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Abstract

Recent work has considerably advanced the definition, identification and estimation of controlled 

direct, and natural direct and indirect effects in causal mediation analysis. Despite the various 

estimation methods and statistical routines being developed, a unified approach for effect 

estimation under different effect decomposition scenarios is still needed for epidemiologic 

research. G-computation offers such unification and has been used for total effect and joint 

controlled direct effect estimation settings, involving different types of exposure and outcome 

variables. In this study, we demonstrate the utility of parametric g-computation in estimating 

various components of the total effect, including (i) natural direct and indirect effects, (ii) standard 

and stochastic controlled direct effects, and (iii) reference and mediated interaction effects, using 

Monte Carlo simulations in standard statistical software. For each study subject, we estimated 

their nested potential outcomes corresponding to the (mediated) effects of an intervention on the 

exposure wherein the mediator was allowed to attain the value it would have under a possible 

counterfactual exposure intervention, under a pre-specified distribution of the mediator 

independent of any causes, or under a fixed controlled value. A final regression of the potential 

outcome on the exposure intervention variable was used to compute point estimates and bootstrap 

was used to obtain confidence intervals. Through contrasting different potential outcomes, this 

analytical framework provides an intuitive way of estimating effects under the recently introduced 

3- and 4- way effect decomposition. This framework can be extended to complex multivariable 

and longitudinal mediation settings.
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Introduction

Recent work has considerably advanced the definition, identification and estimation of 

different controlled or natural effects in causal mediation analysis. As a result, various 

estimation methods such as linear structural equation modeling, outcome and mediator 
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regression-based methods, parametric g-computation, inverse-probability-weighted (IPW) 

fitting of marginal structural models (MSMs), and sequential g-estimation [1,2] have been 

applied to mediation settings. With some notable exceptions [3–5], relatively few 

approaches can incorporate general types of mediator and outcome variables. The 

simulation-based approach introduced by Imai et al. [3] and the regression-based approach 

proposed by Valeri & VanderWeele [5] are increasingly popular approaches; the former 

may be unfamiliar to epidemiologists, and the latter requires different regressions or 

approximations for different mediator and outcome types. Meanwhile, g-computation [1], as 

an alternative for computing marginal effects over IPW fitting of MSM [6], holds promise to 

provide a unified framework for effect estimation in causal mediation analysis, especially 

given its capability in dealing with time-varying exposure and confounding [4,7]. However, 

a didactic demonstration of the application of g-computation in causal mediation analysis, 

reflecting recent decompositions for mediation and interaction, is lacking.

In this paper, we demonstrate the utility of (parametric) g-computation in estimating various 

components of the total effect, such as (i) natural direct and indirect effects, (ii) standard and 

stochastic controlled direct effects, and (iii) reference and mediated interactions, using 

standard statistical software. We focus on marginal effects (standardized over covariates). 

The current approach extends the previous work on g-computation demonstration for total 

effect [6] and the gformula package (mediation option) in Stata [4] by showing the actual 

steps in estimation and incorporating estimation for various component effects under 2-, 3- 

and 4-way effect decomposition [8,9]. The paper is organized as follows: we will first 

review the definition and identification criteria for different effects in mediation context. 

Then we will review the g-computation algorithm and introduce steps for mediation 

analysis. After an illustrative example using a partially simulated data set, we will discuss 

the strengths and limitations of g-computation and its relation to other existing estimation 

procedures. Readers familiar with the background material on mediation analysis under the 

potential outcomes framework can go directly to g-computation steps section.

Notation and definitions

Let X denote the exposure of interest, Y the outcome of interest, M the mediator of interest, 

and Z a set of covariates not affected by the exposure but which are assumed to be sufficient 

for confounding control for total, direct and indirect effects estimation. Throughout, we 

assumed X preceded M, which preceded Y. Let Yx and Mx denote respectively the potential 

values of the outcome and mediator that would have occurred had exposure X been set, 

possibly counter to fact, to a specific value x. Similarly, let Yxm denote the potential value of 

Y that would have occurred had X and M been set, possibly counter to fact, to x and m 

respectively. We use YxMx* to express potential outcome value had the exposure X been set 

to x and M to Mx*. Let x (index) and x* (reference) denote two values of the exposure we 

wish to compare, and m (index) and m* (reference) denote two controlled values of the 

mediator we wish to compare.

Total effect (TE) compares exposure level x to x*, while allowing the mediator to obtain its 

natural value under each exposure level. Thus, by assuming generalized consistency [10], 

TE can also be defined as E[YxMx − Yx*Mx*]. TE can be decomposed into different types of 
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component effects. There are two-way, three-way, and four-way decompositions of the total 

effect as presented in Table 1 [8,9,11,12]. The counterfactual definitions are listed in Table 2 

(left column). The choice of effect decomposition should be guided by substantive research 

questions (Table 3).

There are four types of “direct” effects. The standard controlled direct effect (CDE) 

compares exposure level x to x* while fixing the mediator to a specific level. The CDE 

estimates the effect of X on Y while fixing M to m for every individual in the population and 

it can be different for different levels of m [11,12]. The stochastic CDE (CDEsto) compares 

exposure level x to x* while randomizing the mediator to a pre-specified distribution M’. 

Accordingly, the stochastic CDE subsumes both the standard CDE and the stochastic 

mediation contrast [13] in that the standard CDE corresponds to M’ being a constant m for 

the total population (i.e., full intervention) while the stochastic mediation contrast 

corresponds to M’ being a constant for a subset of the population and being the observed 

distribution for the rest (i.e., partial intervention).

The average pure direct effect (PDE) compares exposure level x to x* while the mediator M 

is set to the natural value it would have attained under the reference level x* of exposure 

(i.e., Mx*). Accordingly, the average total direct effect (TDE) differs from PDE in that the 

mediator M is set to the natural value it would have attained under the index level x of 

exposure (i.e., Mx). Direct effects are relative to the mediator M of interest, that is, they are 

effects through alternative pathways other than through M.

The average pure indirect effect (PIE) compares mediator level Mx to Mx* while setting 

exposure to reference level x*. The average total indirect effect (TIE) differs from the PIE in 

that the exposure is set to index level x.

Reference interaction effect (RIE) and mediated interaction effect (MIE) capture the effect 

of X on Y due to interaction only and the effect of X on Y due to both interaction and 

mediation respectively [9]. RIE and MIE are sometimes combined to reflect the effect of X 

on Y due to overall interaction and termed “portion attributable to interaction” (PAI) [9].

Assumptions for identification and estimation

To identify and estimate the effect decomposition quantities, we invoke the stable unit 

treatment value assumption (SUTVA) [1,15], and assumptions of consistency [16], 

conditional exchangeability (no-uncontrolled-confounding), and positivity [17]. The 

conditional exchangeability assumption for mediation analysis includes the following 

[12,18]: (i) the effect of the exposure X on the outcome Y is unconfounded conditional on a 

set Z of measured covariates; (ii) the effect of the mediator M on Y is unconfounded 

conditional on both X and Z; (iii) the effect of X on M is unconfounded conditional on Z. For 

identifying standard CDE, (i) and (ii) are sufficient but for stochastic CDE, all three 

assumptions are needed. Successful randomization of the exposure will support the 

assumption of no uncontrolled confounding of the exposure-mediator and exposure-outcome 

relations but will not guarantee the absence of uncontrolled confounding of the mediator-

outcome relation [19]. In the presence of possible violation of this assumption, sensitivity 

analysis are needed [3,20]. To identify natural effects, a fourth conditional exchangeability 
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assumption is needed: (iv) none of the mediator-outcome confounders are affected by 

exposure. Assumption (iv) is known as the cross-world independence assumption [21] 

because it requires that conditional on Z, the mediator that would have been observed in a 

world under X=x* is independent of the outcome that would have been observed in a world 

under X=x (i.e. Mx* ⫫ YxMx). This assumption is problematic because these two variables 

Mx* and YxMx can never be observed together [18,22]. Recent research proposed 

identification criteria [23] and effect decomposition [18] aimed at circumventing the 

violation of this fourth assumption. However, this issue is beyond the scope of this article. In 

addition, we assume no selection bias and measurement error. Under the above assumptions, 

different types of effect can be nonparametrically identified and estimated using the 

empirical analogs listed in Table 2 (right column). For the current paper, we adopted a fully 

parametric approach, i.e., positing parametric (regression) models for each expectation in 

these empirical analogs to estimate their parameters from the observed data and then 

integrating over the covariate and/or mediator distribution [24]. We further assumed no 

model misspecification.

G-computation

G-computation algorithm was first introduced by Robins in 1986 [1] to estimate the causal 

effect of a time-varying exposure in the presence of time-varying confounders that are 

affected by exposure, a scenario where traditional regression-based methods would fail. In 

recent years, several didactic examples were given in the literature [6,25,26], promoting the 

use of this causal analytic technique. Increasingly, more studies have applied this 

methodology in estimating the effect of dynamic treatment regimes [27,28] or projecting the 

impact of hypothetical interventions [29–33]. In a simple setting with a single-time exposure 

and an outcome, g-computation can be seen as the generalization of standardization. 

Accessible examples of g-computation with detailed discussion of its strengths and 

limitations can be found elsewhere [2,4,6,30].

G-computation steps in causal mediation analysis

The g-computation steps have been summarized in Figure 1. Step 1 involves obtaining the 

parameters of the assumed covariate distributions, and fitting the assumed models for the 

mediator (M model) and the outcome (Y model) using observed data. The key covariates 

needed for the M model are confounders of the exposure-mediator relation. The key 

covariates needed for the Y model are confounders of the exposure-outcome relation and 

mediator-outcome relation. To avoid simulating the covariate set Z, one can replace steps 1a 

and 2a with resampling (Figure 1). Step 2 entails simulating the covariate set Z (step 2a), an 

intervention variable X (step 2b), and the potential mediator (step 2c), and outcome Y (step 

2d) sequentially for J (J can be as large as computationally feasible) copies of the original 

sample. The simulation repetition done here is to reduce Monte Carlo simulation error. The 

intervention variable X should be distinguished from the observed exposure variable as the 

intervention X and the simulated covariates are marginally independent of each other. In step 

2c, we simulate each potential mediator as a function of the simulated covariates and 

intervention X from the previous steps (2a and 2b), using the parameters obtained from the 

M model in step 1b. Similarly, in step 2d, we simulate a potential outcome variable that 

Wang and Arah Page 4

Eur J Epidemiol. Author manuscript; available in PMC 2016 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



corresponds to each specific type of effect as a function of the simulated covariates, 

intervention, and mediator from the previous steps, using the parameters obtained from the Y 

model in step 1c. Step 3 involves regressing each different potential outcome variable on the 

intervention variable X to obtain estimates of each marginal effect using the pooled data 

with J copies of the original sample. Repeat step 2–3 on K (usually 200 or more) 

bootstrapped samples taken at random with replacement from the original data. The Wald 

type 95% confidence interval (CI) was calculated as: point estimate ± 1.96 × SD, where SD 

was the standard deviation of the K resultant point estimates from the final regression in the 

third step.

Illustration

We used a directed acyclic graph (DAG) [34] to represent the data generating process for the 

illustration example (Figure 2). We used the India sample from the World Health Survey 

(WHS) [35]. We used all the observed covariates to simulate exposure smoking, mediator 

body mass index (BMI, 5-unit increase), and outcome composite health score (0–100) 

sequentially according to the data generating process shown in Figure 2. Covariates for 

confounding control included age, gender, education, urbanicity, and depression. Detailed 

description for generating this partially simulated data set can be found in the supplementary 

materials. In the illustrative example, we will focus on the interpretations for PDE and TIE 

from the most common decomposition used in epidemiology and the interpretations for 

component effects based on the recently introduced 4-way decomposition. Since smoking 

was binary, we used 1 to represent “yes” and 0 “no”. A second illustrative example using 

binary exposure, mediator and outcome was included in the supplementary materials. All 

analyses were done using SAS version 9.4 (SAS Institute Inc., Cary, NC) and the 

accompanying SAS code can be found in the supplementary materials.

To estimate different component effects of smoking on health, we implemented the 

following steps:

Step 1. Obtaining empirical parameters

(1a) We obtained the marginal expectation of each variable except the outcome, 

and the standard deviation for the continuous age variable.

(1b) The mediator BMI was regressed on smoking, age, gender, education, 

urbanicity and depression to obtain the regression coefficients and root mean 

square error for the linear M model.

(1c) The outcome, overall health score, was then regressed on smoking, BMI, 

smoking BMI, age, gender, education and depression to obtain the regression 

coefficients and root mean square error for the linear Y model.

Step 2. Simulating the potential mediators and outcomes

(2a) We created 1000 copies of the original sample and simulated age, gender, 

education, urbanicity, and depression that followed the same distribution as 

the observed variables.
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(2b) We simulated a smoking intervention variable (X) that followed the observed 

smoking prevalence but was marginally independent of all simulated 

covariates.

(2c) We simulated each potential BMI variable as a function of the smoking 

intervention, age, gender, education, urbanicity and depression (Table 4, 

simulating M), using the regression coefficients and root mean square error 

(RMSE) from the M model fit in (1b).

(2d) We simulated a potential health score variable for each type of effect as a 

function of the smoking intervention, potential BMI from (2c), product term 

between smoking intervention and potential BMI, age, gender, education and 

depression (Table 4, simulating Y), using the regression coefficients and 

RMSE from the Y model fit in (1c).

We will use PDE and TIE as examples to explain steps (2c) and (2d) further. 

For binary exposure, recall that PDE compares X=1 to X=0 while setting the 

mediator M to M0 (natural value under reference exposure). In (2c), we 

simulated the potential BMI variable (M0) as a function of non-smoking 

(setting X=0 in the equation for simulating M) and other determinants of BMI. 

Next, we simulated the potential health score variable (YPDE) as a function of 

the smoking intervention variable (X), potential BMI variable (M0) from (2c), 

and other determinants of health in (2d). On the other hand, TIE compares 

mediator level M1 to M0 while setting exposure to index level 1. In (2c), we 

simulated the potential BMI variable (Mx) as a function of smoking 

intervention (setting X=x in the equation for simulating M) and other 

determinants of BMI. Then, we simulated the potential health score variable 

(YTIE) as a function of smoking (setting X=1 in the equation for simulating Y), 

potential BMI variable (Mx) from (2c), and other determinants of health in 

(2d). In this way, the potential BMI variable (Mx) transmitted the effect of 

smoking intervention to health.

Step 3. Fitting final marginal structural models (MSMs)

We regressed each different potential health score variable on the smoking intervention 

to obtain point estimates of each marginal effect using the pooled sample. We repeated 

step 2–3 on 200 bootstrapped samples of the same size taken at random with 

replacement from the original data to obtain Wald type 95% CIs.

Results from the illustrative example were presented in Table 5. This example is for 

illustration purpose and thus the results were not intended for quotation. Estimates followed 

the effect decompositions as described in Table 1. Smoking had an overall negative impact 

on health (TE: −0.96, 95% CI: −1.79, −0.13), but the majority of this impact was through 

pathways other than changing BMI (PDE: −0.70, 95% CI: −1.54, 0.14). When BMI was 

fixed at 24 for everyone, smoking did not appear to affect health directly (CDE: 0.27, 95% 

CI: −0.95, 1.50). In a hypothetical intervention where BMI was no longer affected by 

smoking and other covariates, smoking still had a negative impact on health (CDEsto: −0.81, 

95% CI: −1.63, 0.02). The impact of smoking on health that was due to interaction with 
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BMI (RIE: −0.99, 95% CI: −1.71, −0.26) was much larger than the part that was due to both 

mediation and interaction (MIE: −0.14, 95% CI: −0.27, −0.01). The presence of such 

smoking-BMI interaction contributed to the difference seen when comparing CDE to PDE 

and CDEsto.

Discussion

In this article we demonstrated the utility of parametric g-computation in estimating various 

marginal effects under different and detailed effect decompositions as well as stochastic 

controlled direct effects, using Monte Carlo simulations in standard statistical software. To 

our knowledge, this is the first use of g-computation for 3- and 4- way decomposition of 

effects recently introduced by VanderWeele [9]. Our approach yielded similar results as 

those obtained from VanderWeele’s approach [9] (online supplementary materials). 

However, marginal (standardized) effect measures obtained via g-computation approach are 

not conceptually equal to the conditional (on covariates) effect measures obtained from the 

latter approach and results from the two approaches may differ [36]. Alternative imputation 

[37] or simulation [3] based methods are also available for common mediation parameters.

G-computation has several strengths. It uses models for the outcome and the mediator, 

which produces more efficient estimates (with narrower confidence intervals) than the 

weighting approaches that use models for the mediator and/or the exposure [37,38]. It can be 

used to estimate various types of effect of interest, incorporate nonlinearities and exposure-

covariate and mediator-covariate interactions, and deal with general types of outcome, 

exposure and mediator. This simulation-based approach can be used to estimate various 

effects on both difference and ratio scales.

However, g-computation is not without its limitations. The parametric g-computation 

method applied in mediation settings, like the general g-formula, relies on a correctly 

specified model for the outcome. For natural effects specifically, it additionally requires that 

the model for the mediator is correctly specified, as with other approaches published 

previously [38–42]. When such parametric distribution for M is in doubt, a distribution-free 

approach with regard to the mediator [43] can be used. Alternative approaches are to use 

non-parametric g-computation method that combines bootstrapping and simulation as 

suggested in Imai et al. [3] or implement a doubly robust estimator that requires at least one 

of the model for exposure and mediator being correctly specified [37]. In addition, the 

computation time depends on the sample size and the number of covariates. As these two 

numbers increase, a random subset of the sample can be selected to perform the Monte 

Carlo simulation [4].

G-computation in mediation analysis, especially parametric g-formula implemented via 

Monte Carlo simulation, can be seen as a special application of the longitudinal time-

varying g-computation formula [1,7]. In this case, both post-baseline exposure and 

confounders that are affected by exposure can be seen as mediators. The steps are similar in 

simulating the baseline confounders and exposure intervention first and then the 

consequences of the exposure following the data structure represented in a specific DAG, 

though additional assumptions are needed in the mediation setting. G-computation as a 
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unifying and flexible framework will gain popularity with the increase in applications of 

mediation analysis to answer mechanistic questions about either contextual or individual 

level causes [13,44,45].

By showing the steps for g-computation in estimating different quantities of interest in 

causal mediation analysis, we hope to encourage a wider audience of applied researchers to 

implement this framework, using software packages of their choice. Given the growing 

interest in adopting and applying complex systems approaches to examine complex disease 

etiologies, this method, especially with its simulation component, will be an important 

intermediate step towards this journey [46].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Steps for G-computation marginal structural model (G-comp MSM) in causal mediation 

analysis. Let Z denote a set of covariates, X denote exposure, M denote mediator, and Y 

denote outcome of interest. Variables in step 1 are observed variables whereas variables in 

step 2 are all simulated variables. Step 1a and 2a combined can be replaced by resampling.
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Figure 2. 
Directed acyclic graph (DAG) representing the data generating process for both illustrative 

examples. X, M, and Y represent the exposure smoking, mediator body mass index, and 

outcome composite health score. Z represents a set of exposure-mediator, exposure-outcome 

and mediator-outcome confounders that includes age, gender, education, urbanicity, and 

depression.
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Table 1

Summary of effect decomposition in causal mediation analysisa

N-way
decomposition Counterfactual definition (individual level)

2-way TEb = PDE + TIE = (YxMx* − Yx*Mx*) + (YxMx − YxMx*)

= TDE + PIE = (YxMx − Yx*Mx) + (Yx*Mx − Yx*Mx*)

= CDE + PE = (Yxm − Yx*m) + [(Yx − Yx*) − (Yxm − Yx*m)]

3-way TE = PDE + MIE + PIE = (YxMx* − Yx*Mx*) + (YxMx − YxMx* − Yx*Mx + Yx*Mx*) + (Yx*Mx − Yx*Mx*)

= (YxMx* − Yx*Mx*) + (Yxm − Yxm* − Yx*m + Yx*M*)(Mx − Mx*) + (Yx*Mx − Yx*Mx*)

= CDE + PAI + PIE = (Yxm − Yx*m) + (Yxm − Yxm* − Yx*m + Yx*m*)(Mx) + (Yx*Mx − Yx*Mx*)

4-way TE = CDE + RIE + MIE + 
PIE

= (Yxm − Yx*m) + (Yxm − Yxm* − Yx*m + Yx*m*)(Mx*) + (Yxm − Yxm* − Yx*m + Yx*m*)(Mx − Mx*) + 
(Yx*Mx − Yx*Mx*)

a
Table adapted from VanderWeele (2014) Tables 5–6 [9].

b
TE: total effect, PDE: pure direct effect, TIE: total indirect effect, TDE: total direct effect, PIE: pure indirect effect, CDE: controlled direct effect 

(standard), PE: portion eliminated, MIE: mediated interaction effect (referred to as “INTmed” by VanderWeele), PAI: portion attributable to 

interaction, RIE: reference interaction effect (referred to as “INTref” by VanderWeele).
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Table 2

Definition and empirical analog of total effect and component effectsa

Effect Counterfactual definition Empirical analogb

TEc E[Yx − Yx*]d ∑z∑m{E (Y|x, m, z) P (m|x, z) − E (Y|x*, m, z) P (m|x*, z)}P (z)e

PDE E[YxMx* − Yx*Mx*] ∑z∑m{E (Y|x, m, z) − (Y|x*, m, z)}P (m|x*, z) P (z)f

TIE E[YxMx − YxMx*] ∑z∑m E (Y|x, m, z){P (m|x, z) − P (m|x*, z)}P (z)

TDE E[YxMx − Yx*Mx] ∑z∑m{E (Y|x, m, z) − (Y|x*, m, z)}P (m|x, z) P (z)

PIE E[Yx*Mx − Yx*Mx*] ∑z∑m E (Y|x*, m, z){P (m|x, z) − P (m|x*, z)}P (z)f

CDEM=m* E[Yxm* − Yx*m*] ∑z{E (Y|x, m*, z) − E (Y|x*, m*, z)}P (z)

CDEsto E[YxM′ − Yx*M′] ∑z∑m{E (Y|x, m, z) − E (Y|x*, m, z)}P (m′) P (z)

RIE E[(Yxm − Yxm* − Yx*m + Yx*m*)(Mx*)] ∑z∑m{E (Y|x, m, z) − E (Y|x, m*, z) − E (Y|x*, m, z) + E (Y|x*, m*, z)} P (m|x*, z) P (z)

MIE E[(Yxm − Yxm* − Yx*m + Yx*m*)(Mx − 
Mx*)]

∑z∑m{E (Y|x, m, z) − E (Y|x, m*, z) − E (Y|x*, m, z) + E (Y|x*, m*, z)} {P (m|x, z) − P 
(m|x*, z)}P (z)

PAI E[(Yxm − Yxm* − Yx*m + Yx*m*)(Mx)] ∑z∑m{E (Y|x, m, z) − E (Y|x, m*, z) − E (Y|x*, m, z) + E (Y|x*, m*, z)} P (m|x, z) P (z)

a
Y: outcome, X: exposure, M: mediator, Z: covariates; x and m represent the index values whereas x* and m* represent the reference values.

b
Under the stable unit treatment value assumption, consistency, conditional exchangeability, positivity, different types of effect can be identified 

and estimated using the empirical analogs We use E (Y|x, m, z) as a shorthand for E (Y|X = x, M = m, Z = z), and P (m|x, z) as a shorthand for P (M 
= m|X = x, Z = z).

c
E: total effect, PDE: pure direct effect, TIE: total indirect effect, TDE: total direct effect, PIE: pure indirect effect, CDE: controlled direct effect 

(standard), CDEsto: stochastic controlled direct effect, RIE: reference interaction effect (referred to as “INTref” by VanderWeele), MIE: mediated 

interaction effect (referred to as “INTmed” by VanderWeele), PAI: portion attributable to interaction.

d
Effects are defined as risk differences here but other measures of effects are possible (risk ratio, odds ratio etc.).

e
For continuous M and Z, summations are replaced by integrals and the probability functions by appropriate density functions

f
These two expressions are known as the mediation formula [47].
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Table 3

Potential research questions related to various effects under effect decomposition

Effect Research question

TEa Overall, to what extent does X cause Y?

PDE In particular, to what extent does X cause Y via pathways other than through M?

TIE In particular, to what extent does X cause Y via M (i.e. due to X affecting M and subsequently, M affecting Y) and the possible 
interaction between X and M in affecting Y? In other words, the effect of exposure that “ would be prevented if the exposure did not 
cause the mediator” (i.e. the portion of the effect for which mediation is “necessary”) [19,47].

TDE In particular, to what extent does X cause Y via pathways other than through M, allowing M to boost up or tune down such effect at 
the same time?

PIE In particular, to what extent does X cause Y via M only (i.e. due to X affecting M and subsequently, M affecting Y), not accounting for 
the possible interaction between X and M? In other words, the effect that the exposure would have had if “its only action were to 
cause the mediator” (i.e. the portion of the effect for which mediation is “sufficient”) (i.e. the portion of [19,47].

CDE What would be the effect of X on Y, when fixing M at a specific value for everyone in the population?

CDEsto What would be the effect of X on Y, when allowing M to attain certain controlled distribution (via intervention) in the population?

RIE What would be the effect of X on Y that is due to interaction between X and M only?

MIE What would be the effect of X on Y that is due to both interaction between X and M and the fact that X causes M?

PAI What would be the effect of X on Y that is due to interaction between X and M, regardless whether X causes M?

a
TE: total effect, PDE: pure direct effect, TIE: total indirect effect, TDE: total direct effect, PIE: pure indirect effect, CDE: controlled direct effect 

(standard), CDEsto: stochastic controlled direct effect, RIE: reference interaction effect (referred to as “INTref” by VanderWeele), MIE: mediated 

interaction effect (referred to as “INTmed” by VanderWeele), PAI: portion attributable to interaction.
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Table 4

Equations used to simulate potential mediators and outcomes in step 2 of the G-computation marginal 

structural model for the illustrative examplea

M model and Y model from step 1b:

E (M|x, z; α) = αM + αX · x + αZ · z

E (M|x, m, z; β) = βY + βX · x + βM · m + βXM · x · m + βZ · z

Effect Simulating Mc Simulating Yc

TEd Mx = αM + αX · x + αZ · z + εM
e YTE = βY + βX · x + βM · mx + βXM · x · mx + βZ · z + εY

e

PDE M0 = αM + αX · 0 + αZ · z + εM YPDE = βY + βX · x + βM · m0 + βXM · x · m0 + βZ · z + εY

TIE Mx = αM + αX · x + αZ · z + εM YTIE = βY + βX · 1 + βM · mx + βXM · 1 · mx + βZ · z + εY

TDE M1 = αM + αX · 1 + αZ · z + εM YTDE = βY + βX · x + βM · m1 + βXM · x · m1 + βZ · z + εY

PIE Mx = αM + αX · x + αZ · z + εM YPIE = βY + βX · 0 + βM · mx + βXM · 0 · mx + βZ · z + εY

CDEM=m* M* = 4.8f YCDE = βY + βX · x + βM · m* + βXM · x · m* + βZ · z + εY

CDEsto M′ = E (M) + εM YCDEsto = βY + βX · x + βM · m′ + βXM · x · m′ + βZ · z + εY

RIE M0 = αM + αX · 0 + αZ · z + εM YRIE
g = βY + 0 · x + 0 · mx + βXM · x · (m0 − m*) + βZ · z + εY

MIE Mmed
h = αX · x + εM YMIE

g = βY + 0 · x + 0 · mx + βXM · x · mmed + βZ · z + εY

PAI M1 = αM + αX · 1 + αZ · z + εM YPAI
g = βY + 0 · x + 0 · mx + βXM · x · (m1 − m*) + βZ · z + εY

a
Exposure: smoking (1=yes, 0=no); mediator: body mass index (5-unit increase); outcome: composite health score; covariates: age, gender, 

education, urbanicity, depression.

b
Variables used to fit the M model and Y model in step 1 were observed variables.

c
Lower case “x”, “z”, and “mx” represented specific values of the random variables intervention “X”, simulated covariate set “Z”, and potential 

mediator “Mx” respectively and the values can differ for different individuals. Intervention “X” was independent of the simulated covariate set “Z”.

d
TE: total effect, PDE: pure direct effect, TIE: total indirect effect, TDE: total direct effect, PIE: pure indirect effect, CDE: controlled direct effect 

(standard), CDEsto: stochastic controlled direct effect, RIE: reference interaction effect (referred to as “INTref” by VanderWeele), MIE: mediated 

interaction effect (referred to as “INTmed” by VanderWeele), PAI: portion attributable to interaction.

e
The root mean square error (RMSE) from the M model and the Y model in step 1 respectively.

f
The mediator was fixed at 4.8 (BMI=24).

g
To simulate YRIE, YMIE, and YPAI, we assigned zero for the coefficients for random variables intervention “X” and the potential mediator 

“Mx” but not the coefficients for the product term between these two variables to mimic “de-activating” the direct and indirect path from X to Y, 

leaving only a specific type of “interaction” between X and M to transmit the effect of X to Y.

h
The mediated interaction captures the interaction between X and a version of M that is due to X only. Thus, to simulate Mmed, the mediator M 

responds to no other determinants of M but X.
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Table 5

Effect estimate (95% Confidence Interval) for the illustrative examplea using g-computation of marginal 

structure modelsb (N=5326)

Effect b (95% CI)

Total Effect (TE) −0.96 (−1.79, −0.13)

Pure Direct Effect (PDE) −0.70 (−1.54, 0.14)

Total Indirect Effect (TIE) −0.26 (−0.42, −0.10)

Total Direct Effect (TDE) −0.87 (−1.69, −0.04)

Pure Indirect Effect (PIE) −0.12 (−0.22, −0.02)

Controlled Direct Effectc (CDE) 0.27 (−0.95, 1.50)

Stochastic Controlled Direct Effectd (CDEsto) −0.81 (−1.63, 0.02)

Reference Interaction Effect (RIE) −0.99 (−1.71, −0.26)

Mediated Interaction Effect (MIE) −0.14 (−0.27, −0.01)

Portion Attributable to Interaction (PAI) −1.14 (−1.96, −0.32)

a
Exposure: smoking (1=yes, 0=no); mediator: body mass index (BMI, 5-unit increase); outcome: composite health score; covariates: age, gender, 

education, urbanicity, depression.

b
Effect estimates were based on 1000 simulation replicates and confidence intervals were based on 200 bootstrapped samples paired with 200 

simulation replicates.

c
The mediator was fixed at 4.8 (BMI=24) for every individual in the sample.

d
The mediator was allowed to obtain a certain distribution of M’ where the mediator has the mean (mean BMI=20.7) and the variability of the 

observed mediator but was independent of its determinants (exposure and covariates).
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