

Dimensionality reduction and clustering are two important steps in the analysis of 

scRNA-seq data (68). scRNA-seq produces high-dimensional data with thousands of genes 

and hundreds to thousands of cells, making it difficult to visualize and interpret. 

Dimensionality reduction methods are used to reduce the complexity of the data by 

projecting it into a lower-dimensional space while retaining as much information as 

possible. Clustering methods are used to group similar cells into distinct clusters based on 

their gene expression profiles. These two steps help to identify cell types and 

subpopulations, and reveal the heterogeneity and complexity of the biological system being 

studied. 

Principal Component Analysis (PCA) is one of the most widely used 

dimensionality reduction methods (69). PCA works by finding the most important 

directions of variation in the data and projecting the data onto a lower-dimensional space 

while retaining the maximum amount of variance. This method is simple and 

computationally efficient, and it is often used as a preprocessing step for downstream 

analyses. t-SNE (t-Distributed Stochastic Neighbor Embedding) is a nonlinear 

dimensionality reduction method that is often used for visualizing scRNA-seq data (70).  
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t-SNE (t-Distributed Stochastic Neighbor Embedding) (71) and UMAP (Uniform 

Manifold Approximation and Projection) (72) are both non-linear, graph-based methods 

for dimensionality reduction in scRNA-seq analysis. However, t-SNE seeks to preserve 

local structures in the data by minimizing the divergence between two probability 

distributions: one that measures pairwise similarities in the high-dimensional space and 

another in the low-dimensional space. The algorithm uses a Student's t-distribution in the 

low-dimensional space to model pairwise similarities. As for UMAP, UMAP aims to 

preserve both local and global structures in the data by approximating the manifold on 

which the data lie. It does this by constructing a graph representation of the high-

dimensional data, followed by optimizing an embedding in the low-dimensional space that 

preserves the topological structure of the graph. UMAP is generally faster than t-SNE and 

is better at preserving global structures, making it useful for a wider range of applications. 

Clustering methods are used to group similar cells into distinct clusters based on 

their gene expression profiles. K-means is a popular clustering method that aims to 

partition the data into K distinct clusters, where K is a user-defined parameter. K-means 

works by iteratively assigning each cell to the closest centroid and then updating the 

centroids based on the mean of the assigned cells (73). Hierarchical clustering is another 

clustering method that builds a tree-like structure of the cells based on their pairwise 

distances. It can be used to identify clusters at different levels of granularity and is often 

visualized as a dendrogram (74). Density-based clustering methods, such as DBSCAN 

(Density-Based Spatial Clustering of Applications with Noise) and HDBSCAN 

(Hierarchical Density-Based Spatial Clustering of Applications with Noise), work by 
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identifying dense regions in the data and clustering cells that belong to these regions. These 

methods can be more robust to noise and able to identify clusters of different shapes and 

sizes. Graph-based clustering methods, such as Louvain clustering and Leiden clustering, 

use a graph representation of the data to identify communities or clusters of cells. These 

methods work by identifying densely connected regions in the graph and grouping cells 

that belong to these regions (56). Graph-based clustering methods can be more efficient 

and flexible than other clustering methods and can identify rare or transient cell types. 

In summary, dimensionality reduction and clustering are crucial steps in scRNA-

seq data analysis, allowing researchers to visualize, interpret, and identify cell types and 

subpopulations within complex biological systems. Methods such as PCA, t-SNE, and 

UMAP are commonly used for dimensionality reduction, each with its own advantages and 

limitations. Clustering methods, including K-means, hierarchical clustering, density-based 

clustering (DBSCAN and HDBSCAN), and graph-based clustering (Louvain and Leiden), 

help group cells based on their gene expression profiles, revealing the structure and 

relationships between different cell types and subpopulations.  

1.3.6 Cell type prediction and annotation 

Cell type prediction and annotation tools are very important for scRNA-seq data analysis 

because they let researchers find and describe cell types based on how their genes are 

expressed. This information can be used to understand the functional roles of different cell 

types, compare gene expression patterns across cell types, and link cell types to specific 

biological functions. Methods and algorithms for cell type prediction and annotation use 
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machine learning and statistical methods to figure out what kind of cell each cell is based 

on the way its genes are expressed. 

 SingleR is a method for cell type prediction, utilizes a reference dataset to annotate 

cells in a target dataset. It first applies dimensionality reduction and clustering to both 

datasets and then matches the cell types in the target dataset to those in the reference dataset 

by correlating the gene expression profiles. This approach enables researchers to accurately 

identify cell types and uncover the underlying biological processes associated with them 

(75). scCATCH, is another tool for cell type annotation specifically designed for scRNA-

seq data. scCATCH employs an automatic cell type annotation algorithm that uses a priori 

gene sets to identify cell type-specific marker genes. It then classifies cells into known cell 

types based on these marker genes, allowing for precise cell type predictions (76). Seurat 

v4 also allows for reference mapping to annotate cell types, which involves mapping query 

datasets to annotated references in order to interpret scRNA-seq data. Seurat v4 also has 

new features that let you project query cells onto a UMAP visualization that has already 

been made (77). CellAssign is a method for cell type prediction that automates the 

annotation process by computing a probabilistic assignment for each cell to a cell type 

defined by a set of marker genes or to an "unassigned" class. The marker genes can be 

found with the help of expert knowledge from literature or databases like CellMarker, or 

they can be found directly in data from sources like PanglaoDB (78). Another tool for cell 

type prediction is LIGER, which is a method that takes in multiple single-cell datasets and 

identifies shared and dataset-specific latent factors, or metagenes, that correspond to 

biological or technical signals. Through integrative nonnegative matrix factorization, these 
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metagenes are calculated. They can be used to find groups of cells and label them with 

known marker genes or statistical models (79). Lastly, CellTypist, which is an automated 

tool for annotating cell types in scRNA-seq datasets using logistic regression classifiers 

trained on either built-in or user-generated models, The tool uses majority voting to 

improve the prediction results and gives each subcluster a distinct label based on the type 

of cell that is predicted to be most common (80). 

1.3.7 Differential expression analysis and gene set analysis 

Differential expression analysis (DEA) is a commonly used method in scRNA-seq 

data analysis to identify genes that are specifically expressed in certain cell types or are 

differentially expressed, potentially contributing to functional differences between cell 

types. DEA helps researchers identify potential biomarkers for disease diagnosis or drug 

response, understand gene regulation, and identify genes involved in specific biological 

processes. Furthermore, DEA validates the accuracy of cell type assignments obtained 

from unsupervised clustering methods (81).  

EdgeR, DESeq2, and MAST are popular methods and tools for performing DEA in 

scRNA-seq data. EdgeR and DESeq2 use negative binomial distributions to model 

differences in gene expression and find genes that are significantly different in how they 

are expressed in different conditions. In contrast, MAST addresses the sparsity and 

heterogeneity of scRNA-seq data by using a zero-inflated negative binomial model to 

identify differentially expressed genes. These important tools and methods enable 
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researchers to better understand the mechanisms controlling gene expression and 

functional differences among distinct cell types (82). 

Upon obtaining DEA results, gene set analysis (GSA) is typically performed. GSA 

helps researchers identify gene sets that are enriched or depleted in specific cell types or 

conditions and are involved in particular biological functions or pathways. By focusing on 

biologically important gene sets, GSA makes scRNA-seq data easier to understand and 

confirms the biological relevance of clustering results, making sure they are not just based 

on technical variation (83). Various GSA methods are available, such as Gene Set 

Enrichment Analysis (GSEA), which determines whether gene sets tend to occur towards 

the top or bottom of a list, indicating a correlation with the phenotypic class distinction. 

GSEA has been used successfully to analyze molecular profiling data, and it has been 

changed and made more general so that it can be used in more situations. A software 

package and an initial inventory of gene sets called MSigDB are available for use (84). 

Another method is GSVA (Gene Set Variation Analysis), which is a GSE method that 

estimates pathway activity variation over a sample population in an unsupervised manner. 

GSVA demonstrates robustness in comparison to current state-of-the-art sample-wise 

enrichment methods and provides increased power to detect subtle pathway activity 

changes (85). g:GOSt is a web server that performs functional enrichment analysis, also 

known as over-representation analysis, on an input gene list. It connects genes to sources 

of functional information and finds statistically significant enriched terms. It works with 

almost 500 organisms and hundreds of types of identifiers (86). scGSEA and scMAP, 

which are tailored to scRNA-seq data and can be used to automate cell functional 
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annotation, scGSEA is a statistical framework that finds the active pathways in a cell. 

scMAP is a transfer learning algorithm that maps a query set of cell transcriptional profiles 

onto an existing reference atlas. Both methods are based on non-negative matrix 

factorization and were validated on simulated and real datasets (87). Lastly, the 

ClusterProfiler library is a tool for performing over-representation analysis and gene set 

enrichment analysis using GO and KEGG for several model organisms, supporting 

thousands of species with up-to-date gene annotation and user annotation data for novel 

species. The library has some features that make it stand out, such as a clean interface, the 

ability to see enrichment results with ggplot2, and packages like ChIPseeker, GOSemSim, 

and enrichplot that go well with it. This makes it one of the most popular Bioconductor 

packages, used in many CRAN and Bioconductor packages, pipelines, and online 

platforms (88). 

1.3.8 Cell-cell communication networks 

ScRNA-seq data allows for the analysis of cell-cell communication networks by 

examining the expression patterns of genes involved in intercellular signaling (89). These 

networks are crucial in understanding mechanisms that regulate biological processes, such 

as development, immune response, and cancer progression. By figuring out how different 

types of cells interact with each other through ligands and receptors, researchers can learn 

about the signaling pathways that control cell behavior and find possible therapeutic targets. 

Cell-cell communication networks can also be used to find new types of cells based on how 
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they interact with other cells and to find potential biomarkers for diagnosing diseases or 

measuring how well drugs work. 

Various tools have been developed for analyzing cell-cell communication networks 

in scRNA-seq data. CellChat, an R package, uses a manually curated signaling molecule 

interaction database to infer, visualize, and analyze intercellular communications from 

scRNA-seq data, along with several visualization outputs to facilitate user-guided data 

interpretation, pattern recognition methods, and manifold learning approaches for 

characterizing and comparing the inferred intercellular communications within complex 

tissues (90). CellPhoneDB is a public database of ligands, receptors, and how they interact 

with each other. It uses a computational method to find biologically important interactions 

between ligands and receptors from scRNA-seq data. This predicts molecular interactions 

between cell populations through specific protein complexes and creates possible networks 

for cell-cell communication (91). iTALK is an R package for profiling and visualizing 

ligand-receptor-It uses a large database of known ligand-receptor interactions (LRdb) and 

a new regularized product score to adjust to different levels of depth in single-cell 

datasets.mediated intercellular cross-talk signals from scRNA-seq data, which allows for 

the capture of abundant ligand-receptor gene pairs, identification of gains/losses in cellular 

interactions, and tracking of dynamic changes in intercellular communication signals with 

an efficient data visualization tool and a built-in iTALK ligand-receptor database that is 

periodically updated and curated (92). Then another available R package for ligand-

receptor interactions is SingleCellSignalR, it uses a comprehensive database of known 

ligand-receptor interactions (LRdb) and a new regularized product score to adapt to 
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variable levels of depth in single-cell datasets, and provides a range of visualization and 

complementary analysis tools to infer ligand-receptor interactions between cell populations 

and put them in context (93). Lastly, NicheNet, it is a tool that integrates input gene 

expression data with a prior model of ligand-to-target signaling paths, going beyond ligand-

receptor interactions to predict which ligands influence the expression in another cell, 

which target genes are affected by each ligand and which signaling mediators may be 

involved, using a regulatory potential score calculated between all pairs of ligands and 

target genes based on network propagation methods (94). 

1.3.9 Inferring time dynamics from single-cell expression data 

Reconstructing the temporal progression of cellular processes at the single-cell 

level through inferring time dynamics from single-cell expression data is a valuable tool 

for identifying subpopulations of cells that share similar temporal patterns and trajectories, 

revealing the heterogeneity present in single-cell expression data and facilitating the 

identification of underlying patterns and dynamics of gene expression (95). This approach 

can shed light on differentiation, cell cycle, response to environmental stimuli, and the cell 

states and transitions that drive heterogeneity (96). Modeling the temporal progression of 

cellular processes through inferring time dynamics not only reveals the heterogeneity 

present in single-cell expression data, but also enables researchers to predict the future fate 

and response of cells based on their current gene expression patterns. This approach can be 

used to predict differentiation trajectories of stem cells, cell cycle phases of proliferating 

cells, and the response of cells to external stimuli or treatments (97). Finally, inferring time 
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dynamics can enable comparisons across conditions. By identifying the temporal patterns 

of gene expression across different conditions, such as healthy vs. diseased cells, or drug-

treated vs. untreated cells, researchers can gain insight into the pathogenesis of diseases 

and the mechanisms of drug action (56). This can have important implications for 

developing personalized medicine approaches and identifying new therapeutic targets. 

However, one of the challenges from analyzing single cell transcriptomics data is 

extracting temporal information from a single time snapshot. Presently, researchers employ 

time-course experiments to gather samples at various time points throughout a biological 

process, enabling them to track the temporal alterations in gene expression (98-100) . 

Another approach is to use computational methods to infer the temporal dynamics of gene 

expression from static snapshots of single cell transcriptomics data. These methods use 

mathematical models to predict how gene expression patterns change over time based on 

the static data, enabling researchers to identify key regulatory pathways and predict the 

effects of perturbations on gene expression. 

There are several popular tools available to researchers. One widely used tool is 

Monocle, which harnesses single-cell variation to sort cells in "pseudo-time". The idea 

behind pseudotime is to order cells along a trajectory that represents a biological process, 

such as differentiation or response to stimuli, based on their gene expression profiles. In 

Monocle 2, pseudotime reconstruction was based on a method called reversed graph 

embedding (RGE), which utilizes a minimum spanning tree (MST) algorithm. Monocle 3, 

uses an improved method called principal graph learning for trajectory inference (95, 101). 

Another popular algorithm is SCUBA (Single-Cell Universal Bayesian Analysis), which 
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infers the temporal progression of gene expression in single cells using a nonlinear 

dynamics and stochastic differential equation theories (102). Wanderlust is another method, 

it takes single-cell measurements and a user-defined early cell as input and calculates a 

trajectory by iteratively refining the position of each cell along the trajectory using a 

weighted average based on the shortest-path distance from a set of randomly chosen 

waypoints, repeating the refinement step until the positions of all cells converge, and 

outputting the average trajectory over all graph trajectories (96). PAGA (Partition-based 

Graph Abstraction) is a computational method for combining clustering and trajectory 

inference in single-cell RNA sequencing data. It involves constructing a graph that 

represents the relationships between individual cells based on their gene expression profiles 

(103). scVelo is a likelihood-based dynamical model that estimates RNA velocity to infer 

dynamic information from RNA sequencing data. It solves the full gene-wise 

transcriptional dynamics, inferring gene-specific reaction rates of transcription, splicing, 

and degradation. scVelo generalizes RNA velocity estimation to transient systems and 

systems with heterogeneous subpopulation kinetics (104). 

1.3.10 Gene regulatory networks 

Gene regulatory networks (GRNs) play a crucial role in comprehending cellular processes 

such as development, differentiation, and response to stimuli (105). GRNs control the 

development and physiological functions of animals. Comparative analyses of GRNs 

across species can reveal evolutionary patterns and help us understand how changes in 

regulatory networks can lead to novel phenotypic traits (106). The use of GRN tools is 
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crucial for scRNA-seq analysis, as they enable identification of important regulators and 

targets, characterization of gene modules, prediction of gene function, and validation of 

computational models, thereby aiding in the recognition of cellular pathways, the 

development of therapeutic targets, and improved comprehension of diseases.  

Numerous well-known algorithms and tools have been developed for inferring 

GRNs from scRNA-seq data. Examples of such tools include SCENIC (107), GENIE3 

(108), Inferelator (109), GRNBoost2 (110), PIDC (111), and SCODE (112). SCENIC was 

developed to link cis-regulatory sequences to single-cell gene expression, allowing for the 

optimization of cell state discovery and characterization. The method consists of three steps: 

identification of coexpressed genes with transcription factors, cis-regulatory motif analysis, 

and pruning of modules to remove indirect targets, resulting in processed modules called 

regulons. GENIE3 is a powerful and flexible GRN inference method. It uses ensembles of 

regression trees to capture high-order dependencies and non-linear relationships between 

variables while making a directed graph of regulatory interactions. This makes it a useful 

tool for figuring out GRNs in different biological systems (108). Inferelator is another tool 

for single-cell gene regulatory network (GRN) inference based on regularized regression, 

that provides scalability, integrated support for multi-task GRN inference, and the ability 

to learn cell-type-specific GRNs (109). GRNBoost2 leverages gradient boosting to 

pinpoint the most relevant TFs (110), while PIDC uses a probabilistic graphical model to 

detect relevant TFs (111), and SCODE relies on differential expression analysis to identify 

TFs that regulate gene expression (112). 
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1.4 Deep Learning Applications in scRNA-seq 

1.4.1 Dimension reduction and cluster  

As deep learning (DL) algorithms continue to improve, more and more applications are 

using them for dimensionality reduction and clustering to manage the large and 

complicated scRNA-seq datasets and get valuable insights from them. 

Analysis of scRNA-seq data has been done successfully using techniques like deep 

autoencoders and variational autoencoders (VAEs) to reduce the number of dimensions. 

Deep autoencoders are artificial neural networks that develop efficient, low-dimensional 

representations of high-dimensional data unsupervised. An encoder maps input data to a 

lower-dimensional latent space, and a decoder attempts to reconstruct the original data 

from the lower-dimensional representation (113). Adding a probabilistic layer to the latent 

space creates a variational autoencoder (VAE) generative deep learning model. It uses deep 

learning and variational inference to learn complex data distributions unsupervised. In 

VAE, the encoder network maps input data to a probability distribution over the latent 

space, and the decoder network reconstructs the data using samples from this distribution. 

The VAE is trained by maximizing reconstruction loss and a regularization term based on 

the Kullback-Leibler (KL) divergence to make the learnt latent distribution match a 

predetermined prior distribution (114). 

There have been several studies on using deep autoencoders for dimensionality 

reduction of scRNA-seq data. One such study proposes a deep count autoencoder (DCA) 

for denoising scRNA-seq data, The DCA model architecture consists of an encoder and a 
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decoder with multiple layers, with the goal of learning a low-dimensional representation 

of the input data. DCA is specifically designed to handle count data, which is common in 

scRNA-seq datasets. DCA can impute missing values (dropouts) and reduce technical 

noise, improving the quality of the scRNA-seq data (115). Another such study proposes a 

scRNA-seq data dimensionality reduction algorithm based on a hierarchical autoencoder, 

termed SCDRHA. The proposed SCDRHA consists of two core modules: a DCA that is 

used to denoise data and a graph autoencoder that projects the data into a low-dimensional 

space (116). scvi-tools (single-cell variational inference tools), a VAE-based method, is a 

proposed method that combines VAEs with factor analysis to model the underlying 

structure of scRNA-seq data, The model is trained using a combination of reconstruction 

loss (negative log-likelihood) and a regularization term based on the Kullback-Leibler (KL) 

divergence, which encourages the learned latent distribution to be close to the structured 

prior (117). 

The application of DL methods has extended to clustering analysis as well. 

Clustering techniques, such as deep embedded clustering (DEC) and single-cell deep 

clustering (SCDC), have been utilized to group cells with similar gene expression patterns, 

uncovering distinct cell types and states (118, 119). For example, SCDC's proposed method 

combines deep learning techniques with model-based clustering to handle the unique 

challenges of scRNA-seq data, such as high dimensionality, noise, and dropout events. The 

model architecture consists of an encoder network that learns a low-dimensional 

representation of the input data and a clustering model that groups cells in the latent space 

(119). 
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Another notable DL-based clustering approach is graph neural networks (GNNs), 

which have been applied to single-cell data analysis. GNNs are a class of deep learning 

models specifically designed to handle data represented as graphs. The GNN model is built 

on recursive neural networks and operates by iteratively passing messages between 

neighboring nodes in the graph. The GNN architecture includes a state transition function, 

which updates a node's hidden state based on information from its neighbors, and an output 

function that generates the final output for each node (120). For instance, scGNN (single-

cell graph neural network) is a method that employs a GNN framework specifically 

designed for scRNA-seq analyses. It leverages the power of GNNs to model the complex 

relationships between cells and genes in scRNA-seq data by representing them as a graph. 

The scGNN architecture consists of an encoder that learns a low-dimensional 

representation of the input data and a decoder that reconstructs the original data (121). 

1.4.2 Cell type prediction and annotation 

Deep learning techniques, especially neural networks, have demonstrated exceptional 

performance in scRNA-seq cell type annotation tasks. For example, scANVI (single-cell 

ANnotation using Variational Inference), a deep generative model developed for 

probabilistic representation of scRNA-seq data. The inference procedure for scANVI relies 

on neural networks, stochastic optimization, and variational inference, allowing scalability 

to large numbers of cells and datasets. scANVI also achieves transferring labels from one 

dataset to another (122). scDeepSort is another tool, which is an annotation tool for scRNA-

seq data that uses a deep learning model with a weighted GNN and pre-trained cell-type 
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annotation on human cell landscape (HCL) and a mouse cell atlas (123). Another DL-

framework is scDLC (scRNA- seq deep learning classifier). scDLC is a deep learning-

based framework specifically designed for the classification of large-scale scRNA-seq data. 

The framework employs a combination of autoencoders and convolutional neural networks 

(CNNs) to learn meaningful features and accurately classify cells into different cell types 

(124). 

Large-scale pretrained deep language model also has been applied in cell type 

prediction and annotation. For example, scBERT (single-cell Bidirectional Encoder 

Representations from Transformers), which is based on the popular BERT (Bidirectional 

Encoder Representations from Transformers) model, originally developed for natural 

language processing tasks. The authors adapt BERT to the scRNA-seq domain by 

pretraining the model on a massive dataset of gene expression profiles, enabling it to learn 

biologically relevant features. After pretraining, scBERT is fine-tuned on smaller, labeled 

scRNA-seq datasets for cell type annotation tasks, making it a transfer learning approach 

(125). 

Transfer learning, a deep learning technique where a model trained for one task is 

repurposed as the initial stage for a model on a different task, it offers significant benefits 

in terms of computational and time resources needed to develop neural network models for 

these complex problems while providing substantial improvements in performance on 

related tasks (126), has also been applied to cell type annotation in scRNA-seq data analysis. 

For example, scArches (single-cell architectural surgery) is a transfer learning-based 

method that uses architectural surgery, which involves reusing neural network models by 
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adding input nodes and weights (adaptors) for new studies and fine-tuning only those 

parameters. The approach is demonstrated in applications such as transferring cell type 

annotations from a reference to a query atlas and mapping COVID-19 query data onto a 

healthy reference (127).  

1.4.3 Treatment response prediction 

Deep Learning (DL) has emerged as a powerful tool in scRNA-seq data analysis, enabling 

the prediction of molecular progress by extracting complex patterns from large-scale data. 

One such model, deep learning framework, scDEAL (single-cell Drug rEsponse AnaLysis), 

uses Domain-adaptive Neural Network (DaNN) adapted to predict drug responses using 

both bulk and scRNA-seq data. scDEAL effectively predicts single-cell drug sensitivity by 

connecting drug sensitivity, gene features in single cells, and gene features in bulk samples 

(128). Another DL-framework, VEGA (VAE Enhanced by Gene Annotations), a novel 

VAE architecture for analyzing the activity of various biological modules in different 

contexts using single-cell transcriptomics data. The method can simultaneously investigate 

cell type and cell state in both control and experimentally perturbed conditions. It also can 

help understand the response of specific cell types to different perturbations and provide 

interpretable insights on biological module activity (129). Lastly, Precily, a deep neural 

network (DNN) framework designed to predict cancer therapy responses based on single 

cell gene expression profiles and drug descriptors. The framework infers cellular fates upon 

treatment from single-cell expression data, enabling drug response prediction at sub-clonal 

resolution using tumor scRNA-seq data (130). 
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In conclusion, recent advances in deep learning have enabled major progress in the 

ability of artificial intelligence techniques to integrate big data, incorporate existing 

knowledge, and learn arbitrarily complex relationships. In the context of scRNA-seq, these 

advances have significantly impacted our understanding of cellular heterogeneity, cell type 

identification, and treatment response prediction. As deep learning models continue to 

improve, they will play an increasingly crucial role in the analysis and interpretation of 

scRNA-seq data, enabling more personalized and targeted therapeutic approaches in the 

future. 

1.5 Complementary Approaches for Studying Immune Cell Heterogeneity: Beyond Single-

Cell RNA Sequencing 

In addition to single-cell RNA sequencing (scRNA-seq), researchers have come up with a 

number of other approaches to studying the heterogeneity of immune cells. One such 

approach is bulk transcriptomics on purified and sorted cell samples, which serves as the 

closest competitor to scRNA-seq (131). By isolating specific cell types or subpopulations 

from a heterogeneous sample using cell sorting techniques before performing bulk RNA 

sequencing, researchers can obtain more focused gene expression profiles for each sorted 

population. However, analyzing sorted cell populations reduces the averaging effect, it still 

does not provide single-cell resolution. Also, cell sorting techniques rely on the expression 

of specific surface markers (132), which may not always accurately represent the functional 

or transcriptional state of a cell. 
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Other methods for studying cellular heterogeneity include single-cell proteomics 

(133), single-cell epigenomics (134), spatial transcriptomics (135), functional imaging 

(136), and CRISPR-based genetic screens (137) are some of these methods. 

Single-cell proteomics is an approach that involves the analysis of protein 

expression at the single-cell level, allowing researchers to investigate cellular heterogeneity 

from a protein perspective (138). Single-cell proteomics techniques include single-cell 

proteomics by mass spectrometry (scp-MS) (139), mass cytometry (CyTOF) (140), single-

cell Western blots (141), and Single Cell ProtEomics by mass spectrometry (SCoPE-MS) 

(142). Single-cell epigenomics is the technique that studies the epigenetic landscape of 

individual cells, providing insights into the regulatory mechanisms that contribute to 

immune cell heterogeneity (143). Methods such as single-cell ATAC-seq (Assay for 

Transposase-Accessible Chromatin with high-throughput sequencing) (144), single-cell 

ChIP-seq (Chromatin immunoprecipitation followed by sequencing) (145), and single-cell 

Hi-C (146) allow for the exploration of chromatin accessibility and histone modifications, 

respectively, at the single-cell level. Spatial transcriptomics is a method that enables the 

simultaneous measurement of gene expression and spatial information within a tissue, 

allowing researchers to study the cellular heterogeneity of immune cells within their native 

microenvironment. Techniques such as MERFISH (Multiplexed Error-Robust 

Fluorescence In Situ Hybridization) (147), Visium and Xenium platforms from 10X 

Genomics (148), and nanoString GeoMx ® Digital Spatial Profiler (DSP) platform (149) 

provide spatially resolved transcriptomic data. Functional imaging techniques like confocal 

microscopy, multiphoton microscopy, and super-resolution microscopy can visualize the 
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morphology, distribution, and interactions of immune cells within their native tissue 

context (150). Lastly, CRISPR-based genetic screens. The CRISPR/Cas9 system can be 

used to perturb gene function in immune cells, helping researchers to identify key genes 

and regulatory elements that contribute to immune cell heterogeneity. Pooled CRISPR 

screens can be combined with single-cell readouts to investigate the impact of genetic 

perturbations on cellular phenotypes at a high-throughput scale (151). 

These parallel approaches, when used in conjunction with scRNA-seq, can provide 

a more comprehensive understanding of immune cell heterogeneity and offer valuable 

insights into the development, activation, and function of immune cells in various 

physiological and pathological contexts. 

1.6 Discussion 

scRNA-seq has indeed become a widely used experimental method for transcriptomic 

profiling. This is because scRNA-seq allows researchers to study gene expression at the 

level of individual cells, which provides greater resolution and sensitivity compared to bulk 

RNA-seq methods that measure gene expression in populations of cells. scRNA-seq 

involves isolating individual cells, reverse transcribing the RNA molecules within each 

cell into cDNA, and then sequencing the cDNA to determine the identity and abundance 

of each transcript in each cell (152). The resulting data can be used to identify 

subpopulations of cells, study gene expression heterogeneity within cell populations, and 

investigate cellular responses to different stimuli or conditions.  
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The development of new scRNA-seq technologies and analysis methods has also 

made it easier and more accessible for researchers to perform transcriptomic profiling at 

the single-cell level. As a result, scRNA-seq has become a powerful tool for understanding 

biological processes and diseases at the cellular level. However, scRNA-seq data analysis 

poses several challenges, including high levels of technical noise, sparsity, and batch 

effects, among others (153). We have summarized a variety of the statistical and 

computational methods that can address these challenges and have been developed for 

processing and analyzing scRNA-seq data. The key methods involved in data processing 

include quality control, normalization, and imputation. Quality control involves filtering 

out low-quality cells and genes that do not meet certain criteria, such as low expression 

levels or high mitochondrial gene content. Normalization tries to fix the expression levels 

of different genes and cells to make up for technical differences and make sure that samples 

are comparable. Imputation methods are used to fill in values for missing expressions and 

make the data less sparse. Methods for combining scRNA-seq data from multiple 

experiments and correcting for technical differences between batches or samples are also 

important. Dimensional reduction and clustering algorithms are used to see and find groups 

of cells with similar profiles of how their genes are expressed. Cell type prediction and 

annotation methods can be used to assign cell types to these populations based on known 

cell markers or transcriptional signatures. Differential analysis and gene set analysis are 

used to find genes or pathways that are expressed differently in different cell populations 

or when the experiment is done in different ways. Inferring time dynamics methods can be 

used to model the temporal relationships between different cell populations during 
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development or in response to different stimuli. Gene regulatory network methods can be 

used to identify regulatory interactions between genes and predict transcription factor 

activities. Machine learning approaches can be used to build predictive models for cell 

classification, trajectory inference, and other applications. 

 The advent of scRNA-seq technology has revolutionized our ability to study the 

immune system in health and disease. In particular, scRNA-seq has enabled researchers to 

investigate the heterogeneity of immune cell populations at the single-cell level and to 

uncover the molecular mechanisms underlying immune responses to infectious diseases 

and cancer. In Chapter 2, we will explore the various applications of scRNA-seq 

technology in the immune system. The immune system is a complex and dynamic system 

that plays a critical role in protecting the body against infectious diseases and cancer. The 

development, activation, and function of immune cells are tightly regulated at the 

transcriptional level, making scRNA-seq an ideal tool for investigating the heterogeneity 

and plasticity of immune cells.  

 In Chapters 3, 4, and 5, we will conduct our analysis by employing various tools 

discussed in this chapter, demonstrating their application and the insights they provide into 

the effects of sepsis, COVID-19, and smoking on the tumor microenvironment. 

 

 
 
 
 

 



38 
 

CHAPTER 2 Unraveling Immune System Complexity through Single-Cell RNA 
Sequencing 

2.1 Introduction 

The immune system exhibits remarkable complexity, comprising a diverse array of cell 

types, each characterized by unique gene expression patterns that consequently give rise to 

distinct functions. Immune cells also exhibit rapid and dynamic changes in gene expression 

in response to stimuli such as pathogens, antigens, or cytokines. They also exhibit intricate 

cell-cell interactions between various cell types that can also lead to rapid phenotype 

changes. Overall, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful 

technology for dissecting the complexity and diversity of the immune system at 

unprecedented resolution (154, 155). By letting us figure out how genes are expressed in 

individual cells, scRNA-seq has helped us learn a lot about the diversity and functional 

states of immune cells. This has led to new insights into immune responses, homeostasis, 

and diseases related to the immune system (156, 157). The immune system is made up of 

many different types of cells, each of which has its own role in coordinating immune 

responses and maintaining immune tolerance (158). Traditional bulk RNA-seq methods, 

which measure the gene expression profiles of large groups of cells, don't capture the full 

range of cellular diversity and the complex relationships between different types and states 

of immune cells. scRNA-seq, on the other hand, has the potential to show the 

transcriptional landscape of each immune cell. This would give a completer and more 

detailed picture of the immune system and how it works. 
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2.2 Balancing Immune Homeostasis through Immune Cell Diversity  

 
Figure 2.1 Overview of the immune system. 

A schematic diagram illustrating the major components of the immune system. Figure 
generated by using BioRender. 
 

Immune cell diversity is an essential part of the immune system, playing a crucial role in 

maintaining health and defending against a variety of pathogens and diseases. This 

diversity enables the immune system to recognize and respond to a broad spectrum of 

antigens, ensuring effective protection against infections while also promoting self-

tolerance and preventing autoimmune disorders. The diverse immune cell populations can 

be broadly divided into two categories: innate immunity and adaptive immunity. Each 

variety of immune cell has a distinct pattern of gene expression, resulting in specialized 
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functions and capabilities. T cells, for instance, can differentiate into subsets such as helper 

T cells, cytotoxic T cells, and regulatory T cells, each of which plays a distinct function in 

the immune response. Similarly, B cells can differentiate into plasma cells that produce 

antibodies or memory B cells that provide long-lasting immunity. (Figure 2.1). 

 The innate immune system is the first line of defense against pathogens and is 

present since birth, providing nonspecific immunity that does not require prior exposure to 

pathogens. It responds rapidly to infections and has a broad spectrum of resistance to 

different types of pathogens (159). The innate immune system includes various types of 

cells, such as phagocytes, natural killer cells, and mast cells, as well as pattern recognition 

molecules/receptors, antimicrobial peptides, the complement system, inflammatory 

mediators, and cytokines produced by immune cells (160). Toll-like receptors (TLRs) are 

pattern-recognition receptors (PRRs) that recognize conserved structures in pathogens, 

known as pathogen-associated molecular patterns (PAMPs). TLRs trigger innate immune 

responses by activating signaling pathways that lead to the production of pro-inflammatory 

cytokines, chemokines, and type I interferons. This helps to eliminate the invading 

pathogen and recruit other immune cells to the site of infection (161). 

The adaptive immune system, on the other hand, consists of T cells and B cells. 

The major histocompatibility complex (MHC) molecules on the surface of antigen-

presenting cells (APCs) allow T cells to recognize and respond to specific antigens, while 

B cells make antibodies against specific antigens (162). The enormous diversity of T cell 

receptors (TCRs) and B cell receptors (BCRs) is generated through a process called V(D)J 

recombination, which shuffles and recombines variable (V), diversity (D), and joining (J) 
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gene segments during lymphocyte development (163). This process, along with somatic 

hypermutation in B cells, generates an almost limitless range of antigen specificities (164). 

The immune system of humans is continuously active. This immune balance shifts 

from a tolerogenic state to an immunogenic/inflammatory state in response to microbial 

infection, tissue injury, or vaccination (165). For example, during lymphocyte development, 

progenitors expressing high-affinity receptors for self-antigens or those unresponsive to 

antigens are eliminated by apoptosis. The surviving lymphocytes form the naive T cell and 

B cell compartments. When naive lymphocytes encounter pathogens, they proliferate and 

activate to combat the invaders, eventually dying after the pathogens are cleared. A similar 

situation occurs with neutrophils during inflammation. Also, cytotoxic T lymphocytes and 

natural killer cells recognize and induce apoptosis in virus-infected, bacteria-infected, and 

transformed cancer cells (166). After the immunogen has been eliminated, homeostatic 

regulatory mechanisms return the system to its initial tolerogenic state. However, when 

diversity and control of immune cells break down, it can lead to autoimmune diseases and 

long-term inflammation (167). 

2.3 Immune Cell Profiling and Heterogeneity 

2.3.1. Identifying immune cell types and subtypes   

One of the most important things that scRNA-seq has brought to the study of the immune 

system is the discovery of new cell types and subtypes, as well as the discovery of 

heterogeneity within known cell populations that were not known before (154). Cellular 

heterogeneity arises from differences between individual cells within a subtype or 
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population. These differences can be attributed to factors such as genetic variations, 

epigenetic modifications, and environmental influences, leading to variations in gene 

expression and functional characteristics even among cells of the same subtype (168). The 

hierarchy of subtypes typically refers to the classification of immune cells based on their 

lineage, developmental stages, and distinct functions (169). For example, T cells can be 

further differentiated into CD4+ T helper cells, CD8+ cytotoxic T cells, and regulatory T 

cells. In turn, CD4+ T helper cells can be classified into Th1, Th2, Th17, and T follicular 

helper (Tfh) cells, each with specific functions and cytokine profiles (170). 

For example, scRNA-seq has been used to find rare and previously unknown 

immune cell populations, such as distinct populations of innate lymphoid cells (ILCs) (171) 

and proinflammatory microglia in developing glioblastomas and anti-inflammatory 

macrophages and myeloid-derived suppressor cells in end-stage tumors (172).  These 

findings have expanded our understanding of immune cell diversity and have broad 

implications for our knowledge of immune regulation and function. 

In addition to finding new types of cells, scRNA-seq has been used to find 

subpopulations of known immune cell types like T cells, B cells, and myeloid cells that 

were not known before. For example, scRNA-seq has been utilized to reveal 

subpopulations of Treg cells with distinct degrees of non-lymphoid tissue phenotype (173). 

Oh et al. revealed heterogeneity and clonal expansion of cytotoxic CD4+ T cells in tumors, 

with a gene signature of these cells predicting response to PD-1 blockade in metastatic 

bladder cancer patients treated with anti-PD-L1 (174). Similarly, scRNA-seq has been used 

to uncover novel B cell subsets. For example, researchers used scRNA-seq to uncover and 
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characterize heterogeneities in naïve B cells, classical memory B cells, and atypical B cell 

(ABC) subsets in chronic infectious diseases (175). Furthermore, scRNA-seq has provided 

insights into the heterogeneity of myeloid cells (176), the identification of different 

dendritic cell (DC) subsets (177) and monocyte-derived cells with unique functions (156). 

Beyond the identification of immune cell types and subtypes, scRNA-seq has also 

been instrumental in characterizing the transcriptional and functional states of immune 

cells during various physiological and pathological conditions, such as infection, 

inflammation, and cancer (178-181). scRNA-seq has helped researchers learn more about 

how immune cells become active, change, and react to different stimuli by recording the 

transcriptional dynamics of each immune cell. 

2.3.2. Characterizing immune cell states and activation 

The characterization of immune cell states and activation has been facilitated by the 

application of scRNA-seq to various immune cell populations. For example, scRNA-seq 

has been used to study T cell activation and differentiation in response to stimuli. For 

example, Fernández-García, et al. identified a differential time-dependent reliance of 

activating T cells on the synthesis versus uptake of various non-essential amino acids as 

well as metabolic genes such as asparagine synthetase (Asns), whose expression dynamics 

modulated CD8+ T cell differentiation and anti-tumor response in a mouse melanoma 

model (182). Similarly, scRNA-seq has been utilized to characterize the activation and 

differentiation of B cells, revealing distinct transcriptional signatures associated with the 

development of B cells. Scharer, et al (183) explored the molecular reprogramming that 
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leads to heterogenous cell fate outcomes during B-cell differentiation to T cell-independent 

antigens in vivo, defining a path to antibody-secreting cells that includes an early decision 

point and two branches with distinct gene expression profiles and downstream outcomes. 

Also, scRNA-seq has been used to study how myeloid cells like macrophages, dendritic 

cells (DCs), and monocytes become activated and polarized. O’Neill, et al. used scRNA-

seq to investigate inter-individual and inter-population variability in monocyte responses 

to influenza A virus (IAV), revealing widespread variability in the percentage of IAV-

infected monocytes, a lower activation at basal state of an IRF/STAT-induced 

transcriptional network in individuals with high cellular susceptibility to IAV, a stronger 

resistance of CD16+ monocytes to IAV infection, CD16+ specific mRNA expression of 

IL6 and TNF in response to IAV, and a higher number of CD16+ monocytes and lower 

susceptibility to IAV infection among monocytes from individuals of African-descent 

(184). 

Using scRNA-seq has also helped us learn more about the states of immune cells 

and how they become activated during diseases like infection, autoimmunity, and cancer. 

For example, scRNA-seq has been used to describe the immune cell landscape during viral 

infections (185-187). This showed that antiviral immunity and immune exhaustion are 

linked to different transcriptional signatures. In the context of autoimmunity, scRNA-seq 

has been used to study the immune cell states and activation dynamics in autoimmune 

diseases like systemic lupus erythematosus (SLE) (188), multiple sclerosis (MS) (189), and 

rheumatoid arthritis (RA) (190), giving new insights into disease pathogenesis and possible 

therapeutic targets. 
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Also, scRNA-seq has helped figure out the immune cell states and activation within 

the tumor microenvironment (TME). This has shown the complex relationship between 

cancer cells and immune cells like tumor-infiltrating lymphocytes (TILs) (191, 192) and 

tumor-associated macrophages (TAMs) (193). These studies have shed light on how 

different and changing the immune cell landscape is in the TME. They have also shown 

how the activation and function of immune cells play a role in how tumors grow, how they 

hide from the immune system, and how they respond to immunotherapy. Using scRNA-

seq to describe the state of immune cells and how they are activated has also opened up 

new ways to develop therapies that target the immune system. For instance, insights gained 

from scRNA-seq studies have informed the design of novel immunotherapies, such as 

chimeric antigen receptor (CAR) T cell therapy (194) and immune checkpoint blockade 

(195), which aim to harness the power of the immune system to combat cancer and other 

diseases. Furthermore, scRNA-seq has been instrumental in identifying potential 

biomarkers for patient stratification (196) and predicting response to immunotherapy, 

providing a more personalized approach to treatment (197-199). 

In conclusion, scRNA-seq has helped us learn a lot more about immune cell states 

and how they become active in response to different things, such as infections. scRNA-seq 

has made it possible to find out about new cell subsets and their roles in immune responses 

by giving a high-resolution description of how genes are expressed in a single cell. 

However, the distinction between subtypes and heterogeneity in immune cells can be 

challenging to pinpoint, as the classification of cell subtypes and the degree of 

heterogeneity are context-dependent and can be influenced by various factors, such as the 
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method of analysis and the biological conditions being studied. Also, how many clusters 

or subtypes exist can be fundamentally flawed due to its dependence on the threshold used 

for classification. This is particularly relevant in the context of single-cell analyses, where 

the resolution of data allows for the identification of finer distinctions between cells. The 

choice of clustering algorithms, distance metrics, and threshold parameters can greatly 

influence the resulting classification of cell populations. To thoroughly examine the 

heterogeneity in immune cells, researchers must be well-versed in the methodologies 

employed and have a deep understanding of the biological context under investigation. 

2.4 Inflammatory Responses in Infectious and Chronic Diseases 

Inflammatory responses play a crucial role in both infectious diseases and chronic diseases, 

but the nature and outcome of these responses can differ significantly between the two 

contexts. In the context of infectious diseases, the inflammatory response is an essential 

part of the immune system's defense against invading pathogens, such as bacteria, viruses, 

fungi, or parasites. When pathogens enter the body, the immune system mounts an 

inflammatory response to contain, control, and ultimately eliminate the infection (169). In 

chronic diseases, inflammation often plays a central role in disease pathogenesis and 

progression. These diseases are not caused by an acute infection but may be triggered or 

exacerbated by other factors, such as genetic predisposition, environmental factors, or 

dysregulation of the immune system. In these cases, the inflammatory response can become 

chronic and contribute to ongoing tissue damage and disease progression (200). 
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2.4.1. Dynamics of immune cell populations during infectious diseases 

During infection, the immune system mounts a complex and dynamic response to eliminate 

pathogens while minimizing host tissue damage. Immune cells must adapt to the ever-

changing landscape of the infection site and coordinate their activities to effectively combat 

the invading pathogens. By applying scRNA-seq to study immune cells in the context of 

infection, researchers can gain a detailed understanding of the diverse cellular responses 

and the underlying molecular mechanisms that drive their plasticity and specialization. 

One key application of scRNA-seq in the context of infectious diseases is the study 

of immune cell dynamics in response to viral infections. For example, during the COVID-

19 pandemic, scRNA-seq has been extensively utilized to characterize the immune 

response to SARS-CoV-2 infection. For instance, by using scRNA-seq researchers found 

that proinflammatory monocyte-derived macrophages were abundant in the 

bronchoalveolar lavage fluid from severe COVID-19 patients (201). Another single cell 

analysis revealed immune cells in COVID-19 patients have expansion of complement-

expressing monocytes, increased megakaryopoiesis, clonally expanded CD8+ T cells, and 

altered B cell responses, providing insights into the coordinated immune response and 

potential therapeutic targets (202). Using scRNA-seq researchers also identified changes 

in peripheral immune cell phenotype, including a heterogeneous interferon-stimulated gene 

signature, HLA class II downregulation, and a developing neutrophil population related to 

plasmablasts, in COVID-19 patients with acute respiratory distress syndrome (203). 

Another example is from an HIV study, researchers found an increase in plasmacytoid 

dendritic cells was observed during the acute phase of HIV-1 infection, monocytes showed 
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enhanced inflammatory and antigen presentation functions, with the upregulation of MHC 

II, T cells exhibited a pro-inflammatory phenotype with elevated expression of 

inflammatory cytokines (204). 

In addition to viral infections, scRNA-seq has been instrumental in elucidating the 

immune response to bacterial pathogens. For instance, Aldrich, et al. found Staphylococcus 

aureus craniotomy-associated biofilm infection elicits a transcriptionally diverse leukocyte 

response, chemokine receptors CX3CR1 and CCR2 are differentially expressed in 

infiltrating leukocyte populations within the biofilm infection. Infected animals 

demonstrated increased numbers of monocytes/macrophages with a distinct transcriptional 

profile (205).  

ScRNA-seq has also been employed to investigate the dynamics of immune cell 

populations during parasitic infections, such as Toxoplasma gondii (T. gondii) infection. 

Patir, et al. found scRNA-seq revealed that CD16- monocytes are the primary cell type 

responsible for the transcriptional response to T. gondii. CD16- monocytes also showed 

increased phagocytic activity and lysosomal activity, suggesting a role in T. gondii 

clearance (206). 

Finally, scRNA-seq has been employed to investigate sepsis. Sepsis is a life-

threatening condition caused by the body's response to an infection. However, the 

activation of these immune cells is not uniform across all patients, leading to heterogeneity 

in the immune response and subsequent patient outcomes. ScRNA-seq can provide insights 

into the transcriptional diversity of immune cells during sepsis, allowing for the 
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identification of key genes and signaling pathways that contribute to disease progression. 

We will present more details in Chapters 3 and 4. 

Besides its use in characterizing immune cell dynamics during an ongoing infection, 

researchers have also utilized scRNA-seq to investigate immune cell memory and 

development, including the study of the development of protective immunity after 

vaccination or infection. For example, Wen, et al. used scRNA-seq to analyze the 

transcriptomes of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients 

in the recovery stage. They found an inflammatory immune signature in the early recovery 

stage of COVID-19, characterized by decreased T cells, increased inflammatory CD14++ 

monocytes, high levels of inflammatory gene expression in T cells, and novel B cell-

receptor changes, highlighting potential therapeutic targets for the treatment of COVID-19 

(207). 

In conclusion, scRNA-seq has shown tremendous potential for advancing our 

understanding of infectious diseases. scRNA-seq has made it possible to find new cell types 

and functional states by giving researchers new insights into the transcriptional landscapes 

of individual immune cells during an infection. This has revealed complex interactions 

between the host and the pathogen. These studies have led to the discovery of new immune 

response mechanisms and improved our understanding of the pathogenesis of infectious 

diseases. Furthermore, scRNA-seq has helped identify biomarkers for early detection and 

diagnosis of infectious diseases, and has facilitated the development of more effective 

vaccines and treatments. Overall, scRNA-seq has made a big difference in how we 
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understand infectious diseases and has a lot of potential to help advance the field in the 

future. 

2.4.2. Characterizing inflammatory responses in chronic diseases 

In chronic diseases, inflammation often plays a central role in disease pathogenesis and 

progression. These diseases are not caused by an acute infection but may be triggered or 

exacerbated by other factors, such as genetic predisposition, environmental factors, or 

dysregulation of the immune system. In these cases, the inflammatory response can become 

chronic and contribute to ongoing tissue damage and disease progression. Examples of 

chronic diseases with an inflammatory component include autoimmune disorders, 

neurodegenerative diseases, cardiovascular diseases, and chronic respiratory diseases, etc. 

The emergence of scRNA-seq has enabled researchers to examine the individual cell types 

involved in chronic disease development, paving the way for the identification of 

therapeutic strategies to manage and potentially cure inflammatory responses in these 

conditions. 

2.4.2.1 Autoimmune disorders 

Autoimmune disorders, these are diseases in which the immune system mistakenly attacks 

healthy tissues in the body. Examples of autoimmune disorders include rheumatoid arthritis 

(RA), a chronic inflammatory disease affecting the joints, leading to pain, swelling, and 

stiffness. Systemic lupus erythematosus (SLE), a multisystem autoimmune disease that can 

affect various organs, such as the skin, kidneys, and heart. Multiple sclerosis (MS), a 

neurological disorder characterized by inflammation and damage to the myelin sheath 
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surrounding nerve fibers, resulting in various neurological symptoms. Inflammatory bowel 

disease (IBD), a group of chronic inflammatory conditions affecting the gastrointestinal 

tract, primarily including Crohn's disease and ulcerative colitis, characterized by persistent 

inflammation, abdominal pain, and gastrointestinal symptoms. 

One of the ways scRNA-seq is used in the studies of autoimmune disorders is to 

find molecular changes in specific cell types. For example, scRNA-seq has revealed 

upregulated CD52 expression in B cells in systemic lupus erythematosus (SLE) patients 

(208). In rheumatoid arthritis (RA), researchers identified immune cell abnormalities and 

molecular pathway differences in anticitrullinated-peptide antibodies (ACPA) subtypes of 

rheumatoid arthritis in myeloid cells. The study also identifies the HLA-DR15 haplotype 

as a risk factor for developing the active disease in ACPA+ RA and highlights the potential 

for different therapeutic strategies based on ACPA status (190).  In multiple sclerosis (MS), 

a study using scRNA-seq found B cells in the central nervous system were found to have 

various potential roles, such as secreting proinflammatory cytokines and chemokines, 

presenting autoantigens to T cells, producing pathogenic antibodies, and serving as 

reservoirs for viruses that trigger demyelination (209).  

Another important way of scRNA-seq is used in autoimmune diseases is to find 

new immune cell populations and subpopulations that play a role in how the disease 

develops. In RA, scRNA-seq has revealed a previously unrecognized subset of fibroblast 

subpopulations that display distinct transcriptional profiles and functional properties, 

suggesting a potential role in joint destruction and tissue damage (210). Another study 

using scRNA-seq found two subsets of macrophages, CD163+ and CD206+ macrophages, 
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were associated with remission in RA patients, while another subset, CD163- CD206- 

macrophages, was associated with active disease. They also found that these macrophage 

subsets had distinct gene expression profiles and different abilities to produce 

inflammatory cytokines (211). In MS, scRNA-seq has identified sub-clusters of 

oligodendrocytes (OLs) in white matter (WM) areas in MS tissue that are under-

represented, while some other are more prevalent, indicating different functional states of 

OLs in MS lesions. These findings suggest that OL heterogeneity may contribute to the 

variability of MS pathology and could be important for developing therapeutic approaches 

(212). In inflammatory bowel disease (IBD), scRNA-seq were used to profile T cells 

purified from the intestinal epithelium and lamina propria (LP) of Crohn's disease (CD) 

patients. The researchers found that intraepithelial lymphocytes (IEL) contain several 

unique T cell subsets, including NKp30+γδT cells expressing RORγt and producing IL-26 

upon NKp30 engagement (213). 

scRNA-seq has also given researchers important information about the genetic 

factors that increase the risk of autoimmune diseases. A study presents scRNA-seq data 

from 982 healthy human subjects' peripheral blood mononuclear cells (PBMCs), 

identifying 26,597 independent cis-eQTLs and 990 trans-eQTLs with cell type-specific 

effects on gene expression. The researchers show dynamic allelic effects in B cells during 

the transition from naïve to memory states and identify the causal route by which 305 risk 

loci contribute to autoimmune disease at the cellular level using Mendelian randomization 

(214). 
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In conclusion, scRNA-seq has had a big impact on the study of autoimmune 

diseases because it has helped researchers find cell types and subtypes that were not known 

to be involved in disease pathology before. scRNA-seq can show the diversity of immune 

cell populations by looking at gene expression on a single cell level. This is especially 

important for understanding the complexity of autoimmune diseases. Researchers can use 

scRNA-seq to find out which cell types are involved in autoimmune diseases, as well as 

their gene expression profiles, signaling pathways, and possible therapeutic targets. 

scRNA-seq can also help find the key driver genes, regulatory mechanisms, and signaling 

pathways that cause disease. By combining scRNA-seq data with genetic and clinical data, 

researchers can learn more about how autoimmune diseases work and make treatments that 

are more targeted and effective. 

2.4.2.2 Neurodegenerative diseases 

Neurodegenerative diseases, like Alzheimer's and Parkinson's disease, where chronic 

inflammation contributes to the progressive loss of neurons and their functions, leading to 

cognitive decline, motor impairment, and various other debilitating symptoms. 

 The researchers identified several novel cell types and subtypes in the single-cell 

transcriptomic analysis of Alzheimer's disease. These included new subtypes of inhibitory 

neurons that were selectively vulnerable to Alzheimer's disease pathology, as well as 

previously uncharacterized subpopulations of astrocytes and oligodendrocytes. The 

researchers also identified 40 transcriptionally distinct subpopulations of cells, some of 

which were preferentially overrepresented in Alzheimer's disease pathology and 

differentially represented between sexes. These findings provide new insights into the 
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cellular heterogeneity of the brain and may have important implications for understanding 

the molecular mechanisms underlying Alzheimer's disease (215). In Parkinson's disease 

(PD), researchers utilized scRNA-seq combined with comprehensive histological analyses 

to characterize intracerebral grafts from human embryonic stem cells (hESCs) and fetal 

tissue after functional maturation in a pre-clinical rat PD model. The study finds that 

neurons and astrocytes are major components in both fetal and stem cell-derived grafts, 

and identifies a previously unknown cell type resembling a class of perivascular-like cells 

in stem cell-derived grafts. The information provided from the study can help researchers 

identify the most effective cell types for transplantation and improve the success of cell 

replacement therapy for Parkinson's disease (216).  

2.4.2.3 Cardiovascular diseases 

Cardiovascular diseases, such as atherosclerosis, where inflammation plays a role in plaque 

formation and the narrowing of arteries. It encompass a range of conditions affecting the 

heart and blood vessels, including coronary artery disease, heart failure, and stroke, which 

are leading causes of morbidity and mortality worldwide, often associated with lifestyle 

factors, genetic predisposition, and underlying chronic inflammation. 

 In atherosclerosis, scRNA-seq has identified distinct features of T cells and 

macrophages in carotid artery plaques of patients with clinically symptomatic disease 

compared to asymptomatic disease, which may enable the design of more precisely tailored 

cardiovascular immunotherapies (217). 
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2.4.2.4 Chronic respiratory diseases 

Chronic respiratory diseases are a group of long-term conditions affecting the lungs and 

airways, including chronic obstructive pulmonary disease (COPD), asthma, and pulmonary 

fibrosis, characterized by persistent breathing difficulties, reduced lung function, and often 

linked to genetic, environmental, and lifestyle factors. 

In chronic obstructive pulmonary disease (COPD), scRNA-seq has been used to 

identify previously unrecognized changes in gene expression and cellular interactions in 

distinct epithelial, endothelial, and macrophage cell populations in COPD, highlighting the 

complexity and diversity of cellular injury and inflammation in COPD. The researchers 

found Hedgehog-interacting protein (HHIP) is a genetic determinant that regulates chronic 

obstructive pulmonary disease (COPD). And identified HHIP-expressing alveolar 

epithelial type II (AT2) cells are a subpopulation of epithelial cells that mediate COPD 

heritability and have aberrant expression of metabolic, antioxidant, and cellular stress 

response genes in COPD, suggesting their potential as therapeutic targets (218). 

2.5 Cancer Immunology and Immuno-oncology 

2.5.1. Tumor microenvironment and immune cell infiltration 

ScRNA-seq has become an indispensable tool for studying the tumor microenvironment 

(TME) and immune cell infiltration, providing unparalleled insights into the cellular and 

molecular interactions that drive tumor progression, immune evasion, and response to 

therapy (219-223). By profiling the transcriptomes of individual cells within the TME, 
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scRNA-seq has uncovered the cellular heterogeneity, immune cell activation states, and 

functional alterations that underlie tumor development and resistance to therapy.  

A key application of scRNA-seq in the study of the TME is the identification of 

novel immune cell populations and subpopulations that contribute to tumor progression 

and immune evasion. For example, in colon cancer, researchers generated an atlas of 

immune and non-immune cells from human colorectal cancer (CRC) patients using 

scRNA-seq approaches and identified two distinct tumor-associated macrophages (TAM) 

populations, consisting of C1QC+ and SPP1+ TAMs, both of which may arise from an 

intermediate state of FCN1+ monocyte-like cells in the tumor , the study also found the 

expansion of Bhlhe40+ Th1-like CD4+ T cells may be downstream of Ccl22+ cDC1 

activation, and may potentiate cDC1-mediated CD8+ T cell infiltration, expansion, and 

anti-tumor function, which provided mechanistic insights for immunotherapies (224). In 

early-stage lung adenocarcinoma (LUAD), with scRNA-seq, researchers found diverse 

stromal and tumor cell types with complex interactions, showing pro-tumoral functions of 

tumor-associated macrophages and exhausted and regulatory features of tumor-infiltrating 

T cells, and revealing that the upregulation of ELF3 in response to inflammatory cytokines 

from immune infiltrates triggers the activation of PI3K/Akt/NF-κB pathway and elevated 

expression of proliferation and anti-apoptosis genes (225). In breast cancer, researchers use 

scRNA-seq identify both heterogeneity and core gene expression signatures for subtype-

specific breast cancer cells and classified non-tumor cells into three immune cell types with 

activating and suppressive gene expression signatures, suggesting dynamic immune cell 

interactions and a distinct immune system status in each tumor (226). 
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ScRNA-seq has also been invaluable for characterizing the dysfunctional immune 

responses that occur within the TME, providing insights into the activation and effector 

functions of various immune cell types. For example, in non-small cell lung cancer 

(NSCLC), scRNA-seq has been used to study T cells in the TME, identified exhausted T 

cells were found to be enriched in NSCLC tumors and were identified as a distinct 

subpopulation with unique gene expression patterns (227). In colorectal cancer (CRC), 

scRNA-seq has shown that the CD8+ effector and “exhausted” T cells exhibited high clonal 

expansion and were independently connected with tumor-resident CD8+ effector memory 

cells, they also identified two IFNG+ TH1-liell clusters in tumors that were associated with 

distinct IFNγ-regulating transcription factors (228). 

In conclusion, scRNA-seq has provided insights into the TME and immune cell 

infiltration, revealing substantial heterogeneity and complex interactions among tumor 

cells, stromal cells, and immune infiltrates in various types of cancer. 

2.5.2. Immune checkpoint blockade and personalized immunotherapy 

scRNA-seq has given new insights into studying immune checkpoint blockade and 

personalized immunotherapy. Shed light on the cellular and molecular mechanisms that 

control response to therapy and resistance (199, 229-231). By looking at the transcriptomes 

of individual immune cells in the tumor microenvironment (TME) and peripheral blood, 

scRNA-seq has helped researchers find predictive biomarkers, develop strategies for 

optimizing therapies, and guide personalized treatment approaches (232). 
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One of the key applications of scRNA-seq in the context of immune checkpoint 

blockade is to provide the molecular mechanisms that underlie the response to immune 

checkpoint blockade. This has led to a better understanding of how different types of 

immune cells are activated and what their effector functions are. For example, in triple-

negative breast cancer (TNBC), using scRNA-seq, the researchers identified several 

immune cell subsets, including CD8+ T cells, CD4+ T cells, B cells, and NK cells, that 

were associated with responses to PD-L1 blockade. They found that the frequency of CD8+ 

T cells expressing immune checkpoint molecules such as PD-1 and TIM-3 was higher in 

patients who responded to PD-L1 blockade. The researchers also identified CXCL13+ T 

cells were found to be important for effective responses to anti-PD-L1 therapies (231). In 

NSCLC, researchers investigated the response to anti-PD-1 therapy in lung cancer patients 

at the single-cell level. They found increased levels of precursor exhausted T cells (Texp) 

in responsive tumors. In addition, TexP cells were shown to undergo clonal expansion 

during therapy, indicating a potential mechanism for durable responses to anti-PD-1 

treatment (230). 

ScRNA-seq has also been very helpful in figuring out the landscape of immune 

checkpoint inhibitors-resistant cell states. For example, in melanoma, scRNA-seq has 

revealed a resistance program expressed by malignant cells that promotes T cell exclusion 

and immune evasion in melanoma patients receiving immune checkpoint inhibitors (ICIs), 

and CDK4/6-inhibition was shown to repress this anti-tumor progress, induce senescence, 

and reduce tumor outgrowth in mouse models when given in combination with 

immunotherapy (199). 
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In addition to its applications in immune checkpoint blockade, scRNA-seq has 

facilitated the development of personalized immunotherapy approaches, such as targeting 

tumor-specific antigens (TSAs) using T-cell receptors (TCRs) from naturally occurring 

tumor antigen-specific T (Tas) cells in a patient to generate the efficient and safe  immune 

response (232). Similarly, scRNA-seq has been employed to investigate the immune 

responses elicited by personalized cancer vaccines. Incorporating scRNA-seq to assess 

immune responses to vaccine candidates offers a comprehensive approach to evaluating 

host responses, including gene expression, antigen-specificity, clonality, and copy number 

variants (233). 

ScRNA-seq has played a critical role in advancing our understanding of the 

immune response to immune checkpoint blockade and personalized immunotherapy. By 

profiling individual immune cells, scRNA-seq has helped identify key cell subsets 

associated with response and resistance to therapy and  enabled the development of more 

precise and effective personalized immunotherapies targeting tumor-specific antigens. As 

scRNA-seq technology and tools for analyzing data continue to improve, we should be able 

to enhance the design and testing of immunotherapies. 

2.6 Discussion 

Emerging technologies in scRNA-seq immune system research have the potential to 

transform our understanding of immune cell diversity, function, and interactions. These 

advancements are expected to accelerate the development of novel therapeutic strategies 

and personalized medicine approaches. In this chapter, we illustrated the scRNA-seq 
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applications in identifying immune cell types and subtypes, characterizing immune cell 

states and activation, studying the dynamics of immune cell populations during infectious 

diseases, immune cell dysregulation in autoimmune diseases, inflammatory responses in 

chronic diseases, tumor microenvironment, and immune cell infiltration, and how scRNA-

seq helped immune checkpoint blockade and personalized immunotherapy.  

 Nonetheless, numerous unanswered questions remain, and further exploration of 

disease-related heterogeneity within the immune system is necessary to uncover the 

answers. In Chapter 3, we will explore the application of scRNA-seq technology in the 

study of sepsis, a life-threatening condition characterized by a dysregulated immune 

response to infection. Sepsis is a major cause of morbidity and mortality worldwide, and 

despite extensive research efforts, its underlying molecular mechanisms remain poorly 

understood.  In Chapter 4, we will focus on the application of scRNA-seq technology to 

the study of platelets in fatal cases of sepsis and COVID-19. Platelets are small, anucleate 

cells that play a critical role in hemostasis and immune regulation (234). In sepsis and 

COVID-19, platelet dysfunction is a common feature and is associated with poor clinical 

outcomes (235, 236). By using scRNA-seq to analyze platelet transcriptomes at the single-

cell level, researchers can identify platelet subpopulations with distinct gene expression 

profiles and functional states and investigate how these subpopulations are altered in sepsis 

and COVID-19.  In Chapter 5, we will delve into the challenges and opportunities of using 

scRNA-seq to study the effects of smoking on the immune environment of lung cancer. By 

looking at scRNA-seq data from lung cancer patients who have smoked in the past, 
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researchers can find out what kinds of immune cells are in the tumor microenvironment 

and how smoking changes these populations. 
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CHAPTER 3 Dynamic Changes in Human Single Cell Transcriptional Signatures During 
Fatal Sepsis 

3.1 Introduction 

Sepsis is an inflammatory syndrome caused by a systemic infection that can lead to 

multisystem organ failure and death. Sepsis is responsible for a significant percentage of 

in-hospital healthcare costs both in the United States and worldwide, and it is associated 

with a high mortality rate (237, 238). Despite many efforts, no targeted therapeutics against 

sepsis have been developed in the last decades. One acknowledged challenge is the 

complexity of the disease involving the competing interplay between rampant 

inflammation (cytokine storm) and, paradoxically, the almost simultaneous shutdown of 

the immune system (immunoparalysis) (239, 240). Another sepsis challenge is that some 

patients with nearly identical clinical phenotypes quantified by qSOFA and APACHE 

scores die at every stage of the disease while others survive (241).  This supports the need 

to understand the molecular level host response to sepsis, which has been studied in blood 

and peripheral blood mononuclear cell (PBMC) profiling studies by gene expression or 

proteomics methods (242). These studies identify several prognostic biomarkers, such as 

lactate, procalcitonin, C-reactive protein (CRP), ferritin, and erythrocyte sedimentation 

rate (ESR), which along with clinical scores, are standardly utilized to evaluate sepsis 

patients and determine their care. 

However, connecting these high-level observations to accurate clinical outcomes 

presents an unresolved challenge, likely due to the complexity and heterogeneity of this 

disease. Many studies have been conducted to identify a potential sepsis molecular 
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signature to gain molecular insights into this heterogeneity, which could aid in diagnosis 

or treatment (243). Recently, the first single-cell analysis of the status of immune cells in 

sepsis was reported, which identified abnormal monocyte states associated with immune 

dysregulation (244).  Here, we apply the same approach to focus on the additional question 

of immune cell trajectory immediately after diagnosis in sepsis survivor and nonsurvivor 

outcomes. We performed single-cell transcriptomics analyses in fatal or surviving sepsis 

using a within-subject study design of PBMC collected from septic patients in the intensive 

care unit (ICU) at 0 and 6 h post sepsis diagnosis. There is clinical utility in choosing a 6-

h time point, as sepsis resuscitation bundles (both in the United States and internationally) 

have been modeled after landmark studies (245) that demonstrated a significant reduction 

in mortality with aggressive resuscitation in the first six hours after presentation. 

Additionally, there is robust data (246) that early administration of intravenous antibiotics 

in the first 60 min after the recognition of septic shock significantly improves mortality. 

While subsequent trials (PROMISE, ARISE, PROCESS) showed no difference in 

clinician-driven versus protocol- driven resuscitation at 6 h, the Centers for Medicare and 

Medicaid Services (CMS) and the Surviving Sepsis Campaign continue to advocate for 

hospitals and clinicians to use the 6-h time point from initial Emergency Department 

presentation as a benchmark for resuscitation (247-249). Thus, this time point was chosen 

to assess molecular changes in the patients after they had received their initial resuscitation 

(including intravenous antibiotics, intravenous fluids, and vasopressor support).  

Our timed analyses revealed the emergence and continuous changes in abnormal 

immune cells, including new types of cells unique to sepsis and classical cell-types present 
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in both sepsis and healthy controls, but with abnormal gene expression profiles and changes 

in population ratios. Specifically, we observed that fatal sepsis is associated with the 

expansion of platelets and erythroid precursors and the immunosuppressive trend of 

monocytes. Additionally, we identified CD52 expression in lymphocytes as a potential 

biomarker and therapeutic target for sepsis, where it correlated with increased lymphocyte 

activation and survival outcomes. At the cellular level, we also observed a switch in the 

metabolic state from oxidative phosphorylation in survivors to glycolysis in non-survivors. 

Last, we observed that fatal sepsis shared many gene signatures with severe COVID- 19 

patients, indicating convergent molecular pathways in severe disease. These included 

genes associated with increased platelet activity, elevated erythroid precursors, and 

chemokine expression in monocytes.  

Overall, this study, which focused on within-subject analyses of PBMC over time, 

offers a unique perspective on the dynamic changes in immune cells in fatal sepsis. 

Specifically, we identify abnormal immune cell subsets, changes in functional pathways, 

and molecular signatures at the single-cell resolution associated with fatal or surviving 

outcomes in sepsis. This study provides foundation data and identifies specific cell subsets 

and molecular pathways that can be further explored to better predict and possibly modify 

sepsis outcomes.  
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3.2 Materials and Methods 

3.2.1 Human blood collection and harvest of PBMCs. 

Peripheral blood was collected from non-sepsis donors from the Riverside Free Clinic and 

septic patients with signed informed consent and approval of the University of California, 

Riverside (UCR, #HS-17-707), and Riverside University Health System (RUHS, 

#1024190-3) Institutional Review Board. Sepsis patient enrollment was performed 

according to the following inclusion criteria: (1) Admission to Intensive Care Unit; (2) Age 

greater than or equal to 18 years old; (3) Suspected or confirmed infection; (4) qSOFA 

score ≥ 2 (qSOFA variables: altered mentation [GCS ≤ 13], systolic blood pressure < 100 

mm Hg and respiratory rate > 22 breaths/min) and/or; (5) Lactate greater than or equal to 

2.0 mmol/L and on vasopressor therapy to maintain MAP > 65 mm Hg after 30 mL/kg 

intravenous fluid bolus. 

3.2.2 PBMC analysis  

Blood was recovered in Vacutainer glass collection tubes with heparin (BD Biosciences). 

PBMC were isolated by gradient centrifugation with Histopaque-1077. Plasma was 

recovered for cytokine quantification by cytokine bead array (BD Biosciences) and resistin 

ELISA (Peprotech). Cell aliquots were frozen in liquid nitrogen. Following blood draw, 

PBMC isolation was performed within 24 h through density gradient centrifugation, and 

cells were stored immediately in liquid nitrogen. Flow cytometry characterization of 

PBMC involved incubation with Human TruStain FcXTM (Biolegend) and staining with 

primary Abs: CD14 (HCD14, Biolegend), CD16 (3G8, Biolegend), CD66b (G10F5, 
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eBioscience), CD3 (OKT3, eBioScience). Samples were acquired on a BD LSRII and 

analyzed on FlowJo (v10).  

3.2.3 10X Genomics  

For single-cell sequencing, thawed PBMC live cells were recovered by column-based dead 

cell removal kit (Miltenyi), and viable cells were confirmed by hemocytometer counting 

(>85% viable). A total of 15,000 cells per sample were loaded onto the 10x genomics 

platform, and cDNA libraries were prepared according to the manufacturer’s instructions 

(Chromium Next GEM Single Cell V3.1). Samples were sequenced at the UCSD 

Genomics center on the NovaSeq platform at 250 M reads/sample.  

3.2.4 Process and quality control of the single-cell RNA-seq data  

The Cell Ranger Software Suite (v.3.1.0) was used to perform sample de-multiplexing, 

barcode processing, and single-cell 5′ unique molecular identifier (UMI) counting. 

Specifically, splicing-aware aligner STAR was used in FASTQs alignment. Cell barcodes 

were then determined based on the distribution of UMI counts automatically. The 

following criteria were applied to each cell of four sepsis samples and two healthy controls: 

gene number between 200 and 6000, UMI count > 1000, and mitochondrial gene 

percentage < 0.2. After filtering, a total of 57,133 cells were left for the following analysis. 

Finally, all samples’ filtered gene-barcode matrix was integrated with Seurat v.3 (64)  to 

remove batch effects across different samples.  
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3.2.5 Dimensionality reduction, clustering, and consensus-based cell-type annotation  

We first analyzed scRNA-seq data from 57,133 cells with 4761 cells on the average per 

sample. Two-time points were analyzed per sepsis patient. Uniform Manifold 

Approximation And Projection was used to visualize the cell populations (Figure 3.2A and 

B). The filtered gene barcode matrix was normalized using “LogNormalize” method from 

Seurat package v.3 with default parameters. In the next step, the vst method implemented 

in the FindVariableFeatures function of the Seurat package was applied to find the top 2000 

most variable genes. It was followed by the principal component analysis (PCA), and the 

application of the uniform manifold approximation and projection algorithm for cell data 

visualization performed based on the top 50 principal components. Then the graph-based 

clustering was performed by applying the FindClusters function of the Seurat package on 

the PCA-reduced data. With the resolution set to 1.0, 57,133 cells were grouped into 34 

clusters. The first method of assignment of cell types to cell clusters was based on their 

canonical markers: B cells (MS4A1), CD14+ monocytes (CD14 and LYZ), CD4+ T cells 

(IL7R, CCR7, and CD27), CD8+ T cells (CD8A), DCs (FCER1A, CST3, CD123, and 

GZMB), erythroid precursors (GYPB and AHSP), FCGR3A+ monocytes (FCGR3A and 

MS4A7), neutrophils (JAML and SERPINB), NK cells (GNLY and NKG7), and platelets 

(PPBP). Independently from this initial marker-based cell type assignment, we applied cell-

type annotation tools SingleR (75) and scCATCH (76). The SingleR program first identifies 

genes with significant variation between cell types in the reference data set, compares each 

cell’s scRNA-seq data with each sample from the reference data set, and performs iterative 

fine-tuning to select the most likely cell type of each cell. The microarray dataset from 
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Human Primary Cell Atlas Data with assigned labels was used as the reference. Finally, 

each cluster was assigned a cell type with the highest percentage of cells assigned to that 

type by SingleR. The third applied method of cell type assignment was scCATCH, where 

cell types are assigned using the tissue-specific cellular taxonomy reference databases 

(250-252) and the evidence-based scoring protocol. Our final assignment of cell types to 

clusters was based on the consensus of the three methods mentioned above as follows: first, 

each cluster was assigned a cell type selectedmarkert methods if possible. If each method 

gave a different result, then the priority was given to the assignment based on canonical 

markers. If the markers-based assignment was inconclusive, the consensus assignment was 

based on the results from SingleR method.  

3.2.6 Differential gene expression analysis and functional annotation of genes  

The MAST method (253) from the Seurat v.3 package (implemented in FindAllMarkers 

function) was used with default parameters to perform differential gene expression analysis. 

A difference in gene expression was considered significant if an adjusted P-value was 

below 0.05. The false discovery rate (FDR) adjustment was performed by MAST. Only 

genes with FDR-adjusted P-values < 0.05 were considered in the second step of DEG 

analysis, where we analyzed differences between the results of the comparisons listed 

earlier. Pathway enrichment analysis was performed by clusterProfiler (254)  using 

database Gene Ontology biological process terms (GO-BP) and Kyoto Encyclopedia of 

Genes and Genomes pathways. The clusterProfiler program was used for statistical 
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analysis and visualization of functional profiles for DEGs with FDR- adjusted P-value < 

0.05.  

3.2.7 Comparison of module scores  

We used cell module scores to measure the degree to which individual cells expressed 

certain predefined expression gene sets. The AddModuleScore function from the Seurat 

v.3 package with default settings was used to perform all calculations and comparisons of 

module scores. We compared the expression of modules such as T cell activation 

(GO:0042110), B cell activation (GO:0042113), coagulation (GO:0050817), platelet 

activation (GO:0030168), OXPHOS, glycolysis, MHC class I, MHC class II, translation 

initiation (GO:0006413), response to type I IFN (GO:0034340), response to IFN-γ 

(GO:0034341), response to IFN-β (GO:0035456), Coronavirus disease COVID-19 

(hsa05171), and HLA-DR related genes. The lists of genes defining these modules were 

prepared based on Gene Ontology and literature. Genes without detectable expression in 

our data were ignored. The sets of genes defining the modules used in our analysis are 

listed in Table B.2.  

3.2.8 Statistics  

The statistical tools, methods, and significance thresholds for each analysis are described 

in the Results or Materials and Methods section or in the figure legends. 
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3.3 Results 

3.3.1 Subject characteristics 

To gain a molecular understanding of the immune state in surviving or non-surviving sepsis 

outcomes, we performed retrospectively single-cell RNA sequencing on PBMCs from 5 

hospitalized patients with Gram-negative bacterial sepsis at 0 and 6 h post diagnosis. Three  

patients survived (Survivor, S) and were discharged from the ICU; two patients had fatal 

disease courses (Nonsurvivor, NS). Clinical parameters (qSOFA and APACHE scores) 

were high and could not distinguish between sepsis survivors and nonsurvivors, and all 

sepsis patients had plasma cytokine levels that were dramatically elevated compared to 

baseline nonsepsis volunteers (Table 3.1). These results are consistent with the known 

phenomenon of the sepsis-induced cytokine storm.4 In contrast, re-stimulation of PBMC 

from the same sepsis patients with LPS led to reduced TNF-α secretion as compared to 

PBMC from nonsepsis controls (Table 3.1), suggesting monocytic deactivation that has 

been reported in sepsis immunoparalysis (255). Flow cytometric analysis of PBMC was 

performed according to previously published gating strategies (256-258),  and revealed 

different immune subset distribution with sepsis patients, including increased neutrophils 

but reduced T cell subsets, especially in the nonsurvivors (Figure 3.1A and B). We also 

observed the emergence of cell subsets that we were unable to define with common PBMC 

surface antibodies (Figure 3.1C, “other”). Together, these data characterize clinical and 

peripheral immune profiles in sepsis. However, more detailed sub setting of specific 

immune cells and insights into how temporal changes in their gene expression relate to  
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sepsis outcome were lacking, which we addressed by single-cell RNA sequencing.  

Clinical parameters, cytokine levels in the plasma, and supernatant following LPS 

stimulation (10 ng/mL) of PBMCs. APACHE II: Acute physiology and chronic health 

evaluation II; SOFA: Sequential organ failure assessment; N.D.: not detected, n/a: not 

applicable. 

Table 3.1 Characteristics of enrolled non-sepsis volunteers and sepsis patients at sepsis 
recognition (T0). 

 

 Non-sepsis control 
(n=2) 

Sepsis non-
survivor (n=2) Sepsis survivor (n=3) 

Gender Male Female Male Female Male Female Female 

Age range 35-40 45-50 90-95 65-70 45-50 65-70 70-75 

Sepsis 
etiology n/a n/a E.coli bacteremia E.coli bacteremia 

APACHEII n/a n/a 18 38 31 41 19 

SOFA n/a n/a 11 16 11 15 7 

Time of 
death (days 

post 
enrollment) 

n/a n/a <30 1 n/a n/a n/a 

Plasma cytokines (ng/mL)   
Resistin 22.5 36.7 202 135.9 147 281 92 

IL-6 N.D 0.002 30.2 142.3 133 2.48 0.31 
IL-8 0.03 0.026 6.65 27.2 41.7 0.61 0.4 
IL-10 N.D. N.D. 0.13 9.71 0.52 0.15 0.39 

LPS-induced TNFα (ng/mL) 
TNFa 0.656 0.979 0.45 0.005 n/a 0.047 0.1 
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Figure 3.1 Flow cytometric analysis of PBMC from healthy control (HC), non-survivor 
(NS), and survivor (S) sepsis patients at first blood collection (T0).  

(A) Gating strategy. Neutrophils (CD66b+CD16+), FCGR3A+Monocytes 
(CD66b−SSCHiCD16+CD14low), CD14+Monocytes (CD66b−SSCHiCD16−CD14hi), 
NK cells (CD66b−SSClowCD16+), T cells (SSClowCD3+), and B cells 
(SSClowMHCII+). (B) Frequency of immune cell subsets in PBMC. (C) Immune cell 
proportions in PBMC. 
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3.3.2 Single-cell transcriptomics identify immune cell subsets associated with sepsis 

severity  

Single-cell RNA-seq was performed on a 10× Genomics platform. Consensus-based 

assignment of cell types from all subjects revealed 11 cell types: CD4+ T cells (24%), CD8+ 

T cells (8%), B cells (20%), Natural killer (NK) cells (9%), CD14+ monocytes (16%), 

FCGR3A+ monocytes (11%), dendritic cells (DC) (3%), erythroid precursor cells (2%), 

platelets (6%), neutrophils (1%), and common myeloid progenitor cells (CMP) (< 1%) 

(Figure 3.2A; Table B.1). Comparison between the samples indicated variability between 

the individuals and no striking changes between cell subsets within 6 h (Figure 3.2B and 

C; Table B.1). Among the sepsis patients, the female nonsurvivor (P50) showed an immune 

profile that was distinct from the ones in the male nonsurvivor (P34) and survivor samples. 

This individual showed advanced sepsis disease with fatality within 24 h, while the other 

nonsurvivor passed away within 30 days and had cell distributions more similar to that of 

the survivors (Figure 3.2C; Table B.1). Therefore, for subsequent analysis, P50 was 

designated nonsurvivor, late-stage sepsis (NS LS) while P34 was labeled nonsurvivor, 

early-stage sepsis (NS ES). Sepsis fatality, even within 24 h, was not unexpected in these 

studies, as these were patients admitted to the ICU with sepsis/septic shock, multisystem 

organ failure, and high qSOFA scores.  

Analysis of immune subsets in all the sepsis patients indicated B cell depletion that 

followed disease severity: 25% in healthy controls (HC), 21% in S, 16% in NS ES, and 6% 

in NS LS (Figure 3.2C; Table B.1). CD4+ T cell lymphopenia was observed in NS LS (8%  
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Figure 3.2 Single-cell transcriptional profiling of PBMC from healthy controls and gram-
negative sepsis patients. 

(A) Cell type UMAP representation of all merged samples. A total of 11 cell types were 
identified by the consensus method. In total, 57,133 cells are depicted. (B) Sample of origin 
UMAP representation of all merged samples. Cells were colored by the condition. (C) Bar 
plots showing the fraction of each sample. 
 
compared to 20% in HC, S, and NS ES). We noted an increased proportion of platelets in 

NS samples, especially in NS LS (34%). The proportion of erythroid precursor cells was 

also increased with sepsis severity, from 1% in HC, 2% in S, to 6% in NSES, and 10% in 

NSLS (Table B.1).  We investigated potential gender effects among single-cell 

transcriptomics and found that there were no batch effects related to gender differences 
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with this small sample size (Figure A.1). Together, this immune subsetting data by scRNA-

seq indicate that lymphocyte subsets are reduced in sepsis, especially in fatal outcomes, 

and identify the emergence of platelet and erythroid precursors in late-stage fatal sepsis. 

However, no striking changes in immune subsets were observed within 6 h, prompting us 

to investigate transcriptional changes within the individual cell types.  

3.3.3 Platelet responses are a hallmark of fatal sepsis with similar transcriptional 

pathways to severe COVID-19 disease  

The role of platelets in the development of sepsis pathophysiology is increasingly 

recognized. Recent studies show that platelets are altered in sepsis and that transcriptional 

and translational changes in platelets are related to mortality (259).  However, timed 

analysis during the critical early timepoints post sepsis diagnosis has not been performed. 

Analysis of pathway module scores revealed that platelets in sepsis patients presented with 

coagulation abnormalities (GO term coagulation, GO:0050817) that was exacerbated over 

time, especially in fatal disease (Figure 3.3A). We also found increased platelet activation 

(GO:0030168; Figure 3.3B) and ATP production modules, which included oxidative 

phosphorylation (OXPHOS) genes and glycolysis genes (260) (Figure 3.3C and D). These 

results are consistent with previous studies that have shown that platelet aggregation is 

fueled primarily by glycolysis, and that reticulated platelets are more prothrombotic and 

hyperreactive than mature platelets (261). MHC class I-related genes such as HLA-A, 

HLA-B, HLA-C, HLA-E, and HLA-F also followed the same trend according to sepsis 

disease severity (Figure 3.3E), indicating CD8 T cell dysregulation by platelets (234, 262). 
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Translation initiation modules (GO:0006413) were also changed in sepsis with the lowest 

score in nonsurvivors, especially in the NS LS, indicating a halt in protein translation as a 

result of disease (Figure 3.3F). Conversely, interferon response modules, including 

response to type I IFN (GO:0034340), IFN-γ (GO:0034341), and IFN- β (GO:0035456) 

exhibited the opposite trend with increased scores in sepsis, especially in the nonsurvivors 

(Figure 3.3G–I). This phenomenon might also reflect a general suppression of the protein 

synthetic apparatus by type I IFN (263).  

We next focused on dynamic changes in the platelets within 6 h. Interestingly, 

analysis of 6-h trajectory transcriptional changes in individual sepsis patients’ platelets 

shared pathways induced in platelets in severe COVID-19 infections, suggesting that 

platelet transcriptional changes are predictors of severe disease regardless of infection 

etiology. The most distinguishing pathway, as identified by VENN diagram, which was 

down-regulated in NS T0→T6 while up-regulated in S T0→T6, was hemostasis (Figure 

A.2). We analyzed the GO term “positive regulation of hemostasis” (GO:1900048; Figure 

3.3J) and confirmed that only sepsis survivors exhibited an upward trend, suggesting 

improved platelet function. Conversely, the most shared pathways that were up-regulated 

in NS T0→T6 but down-regulated in S T0→T6 included translation initiation, ribosome, 

and COVID-19 (Figure A.2). To further investigate shared pathways in COVID-19 and 

sepsis, we investigated genes from Kyoto Encyclopedia of Genes and Genomes 

Coronavirus disease COVID-19 (hsa05171) and found that the module scores were 

significantly increased in NS T6 platelets and decreased in S T6 platelets (Figure 3.3K). 
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Figure 3.3 Platelet transcriptional changes over 6 h are associated with sepsis severity. 

(A– I) Comparisons of pathway module scores across four conditions in platelets. The 
included modules contain genes related to (A) Coagulation, (B) Platelet activation, (C) 
OXPHOS, (D) Glycolysis, (E) MHC Class II, (F) Translation initiation, (G) Response to 
type I IFN, (H) Response to IFN gamma, (I) Response to IFN beta. (J–O) Pathway module 
scores comparison between T0 vs. T6 in platelets. The included modules contain genes 
related to (J) positive regulation of hemostasis, (K) COVID-19, (L) response to type I IFN, 
(M) response to IFN-β, (N) OXPHOS, and (O) glycolysis. The differences in scores 
associated with adjusted P-values below 0.05, 0.01, 0.001, and 0.0001 are indicated as *, 
**, ***, and ****, respectively and “ns” – not significant. The significance analysis was 
performed using Wilcoxon tests. 



78 
 

The COVID- 19 megakaryocyte (MK) cell trajectory study reported dysregulated IFN 

responses in MK cells from patients with severe COVID-19 severe patients, including 

increased metabolic activity of MKs along the disease trajectory (264). We investigated if 

IFN response modules changed within the 6-h timeframe and observed that the IFN 

responses, including type I IFN and IFN-β (Figure 3.3L and M), were significantly 

increased at T6 in NS LS but decreased at T6 in NS ES and S patients. Changes in 

metabolic activity within 6 h included significantly increased OXPHOS scores in NS LS 

at T6, while NS ES and S patients had significantly decreased OXPHOS scores (Figure 

3.3N). The glycolysis score in NS ES was also significantly decreased at T6 (Figure 3.3O). 

Another COVID-19 study reported that circulating platelet-neutrophil, -monocyte, and T-

cell aggregates were elevated in COVID-19 patients compared to healthy donors (265). We 

used the ligand and receptor database from iTalk (92)  to score these interactions by 

calculating the product of average receptor expression and average ligand expression in the 

respective cell types (see Materials and Methods). Platelet-monocyte interaction scores 

were significantly elevated in NS LS (Figure A.2). The increased aggregation score to 

monocytes may explain the unexpected appearance of the platelets in the PBMC fraction. 

This aggregation was specific to monocytes, as platelet-neutrophil and -T-cell scores were 

decreased (Figure A.2).  

Together, our study confirms the theory that platelet coagulation, activation, and 

energy consumption are functionally linked to sepsis disease severity and identifies shared 

pathways with COVID-19 disease progression. Further, our timed analysis reveals that 

these platelet responses are dynamic, changing within a 6-h window, especially in the late 



79 
 

stages of fatal sepsis. These data implicate platelet dysfunction as prognostic for disease 

progression in many infections and suggest that targeting these cell types may be important 

to prevent fatal outcomes.  

3.3.4 Hypoxic stress is a driving factor for erythropoiesis in sepsis with shared pathways 

in COVID-19 infection  

Based on the immune profiling results, which revealed the emergence of erythroid 

precursors especially in NS LS (Figure 3.2B and C), we investigated transcriptional 

changes in these cells. Only traces of these cell types are typically present following PBMC 

isolation by gradient centrifugation, therefore their high levels may suggest abnormal 

expansion and activation in the oxygen-limiting sepsis environment. Indeed, erythrocyte 

precursors can be generated through stress erythropoiesis (266) as a response to hypoxic 

conditions (267, 268). To test whether these cells were responding to hypoxia, we analyzed 

the average HIF1A expression in each cell. To avoid the drop-out events known as artifacts 

in single-cell studies, we removed cells with HIF1A “zero” expression, which left us with 

32,185 cells. The HIF1A had the highest expression in NS LS, followed by NS ES, HC 

then S (Figure 3.4A). We investigated dynamic transcriptional changes in erythroid 

precursors by identifying differentially expressed genes (DEGs) in T0 versus T6. Only the  
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Figure 3.4 Elevated erythroid precursor cells are associated with hypoxic stress. 

(A) The expression of the HIF1A gene in erythroid precursors across four conditions. 
Violin plots are ordered according to the decreasing average value of HIF1A expression. 
(B) Pathway enrichment when comparing erythroid precursors in sepsis vs. HC. All the 
GO terms are aligned to representative ones by Revigo (300) with a similarity of 0.4. The 
top 10 -log10 adjust P-values were selected shown in the heatmap. Color red are up-
regulated pathways in sepsis patients. The color blue is downregulated pathways in sepsis 
patients. (C) The comparison of expression of HIF1A in the four conditions. Heatmap 
coloring represents log-normalized mean gene expression counts averaged across all cells. 
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NS LS patient exhibited statistically significant DEG, with the inflammatory protein 

S100A9 being significantly increased at T6 (adj. P-value < 0.001, log2 FC = 0.34). 

We next examined gene expression differences in the erythroid precursor cells of 

sepsis patients and healthy controls (Figure 3.4B). Erythroid precursors in sepsis expressed 

genes related to hypoxic stress (hydrogen peroxide catabolic process, erythrocyte 

differentiation, cofactor catabolic process, and cellular oxidant detoxification). The down- 

regulated pathways in sepsis versus HC included cytoplasmic translation, 

ribonucleoprotein complex assembly, and RNA splicing, suggesting that erythroid 

precursors in sepsis underwent a halt in protein translation. Our results suggest a strong 

association between erythropoiesis and fatal sepsis outcomes. This association was also 

found in a study on COVID-19 infections (264), which proposed that erythroid cells are 

pivotal components of an unfavorable course of COVID-19. We also investigated if other 

immune cells were responding to hypoxia and found that monocytes from the sepsis 

nonsurvivors had the highest HIF1A expression compared to the other patients and other 

cell types (Figure 3.4C). Combined, our findings indicate that sepsis drives hypoxic stress 

that is associated with disease severity as well as dysfunctional erythropoiesis, which is a 

shared mechanism in many disease etiologies, including COVID-19 infection.  

3.3.5 Monocyte transcriptional changes occur within hours of sepsis recognition and 

reflect immunosuppression  

Monocytes are innate immune cells that sense and respond to pathogen invasion by 

producing inflammatory cytokines and mediating pathogen killing. However, a 
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dysregulated monocyte response can be damaging and fatal. Studies have found that in 

sepsis, monocytes may produce a flood of inflammatory cytokines triggering a “cytokine 

storm”, causing widespread inflammation that can lead to a collapse in blood pressure, 

coagulation abnormalities, and ultimately organ failure and death. In the later stages, 

patients who survived the cytokine storm may die from immunosuppression, called 

“immune paralysis” in its extreme form (269). Moreover, the proinflammatory and 

immunosuppression stages might overlap (270). The stages at which the immune system 

transits from proinflammatory to suppressive at the cellular and molecular level have not 

been well studied, mostly because analyses are only performed at a single snapshot in time. 

To address this question, we analyzed samples from the same patients within 6 h of sepsis 

diagnosis, providing a picture of the timed trajectory of monocytes during this critical time 

window. Investigation of the GO Term cytokine activity (GO:0005125) indicated that most 

cytokines were higher in sepsis nonsurvivors (NS) compared to survivors (S) (Figure 3.5A; 

Figure A.3). However, when investigating changes between T0 and T6, we found that the 

cytokines were down-regulated in the NS patients from T0 →T6, especially in NS LS 

(Figure 3.5B and C; Figure A.3). The observation may indicate that the NS patients had 

already passed the proinflammatory stage and had instead begun immune shutdown. The 

proinflammatory cytokines up- regulated in NS compared to S monocytes, but down-

regulated at time T6 included CCL2, CCL7, and NAMPT. The chemokines CCL2, CCL7 

are vital for the recruitment of CC-chemokine receptor 2-positive (CCR2+) monocytes 

(271). CCL2 and CCL7 expression were also enriched in the bronchoalveolar fluid from 

patients with severe COVID-19 (272). The only cytokine that was consistently up-



83 
 

regulated in NS T0 versus T6 but down-regulated in S T0 versus T6 was NAMPT (Figure 

3.5B-D; Figure A.3). NAMPT has been reported as a biomarker in sepsis and sepsis-

induced acute respiratory distress syndrome (ARDS) in multiple studies (273-276). The 

NAMPT/TLR4 inflammatory pathway has also been studied as the COVID-19-induced 

ARDS drug target (277). The cytokines down-regulated over time in NS monocytes, but 

up-regulated in S monocytes at T6, included TNFSF10/TRAIL, an immunoregulator that 

mediates leukocyte apoptosis which had been reported to enhance survival in murine 

polymicrobial sepsis (278, 279), and TNFSF13B/BAFF, a stimulatory factor for B cells 

(280, 281) (Figure 3.5D; Figure A.3). These data suggest that fatal sepsis is associated with 

mixed effects on lymphocyte responses, which may be mediated by monocytes.  

To profile metabolic changes in monocytes, we investigated the genes that belong 

to OXPHOS and glycolysis modules, and examined correlation with HIF1A, which was 

the most highly expressed in monocytes (Figure 3.4C). The OXPHOS modules from all 

conditions were negatively correlated with HIF1A (Figure 3.5E; Figure A.3). On the other 

hand, the glycolysis modules were positively correlated with HIF1A (Figure 3.5F; Figure 

A.3). Within the group of sepsis survivors, the metabolic activity in CD14+ and FCGR3A+ 

monocytes was dominated by OXPHOS at both time points. Moreover, the FCGR3A+ 

monocytes in S had more OXPHOS energy consumption at T6. Overall, monocytes from 

the sepsis nonsurvivors had shifted energy consumption from OXPHOS to aerobic 

glycolysis, potentially indicating host defense activation such as production of reactive 

oxygen species (Figure 3.5G). However, within the 6 h timeframe, both CD14+ and 

FCGR3A+ monocytes from sepsis nonsurvivors exhibited a drop in their glycolysis module 



84 
 

scores (Figure 3.5G; Figure A.3). One group had demonstrated that defects in the energy 

metabolism of leukocytes underlie immune paralysis in sepsis, and restoring the ability of 

immunotolerant leukocytes to mount a glycolytic response might represent a promising 

novel therapeutic approach to revert the immunotolerant state of sepsis (282). The energy 

shift to glycolysis, and the decrease in glycolysis consumption at T6 in NS suggest that 

these monocytes were undergoing immune suppression at the point of sepsis recognition. 

In contrast, the glycolysis score was increased at T6 in sepsis survivors. We also observed 

that the HLA-DR module score, as an indicator of monocyte antigen-presenting function 

(283), was decreased at T6 in the NS LS, indicating immune suppression. However, in the 

S and NS ES monocytes, the HLA-DR expression was increased at T6, especially in S 

(Figure 3.5H; Figure A.3). Together, these data reveal dynamic transcriptional changes in 

monocytes within 6 h of sepsis diagnosis, which follow opposite trends in surviving and 

fatal outcomes. Fatal sepsis is associated with heightened inflammatory and metabolic 

activity that is down-regulated over time, while improved sepsis outcomes are associated 

with the restoration of monocyte function within 6h.  

3.3.6 CD52 is a prognostic biomarker for beneficial outcomes in sepsis and is associated 

with lymphocyte activation  

Our preliminary analysis indicated severe lymphopenia in sepsis, especially in the NS LS 

(see Figure 3.2). We further investigated the transcriptional profile of the lymphocytes in 

sepsis patients and whether it changed over 6 h. Evaluation of activation module scores for 

CD4+, CD8+ T cell, and B cells (GO terms T cell activation, GO:0042110; B cell activation,  
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Figure 3.5 Fatal sepsis patients exhibit immunosuppressive pathways in monocytes. 

(A-D) Differential expression genes in CD14+ monocytes from (A) NS versus S, (B) NS 
LS T0 versus T6, (C) NS ES T0 versus T6, (D) S T0 versus T6. Volcano plots were 
prepared with R package EnhancedVolcano (301). (E and F) The correlations between the 
HIF1A expression and module score for (E) OXPHOS and (F) glycolysis in CD14+ 
monocytes across each condition. R‐values from Pearson’s correlation, exact 2-sided P-
values, and the 95% confidence intervals are shown on each graph. Each dot represents a 
single cell. Only cells with HIF1A expression = ̸0 were included in the analysis. Green, 
orange, red and blue points represent cells from HC, NS ES, NS LS, and S samples, 
respectively. (G) The percentage of cells with ATP-related pathway modules in CD14+ 
monocytes across healthy controls and sepsis conditions at T0 and T6. The color saturation 
indicates the average expression level, and the circle’s size indicates the percentage of cells 
expressing a given module. (H) HLA-DR-related genes expression in CD14+ monocytes 
across healthy controls and sepsis conditions at T0 and T6. Violin plots are ordered with 
the decreasing expression average value of HLA-DR-associated genes. The color 
saturation indicates the average expression level, the darker the color, the lower the average 
expression level. 
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GO:0042113) indicated increased activation over 6 h in surviving sepsis patients (Figure 

3.6A; Figure A.4). In contrast, NS ES had significantly decreased activation scores over 

time in all lymphocytes (Figure 3.6A; Figure A.4). NS LS also exhibited activation scores 

that decreased significantly, but only in CD4+ T cells, mainly due to the severe CD8+ T 

cell and B cell lymphopenia Figure 3.6C; Figure A.4). 

We next applied DEG analyses between T0 versus T6 in all patients’ lymphocytes 

(Figure 3.6D–F, only the genes with |log2FC| > 0.25 and adjusted P-value < 0.05 are 

shown). To our knowledge, no studies have investigated transcriptional response changes 

of individual cell types within hours in sepsis patients; however, a study utilizing cecal 

ligation and puncture as a mouse model for sepsis reported reduced CD4+ T cell activation 

in the spleen after 6 h, consistent with our current data.45 We therefore investigated the 

transcripts that were reported in this mouse study: CCR2, CCR6, CD3, CD48, CD52, CD80, 

ITGB7, SELL, SLAMF6, and Thy1. Of all these genes, only some of them were 

significantly changed between T0 and T6 in sepsis (Figure 3.6D-F). Our analysis identified 

that CD52, a surface glycoprotein involved in lymphocyte activation, was the most relevant 

biomarker to predict lymphocyte status and disease outcome. CD52 expression was 

increased over 6 h in the T and B cells of survivors, but not in sepsis nonsurvivors (Figure 

3.6D-F). We investigated the other markers, however, did not observe consistent trends 

associated with protection. To validate that CD52 is correlated with improved lymphocyte 

function, we plotted CD52 expression against GO term T cell activation and B cell 

activation module scores. In CD4+ T cells, we observed significant positive correlations in  
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Figure 3.6 CD52 expression correlates with lymphocyte activation. 

(A-C) T cell activation pathway module score comparison between T0 and T6 in T cells. 
(A) Survivors (S), (B) Nonsurvivor early stage (NS ES), and (C) Nonsurvivor late stage 
(NS LS). The differences in scores associated with adjusted P-values below 0.05, 0.01, 
0.001, and 0.0001 are indicated as *, **, ***, and ****, respectively. The significance 
analysis was performed using Wilcoxon tests. (D-F) Differential gene expression analysis 
showing up- and down-regulated genes with |log2FC| > 0.25 and adjusted P-value < 0.05 
across all 5 sepsis patients between T0 and T6 in (D) CD4+ T cells, (E) B cells, (F) CD8+ 
T cells. (G) CD52 expression and its correlation with the T cell activation pathway module 
score in CD4+ T cells across four conditions. R‐values from Pearson’s correlation, exact 
2-sided P-values, and the 95% confidence intervals are shown on each graph. Each dot 
represents a single cell. Only cells with CD52 expression = ̸0 were included in the analysis. 
Green, orange. red and blue points represent cells from HC, NS ES, NS LS, and S samples, 
respectively.   
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all conditions (Figure 3.6G), while in B cells, there were significant positive correlations 

in the HC, NS LS, and S, but not in the NS ES patient (Figure A.4). Together, our data 

indicate that increased CD52 expression within hours of sepsis recognition is associated 

with improved sepsis outcomes. Here, CD52 may act to promote restoration of protective 

lymphocyte responses, and therefore may serve both as a biomarker for sepsis progression, 

or as a therapeutic target to promote immune homeostasis.  

3.4 Discussion 

Sepsis is a dysregulated systemic inflammatory response, which results in organ injury 

with mortality rates of 15–25% (249, 284). The molecular level heterogeneity of sepsis 

makes the study of the dynamics of the individual cell types the ideal tool for understanding 

sepsis progress and response. However, from over 1000 single-cell transcriptomics studies 

that have been published to date (285), only 3 have studied sepsis (244, 286, 287). These 

studies focused specifically on only two groups of cells: monocytes and myeloid-derived 

suppressor cells. In contrast, our study used the centrifuge gradient-based approach to 

isolate PBMC before performing single-cell RNA-seq, which expanded the cell subsets 

investigated. We additionally collected samples at two different time points from differing 

outcomes in sepsis, which provided temporal details of the immune response in severe 

sepsis. These focused analyses were able to identify specific immune cell subsets and gene 

expression patterns over time that correlated with beneficial or fatal outcomes. Our results 

are consistent with the previous studies both in single-cell and bulk sepsis transcriptomic 

studies, but also bring details not seen in other studies, notably molecular changes that 
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occur within hours. Based on this data, future studies evaluating additional time points 

(such as 24 h and post-discharge) would be relevant to investigate whether the first 6 h are 

predictive of recovery in surviving sepsis patients. We report in this study that the 

peripheral blood cell composition of nonsurvivors is more “distant” from healthy controls 

than the blood cells of survivors, and that severe lymphopenia occurs in fatal sepsis. We 

also explored cell types that were not previously investigated in sepsis single-cell studies, 

such as platelets and erythroid precursors, and observed distinct changes in monocytes and 

lymphocytes within 6 h. Neutrophils are a dominant cell subset in the blood with 

established antimicrobial but also inflammatory roles in sepsis (288, 289); however, we 

were unable to investigate this subset given that most neutrophils are not recovered in the 

PBMC fraction, and technical issues exist with scRNA-seq of this cell type.  

We found that platelets were expanded in sepsis patients, especially in fatal 

outcomes. Examination of transcriptional changes over time in platelets from the 

nonsurvivor sepsis patient revealed increased expression of genes related to coagulation, 

platelet activation, and ATP production modules, including OXPHOS genes and glycolysis 

genes. These changes were also reported in a COVID-19 MK study (264), suggesting that 

platelet dysfunction is a shared feature of both diseases, and indicative of clinical severity. 

This study identified increased metabolic activity of MKs compared to healthy controls. 

Another study from Holmsen et al.(290) demonstrated a correlation between platelet 

energy demand and aggregation. Consistent with this, we found that the platelets in 

nonsurvivor sepsis patients had dramatically reduced translation initiation pathways along 

with the induction of the IFN response pathways, suggesting a general suppression of the 
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protein synthetic apparatus by IFN (263). We also observed that the transcriptional changes 

in platelets in fatal sepsis were similar to severe COVID- 19 patients, including lasting IFN 

responses, increased metabolic activity, and elevated circulating platelet-monocyte 

aggregates. Several studies focus on using antiplatelet agents such as aspirin with sepsis 

(291, 292), and a recent COVID-19 study demonstrated that aspirin prescription was 

associated with decreased mortality rates for COVID- 19 positive patients enrolled at the 

Veterans Health Administration (293). Coagulation disturbances (bleeding and/or clotting) 

are prominent clinical concerns in sepsis and COVID-19 and deserve further inquiry. Our 

results support the potential for antiplatelet therapies for the treatment of severe sepsis.  

Further investigation of the erythroid precursor subset that was expanded in fatal 

sepsis revealed the upregulation of genes related to hypoxic stress and apoptosis, reflective 

of the hypoxic environment in severe sepsis that leads to emergency erythropoiesis. 

Interestingly, in a longitudinal COVID-19 study (264), erythroid cells were also identified 

as a hallmark of severe disease with defined molecular signatures linked to a fatal COVID-

19 disease outcome. We also observed that erythrocyte expansion and expression of genes 

related to hypoxic stress were significant predictors of fatal outcomes. Within the erythroid 

precursor subset, we identified that inflammatory alarmin S100A9 expression dynamically 

changed in fatal sepsis, with significant increases at T6. S100A9, together with and 

S100A8 and S100A12, were previously reported as biomarkers for higher risk of death in 

septic shock patients (294). S100A9 was also identified in a human bone marrow 

erythropoiesis study (295), which reported its up-regulation at the last stage of maturation 

of nucleated red blood cell precursors. Together with these studies, our data suggests that 
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S100A9 expression reflects stress erythropoiesis and is associated with rapid fatality in 

sepsis. S100A9 may serve as a valuable biomarker to stratify sepsis severity, in addition to 

the clinical scores and other plasma markers.  

Consistent with previous studies showing that monocytes play a significant role in 

the sepsis pathogenesis (269, 270), we observed aberrant gene expression and pathway 

changes in the monocytes of sepsis patients. Overall transcriptional profiles indicated that 

monocytes were in a hyperinflammatory state in sepsis nonsurvivors. However, focused 

analyses within the 6-h time window revealed that monocytes from NS patients were 

undergoing immune suppression, including decreased pro-inflammatory cytokine and 

HLA-DR expression, and reduced glycolysis energy consumption at T6. Within the 6-h 

time window, we also identify CD52 as the biomarker for B and T cell activation that 

correlates with beneficial outcomes. CD52 is a glycoprotein expressed on the surface of 

mature lymphocytes, monocytes, dendritic cells, and NK cells (296), therefore surface 

expression could be quantified to predict sepsis progression. Most CD52 targeted 

therapeutic approaches aim to delete CD52-expressing cells, such as the monoclonal 

antibody alemtuzumab, which treats chronic lymphocytic leukemia and multiple sclerosis 

(297). However, our study suggests that promoting CD52 signaling may be beneficial to 

improving lymphocyte function. In fact, in a study using alemtuzumab, one patient with 

aggressive multiple sclerosis developed sepsis after treatment (298). Additionally, CD52 

had been proposed as a prognostic biomarker in breast cancer, where it is correlated with 

improved outcomes likely due to increased immune tumoricidal activity (299).  CD52 

might therefore serve as a biomarker for sepsis prognosis and provides a new therapeutic 
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target for sepsis patients, however, determining its influence on sepsis therapy would 

require an expanded sample size study.  

In conclusion, results from this study indicate that the initial status of the sepsis 

patient and the dynamic changes in cell behavior during the critical period following 

diagnosis significantly affect sepsis outcome. Therapeutic intervention to modify these 

immune trajectories may therefore lead to improved outcomes in these patients that could 

be identified by biomarkers reported in this study, such as CD52 or S100A9. Future studies 

that focus on these dysfunctional cell subsets at the individual level, addressing their 

metabolic dysfunction or how to promote their recovery from exhaustion, may provide 

therapeutic and prognostic strategies for sepsis, which could be applicable to other fatal 

diseases such as COVID-19.  
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CHAPTER 4 Platelets in Immune Dysregulation: Identifying Novel Platelet Subtypes in 

Severe and Fatal Cases of COVID-19 and Sepsis 

4.1 Introduction 

Until recently, platelets were regarded as simplistic cells with a singular purpose of 

facilitating hemostasis, the cessation of blood flow at the site of disrupted endothelial lining, 

through the formation of blood clots. However, in the last few years, platelets emerged as 

critical elements of the immune system, being first responders in infections and regulating 

both the activation as well as post-infection deceleration of the host immunity (302-304). 

Platelets have been proven to modulate the function of immune cells by physically adhering 

to them or by releasing cytokines and chemokines that regulate them. Platelets affect the 

activation (305, 306), proliferation (307), differentiation (308, 309), pathogen clearance 

(310), and cytokine response of other immune cells (311, 312). Additionally, abnormal 

platelet status was found to be an important component of many diseases that involve 

dysregulation of the immune system (99, 313-315). 

Thrombosis and abnormal coagulation associated with the coronavirus disease 

2019 (COVID-19) brought more attention to the role of platelets in immune system 

dysfunction caused by infections. A higher percentage of platelets purified with the 

Peripheral Blood Mononuclear Cell (PBMC) fraction was shown to be an indicator of both 

COVID-19 (316) and sepsis (317) severity. The prothrombotic profile that is now a 

hallmark of COVID-19 is believed to be mediated in part by platelet activation and 

aggregation (313). In addition to COVID-19 and sepsis pathogenesis, platelets are 



95 
 

implicated in autoimmune diseases such as systemic lupus erythematosus (SLE) (318); 

therefore, we hypothesize that targeting platelets or some subsets thereof may be a potential 

strategy in the treatment of these diseases and possibly even a broader range of immune 

disorders. To evaluate this hypothesis, we undertook a deeper analysis of the available 

single-cell RNA-seq datasets from these three diseases, building upon the results of our 

previous analysis of sepsis patients (99). 

The question of how to prevent healthy platelets from transforming into abnormal 

ones is difficult to answer with bulk transcriptomics, as this doesn't allow for a detailed 

study of the changes that occur specifically within the platelet subsets in these diseases. 

Single-cell RNA seq can potentially answer such questions, therefore we collected datasets 

from over four hundred samples, spanning a range of diseases, including sepsis, COVID-

19, and Systemic Lupus Erythematosus (SLE). And disease seveverities, from mild to 

severe and fatal. Using single-cell level analysis, we can identify and characterize 

subpopulations of abnormal platelets, study molecular details of their pathogenic changes, 

and develop testable hypotheses for how they contribute to patient death or survival. 

4.2 Materials and Methods 

4.2.1 Integrated Single-cell Transcriptome Atlas of Peripheral Blood Mononuclear Cells 

(PBMCs) from COVID-19, Sepsis, and Systemic Lupus Erythematosus Patients 

We gathered single-cell RNA-seq datasets of peripheral blood mononuclear cells (PBMCs) 

from COVID-19 (202, 203, 264, 319-324), sepsis (99, 286), and Systemic Lupus 

Erythematosus (SLE) (325) patients, for a total of 413 samples, in order to study and 
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compare the immunological dysregulation caused by these diseases. In the COVID-19 

studies, individuals with severe influenza, lung infections but testing negative for COVID-

19 were identified as the "hospitalized patients with similar symptoms" (SSH) group and 

we included them in our analysis.  We categorized the samples into six groups based on 

the severity of the disease: healthy control (HC), convalescence (CV), mild (ML), moderate 

(MD), severe (SV), fatal (FT) and created a separate group for SLE. For the outcome 

analyses we grouped patients who survived from the CV, ML, MD and SV groups into a 

survivor (S) group, with the patients with unannotated outcomes forming another group 

labeled as the unknown group (Figure 4.1A). 

From the 413 samples, a total of 47,977 individual platelet datasets were extracted. 

Classifying the platelets by the disease severity group, there were 3,205 cells from HC, 

3,695 cells from CV, 7,359 cells from ML, 4,330 cells from MD, 19,805 cells from SV, 

9,414 cells from FT, and 169 cells from SLE. By the outcome group, there were 3,205 from 

HC, 9,414 from FT, 25,750 from S, and 9,608 from unknown outcomes.  Overall, there are 

38,673 platelet datasets from COVID-19, 2,508 from SSH, 3,422 from sepsis, and 169 

from SLE. 

4.2.2 Integrating the Datasets and Identifying the Cell Types 

Expression data for platelets was extracted from all the datasets identified in the previous 

step. For the datasets with the assigned cell type, we used the existing annotations. We used 

SingleR (326) and Seurat v4 (77) to identify platelets in the datasets that lacked cell type 

annotations. Using HGNChelper (327), we harmonized the nomenclature of the genes from 
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different datasets and identified the 3000 most variable genes from each. For the integrated 

analysis, the top 3000 highly variable genes were retained. Harmony (65) was executed 

with PCA embeddings (30 PCs) as input and the default parameters to eliminate batch 

effects among twelve datasets (nine COVID-19 datasets, two sepsis datasets, and one SLE 

dataset). Seurat was then applied to the Harmony embeddings to determine the clusters. In 

the round of clustering, the resolution for Louvain clustering was set to 0.4.     

4.2.3 Differential Expression Analysis 

The MAST method (253) from the Seurat package (implemented in the FindAllMarkers 

function) was used with the default parameters to perform the differential gene expression 

analysis and identified the DEGs. We used patients’ categories, as described before, to 

compare DEGs between disease severity states. 

4.2.4 Comparison of Module Scores 

We measured the extent to which individual cells expressed certain predefined expression 

gene sets using cell module scores. All calculations and comparisons of module scores 

were performed using the AddModuleScore function from the Seurat package with the 

default parameters. We compared the expression of modules extracted from the GO.db 

database (328). Additionally, we used literature-based modules for oxidative 

phosphorylation (OXPHOS), glycolysis (260), and MHC class II. We disregarded genes 

without detectable expression in our data. 
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4.2.5 Pathway Enrichment Analysis 

We analyzed Gene Ontology biological process terms (GO-BP) and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathways using R package clusterProfiler (88) to identify 

the genes up- and down-regulated in disease samples as compared to HC. The "common 

up" and "common down" gene sets at the disease level were identified by intersecting the 

upregulated or downregulated DEGs for COVID-19, sepsis, and SLE compared to HC. We 

performed Medical Subject Headings (MeSH) (329) enrichment using the R package 

DOSE (330) for each cluster's upregulated genes. We calculated scores for the Molecular 

Signatures Database (MSigDB) signature gene set collection (331) using the R package 

GSVA (85). To visualize the upregulated genes and enriched diseases associated with the 

platelets subtypes over-represented genes, we also employed the Gene, Disease Features 

Ontology-based Overview System (gendoo) (332).  

4.2.6 Calculation of Ligand-Receptor Interaction Scores Between Platelets and Other Cell 

Types 

Cell-cell ligand-receptor interactions were evaluated using the scoring system proposed 

by Kumar et. al. (89). The score uses ligand-receptor interactions from iTALK ligand-

receptor database (92). The ligand-receptor interaction score between cell type A and cell 

type B is calculated as a product of average receptors’ expression across all cells of cell 

type A and the average ligands’ expression across all cells of cell type B.      
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ei,j = expression gene j in cell i 

ncelltypeA = number of cells in the cell type A 

4.2.7 Trajectory Inference of Transition in Platelets Subclusters 

We presented the platelets trajectory analysis using monocle3 (333). Trajectories were 

calculated and the cells displayed based on monocle3 pseudotime approach rooted in the 

previously identified transitional platelets. Integrated gene expression matrices from each 

dataset were first exported from Seurat into monocle3 to construct a new_cell_data_set. 

The exported matrices were aligned using the single-cell batch correction method package 

batchelor (67).  Then, they were subjected to the standard PCA to preprocess the data with 

the number of dimensions set at 100. The dimension reduction and clustering of cells were 

all set to monocle3 default settings. Finally, we used reversed graph embedding to learn 

the principal graph from the reduced dimension space using the learn_graph function.  

4.3 Results 

4.3.1 PBMC Composition Changes with Patient Disease Severity and Outcome. 

First, we analyzed the relative populations (fractions) of immune cell subsets in peripheral 

blood mononuclear cells (PBMCs) in relation to disease severity, outcome, and disease 

types (Figure 4.1A). The population proportions of platelets, precursor cells, and  
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Figure 4.7 PBMC profiling from healthy controls, sepsis, similar symptom hospitalized, 
COVID-19 and SLE patients. 

(A) Schematic diagram illustrating the process for data acquisition from published 
literature and the subsequent integrated analysis. Generated using biorender.com. (B-F) 
Bar charts displaying the proportions of various cell types under different disease severity 
conditions. B) Platelets, C) T cells, D) B cells, E) Monocytes, F) Neutrophils. (G) Dendritic 
cells (DCs) in distinct outcome scenarios. Statistically significant differences in 
percentages with adjusted P-values below 0.05, 0.01, 0.001, and 0.0001 are denoted as *, 
**, ***, and ****, respectively; non-significant results are not indicated. The statistical 
analysis was conducted using Wilcoxon tests. Standard error bars are included. (H) 
Receiver operating characteristic (ROC) curves for the platelet-to-T cell ratio and other cell 
type percentages were employed to differentiate non-survivors from survivors. 
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erythroblasts in PBMCs increased with the disease and outcome severity (Figure 4.1B, 

Figure A.5), while the T cell fraction decreased (Figure 4.1B). B cell fractions were 

significantly increased in SLE patients, which is a known phenotype in SLE patients 

(Figure 4.1C); monocyte and neutrophil fractions were significantly increased in 

convalescence patients (Figure 4.1E, F); however, fractions of the dendritic cells decreased 

as outcome severity increased (Figure 4.1G). We evaluated ratios of different cell types as 

a criterion for separating fatal (FT) and surviving (S) patients and found that the ratio of 

platelets percentage to T cells percentage, (Pla-T ratio) had the highest area under the curve 

(AUC) at 0.754, and platelet percentage (Platelets PCT) was closely overlapping with Pla-

T ratio at 0.738, with the 0.063 ratio between FT and S patients (Figure 4.1H). Together, 

these results identify platelets as an important single criterion that increases with disease 

severity, while circulating T cells follow the opposite trend with decreasing frequency in 

severe disease. 

4.3.2 Platelets Amplify Endotheliopathy and Lead to Potential Increase in Disseminated 

Intravascular Coagulation in Fatal Patients 

Platelets are critically involved in the development and progression of endotheliopathy and 

disseminated intravascular coagulation (DIC) (334, 335). Platelets can bind to and activate 

endothelial cells, releasing pro-inflammatory and pro-coagulant molecules that can 

contribute to the development of DIC. Additionally, platelets can also contribute to 

thrombus formation and further damage to the endothelium (336). 
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Figure 4.8 Differential expression of platelets affecting endotheliopathy across disease 
severity states. 

(A) Expression of the ITGA2B gene in platelets across various severity states. (B) 
Expression of the Gene Ontology (GO) module related to cytoskeleton organization 
(GO:0007010) in platelets across different severity states. Violin plots are arranged in 
descending order based on the mean expression values. (C) Comparison of expression 
levels for GO terms, including blood coagulation (GO:0007596), inflammatory response 
(GO:0006954), apoptotic process (GO:0006915), extracellular matrix disassembly 
(GO:0022617), and platelet activation (GO:0030168). The heatmap coloring denotes z-
scored values averaged across all cells from a specific sample. 
 

We examined platelet expression of the Integrin Subunit Alpha 2b (ITGA2B) gene, 

which is involved in platelet-endothelial cell interactions by binding to the Integrin Subunit 

Alpha V (ITGAV) (337). The patients with fatal outcomes had the highest levels of 

ITGA2B expression, followed by patients in the severe disease group (Figure 4.2A). On 

the pathway level, the reorganization of actin cytoskeleton (GO:0007010), also followed 
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the same severity trend (Figure 4.2B). DIC is a complex condition characterized by 

abnormal clotting and bleeding due to the activation of the coagulation cascade and the 

depletion of clotting factors and platelets (338). Several other GO terms associated with 

DIC, such as blood coagulation (GO:0007596), inflammatory response (GO:0006954), 

extracellular matrix disassembly (GO:0022617), and platelet activation (GO:0030168) 

expression had highest expression in FT/SV patients. And all modules had lower 

expression in CV and SLE patients (Figure 4.2C). 

4.3.3 Platelet Subpopulations Associated with Disease Severity 

In the conventional evaluation of single-cell RNA sequencing (scRNA-seq), the primary 

objective is to pinpoint clusters that correspond to established cell types. In this study, we 

extended the clustering process to delve deeper into the intricacies of platelet population 

alterations in disease states. Through an iterative process of trial and error, we ascertained 

similarity thresholds that yielded stable clusters, exhibiting optimal separation and minimal 

overlap in signature pathways. Consequently, we identified thirteen distinct clusters, 

denoted as C0 through C12 (Figure 4.3A, B). We analyzed the composition of each cluster 

with respect to the contributions from various outcome groups. A strong association was 

observed between the C11 cluster and the FT group, as 78% of all C11 cells were identified 

within this group. Clusters C3, C5, and C9 exhibited the highest proportion of HC at 17%, 

while clusters C6 and C11 displayed the lowest at 1%. Cluster C3 demonstrated the highest 

proportion of the mild group, accounting for 25%. In clusters C6, C7, C10, and C12, over 

half of the total platelets were comprised of the severe group (refer to Table B.3). Clusters 



104 
 

C6, C8, and C10 had more than 70% of platelets originating from survivor samples (see 

Table B.4). Based on these findings, we categorize clusters C4, C9, and C11 as "fatal," C8 

as "convalescent," and C6 and C10 as "survival" (Figure 4.3C, D). We subsequently refer 

to the clusters identified in this study as "subpopulations." 

We used DEG and Gene Set Enrichment Analysis (GSEA) to identify molecular 

factors and pathways that could differentiate the platelet clusters (subpopulations) 

identified in the previous step. The sets of genes enriched in the fatal platelet clusters C4 

and C11 were significantly different than the other platelet clusters (Figure 4.4A) and in 

some cases show opposite trends from the convalescent and survival clusters. The fatal 

cluster C4, whose signature module comprises HPSE, WFDC1, and PF4 genes, and the 

convalescence cluster C8, whose signature module consists of RPLP0, RPS6, and RPS23, 

have several pathways that trended in the opposite direction. Fatal cluster C11, whose 

signature module includes TPT1, POLR2L, and CSRP1, had the highest energy 

consumption pathway scores, including oxidative phosphorylation (OXPHOS) and 

glycolysis (Figure A.6), but the lowest inflammatory response score (Figure A.6). The 

other fatal cluster C9, whose signature modules include HBB, HBA2, and HBA1, showed 

the weakest interferon response, including alpha and gamma interferons (Figure A.6) 

Coagulation, epithelial-mesenchymal transition (EMT), and the apical junction are all at 

their highest in C4 but at their lowest in C8 (Figure 4.4B-D). At the same time, MYC 

targets v1 and v2, which contain nuclear-encoded genes involved in mitochondrial 

biogenesis (339), are the lowest in C4 but highest in C8 (Figure A.6). Based on these 

findings, we can conclude that platelets from the fatal cluster C4 are highly active in  
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Figure 4.3 Integrated analysis of single-cell transcriptional profiles in platelet clusters. 

(A, B) Uniform Manifold Approximation and Projection (UMAP) representation of 
merged platelet cell clusters. A) Color-coded by data source, B) Color-coded by cluster 
assignments. (C, D) Stacked bar plots illustrating the proportions of platelet clusters under 
C) varying disease severity levels, and D) distinct outcomes. (E) Violin plots depicting the 
expression levels of marker genes for each platelet cluster. 
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angiogenesis, coagulation, and endotheliopathy, while having the lowest RNA processing, 

cell division, and mitochondrial biogenesis, while those from the convalescence cluster C8 

had the opposite trend in all these pathways. 

C6, a survival cluster enriched in CRBN, CD58, and SRSF3, had the highest notch 

signaling pathway expression and the lowest IL6/JAK/STAT3 signaling pathway 

expression (Figure A.6). Allograft rejection and MYC targets v2 (Figure A.6) had higher 

scores in the other survival cluster C10, whose signature module includes the antigen 

presentation genes CD74, HLA-DRA, and CD79A. C6 and C10 also had lower 

angiogenesis (Figure A.6), coagulation, EMT, and apical junction (Figure 4.4 B-D) scores, 

all of which are signature pathways in fatal cluster C4. 

Then, we examined the GO terms up-regulated in the fatal clusters C4, C9, and C11. 

The key pathways up-regulated in fatal cluster C4 include wound healing, platelet 

activation, hemostasis, and coagulation, which is consistent with the known observations 

that thrombotic problems are a major cause of morbidity and mortality in COVID-19 

patients (340). Oxygen transport, hydrogen peroxide metabolism, gas transport, and 

erythrocyte development are enriched terms for C9, reflecting the hypoxic environment of 

C9 platelets (Figure 4.4F). ATP metabolic activities such as oxidative phosphorylation, 

cellular respiration, and aerobic respiration are among the enriched terms in C11; this is 

consistent with the C11 GSEA results, which suggested that C11 platelets are inactive 

(Figure A.6). Platelets in quiescence are known for requiring ATP for their basic function. 

According to a study, glycolysis produces up to 65% of the required ATP in inactivated 

platelets, with mitochondria providing the remainder (341). C4 is the most active  
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Figure 4.4 Characterization of platelet clusters and their distinct pathway expression 
changes. 

(A) Enrichment analysis of human hallmark gene sets for each platelet cluster. Expression 
levels represent the normalized enrichment scores in the Gene Set Enrichment Analysis 
(GSEA) algorithm. (B - E) Bar plots depicting the expression of hallmark gene sets among 
clusters. B) Coagulation, C) Apical Junction, D) Epithelial-Mesenchymal Transition, E) 
E2F Targets. (F) Heatmap illustrating upregulated genes and enriched pathways in Gene 
Ontology (GO) for the fatal cluster C9. (G) Gene-concept network displaying upregulated 
genes and enriched diseases for the fatal cluster C4. (H) Tree plot showcasing enriched 
pathways in GO for the convalescent cluster C8. 
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cluster in FT groups. Therefore, we examined C4-enriched genes associated with diseases, 

such as arteriosclerosis, bacterial endocarditis, thrombosis, and frontotemporal lobar 

degeneration, a neurodegenerative disorder (Figure 4.4G).  Among the mechanisms shared 

by survivor clusters C6, C8, and C10 are platelet translation regulation, mRNA processing, 

and ribosomal RNA biogenesis (Figure 4.4H, Figure A.6). Additionally, C10 was enriched 

for the GO terms homeostasis lymphocyte activation cells, and leukocyte antigen cell-cell 

adhesion (Figure A.6). 

4.3.4 Pseudotime Trajectory Analysis Identifies Platelet Signature Dynamics in Survival 

or Fatal Disease Outcomes 

The fatal cluster C4 appears to be critical for the negative outcome groups, so we evaluated 

possible events leading to its emergence. Pseudotime analysis, although not providing real 

time dynamics of cell populations, gives hints as to their order along the developmental 

trajectories (342). The possible precursor of C4 is the C0 cluster, which is also close to the 

C1 and C6 clusters in the trajectory map (Figure A.7). C0 cluster has two possible 

developmental routes, fatal C4 or survival C1and C6 (Figure 4.5A, B), indicating that the 

platelets in the C0 could be targeted by early intervention to inhibit their development into 

the C6 phenotype. 

Then, we examined DEGs between C4 and C0 and C0 and C1. AKR7A2, CALD1, 

CALR, CD36, CSRP1, CYBA, ENSA, FCGR2A, HBG2, HCST, HMGN1, HPSE, 

MMRN1, NDUFA4, PF4, RPLP1, RPS9, SAMD14, and TPT1 genes are the consistently 

up-regulated, with a log2Fold change greater than 0.4 and an adjusted p value less than 
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0.05, from C0 to C4, and C1 to C0 (Figure 4.5C, D). For the further analysis we defined a 

fatal platelet module consisting of these genes. Among the fatal module enriched GO terms 

are regulation of body fluid levels, coagulation, phagocytosis, and tumor necrosis factor 

(TNF) production (Figure A.7). The DEGs consistently down-regulated between C4 vs. C0 

and C0 vs. C1 were ADIPOR1, CDKN1A, MAP3K7CL, MMD, NEAT1, NUTF2, PTMA, 

RAB31, SLC40A1, TMEM140, TSC22D3, they were used to define the platelet survival 

module. However, no GO, KEGG, or Reactome pathways were enriched in the survival 

module. The scores for the fatality and survival modules were then calculated for all disease 

clusters and disease severity levels. As expected, cluster C2 had the lowest fatality score, 

followed by C1 and then survival cluster C6. C11 had the greatest fatality score, followed 

by C4 and C9 (Figure 4.5E). C2 had the greatest survival module score, followed by C1 

and survival cluster C6, while C11 and C4 had the lowest scores for the fatal modules 

(Figure 4.5F). 

The fatality and survival module scores could also serve as indicators of the disease 

outcome. The patient group with the highest score was the fatal group, followed by the 

severe group, while the mild group received the lowest score on the fatal module, followed 

by the moderate group. The HC group was positioned in the center of the fatality module 

(Figure 4.5G). The groups with the lowest survival module ratings were the fatal and severe 

groups. However, the highest scores were in the SLE and mild groups (Figure 4.5H). When 

platelets encounter an immunological disorder response, their expression shifted away 

from HC, as demonstrated by the findings. In addition, we investigated the composition of 

platelet subclusters and discovered that the fraction of fatal cluster C4 was the best  



110 
 

 

Figure 4.5 Platelet module signatures in patients associated with survival and fatal dynamic 
trends. 

(A, B) Pseudotime plots of platelets from clusters C0, C1, C4, and C6, illustrating trajectory 
fates. (C, D) Differentially expressed genes in C) C4 vs. C0; D) C0 vs. C1. Volcano plots 
display the genes consistently upregulated or downregulated with increasing disease 
severity. (E - H) Ridge plots depicting the density of expression levels for E) fatal module 
expression across platelet clusters, F) fatal module expression across disease severities, G) 
survival module expression across platelet clusters, and H) survival module expression 
across disease severities. Ridge plots are ordered in descending order. (I) Receiver 
operating characteristic (ROC) curves for platelet cluster percentages within peripheral 
blood mononuclear cells (PBMCs), utilized to distinguish non-survivors from survivors. 
 



111 
 

indicator among clusters for distinguishing between S and FT patients (Figure 4.5I), with 

an AUC of 0.749. When C4 platelets exceeded 3.36 percent of the PBMC platelet 

composition, patients were at risk of death. In this case, detecting the presence of platelets 

C4 in a timely manner could help the patient's survival. 

These findings show the complexity of COVID-19 and sepsis in relation to gene 

and pathway signatures in platelets. This is especially true for patients with severe active 

disease, as well as those recovering from it and surviving it. This research could lead to a 

better understanding options for both patient subgroups. 

4.3.5 Unique and Shared Gene Expression Changes in Platelets from COVID-19, SSH, 

Sepsis, and SLE Samples 

Comparing COVID-19, SSH, sepsis, and SLE platelets to HC platelets, we identified 

differentially expressed genes (DEGs) and related pathways (whose up- and down-

regulations were analyzed using the GO and KEGG databases). There were 45 DEGs that 

were up-regulated in all four diseases studied here, including IFI27L2, IFITM2, IFITM3, 

and S100 family genes (S100A8 and S100A9) and genes for ATP synthase, such as ATP5E 

and C9orf16. BEX3, LCN2, RHEB, and TMEM219 are genes associated with apoptosis 

(Table B.6) (Figure A.8). 129 genes were downregulated in all four diseases (Figure A.8). 

The set of 129 genes analyzed comprised 68 genes related to ribosomes. Additionally, 

CD52, a predictive biomarker and therapeutic target for sepsis (14), was among the genes 

included. The genes CD3E, CD48, CD7, LCK, LEF1, PTPRC, and TCF7, essential for T 

cell activation, were also part of the set (Table B.6). 
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There were 47 pathways that were consistently up-regulated in COVID-19, SSH, 

sepsis, and SLE as compared to HC (Figure 4.6A).  And 81 pathways were consistently 

down-regulated by all in the four respective diseases (Figure 4.6B). To better interpret the 

functional meaning of the consistently up/down-regulated pathways among the four 

diseases, we used Revigo (300) to summarize the 47 up-regulated pathways and 81 down-

regulated pathways from COVID-19 vs. HC, SSH vs. HC, Sepsis vs. HC, and SLE vs. HC. 

Pathways up-regulated in platelets consistently among the four considered diseases include 

GO: neutrophil mediated immunity, KEGG: Parkinson disease, and GO: ATP metabolic 

process (Figure 4.6D). In Figure 4.6D, it can be observed that various translation processes 

are experiencing down-regulation. These processes include GO: nuclear-transcribed 

mRNA catabolic process, nonsense-mediated decay, GO: regulation of translational 

initiation, GO: protein localization in the endoplasmic reticulum, KEGG: Ribosome, and 

GO: response to interleukin-4. Interleukin-4 is known to have multiple biological effects, 

such as promoting the activation of B cells and T cell proliferation through pathways like 

T cell activation regulation and response (343). 

We then focused on the pathways that were up-regulated in both COVID-19 and 

sepsis relative to HC. KEGG: Parkinson disease, KEGG: Huntington disease, KEGG: 

Prion disease, KEGG: Alzheimer disease, KEGG: Pathways of neurodegeneration - 

multiple diseases, and KEGG: Amyotrophic lateral sclerosis were consistently up-

regulated in platelets from COVID-19 and sepsis (Figure A.8). COVID-19 has been 

recently associated with neurodegenerative disorders (344), even though the molecular 

mechanism of this association is not clear. Similar to the effects observed in sepsis, 
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COVID-19 may serve as a considerable inflammatory stimulus, heightening the brain's 

vulnerability to neurodegenerative disorders, cognitive deterioration, and an increased 

probability of developing dementia in later stages of life (345). Nonetheless, the observed 

up-regulation of pathways in platelets, which are typically present in neurons affected by 

neurodegenerative diseases, might indicate the involvement of shared regulatory processes 

rather than a direct influence of aberrant platelets on cerebral function. KEGG: Endocytosis, 

KEGG: Fc gamma R-mediated phagocytosis pathways were likewise up-regulated. 

Platelets endocytose virions after Toll-like receptors (TLRs) attach to virion released 

lysosomal ligands, such as ssRNA, dsRNA, and CpG DNA, downstream signaling induces 

platelet activation and granule release, exposing P-selectin, and subsequently generating 

platelet leukocyte aggregates (345). In addition to pathways associated with protein 

targeting, protein translation, and ribosomes, KEGG: Coronavirus disease- COVID-19, 

was also down-regulated in sepsis. However, all of the genes that were enriched for KEGG: 

Coronavirus disease - COVID-19 were ribosomal-associated proteins, which was mostly 

due to the down-regulation of ribosomal-related proteins in both COVID-19 and sepsis 

(Figure A.8). 

Then, we investigated the pathways that are enriched in COVID-19 and sepsis fatal 

patients (FT) in comparison to survivors (S) (Figure 4.6C). GO: neutrophil mediated 

immunity and GO: ATP metabolic process were up-regulated in FT patients and were 

likewise up-regulated in disease vs. HC pathways. GO: response to endoplasmic reticulum 

stress, GO: response to hypoxia, and GO: intrinsic apoptotic signaling pathway in response 

to oxidative stress are up-regulated stress pathways. While the KEGG: Bacterial invasion  
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Figure 4.6 Platelet pathway expression among healthy controls, sepsis, similar symptom 
hospitalized, COVID-19, and SLE patients. 

(A, B) Venn diagrams illustrating changes in Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways among COVID-19, similar 
symptom hospitalized (SSH), sepsis, and systemic lupus erythematosus (SLE) compared 
to healthy controls (HC). A) Upregulated pathways. B) Downregulated pathways. 
Pathways were filtered for those with an adjusted P-value below 0.05. (C) Heatmap 
representation of non-survivor vs survivor upregulated/downregulated pathways. Colors 
are determined by the product of the COVID-19 and sepsis upregulated/downregulated 
enriched pathway log10 (adjusted P-value). GO terms were reduced to representative ones 
using Revigo (with cutoffs set at similarity > 0.4) and then overlapped. (D) Heatmap 
representation of disease vs healthy control upregulated/downregulated pathways. Colors 
are determined by the product of COVID-19, SSH, SLE, and sepsis 
upregulated/downregulated enriched pathway log10 (adjusted P-value). GO terms were 
reduced to representative ones using Revigo (with cutoffs set at similarity > 0.1) and then 
overlapped. 
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of epithelial cells was also among the up-regulated pathways, we concluded that only the 

part of this pathway involved in cytoskeleton rearrangement is upregulated (see the 

discussion section). GO: antigen processing and presentation of peptide antigen via MHC 

Class I were also up-regulated in fatal patients of COVID-19 and sepsis. Platelet MHC 

Class I mediates CD8+ T-cell suppression during sepsis, according to a previous study 

(346). Pathways such as GO: protein localization to the endoplasmic reticulum, GO: 

regulation of translational start, and GO: regulation of RNA stability were down-regulated. 

In addition, lymphocyte activation pathways, such as GO: regulation of T cell proliferation, 

GO: interferon-gamma-mediated signaling pathway, and GO: regulation of interleukin-12 

production, were down-regulated in FT patients. Interferon-gamma is mostly secreted by 

activated lymphocytes, including CD4 T helper type 1 cells and CD8 cytotoxic T cells 

(347), whereas interleukin-12 is known as T cell-stimulating factor (348) (Figure 4.6C). 

These data indicate that platelets from the disease cohorts exhibited less immunological 

activation, fewer translational activities, and more neurodegenerative tendencies, such as 

the KEGG enrichment for Parkinson's disease (Figure 4.6D). Compared to survivor 

platelets, the aforementioned tendencies became more pronounced in FT platelets, which 

began to exhibit the ability to invade epithelial cells (Figure 4.6C). 

4.3.6 Pathway Enrichment Related to Disease Severity in Platelets 

Given the dynamic gene expression changes in platelets in multiple diseases, we evaluated 

what gene expression modules were significantly changed depending on disease severity. 

Two modules that diminish with disease severity are MHC class II genes (Figure 4.7A) 
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and translation initiation (Figure 4.7B). MHC Class II scores are much higher in 

convalescent patients than in healthy controls, indicating that MHC Class II can be utilized 

as an indicator of patient recovery. High case fatality rates of COVID-19 reported in some 

countries have been linked to inadequate MHC class II presentation and, consequently, a 

weak adaptive immune response against these viral envelope proteins, according to studies 

(349). The lowest score for translation initiation modules (GO:0006413) was found in the 

platelets of patients who did not survive the diseases, indicating a halt in protein translation 

due to fatal illness. An interesting observation is the presence of pathways implicated in 

neurodegeneration (GO:0070843) in severely sick COVID-19 patients (Figure A.9). 

Except for axonal transport modules, platelets from severe and fatal COVID-19 patients 

show all the trends observed in neurodegeneration diseases' major biological processes. In 

both sepsis and COVID-19 patients, neurodegeneration-related pathways became more 

severe as the disorders advanced. The scores for blood coagulation (GO:0007596), platelet 

activation (GO:0030168) (Figure 4.2D), oxidative phosphorylation (OXPHOS) (Figure 

4.7C), and glycolysis (260) (Figure 4.7D) modules confirmed the hypothesis that platelet 

coagulation and energy consumption are functionally linked to the severity of sepsis 

disease and the progression of COVID-19 disease (236, 350). Moreover, platelets in 

convalescent patients had higher glycolysis scores, which corresponded to module scores 

in response to oxygen radicals (Figure A.9), indicating that platelets in convalescent 

patients were also hypoxic. Hypoxia induces oxidative damage to neural cells and causes 

widespread neurodegeneration (351).  
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Figure 4.7 Platelet transcriptional alterations across varying disease severity levels. 

(A–I) Assessment of pathway module scores among different disease severity levels in 
platelets. The analyzed modules include genes associated with: A) MHC Class II, B) 
Translation Initiation, C) OXPHOS, D) Glycolysis, E) Response to Type I IFN, F) 
Response to IFN gamma, and G) Response to IFN beta. Differences in scores with adjusted 
P-values below 0.05, 0.01, 0.001, and 0.0001 are denoted as *, **, ***, and ****, 
respectively, while non-significant differences are not shown. Significance analysis was 
conducted using Wilcoxon tests. 
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Interferon response modules, such as response to type I IFN (GO:0034340) (Figure 

4.7E), IFN- β (GO:0035456) (Figure 4.7F), and IFN-γ (GO:0003341) (Figure 4.7G), had 

the highest scores in moderate patients and the lowest scores in HC. The interferon (IFN) 

protein family is crucial for the immune response against viruses and other infections. IFNs 

have been demonstrated to play a significant role in preventing SARS-CoV-2 infection in 

the context of COVID-19, but they have also been linked to severe symptoms (352). The 

findings may explain the contradictory reports of COVID-19 patients with impaired and 

robust type I IFN responses. Although robust type I IFN responses have been reported in 

patients with severe COVID-19 (272), studies have demonstrated that type I IFN responses 

are severely impaired in the peripheral blood of patients with severe or critical COVID-19, 

as indicated by low levels of type I IFNs and interferon-stimulated genes (353). Our data 

indicate that severe and fatal patients had IFN levels much lower than moderate patients, 

but greater than mild patients and healthy controls. In contrast to individuals with other 

disorders, COVID-19 patients have continuously elevated IFN levels. The above data 

conclude that the higher expression of MHC Class II and translational initiation expression 

in platelets were associated with better outcomes in patients. Coagulation and higher ATP 

synthesis from platelets, were linked to worst outcomes for patients. As for interferon 

response, with both protective and deleterious effects being reported, we confirmed the 

theory that severe COVID-19 is associated with decreased IFN signaling (281, 354). 
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4.3.7 Platelet Crosstalk with Monocytes and Lymphocytes 

One of the important roles of platelets is communication with other cell types during 

formation of the thrombi, both regular ones forming during the hemostasis or potential 

abnormal ones forming during sepsis and COVID-19 disease. Using the ligand and receptor 

database from iTalk (92), we evaluated these interactions by computing the product of 

average ligand and receptor expressions in the corresponding cell types from peripheral 

blood mononuclear cells (PBMC) (see Materials and Methods). Platelet-monocyte 

interaction was evaluated and found to have the highest score in fatal patients relative to 

other outcomes (Figure 4.8A). Consistently with our previous sepsis study (99), platelet-

monocyte interaction scores were significantly elevated in FT sepsis patients. This 

phenomenon was also noticed in COVID-19-severe patients. Compared to control 

participants and mildly infected individuals, ICU-admitted COVID-19 patients had higher 

platelet-monocyte aggregate levels (350). Thus, we postulate that the aggregation of 

platelets and monocytes is linked with the severity and mortality of sepsis and COVID-19. 

Chemokine receptor 2 (CCR2), CCR5, and their selective ligands, chemokine 

ligand 2 (CCL2), and CCL3, have been found to promote the trafficking of leukocytes to 

sites of inflammation and regulate their activation (355). Also, the CCL2-CCR2 and CCL3-

CCR5 ligand-receptor systems in differentiating T cells have been identified (356). CCL2-

CCR2 and CCL3-CCR5 interactions between platelets and T cells revealed that SLE had 

the highest expression of the CCL3-CCR5 system between platelets and T cells, a 

characteristic of SLE (357). Compared to other outcome groups, the CCL3-CCR5 system’s 

expression was the lowest among patients who did not survive the diseases (Figure 4.8B).  
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Figure 4.8 Alterations in platelet and other cell type interactions among healthy controls, 
sepsis, similar symptom hospitalized, COVID-19, and SLE patients. 

(A) Comparison of ligand-receptor interaction scores between platelets and other cell types. 
Heatmap coloration corresponds to z-scored, log-normalized mean interaction scores 
averaged across all cells from a specific sample. (B-E) Ligand and receptor interaction 
scores between platelets and B) T cells across various disease severity levels, C) T cells 
across different outcomes, D) B cells across various disease severity levels, and E) B cells 
across different outcomes. Circle size represents the z-scored interaction scores. (F, G) 
Pathway module scores across different outcome situations in platelets, including F) T cell 
differentiation and G) B cell proliferation. 
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The results are associated with T cell differentiation module scores (GO:0030217) (Figure 

4.8F). The CCL2-CCR2 and CCL3-CCR5 ligand-receptor systems are more prevalent in 

surviving patients than in HC (Figure 4.8C). 

CD40 is recognized to play a crucial role in B lymphocyte proliferation and 

differentiation (358). And CD40 ligand CD40LG expression is low or undetectable on the 

surface of resting platelets but is highly expressed upon platelet activation (359). Also, 

platelets are noted to directly influence adaptive immune responses via the secretion of 

CD40 and CD40L molecules (2). Platelets and B cell interaction analysis revealed that 

healthy controls had the highest CD40 induction relative to other groups, whereas patients 

who did not survive had the lowest CD40 induction from platelets – B cell interaction 

(Figure 4.8E). The module score for B cell proliferation (GO:0042100) (Figure 4.8G) also 

supported this conclusion. SLE also had the highest expression of CD40LG and CD40 

interaction between platelets and B cells compared to other diseases (Figure 4.8D). These 

data implicate that in SLE, platelets may induce B cell activity,  

consistent with previous studies reporting the putative effects of activated platelets in SLE 

pathogenesis (315). 

4.4 Discussion 

For this study, we compiled single-cell transcriptome datasets from multiple cohorts of 

patients with inflammatory diseases with infectious and non-infectious roots (COVID-19, 

sepsis, SSH, and SLE). Extensive evidence points to a key role for platelets in all these 

diseases, severe COVID-19 (313, 340), fatal sepsis (99) and SLE (315) respectively. In our 
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analysis we identified both shared and unique signatures in platelet transcriptomics in 

patients with these diseases. We analyzed alterations in immune cell subsets in peripheral 

blood mononuclear cells (PBMCs) and found many features related to disease severity, 

outcome, and disease type. The ratio of platelets to T cells (Pla-T ratio) was shown to be a 

useful criterion for separating patients with fatal and survival outcomes (Figure 4.1H). 

Analysis of the upregulated pathways shows that pathways characteristic of the 

development and progression of endotheliopathy and disseminated intravascular 

coagulation (DIC) are upregulated in platelets. The patients who passed away had the 

highest expression of the gene involved in platelet-endothelial cell interactions and highest 

expression in the modules related to DIC, including actin cytoskeleton reorganization 

(Figure 4.2). Platelet actin cytoskeleton reorganization plays a role in this process, as the 

cytoskeleton helps to determine the shape and function of platelets and is essential for 

platelet activation and aggregation and changes observed here contribute to the 

pathological variants of this process. 

We identified subgroups of platelets overrepresented in the convalescent, surviving, 

and fatal patients. Specifically, the three types of platelets were highly active in FT patients 

- the coagulation cluster C4, hypoxic cluster C9, and quiescence cluster C11. This suggests 

that a combination of anticoagulants, anti-hypoxic therapies, arteriosclerosis treatments, 

and selective serotonin reuptake inhibitors (SSRI) should be considered for the removal of 

fatal platelets. We examined the pseudotime trajectory of platelet clusters and identified 

C0 as the cluster preceding fatal cluster C4. C0 can be differentiated by following the path 

leading to the emergence of either fatal (C4) or survival (C1 leading to C6) cluster. We 
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propose that targeting C0 and modifying its developmental path may prove to be an 

effective strategy to treat immune instability in sepsis or COVID-19. Expression of MYL9, 

FCER1G, and PARVB are the signatures of cluster C0 (Figure 4.3E). MYL9 was 

investigated in relation to platelet dysfunction (360). Comparing the fatal cluster C4, its 

ancestor C0, and its alternative, survival cluster C1 to each other, we identified two gene 

modules associated with fatal outcome and survival and we labeled them accordingly 

(Figure 4.5C, D). Some genes in the fatal module, such as heparanase (HPSE) had already 

been studied as a  target of therapy aimed at selectively neutralizing platelets to mitigate 

disease severity. HPSE expression and activity was shown to increase in platelets during 

clinical sepsis at both transcriptomic and proteomic level (361). The same phenomenon 

was also observed in COVID-19 patients’ plasma (362). Thus, the fatal and survival 

module genes identified in this study provide potential clinical therapeutic targets, and 

diagnostic and prognostic biomarkers in platelets.     

This study also investigated gene expression in four diseases (COVID-19, SSH, 

Sepsis, and SLE) compared to healthy controls (HC) and found consistent changes in gene 

expression, including stress pathways (Figure 4.6D) and decreased levels of MHC class II 

gene expression in fatal cases (Figure 4.7A). The presence of pathways also seen in 

neurodegeneration processes in the brain are also upregulated in severe COVID-19 patients 

and in all immune response disorders. Similarly, the ATP metabolic process are up-

regulated but ribosome biogenesis and lymphocyte activation are commonly down-

regulated (Figure 4.6C). 
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COVID-19 (363-366), sepsis (367, 368), and SLE (369) are all strongly associated 

with neurodegenerative diseases, but platelets have not been evaluated for their potential 

involvement. Platelets could potentially access the central nervous system by breaking the 

blood-brain barrier for a number of reasons, such as infection, neuroinflammation, 

neurodegeneration, and traumatic brain injury (370). Platelet changes in activation and 

aggregation have also been documented in Lewy body diseases, amyotrophic lateral 

sclerosis and multiple sclerosis (371-373). However, whether abnormal platelets are 

directly involved in triggering neurodegeneration, or if they instead respond to the overall 

immune environment in way similar to neurons undergoing degeneration, is unclear. This 

study illustrates the potential clinical significance of platelets as peripheral diagnostic 

biomarkers and, potentially, therapeutic targets for neurodegenerative diseases. 

Platelet-monocyte aggregation have been studied as hallmark of severe COVID-19 

(340, 374, 375) and sepsis (99, 376, 377). Those previous findings are consistent with our 

cell-cell interaction study (Figure 4.8A), which again provides the molecular mechanism 

for this effect. In addition, we discover that platelets may influence lymphocyte activation, 

proliferation, and differentiation through interactions with other immune cells, implying 

that platelets can modulate lymphocyte function and contribute to inflammatory and 

immune responses. 

Overall, the study highlights the role of platelets in the development and 

progression of disease and the importance of monitoring changes in immune cell subsets 

and gene expression for predicting disease outcome and severity. We were able to study 

the etiology of dysfunctional platelets in sepsis, COVID-19, and SLE patients due to the 
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high number of clinical samples included in our integrated analysis. Our research 

demonstrates the significance of platelets' dysfunction in immunological imbalance 

disorders and supports the utility of platelet-directed therapies to treat multiple immune 

disorders.
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CHAPTER 5 Impact of Smoking on Immune Cell Populations in Lung Cancer Patients 

5.1 Introduction 

Tobacco use remains the most significant preventable cause of death and disease in 

the United States, with over 480,000 Americans losing their lives to its effects annually. 

Although a plethora of studies have delved into the mutations resulting from nicotine and 

cigarette smoke genotoxicity (378-380), the ramifications of smoking on the immune 

system could be even more critical. Current research indicates that smoking has far-

reaching consequences on chronic inflammation and autoimmunity at a systemic level 

(381-383). Nonetheless, the impact of smoking on individual immune cell types especially 

the tumor immune microenvironment (TIME) is an area that warrants further exploration. 

Smoking exerts its influence on the immune system response in two main ways: by 

altering the composition of immune cells and by modifying the behavior of individual 

immune cell types  (381, 384). While techniques such as cell sorting can identify changes 

in immune cell composition, the investigation of modifications in individual cell behavior 

remains underdeveloped. We hypothesize that single-cell sequencing techniques can shed 

light on smoking-induced changes within each cell type. Moreover, we postulate that the 

effects of smoking on immune cells could increase heterogeneity on the immune system. 

This increased heterogeneity can have detrimental effects on the immune system's ability 

to fight off cancer. For instance, in the context of lung cancer, the immune system of a 

smoker may display a higher degree of heterogeneity in immune cell populations, including 
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T cells. This could potentially result in a more diverse and complex TIME, making it harder 

for the immune system to effectively target and eliminate cancer cells (385). 

In this chapter, we employed single-cell transcriptomics to examine the 

understudied question of smoking's effects on individual immune cells. We analyzed how 

smoking influences the behavior of each specific immune cell type and how the functional 

state transitions of immune cells are impacted by smoking. By doing so, we aimed to 

provide a more comprehensive understanding of the cellular and molecular mechanisms 

underlying the detrimental effects of smoking on the immune system. This knowledge can 

potentially inform the development of targeted therapies and preventive measures to 

mitigate the adverse health outcomes associated with tobacco use, particularly in the 

context of immune-related diseases and conditions. 

5.2 Methods 

To compare the gene expression pattern of smokers and never-smokers at gene expression 

level we used the previously generated scRNA-seq data, which have been deposited in the 

Sequence Read Archive (SRA, NCBI) /Gene Expression Omnibus (GEO) (GSE99254). 

The patient samples from Guo et al. (227) included 14 patients with lung cancer, 5 smokers 

(1 female and 4 males) and 9 never smokers (7 females and 2 males). We assessed the 

smoking-induced changes in tumor immune microenvironment at single cell level by 

pooling the data from both genders (due to the lack of enough cases for statistical analysis). 

The trajectory inference/pseudo-time for data from Guo et al. (227) was obtained using a 

Monocle2 (101) algorithm, which applied reverse graph embedding algorithm for the 
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trajectory construction. This is a mathematical approach that can order cells within a single 

cluster along a trajectory that can we interpreted as time but has an unknown relation to 

actual time (hence it is called a pseudo-time). To compare T cells CD4+ memory activated 

and T cells CD4+ memory resting ratio between smokers and never smokers, we used the 

AddModuleScore function from the Seurat package (57) with default settings to perform 

all calculations and comparisons of module scores. 22 functionally defined human immune 

subsets signature genes (LM22) for T cells CD4 memory activated, and T cells CD4 

memory resting was applied to the calculate CD4 memory activate and resting modules 

scores (386). Genes without detectable expression in our data were ignored. The activated 

to resting ratio was calculated based on the module scores of CD4+ memory activate 

divided by the module scores of CD4+ memory resting. Additionally, we used the same 

data to compare the gene expression between smokers and never smokers in each 

predefined T cell category (CD4+ and CD8+) and tissue type. All comparison gene 

expressions between smokers and never smokers were conducted using the Seurat package 

the FindAllMarker function with default parameters. The feature plots were generated 

using R package Seurat FeaturePlot function. We subset T cells on the expression level of 

GPR15 > 0 as GPR15+ T cells, and compared the relative abundance of GPR15+ T cells 

between smokers and never smokers using Wilcoxon–Mann–Whitney test in R. 
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5.3 Results 

5.3.1 Increased T cell heterogeneity in smokers 

In a comprehensive analysis of single-cell RNA-sequencing (scRNA-seq) data, we utilized 

the dataset generated by Guo et al. (227), which has been made available in the Gene 

Expression Omnibus (GEO) databases (GSE99254). The original study by Guo et al. 

focused on patient samples collected from 14 individuals diagnosed with lung cancer, 

encompassing nine never-smokers and five smokers.  

Guo et al.'s study identifies multiple T cell clusters through in-depth single-cell 

RNA sequencing. For CD4+ T cells, clusters CD4-C1 to CD4-C7 represent various 

functional states, ranging from naïve to exhausted. In never-smokers, naïve T cell cluster 

CD4-C1-CCR7 is observed, with conventional CD4+ T cell clusters CD4-C2-ANXA1 and 

CD4-C4-CD68 developing into two trajectories. One trajectory develops into effector 

CD4+ T cells CD4-C3-GNLY, which are characterized by the expression of cytotoxic 

molecules GNLY, enabling them to eliminate infected or cancerous cells. The other 

trajectory develops into exhausted T cells CD4-C7-CXCL13, marked by high expression 

of exhaustion markers PDCD1, CTLA4, HAVCR2, and TIGIT. In smokers, however, 

CD4-C1, C2, and C4 primarily develop into exhausted T cells (Figure 5.1a, b). 

Regarding CD8+ T cells, clusters CD8-C1 to CD8-C6 are identified through single-

cell RNA sequencing, representing various functional states from naïve to exhausted. In 

both smokers and never-smokers, naïve CD8+ T cell cluster CD8-C1-LEF1 and 

intermediate functional state cluster CD8-C2-CD28 develop into two trajectories. One 
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trajectory leads to effector CD8+ T cell cluster CD8-C3-CX3CR1, while the other develops 

into exhausted CD8+ T cell cluster CD8-C6-LAYN, which consists of dysfunctional T 

cells that have lost their ability to combat infections or cancer. However, in smokers, CD8+ 

T cells, like CD4+ T cells, exhibit greater heterogeneity, displaying more trajectory 

subtypes (Figure 5.2).   

 

Figure 5.1 Comparison of T cell state transitions between never-smokers and smokers. 

(a) Depicts the branched trajectory of CD4+ conventional T cell state transitions in a two-
dimensional state-space for never-smokers. (b) Depicts the branched trajectory of CD4+ 
conventional T cell state transitions in a two-dimensional state-space for smokers. (c) 
Depicts the branched trajectory of CD8+ T cell state transitions in a two-dimensional state-
space for never-smokers. (d) Depicts the branched trajectory of CD8+ T cell state 
transitions in a two-dimensional state-space for smokers. Each dot within the diagrams 
represents a single cell, with its color indicating the corresponding cluster label. 
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5.3.2 Smoking effects on tumor-immune microenvironment at the gene expression level  

Furthermore, we run The Cancer Genomic Atlas (TCGA) datasets pan-cancer gene 

expression analysis for differences in immune-related gene expression. After correcting 

gender, age, and tumor histology, impact the profile of gene expression, GPR15 was found 

to be the only significant differentially expressed gene (DEG) between smokers and never 

smokers, in line with previous reports (387), and suggesting its potential as a smoking 

biomarker (Figure 5.2a and b). We also reanalyzed the scRNA-seq data from 14 lung 

cancer patients generated by Guo et al. (2018). We showed a significantly higher 

proportion of GPR15+ T cells in tumor tissue of smokers compared to never smokers while 

no significant changes were identified in normal tissue (Figure 5.2c). The higher expression 

of GPR15 gene was recorded in both CD4+ and CD8+ T cells in smokers compared to 

never smokers (Figure. 5.2d and e). The results indicate that smoking differently affects 

the expression of genes in different immune cell types. The significant differential 

expression of KLRC1 (as biomarker of cell exhaustion) in CD4+ T cells of patients with 

lung cancer indicates smoking might increase T cell exhaustion only in the tumor tissue 

compared to normal tissue of smokers (Figure. 5.2f), suggesting smoking increases 

complications in the tumor immune microenvironment such as increased risk of wound 

infections, poor healing, and metastasis.  

5.4 Discussion 

Compared to never-smokers, smokers exhibited more T cell heterogeneity, which has 

consequences for the tumor-immune microenvironment at the gene expression level. The  
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Figure 5.2 Differentially expressed genes (DEGs) between smokers and never smokers. 

(a) and (b) DEGs in pan-cancer analysis of female and male cases, respectively. The FDR 
adjusted p-values (q-values) were obtained from the moderated t-test after controlling for 
confounding variables, including type of cancer, tumor pathologic stage, ethnicity, and race. 
(c) The proportion of GPR15+ T cells (both CD4+ and CD8+) of patients with lung cancer 
(Single-cell RNA-seq data adopted from study of Guo et al., 2018) was compared between 
smokers and never smokers using Wilcoxon–Mann–Whitney test. (d) UMAP plots 
showing the expression of GPR15 in CD4+ and CD8+ T cells in smokers and never 
smokers. (e) Single-cell RNA-seq based GPR15 expression in smokers and never smokers 
in tumor infiltrating CD4+ and CD8+ T cells of patients with lung cancer, respectively. (f) 
Single-cell RNA-seq based KLRC1 expression between smokers and never smokers in 
CD4+ T cells of patients with lung cancer. ns, *, ** and *** represents not significant, q-
values < 0.05, 0.01 and 0.001, respectively. S, CS, FS, and NS denote for smoker, current 
smoker, former smoker, and never smoker, respectively.  
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observed higher heterogeneity of CD4+ and CD8+ T cells in smokers is expected to impair 

the immune system's capacity to combat infections and cancers. Furthermore, the increased 

heterogeneity of T cells in smokers may contribute to the immunosuppressive tumor 

microenvironment frequently observed in smoking-related malignancies. The increased 

proportion of exhausted T cells in smokers, as indicated by the elevation of exhaustion 

markers, may compromise the immune system's ability to efficiently detect and kill cancer 

cells. This may increase the formation and advancement of tumors. A recent lung cancer 

scRNA-seq study (388) demonstrated that enhanced immunological heterogeneity had a 

greater impact on tumor progression and drug resistance in smokers. 

In addition to the direct impacts of smoking on T cell heterogeneity, our work 

focused on the influence of smoking on gene expression levels within the TIME. Smoking-

induced alterations in gene expression manifest differently across various immune cell 

types, further highlighting the complex relationship between smoking and immune system 

function. The observed alterations in gene expression may also impact treatment outcomes, 

as some cancer treatments rely on the immune system's capacity to mount an effective 

response to cancer cells. 
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CHAPTER 6 Conclusion 

Over the past decade, single-cell RNA sequencing (scRNA-seq) has revolutionized the 

field of transcriptomics. This cutting-edge technology has made previously unattainable 

studies achievable by allowing researchers to profile the gene expression patterns of 

individual cells within a heterogeneous population. This has provided unprecedented 

insights into cellular diversity, differentiation, and function. scRNA-seq has enabled the 

identification of rare and previously unknown cell types, as well as the discovery of unique 

gene expression patterns within individual cells. This has improved our understanding of 

the complex cellular landscapes in tissues and organs. scRNA-seq has also been 

instrumental in uncovering the dynamics of cellular differentiation and developmental 

processes. By tracking gene expression changes over time in individual cells, researchers 

have been able to reconstruct lineage trajectories and identify key regulatory factors that 

drive cell fate decisions. In addition, scRNA-seq has provided valuable insights into 

disease mechanisms by revealing cell type-specific gene expression changes in various 

pathological conditions. Also, the application of scRNA-seq in cancer research has allowed 

for a more comprehensive understanding of tumor heterogeneity, immune cell infiltration, 

and the identification of novel cellular subpopulations associated with drug resistance or 

metastasis. Lastly, scRNA-seq has been used to investigate how individual cells within a 

population respond to drug treatment, revealing the molecular mechanisms behind drug 

resistance and providing a foundation for personalized medicine. 

Despite these advances, scRNA-seq still faces some challenges, including technical 

issues related to sensitivity, scalability, and data analysis. However, ongoing developments 
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in experimental techniques and computational methods are expected to further enhance the 

power and applicability of scRNA-seq in the coming years. 

Chapter 1 provides an introduction to the scRNA-seq analysis, outlining the 

currently available protocols and technologies, including tissue preparation, single-cell 

isolation, and library preparation. The chapter also covers statistical and computational 

methods for scRNA-seq data analysis, including data preprocessing, quality control, 

normalization, imputation, data integration, dimensionality reduction, clustering, cell type 

prediction and annotation, differential expression analysis, gene set analysis, cell-cell 

communication networks, and gene regulatory networks. Additionally, the chapter 

discusses the use of deep learning applications in scRNA-seq analysis, specifically in 

dimension reduction and clustering, cell type prediction and annotation, and treatment 

response prediction. The chapter concludes with a discussion of the importance and 

potential future directions of scRNA-seq analysis. 

In Chapter 2 of the dissertation, the focus is on the utilization of scRNA-seq within 

the immune system. The chapter commences with an introductory section and delves into 

the diverse nature of immune cells and their respective functions. Topics covered include 

the identification of immune cell types and subtypes, the characterization of immune cell 

states and activation, and the analysis of immune cell population dynamics during 

infectious diseases. Furthermore, the chapter examines immune cell dysregulation in 

autoimmune disorders and the characterization of inflammatory responses in chronic 

illnesses. The discussion then shifts to cancer immunology and immuno-oncology, 

exploring the tumor microenvironment, immune cell infiltration, and individualized 
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immunotherapy approaches. The chapter wraps up with a comprehensive review of the 

subject matter discussed. 

In Chapter 3, we identified abnormal immune cell subsets, changes in functional 

pathways, and molecular signatures associated with fatal or surviving outcomes in sepsis 

by using scRNA-seq data. We observed the emergence and continuous changes in 

abnormal immune cells, including new types of cells unique to sepsis and classical cell 

types present in both sepsis and healthy controls but with abnormal gene expression 

profiles and changes in population ratios. The study provides foundation data and identifies 

specific cell subsets and molecular pathways that can be further explored to better predict 

and possibly modify sepsis outcomes. The major findings of this study are that fatal sepsis 

is associated with the expansion of platelets and erythroid precursors and the 

immunosuppressive trend of monocytes. Additionally, the study identified CD52 

expression in lymphocytes as a potential biomarker and therapeutic target for sepsis, where 

it correlated with increased lymphocyte activation and survival outcomes. This research 

could lead to new diagnostic or therapeutic approaches for sepsis. However, further 

research is needed to fully understand the implications of these findings and their potential 

clinical applications.  

In Chapter 4, we integrated twelve public datasets with platelets’ single cell 

transcriptomics data, they were from sepsis, COVID-19, and SLE. We investigated the 

molecular pathway changes in each disease compared to healthy platelets. We found that 

the diseased platelets have lower expression of MHC class II, translation initiation, and 

have higher expression relative to neurodegenerative diseases. We categorized patients 
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according to patients’ metadata into different disease severities including healthy controls, 

convalescence, mild, moderate, severe and fatal patients. We found the severe and fatal 

patients’ platelets have higher expression of coagulation, inflammatory response, 

extracellular matrix disassembly, and cytoskeleton organization, indicating a higher degree 

of endotheliopathy in patients with severe and fatal outcomes. We also identified the 

clusters of abnormal platelets have more proportion in fatal patients, and platelets that have 

higher proportion in recovered patients and survival patients but low in proportion in severe 

and fatal patients. We looked into the trajectories developed into the fatal clusters and 

survival clusters, and identified two gene modules, the fatal module genes include 

AKR7A2, CALD1, CALR, CD36, CSRP1, CYBA, ENSA, FCGR2A, HBG2, HCST, 

HMGN1, HPSE, MMRN1, NDUFA4, PF4, RPLP1, RPS9, SAMD14, and TPT1. The 

survival module genes include ADIPOR1, CDKN1A, MAP3K7CL, MMD, NEAT1, 

NUTF2, PTMA, RAB31, SLC40A1, TMEM140, and TSC22D3. In addition to that, we 

investigated the cell-cell interaction between platelets and other immune cell types and 

found that platelet and monocyte aggregation as a hallmark of patient disease severity. Also, 

abnormal platelets reduce lymphocyte activation and differentiation by ligand and receptor 

interaction. Our research has the potential to pave the way for novel diagnostic and 

therapeutic strategies for sepsis and severe COVID-19, specifically focusing on platelets. 

This study offers foundational data and highlights distinct platelet subsets and molecular 

pathways that can be investigated further to enhance the prediction and potential alteration 

of outcomes in critical patients. The discovery of gene module expression in platelets 

associated with survival and fatality presents a promising biomarker and therapeutic target, 
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which could contribute to the development of innovative diagnostic tools or treatments. 

Nevertheless, additional research is required to thoroughly comprehend the significance of 

these findings and their prospective clinical applications. 

In Chapter 5, we investigated the tumor immune microenvironment (TIME) varies 

depending on the patient's smoking history. Smoking is one of the leading known risk 

factors for lung cancer, in our study, we attempted to further understand the association 

between smoking and the heterogeneity in TIME. With high-resolution scRNA-seq data, 

we investigated the immune system in smokers vs. never smokers in two perspectives, one 

is about the alterations in the immune cell type changes, the other one is specific gene 

expression changes vary according to cell types and subtypes. We found smoking increases 

the effect of T cell heterogeneity in lung cancer patients. We also found smoking-induced 

changes in gene expression display distinct patterns across diverse immune cell types, 

underlining the intricate interplay between smoking and immune system functionality. 

These alterations in gene expression could potentially influence treatment outcomes, as 

certain cancer therapies depend on the immune system's ability to launch a robust response 

against cancerous cells.  

In conclusion, we have discussed single-cell RNA-seq (scRNA-seq) data analysis 

computational and statistical methods, also scRNA-seq applications in the immune system 

study. Investigating immune system heterogeneity in survival and fatal outcomes using 

single-cell RNA sequencing (scRNA-seq) is crucial for several reasons. First, it provides a 

high-resolution understanding of the diverse immune cell populations and their functional 

states, which can have significant implications for a patient's response to cancer or 
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infections. Second, studying heterogeneity can help identify potential biomarkers and 

therapeutic targets, enabling the development of more personalized and effective treatment 

strategies. Furthermore, examining immune cell heterogeneity can uncover previously 

unknown immune cell subsets or pathways associated with favorable or adverse clinical 

outcomes. This knowledge can facilitate the development of novel diagnostic tools or 

therapies aimed at modulating the immune system to improve patient survival. Overall, 

studying immune system heterogeneity through scRNA-seq holds immense potential for 

enhancing our comprehension of the immune landscape and its impact on patient prognosis. 

Hence, by utilizing both collaborations collected data and publicly available datasets, our 

research examines heterogeneity in the immune system within infectious diseases and the 

tumor microenvironment. This approach is essential for driving biologically significant 

discoveries, as it enables a deeper understanding of the complex immune landscape and its 

impact on disease progression and patient outcomes. 
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APPENDIX A Supplementary Figures 

 
       

  
Figure A.1 UMAP representation of all merged samples. 

Points representing cells are colored according to the donor’s sex. 
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Figure A.2 Aberrant platelet function changes observed in fatal sepsis. 

(A, B) Venn diagrams showing the number of pathways up-regulated and down-regulated 
in temporal changes in platelet cells from sepsis patients. Sets of pathways are labeled with 
patients’ IDs and time. For example, the set labeled NS ES T0 contains pathways 
decreasing in the sepsis non-survivor early stage between T0 and T6 and the set labeled S2 
T6 contains pathways increasing between T0 and T6 in platelets from sepsis survivor #2, 
etc. A) Sets of pathways decreasing in non-survivors and increasing in survivors (green). 
B) Sets of pathways increasing in non-survivors and decreasing in survivors (orange). The 
pathways which showed consistent changes in three or more patients are listed on the left. 
(C, D, E) Platelet and other cell types interaction scores across conditions. C) Platelet-
Monocyte Interaction scores, D) Platelet-Neutrophil Interaction scores, E) Platelet-T cell 
Interaction scores. The differences in scores associated with adjusted p-values below 0.05, 
0.01, 0.001, and 0.0001 are indicated as *, **, ***, and ****, respectively. The significance 
analysis was performed using Wilcoxon test.  
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Figure A.3 Immunosuppressive trends in monocytes from sepsis non-survivors. 

(A – D) Differential expression of genes in FCGR3A+ monocytes from comparisons: A) 
NS versus S, B) NS LS T0 versus T6, C) NS ES T0 versus T6, D) S T0 versus T6. (E, F) 
The correlations between the HIF1A expression and:  E) module score for OXPHOS and 
F) glycolysis module score. Correlations are shown separately for each condition. R‑values 
from Pearson’s correlation, exact two-sided p-values and the 95% confidence intervals are 
shown on each graph. Each dot represents a single cell. Only cells with HIF1A expression 
above 0 were included in the analysis. Green, orange, red, and blue points represent cells 
from HC, NS ES, NS LS and S samples, respectively.  (G) The expression of OXPHOS 
and glycolysis pathway modules in FCGR3A+ monocytes from healthy controls and from 
sepsis patients at T0 and T6. The color saturation indicates the average expression level, 
and the circle’s size indicates the percentage of cells expressing a given module.  (H) HLA-
DR related genes expression in FCGR3A+ monocytes across healthy controls and sepsis 
conditions at T0 and T6. Violin plots are ordered with the decreasing expression average 
value of HLA-DR related genes. The color saturation indicates the average expression level, 
the darker the color the lower the average expression level. 
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Figure A.4 The association between CD52 expression and B cell activation. 

(A-C) B cell activation pathway module scores comparison between T0 vs. T6 in B cells. 
B) Survivors, C) Non-survivor early stage, D) Non-survivor late stage. The differences in 
scores associated with adjusted p-values below 0.05, 0.01, 0.001, and 0.0001 are indicated 
as *, **, ***, and ****, respectively. The significance analysis was performed using 
Wilcoxon test. (D) CD52 expression and its correlation with the B cell activation pathway 
module score in B cells across four conditions. R‑values from Pearson’s correlation, exact 
two-sided p-values and the 95% confidence intervals are shown on each graph. Each dot 
represents a single cell. Only cells with CD52 expression above 0 were included in the 
analysis. Green, orange, red, and blue points represent cells from HC, NS ES, NS LS and 
S samples, respectively. 
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Figure A.5 PBMC profiling from healthy controls, sepsis, similar symptom hospitalized, 
COVID-19 and SLE patients. 

(A-C) Bar plots depicting the percentage of different cell types under different disease 
severities. A) Cell precursors, B) Erythroblast 
The differences in percentages associated with adjusted P-values below 0.05, 0.01, 0.001, 
and 0.0001 are indicated as *, **, ***, and ****, respectively and not significant are not 
shown. The significance analysis was performed using Wilcoxon tests. Standard error bars 
were also added. 
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Figure A.6 Clustered platelets and their unique pathway expression changes. 

(A - K) Bar plot of hallmark gene sets expression among clusters. A) MYC_targets_v1, B) 
MYC_targets_v1, C) Oxidative phosphorylation D) Glycolysis E) Inflammatory response 
F) Interferon alpha response, G) Interferon gamma response, H) Notch signaling I) 
IL6/JAK/STAT3 signaling. (L) Heatmap display fatal cluster C11 up-regulated genes and 
enriched pathways in gene ontology (GO). (M, N) Tree plot display survival cluster C6 
and C10 enriched pathways in GO. 



 
 

147 
 

 

 
 

Figure A.7 Pseudo-time plot of platelets from all clusters exhibiting trajectory fates 

(A) Pseudo-time plot of platelets from all clusters exhibiting trajectory fates.  (B) The 
fatal gene module list enriched pathways from GO, KEGG, and Reactome databases. The 
circle size represents the gene counts included in the pathway; color represents the 
adjusted P value. 
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Figure A.8 Platelet’s expression changes among healthy controls, sepsis, similar 
symptom hospitalized, COVID-19 and SLE patients 

Venn diagrams describing changes in differential expression genes (DEGs) from COVID-
19, similar symptoms hospitalized (SSH), sepsis, and systemic sclerosis lupus (SLE) vs. 
healthy controls (HC), A) Up-regulated genes. B) Down-regulated genes. DEGs with 
adjusted p value below 0.05 and log2 fold change over 0.25 were used for generation of 
the VENN figure. (C) Heatmap illustration of COVID-19 and sepsis patients vs healthy 
control pathways. Colors are decided by the product of the COVID-19 and sepsis up/down-
regulated enriched pathway log10 (adjusted p value). The GO terms were reduced to 
representative ones using Revigo (300) (the cutoffs were similarity > 0.4) then overlapped 
the terms. 



 
 

149 
 

  
Figure A.9 Platelet transcriptional changes under different disease severity related to 
neurodegeneration diseases. 

(A– H) Comparisons of pathway module scores across disease severities in platelets. The 
included modules contain genes related to A) Misfolded Protein Transport, (B) Cytoplasm 
Protein Quality Control by The Ubiquitin Proteasome System, (C) Superoxide Metabolic 
Process, (D) Response to Oxygen Radical, (E) Response to Oxidative Stress, (F) Response 
to Endoplasmic Reticulum Stress, (G) Mitochondrial Transcription, (H) Axonal Transport. 
 The differences in scores associated with adjusted P-values below 0.05, 0.01, 0.001, and 
0.0001 are indicated as *, **, ***, and ****, respectively and not significant ones are not 
shown. The significance analysis was performed using Wilcoxon tests. 
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APPENDIX B Supplementary Tables 

 
Table B.1 Absolute cell numbers for each cell type from all samples. 

 

Sam
ple B 

CD1
4+ 

Mon
o 

CD
4+ 
T 

FCGR3
A+ 

Mono 

CD
8+ 
T 

NK D
C 

Plate
let 

Erythr
oid 

precurs
ors 

Neutro
phil 

C
MP 

Sam
ple 

Total 

HC1 147
4 1091 254

9 621 879 662 35 98 27 7 10 7453 

HC2 246
2 1201 201

0 830 520 656 20
6 126 64 3 15 8093 

NS 
LS_
T0 

156 201 214 77 328 410 35 779 232 5 3 2440 

NS 
LS_
T6 

194 441 258 259 205 260 13
1 1195 364 8 3 3318 

NS 
ES_
T0 

492 753 904 559 215 257 21 286 46 152 27 3712 

NS 
ES_
T6 

998 730 204
9 549 272 382 54 272 59 145 36 5546 

S2_T
0 147 929 337 444 195 229 23 97 42 25 0 2468 

S2_T
6 514 1095 477 635 363 396 13

5 198 37 59 4 3913 

S2_T
0 

274
4 278 172

6 84 278 430 94
8 81 66 39 1 6675 

S2_T
6 

106
1 755 130

9 835 491 625 47 32 39 90 9 5293 

S3_T
0 262 929 409 781 172 163 24 27 3 16 2 2788 

S3_T
6 760 934 157

7 887 638 455 80 69 7 26 1 5434 

Cell 
Type 
Total 

112
64 9337 138

19 6561 455
6 

492
5 

17
39 3260 986 575 111 5713

3 
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Table B.2 Genes used for gene module scoring. 

 

Module Genes 

T cell 
activation  

ABL1, ABL2, ADA, ADAM8, ADAM17, ADK, ADRM1, AGER, AIF1, 
ANKLE1, ANXA1, AP3B1, AP3D1, APBB1IP, APC, ARMC5, ATP7A, 
AZI2, B2M, BAD, BATF, BAX, BCL2, BCL3, BCL6, BCL10, 
BCL11A, BCL11B, BLM, BMI1, BRAF, BTN2A2, BTNL2, CACNB4, 
CARD11, CARMIL2, CAV1, CBFB, CBLB, CCDC88B, CCL2, CCL5, 
CCL19, CCL20, CCND3, CCR2, CCR6, CCR7, CCR9, CD2, CD3D, 
CD3E, CD3G, CD4, CD5, CD6, CD8A, CD24, CD27, CD28, CD40LG, 
CD44, CD46, CD47, CD48, CD74, CD80, CD81, CD83, CD86, CD151, 
CD160, CD274, CD276, CDH26, CDK6, CEACAM1, CEBPB, CGAS, 
CHD7, CHRNA7, CLEC4D, CLEC4E, CLEC4F, CLPTM1, CORO1A, 
CRACR2A, CRIP3, CRTAM, CSK, CTLA4, CTNNB1, CTPS1, CTSL, 
CXADR, CXCL12, CXCR4, CYLD, CYP26B1, DDOST, DHPS, 
DICER1, DLG1, DLL4, DNAJA3, DOCK2, DOCK8, DPP4, DROSHA, 
DUSP10, EBI3, EFNB1, EFNB2, EFNB3, EGR1, EGR3, EIF2AK4, 
ELF4, ENTPD7, EOMES, EPHB4, EPHB6, EPO, F2RL1, FADD, 
FANCA, FANCD2, FCER1G, FGL2, FKBP1A, FKBP1B, FLOT2, 
FLT3, FOXN1, FOXP1, FOXP3, FUT7, FYN, FZD5, FZD7, FZD8, 
GADD45G, GATA3, GBA, GIMAP1, GJA1, GLI3, GPAM, GPR18, 
GPR89B, GPR183, GSN, HAVCR2, NCKAP1L, HES1, HLX, HS1BP3, 
HSH2D, HSP90AA1, HSPD1, HSPH1, ICAM1, ICOS, ICOSLG, 
IFNA1, IFNA2, IFNA4, IFNA5, IFNA6, IFNA7, IFNA13, IFNA14, 
IFNA16, IFNAR1, IFNB1, IFNE, IFNG, IFNK, IGF1, IGF2, IGFBP2, 
IHH, IKZF1, IL1A, IL1B, IL1RL2, IL2, IL2RA, IL2RG, IL4, IL4I1, IL6, 
IL6R, IL6ST, IL7, IL7R, IL12A, IL12B, IL12RB1, IL15, IL18, IL18R1, 
IL20RB, IL21, IL23A, IL27, IL27RA, IL36B, IRF1, IRF4, ITGAD, 
ITGAL, ITGAM, ITGAV, ITGAX, ITGB2, ITK, ITPKB, JAG2, JAK3, 
JAML, JMJD6, KAT2A, KDELR1, KIT, KLRC1, LAT, LCK, LCP1, 
LEF1, LEP, LEPR, LFNG, LGALS1, LGALS3, LGALS8, LGALS9, 
LIG4, LMBR1L, LMO1, LY9, MAFB, MALT1, MAPK8IP1, MDK, 
METTL3, MPZL2, MR1, MSN, MTOR, MYB, MYH9, NCAPH2, 
NCK1, NCK2, NCKAP1L, NCOR1, NCSTN, NEDD4, NFATC3, 
NFKBID, NFKBIZ, NHEJ1, NKAP, NKX2-3, NLRC3, NLRP3, 
OTUD5, P2RX7, PAG1, PATZ1, PAX1, PCK1, PDCD1LG2, PIK3R6, 
PKNOX1, PLA2G2D, PNP, PPP3CB, PRDM1, PRDX2, PRELID1, 
PREX1, PRKCQ, PRKCZ, PRKDC, PRR7, PSAP, PSEN1, PSEN2, 
PSMB10, PSMB11, PTGER4, PTPN2, PTPN22, PTPRC, PYCARD, 
RAB27A, RAB29, RABL3, RAC2, RAG1, RAG2, RARA, RASAL3, 
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RASGRP1, RC3H1, RC3H2, RELB, RHOA, RHOH, RIPK2, RIPK3, 
RORA, RORC, RPL22, RPS3, RPS6, RSAD2, RUNX1, RUNX2, 
RUNX3, SART1, SASH3, SATB1, SCRIB, SELENOK, SEMA4A, 
SH3RF1, SHB, SHH, SIRPA, SIT1, SLA2, SLAMF1, SLAMF6, 
SLC4A1, SLC7A1, SLC11A1, SLC46A2, SMAD3, SOCS1, SOCS5, 
SOS1, SOS2, SOX4, SOX12, SOX13, SP3, SPI1, SPN, SPTA1, SRF, 
STAT3, STAT5A, STAT5B, STAT6, STK11, STOML2, STX11, SYK, 
TBX21, TCF3, TCF7, TCIRG1, TRA, TRB, TESPA1, TFRC, TGFB1, 
TGFBR2, THEMIS, THY1, TMEM98, TNFRSF1B, TNFRSF4, 
TNFRSF13C, TNFRSF14, TNFSF4, TNFSF8, TNFSF9, TNFSF11, 
TNFSF13B, TNFSF14, TNFSF18, TOX, TRAF3IP2, TRAF6, TRAJ18, 
TREML2, TREX1, TSC1, TXK, VAV1, VCAM1, VNN1, VSIR, 
VTCN1, WAS, WASHC1, WDFY4, WNT1, WNT4, WWP1, XBP1, 
XCL1, XRCC4, ZAP70, ZBTB1, ZBTB7B, ZBTB16, ZBTB32, ZEB1, 
ZFP36L1, ZFP36L2, ZMIZ1, ZNHIT1, ZP3 

B cell 
activation  

ABL1, ADA, ADAM17, ADGRG3, AHR, AICDA, ANKLE1, APLF, 
ATAD5, ATM, ATP11C, BAD, BANK1, BATF, BAX, BCL2, BCL3, 
BCL6, BCL11A, BLNK, BMI1, BST1, BTK, CARD11, CCR6, CD19, 
CD22, CD24, CD27, CD28, CD38, CD40, CD40LG, CD70, CD74, 
CD79A, CD79B, CD81, CD86, CD180, CD320, CDH17, CDKN1A, 
CHRNA4, CHRNA7, CHRNB2, CLCF1, CMTM7, CR2, CTPS1, 
CXCR5, CYLD, DCAF1, DCLRE1C, DLL1, DNAJB9, DOCK10, 
DOCK11, EP300, EPHB2, ERCC1, EXO1, EXOSC3, EXOSC6, EZH2, 
FCRL1, FLT3, FNIP1, FOXP1, FOXP3, FZD9, GAPT, GIMAP1, 
GON4L, GPR183, GPS2, HDAC5, HDAC7, HDAC9, NCKAP1L, 
HHEX, HMCES, HSPD1, ICOSLG, IFNA1, IFNA2, IFNA4, IFNA5, 
IFNA6, IFNA7, IFNA13, IFNA14, IFNA16, IFNB1, IFNE, IFNG, 
IFNK, IGBP1, IGHD, IGHE, IGHG1, IGHG3, IGHM, IGHV1-12, 
IGHV1-18, IGHV1-24, IGHV1-58, IGHV1-67, IGHV1-69, IGHV2-5, 
IGHV3-6, IGKC, IGLC1, IGLC2, IGLC3, IGLL1, IKZF1, IKZF3, IL2, 
IL2RG, IL4, IL4I1, IL5, IL6, IL7, IL7R, IL10, IL13, IL21, IL27RA, 
INPP5D, IRF2BP2, IRF8, IRS2, ITFG2, ITM2A, JAK3, KIT, KMT5B, 
KMT5C, LAT2, LAX1, LEF1, LFNG, LGALS1, LGALS8, LIG4, 
LYL1, MAD2L2, MALT1, MEF2C, MFNG, MIF, MLH1, MMP14, 
MS4A1, MSH2, MSH6, MYB, MZB1, NBN, NCKAP1L, NDFIP1, 
NFAM1, NFATC1, NFATC2, NHEJ1, NKX2-3, NOD2, NOTCH2, 
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NSD2, NTRK1, ONECUT1, PAXIP1, PCID2, PELI1, PFDN1, PHB, 
PHB2, PIK3CD, PIK3R1, PLCG2, PLCL2, PMS2, PNP, POLM, 
POU1F1, POU2AF1, POU2F2, PPP2R3C, PRDM1, PRKCB, PRKCD, 
PRKDC, PTK2B, PTPN2, PTPN6, PTPRC, PTPRJ, RABL3, RAG1, 
RAG2, RASGRP1, RBPJ, RIF1, RNF8, RNF168, SASH3, SH3KBP1, 
SHB, SHLD1, SHLD2, SHLD3, SKAP2, SLAMF8, SLC15A4, 
SLC25A5, SLC39A10, SP3, SPI1, SPIB, ST3GAL1, STAT5A, 
STAT5B, STAT6, SWAP70, SYK, SYVN1, TBX21, TCF3, TCIRG1, 
TFRC, TGFB1, THEMIS2, TICAM1, TIRAP, TLR4, TLR9, TNFAIP3, 
TNFRSF4, TNFRSF13C, TNFSF4, TNFSF13, TNFSF13B, TNIP2, 
TPD52, TRAF3IP2, TRBC1, TRBC2, TRDC, TSHR, TXLNA, UNG, 
VAV3, VPREB1, WNT3A, XBP1, XRCC4, YY1, ZBTB1, ZBTB7A, 
ZFP36L1, ZFP36L2 

Coagulation 

ABAT, ADAMTS13, ADAMTS18, ADRA2A, ADRA2C, ADRB2, 
ADTRP, ALOX12, ANO6, ANXA2, ANXA5, ANXA8, AP3B1, APOE, 
APOH, AXL, BLK, BLOC1S3, BLOC1S4, BLOC1S6, C1GALT1C1, 
C1QTNF1, C3, C9, CAV1, CD9, CD34, CD36, CD40LG, CEACAM1, 
CELA2A, CFH, COMP, CPB2, CX3CL1, DMTN, DTNBP1, ENPP4, 
ENTPD1, ENTPD2, EPHB2, EVL, F2, F2R, F2RL1, F2RL2, F2RL3, F3, 
F5, F7, F8, F9, F10, F11, F11R, F12, F13A1, F13B, FBLN1, FCER1G, 
FERMT3, FGA, FGB, FGG, FN1, FOXA2, FZD6, GAS6, GATA1, 
GNA13, GNAS, GP1BA, GP1BB, GP5, GP6, GP9, HGFAC, HNF4A, 
HPS1, HPS4, HPS5, HPS6, HPSE, HRG, HS3ST5, ITGA2B, ITGB3, 
KLKB1, KNG1, LNPK, LYN, LYST, MERTK, MMRN1, MPIG6B, 
NBEAL2, NFE2L2, P2RX1, P2RY1, P2RY12, PAPSS2, PDGFA, 
PDGFB, PDGFRA, PDPN, PEAR1, PF4, PIK3CB, PIP5K1C, 
PLA2G4A, PLAU, PLEK, PLG, PPIA, PRDX2, PRKCA, PRKCD, 
PRKCQ, PRKG1, PROC, PROCR, PROS1, PROZ, PRSS56, PSEN1, 
PSEN2, PTGER3, PTPN6, PTPRJ, RAB27A, RAP2B, S100A9, SELP, 
SERPINA10, SERPINC1, SERPIND1, SERPINE1, SERPINE2, 
SERPINF2, SERPING1, SH2B3, SHH, SLC4A1, SLC7A11, SRF, 
ST3GAL4, STXBP1, STXBP3, SYK, TBXA2R, TEC, TFPI, TFPI2, 
THBD, THBS1, TLR4, TPSAB1, TREML1, TSPAN8, TSPAN32, TXK, 
TYRO3, UBASH3A, UBASH3B, VKORC1, VPS33B, VWF, WNT3A 

Platelet 
activation 

ABAT, ADAMTS18, ADRA2A, ADRA2C, ADRB2, ALOX12, APOE, 
AXL, BLK, BLOC1S3, BLOC1S4, C1GALT1C1, C1QTNF1, CD9, 
CD40LG, CEACAM1, CELA2A, CFH, COMP, CX3CL1, DMTN, 
ENTPD1, ENTPD2, EVL, F2, F2R, F11R, FCER1G, FERMT3, FGA, 
FGB, FGG, FN1, FZD6, GATA1, GNA13, GNAS, GP1BA, GP5, HRG, 
ITGA2B, ITGB3, LYN, MERTK, P2RX1, P2RY1, P2RY12, PDGFA, 
PDGFB, PDGFRA, PDPN, PEAR1, PF4, PIK3CB, PIP5K1C, 
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PLA2G4A, PLEK, PPIA, PRKCA, PRKCD, PRKCQ, PRKG1, 
PTGER3, PTPN6, PTPRJ, RAP2B, SELP, SERPINE2, SH2B3, 
SLC7A11, SRF, STXBP1, STXBP3, SYK, TEC, TLR4, TREML1, 
TSPAN32, TXK, TYRO3, UBASH3A, UBASH3B, VPS33B, VWF, 
WNT3A 

Positive 
regulation of 
hemostasis  

ANO6, APOH, CD36, CPB2, DMTN, ENPP4, F2, F2R, F7, F12, HPSE, 
HRG, NFE2L2, PLG, PRDX2, S100A9, SERPINE1, SERPINF2, 
ST3GAL4, TBXA2R, THBS1 

OXPHOS 

ACTN3, AK2, ATP5F1C, ATP5F1D, ATP7A, CHCHD10, COQ7, 
COQ9, COX10, COX15, COX4I1, COX5A, COX8A, CYCS, DLD, 
DNAJC15, FXN, GADD45GIP1, LEXM, MECP2, MLXIPL, MSH2, 
NDUFA1, NDUFA10, NDUFA2, NDUFA3, NDUFA4, NDUFA5, 
NDUFA6, NDUFA7, NDUFA8, NDUFA9, NDUFAB1, NDUFAF1, 
NDUFB1, NDUFB10, NDUFB2, NDUFB3, NDUFB4, NDUFB5, 
NDUFB6, NDUFB7, NDUFB8, NDUFB9, NDUFC1, NDUFC2, 
NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS5, NDUFS6, 
NDUFS7, NDUFS8, NDUFV1, NDUFV2, NDUFV3, NIPSNAP2 , 
PARK7, PINK1, PMPCB, PPIF, SDHAF2, SDHC, SLC25A23, 
SLC25A33, SNCA, SURF1, TAZ, UQCR10, UQCRB, UQCRC1, 
UQCRC2, UQCRH, UQCRHL, VCP 

Glycolysis 

ALDOA, ALDOC, ARNT, ENO1, ENO2, ENO3, ENTPD5, GAPDH, 
GAPDHS, GCK, GPI, HIF1A, HK1, HK2, HK3, HTR2A, INSR, MYC, 
P2RX7, PFKFB2, PFKFB3, PFKFB4, PFKL, PFKM, PFKP, PGAM1, 
PGK1, PPP2R5D, PRKAA1, TPI1 

MHC class I HLA-A, HLA-B, HLA-C, HLA-E, HLA-F 

MHC class II 
CD74, HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DPA1, 
HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, 
HLA-DRA, HLA-DRB1, HLA-DRB5 

Translation 
initiation  

ABCE1, ABCF1, AGO2, ALKBH1, BANK1, BOLL, CTIF, DAZL, 
DDX3X, DENR, DHX29, DHX33, DNAJC3, EIF1, EIF1AD, EIF1AX, 
EIF1B, EIF2A, EIF2AK1, EIF2AK3, EIF2AK4, EIF2B1, EIF2B2, 
EIF2B3, EIF2B4, EIF2B5, EIF2D, EIF2S1, EIF2S2, EIF3A, EIF3B, 
EIF3C, EIF3D, EIF3E, EIF3F, EIF3G, EIF3H, EIF3I, EIF3K, EIF3L, 
EIF3M, EIF4A1, EIF4A2, EIF4B, EIF4E, EIF4E1B, EIF4E2, EIF4E3, 
EIF4EBP1, EIF4EBP2, EIF4EBP3, EIF4G1, EIF4G2, EIF4G3, EIF4H, 
EIF5, EIF5B, EIF6, FECH, FMR1, GLE1, HABP4, IMPACT, 
KHDRBS1, KLHL25, LARP1, MCTS1, METTL3, MIF4GD, MKNK1, 
MTIF2, MTIF3, NCBP1, NCBP2, NCK1, NCK2, NPM1, PAIP1, PAIP2, 
PAIP2B, POLR2D, POLR2G, PPP1R15A, PPP1R15B, RARA, RBM4, 
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RPL13A, RPS2, RPS6KB1, RPS6KB2, RXRA, TMED2, TNF, TPR, 
UHMK1, YTHDF1, YTHDF2, YTHDF3 

Response to 
type I IFN 

ADAR, CACTIN, CDC37, CNOT7, DCST1, FADD, IFITM1, IFITM2, 
IFITM3, IFNAR1, IFNAR2, IKBKE, IRAK1, IRF3, IRF7, ISG15, 
LSM14A, MAVS, METTL3, MUL1, MYD88, NLRC5, OAS2, PTPN2, 
SAMHD1, SETD2, SHMT2, SMPD1, STAT1, STAT2, TBK1, TRIM6, 
TRIM56, TTLL12, UBE2K, WNT5A, YTHDF2, YTHDF3, ZBP1 

Response to 
IFNγ 

ACTG1, ACTR2, ACTR3, ARG1, BST2, CAPG, CASP1, CCL2, CCL3, 
CCL4, CCL5, CCL7, CCL20, CCL22, CCL26, CD40, CD47, CD74, 
CDC37, CDC42, CDC42EP2, CDC42EP4, CIITA, CITED1, CXCL16, 
CYP27B1, DAPK1, DAPK3, DNAJA3, EPRS, EVL, FLNB, GAPDH, 
GBP2, GBP3, GBP4, GBP5, GBP7, GCH1, GSN, IFITM1, IFITM2, 
IFITM3, IFNG, IL12RB1, IL23R, IRF1, IRF8, IRGM, JAK2, KIF5B, 
KIF16B, KYNU, MED1, MEFV, MRC1, MYO1C, MYO18A, NLRC5, 
NMI, PARP9, PARP14, PDE12, PPARG, PTPN2, RAB11FIP5, RAB12, 
RAB20, RAB43, RPL13A, RPS6KB1, SIRPA, SLC11A1, SLC26A6, 
SNCA, SOCS1, STAT1, STX4, STX8, STX11, STXBP1, STXBP2, 
STXBP3, STXBP4, SYNCRIP, TLR2, TLR4, TRIM21, TXK, VAMP3, 
VAMP4, VAMP8, VIM, VPS26B, WAS, XCL1 , ZYX 

Response to 
IFN-β  

AIM2, BST2, CDC34, DDX41, GBP2, GBP3, HTRA2, IFIT1, IFIT3, 
IFITM1, IFITM2, IFITM3, IFNAR2, IKBKE, IRF1, IRGM2, 
NDUFA13, PLSCR1, PNPT1, STAT1, TRIM6, UBE2G2, UBE2K, 
XAF1 

Coronavirus 
disease - 
COVID-19 

ACE, ACE2, ADAM17, ADAR, AGTR1, C1QA, C1QB, C1QC, C1R, 
C1S, C2, C3, C3AR1, C4A, C4B, C5, C5AR1, C6, C7, C8A, C8B, C8G, 
C9, CASP1, CCL2, CFB, CFD, CGAS, CHUK, CSF2, CSF3, CXCL10, 
CXCL8, CYBB, DDX58, EGFR, EIF2AK2, F13A1, F13B, F2, FAU, 
FCGR2A, FGA, FGB, FGG, FOS, HBEGF, IFIH1, IFNA1, IFNA10, 
IFNA13, IFNA14, IFNA16, IFNA17, IFNA2, IFNA21, IFNA4, IFNA5, 
IFNA6, IFNA7, IFNA8, IFNAR1, IFNAR2, IFNB1, IKBKB, IKBKE, 
IKBKG, IL12A, IL12B, IL1B, IL2, IL6, IL6R, IL6ST, IRAK1, IRAK4, 
IRF3, IRF9, ISG15, JAK1, JUN, MAP3K7, MAPK1, MAPK10, 
MAPK11, MAPK12, MAPK13, MAPK14, MAPK3, MAPK8, MAPK9, 
MAS1, MASP1, MASP2, MAVS, MBL2, MMP1, MMP3, MX1, MX2, 
MYD88, NFKB1, NFKBIA, NFKBIB, NLRP3, NRP1, OAS1, OAS2, 
OAS3, PIK3CA, PIK3CB, PIK3CD, PIK3R1, PIK3R2, PIK3R3, 
PLCG1, PLCG2, PRKCA, PRKCB, PRKCG, RELA, RPL10, RPL10A, 
RPL10L, RPL11, RPL12, RPL13, RPL13A, RPL14, RPL15, RPL17, 
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RPL17-C18orf32, RPL18, RPL18A, RPL19, RPL21, RPL22, RPL22L1, 
RPL23, RPL23A, RPL24, RPL26, RPL26L1, RPL27, RPL27A, RPL28, 
RPL29, RPL3, RPL30, RPL31, RPL32, RPL34, RPL35, RPL35A, 
RPL36, RPL36A, RPL36A-HNRNPH2, RPL36AL, RPL37, RPL37A, 
RPL38, RPL39, RPL3L, RPL4, RPL41, RPL5, RPL6, RPL7, RPL7A, 
RPL8, RPL9, RPLP0, RPLP1, RPLP2, RPS10, RPS10-NUDT3, RPS11, 
RPS12, RPS13, RPS14, RPS15, RPS15A, RPS16, RPS17, RPS18, 
RPS19, RPS2, RPS20, RPS21, RPS23, RPS24, RPS25, RPS26, RPS27, 
RPS27A, RPS27L, RPS28, RPS29, RPS3, RPS3A, RPS4X, RPS4Y1, 
RPS4Y2, RPS5, RPS6, RPS7, RPS8, RPS9, RPSA, RSL24D1, SELP, 
STAT1, STAT2, STAT3, SYK, TAB2, TBK1, TLR2, TLR3, TLR4, 
TLR7, TLR8, TMPRSS2, TNF, TNFRSF1A, TRAF3, TRAF6, TYK2, 
UBA52, VWF 

HLA-DR  HLA-DRA, HLA-DRB1, HLA-DRB5 
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Table B.3 Count and frequency of each cluster of platelets composed of each disease 
severity. 
 

Clusters Severity Count Frequency 

C0 CV 1107 0.082 

C0 FT 2876 0.214 

C0 HC 743 0.055 

C0 MD 1027 0.076 

C0 ML 1959 0.146 

C0 SLE 53 0.004 

C0 SV 5688 0.423 

C1 CV 879 0.083 

C1 FT 2101 0.2 

C1 HC 608 0.058 

C1 MD 949 0.09 

C1 ML 1839 0.175 

C1 SLE 51 0.005 

C1 SV 4102 0.39 

C2 CV 561 0.073 

C2 FT 1377 0.179 

C2 HC 305 0.04 

C2 MD 722 0.094 
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C2 ML 1338 0.174 

C2 SLE 17 0.002 

C2 SV 3373 0.438 

C3 CV 81 0.021 

C3 FT 202 0.052 

C3 HC 636 0.165 

C3 MD 712 0.184 

C3 ML 962 0.249 

C3 SLE 4 0.001 

C3 SV 1267 0.328 

C4 CV 137 0.043 

C4 FT 1224 0.385 

C4 HC 139 0.044 

C4 MD 127 0.04 

C4 ML 264 0.083 

C4 SLE 4 0.001 

C4 SV 1284 0.404 

C5 CV 155 0.055 

C5 FT 520 0.185 

C5 HC 472 0.167 

C5 MD 310 0.11 
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C5 ML 263 0.093 

C5 SLE 10 0.004 

C5 SV 1088 0.386 

C6 CV 168 0.072 

C6 FT 262 0.112 

C6 HC 18 0.008 

C6 MD 293 0.125 

C6 ML 375 0.16 

C6 SLE 11 0.005 

C6 SV 1211 0.518 

C7 CV 125 0.081 

C7 FT 211 0.137 

C7 HC 65 0.042 

C7 MD 150 0.097 

C7 ML 212 0.138 

C7 SLE 13 0.008 

C7 SV 764 0.496 

C8 CV 370 0.36 

C8 FT 86 0.084 

C8 HC 57 0.055 

C8 MD 15 0.015 
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C8 ML 38 0.037 

C8 SLE 0 0 

C8 SV 462 0.449 

C9 CV 28 0.047 

C9 FT 263 0.442 

C9 HC 102 0.171 

C9 MD 9 0.015 

C9 ML 37 0.062 

C9 SLE 0 0 

C9 SV 156 0.262 

C10 CV 51 0.105 

C10 FT 62 0.127 

C10 HC 36 0.074 

C10 MD 8 0.016 

C10 ML 42 0.086 

C10 SLE 6 0.012 

C10 SV 282 0.579 

C11 CV 6 0.021 

C11 FT 221 0.784 

C11 HC 3 0.011 

C11 MD 0 0 
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C11 ML 10 0.035 

C11 SLE 0 0 

C11 SV 42 0.149 

C12 CV 27 0.158 

C12 FT 9 0.053 

C12 HC 21 0.123 

C12 MD 8 0.047 

C12 ML 20 0.117 

C12 SLE 0 0 

C12 SV 86 0.503 
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Table B.4 Count and frequency of each cluster of platelets composed of each outcome. 
 

Clusters Outcomes Count Frequency 

C0 HC 743 0.055 

C0 FT 2876 0.214 

C0 S 7135 0.53 

C0 Unknown 2699 0.201 

C1 HC 608 0.058 

C1 FT 2101 0.2 

C1 S 5527 0.525 

C1 Unknown 2293 0.218 

C2 HC 305 0.04 

C2 FT 1377 0.179 

C2 S 4325 0.562 

C2 Unknown 1686 0.219 

C3 HC 636 0.165 

C3 FT 202 0.052 

C3 S 2394 0.62 

C3 Unknown 632 0.164 

C4 HC 139 0.044 

C4 FT 1224 0.385 

C4 S 1106 0.348 
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C4 Unknown 710 0.223 

C5 HC 472 0.167 

C5 FT 520 0.185 

C5 S 1190 0.422 

C5 Unknown 636 0.226 

C6 HC 18 0.008 

C6 FT 262 0.112 

C6 S 1675 0.716 

C6 Unknown 383 0.164 

C7 HC 65 0.042 

C7 FT 211 0.137 

C7 S 1020 0.662 

C7 Unknown 244 0.158 

C8 HC 57 0.055 

C8 FT 86 0.084 

C8 S 774 0.753 

C8 Unknown 111 0.108 

C9 HC 102 0.171 

C9 FT 263 0.442 

C9 S 156 0.262 

C9 Unknown 74 0.124 



 
 

164 
 

C10 HC 36 0.074 

C10 FT 62 0.127 

C10 S 350 0.719 

C10 Unknown 39 0.08 

C11 HC 3 0.011 

C11 FT 221 0.784 

C11 S 45 0.16 

C11 Unknown 13 0.046 

C12 HC 21 0.123 

C12 FT 9 0.053 

C12 S 53 0.31 

C12 Unknown 88 0.515 
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Table B.5 Up-regulated genes in each platelet cluster compared to other clusters of 
platelets. 
 

Cluster Gene avg_log2FC pct.1 pct.2 p_val p_val_a
dj 

C0 MYL9 1.4497984 0.93 0.68 0 0 

C0 FCER1G 1.3785031 0.7 0.43 0 0 

C0 PARVB 1.3686138 0.66 0.43 0 0 

C1 TMEM14
0 1.0820013 0.63 0.38 0 0 

C1 PNMA1 1.0578438 0.36 0.22 0 0 

C1 CDKN1A 1.044135 0.61 0.41 0 0 

C2 DEPP1 2.4646081 0.23 0.01 0 0 

C2 INKA1 2.3932049 0.64 0.1 0 0 

C2 FAM110
A 2.2112608 0.81 0.23 0 0 

C3 JUNB 3.2852118 0.81 0.14 0 0 

C3 JUN 3.2788035 0.79 0.12 0 0 

C3 RPL34 3.173778 0.98 0.32 0 0 

C4 HPSE 1.464646 0.6 0.15 0 0 

C4 WFDC1 1.4141081 0.35 0.06 0 0 

C4 PF4 1.3198794 1 0.93 0 0 

C5 JCHAIN 1.4655803 0.26 0.11 7.35E-
164 

9.60E-
160 

C5 TMSB10 0.3179517 0.65 0.49 7.48E-
66 

9.77E-
62 
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C5 PSME2 0.2810193 0.08 0.1 1.21E-
64 

1.58E-
60 

C6 CRBN 2.5758489 0.72 0.23 0 0 

C6 CD58 2.5490962 0.33 0.05 0 0 

C6 SRSF3 2.5017011 0.64 0.2 0 0 

C7 S100A8 2.772694 0.73 0.43 0 0 

C7 MALAT1 2.7540619 0.97 0.66 0 0 

C7 NEAT1 2.3456765 0.65 0.25 0 0 

C8 RPLP0 3.0268134 0.97 0.26 0 0 

C8 RPS6 2.8436011 0.97 0.27 0 0 

C8 RPS23 2.8411861 0.99 0.32 0 0 

C9 HBB 6.9482949 0.58 0.21 0 0 

C9 HBA2 6.5330751 0.45 0.08 0 0 

C9 HBA1 5.6765527 0.5 0.1 0 0 

C10 CD74 3.8920131 0.99 0.3 0 0 

C10 HLA-
DRA 3.4150658 0.9 0.09 0 0 

C10 CD79A 2.7783787 0.67 0.02 0 0 

C11 TPT1 2.2400798 1 0.64 1.13E-
210 

1.48E-
206 

C11 POLR2L 2.3414138 0.9 0.14 7.60E-
195 

9.93E-
191 

C11 CSRP1 1.9426621 0.8 0.09 3.92E-
171 

5.12E-
167 



 
 

167 
 

C12 MALAT1 2.7481118 1 0.66 1.09E-
122 

1.42E-
118 

C12 RPL3 2.4830703 0.97 0.29 1.54E-
117 

2.02E-
113 

C12 RPS16 2.2162231 0.98 0.26 7.54E-
106 

9.85E-
102 
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Table B.6 Consistently up/down-regulated genes in COVID-19, similar symptom 
hospitalized (SSH), sepsis, and SLE patients compared to healthy controls (HC). 
 

Overlappe
d up-

regulated 
genes 

AP2B1, ATP5F1E, ATP5MPL, BEX3, BRK1, C9orf16, CASP4, CD226, 
CYTOR, DNAJC15, DSTN, DYNLRB1, EIF1, FCER1G, GLA, GNG5, 
GPX4, GTF2A2, HSPB1, IFI27L2, IFITM2, IFITM3, ISCA1, KIFAP3, 
LCN2, MAPRE1, NAA38, NAP1L1, NDUFS5, OST4, RHEB, RHOC, 
S100A8, S100A9, SERF2, SMIM27, STMP1, TBC1D15, TIMP1, 
TMEM219, UBL5, UQCR11, XK, YWHAE, ZFAND3 

Overlappe
d down-
regulated 
genes 

ANXA1, BTG1, BTG2, CABP5, CD3E, CD48, CD52, CD7, COMMD6, 
CORO1A, CRIP1, CXCR4, DDX5, DUSP1, EEF1A1, EEF1B2, EEF1D, 
EEF2, EIF2S3, EIF3E, EIF3F, EIF3H, EIF3K, EIF3L, ETS1, FAU, FOS, 
GIMAP7, GRHL1, GTPBP2, HNRNPA1, HNRNPDL, HSPA8, ICAM3, 
IDS, IER2, IL32, IL7R, JUN, JUNB, KLF2, LCK, LDHB, LEF1, 
LEPROTL1, LIMD2, LINC00861, LITAF, LSP1, LTB, MAL, MALAT1, 
MRFAP1, NACA, NOSIP, NPM1, ODC1, PABPC1, PFDN5, PTPRC, 
RACK1, RGCC, RPL10, RPL10A, RPL11, RPL12, RPL13, RPL14, 
RPL17, RPL18, RPL18A, RPL19, RPL22, RPL23A, RPL24, RPL26, 
RPL28, RPL29, RPL3, RPL30, RPL32, RPL34, RPL35, RPL36, RPL37, 
RPL39, RPL4, RPL5, RPL6, RPL7, RPL7A, RPL8, RPLP0, RPLP2, 
RPS12, RPS13, RPS14, RPS15, RPS15A, RPS16, RPS18, RPS19, RPS2, 
RPS21, RPS23, RPS24, RPS25, RPS26, RPS27A, RPS28, RPS3, RPS3A, 
RPS4X, RPS5, RPS6, RPS7, RPS8, RPSA, SARAF, SLC25A6, SNRPD2, 
SSR2, TCF7, TNS1, TOMM20, TOMM7, TSPAN18, TUBA1C, ZFP36L2 
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