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Abstract

Background: Conventional scale production of small batches of PET tracers (e.g. for
preclinical imaging) is an inefficient use of resources. Using O-(2-[18F]fluoroethyl)-L-
tyrosine ([18F]FET), we demonstrate that simple microvolume radiosynthesis techniques
can improve the efficiency of production by consuming tiny amounts of precursor, and
maintaining high molar activity of the tracers even with low starting activity.

Procedures: The synthesis was carried out in microvolume droplets manipulated on a
disposable patterned silicon “chip” affixed to a heater. A droplet of [18F]fluoride
containing TBAHCO3 was first deposited onto a chip and dried at 100 °C. Subsequently,
a droplet containing 60 nmol of precursor was added to the chip and the fluorination
reaction was performed at 90 °C for 5 min. Removal of protecting groups was
accomplished with a droplet of HCl heated at 90 °C for 3 min. Finally, the crude product
was collected in a methanol-water mixture, purified via analytical-scale radio-HPLC and
formulated in saline. As a demonstration, using [18F]FET produced on the chip, we
prepared aliquots with different molar activities to explore the impact on preclinical PET
imaging of tumor-bearing mice.

Results: The microdroplet synthesis exhibited an overall decay-corrected radiochemical
yield of 55 ± 7% (n = 4) after purification and formulation. When automated, the
synthesis could be completed in 35 min. Starting with < 370 MBq of activity, ~ 150
MBq of [18F]FET could be produced, sufficient for multiple in vivo experiments, with
high molar activities (48–119 GBq/μmol). The demonstration imaging study revealed the
uptake of [18F]FET in subcutaneous tumors, but no significant differences in tumor uptake
as a result of molar activity differences (ranging 0.37–48 GBq/μmol) were observed.

Conclusions: A microdroplet synthesis of [18F]FET was developed demonstrating low
reagent consumption, high yield, and high molar activity. The approach can be expanded
to tracers other than [18F]FET, and adapted to produce higher quantities of the tracer
sufficient for clinical PET imaging.

Keywords: Radiochemistry, Microfluidics, FET, Amino acid imaging, Droplet synthesis, Molar
activity, Pre-clinical imaging, Automation, Droplet microreactor
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Background
Positron emission tomography (PET) is a non-invasive molecular imaging tool based

on the use of positron-emitting isotopes to track the position and dynamics of biologic-

ally relevant molecules in the body. PET provides high-sensitivity quantitative

visualization of physiological parameters in vivo, such as metabolic rate, receptor dens-

ity, gene expression, or blood flow, which makes it a versatile and potent tool for clin-

ical diagnosis, treatment planning, treatment monitoring, as well as research (Aboagye

et al. 2001; Ambrosini et al. 2009; Ciernik et al. 2003; Kitson et al. 2009; Phelps 2000).

Safe preparation of various target-specific PET tracers is a complex and expensive

process, requiring skilled personnel operating expensive automated radiosynthesis

equipment within radiation-shielded “hot cells”. With conventional apparatus, in which

the chemistry is carried out in mL volume scales, relatively high reagent amounts (1 s

to 10s of mg) are needed to achieve a sufficient concentration for good reaction yield

in a short time, and for [18F]fluoride chemistry high amounts of radioactivity (10s of

GBq) are needed to achieve high molar activity (Sergeev et al. 2018a). These factors

contribute to inefficient use of resources in the preparation of small batches of tracers,

such as needed for preclinical imaging, or for a single clinical PET scan, where much of

the prepared batch would be wasted.

On the other hand, emerging microfluidic radiosynthesis methods require much

lower amounts of reagents and radionuclide, and through substantially reduced instru-

ment size and cost, have the potential to significantly reduce costs and resources

needed for radiopharmaceutical production. Microscale reactions also tend to be faster

and, due to the low precursor mass used, the crude products can be purified with sim-

pler methods (e.g. analytical-scale high-performance liquid chromatography (HPLC) or

cartridge instead of semi-preparative HPLC). These advantages are especially relevant

for smaller batch production of PET tracers, but can also benefit the production of lar-

ger batches (Chao et al. 2018b).

Of the several different microfluidic approaches reported in the last decade (Elizarov

2009; Keng and van Dam 2015; Miller et al. 2010; Pascali and Matesic 2016; Rensch et al.

2013), microvolume reaction approaches offer the greatest potential for reagent and in-

strument reductions (Dooraghi et al. 2013; Elizarov et al. 2010; Iwata et al. 2018; Keng

et al. 2016; Lebedev et al. 2012; Wang et al. 2017). A particular configuration we are ex-

ploring is performing reactions in microliter-sized droplets on simple Teflon-coated sili-

con microfluidic chips, which has advantages of simple operation, low-cost disposable

chips, and a compact system size, which reduces the necessary shielding. Previous work

has shown application of this method for the rapid and efficient synthesis of [18F]FDG

and [18F]Fallypride (Wang et al. 2017). In this paper, we demonstrate further versatility of

this approach by adapting the macroscale synthesis of O-(2-[18F]fluoroethyl)-L-tyrosine

([18F]FET) to this platform, and then use the produced [18F]FET for pre-clinical imaging.

[18F]FET is an amino acid PET probe (Wester et al. 1999), finding use in glioma im-

aging (Langen et al. 2017) as well as providing a route for protein labeling with

fluorine-18 (Yanai et al. 2019). The radiosynthesis of [18F]FET from the commercially

available precursor (2S)-O-(2′-tosyloxyethyl)-N-trityl-tyrosine-tert-butyl ester (TET)

consists of a radiofluorination step followed by a hydrolysis step. The conventional syn-

thesis typically results in good radiochemical yields (RCYs), ranging from 19 to 64%

(Bourdier et al. 2011; Bouvet et al. 2012; Hamacher and Coenen 2002; Iwata et al. 2018;
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Lakshminarayanan et al. 2016). Some efforts have been made to carry out the synthesis in

microfluidic format. Bouvet et al. performed the reaction in a commercial flow radio-

chemistry system using either microwave or heat activation of the reaction. An RCY of

50% was obtained with only 59 nmol of precursor in a 30 μL reaction in < 45min (Bouvet

et al. 2012), but to scale to larger production amounts (e.g., > 200MBq) would require

longer synthesis times and higher precursor amounts. Iwata et al. performed batch synthe-

sis in 10–20 μL volumes (180–350 nmol of precursor) within a small glass vial by first

loading a larger volume of methanolic solution containing [18F]fluoride and phase transfer

catalyst, evaporating the solvent, then adding the small volume of precursor solution and

performing the reaction (Iwata et al. 2018). Yields of up to 64 ± 11% (n = 3 ~ 6) were re-

ported at scales of < 400MBq. An automated procedure for this method was not de-

scribed and may be challenging in practice due to the difficulty of manipulating small

volumes in what is essentially a conventional apparatus.

We report a simple and rapid method for [18F]FET synthesis based on microvolume

droplet approach. The probe production with this method results in high RCY and high

molar activity using a very small amount of precursor and low starting activity. The

low precursor amount enables purification via analytical, rather than semi-preparative,

scale HPLC. This low-cost approach allowed us to carry out a large dynamic imaging

study of up to 8 mice within a single day, thus demonstrating that the method will be a

favorable option for pre-clinical studies of [18F]FET.

Materials and methods
Materials

Reagents and supplies

For the radiochemistry portion of this work, no-carrier-added [18F]fluoride was pro-

duced by the 18O(p, n)18F reaction from [18O]H2O (84% isotopic purity, Zevacor

Pharma, Noblesville, IN, USA) in an RDS-112 cyclotron (Siemens; Knoxville, TN, USA)

at 11MeV using a 1 mL tantalum target with havar foil. Acetonitrile (MeCN; anhyd-

rous, 99.8%), methanol (MeOH; anhydrous, 99.8%), ethanol (EtOH; 200 proof, > 99.5%),

hydrochloric acid (HCl; 1M), thexyl alcohol (2,3-dimethyl-2-butanol, 98%), trifluoroa-

cetic acid (TFA, 99%), deionized (DI) water, phosphate buffered saline (PBS; pH 7.4)

were purchased from Millipore Sigma (St. Louis, MO, USA). Saline (0.9% sodium

chloride injection, USP) was obtained from Hospira Inc. (Lake Forest, IL, USA). All re-

agents were used as received without further purification. 18MΩ water was obtained

from a purification system (RODI-C-12BL, Aqua solutions, Inc., Georgia, USA). Tetra-

butylammonium bicarbonate 0.075M (TBAHCO3, > 99%), (2S)-O-(2′-tosyloxyethyl)-

N-trityl-tyrosine-tert-butyl ester (TET, > 95%) precursor, O-2-fluoroethyl-L-tyrosine

standard (FET-HCl, > 95%) were purchased from ABX GmbH (Radeberg, Germany).

To perform uptake assays, GS025 and GBM39 cells were kindly provided by Dr. Da-

vid Nathanson (UCLA), the ParcB3 cells were provided by Dr. Peter Clark (UCLA), and

the HCT-15 and HCC827 cells were purchased from ATCC (Manassas, VA, USA).

Poly-L-lysine, protease inhibitor (cOmplete™), Hank’s balanced salt solution (HBSS;

10×), and fetal bovine serum (FBS),were purchased from Millipore Sigma (St. Louis,

MO, USA). 96 well plates, 96 well filter plates, 0.25% trypsin, 100× penicillin-

streptomycin (10,000 U/mL, Gibco™), RPMI-1640 medium (1×, Gibco™), GlutaMAX™ –

Lisova et al. EJNMMI Radiopharmacy and Chemistry             (2020) 5:1 Page 3 of 15



I (100×, Life Technologies), Dulbecco’s Modified Eagle Medium (DMEM/F12), (100×),

epidermal growth factor recombinant human protein (EGF), fibroblast growth factor

recombinant human protein (FGF-Basic), heparin, and B27 supplement (50×) were pur-

chased from Thermo Fisher (Waltham, MA, USA).

Analytical methods

A calibrated ion chamber (CRC 25-PET, Capintec, Florham Park, NJ, USA) was used to

perform radioactivity measurements. For radio-thin-layer chromatography (TLC) ana-

lysis, TLC plates (Baker-flex silica gel IB-F sheets 2.5 × 7.5 cm, J.T. Baker, Phillipsburg,

NJ) were spotted with 1 μL samples of the crude intermediate, crude final product, or

purified final product, and were developed in 80% v/v MeCN in H2O, and then scanned

with a radio-TLC scanner (miniGita star, Raytest, Inc., Wilmington, NC, USA), or with

a Cerenkov luminescence imaging system (Dooraghi et al. 2013). Retention factors of

the observed radioactive species were: 0.0 ([18F]fluoride), 0.3 ([18F]FET), and 0.8 (fluori-

nated intermediate).

Radio-HPLC analysis and purification was performed on an analytical-scale Smartline

HPLC system (Knauer, Berlin, Germany) with 200 μL injection loop, a pump (Model

1000), degasser (Model 5050), a UV detector (Model 2500) and a radiometric detector

(Bioscan B-FC-4000, Bioscan Inc., Washington DC, USA). Samples were separated

using a C18 column (Luna, 4.6 × 250 mm, 5 μm, Phenomenex, Torrance, CA, USA)

with guard column (SecurityGuard C18, Phenomenex) at a flow rate of 1 mL/min. UV

absorbance was measured at 269 nm. Using 10% v/v EtOH in 18MΩ H2O mobile

phase, the expected retention time of [18F]fluoride was between 2 and 3min, and

around 5min for [18F]FET. The fluorinated intermediate was eluted off the column

using 100% MeCN.

Microfluidic systems

Radiochemistry was performed in droplet format on the surface of microfluidic chips

comprising a silicon wafer with a patterned Teflon AF coating. The detailed fabrication

was previously reported (Wang et al. 2017). A combination of hydrophobic (Teflon)

and hydrophilic (exposed silicon wafer) regions allows liquid droplets to be manipu-

lated or maintained in a desired location to perform reactions.

One type of chip, used for the synthesis optimization studies, had a 4 mm circular

hydrophilic region (i.e. Teflon coating etched away) serving as a reaction site (Fig. 1a).

During use, the chips were mounted to a temperature control platform comprising a

ceramic heater affixed to a Peltier device, which was in turn mounted on a heat sink

with a fan. A thin layer of thermal paste was present between all device components to

ensure good thermal contact. Reagents were loaded and product was collected manu-

ally via pipette with 10 or 200 μL tips.

Another type of chip, used for automated synthesis, had six radial tapered hydrophilic

pathways leading toward a central hydrophilic reaction site (Fig. 1b). The chip was

similarly mounted to a temperature-control platform, but reagents were added via elec-

tronically controlled piezoelectric actuators around the periphery of the chip and crude

product was collected by a retractable needle. The tapered pathways spontaneously
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transport reagent droplets from the periphery to the center of the chip. Complete de-

tails of this setup were reported previously (Wang et al. 2017).

Methods

Microscale radiosynthesis and purification of [18F]FET

The microscale synthesis was adapted from previously described macroscale protocols

(Bourdier et al. 2011; Hamacher and Coenen 2002) by scaling down reagent volumes

(Fig. 2). Cyclotron produced [18F]fluoride (37–740MBq in ~ 10–20 μL) was mixed with

110 nmol of TBAHCO3 (i.e., 1.5 μL of 75 mM solution), deposited on the chip and then

evaporated to dryness at 100 °C. After cooling to 30 °C, 10 μL of 6 mM TET (60 nmol)

in 1:1 v/v MeCN:thexyl alcohol was added to the chip. The reaction mixture was heated

at 90 °C for 5 min, and then cooled to 30 °C. Next, 20 μL of 1M HCl was added and the

deprotection reaction was performed by heating to 90 °C for 3 min. The crude product

was recovered by adding 20 μL of 1:1 v/v MeOH:H2O and collecting from the chip. The

collection process was repeated a total of 4 times to ensure high recovery of the crude

product. After synthesis, the product was diluted to 150–175 μL using HPLC mobile

phase (10% v/v EtOH in 18MΩ water) and purified via analytical-scale radio-HPLC.

The product peak was collected (typically 1.0–1.5 min duration) into a sterile glass vial.

Solvent was evaporated by heating the vial to 120 °C with an oil bath and applying a

Fig. 1 Side view schematic of manual a and automated b microvolume synthesis platform, and top view
photographs of corresponding chips used

Fig. 2 Synthesis scheme for microvolume production of [18F]FET using manual synthesis platform
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nitrogen stream above the surface of the solvent. When dry (typically after 10–15min),

the [18F]FET was then resuspended either in sterile saline for in vivo imaging, or pH 7.4

phosphate-buffered saline (PBS) for cell uptake experiments. Numerous intermediate

measurements were taken during synthesis to carefully analyze its performance (see de-

tails in Electronic supplementary material (ESM), Additional file 1: Sects. 1–2).

In vitro probe uptake

In vitro uptake of [18F]FET was compared across two glioblastoma cell lines (GS025,

GBM39), a prostate cancer cell line (ParcB3), a lung cancer cell line (HCC827), and a

colon cancer cell line (HCT-15). The GS025, GBM39, and ParcB3 suspension cells

were grown in stem cell media, and the HCC827 and HCT-15 adherent cells were

grown in supplemented RPMI. The suspension cells were plated into 96-well plates and

adherent cells into 96-well filter plates at 150, 000 cells/mL concentration in 1x HBSS.

[18F]FET was diluted to a concentration of 370 Bq/μL with either PBS (for uptake ex-

periments) or PBS containing 5 mM FET (for blocking experiments). Cell uptake exper-

iments were performed by adding 100 μL [18F]FET (37 kBq) to each of a set of cell

wells (n = 4), and blocking experiments (to confirm specificity) were performed by add-

ing 100 μL [18F]FET (37 kBq) with FET (500 nmol) to each of a set of cell wells (n = 4).

The cells were incubated at 37 °C for 10 min, then transferred into individual gamma

counter tubes and sample radioactivity was measured on a gamma counter (WIZARD

3″ 1480, Perkin Elmer, Waltham, MA, USA). The uptake values were normalized to

total protein amounts for each sample (complete details of the procedure are provided

in the ESM, Additional file 1: Sect. 3). The statistical significance of the values was vali-

dated by a two-tailed T test (p < 0.05).

In vivo preclinical imaging

Male NOD scid gamma (NSG) mice ~ 7 week-old were obtained from the UCLA De-

partment of Radiation Oncology. These mice (n = 10) were engrafted with 0.5 × 106

HCC827 cells suspended in a 1:1 (v/v) mixture of supplemented RPMI media and

Corning® Matrigel® Basement Membrane Matrix (Corning Life Sciences) in the left and

right shoulders.

To perform dynamic PET imaging, mice were kept under 2% isoflurane anesthesia

during the tracer uptake for 60 min. Mice were injected with 1.5–3.1 MBq of the tracer,

and were scanned 4 at a time using the recently developed HiPET scanner (Gu et al.

2017). The first study was performed with 4 mice injected with probe of different molar

activities in a range of 1.5–36 GBq/μmol (n = 1 each). The second study with 8 mice

covered molar activities ranging from 0.4–48 GBq/μmol (n = 2 each) (see Additional file

1: ESM, Sect. 4 for details). The concentration of FET in blood was estimated to range

between 0.02 and 3.5 μM assuming 2 mL average mouse blood volume. All mice re-

ceived 10 min CT scans (CrumpCAT (Taschereau et al. 2014)) following the PET im-

aging experiment. After PET/CT image registration, regions of interest (ROI) were

drawn with AMIDE version 1.0.5 software, and the results were analyzed by comparing

mean intensity values of the tumors and other regions across different time points (12

frames of 5 min each) (details on image analysis are described in ESM, Additional file

1: Sect. 5).
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Results
Microscale [18F]FET synthesis optimization and automation

To adapt the 2-step synthesis of [18F]FET from the macroscale to the microscale, the

precursor and base quantities were initially scaled down nearly 300–490-fold from

values reported in conventional synthesis (Bourdier et al. 2011; Hamacher and Coenen

2002), i.e. to 75 nmol of TBAHCO3 (1 μL, 0.075M) and 30 nmol of the TET precursor

in 20 μL. We used TBAHCO3 rather than K222/K2CO3 (Bourdier et al. 2011; Iwata

et al. 2018) based on the suggestion by Hamacher and Coenen (2002), who observed

higher yields due to the lower basicity and reduced competing elimination reaction.

One significant change we made was altering the fluorination reaction solvent. The

syntheses reported by Hamacher and Coenen (2002), Bourdier et al. (2011) and Laksh-

minarayanan et al. (2016) all used MeCN as the fluorination solvent, but in the droplet

format, we found that the MeCN evaporated very quickly, resulting in poor yields. After

exploring several solvent combinations that have been previously reported in droplet

reactions (Keng and van Dam 2015), a 1:1 v/v mixture of MeCN and thexyl alcohol was

selected. During early syntheses the fluorination temperature was set at 80 °C, slightly

lower than what has been reported in conventional syntheses (i.e., 85 °C (Hamacher

and Coenen 2002) or 100 °C (Bourdier et al. 2011)) to further mitigate evaporation, and

the reaction time was set for 5 min. Under these conditions, fluorination yield was 36 ±

7% (n = 4).

Investigation of the ratio of base to precursor (Fig. 3a) indicated that the originally

chosen ratio (~ 2.5) was close to optimal: a steep drop in fluorination efficiency was ob-

served for base to precursor ratios below 1.7 and higher than 2.5. When fluorinating

with 110 nmol of TBAHCO3 per 60 nmol of precursor (1.9 ratio) at 80 °C the fluorin-

ation yield reached 50 ± 1% (n = 4). Increasing the temperature to 90 °C further im-

proved the fluorination yield to 63 ± 3% (n = 4) (Fig. 4). Lower reaction temperature

(75 °C) resulted in similar yield as the 80 °C reaction, though solvent evaporation was

slightly reduced (Fig. 4). Later, the reaction volume was reduced to 10 μL keeping the

same amount (60 nmol) of precursor per reaction to make it more compatible with

chip chemistry, however no significant change in reaction yield was observed.

For the deprotection step, we initially attempted to use TFA as reported by Hama-

cher and Coenen (2002) and Bouvet et al. (2012); however, we observed rapid

Fig. 3 a Effect of base to precursor ratio on fluorination efficiency and fluorination yield (n = 1 for each data
point). Syntheses carried out at 80 °C for 5min with 30 nmol or 60 nmol of precursor. b Effect of deprotectant
(10 μL HCl) concentration on deprotection reaction at 90 °C for 3 min (n = 1 for each condition). Synthesis
performed with 60 nmol precursor and 110 nmol TBAHCO3 at 90 °C for 5min
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evaporation of TFA and low deprotection efficiency. We then explored the use of HCl,

as reported by Bourdier et al. (2011) and Lakshminarayanan et al. (2016). Using a

deprotection reagent volume of 10 μL heated for 3 min at 90 °C, we explored the effect

of different HCl concentrations (Fig. 3b). Higher concentrations resulted in more

complete deprotection of the intermediate. The use of 10 μL of 1.0M HCl was suffi-

cient to deprotect most of the intermediate (~ 94%). Increasing the volume from 10 to

20 μL led to improved hydrolysis and was used in all subsequent experiments. Conveni-

ently, the acid nearly fully evaporates during the hydrolysis step leaving only trace

amounts of liquid, obviating the need for neutralization.

The manual synthesis of the crude product, under optimized conditions, required

24 ± 2min (n = 4). The collection efficiency was 64 ± 5% (n = 4) and radiochemical con-

version of [18F]FET was 92 ± 4% (n = 4) resulting in crude RCY of 59 ± 7% (n = 4).

Fluorination yield was estimated to be 62 ± 8% (n = 4), and hydrolysis efficiency was

96 ± 2% (n = 4). Only 1.3 ± 0.5% (n = 4) of the starting activity was attributed to residual

activity on the chip after collection of the crude product, though an additional loss of

35 ± 6% (n = 4) was observed, potentially corresponding to loss of unreacted [18F]fluor-

ide in the form of [18F]HF during the acidic deprotection step.

Production of [18F]FET for imaging was performed using this manual protocol,

followed by purification by analytical HPLC (~ 5min) and formulation (10–15min),

resulting in an overall synthesis time of 40 min. The loss during purification and formu-

lation was 7 ± 3% (n = 4) and overall decay corrected RCY was 55 ± 7% (n = 4). The

identity of the purified product was confirmed via analytical radio-HPLC by co-

injection with the reference standard. Radiochemical purity of the final product as de-

termined via radio-HPLC was > 98%. Molar activity was 48–119 GBq/μmol at the end

of synthesis.

We also performed the synthesis using the automated droplet radiosynthesizer

(i.e. with the passive transport microfluidic chips) and observed a crude decay-

corrected RCY of 54 ± 6% (n = 5) (a detailed comparison of the performance of the

manual and automated droplet synthesis processes is summarized in Table 1). In

general, the performance was very similar, the main difference being slightly lower

collection efficiency with the automated procedure. An advantage of the automated

synthesis is that the synthesis of the crude product was completed in a shorter

time (5 min less).

Fig. 4 Results of initial optimization of fluorination conditions. Error bars represent standard deviations (n = 4)
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In vivo imaging at varying molar activities of [18F]FET

As a demonstration of the ability to perform a preclinical imaging study with [18F]FET

produced using the microscale method, we prepared [18F]FET of different molar activ-

ities to investigate the impact on in vivo imaging. It has been previously seen with im-

aging of [18F]Fallypride that molar activity can significantly affect the PET imaging

contrast in the striata of the brain (Sergeev et al. 2018b), whereas variations in molar

activity of [18F]FDOPA were reported not to impact the imaging of neuroendocrine tu-

mors (Kuik et al. 2015). [18F]FET is one of the major fluorine-18 labeled amino acids

used in glioma imaging, grading and therapy planning. [18F]FET is an L-tyrosine

analogue, and it helps to visualize amino acid transport activity that is upregulated in

many growing tumors (Langen et al. 2006, 2017).

To perform experiments, samples with different molar activities were prepared from

a single batch of [18F]FET. The batch was divided into four aliquots, then each aliquot

was spiked with different amounts of the reference standard and saline to achieve dif-

ferent molar activity values with the same radioactivity concentration (details of the

preparation are included in the ESM, Additional file 1: Sect. 4).

The cell uptake comparison among few different cell lines had shown that the lung

cancer cell line HCC827 had a significantly higher probe uptake than any of the other

cell lines tested (GS025, GBM39, ParcB3, HCT-15) (Fig. 5) and was used for in vivo

study. Subcutaneous tumor HCC827 xenograft models had reached sufficient tumor

size for imaging (~ 4mm diameter) after 36 days when an initial imaging experiment

was performed (ESM, Additional file 1: Fig. S3), followed by another study at 50 days

post-implantation (ESM, Additional file 1: Fig. S4). Dynamic PET/CT scans were per-

formed with injections of different molar activities. In all cases, the signal in the blood

was high after injection and decreased over time. Muscle and tumor uptake rose grad-

ually and plateaued at ~ 30 min, remaining nearly constant until the end of the scan.

No bone uptake was observed in scans, confirming the lack of in vivo defluorination.

Combined dynamic imaging data is summarized in ESM, Additional file 1: Fig. S5–7.

The tumor to blood ratio increased during the first 15–20 min and then remained

nearly constant for the rest of the scan, while the tumor to muscle ratio remained

nearly constant throughout the scan (Additional file 1: Fig. S7). Qualitatively, it is ap-

parent there is no strong correlation between the tumor uptake ratios and the molar

activity values. Tumors imaged at low molar activity were as easily visible as tumors

Table 1 Summary of performance of microdroplet synthesis of [18F]FET with optimized manual
operation or automated operation. All values are decay-corrected unless otherwise specified

Manual (n = 4) Automated (n = 5)

Collection efficiency (%) 64 ± 5 59 ± 10

Residual chip activity (%) 1.3 ± 0.5 3 ± 1

Volatile activity loss (%) 35 ± 6 38 ± 11

Fluorination yield (%) 62 ± 8 59 ± 10

Radiochemical conversion to FET (%) 92 ± 4 93 ± 6

Deprotection efficiency (%) 96 ± 2 93 ± 6

Crude RCY (%) 59 ± 7 54 ± 6

Crude synthesis time (min) 24 ± 2 19 ± 2

Crude RCY, non-decay-corrected (%) 51 ± 6 48 ± 5
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imaged at high molar activity of the injected probe. The uptake ratios averaged during

the final 30–60 min of the scans summarized for different molar activity values did not

exhibit any correlation either (Fig. 6). The statistically insignificant correlation between

uptake ratios and molar activity was confirmed using a Spearman correlation test (rs =

− 0.3 for tumor to muscle ratio, rs = 0.1 for tumor to blood ratio).

Discussion
Microscale synthesis

The microscale synthesis described here was performed quickly, reliably and in high

yield, allowing production of the tracer for pre-clinical studies. A comparison of the

performance of the microvolume synthesis compared to conventional synthesis is in-

cluded in Table 2. The consumption of reagents was reduced drastically (> 150 × less

precursor) compared to conventional methods, while still achieving comparable RCY.

Though optimization runs (requiring numerous intermediate measurements), and

batches for imaging (where molar activity adjustments were needed at the end) took

longer to prepare, the fully-automated microvolume synthesis can be completed in 35

Fig. 5 Accumulation of [18F]FET in different cell lines. Error bars represent standard deviation (n = 4). (*) p <
0.05, (**) p < 0.01, (***) p < 0.001. The red bars indicate incubation with both [18F]FET and 2.5 mM FET
reference standard to establish specificity

Fig. 6 Tumor to muscle and tumor to blood ratios averaged for all tumors within the same molar activity
value group (n = 4 except as otherwise indicated) and averaged over the dynamic imaging data from 30 to
60min. Error bars represent standard deviation
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min (19 min synthesis + 6 min purification via analytical-HPLC + 10min formulation).

This is significantly faster than macroscale synthesis methods, and is a significant ad-

vantage when considering non-decay-corrected RCY. The short synthesis time origi-

nates from the smaller reaction volume, which enables faster temperature change and

shorter solvent removal times, as well as from the low precursor mass, which enables

the use of analytical scale HPLC purification rather than semi-preparative. Interestingly,

the droplet method also resulted in shorter synthesis time and higher yield compared

to recent reports of [18F]FET synthesis in smaller volumes (10s of microliters) using

manual liquid manipulation or flow-through reactors (Table 2).

Under optimized conditions, a batch of [18F]FET suitable for preclinical imaging

throughout the day (e.g. 37–110MBq; assuming 0.93–7.4MBq per injection for 5–10

mice) could be produced on the microscale platform starting with only 110–330MBq

of [18F]fluoride. Limiting the activity to relatively low levels in this manner could have

significant advantages for shielding the apparatus (i.e., thinner shielding would be ad-

equate) and possibly operating the synthesis outside of a hot cell.

The droplet synthesis (even with starting activities lower than 0.74 GBq) resulted in

high molar activities, comparable to the values achieved on macroscale synthesizers

starting with > 30 GBq of fluoride-18. It should be appreciated that, when the starting

activity is scaled down in macroscale radiosynthesizers, one observes a linear decrease

in the resulting molar activity (Sergeev et al. 2018a). Thus, high amounts of starting ac-

tivity must often be used in macroscale synthesizers, even if only a relatively small

amount of the final tracer is needed. Compared to microscale synthesis, this can result

in higher cost of the radioisotope, and the need for considerably more shielding to

work with the higher activity levels.

Overall, the microvolume synthesis of radiopharmaceuticals has a number of advan-

tages over conventional scale radiosynthesizers such as more compact apparatus, re-

duced shielding, rapid synthesis, high yield, and efficient use of radioisotope. These

advantages have the potential to drive down the costs of materials and infrastructure,

which can be a significant benefit for limited resource settings or preclinical tracer pro-

duction. Another advantage – low precursor consumption – not only helps to simplify

the purification step, but can also represent a significant cost reduction, especially for

tracers with expensive precursors, or in situations where precursor is scarce, such as

the development of novel tracers or optimization of synthesis protocols. While the

strengths of this technology are in reducing costs of small batches of tracers, e.g. to

support in vitro or preclinical studies, various microfluidic technologies are constantly

improving and expanding their applications in the radiopharmacy field, and could also

lead to improvements in the efficiency of clinical PET tracer production in the future

(Pascali et al. 2013), such as enabling the production of additional tracers with minimal

need for extra space or capital.

[18F]FET imaging

Over the range tested (0.37–48 GBq/μmol), the molar activity had no statistically sig-

nificant effect on imaging of subcutaneous HCC827 tumors. [18F]FET accumulates in

cells following transport by Na+-dependent and -independent amino acid transporters

and is not incorporated into proteins over the time course of the imaging experiments
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(Heiss et al. 1999; Langen et al. 2003). The results suggest that the [18F]FET trans-

porters on the lung cancer cell line HCC827 do not become saturated within the range

of molar activity values tested. Though the in vitro experiments suggest that the trans-

porters can be “saturated” with sufficient concentration of FET in the media (i.e., 2.5

mM in the case “spiked” with FET; 0.15 μM in the non-spiked condition), the estimated

concentration of FET in blood during the in vivo experiments was much lower (i.e.

3.5 μM for the lowest molar activity of 0.37 GBq/μmol, assuming 2 mL blood volume).

Conclusion
In this work the synthesis of [18F]FET was adapted to an automated microdroplet syn-

thesis platform (Wang et al. 2017). The product was obtained in high RCY of up to

55 ± 7% (n = 4, decay-corrected) after purification, in sufficient quantities to perform a

demonstration of a multi-animal dynamic PET imaging study, and could readily be

scaled to higher amounts using radionuclide concentration methods (Chao et al.

2018a). Synthesis time was shorter than conventional approaches, precursor consump-

tion was reduced by two orders of magnitude, and the synthesis could be performed

with a very small apparatus. The low precursor consumption enabled faster and simpler

purification (i.e., analytical HPLC instead of semi-preparative HPLC), and, for tracers

with expensive precursors, could help to reduce the synthesis cost. The molar activity

was high (48–119 GBq/μmol at the end of synthesis), even when starting with activities

as low as 0.3 GBq. Though low molar activity of [18F]FET, (down to 0.37 GBq/μmol)

did not appear to adversely affect imaging of subcutaneous tumors in this study, the

ability to produce small batches with high molar activity may be important in other ap-

plications of this or other tracers.
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