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Abstract

Tropical  forests cycle a large amount of CO2 between the land and atmosphere,  with a substantial

portion of the return flux due tree respiratory processes. However,  in situ estimates of woody tissue

respiratory  fluxes  and  carbon  use  efficiencies  (CUEW)  and  their  dependencies  on  physiological

processes including stem wood production (Pw) and transpiration in tropical forests remain scarce. Here,

we synthesize monthly Pw and daytime stem CO2 efflux (ES) measurements over one year from 80 trees

with variable biomass accumulation rates in the central Amazon. On average, carbon flux to woody

tissues, expressed in the same stem area normalized units as ES, averaged 0.90 ± 1.2 µmol m-2 s-1 for Pw,

and 0.55  ± 0.33 µmol m-2  s-1  for daytime ES.  A positive linear correlation was found between stem

growth rates and stem CO2 efflux, with respiratory carbon loss equivalent to 15 ± 3% of stem carbon

accrual. CUEW of stems was non-linearly correlated with growth and was as high as 77-87% for a fast-

growing  tree.  Diurnal  measurements  of  stem  CO2 efflux  for  three  individuals  showed  a  daytime

reduction of ES by 15-50% during periods of high sap flow and transpiration. The results demonstrate

that high daytime ES fluxes are associated with high CUEW during fast tree growth, reaching higher

values than previously observed in the Amazon Basin (e.g. maximum CUEW up to 77-87%, versus 30-

56%).  The observations are consistent with the emerging view that diurnal dynamics of stem water

status influences growth processes and associated respiratory metabolism.

Keywords: tropical trees, ecophysiology, NPP, GPP, NEE, NEP, CO2, stem respiration, tree growth,

forest disturbance

Statements and Declarations: The authors have no conflicts of interest to declare that are relevant to 

the content of this article.

Key Message: Annual stem CO2 efflux increases with stem wood production rates and are inhibited by 

daily moisture stress 
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1. Introduction

The Amazonian forest fixes more atmospheric CO2 than any other terrestrial ecosystem  (Nobre

et al. 2016). However, observations have suggested that the majority of tree assimilated carbon (~70%

in the Central Amazon) is returned to the atmosphere through autotrophic respiration, resulting in low

carbon  use  efficiency  (CUE)  (Amthor  2000a;  Valentini  et  al.  2000;  Chambers  and  Silver  2004;

Rowland et al. 2014). Biologically, autotrophic respiration provides chemical energy, reducing power,

and  carbon  skeletons  needed  in  innumerable  physiological  processes  including  growth  and

development, tissue maintenance including biosynthesis of defensive and signaling compounds during

abiotic and biotic stress responses, and reproduction and senescence processes  (O’Leary et al. 2019).

Mitochondrial respiratory activity is also critical for optimizing photosynthetic metabolism, including

during periods of  stress  which can lead to  over-reduction of  mitochondria  and/or  chloroplasts  and

excessive  production  of  reactive  oxygen  species  (Vanlerberghe  et  al.  2020).  Given  that  field

observations and modeling activities have primarily focused on photosynthesis as a primary control

over net primary productivity (NPP), our predictive understanding of autotrophic respiration and its

dependencies  on  biological  and  environmental  factors  is  less  advanced  than  that  of

photosynthesis (Amthor  2000b;  Atkin  and  Macherel  2009).  Thus,  our  predictive  understanding  of

tropical  forest-atmosphere  carbon  exchange  is  incomplete,  particularly  with  respect  to  tree  carbon

allocation  into  both  anabolic  (biosynthesis  of  biopolymers  and  metabolites  used  in  new  biomass

production such as structural and non-structural carbohydrates and defense compounds) and catabolic

(e.g. respiration of stored and recently assimilated substrates) pathways  (Chambers and Silver 2004;

Clark  2004;  Feeley  et  al.  2007;  Lloyd  and  Farquhar  2008;  Körner  2009).  However,  quantifying

sensitivities of key anabolic and catabolic metabolism responses to abiotic and biotic stress conditions

as mediated by plant physiological processes (e.g., photosynthesis, transpiration, and growth) in diverse

tropical forests, remains a grand challenge.

3

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

https://sciwheel.com/work/citation?ids=2697228&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2697228&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=304234,1496925,2512498,196914,2640985&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=304234,1496925,2512498,196914,2640985&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=4070913,800836&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=8683028&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6699444&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2638989,304234,10732097,302809&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=2638989,304234,10732097,302809&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0


The importance of autotrophic respiration in the global carbon cycle is highlighted by estimates

of global terrestrial autotrophic respiration of 45–55 Pg C/yr of CO2 (Luyssaert et al. 2007), which is

4.5-6.2 times the average annual CO2 release from anthropogenic fossil fuel combustion over 2008-

2017  (8.9-9.9  Pg C/yr  of  CO2)  (Le  Quéré  et  al.  2018).  Although highly  uncertain  in  the  tropics,

autotrophic respiration can be more than 50% of total ecosystem respiration in tropical wet forests. In

the central Amazon near the city of Manaus, Brazil for example, total autotrophic respiration was an

estimated 68% of total ecosystem respiration (Malhi et al. 2009). 

Respired  CO2  within  tree  stems can diffuse  to  the  atmosphere  driven  by  the concentration

gradient between the inner bark and ambient air (McGuire and Teskey 2004; Aubrey and Teskey 2009).

This mechanism is known as stem CO2 efflux (ES, µmol m-2 s-1) and is estimated to represent a large but

uncertain  fraction  of  autotrophic  respiration  in  tropical  forest  ecosystems  (Chambers  et  al.  2004;

Trumbore 2006; Malhi et al. 2009). ES is an important regulator of the internal fluxes of CO2 in plants

and has been mathematically described by  Eq. 1, where Rstem is stem respiration, ES  is net stem CO2

efflux (µmol m-2 s-1), FT is net CO2 transport flux vertically through the xylem (µmol m-2 s-1), and ΔS is

change in CO2 storage concentration (ppm s-1) (McGuire and Teskey 2004). 

Equation 1: R stem=ES+FT+∆S

Although limited observations have been reported in the Amazon Basin, stem respiration can

represent a major fraction (21.2%) of total autotrophic respiration (Malhi et al. 2009), with mean annual

ES fluxes of 0.6 μmol m−2 s-1 reported for trees in the central Amazon (Chambers et al. 2004; Trumbore

2006) and the Tapajos National Forest (Nepstad 2002). Slightly higher mean annual Es fluxes of 1.0 ±

0.1 μmol m−2 s-1 were reported from the Caxiuanã National Forest reserve in the eastern Amazonia

(Rowland et al. 2018). Outside of the Basin, studies in other Neotropical forest sites have reported

fluxes between 1.0-1.5 μmol m−2 s-1 in French Guiana with a large seasonal variation during climatic

transition periods (Stahl et al. 2011) and 0.83-1.24 μmol m-2 s-1 for two canopy trees in a Costa Rica

forest where ES was highly positively correlated with annual wood production rates (Pw)  (Ryan et al.
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1994). Although not yet reported in a tropical forest, on a diurnal time scale, a growing number of

greenhouse  and  mid-latitude  field  studies  have  shown  a  suppression  of  ES efflux  during  the

day associated with high transpiration rates (Levy et al. 1999; Wittmann et al. 2006; Maier and Clinton

2006; Saveyn et al. 2007; Teskey and McGuire 2007; Bowman et al. 2008).

Characterizing the dependencies of ES on biological  and environmental variables in diverse

tropical forests is central to reducing the high uncertainties surrounding the quantitative importance of

stem respiration in the tropics. We hypothesize that a direct linkage between carbon allocation to the

stem and Rstem exists  such  that  high  stem growth  results  in  an  increased  demand for  both  carbon

skeletons used in new biomass construction as well as respiratory substrates for energy production to

meet  the  increased  biosynthetic  demands.  Thus,  we hypothesize that stem  growth  is  positively

correlated stem respiration. This is because a higher stem growth rates will require an increased demand

for both carbon skeletons used in new biomass construction as well as respiratory substrates for energy

production to meet the increased biosynthetic demands. This hypothesis predicts that if Rstem increases

due to increased energy demands associated with rapid cell division and biopolymer biosynthesis, based

on  Eq.  1  and  assuming  no  change  to  Ft and  ∆S,  ES  should  correspondingly  increase.  We  also

hypothesize that there is a suppression of daytime respiration during the noon, despite high rates of

canopy photosynthesis in combination with the higher daytime temperatures. This is because daytime

xylem tension could potentially suppress the demand for respiratory substrates in the sapwood. We test

these hypotheses by analyzing monthly observations of basal stem ES and stem diameter for 80 trees in

stands with variable biomass accumulation rates within permanent plots of a long-term forest dynamics

experiment (known as BIONTE) in central Amazon forests (Higuchi et al. 1997). We also characterized

diurnal  patterns  of  basal  ES in  three  canopy  trees  at  the  nearby  K34  tower  together  with  diurnal

observations of physiological and environmental  drivers. Diurnal  observations were made of crown

temperature (27 m – 31 m), vapor pressure deficit (VPD) between the upper canopy and the atmosphere
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(28 m), as well as sap velocity and stem ES fluxes at the base of the trees (1.7-2.1 m).

2. Materials and Methods

2.1 Monthly observations of stem growth and CO2 efflux in the BIONTE experiment

The field experiment was carried out at the Experimental Station of Tropical Forestry (EEST/

ZF-2)  60  km  northwest  of  Manaus/Brazil,  which  has  23,000  ha  of  undisturbed  forest.  We  first

characterized potential dependencies of ES  on stem growth rates in forests north of Manaus, Brazil,

using data from a selective logging experiment (BIONTE).  BIONTE (the BIOmass and NuTrient

Experiment) (S2º 38' 17", W60º 09' 25") is a long-running study of forest response to experimental

logging carried out in forests north of Manaus along the ZF-2 road, and managed by scientists at

Brazil’s  National  Institute  for  Amazon Research  (Instituto  Nacional  de  Pesquisa  da  Amazônia  –

INPA)  (Otani et al. 2018). The experiment consists of three blocks of 24 ha forest, with treatment

replicated in each block, for a total of three replicates per treatment. Selective logging treatments were

conducted in the mid-1980s and comprised three levels of commercial tree removal (not total) based

on species-specific basal area (T1 =32%, T2 = 42%, T3 = 69%), and control plots with no logging

(T0). A total of 12 ha (9 treatment, 3 control) were established in the central-most area of each 4-ha

replicate (Fig. 1). Tree recruitment, growth and mortality were measured annually following logging

in all plots, with the exception of two missing years (1994 and 1998). Tree growth was determined by

the mean annual change in tree base diameter (measured at 1.3 m height, or above the buttresses).

Wood density was used to estimate mean annual wood production rates, or  Pw, for all trees in each

replicate plot (12 ha total).

A stem respiration study was carried out  to  explore  changes in  stem CO2 efflux (ES)  as  a

function of plot-level biomass accumulation rates, and with variation in tree growth rates and stem

diameter,  in  2002.  Four  trees  were randomly selected from five tree  growth rate  classes  for  each

treatment block, for a total of 20 trees per treatment block, or 80 trees total from the BIONTE plots with
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stem  diameters  ranging  from  10  to  52  cm.  All  species  were  previously  identified  by  comparing

botanical  vouchers  to  an  herbarium reference  collection  organized  by  the  Biological  Dynamics  of

Forest Fragments Project (BDFFP) at the National Institute for Amazon Research (INPA) and also by

consulting specialists for taxonomic verification (Gaui et al., 2019). Botanical identification followed

the “Angiosperm Phylogeny Group – APG” (APG III, 2009) classification system.  Each of the 80 trees

selected for the ES study were outfitted with dendrometer bands (da Silva et al. 2002) to increase the

precision and accuracy of diameter growth rate measurements. The dendrometer bands were placed on

the trees at least 6 months before initiating monthly measurements from January 2002-November 2002

(note,  stem diameter  measurements  were not  made  during October  2002).  The  dendrometers  were

measured  with  digital  calipers  on  the  same  days  as  the  respiration  measurements.   Stem  ES was

measured using the static enclosure method described previously  (Chambers et al. 2004). Briefly, an

infra-red gas analyzer (LiCor 820) was operated as a closed dynamic chamber with a flow rate of 1.0 L

min-1. Polyvinyl chloride (PVC) semi-cylindrical chambers (250–400 mL) were cinched to the tree stem

just above the dendrometer bands at 1.3 m height using nylon straps, creating a reasonably air-tight

seal. The measurement interval spanned 1–2 min, and the ES from the stem of each tree was quantified

from the slope of the increase in [CO2] versus time in the static enclosure and the area of the enclosed

stem (µmol CO2 m-2 s-1).  Stem ES for each of the 80 trees in the BIONTE plots was determined during

May, June, July, August, and September of 2002. At the end of the monthly ES measurement period, a

small wooden plug was removed from the base of each tree using a tenon cutter (extracting a dowel of

wood) and power drill.  The wood plug was used to determine wood density D (g dry weight/mL wet

volume), enabling calculation of stem growth rates in the same units as stem respiration (µmol CO 2 m-2

s-1).  Together with unit  conversion,  the average annual  stem growth rate expressed as CO 2 capture

(Stem_growth_CO2) was calculated according to  Eq. 2 where DBH_increment is the average annual

diameter increment (µm day-1). By plotting the average annual ES flux versus the average annual

stem growth rate expressed as a CO2 flux in µmol CO2 m-2  s-1 for each of the 80 individuals in the
7
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BIONTE plots during 2002, the slope of the regression line represents the net respiratory carbon loss

to  the  atmosphere  normalized  to  stem carbon  accrual,  while  the  intercept  equals  the  maintenance

respiration (RM) (McDowell et al., 1999).  Finally, the average annual carbon use efficiency of woody

tissue (CUEw) for each individual was estimated using Eq. 3. CUEw was estimated for each individual

using both the observed average daytime ES fluxes, as well as nighttime ES fluxes which were assumed

to be 2-times higher during the night than during the day based on results from the diurnal E S studies

described in section 2.2.

 

Equation 2: Stem_growth_CO2 (µmol CO2 m-2 s-1) = DBH_increment (µm day-1) x 1.157E-5 (day/s) x

D (g/ml) x 10-12 ml/µm3 x 1012 µm2/m2 x 1 mol CO2/44 g x 106 µmol/mol CO2

Equation 3: CUEw = Stem_growth_CO2 /(Stem_growth_CO2 + Es) x 100%

2.2 Continuous observations of crown temperature, sap velocity, and Es during the night and day for

three trees near the K-34 tower

While the observations in the BIONTE experiment focused on average annual relationships

between stem growth and Es fluxes during the day, a second study was carried out at the nearby K34

tower  within  the  ZF2  forest  preserve  to  evaluate  potential  diurnal  patterns  in  ES,  and  potential

correlations with temperature and transpiration. These observations took advantage of both continuous

line power for real-time sensors (sap velocity, high precision dual channel CO2 gas analyzer, as well as

the tower structure for collecting crown temperature and VPD from above canopy sensors mounted on

the tower).  In contrast  to the BIONTE study (and other previous studies in the tropics)  where the

buildup of CO2 within a static stem enclosure was used to estimate ES ‘snapshots’ during the day, the

K34 tower experiment utilized a dynamic stem enclosure where ambient air continuously entered the
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stem chamber with CO2 efflux estimated from the CO2 concentration difference between ambient air

entering the enclosure and air exiting the stem chamber.

Due to logistical issues of working at the remote tropical rainforest site during rainy conditions

(site access challenges, power failures, liquid water inside stem chamber and tubing, etc.), only 1 day

and 1 day-night transition ES data set was collected for each tree individual. Trees were selected based

on the crown proximity to the remote K34 tower, which enabled sap velocity, canopy temperature, and

vapor pressure deficit (VPD) measurements by providing line power for the sensors and a mounting

structure for sensors as a part of the Large-Scale Biosphere-Atmosphere Program (LBA). Three canopy

trees including Pouteria anomala (Pires) T.D.Penn (35.3 cm of DBH, 31 m of height, and 4 cm of bark

thickness), Pouteria erythrochrysa T.D.Penn (36.5 cm DBH, 29.3 m height, and 2 cm bark thickness)

and Eschweilera bracteosa (Poepp. ex O.Berg) Miers (29.7 cm of DBH, 27 m of height, and 6 cm bark

thickness) were selected for the study on the plateau (S 02° 36’ 32’’, W 60° 12’ 32.9’’). Each tree was

within 15 m of the K34 tower such that their canopy branches were accessible from the tower. Diurnal

field experiments occurred between June to October 2017 during the regular dry season. The mean

value of rainfall  is ~2,500 mm year-1 with the driest months of the year concentrated from July to

September (Araújo 2002).

The dynamic Es  gas-exchange system consisted of ¼” O.D. Teflon tubing and a dual channel

infrared gas analyzer (IRGA) configured in differential mode (Li-7000, Li-Cor Inc., Lincoln, Nebraska,

USA) to determine the difference (Δ)  in [CO2]  between air  entering (reference IRGA) and exiting

(sample IRGA) an acrylic semi-cylinder chamber (324 ml in volume, 16.5 cm length and 10 cm width).

The stem chamber was connected to the stem of the sample tree at 1.3 m height using a 5 cm thick foam

to minimize air leaks and secured to the tree using two adjustable nylon slings. Ambient air at 0.5 m

height above the ground was delivered to both the reference IRGA and the stem chamber by pumping

(Laboport membrane pump, KNF Neuberger Inc., USA) from a 0.5 m3  gas mixing box, to buffer fast

changes in  [CO2],  to the reference IRGA (100 ml min-1)  using a mass flow controller  (FMA3704,
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Omega Engineering, USA). In addition, ambient air was pumped (400 ml min-1) into the chamber using

a second mass flow controller (EW-32907-67, Cole Parmer, USA). The internal pump of the Li-7000

was used to draw sample air inside the chamber into the sample IRGA (50-100 ml min -1). The excess

flow entering the chamber escaped through the porous foam.

The system was calibrated each day before measurements begin with 0 ppm [CO2] using a zero-

air  generator (Aadco 737,  Aadco Inst.,  USA) with a downstream soda lime cartridge to scrub any

remaining CO2  from the ambient  air.  The calibration gas was placed into the reference IRGA and

manually set to read 0 ppm. Following this, the output flow containing the 0 ppm calibration gas from

the reference IRGA was delivered to  the inlet  of  the sample IRGA. Following stabilization of  the

signals, the sample IRGA was manually set to ‘match’ the [CO2] of the reference IRGA. To complete

the  two-point  calibration  procedure,  the  same  process  was  then  repeated  using  a  400  ppm [CO 2]

calibration gas standard (Praxair Inc.,  USA).  Validation of the system was provided by placing the

chamber  inside a  plastic  bag and verifying that  the ΔCO2 was less  than 5 ppm.  In addition,  once

installed  on  the  sample  tree,  validation  was  also obtained  when the  ambient  air  flow entering the

enclosure was increased resulting in a decrease in ΔCO2, followed by a decrease in the ambient air flow

entering  the  enclosure  resulting  in  an  increase  in  ΔCO2.  Experimental  data  included  [CO2]

measurements from ambient air entering the dynamic stem enclosure and air exiting the enclosure were

logged on a laptop computer at 1 Hz frequency continuously for up to 12 hours, followed by a 1-hour

drying period of back flushing the tubing and Li-7000 system using dry air produced from the zero-air

generator.  Following  the  drying  period,  which  was  necessary  to  remove  any  condensed  water,  an

additional 12 hours of data was logged. ES (µmol CO2 m-2 s-1) was calculated based on Eq 4. 

Equation 4: E s=
∆ CO2 F

V t S

Where ΔCO2: difference between [CO2] in the ambient air interring the chamber and inside the chamber

(µL L-1), F: ambient air flow rate entering the stem chamber (L min -1), V: molar volume of an ideal gas
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(24 L mol-1), t: conversion factor of time from minutes to seconds (1 min/60 sec) and S: superficial stem

area enclosed by the chamber (0.016 m²).

Sap velocity measurements were made every 15 minutes using a heat ratio sap flow sensor

(SFM1, ICT international) installed at 2.1 m (P. anomala), 2.0 m (P. erythrochrysa), and 1.7 m (E.

bracteosa) of height above the ground. The SFM1 sensors have three needles inserted parallel to the

stem and include a heating needle that emits a rapid pulse of 20 Joules of thermal energy and two

needles that determine sap temperature upstream and downstream of the heating needle at 0.75 cm and

2.25  cm of  depth  inside  the  xylem for  5  min  32  s  following  the  heat  pulse  (Green  et  al.  2003;

Christianson et  al.  2017). Sap velocity (cm hr-1)  was calculated using the Sap Flow Tool software

version 1.4.1 (Phyto-IT) from the raw sap temperature ratio data downloaded from the SFM1 sensors in

the field programmed to collect data every 15 min.

Tree crown temperature measurements were made with three infrared radiometer sensors (SI-

131, Apogee) installed on the K-34 tower and aimed at each tree crown (one IR sensor per tree) with

five-minute averages recorded on a data logger (CR-3000 Campbell Scientific). The IR sensors were

positioned at 28.8 m height and 4.25 m distance from the P. anomala crown, 25.3 m height and 6.55 m

from the P. erythrochrysa crown and 28.6 m height and 4.4 m from the E. bracteosa crown. To validate

the  IR  measurements  of  crown  temperature,  Teflon  insulated  thermocouples  (type  T,  Omega

Engineering) were attached to the lower leaf surface of eight leaves in the crown of the  P. anomala

individual during the two diurnal experiments. The thermocouple sensors were positioned on leaves in a

branch approximately  1  m from the  flux tower  structure  at  the  same height  as  the  IR sensor  and

connected  to  a  temperature  recorder  (OM-CP_OCTTEMP-A,  Omega  Engineering)  that  registered

average leaf temperatures every 15 seconds. In addition, Atmospheric vapor pressure deficit (VPD) was

calculated based on K-34 flux tower data collection of air temperature and relative humidity using a

thermohydrometer (HC2S3, Campbell  Scientific) measured at  28 m during the period of this study

(Ewers  and  Oren,  2000).  Air  temperature  and  relative  humidity  was  provided  by  the  Large-Scale
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Biosphere-Atmosphere (LBA) program at the National Institute for Amazon Research (INPA). 

3. Results

3.1 Stem growth and CO2 efflux in the BIONTE experiment

A total of 80 trees were studied across a broad range of growth rates and tree base diameters in

plots  exhibiting  variable  rates  of  net  biomass  accumulation  following  a  logging  disturbance.  The

supplementary data file (Tree_Diameter.xlsx) summarizes the collected biophysical properties of the 80

tree individuals including BIONTE treatment plot (T0-T3), tree ID, wood density (g ml-1), and monthly

diameter DBH values (cm). While the individuals were not identified at the species level, the common

name in Brazilian Portuguese was recorded. 

Following the selective logging, all BIONTE plots, including the control plots, experienced a

net increase in biomass over time (Fig. 2). Previous studies reported that tree growth rates and biomass

accumulation in  the BIONTE control  plots  were greater  than  other  control  plots  in  nearby forests

(Chambers et al. 2001), indicating a lack of biomass steady-state in the BIONTE control plots. This

allowed for an analysis of the influence of growth on carbon allocation to stem respiration among the

high diversity of tree species in the BIONTE plots. For each individual in 2002, monthly average stem

diameter increment rates were determined (µm day-1) with values reaching up to 60 µm day-1 for several

fast-growing individuals. A clear annual pattern in monthly average stem diameter increment rates was

observed with increased rates during the wet season (positive growth rates), and less positive and even

negative diameter increments for some individuals during the hot dry season (e.g. July-Sept) (Fig. 3). 

Using the measured wood density of each stem, the average annual stem growth rate was then

calculated for each individual in the same units of stem CO2 efflux according to Eq. 2. By plotting the

average annual stem CO2 efflux (ES, µmol CO2 m-2 s-1) against the average annual stem growth rate

expressed as a CO2 flux (µmol CO2 m-2 s-1), several key results can be noted (Fig. 4). ES values varied

by a factor of 10 from as low as 0.17 to as high as 1.7 µmol CO2 m-2 s-1. Likewise, stem growth rates
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ranged from near zero to over 40 µm day-1, or 5.0 µmol CO2 m-2 s-1 when expressed as CO2 flux. Despite

the high variability in the data, a weak correlation between E s and growth (R2 of 0.3) was observed with

ES values tending to increase as a function of stem growth rates.  Under zero growth,  maintenance

respiration (RM) of BIONTE trees is estimated from the y-intercept of Fig. 4 as 0.41 ± 0.04 μmol m−2 s-1

with the slope of  the linear  fit  (0.15 ± 0.03 µmol  m-2 s-1)  representing the respiratory carbon loss

equivalent to 15 ± 3% of stem carbon accrual.

When the  average  annual  carbon use  efficiency  (CUEW)  of  wood  was  calculated  for  each

individual, CUEW was found to increase markedly with the average annual stem growth rate, reaching

maximum values  of  77-87% for a fast-growing tree (Fig.  5).  CUEw estimated using the observed

average daytime ES fluxes, were higher by 0.9-17% than CUEw estimated from nighttime ES fluxes,

which were assumed to be 2-times higher during the night than during the day based on results from the

diurnal ES studies described in section 3.2 below.

3.2 Continuous observations of crown temperature, sap velocity, and Es during the night and day for

three trees near the K-34 tower

Each of the three individual trees studied near the K34 tower for real-time observations of stem

CO2 efflux were coupled together with continuous observations of sap velocity, crown temperature, and

vapor  pressure  deficit  (VPD).  For  each  tree  studied,  crown  temperature,  VPD,  and  sap  velocity

generally tracked each other throughout both the day and night, but showed an apparent inverse relation

with ES  (Fig.  6).  During the day, a reduction of ES by 14-50% relative to the fluxes at night  were

associated with high transpiration rates when crown temperatures exceeded 24-28.5°C (Fig. 7).  For

example, for the P. anomala individual during the day-time, the observed crown temperature range was

about seven degrees (27-34°C), and the ES range between 0.54-0.75 µmol m-2 s-1, with the sap velocity

between 7.0-8.6 cm hr-1. Between 10:30-11:15, an increase in crown temperature occurred together with

elevated sap velocities and this was associated with ES suppression. In contrast, between 11:15-12:15,
13
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the buildup of mid-day clouds reduced crown temperatures and VPD together with sap velocities while

ES  increased  to  maximum  values.  Nonetheless,  throughout  the  day  there  was  a  general  trend  of

increasing crown temperature with VPD and sap velocity in the afternoon (12:45-14:00) and an ES

suppression. On the intervals between 10:30-10:35, 11:30-11:35 and 13:15-13:20, transient variations

were  observed  in  crown  temperature  and  VPD  with  corresponding  responses  in  ES.  For  the  P.

erythrochrysa  individual,  the same general  day-time pattern could be observed,  with the maximum

value of crown temperature occurring at the same time as minimum value of ES (12:30). For the  E.

bracteosa  individual,  day-time VPD tracked crown temperature  and sap velocity with ES  generally

showing the opposite behavior. For example, between 12:30-13:30 when crown temperature and VPD

decreased due to the buildup of mid-day clouds, an increase in ES was observed. The apparent inverse

relationship between crown temperature and ES that was observed throughout the day for the three

individual trees was also observed when daytime data was compared to data during the night. Relative

to the day, the crown temperature and VPD reached a minimum at night, whereas the E S reached a

maximum (Fig. 6b,d,f).

When ES was plotted against crown temperature and sap velocity, for the three individual trees

studied  near  the K34 tower,  a  negative linear  relationship was  observed.  With increases  in  crown

temperature, VPD, and sap velocity, ES tended to decrease (Fig. 7a,c,e). Good statistical fits between ES

and crown temperature were found using the polynomial Es = β0 + β1(Crown Temperature) + β1(Crown

Temperature)2,  with  R2 coefficients  of  0.66,  0.15,  and  0.65  respectively  for  P.  anomala,  P.

erythrochrysa, and E. bracteosa. Similarly, by plotting ES against sap velocity, good fits between ES and

sap velocity was achieved using the polynomial Es  = β0  + β1(sap velocity) + β1(sap velocity)2.  This

analyses resulted in R² values of 0.48, 0.13, and 0.23, respectively, for P. anomala,  P. erythrochrysa,

and  E. bracteosa  (Fig. 7b,d,f). From this analysis, it  was observed that above a threshold range of

crown temperature  (P.  anomala:  24-25°C,  P.  erythrochrysa: 27.5-28.5°C,  and  E.  bracteosa:  25.5-

26.5°C) a suppression in ES occurred and was associated with high sap velocities (> 2-7 cm hr-1).
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4. Discussion

Toward  the  goal  of  developing  a  more  mechanistic  understanding  of  the  biological  and

environmental factors that influence autotrophic respiration in the tropics, in this study, we evaluated

the hypothesis that variations in stem CO2 efflux (ES) are driven by changes in growth rates across both

diurnal and annual time swhile the cales. This hypothesis was evaluated in a highly diverse ‘terra-firme’

tropical forest ecosystem in the central Amazon, by determining relationships between average annual

stem growth (wood production, Pw) and stem CO2 efflux (ES) across 80 individuals. We also sought to

evaluate the hypothesis across diurnal time scales by characterizing real-time diurnal patterns in E S in

connection with observations of sap velocity and estimates of leaf to atmosphere vapor pressure deficits

(VPD), the ‘driver’ of plant transpiration.  Early work showed a regular pattern in wood formation of

many tropical  tree  species  related to  a  distinct  rainfall  periodicity  (Worbes 1995).  During  the dry

season,  changes in  water  availability  together  with  increased  atmospheric  demand for  water  vapor

(VPD) can drive higher transpiration rates leading to reductions in plant water content, stem diameter,

and new wood production. In contrast, during the wet season when soil moisture is high, tree diameters

can increase as a result of both refilling of plant water reservoirs together with new wood production

(Dünisch et al.  2003; Schöngart et al.  2017). In order to minimize the influence of these hydraulic

effects on growth rate estimates, we determined the average annual stem diameter increment and E S

fluxes for each individual.

Mean annual daytime ES fluxes (0.55 ± 0.33 µmol m-2  s-1), determined here for trees in the

BIONTE plot during 2002, compare well with mean annual ES fluxes (0.6 μmol m−2 s-1) previously

reported  for  Manaus  and  the  Tapajos  National  Forest  (Chambers  et  al.  2004;  Trumbore  2006).

However, to our knowledge, night time ES fluxes have not yet been reported in the Amazon basin. In

general, published measurements of ES in the Amazon Basin have reported highly variable daytime

observations from canopy trees (Nepstad 2002; Chambers et al. 2004; Malhi et al. 2009; Rowland et al.
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2018). For example, Chambers et al., 2004, values ranged over two orders of magnitude (0.027 to 3.64

µmol  m-2 s-1) with the  large  variation  largely unexplained.  In  this  study across  the  80  individuals,

daytime ES values also varied substantially by a factor of 10 from as low as 0.17 to as high as 1.7 µmol

CO2 m-2 s-1. By observing a statistically significant positive linear relationship between annual average

stem growth rates and ES, we show that some of this variability in ES can be attributed to tree growth

rates (which ranged from near zero with little net annual growth to over 40 µm day -1). Thus, the fastest

growing stems tended to have the highest rates of ES while individuals showing little to no growth

tended to have lower rates of ES. In addition, the slope of the linear relationship was determined to be

0.15 ± 0.03, suggesting that between 12 and 18% of total carbon allocated to stems is respired and

released to the atmosphere as CO2. These findings are consistent with previous studies in the Tapajos

National Forest in the Amazon (Nepstad 2002) and a Costa Rican forest  (Ryan et al. 1994) where ES

was positively correlated with tree growth rates. 

Moreover, when stem growth rates were expressed in the same units as ES, CUEW was found to

increase with stem growth rates, with maximum CUEW for a fast-growing tree reaching values between

77-87%. CUEW provides a measure of what fraction of total carbon assimilation becomes incorporated

into new woody tissues. Previous studies in the ZF2 forest preserve outside of Manaus, Brazil estimated

average CUEW of 43% (Chambers et al. 2004) while a second study estimated values ranging from 30-

56% for Manaus (46%), Tapajós (56%), and Caxiuanã (30%) (Malhi et al. 2009). Our results from the

BIONTE experiment near Manaus suggest that high CUEW values (up to 77-87%) are associated with

high daytime ES fluxes during fast tree growth. Therefore, trees with higher daytime ES fluxes tend to be

faster growing and with higher CUEW values.

Using real-time data from three canopy trees,  we also show that  ES variability is inversely

linked  to  crown  temperature/VPD  and  sap  velocity  on  diurnal  time  scales.  VPD  tracked  crown

temperature and sap velocity throughout both the day and night. This is consistent with a recent study

using a larger set of trees near the K34 tower (including the three that were studied here), which showed
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that sap velocity, leaf temperature, and leaf to air-VPD were positively correlated during both the day

and night with no detectable delay between the variables (<15 min) (Gimenez et al. 2019). Despite large

height  differences  between ES and  sap  velocity  measurements  at  the  base  of  the  stem and crown

temperature and VPD observations at 25-29 m within the canopy, ES was inversely related to these

variables at minute to diurnal time scales. A strong (15-50%) ES suppression was observed during the

daytime relative to  the night  associated with  elevated values  of  crown temperature/VPD and high

transpiration rates. These findings are consistent with a previous study at the same Amazon field site on

a single Scleronema micranthum (Ducke) Ducke individual that found higher ES fluxes at night relative

to the day with ES fluxes decreasing with the commencement of xylem sap velocity and elevating air

temperature in the early morning (N. Kunert,  2018).  These patterns are alternate to what would be

expected simply due to changes in stem temperature that  increase during the day,  which stimulate

respiration due to its Q10 thermal dependence. Thus, the mechanism of daytime ES suppression cannot

be explained by the impact of temperature on respiration.

Due to the use of sealed static stem enclosures which report only an averaged ES flux over the

measurement  period,  previous  studies  of  ES fluxes  from  Neotropical  rainforests  reported  little

information on potential diurnal patterns including studies in French Guiana  (Stahl et al. 2011), the

central Amazon    (Chambers et al.  2004)  ,  and  the eastern Amazon  (Rowland et al.  2018). However,

diurnal studies in subtropical China reported ES fluxes increasing during the daytime following closely

the  diurnal  increases  in  temperature,  enabling  an  estimate  of  ES Q10  values  (Yang  et  al.  2012).

Similarly, diurnal ES studies from woody stems of eudicots and gymnosperms in Guam, Thailand, and

the Philippines showed diurnal Es fluxes that  were 36-40% greater  than nighttime Es (Marler  et  al.,

2020). Based on these and other field measurements, a previous statistical global model predicted that

ES increases with temperature in the tropics (Yang et al. 2016). For example, on a global annual basis,

ES was suggested to increase with temperature with annual ES values in the Amazon Basin estimated

three-to-five times greater than ES fluxes for temperate and Boreal forests. 
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Although additional research is needed to resolve why some studies have reported positive daytime

increases in ES together with transpiration and temperature while others have observed a clear daytime

suppression in ES, one possibility may be the variable influence of root/soil respiratory sources of CO2.

ES observations at height of 1.3 m, as performed here in the central Amazon, may be sufficiently high to

avoid  a  significant  impact  of  soil/root  derived  CO2 on  observed  stem  Es  fluxes.  In  contrast,  the

southeast Asia study in Guam, Thailand, and the Philippines quantified diurnal stem Es fluxes at a much

lower stem height of 0.3-0.4 m, and did not observe daytime suppression relative to the night (Marler et

al., 2020). Stem diameters were a similar range in the southeast Asia study (29 to 92 cm) and central

Amazon (BIONTE: 10-52 cm, K34 tower: 30-37 cm) studies reported here. Thus, we assume stem Es

fluxes observations in the central Amazon are mainly influenced by respiratory processes in the local

sap wood at the height of measurement (1.3 m), rather than roots/soils. However, additional research is

needed to characterize the relative importance of autotrophic and heterotrophic sources of stem Es flux

as a function of height in tropical trees.

Nonetheless, the suppression of ES associated with high daytime temperatures and transpiration,

as observed here in the central  Amazon, are consistent  with a similar finding reported at the same

Amazon field site on a single Scleronema micranthum (Ducke) Ducke individual (N. Kunert, 2018), as

well as numerous greenhouse and field studies outside the tropics. Although mitochondrial respiration is

known to increase with temperature (Atkin and Tjoelker 2003; Noctor et al. 2007), a growing number

of studies outside of the tropics have shown that daytime ES can be suppressed during the day relative to

the  night.  For  example,  results  from  an  experimental  forest  in  Georgia  showed  both  reduced

transpiration rates and enhanced ES at night relative to the day, despite substantially higher temperatures

during the day compared to the night  (Maier and Clinton 2006). Mechanistic studies suggested that

daytime suppression of ES is strongly related to stem water potential decreases that inhibit growth and

its associated respiratory fluxes (Saveyn et al. 2007). Indeed, stem growth rates of several tree species
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have been documented to be higher at night than the day (Nozue et al. 2007). Although early studies

reporting  daytime  ES suppression  mainly  discussed  a  possible  role  of  transport  of  CO2 in  the

transpiration stream, an alternative mechanism was proposed (Saveyn et al. 2007) based on the daily

dynamics of turgor pressure. The daytime decrease in stem water potential was hypothesized to be a

key determinant of ES through its direct negative influences on the rates of growth and maintenance

processes in the living tissues of the stem. 

Numerous other studies have shown a tendency of a suppression in ES during periods of high

transpiration  (Levy et al.  1999; Teskey and McGuire 2007; Bowman et al.  2008). These and other

studies suggested that a suppression of ES during day-time periods of high sap flow may be a result of

numerous processes including enhanced CO2 storage (Bowman et al. 2005; Teskey and McGuire 2007;

Robert O. Teskey, An Saveyn, Kathy Steppe, Mary Anne McGuire 2007; Teskey et al. 2008), increased

respiratory  CO2 transport  via  the  transpiration  stream  (Katayama  et  al.  2014),  a  suppression  of

mitochondrial respiration and growth by reduced daytime xylem water potential  (Saveyn et al. 2007),

enhanced re-assimilation of respiratory CO2 through both light-dependent photosynthetic green-tissue

assimilation  (Wittmann  et  al.  2006), and  light-independent  bicarbonate  fixation  via  phosphoenol

pyruvate carboxylase activity involved in the biosynthesis of dicarboxylic acids like malate that are

used as respiratory substrates (Berveiller and Damesin 2008). Thus, an ES and growth suppression could

have major implications for stress coping mechanisms during high temperature and droughts such as

those experienced during ENSO events (Longo et al. 2018). As has been previously discussed based on

CO2 re-assimilation studies  (Bloemen et al. 2013a, b), an increased transport of respired CO2 could

result in enhancing internal CO2 re-assimilation within stems and leaves and consequently contribute to

protective mechanisms during climate extremes. Moreover, a downregulation of growth and respiratory

processes during climate warming and drought may act to increase survivability through conservation

of valuable respiratory substrates such as non-structural carbohydrates whose exhaustion could lead to

carbon starvation and mortality (McDowell and Sevanto 2010).
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While the proposed mechanisms of daytime ES suppression are not mutually exclusive, they

are reportedly difficult to disentangle. However, more recent studies have attempted to discriminate

between internal transport/re-assimilation versus attenuated respiratory activity due to lower turgor

pressure.  For  example,  when  manipulative  greenhouse  studies  were  performed by  defoliation  and

drought treatments, only turgor pressure was a robust predictor of daytime suppression of temperature-

normalized ES fluxes  (Salomón et  al.  2018).  Regardless of the mechanisms of ES suppression,  we

confirm that  strong daytime stem ES suppression can occur in Amazon trees during warm periods

associated  with  high  rates  of  transpiration.  Despite  similar  findings  outside  of  the  tropics,  we

acknowledge however, that our findings are restricted to a limited number of trees with measurements

capturing only one diurnal period. While verification of a daytime suppression of ES associated with

high transpiration rates among highly diverse canopy dominant trees in the Amazon and other tropical

forests requires additional research, the observations are consistent with the emerging view that diurnal

dynamics of stem water fluxes influence CO2 transport,  metabolism, and ES as well  as respiratory

processes associated with stem growth. 

5. Data and Materials Availability

All data presented in the manuscript, including raw (diameter and wood density) and derived

(ES, growth rates, and growth rates as CO2 efflux) datasets from the 80 trees in the BIONTE central

Amazon field site are available for public download and use from the NGEE Tropics data archive

(NGT0168,  Stem  CO2 Efflux  and  growth  rates  in  a  selectively  logged  experiment  in  the  central

Amazon 2001-2002, http://dx.doi.org/10.15486/ngt/1767825). In addition to the raw and derived data,

important metadata is also available including sampling date and location, tree ID, genus, species,

family, tree number, research site, data measurement variables and units. A second data set is also

available  which  includes  real  time  Es from  three  canopy  dominant  trees  together  with  canopy

temperature and sap flow during the day and night (NGT0149, Stem CO2 Efflux measurements from
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Manaus, Brazil 2017, http://dx.doi.org/10.15486/ngt/1804760). Data users can view the public datasets

and all related metadata through the NGEE Tropics data archive. Once users register with a FluxNet

ID, which only requires  an email  to  sign up,  the datasets are free  to  download and use in  future

experimental and modeling studies focused on understanding the roles of autotrophic respiration and

growth in ecosystem carbon storage and cycling.
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9. Figures

Figure  1: Schematic  diagram of  the  BIONTE logging experiment  showing the  three  experimental

blocks, the layout of each 4-ha sub-blocks, and the location of the forest sample plot within each sub-

block.  Also shown is the location of the K34 tower where diurnal  ES flux studies were conducted

together with observations of transpiration and its environmental drivers.

Figure 2: Net change in total above-ground tree biomass for the Transect control plots (C) and the

BIONTE logging treatment plots (T0-T3). All BIONTE plots including the BIONTE control plots (T0)
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experienced long-term biomass accumulation, in contrast to the Transect control plots that exhibited

biomass steady-state.

Figure 3: Monthly average stem diameter increments during 2002 for individual trees (n = 80 trees) in 

the BIONTE plots. 

Figure 4.  Average  ES rates plotted versus stem growth rates expressed as a CO2 flux. Each point
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represents average annual growth and respiration rate (in µmol m -2 s-1) for individual trees (n = 80

trees) in the BIONTE plots. Note the trend of increased ES fluxes as a function of stem growth rates.

Note that slope of the linear fit (0.15  ± 0.03 µmol m-2 s-1) representing the  respiratory carbon loss

equivalent to 15 ± 3% of stem carbon accrual. Maintenance respiration (RM) is estimated as the y-

intercept = 0.41 ± 0.04 mol m-2 s-1.

Figure 5: Change in estimated CUEw from Es data plotted as a function of tree growth rate across the

80 tree individuals studied in the BIONTE plots.  Note,  CUEw was estimated using the observed

average daytime ES fluxes (orange points). Nighttime CUEw was estimated by assuming nighttime ES

fluxes are 2X higher than during the daytime (black points).
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Figure 6: Example of high temporal dynamics (5 min) of basal ES (µmol m-2 s-1, 1.3 m) and Sap velocity

(cm hr-1, 1.5 m) together with crown temperature (°C, 28.8, 25.3 and 28.6 m) measured with an IR

radiometer during a 4-hour period at the hottest hour of the day for: a. P. anomala (21 Jun 2017), c. P.

erythrochrysa (11 Oct 2017) and e. E. bracteosa (22 Jun 2017). Also shown are diurnal patterns of ES

(30 min average), crown temperature and sap velocity (15 min averages) for three trees: b. P. anomala,

d. P. erythrochrysa and f. E. bracteosa) showing higher ES values during the night-time when crown

temperature and sap velocity are low. Shaded areas in parts b., d., and e. represent nighttime data.
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Figure  7. Scatter  plots  and  nonlinear  regression  analyses  of  ES  versus  crown temperature  (hourly

averages,  red  points)  and  Es versus  sap  velocity  (hourly  averages,  blue  points)  for  three  canopy

dominant trees in the central Amazon: a. and b. P. anomala on 21 Jun 2017; c. and d. P. erythrochrysa

on 11 Oct 2017; e. and f. E. bracteosa 22 Jun 2017). The central line represents the polynomial fit (see

included equations) and the two other lines represents ± confidence interval. Regression statistics with

95% probability provided with p-value and R-Squared at the top-right corner of the plots. 
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	Although additional research is needed to resolve why some studies have reported positive daytime increases in ES together with transpiration and temperature while others have observed a clear daytime suppression in ES, one possibility may be the variable influence of root/soil respiratory sources of CO2. ES observations at height of 1.3 m, as performed here in the central Amazon, may be sufficiently high to avoid a significant impact of soil/root derived CO2 on observed stem Es fluxes. In contrast, the southeast Asia study in Guam, Thailand, and the Philippines quantified diurnal stem Es fluxes at a much lower stem height of 0.3-0.4 m, and did not observe daytime suppression relative to the night (Marler et al., 2020). Stem diameters were a similar range in the southeast Asia study (29 to 92 cm) and central Amazon (BIONTE: 10-52 cm, K34 tower: 30-37 cm) studies reported here. Thus, we assume stem Es fluxes observations in the central Amazon are mainly influenced by respiratory processes in the local sap wood at the height of measurement (1.3 m), rather than roots/soils. However, additional research is needed to characterize the relative importance of autotrophic and heterotrophic sources of stem Es flux as a function of height in tropical trees.



