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Abstract of the Dissertation

Orbit Equivalence and Von Neumann Rigidity for

Actions of Wreath Product Groups

by

James Owen Sizemore

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2012

Professor Sorin Popa, Chair

We use deformation-rigidity theory in the von Neumann algebra framework to study prob-

ability measure preserving actions by wreath product groups and their associated von Neu-

mann algebras. In particular, we single out large families of wreath product groups satisfying

various types of orbit equivalence (OE) rigidity.For instance, we show that whenever H, K,

Γ, Λ are icc, property (T) groups such that H o Γ and K o Λ admit stably orbit equivalent

action σ and ρ such that σ|Γ, ρ|Λ, σ|HΓ , and ρ|KΛ are ergodic, then automatically σΓ is stably

orbit equivalent to ρΛ and σ|HΓ is stably orbit equivalent to ρ|KΛ . Rigidity results for von

Neumann algebras arising from certain actions of such groups (i.e. W∗-rigidity results) are

also obtained.
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CHAPTER 1

Introduction and Notations

The purpose of this work is to study rigidity phenomena in von Neumann factors of type II1

and orbit equivalence relations arising from actions of wreath product groups on probability

measure spaces, by using deformation/rigidity methods.

Rigidity in von Neumann algebras (or W∗ − rigidity) occurs whenever the mere iso-

morphism of two group measure space II1 factors L∞(X) o Γ ' L∞(Y ) o Λ (or of two

group factors L(Γ) ' L(Λ)), constructed from free, ergodic, measure preserving actions of

countable groups on probability spaces, Γ y X, Λ y Y (respectively from infinite conju-

gacy class groups Γ,Λ), forces the groups/actions to share some common properties. The

similar type of phenomena in orbit equivalence, (OE), ergodic theory, which derives common

properties of the actions Γ y X, Λ y Y from the isomorphism of their orbit equivalence

relations, is called OE-rigidity. These two types of results are in fact closely related, as

any OE of actions implements an isomorphism of their associated group measure space von

Neumann algebras (cf. [Sin55]), i.e. a W∗-equivalence of the actions. In other words, orbit

equivalence is a stronger notion of equivalence for group actions than W∗-equivalence, thus

making W∗-rigidity results more challenging to establish than OE-rigidity. The ultimate

purpose for studying such phenomena is, of course, the classification of group measure space

II1 factors and equivalence relations in terms of their building data Γ y X. In this respect,

the “rigidity” point of view offers a more suggestive and nuanced terminology, and a far

more intuitive set up.

W∗ and OE rigidity can only occur for non-amenable groups, as by a celebrated result

of Connes ([Con76]) all II1 factors L∞(X) o Γ with Γ amenable are approximately finite
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dimensional and thus isomorphic to the so-called hyperfinite factor R. Similarly, all measure

preserving (m.p.) ergodic actions of amenable groups on the standard probability space are

OE ([OW80], [CFW81]). Moreover, non-amenable groups give rise to non-hyperfinite II1

factors and orbit equivalence relations. It has been known for some time that non-amenable

groups can produce many classes of non-isomorphic II1 factors and orbit equivalence rela-

tions ([MV43],[Dye63],[McD69],[Con75],[Con80],[Zim80], [Pop86],[CH89]), indicating a very

complex picture, and a rich and deep underlying rigidity theory. But it was during the last

ten years that this subject really took off, with an avalanche of surprising rigidity results

being obtained on both OE and W∗ sides.

Much of this is due to the emergence of deformation/rigidity theory ([Pop06c], [Pop06b],

[Pop06d], [Pop07]), a set of techniques that exploits the tension between “soft” and “rigid”

parts of a group measure space II1 factor M = L∞(X)o Γ, in order to recapture the initial

data Γ y X, or part of it. This approach is based on the discovery that if the group

action has both a “relatively soft” part and a “relatively rigid” part, complementing one

another, then the overall rigidity of the resulting II1 factor M is considerably enhanced. The

“soft spots” of an algebra M are gauged by deformations by completely positive maps, a

prototype of which being malleable deformations, that for instance Bernoulli and Gaussian

actions have.

It is due to such a combination/complementarity of “soft” and “rigid” parts that wreath

product groups G = H o Γ have soon been recognized to be “exceptionally rigid” in the von

Neumann algebra context. Indeed, it was already shown in [Pop06d] that any isomorphism

between group II1 factors L(G) ' L(G′), with G = H o Γ, G′ = H ′ o Γ′ wreath product

groups, H,H ′ abelian and Γ,Γ′ having property (T) of Kazhdan, forces the groups Γ,Γ′ to

be isomorphic. The same was in fact shown to be true if Γ,Γ′ are non-amenable product

groups ([Pop08]) and for certain amalgamated free product groups Γ (with Γ′ arbitrary!) in

[PV10], while in [Ioa07] it is shown that for non-amenable ICC groups H,H ′ and amenable

groups Γ,Γ′, the isomorphism L(G) ' L(G′) implies Γ ' Γ′. Also, II1 factors L(G) arising

from wreath products G = H o Γ with H amenable and Γ non-amenable were shown to be
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prime in [Pop08], a fact that was later strengthened significantly, in two ways: a relative

solidity result for such L(G) is proved in [CI10], while a unique prime decomposition result for

tensor products of such factors is obtained in [SW11]. Finally, let us mention that in [IPV11],

a large class of generalized wreath product groups G were shown to be W∗ − superrigid, i.e.

any isomorphism between L(G) and the II1 factor L(G′) of an arbitrary group G′, forces

G ' G′.

It has been suggested that a group measure space factor and orbit equivalence relation

arising from ANY action Gy X of a wreath product group G = H oΓ may exhibit a certain

level of rigidity. This has been confirmed at the OE-level by Hiroki Sako in [Sak09], who

was able to prove that for a large class of groups Γ, the OE class of an action H o Γ y X is

completely determined by the OE-class of its restriction Γ y X. More precisely, he showed

that, if two actions by wreath products groups are orbit equivalent, H o Γ ∼=OE K oΛ, where

H, K are amenable and Γ, Λ are products of non-amenable, exact groups, then Γ ∼=OE Λ.

His methods rely on Ozawa’s techniques involving class S groups ([Oza04],[Oza06]) thus

being C∗-algebraic in nature and depending crucially on exactness of the groups involved.

In turn, in this paper we use a deformation/rigidity approach to this problem. This will

allow us to exhibit several large classes of groups for which the OE rigidity phenomenon

described above holds. It will also allow us to obtain some W∗-rigidity results of a similar

type.

In order to state our OE rigidity result in its full generality, we recall the following

terminology (see e.g. [Gab05], [Fur99]): Two groups Γ,Λ are stably orbit equivalent, or

measure equivalent (ME), if there exist free ergodic probability measure preserving actions

Γ yσ (X,µ), Λ yρ (Y, ν), subsets of positive measure X0 ⊂ X, Y0 ⊂ Y and an isomorphism

of the corresponding probability spaces θ : (X0, µ0) ' (Y0ν0) (where µ0 = µ/µ(X0), ν0 =

ν/ν(Y0)), such that θ(Γt∩X0) = Λ(θ(t)), for almost all t ∈ X0. We then write Γ ∼=ME Λ for

the groups and σ 'SOE ρ for the actions.

We consider the following three families of groups: for each k = 1, 2, 3, we denote by

WR(k) the collection of all generalized wreath product groups H oI Γ with Γ icc, I a Γ-set
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with finite stabilizers and satisfying the condition:

1. Γ has property (T) and H has Haagerup’s property;

2. Γ and H have property (T) and H is icc;

3. Γ is a non-amenable product of infinite groups and H is amenable.

With this notation, we obtain the following:

Theorem 1.1. Let H oI Γ, K oJ Λ ∈WR(k) for some k = 1, 2, 3. If a measure preserving

action, σ, of H oI Γ is stably orbit equivalent to a measure preserving action, ρ, of K oJ Λ,

and both σ|Γ and ρ|Λ are ergodic then σ|Γ follows stably orbit equivalent to ρ|Λ. Moreover, if

H oI Γ, K oJ Λ ∈WR(2) and both σ|HI and ρ|KJ are ergodic, then we additionally have that

σ|HI
∼=SOE ρ|KJ .

To prove the above result, we exploit the fact that the group measure space von Numann

algebra M associated to an action of a wreath product group H oΓ is “distinctly soft” on its

H(Γ)-part, independently of the action. In turn, the fact that Γ acts in a very mixing way

on H(Γ) makes Γ “strongly singular” (or “malnormal”) in M . When combined with rigidity

assumptions on Γ, this allows us to first extract information about the associated crossed

product von Neumann algebra regardless of how the group acts, then finally deducing the

above OE rigidity result.

On the other hand, if we now assume that Γ acts compactly on the probability space X,

then we can distinguish the subalgebra L(H(Γ)) on which Γ acts mixingly from the subalgebra

L∞(X) on which it acts compactly. This allows us to obtain the following strong W∗-rigidity

result:

Theorem 1.2. Let H,K be amenable groups and Γ,Λ groups with the property (T). Assume

that H oΓ yσ X and K oΛ yρ Y are free, measure preserving action such that σ|Γ is compact,

ergodic and ρ|Λ is ergodic. If L∞(X)o (H oΓ) ' L∞(Y )o (K oΛ), then Γ yσ|Γ X is virtually

conjugate to Λ yρ|Λ Y .
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In the last few chapters we adapt these techniques to von Neumann algebras arising from

actions of direct products of wreath product groups and this allows us to get a uniqueness

of tensor product decomposition type theorem as described below.

Theorem 1.3. Let A1, . . . , An be non-trivial amenable groups; H1, . . . , Hn be non-amenable

groups; and Q1, . . . , Qk be diffuse von Neumann algebras such that

M = L(A1 oH1)⊗ . . .⊗L(An oHn) = Q1⊗ . . .⊗Qk

If k ≥ n, then n = k, and after permutation of indices we have that L(Ai o Hi) ' Qti
i for

some positive numbers t1, t2, . . . tn whose product is 1.

Organization of the paper. In the second chapter we describe the von Neumann algebras

we will be studying and the deformation that we will be using. In the third chapter we collect

various intertwining results concerning subalgebras of von Neumann algebras arising from

actions of wreath product groups. The fourth and fifth chapter are dedicated to the heart

of the deformation/rigidity arguments of the paper, and focus on locating the malnormal,

rigid subgroup Γ of a wreath product H o Γ. Chapter six deals with the application to

orbit equivalence theory while chapter seven deals with application to W∗ strong rigidity.

In chapter eight we explain the relevant background material for the uniqueness of tensor

product result. The last two chapters deal with the proof of preliminary results as well as

the proof of the final uniqueness theorem.

Notations. Throughout this paper all finite von Neumann algebras M that we consider are

equipped with a normal faithful tracial state denoted by τ . This trace induces a norm on N

by letting ‖x‖2 = τ(x∗x)
1
2 and L2(M) denotes the ‖ · ‖2-completion of M . A Hilbert space

H is a M − bimodule if it carries commuting left and right Hilbert M -module structures.

Given a von Neumann subalgebra Q ⊂ M we denote by EQ : M → M the unique

τ -preserving conditional expectation onto Q. If eQ is the orthogonal projection of L2(M)

onto L2(Q) then 〈M, eQ〉 denotes the basic construction, i.e., the von Neumann algebra

generated by M and eQ in B(L2(M)). The span of {xeQy | x, y ∈ M} forms a dense ∗-

subalgebra of 〈M, eQ〉 and there exists a semifinite trace Tr : 〈N, eQ〉 → C given by the
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formula Tr(xeQy) = τ(xy) for all x, y ∈ M . We denote by L2〈M,EQ〉 the Hilbert space

obtained with respect to this trace.

The normalizer of Q inside M, denoted NM(Q), consists of all unitary elements u ∈

U(M) satisfying uQu∗ = Q. A maximal abelian selfadjoint subalgebra A of M , abbreviated

MASA, is called a Cartan subalgebra if the von Neumann algebra generated by its normalizer

in M , NM(A)′′ is equal to M .

If Γ yσ A is a trace preserving action by automorphisms of a countable group Γ on a

finite von Neumann algebra A we denote by M = Aoσ Γ the crossed product von Neumann

algebra associated with the action. When no confusion will arise we will drop the symbol σ.

Given a subset F ⊂ Γ, we will denote by PF the orthogonal projection onto the closure of

the span of {auγ | a ∈ A; γ ∈ F}.

Given ω a free ultrafilter on N and (M, τ) a finite von Neumann algebra we denote

by (Mω, τω) its ultrapower algebra, i.e., Mω = `∞(N,M)/I where the trace is defined as

τω((xn)n) = limn→ω τ(xn) and I is the ideal consisting of all x ∈ `∞(N,M) such that

τω(x∗x) = 0. Notice that M embeds naturally into Mω by considering constant sequences.

Many times when working with M = Ao Γ we will consider the subalgebra Aω o Γ of Mω.

For all other notations and terminology, that we may have omitted to explain in the

paper, we refer the reader to [Pop08], [PV10], [Vae10].
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CHAPTER 2

Malleable Deformations of Factors Associated to

Wreath Product Groups

Let H and Γ be two countable discrete groups and assume that I is a Γ-set. We denote by

HI =
⊕

I H the infinite direct sum of H indexed by the elements of I, which can also be

viewed as the group of finitely supported H-valued functions on I, with pointwise multipli-

cation. Next consider Γ acting on HI by the generalized Bernoulli shift i.e. ρg((sι)ι∈I) =

(sg−1ι)ι∈I for every g ∈ Γ. The corresponding semidirect product HI oρ Γ = H oI Γ is called

the generalized wreath product of H and Γ along I. Throughout this paper, for every ι ∈ I

we denote its stabilizing group by Γι = {g ∈ Γ | gι = ι}.

Given (A, τ) a finite von Neumann algebra, let H oI Γ yσ (A, τ) be a trace preserving

action and denote by M = Aoσ (H oI Γ) the corresponding crossed product von Neumann al-

gebra. One important feature of these algebras is that they admit s−malleable deformations,

in the general sense of [Pop07]. More specifically, this is obtained as a combination of the

Bernoulli-type malleable deformation in [Pop06c], [Pop06d] and the free malleable deforma-

tions in [Pop06c], [IPP08], being very similar with the malleable deformation considered in

[Ioa07]. The detailed construction is as follows.

Denote by H̃ = H ∗Z and then extend σ to an action, still denoted by σ, H̃ oI Γ yσ (A, τ)

by letting the generator u of Z to act trivially on (A, τ). This gives rise to a crossed product

von Neumann algebra M̃ = Aoσ (H̃ oI Γ) and observe that M ⊂ M̃ .

Seen as an element of LZ, u is a Haar unitary and therefore one can find a selfadjoint

element h ∈ LZ such that u = exp(ih). For every t ∈ R, denote by ut = exp(ith) ∈ LZ

7



and observe that Ad(ut) ∈Aut(LH̃). We further consider the tensor product automorphism

θt = ⊗IAd(ut) ∈ Aut(LH̃I) and since θt commutes with ρ then it can be extended to an

automorphism of M̃ which acts identically on the subalgebra Aoσ Γ.

From the definitions one can easily see that limt→0 ‖ut − 1‖2 = 0 and hence we have

limt→0 ‖θt(x) − x‖2 = 0 for all x ∈ M̃ . Therefore, the path (θt)t∈R is a deformation by

automorphisms of M̃ .

Next we show that θt admits a “symmetry”, i.e. there exists an automorphism β of M̃

satisfying the following relations:

β2 = 1, β|M = id|M , βθtβ = θ−t, for all t ∈ R. (2.1)

To see this, first define β|
LHI

= id|
LHI

and then for every ι ∈ I we let (u)ι to be the element in

LH̃I whose ιth-entry is u and 1 otherwise. On elements of this form we define β((u)ι) = (u∗)ι,

and since β commutes with ρ, it extends to an automorphism of L(H̃ oIΓ) by acting identically

on LΓ. Finally, the automorphism β extends to an automorphism of M̃ , still denoted by β,

which acts trivially on A. Verifying relations (2.1) is a straightforward computation and we

leave it to the reader.

For further use, we recall that all malleable deformations admitting a symmetry (i.e.

s-malleable deformations) satisfy the following “transversality” property:

Theorem 2.1 ([Pop08]). For all t ∈ R and all x ∈M we have that

‖θ2t(x)− x‖2 6 2‖θt(x)− EM ◦ θt(x)‖2.

8



CHAPTER 3

Intertwining Techniques for Subalgebras of Wreath

Product Factors

We review here the techniques of intertwining subalgebras in [Pop06a], [Pop06d], which

are an essential part of deformation/rigidity theory. Given a projection p0 ∈ M and two

subalgebras P ⊂ M and Q ⊂ p0Mp0 one says that a corner of P can be embedded into Q

inside M if there exist nonzero projections p ∈ P q ∈ Q, nonzero partial isometry v ∈ M

and a ∗-homomorphism ψ : pPp→ qQq such that vx = ψ(x)v, for all x ∈ pPp. Throughout

this paper we denote by P ≺M Q whenever this property holds and by P ⊀M Q otherwise.

Theorem 3.1 (Popa, [Pop06d]). Let (M, τ) be a finite von Neumann algebra with P ⊂M ,

Q ⊂M two subalgebras and consider the following properties:

1. P ≺M Q.

2. Given any subgroup G ⊂ U(P ) such that G ′′ = P then for all x1, x2, ..., xn ∈ M and

every ε > 0 there exists u ∈ G such that

‖EQ(xiuxj)‖2 < ε, for every 1 6 i, j 6 n.

3. Given any subgroup G ⊂ U(P ) such that G ′′ = P there exists a sequence un ∈ G such

that

lim
n→∞

‖EQ(xuny)‖2 → 0, for every x, y ∈M.

Then one has the following equivalences:

non(1)⇔ (2)⇔ (3)

9



Based on this criterion, we present below a few intertwining lemmas needed in the coming

sections. The first result we prove deals with embedding of normalizers and will be used quite

extensively in Section 5. Roughly speaking, given Q a regular subalgebra of M with Q ⊆

N ⊆M and G a subgroup of normalizers of Q in M , if there exits a nonzero partial isometry

intertwining G ′′ into N then one can find a nonzero partial isometry in M intertwining the

(possibly larger) algebra (U(Q)G)′′ into N . The precise statement is the following:

Lemma 3.2. Let Q ⊆ N ⊆ M be finite von Neumann algebras such that NM(Q)′′ = M . If

G ⊂ NM(Q) is a subgroup such that G ′′ ≺M N then (U(Q)G)′′ ≺M N .

Proof. Suppose by contradiction that we have (U(Q)G)′′ ⊀M N . Therefore, by Theorem 3.1,

there exists an infinite sequence xn = anun ∈ U(Q)G with an ∈ U(Q) and un ∈ G such that

lim
n→∞

‖EN(xxny)‖2 = 0 for all x, y ∈M. (3.1)

Taking x = y = 1 in (3.1) it is immediate that the sequence (un)n must be infinite. Below

we prove that

lim
n→∞

‖EN(xuny)‖2 = 0 for all x, y ∈M. (3.2)

Fix two arbitrary unitaries x, y ∈ NM(Q). Then for all an we have xanx
∗ ∈ U(Q) ⊂ N

and using (3.1) we deduce that:

lim
n→∞

‖EN(xuny)‖2 = lim
n→∞

‖xanx∗EN(xuny)‖2 =

= lim
n→∞

‖EN(xanx
∗xuny)‖2 = lim

n→∞
‖EN(xxny)‖2 = 0.

The above convergence extends to all elements x, y that are finite linear combinations of uni-

taries in NM(Q) and furthermore, using ‖ · ‖2-approximations, to all elements x, y belonging

to NM(Q)′′. Since NM(Q)′′ = M , this completes the proof of (3.2).

Finally, by Theorem 3.1 convergence (3.2) implies that G ′′ ⊀M N thus leading to a

contradiction.

The next lemma is more specialized, providing a criterion for intertwining certain sub-

algebras inside von Neumann algebras arising from actions by wreath product groups. In
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essence the result is a translation of Theorem 3.1 in the setting of ultrapower algebras and

we include a proof only for the sake of completeness. The reader may also consult Section 3

in [Pop06e] or Proposition 2.1 in [CP10], for a similar arguments.

Lemma 3.3. Let H oIΓ y A be a trace preserving action on a finite von Neumann algebra A.

Denote by M = Ao (H oI Γ) and let P ⊂M be a II1 subfactor such that NM(P )′ ∩M = C1.

If S ⊂ I is a subset, then P ≺M A o HS implies P ω ⊆ (A o HS)ω ∨M. When assuming

S = I the two conditions are actually equivalent.

Proof. Assume P ≺M AoHS. Therefore one can find nonzero projections p ∈ P , q ∈ AoHS,

a ∗-homomorphism ψ : pPp → q(A oHS)q and nonzero partial isometry v ∈ M such that

vψ(x) = xv for all x ∈ pPp. The last equation implies that vv∗ ∈ (pPp)′∩pMp and therefore

we have the following

pPpvv∗ = vψ(pPp)v∗ ⊆ v(AoHS)v∗. (3.3)

We notice that there exists nonzero projection p′ ∈ P ′ ∩ M such that vv∗ = pp′ and

combining this with (3.3) we obtain

(pPp)ωp′ ⊆ (AoHS)ω ∨M. (3.4)

Since P is a II1 factor then after shrinking the projection p if necessary one may assume

that p has trace 1
k
, for some positive integer k. Also, for every 1 6 i, j 6 k there exist

partial isometries eij ∈ P such that e11 = p, e∗ij = eji, eijeji = eii ∈ P(P ) and
∑

i eii = 1. If

(xn)n ∈ P ω then using the above relations in combination with p′ ∈ P ′ ∩M we have

(xn)n(p′)n = (xnp
′)n = (

∑
i,j

eiixnejjp
′)n =

∑
i,j

(ei1e1ixnej1e1jp
′)n

=
∑
i,j

(ei1)n(e1ixnej1)n(p′)n(e1j)n. (3.5)

One can easily see that (e1ixnej1)n ∈ (pPp)ω and combining this with (3.4) and (3.5) we

conclude that (xn)n(p′)n ∈ (AoHS)ω ∨M , thus showing that P ωp′ ⊆ (AoHS)ω ∨M .

Conjugating by u ∈ NM(P ) ⊆ NM(P ′∩M) we obtain P ωup′u∗ ⊆ (AoHS)ω ∨M , for all

u ∈ NM(P ), and hence P ωp0 ⊆ (AoHS)ω∨M where p0 = ∨u∈NM (P )up
′u∗ ∈ P ′∩M . It is clear
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that p0 commutes with NM(P ) and thus it belongs to NM(P )′ ∩ (P ′ ∩M). By assumption

we have NM(P )′ ∩M = C1 which forces p0 = 1 and therefore P ω ⊆ (AoHS)ω ∨M .

For the converse we proceed by contraposition, i.e., assuming S = I we show that P ⊀M

A o HI implies P ω * (A o HI)ω ∨M . If P ⊀M A o HI , by Theorem 3.1, there exists a

sequence of unitaries an ∈ U(P ) such that for all x, y ∈M we have ‖EAoHI (xany)‖2 → 0 as

n→∞. This implies a ⊥M(AoHI)ωM , where a = (an)n ∈ P ω and since M(AoHI)ωM =

(AoHI)ω ∨M we conclude that P ω * (AoHI)ω ∨M .

In the following lemma we collect three situations when we have good control over inter-

twiners between certain subalgebras of von Neumann algebras arising from actions of wreath

product groups. The result is a mild extension of Theorem 3.1 in [Pop06d], and has exactly

the same proof, which however we include here for the reader’s convenience.

Lemma 3.4. Let H oI Γ yσ (A, τ) be a trace preserving action on a finite algebra A. Denote

by M̃ = Aoσ̃ (H̃ oI Γ), M = Aoσ (H oI Γ) and P = Ao Γ.

1. Let q ∈ M be a projection and Q ⊂ qMq be a von Neumann subalgebra. Assume

that for every ι ∈ I one has Q ⊀M A o (H oI Γι). If 0 6= ξ ∈ L2(qM̃) satisfies

Qξ ⊂ L2(
∑

i ξiM) for some ξ1, ..., ξn ∈ L2(M̃) then ξ ∈ L2(M); in particular we have

Q′ ∩ qM̃q ⊆ NqM̃q(Q)′′ ⊆M .

If I has finite stabilizers and Q ⊂ qMq such that Q ⊀M AoHI then we have Q′∩qM̃q ⊆

NqM̃q(Q) ⊆ qMq.

2. Let q ∈ P be a projection and Q ⊂ qPq be a von Neumann subalgebra. Assume that

for every ι ∈ I one has Q ⊀P AoΓι. If 0 6= ξ ∈ L2(qM) satisfies Qξ ⊂ L2(
∑

i ξiP ) for

some ξ1, ..., ξn ∈ L2(M) then ξ ∈ L2(P ); in particular we have Q′∩ qMq ⊆ NqMq(Q) ⊆

P .

If I has finite stabilizers and Q ⊂ qPq such that Q ⊀P A then we have Q′ ∩ qMq ⊆

NqMq(Q)′′ ⊆ qPq.
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3. Assume that I has finite stabilizers and let F ⊂ I be a finite subset. If Q ⊂ AoHF is

a subalgebra such that Q ⊀M A then we have

NM(Q)′′ ≺M AoHI ,

Proof. Let p denote the orthogonal projection of L2(M) onto the Hilbert subspaceQξM
‖·‖2 ⊂

L2(M̃). Note that p ∈ Q′ ∩ q〈M̃, eM〉q and 0 6= Tr(p) <∞, where Tr denotes the canonical

trace on 〈M̃, eM〉. To prove that ξ ∈M it is sufficient to show that p ≤ eM or, equivalently,

(1− eM)p(1− eM) = 0.

By taking spectral projections, to show that (1− eM)p(1− eM) = 0 it is in fact sufficient

to show that if f ∈ Q′ ∩ 〈M, eP 〉 is a projection such that 0 6= Tr(f) <∞ and f 6 1− eM ,

then f = 0. To this end, we will show that ‖f‖2,T r is arbitrarily small.

Thus, let η̃0 = e and let η̃1, ..., η̃n, ... be an enumeration of elements in (H̃ \H)I which are

representatives for left cosets of H oI Γ in H̃ oI Γ. Next if we denote by fn =
∑n

i=1 uη̃ieMuη̃−1
i

then, as f has finite trace and f 6 1− eM =
∑∞

i=1 uη̃ieMuη̃−1
i

, there exists n ∈ N such that

‖fnf − f‖2,T r < ε‖f‖2,T r. Thus, if u ∈ U(Q) then

Tr(fnufnu
∗) > Tr(ffnfufnu

∗)− |Tr(ffn(1− f)ufnu
∗)| − |Tr((1− f)fnufnu

∗)|. (3.6)

Since fnf is ε−close to f in the norm ‖ · ‖2,T r and f commutes with u ∈ Q we deduce:

Tr(ffnfufnu
∗) = Tr(fnfufnfu

∗) > (1− 2ε− ε2)‖f‖2
2,T r. (3.7)

Similarly, we have:

|Tr(ffn(1− f)ufnu
∗)|+ |Tr((1− f)fnfufnu

∗)| 6 2ε(1 + ε)‖f‖2
2,T r.

Combining this with (3.6) and (3.7) we get that for all u ∈ U(Q) we have
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Tr(fnufnu
∗) > (1− 4ε− 3ε2)‖f‖2

2,T r. (3.8)

On the other hand a straight forward computation shows that

Tr(fnufnu
∗) = Tr(

∑
i,j

uη̃ieMuη̃−1
i
uuη̃jeMuη̃−1

j
u∗) =

∑
i,j

‖EM(uη̃iuuη̃−1
j

)‖2
2. (3.9)

Thus, in order to prove that ‖f‖2,T r is small, it suffices to show that for every η̃1, . . . , η̃n ∈

(H̃ \H)I and every ε > 0 there exists u ∈ U(Q) such that for all 1 6 i, j 6 n we have

‖EM(uη̃iuuη̃−1
j

)‖2 6 ε. (3.10)

Fix an ε > 0 and an arbitrary set {η̃1, η̃2, η̃3, . . . , η̃n}. For every 1 6 i 6 n denote by F̃i

the support of ηi and let F =
⋃n
i=1 F̃i ⊂ I. It is easy to see that for every 1 6 i, j 6 n we

have the following containment

{g ∈ Γ | gF̃j = F̃i} ⊆
⋃
κ,`∈F

{g ∈ Γ | gκ = `}. (3.11)

Furthermore, observe that {g ∈ Γ | gκ = `} is either empty or equal to gκ,`Γκ for a fixed

element gκ,` ∈ Γ satisfying gκ,`κ = `. When combined with (3.11) it implies that for every

1 6 i, j 6 n we have

{g ∈ Γ | gF̃j = F̃i} ⊆
⋃
κ,`∈F

gκ,`Γκ,

which further implies that

{ηg ∈ H oI Γ | η ∈ HI ; gF̃j = F̃i} ⊆
⋃
κ,`∈F

gκ,`(H oI Γκ). (3.12)

Since F is a finite set and for every κ ∈ F we assumed that Q ⊀P A oσ (H oI Γκ) then

by Theorem 3.1 there exists a unitary uF ,ε ∈ U(Q) such that, for all κ, ` ∈ F we have

‖EAoσHIoΓκ(ug−1
κ,`
uF ,ε)‖2 6

ε

|F|
.
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Using the Fourier expansion uF ,ε =
∑

ηg∈HoIΓ aηguηg, a little computation shows that the

above inequality is equivalent to∑
ηg∈gκ,`(HoIΓκ)

‖aηg‖2
2 6

ε2

|F|2
for all κ, ` ∈ F . (3.13)

Next we show that the unitary uF ,ε ∈ Q found above satisfies (3.10). Indeed, employing the

formula for the conditional expectation, we obtain

‖EM(uη̃iuF ,εuη̃−1
j

)‖2
2 =

∑
{ηg|η̃iηρg(η̃−1

j )∈HI}

‖σ̃η̃i(aηg)‖2
2 6

∑
{ηg|η∈HI ;gF̃j=F̃i}

‖aηg‖2
2,

and combining this with (3.12 ) and (3.13) we have

‖EP (uηiuuη−1
j

)‖2
2 6

∑
κ,`∈F

∑
ηg∈gκ,`(HoIΓκ)

‖aηg‖2 6
∑
κ,`∈F

ε2

|F|2
= ε2,

which finishes the proof of (1).

The proof of the part (2) is very similar with the first one and it will be omitted.

Below we prove part (3). Let K̃ = {g ∈ Γ|∃x, y ∈ F such that gx = y}.

First observe that since Q ⊀M A by Theorem 3.1, there exists a sequence of unitaries

xl ∈ Q such that for all z, t ∈M we have

lim
l→∞
‖EA(zxlt)‖2 = 0

Using Fourier expansion we have xl =
∑

η∈HF bl,ηuη ∈ Q and therefore the above convergence

is equivalent to the following

‖bl,η‖2
2 → 0 for every η ∈ HF . (3.14)

Next we prove that for all c, d ∈ Aoσ (HI), g ∈ Γ \ K̃, and γ ∈ Γ we have

lim
l→∞
‖EAoHF (cugxluγ−1d)‖2 = 0.
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Using ‖ · ‖2- approximations it suffices to show our claim only for elements of the form

c = c1uη1 , d = c2uη2 , where c1,2 ∈ A and η1,2 ∈ HI . Therefore, using the expansion

xl =
∑

η bl,ηuη, we have that:

‖EAoHF (cugxluγ−1d)‖2 =

= ‖
∑
η

EAoHF (c1uη1ugbl,ηuηuγ−1c2uη2)‖2

= ‖
∑
η∈HF

η1gηγ−1η2∈HF

c1uη1ugbl,ηuηuγ−1c2uη2‖2

Since η ∈ HF and η1, η2 ∈ HI , we observe that condition η1gηγ
−1η2 ∈ HF is equivalent

to gγ−1 = e and thus we have η1gηγ
−1η2 = η1ρg(η)η2 ∈ HF . Since g ∈ Γ \ K̃, then the latter

condition is equivalent to the following: There exist at most finitely many η1
k, subwords of

η1 and finitely many η2
m subwords of η2, such that η1

krhog(η)η2
m = e. This is furthermore

equivalent with η = ρg−1((η1
k)
−1(η2

l )
−1) = ρg−1((η2

mη
1
k)
−1) and hence the above sum is equal

to:

‖
∑

η=ρg−1 ((η2
mη

1
k)−1);k,m

c1uη1ugbl,ηuηug−1c2uη2‖2
2

≤ ‖c‖2‖d‖2‖
∑

η=ρg−1 ((η2
mη

1
k)−1);k,m

bl,ηuη‖2
2

= ‖c‖2‖d‖2
∑
k,m

‖bl,ρg−1 ((η2
mη

1
k)−1)‖2

2 (3.15)

Since η1
k and η2

l are finite sets depending only on c, d, g, γ (which were fixed!) then by

(3.14) the sum (3.15) converges to 0 when l→∞ thus finishing the proof of the claim.

Now we continue with the proof. We proceed by contradiction so assume thatNM(Q)′′ ⊀M

A o HI . Fix ε > 0 and by Theorem 3.1 there exists a unitary u =
∑

g∈Γ agug ∈ NM(Q),
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with ag ∈ AoHI , such that
∑

g∈K̃ ‖ag‖2
2 < ε. Furthermore, we can find a finite set K ⊂ Γ

such that
∑

g∈Γ\K ‖ag‖2
2 < ε.

Denoting by v =
∑

g∈K\K̃ agug the above inequalities imply that ‖uxlu∗ − vxlu∗‖2
2 < 2ε.

Using this in combination with xl ∈ AoHF and u ∈ NM(Q), a straight forward computation

shows that

‖EAoHF (vxlu
∗)‖2

2 > 1− 2ε. (3.16)

On the other hand we have

‖EAoHF (vxlu
∗)‖2 = ‖

∑
EAoHF (agugbl,ηuηu

∗
γa
∗
γ)‖2.

Notice that, if a term in the sum above is nonzero we must have that gγ−1 = e, where

g ∈ K \ K̃. Since K is finite, this means that only finitely many g will contribute to the

sum. By our claim above for each g ∈ K \ K̃ we know the above norm converges to 0. Since

there are only finitely many such g we get that

‖EAoHF (vxlu
∗)‖2 → 0.

This however, contradicts (3.16) when letting ε to be sufficiently small.
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CHAPTER 4

Rigid Subalgebras of M

In this section we come to the heart of the deformation/rigidity arguments of the paper.

The central idea, as usual in Popa’s deformation/rigidity theory, is to use deformations to

reveal the position of rigid subalgebras of von Neumann algebras M arising from actions

by wreath product groups. More precisely, our main result shows that if the deformation

θt introduced in the first section converges uniformly to the identity on the unit ball of a

diffuse subalgebra Q then one can completely determine the position of Q inside M . One

consequence we derive from this is Theorem 4.5 describing all rigid diffuse subalgebras of M .

This result is very much in the spirit of Theorem 4.1 of [Pop06d] and Theorem 3.6 of

[Ioa07] and in fact most of our proofs resemble the proofs of these results. Roughly speaking,

the methods we use, employ averaging arguments in combination with the intertwining

techniques described in the previous section.

The following technical result can be seen as a criterion for locating subalgebras inside

von Neumann algebras M arising from actions by wreath product groups.

Theorem 4.1. Let H,Γ be countable groups and let I a Γ-set with finite stabilizers. Let

H oIΓ y A be a trace preserving action on a finite algebra A and denote by M = Ao(H oIΓ).

If Q ⊂ pMp is a diffuse subalgebra such that θt → id uniformly on the unit ball of Q, then

one of the following alternatives holds:

1. Q ≺M Ao Γ,

2. There exists a finite set F ⊂ I such that Q ≺M AoHF .
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The proof of this theorem will result from a sequence of lemmas. The first one is taken

from [Pop06c], [Pop06d], but we include a proof for completeness.

Lemma 4.2. Let H,Γ be countable groups and let I a Γ-set with finite stabilizers. Let

H oIΓ y A be a trace preserving action on a finite algebra A and denote by M = Ao(H oIΓ).

If Q ⊂ pMp is a diffuse subalgebra such that θt → id uniformly on the unit ball of Q, then

one of the following alternatives holds:

1. There exists a nonzero partial isometry w ∈ M̃ such that θ1(x)w = wx for all x ∈ Q.

2. Q ≺M AoHI .

Proof. Since θt → id uniformly on the unit ball of Q we can find n > 1 such that

‖θ1/2n(u)− u‖2 6 1/2, for all u ∈ U(Q).

Let v be the minimal ‖.‖2 element of K = cow{θ1/2n(u)u∗|u ∈ U(Q)}. Since ‖θ1/2n(u)u∗−

1‖2 6 1/2, for all u ∈ U(Q), we get that ‖v−1‖2 6 1/2, thus v 6= 0. Also, since θ1/2n(u)Ku∗ =

K and ‖θ1/2n(u)xu∗‖2 = ‖x‖2, for all u ∈ U(Q), the uniqueness of v implies that θ1/2n(u)v =

vu for all u ∈ U(Q) and hence

θ1/2n(x)v = vx, for all x ∈ Q. (4.1)

Assume that (2) is false, then Q ⊀M AoHI . Since I has finite stabilizers this implies that

for every ι ∈ I we have Q ⊀M Ao (H oI Γι). Therefore part (1) of Lemma 3.4 implies that

Q′ ∩ M̃ ⊂ M . On the other hand, since θt is a s-malleable deformation then combining

(4.1) with the procedure from [Pop06d] of patching up intertwiners, one can find a non-zero

partial isometry w ∈ M̃ such that θ1(u)w = wu, for all u ∈ U(Q), which proves (1).

Our second lemma is a refinement of arguments in Section 4 of [Pop06d].

Lemma 4.3. Let M and M̃ be as above. Assume Q ⊂ pMp is a von Neumann subalgebra

such that there exists a nonzero partial isometry v ∈ M̃ satisfying that θ1(x)v = vx, for all

x ∈ Q. Then one of the following alternatives holds:
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1. Q ≺M Ao Γ,

2. Q ≺M AoHI .

Proof. Let us assume that neither of the above conclusions hold. Then Q ⊀M A o Γ and

Q ⊀M AoHI . By our assumption it suffices to show that Q ⊀M̃ θ1(M). Since Q ⊀M AoΓ

and Q ⊀M AoHI , we have a sequence of unitaries (vn) ∈ Q such that

‖EAoΓ(xvny)‖2 → 0 and ‖EAoHI (xvny)‖2 → 0

for all x, y ∈M . Now we would like to show that

‖Eθ1(M)(xvny)‖2 → 0

for all x, y ∈ M̃ . Approximating x, y by finite sums of elements of the form ausg with

a ∈ A, s ∈ H̃I and g ∈ Γ, we assume that x = us and y = u∗t .

Let Fs = {i ∈ I|s(i) 6= e} and similarly for Ft. Then we know that Fs, Ft, and {g ∈

Γ|gFs∩Ft 6= ∅} are all finite sets. Define s0 ∈ HI by s0(i) is the last letter of s(i) ∈ H̃ = H∗Z

if this letter is in H, s0(i) = e otherwise. Define t0 similarly.

If g ∈ Γ and r ∈ HI are such that usrgt−1 ∈ θ1(M), then either gFs ∩ Ft 6= ∅ or

s0rαg(t
−1
0 ) = e

Now if we write the Fourier decomposition of vn as vn =
∑

r,g an,rgurg, then we can see

that

‖Eθ1(M)(usvnu
∗
t )‖2

2 =
∑

r,g,usrgt−1∈θ1(M)

‖an,rg‖2
2

6
∑

r,g,s0rαg(t−1
0 )=e

‖an,rg‖2
2 +

∑
g,gFs∩Ft 6=∅

∑
r∈HI

‖an,rg‖2
2

= ‖EAoΓ(us0vnut−1
0

)‖2
2 +

∑
g,gFs∩Ft 6=∅

‖EAoHI (vnug−1)‖2
2

→ 0.
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This shows that Q ⊀M̃ θ1(M), as desired.

So for the proof of the main theorem, if θt → id converges uniformly on the unit ball of

Q, then by the above two lemmas we have that either Q ≺M A o Γ or Q ≺M A o HI . In

the second case, we can view Q as embedded in a corner of A oHI and since θt converges

uniformly to idQ then an averaging argument shows that θt must be implemented by a

partial isometry v in M̃ . Looking closely, it would seem that v would have to conjugate each

coordinate of HI by u, since this is exactly what θt does. However, the only way for this to

happen would be if the algebra Q would be supported on HF , for some finite set F ⊂ I. In

fact we show below this is indeed the case. So we finish the proof of Theorem 4.5 with the

following lemma whose proof is an adaption of the proof of Theorem 3.6 (ii) in [Ioa07].

Lemma 4.4. Let M̃ and M as in Theorem 4.5 and let N ⊂ p(A o HI)p be a subalgebra

such that θt → id uniformly on (N)1. Then one can find a finite set F ⊂ I such that

N ≺M AoHF .

Proof. Notice that, since θt → id uniformly on (N)1 then by arguing as in Lemma 4.2 we

find that there exists t > 0 and a nonzero partial isometry v ∈ M̃ such that

θt(x)v = vx for all x ∈ N. (4.2)

Consider the Fourier expansion v =
∑

η̃g∈H̃oIΓ aη̃guη̃g and letting vg =
∑

η̃∈H̃I aη̃guη̃ ∈

Aoσ H̃
I we have that v =

∑
g∈Γ vgug.

Fix g ∈ Γ such that vg 6= 0.

We know we can find a finite set F ⊂ I and an element v′g ∈ A o H̃F , such that

‖vg − v′g‖2 < ε. If we identify the ug coefficient on both sides of equation (4.2), we have

θt(x)vg = vgσg(x) for all x ∈ N.

Combining this with the above inequality we obtain
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‖θt(x)v′g − v′gσg(x)‖2 < 2ε for all x ∈ (N)1. (4.3)

Since θt(x)v′g ∈ H = L2(θt(A o HI\F ))⊗L2(A o H̃F ), if we let T be the orthogonal

projection onto H, then combining the above with triangle inequality we obtain

‖T (v′gσg(x))− v′gσg(x)‖2 < 4ε for all x ∈ (N)1.

On the other hand for every x ∈ L(H) we have Eθt(L(H))(x) = |τ(ut)|2θt(x) and therefore

a little computation shows that for all ξ ∈ L2(AoHI\F )⊗L2(Ao H̃F ) we have

‖T (ξ)‖2
2 6 |τ(ut)

4|‖ξ‖2
2 + (1− |τ(ut)|4)‖EAoH̃F (ξ)‖2

2.

Using the last inequality for v′gσg(x) in combination with (4.3) we get that for all x ∈ U(N)

we have

‖EAoH̃F (v′gσg(x))‖2
2

>
(
1− |τ(ut)|4

)−1 [
(‖v′gσg(x)‖2 − 4ε)2 − |τ(ut)|4‖v′gσg(x)‖2

2

]
= ‖v′gσg(x)‖2

2 − (1− |τ(ut)|4)−1(8ε‖v′gσg(x)‖2 − 16ε2)

> (‖vgσg(x)‖2 − ε)2 − (1− |τ(ut)|4)−1(8‖v′gσg(x)‖2ε− 16ε2).

Choosing ε sufficiently small, one can find a element g ∈ Γ and a constant c > 0 such

that for all x ∈ U(N) we have

‖EAoH̃F (θt(x)vu∗g)‖2 = ‖EAoH̃F (vxu∗g)‖2

= ‖EAoH̃F (vgσg(x))‖2 > c.

This implies ‖EAoH̃F (xθ−t(v)u∗g)‖2 > c and by expanding F to a larger finite set if necessary,

we can find v′ ∈ Ao H̃F with v′ close to v in ‖ · ‖2 such that
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‖EAoH̃F (xθ−t(v
′))‖2 >

c

2
.

Now if we further truncate v′ such that it is supported on elements of H̃F with bounded

word length in H̃ then we can find elements a1, ..., an ∈M with

∑
i

‖EAoHF (xai)‖2 >
c

4
,

and therefore by Theorem 3.1 we have N ≺M AoHF .

Applying Theorem 4.1 in the context of rigid, i.e. property (T), subalgebras of M we

obtain the following structural result

Theorem 4.5. Let H,Γ countable groups and let I a Γ-set with finite stabilizers. Let H oIΓ y

A be a trace preserving action on a finite algebra A and denote by M = A o (H oI Γ). If

Q ⊂ pMp is a diffuse rigid subalgebra then one of the following alternatives holds:

1. Q ≺M Ao Γ,

2. There exists a finite set F ⊂ I such that Q ≺M AoHF .

Proof. Since Q ⊂ pMp is rigid, we know that Q ⊂ pM̃p is rigid as well. Thus, we have that

θt → id uniformly on the unit ball of Q and the conclusion follows from Theorem 4.1.

Also, for further use, we point out the following consequence of the above theorem:

Theorem 4.6. Let H be a group with Haagerup’s property and I a Γ-set with finite stabi-

lizers. Let H oI Γ y A be a trace preserving action on an abelian algebra A and denote by

M = Ao (H oI Γ). If Q ⊂M is a diffuse property (T) subalgebra then Q ≺M Ao Γ.
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Proof. Notice that, by Theorem 4.5, we only need to show that Q ⊀M A o HI . Below we

proceed by contradiction to show this is indeed the case.

So assuming Q ⊀M A o HI , without loosing any generality, we may actually suppose

that Q ⊂ AoHI is a possibly non-unital subalgebra.

Since H has Haagerup property it follows that HI also has the Haagerup property.

Therefore one can find a sequence, {φn} ∈ co(HI), of positive definite functions that converge

to the constant function 1 pointwise. It is well known that the corresponding multipliers

mn = mφn : A o HI → A o HI given by mn(
∑
agug) =

∑
φn(g)agug form a sequence of

completely positive maps converging pointwise to the identity. Since Q has property (T),

they must converge uniformly on the unit ball of Q. Thus there is a finite set F ⊂ HI such

that if x =
∑

g∈HI xgug ∈ (Q)1 then ‖
∑

g∈F xgug‖2 >
1
2

for all x ∈ (Q)1.

This implies that
∑

g∈F ‖EA(xu∗g)‖2 >
1
2

and by Theorem 3.1 we obtain Q ≺M A, which

is a contradiction because A is abelian while Q has property (T).
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CHAPTER 5

Commuting Subalgebras of M

In this section we study commuting subalgebras of von Neumann algebras arising from

actions by wreath product groups. Our main result is a general theorem describing the

position of all subalgebras of M having large commutant. The first result in this direction

was obtained by the second named author in [Pop08], in the context of von Neumann algebras

arising from Bernoulli actions. For similar results the reader may consult [Oza06], [CI10].

Theorem 5.1. Let H,Γ be countable groups with H amenable and let I be a Γ-set with finite

stabilizers. Let H oI Γ y A be a trace preserving action on an amenable algebra A and denote

by M = A o (H oI Γ). Let p ∈ M be a projection and P ⊂ pMp be a subalgebra with no

amenable direct summand. If we denote by Q = P ′ ∩ pMp then we have that Q ≺M Ao Γ.

Moreover, if we also assume that Ao Γ is a factor and Q ⊀M Ao Γ then there exists a

unitary u ∈M such that u∗NM(Q)′′u ⊆ Ao Γ.

Our proof is again based on deformation/rigidity technology, resembling the proof of

Theorem 4.5. The main difference however is that, instead of property (T), we will use the

“spectral gap rigidity” argument from [Pop08] to show that the deformation θt converges

uniformly to the identity on the unit ball of Q. For the proof of Theorem 5.1 we need the

following preliminary result.

Lemma 5.2. Let M and M̃ as above and let ω be a free ultrafilter on N. If P ⊂M ⊂ M̃ is

a subalgebra with no amenable direct summand then P ′ ∩ M̃ω ⊂Mω.

Proof. The first step is to decompose the M -bimodule L2(M̃) 	 L2(M) as a direct sum of

cyclic M -bimodules. It is a straightforward exercise for the reader to see that the above
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M -bimodule can be written as a direct sum of M -bimodules Mη̃sM
‖·‖2

, where the cyclic

vectors η̃s correspond to an enumeration of all elements of H̃I whose non-trivial coordinates

start and end with non-zero powers of u.

Next, for every s, we denote by ηs the element of HI that remains from η̃s after deleting

all nontrivial powers of u. Also for every s let ∆s be the support of η̃s in I and observe that

if StabΓ(η̃s) denotes the stabilizing group of η̃s inside Γ then we have StabΓ(η̃s)(I \∆s) ⊂ (I \

∆s). Hence we can consider the von Neumann algebraKs = Aoσ(HoI\∆sStabΓ(η̃s)) and using

similar computations as in Lemma 5 of [CI10], one can easily check that the map xη̃sy →

xηseKsy implements an M -bimodule isomorphism between Mη̃sM
‖·‖2

and L2(〈M, eKs〉).

Therefore, as M -bimodules, we have the following isomorphism

L2(M̃)	 L2(M) ∼=
⊕
s

L2(〈M, eKs〉). (5.1)

Notice that, since I is a Γ-set with amenable, in fact finite, stabilizers if follows that StabΓ(η̃s)

are amenable for all s. Also, since H is an amenable group and A is an amenable algebra,

we conclude that the algebra Ks is amenable for all s and therefore the bimodule in (5.1) is

weakly contained in a multiple of the coarse bimodule L2(M)⊗L2(M), which in turn shows

that P has a non-trivial amenable direct summand.

We can now proceed with the proof of Theorem 5.1.

Proof. First we use the spectral gap argument to show that the deformation θ converges

to the identity uniformly on (Q)1. Indeed, exactly as in [Pop08], since P has no amenable

direct summand, Lemma 5.2 implies that P ′ ∩ M̃ω ⊂ Mω. Hence, for any ε > 0 there exist

δε > 0 and F ∈ U(P ) a finite set, such that whenever x ∈ M̃ satisfies ‖[x, u]‖2 6 δε for all

u ∈ F we have that ‖x− EM(x)‖2 6 ε.

If we let tε > 0 such that ‖θtε(u) − u‖ 6 δε
2

for all u ∈ F then the triangle inequality

implies that for every 0 6 t 6 tε and every x ∈ (Q)1 we have

‖[θt(x), u]‖2 6 2‖θt(u)− u‖ 6 δε.
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Therefore by the above we obtain that ‖θt(x)−EM(θt(x))‖2 6 ε and using the transversality

of θt (Theorem 2.1) we conclude that ‖θ2t(x)− x‖2 6 2ε for all x ∈ (Q)1 and 0 6 t 6 tε.

In conclusion deformation θt converges uniformly on (Q)1 and hence, by applying Theo-

rem 4.1, we have the following two alternatives: either Q ≺M A o Γ or there exist a finite

set F such that Q ≺M AoHF .

Next we show that the second case, together with the assumption Q ⊀M A will lead to a

contradiction. By these assumptions, using [Vae08], one can find nonzero projections q ∈ Q,

p ∈ AoHF , a ∗-homomorphism φ : qQq → p(AoHF )p and a partial isometry w ∈M such

that φ(x)w = wx for all x ∈ qQq and φ(qQq) ⊀AoHF A for all j ∈ I.

Since φ(qQq) is a diffuse subalgebra of p(AoHF )p then part (3) of Lemma 3.4 implies that

φ(qQq)′ ∩ pMp ⊂
∑
s∈K̃

[AoHI ]us. (5.2)

On the other hand P ⊂ Q′∩M and hence by (5.2) we have wPw∗ ⊂
∑

s∈K̃ [AoHI ]us. Since

K̃ is finite then by using intertwining by bimodule techniques this implies that P ≺M AoHI .

However, this is impossible because A o HI is amenable while P has no amenable direct

summand.

Therefore the only possibility is Q ≺M A o Γ and the remaining part of the conclusion

follows proceeding in the same way as in Theorem 4.4 ii) of [Pop06d].

An algebra N is called solid if for every A ⊂ N diffuse subalgebra A′ ∩ N is amenable.

As a consequence of previous theorem we obtain the following stability property similar with

Corollary 8 in [CI10].

Corollary 5.3. Let (A, τ) be an amenable von Neumann algebra and H be an amenable

group. Assume that (H oΓ) y A is a trace preserving action such that M = Ao (H oΓ) and

Ao Γ are factors and for every diffuse Q ⊂ A the relative commutant Q′ ∩M is amenable.

Then Ao (H o Γ) is a solid if and only if Ao Γ is solid.

Proof. Notice that the proof follows once we show that A o Γ is solid implies A o (H o Γ)

is a solid. Hence assume that A o Γ is solid and let B ⊂ M = A o (H o Γ) be a diffuse
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von Neumann subalgebra. If we assume by contradiction that the commutant P = B′ ∩M

is non-amenable, then we can find a non-zero projection z ∈ Z(P ) such that Pz has no

amenable direct summand. Since [Bz, Pz] = 0 then Bz ≺M A o Γ and by the hypothesis

assumption we have that Bz ⊀M A. Therefore, since A o Γ is a factor then by the second

part of Theorem 5.1 one can find a unitary u ∈ M such that u(Bz ∨ Pz)u∗ ⊂ A o Γ. This

however contradicts the solidity of Ao Γ and we are done.

Remark 5.4. It is immediate from Theorem 5.1 that if H is an amenable group then for

any non-amenable group Γ and any free, ergodic, measure preserving action H o Γ y (X,µ)

the II1 factor L∞(X,µ)o (H o Γ) is prime, i.e. it cannot be decomposed as a tensor product

of two diffuse factors.
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CHAPTER 6

OE-rigidity results

Sako showed in [Sak09] that a measure equivalence between two wreath products groups H oΓ

and K o Λ, where H,K are amenable and Γ,Λ are products of non-amenable exact groups,

implies the measure equivalence of the malnormal subgroups Γ and Λ. Further he showed

that, given two stably orbit equivalent actions, σ and ρ, of such groups with σ|Γ and ρ|Λ

ergodic, one has σ|Γ and ρ|Λ are stably orbit equivalent. He was also able to prove a similar

measure equivalence rigidity for certain classes of direct products and amalgamated free

products, thus obtaining rigidity results á la Monod-Shalom [MS06], as well as of Bass-Serre

type [IPP08], [AG08], [CH10]. His methods rely on Ozawa’s techniques [Oza04], [Oza06]

involving the class S of groups, being C∗-algebraic in nature and depending crucially on

exactness of the groups involved.

In this section we apply the results from the previous section to show that this type of

orbit equivalence rigidity for wreath products holds true for much larger classes of groups

(Corollary 6.3 below). The techniques we use in the proof are purely von Neumann algebra,

using Popa’s deformation/rigidity theory.

The Classes WR(k). Recall from the introduction that for each k = 1, 2, 3, we denote

by WR(k) the class of all generalized wreath product groups H oI Γ with Γ i.c.c., I a Γ-set

with finite stabilizers and satisfying the corresponding condition from below:

1. Γ has property (T) and H has Haagerup’s property;

2. Γ and H have property (T) and H is i.c.c.;

3. Γ is a non-amenable product of infinite groups and H is amenable.
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Theorem 6.1. Let H oIΓ, K oJΛ ∈WR(k) and suppose that (H oIΓ) yσ A and (K oJΛ) yρ B

are free, trace preserving actions on diffuse, abelian algebras such that σ|Γ and ρ|Λ are ergodic.

Denote by M = Ao (H oI Γ), N = B o (K oJ Λ), let t > 0 and assume that φ : M → N t is

a ∗-isomorphism such that φ(A) = Bt.

Then one can find a unitary u ∈ NNt(Bt) such that u∗φ(Ao Γ)u = (B o Λ)t.

Proof. Denote by P = A o Γ, Q = B o Λ and observe that A ⊂ P ⊂ M and B ⊂ Q ⊂ N .

To simplify the technicalities we will assume without loosing any generality that t = 1.

Since Γ either has property (T) or is a non-amenable product of infinite groups and φ is an

isomorphism it follows that either φ(LΓ) is a property (T) subalgebra of M or φ(LΓ) is a

non-amenable tensor product of two diffuse factors.

Below, we argue that for all cases (1)-(3) covered in the definition of the classes WR(k)

we have

φ(LΓ) ≺N Q. (6.1)

For case (1) this follows directly from Corollary 4.6 while for case (3) it follows from

Theorem 5.1. Therefore it only remains to treat case (2), i.e. when all groups H,K,Γ,Λ

have property (T).

Applying Theorem 4.5 we have that either φ(LΓ) ≺N Q or there exists a finite subset

T ⊂ J such that φ(LΓ) ≺N B oKT and therefore to finish the proof of (6.1) it suffices to

show that the second possibility leads to a contradiction.

Notice that since φ−1(LKT ) is a property (T) subalgebra of M then Theorem 4.5 again

implies that either φ−1(LKT ) ≺M P or there exists a finite subset S ⊂ I such that

φ−1(LKT ) ≺M A o HS. Next we show that both situations are leading to a contradic-

tion.

Assuming the first situation, since LKT and P are a factors, then proceeding as in the

proof of Theorem 5.1 in [IPP08] one can find a nonzero projection p1 ∈ LKJ\T and a uni-

tary u1 ∈ M such that u∗1(φ−1((LKT )p1))u1 ⊂ P . Using Lemma 3.4, this implies that
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u∗1(φ−1(p1(LKJ)p1))u1 ⊂ P . Moreover, since P is a factor, we have that u∗1(φ−1(L(KJ))u1 ⊂

P and therefore Lemma 3.4 implies that u∗1(φ−1(L(K oJ Λ))u1 ⊂ P . However, since φ−1(B) =

A then by Lemma 3.2 again we have that M = φ−1(N) ≺M P , which is obviously a contra-

diction.

Assuming the second situation, since φ−1(B) = A, then Lemma 3.2 gives that φ−1(B o

KT ) ≺M A o HS. From the initial assumptions B o KT is a factor and therefore Lemma

3.3 implies that φ−1(B oKT )ω ⊂ (AoHS)ω ∨M or equivalently

(B oKT )ω ⊂ (φ(AoHS))ω ∨N. (6.2)

Also, since φ(LΓ) ≺N B oKT , the same argument as above shows that

(φ(LΓ))ω ⊂ (B oKT )ω ∨N,

and combining this with (6.2) we obtain that (φ(LΓ))ω ⊂ (φ(A o HI))ω ∨ N . Therefore

the second part of Lemma 3.3 implies LΓ ≺M A o HI but one can easily see this is again

impossible.

Hence we proved (6.1) and, moreover, since φ(A) = B then Lemma 3.2 implies that

φ(P ) ≺N Q. (6.3)

Next we show that the intertwining above can be extended to unitary conjugacy preserv-

ing the Cartan subalgebra B.

By (6.3) one can find nonzero projections p ∈ P , q ∈ Q, a nonzero partial isometry

w ∈M and a unital isomorphism ψ : φ(pPp)→ qQq such that

wψ(x) = xw for all x ∈ φ(pPp). (6.4)

The previous relation automatically implies that ww∗ ∈ φ(pPp)′ ∩ φ(p)Nφ(p) and w∗w ∈

ψ(φ(pPp))′ ∩ qMq. Since P is a factor then Lemma 3.4 gives that φ(pPp)′ ∩ φ(p)Nφ(p) =

Cφ(p) and therefore ww∗ = φ(p).
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Similarly, since ψ(φ(pPp)) is a II1 factor and BoStabΛ(j) is a type I algebra for all j ∈ J

then ψ(φ(pPp)) ⊀Q B o StabΛ(j) and by Lemma 3.4 we have that ψ(φ(pPp))′ ∩ qNq ⊂ Q.

When this is combined with the above we obtain w∗w ∈ Q and hence relation (6.4) implies

that

w∗φ(P )w = w∗wψ(φ(pPp)) ⊆ Q. (6.5)

Letting v0 ∈ N to be a unitary such that w = ww∗v0, the previous relation rewrites as

v∗0φ(pPp)v0 ⊆ Q and since Q is a factor one can find a unitary v ∈ N such that

vφ(P )v∗ ⊆ Q. (6.6)

Next we claim that vBv∗ ≺Q B. To see this, suppose by contradiction that vBv∗ ⊀Q B.

Since StabΛ(j) is finite for all j ∈ J this is equivalent to vBv∗ ⊀Q B o StabΛ(j). Therefore

Lemma 3.4 implies that NN(vBv∗)′′ ⊆ Q and because vBv∗ is a Cartan subalgebra of N one

gets that N ⊂ Q. However this is impossible and hence we proved our claim.

Furthermore, since vBv∗ and B are Cartan subalgebras of Q satisfying vBv∗ ≺Q B,

Theorem A.1. in [Pop06a] shows that there exists a unitary v1 ∈ Q such that v1vBv
∗v∗1 = B.

Therefore u = v1v ∈ NN(B) and combining this with (6.6) we obtain that

uφ(P )u∗ ⊆ Q. (6.7)

In the remaining part of the proof we show that the two algebras above coincide. Indeed,

applying the same reasoning as before for the isomorphism φ−1, one can find a unitary

uo ∈ NM(A) such that

uoφ
−1(Q)u∗o ⊆ P,

and combining this with (6.7) we obtain

uoφ
−1(u)Pφ−1(u∗)u∗o ⊆ uoφ

−1(Q)u∗o ⊆ P. (6.8)

However, Lemma 3.4 implies that uoφ
−1(u) ∈ P and therefore relation (6.8) became uoφ

−1(u)Pφ−1(u∗)u∗o =

uoφ
−1(Q)u∗o = P , which in particular entails that uφ(P )u∗ = Q.
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Theorem 6.2. Let H oI Γ, K oJ Λ be generalized wreath product groups such that H, K are

i.c.c. groups with property (T ) and I, J have finite stabilizers. Suppose that (H oI Γ) yσ A

and (K oJ Λ) yρ B are free, trace preserving actions on diffuse, abelian algebras as above.

Additionally, assume that σ|HI and ρ|KJ are ergodic. Denote by M = A o (H oI Γ), N =

B o (K oJ Λ).

If t > 0 and φ : M → N t is a ∗-isomorphism such that φ(A) = Bt then one can find a

unitary x ∈ NNt(Bt) such that xφ(AoHI)x∗ = (B oKJ)t.

Proof. To simplify the technicalities we assume that t = 1. Since H has property (T)

then φ(LH) is a rigid subalgebra of N and therefore by Theorem 4.5 we have that either

φ(LH) ≺N BoΛ or there exits a finite subset T ⊂ J such that φ(LH) ≺N BoKT . Using the

same arguments as in the proof of Theorem 6.1 one can easily show that the first possibility

will lead to a contradiction. Therefore we have that φ(LH) ≺N B o KT and by applying

Lemma 3.4 we get that φ(LHI) ≺N B oKJ . Applying Lemma 3.2 this further implies that

φ(AoHI) ≺N B oKJ and therefore there exists a AoHI-B oKJ bimodule H with finite

dimension over B oKJ .

A similar argument for φ−1 shows that B oKJ ≺N φ(A oHI) and hence one can find

a nonzero B oKJ -A oHI bimodule K with finite dimension over B oKJ . Since Γ,Λ are

i.c.c. and B oKJ and φ(A o Γ) are irreducible, regular subfactors of N then, by Theorem

8.4 in [IPP08], there exists a unitary u ∈ N such that uφ(A oHI)u∗ = B oKJ . Denoting

by ψu = Ad(u) this further implies that ψu ◦φ is an isomorphism from AoHI onto BoKJ

which satisfies

ψu ◦ φ(a)u = uφ(a),

for all a ∈ A. Next we consider the Fourier decomposition u =
∑

λ∈Λ yλvλ with yλ ∈ BoKJ

and using the above equation there exists a nonzero element yλ ∈ B oKJ such that for all

a ∈ A we have

ψu ◦ φ(a)yλ = yλρλ(φ(a)). (6.9)

Note that since B = φ(A) is a maximal abelian subalgebra of N then (6.9) implies that
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y∗λyλ ∈ B. Furthermore taking the polar decomposition yλ = wλ|yλ| with wλ partial isometry

in (6.9) we conclude that

ψu ◦ φ(a)wλ = wλρλ(φ(a)),

for all a ∈ A.

This shows in particular ψu(B) ≺BoKJ B and since B and ψu(B) are Cartan subalgebras

of B o KJ then by Theorem A.1 [Pop06a] there exists a unitary uo ∈ B o KJ such that

uoψu(B)u∗o = B. Finally the conclusion follows by letting x = uou ∈ NN(B).

We now have the following immediate corollary of Theorem 6.1:

Corollary 6.3. Given 1 6 k 6 3 let H oI Γ, K oJ Λ ∈WR(k). Let σ and ρ be stably orbit

equivalent actions of H oI Γ and K oJ Λ, respectively. If one assumes that σ|Γ and ρ|Λ are

ergodic then we have σ|Γ ∼=SOE ρ|Λ.

A natural question one may ask is to try classifying all groups Γ and H for which the

above orbit equivalence rigidity phenomena holds. This however remains widely open as for

the moment it is unclear what general condition one may be formulate at the level of groups

Γ and H to insure this type of rigidity. For instance even when assuming Γ has property

(T) it is not obvious what are all groups H for which this rigidity holds.

Another interesting problem is to find situations when a similar orbit equivalence rigidity

can be upgraded also at the level of the “core” groups HI and KJ . A desirable result in

this direction would be that an orbit equivalence between actions of H oΓ and K oΛ induces

an orbit equivalence not only between the malnormal groups Γ and Λ but also between the

normal groups HΓ and KΛ. Notice that combining Theorems 6.3 and 6.2 above we obtain

one instance of this phenomenon.

Corollary 6.4. If H oI Γ, K oJ Λ ∈ WR(2) and σ and ρ are as above. If we additionally

assume that σ|HI and ρ|KJ are ergodic then we also have that σ|HI
∼=SOE ρ|KJ .
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CHAPTER 7

W∗-rigidity results

Some of the technical results obtained in the previous sections can be pushed to slightly

more general situations. For instance rather than studying commuting subalgebras algebras

of von Neumann algebras arising from actions by wreath product groups one can study

weakly compact embeddings.

This notion was introduced by Ozawa and Popa and it was triggered by their discovery

that in a free group factor M the normalizing group NM(P ) of any amenable algebra P acts

on P by conjugation in a “compact” way [OP10]. This was a key ingredient which allowed

the authors to prove that in a free group factor the normalizing algebra of any amenable

subalgebra is still amenable. For reader’s convenience, we recall the following definition from

[OP10]:

Definition. Let Λ
σy P where P is a finite von Neumann algebra. The action σ is called

weakly compact if there exist a net (ηα) of unit vectors in L2(P ⊗̄P̄ )+ such that:

‖ηα − (v ⊗ v̄)ηα‖2 → 0 for all v ∈ U(P ); (7.1)

‖ηα − σg ⊗ σ̄g(ηα)‖2 → 0 for all g ∈ Γ; (7.2)

〈(x⊗ 1)ηα, ηα〉 = τ(x) = 〈ηα, (1⊗ x̄)ηα〉 for all α and x ∈ P. (7.3)

More generally, if P ⊂ M is a subalgebra such that the action by conjugation of the

normalizing group NM(P ) on P is weakly compact then we say that the inclusion P ⊂M is

a weakly compact embedding. It is straightforward from the definitions that every compact

action Λ
σy P is automatically weakly compact and hence every profinite action [Ioa11] is

also weakly compact.
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In the main result of this section we describe all weakly compact embeddings in cross-

products algebras of type M = Ao (H oΓ) with A an amenable algebra and H an amenable

group. Roughly speaking, we obtain a dichotomy result asserting that every weakly compact

embedding in M , either has “small” normalizing algebra or “lives” inside AoΓ. This should

be seen as analogous to Theorem 4.9 in [OP10]. In fact our proof follows the same recipe

as the proof of Theorem 4.9 in [OP10]. The main difference at the technical level is that

instead of working with the malleable deformation for actions of free groups we will work

with the deformation described in the first section. Therefore the compactness argument

used in the proof of Theorem 4.9 in [OP10] will be replaced by the transversality property

from Theorem 2.1. Most of the arguments used in [OP10] apply verbatim in our situation

and we include some details only for reader’s convenience.

Theorem 7.1. Let (A, τ) be an amenable von Neumann algebra and H be an amenable

group. Assume that H o Γ y A is a trace preserving action and denote by M = Ao (H o Γ).

If we assume that P ⊂M is a diffuse subalgebra and G ⊂ NM(P ) is such that G act weakly

compactly on P and such that NM(P )′ ∩M = C1 then one of the following must hold true:

1. There exists a nonzero projection p ∈ P such that p(P ∩ G)′′p is amenable.

2. P ≺M Ao Γ.

If we assume in addition that P ⊂M is a Cartan subalgebra then we have that P ≺M A.

Proof. Let G ⊂ NM(P ) be a subgroup that acts weakly compactly on P and assume that

U(P ) ⊂ G. First we will show that, when we view P ⊂ M̃ , if θt does not converge uniformly

on (P )1 then G ′′ is amenable.

So let us assume that θt does not converge uniformly on (P )1. Therefore by transversality

of θt, Theorem 2.1, one can find a constant 0 < c < 1, and infinite sequences tk ∈ R,

uk ∈ U(P ) such that tk → 0 and

‖θtk(uk)− EM(θtk(uk))‖2 > c.
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Since ‖θtk(uk)‖2 = 1 then Pythagorean theorem further implies that

‖EM(θtk(uk))‖2 6
√

1− c2. (7.4)

Now we fix ε > 0 and F ⊂ G a finite set. Then we choose δ > 0 satisfying 1−2δ >
√

1− c2

and k sufficiently large such that for all u ∈ F we have

‖u− θtk(u)‖2 6
ε

6
.

For the rest of the proof we denote by θ = θtk and v = uk and let (ηα) be as in the

definition of weak compactness. Then we consider the following nets

η̃α = (θ ⊗ 1)(ηα) ∈ L2(M̃)⊗L2(M),

ζα = (eM ⊗ 1)(η̃α) ∈ L2(M)⊗L2(M),

ζ⊥α = η̃α − ζα ∈ (L2(M̃)	 L2(M))⊗L2(M).

Using the identity ‖(x ⊗ 1)η̃α‖2
2 = τ(EM(θ−1(x∗x))) = ‖x‖2

2 then for every u ∈ F and a

sufficiently large α we obtain the following inequalities

‖[u⊗ u, ζ⊥α ]‖2 6 ‖[u⊗ u, η̃α]‖2 6 ‖(θ ⊗ 1)([u⊗ u, ηα])‖2 + 2‖u− θ(u)‖2 6
ε

2
.

Below we proceed by contradiction to show the following inequality

Limα‖ζ⊥α ‖2 > δ. (7.5)

Assuming (7.5) does not hold we get the following estimations:

Limα‖η̃α − (EM(θ(v))⊗ v)ζα‖2 6 Limα‖η̃α − ((EM ⊗ id)(θ(v)⊗ v)ζα‖2

6 Limα‖η̃α − (eM ⊗ id)((θ(v)⊗ v)ζα)‖2

6 Limα‖(eM ⊗ id)η̃α − (eM ⊗ id)(θ(v)⊗ v)η̃α‖2 + 2δ

6 Limα‖(eM ⊗ 1)(θ ⊗ id)(ηα − (v ⊗ v)ηα)‖2 + 2δ

= 2δ
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Now using the above inequalities we obtain

‖EM(θ(v))‖2 > Limα‖((EM(θ(v)))⊗ v)ζα‖2 > Limα‖η̃α‖2 − 2δ >
√

1− c2,

which obviously contradicts (7.4). Thus we have shown that Limα‖ζ⊥α ‖ > δ.

For large enough α, the vector ζ = ζ⊥α ∈ H satisfies ‖ζ‖2 > δ and ‖[u ⊗ u, ζ]‖2 6 ε
2
, for

all u ∈ F . Also, for every x ∈M we have that

‖(x⊗ 1)ζ‖2 = ‖(x⊗ 1)(e⊥M ⊗ 1)η̃α‖2

= ‖(e⊥M ⊗ 1)(x⊗ 1)η̃α‖2

6 ‖(x⊗ 1)η̃α‖2 = ‖x‖2.

Using Lemma 5.2 we can view ζ as a vector in (
⊕

i L
2(〈M, eKi〉))⊗L2(M). Since Ki is

amenable then L2(〈M, eKi〉) is weakly contained in the coarse bimodule L2(M)⊗L2(M).

Therefore we can assume ζ = (ζi)i, with ζi ∈ (L2(M)⊗L2(M))⊗L2(M). Define ζ ′i =

((id⊗τ)(ζiζ
∗
i ))

1
2 ∈ L2(M)⊗L2(M) and ζ ′ = (ζ ′i)i ∈

⊕∞
i=1(L2(M)⊗L2(M)). By proceed-

ing exactly as in the last part of the proof of Theorem 4.9. in [OP10], one derives that

‖xζ ′‖2 6 ‖x‖2 for all x ∈ M , ‖[u, ζ ′]‖2 6 ε for all u ∈ F and ‖ζ ′‖2 > δ. But then Corollary

2.3. in [OP10] shows that G ′′ is amenable.

So now we are left to deal with the case when θt does converges uniformly on (P )1. In

this case Theorem 4.1 implies that P ≺M AoΓ or P ≺M AoHF for some finite set F ⊂ Γ.

Since the first case already gives one of the conclusions of our theorem, for the remaining

part we assume that P ⊀M Ao Γ and P ≺M AoHF .

Since P ⊀M Ao Γ then P ⊀M A. Since P ≺M AoHF , after cutting by a projection, p,

and applying a homomorphism we can assume pPp ⊂ AoHF . Now we can apply part (3)

of Lemma 3.4 to get that

(NpMp(pPp))
′′ ≺M AoHΓ.

Since AoHΓ is amenable, we get that (NpMp(pPp))
′′ and thus p(P ∩ G)′′p is amenable

as well.
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When combined with results from previous section, this technical result allows us to

derive a strong W ∗-rigidity result for compact actions of certain wreath product groups. To

introduce the result let us recall first the following definition.

Definition. Let Γ y X and Λ y Y be two free, ergodic actions. We say that they are

virtually conjugate if one can find finite index subgroups, Γ1 ⊂ Γ and Λ1 ⊂ Λ, positive

measure subsets X1 ⊂ X and Y1 ⊂ Y with X1 being Γ1-invariant and Y1 being Λ1-invariant

such that the restrictions Γ1 y X1 and Λ1 y Y1 are conjugate.

Theorem 7.2. Let H,K be amenable groups and Γ,Λ groups with the property (T). Assume

that H oΓ yσ X and K oΛ yρ Y are free, measure preserving action such that σ|Γ is compact,

ergodic and ρ|Λ is ergodic. If L∞(X)o (H oΓ) ' L∞(Y )o (K oΛ), then Γ yσ|Γ X is virtually

conjugate to Λ yρ|Λ Y .

Proof. Denote by M = L∞(X) oσ (H o Γ) and N = L∞(Y ) oρ (K o Λ). By assumption

there exists a ∗-isomorphism θ between M and N and since σ|Γ is compact, and thus weakly

compact, then we can apply the previous result. Noticing that θ(L∞(X)) is regular in N , the

second part of the Theorem 7.1 implies that θ(L∞(X)) ≺N L∞(Y ). Furthermore, since both

θ(L∞(X)) and L∞(Y ) are Cartan subalgebras of N , one can find a unitary u ∈ N such that

uθ(L∞(X))u∗ = L∞(Y ). In particular, we have obtained that H o Γ yσ X ∼=OE K oΛ yρ Y

which, by Theorem 6.1, implies that Γ yσ|Γ X ∼=OE Λ yρ|Λ Y . Finally, the conclusion

follows by applying Ioana’s Cocycle Superrigidity Theorem from [Ioa11].

Remark 7.3. Note that the requirements that Γ have property (T) and that σ be compact

on Γ in the previous theorem, forces Γ to be residually finite. Indeed, first note that since

Γ has property (T), it is finitely generated. Also recall that if the action Γ y (X,µ) is

compact then the associated unitary representation on L2(X,µ) decomposes as a direct sum

of finite dimensional representations, which we denote
⊕

i∈I(πi,Hi). So if the action is

faithful (which is the case, because it is free), then given g ∈ Γ we can chose i ∈ I such
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that πi(g) is nontrivial. Since the image of Γ under πi is finite dimensional and Γ is finitely

generated, by a theorem of Mal’cev (see [Mal40]), the group πi(Γ) is residually finite. Thus

there is a finite group Gi,g and a homomorphism φi,g : πi(Γ) → Gi,g such that φi,g ◦ πi(g) is

non trivial. Thus Γ has a finite quotient φi,g ◦ πi(Γ) in which the image of g is non-trivial,

showing that Γ is residually finite. Note also that if H is a residually finite abelian group

(e.g. if it is finitely generated abelian), then H o Γ follows residually finite as well (see e.g.

[Gru57]). Finally, in order to see that there are many actions of wreath product groups

verifying the conditions in 6.4, note that if H o Γ is residually finite then it has profinite

(thus compact) actions. Altogether, we can take Γ to be any “classic” Kazhdan group, like

SL(n,Z), n ≥ 3, and H to be any finitely generated abelian group, like Zk, (Z/mZ)k, etc.
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CHAPTER 8

On Uniquenesss of Tensor Products Decomposition

and Relative Amenability.

In the remainder of this work we will focus on proving the uniqueness of tensor product

decomposition for wreath product factors. A major goal of the study of II1 factors is the

classification of these algebras based on the “input data” that goes into their construction.

A significant landmark was the result, due to Connes [Con76], that all amenable II1 factors

are isomorphic. However, in the non-amenable realm there is a much greater variety, and a

striking classification theory has developed.

One thrust of this research is to determine if some algebra which, a priori, is constructed

in one manner, can be obtained in some other manner. For example, if we have a II1 factor

that we know to be a free product of two II1 factors, is it also possible to be the tensor

product of two (possibly different) II1 factors?

In this vein we study whether certain factors can be written as a tensor product in two

distinct ways. Such results go back to the study of prime factors, (ie. a factor which cannot

be written as the tensor product of two other II1 factors.) The first result was obtained by

Popa in, [Pop83], where he showed that the group von Neumann algebra of an uncountable

free group is prime.

Later, in [Ge98], Ge proves that all group factors coming from finitely generated free

groups are prime. Using C∗ techniques this was greatly generalized by Ozawa, [Oza04], to

show that all i.c.c. Gromov hyperbolic groups give rise to prime factors. Also, using his

deformation/rigidity theory, Popa showed in [Pop08] that all II1 factors arising from the
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Bernoulli actions of nonamenable groups are prime. Further, Peterson used his derivation

approach to deformation/rigidity ([Pet09]) to prove that any II1 factor coming from a count-

able group with positive first l2-betti number is also prime. Finally we should also note that

using Popa’s deformation/rigidity theory, Chifan and Houdayer, [CH10], gave many more

examples of prime II1-factors coming from amalgamated free products.

A natural question about prime factors is whether a tensor product of a finite number of

such factors P1, P2, ..., Pn, has a “unique prime factor decomposition”, i.e., if P1⊗...⊗Pn =

Q1⊗....⊗Qm, for some other prime factors Qj, forces n = m and Pi unitary conjugate

to Qi, modulo some permutation of indices and modulo some “rescaling” by appropriate

amplifications of the prime factors involved. A first such result was obtained by Ozawa

and Popa in [OP04], where a combination of C∗ techniques from [Oza04] and intertwining

techniques from [Pop06d] is used to show that any II1 factor arising from a tensor product of

hyperbolic group factors has such a unique tensor product decomposition. A similar prime

factor decomposition is in fact obtained in [Pet09], for tensor products of II1 factors arising

from groups with positive first l2-betti number.

In this paper we prove an analogous unique prime factor decomposition result for tensor

products of wreath product II1 factors. More precisely, we prove the following result:

Theorem 8.1. Let A1, . . . , An be non-trivial amenable groups; H1, . . . , Hn be non-amenable

groups; and Q1, . . . , Qk be diffuse von Neumann algebras such that

M = L(A1 oH1)⊗ . . .⊗L(An oHn) = Q1⊗ . . .⊗Qk

If k ≥ n, then n = k, and after permutation of indices we have that L(Ai o Hi) ' Qti
i for

some positive numbers t1, t2, . . . tn whose product is 1.

Also we have a natural generalization of this theorem to unique decomposition for orbit

equivalence relations coming from finite products of wreath product groups. Such results are

reminiscent of measure equivalence results that were achieved for products of groups of the

class Creg by Monod and Shalom (Theorem 1.16 in [MS06]), for products of bi-exact groups
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by Sako (Theorem 4 in [Sak09]), and for products of groups in QHreg by Chifan and Sinclair

(Corollary C in [CS11].)

Theorem 8.2. Let A1, . . . , An be non-trivial amenable groups; H1, . . . , Hn be non-amenable

groups; Let σ be a free ergodic action of A1 oH1 × · · · ×An oHn, such that σ|AioHi is ergodic

for all i. Also let K1, . . . , Km be groups and ρ be an action of K1 × · · · ×Km such that σ is

stably orbit equivalent to ρ.

If m ≥ n, then n = m, and after permutation of indices we have that σ|AioHi 'SOE ρ|Ki.

We prove these results by using deformation/rigidity theory. More precisely, we use

the same malleable deformation for wreath product group factors as above, combined with

Popa’s spectral gap rigidity and intertwining by bimodules techniques.

Following [OP10] we have the following definition:

Definition. Let P,Q ⊂M be finite von Neuman algebras. We say that P is amenable over

Q inside M, which we denote P lM Q, if there is a P -central state, ϕ, on 〈M, eQ〉 such that

ϕ|M = τ , where τ is the trace on M .

Let us note that by Theorem 2.1 in [OP10] PlMQ is equivalent to L2(P ) ≺
⊕

L2(〈M, eQ〉)

as P -bimodules. Further, if P ≺M Q then L2(M) contains a sub P -Q-module, H, that is

finitely generated as a right Q module. Therefore, the projection onto this module will

commute with the right action of Q and will have finite trace. Therefore, it will be a vec-

tor in L2(〈M, eN〉). Further, it will also commute with P , so if we look at L2(〈M, eN〉)

as a P -bimodule, it will contain a central vector. Since strong containment implies weak

containment we get the following observation.

Proposition 8.3. Let P,Q ⊂M be von Neumann algebras. If P ≺M Q then P lM Q.
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CHAPTER 9

Generalization of Intertwining Techniques for Wreath

Products

In this section we generalize earlier intertwining results for wreath products proven above.

While this leads to some repetition we have tried to keep this to a minimum, and thus try to

reference the above proofs and indicate where changes are needed in order to arrive at the

new results that are necessary in order to prove our desired uniqueness of of tensor product

decomposition.

The following proposition is a relative version of Lemma 5.2 above, and will follow a

similar proof.

Proposition 9.1. Let N be a finite von Neumann algebra. Let A,H be groups with A non-

trivial amenable and H non-amenable. Let Q ⊂ N o A o H = M be an inclusion of von

Neumann algebras. Assume Q is not amenable over N inside M then Q′ ∩ M̃ω ⊆Mω.

Proof. As mentioned above this proof follows closely the proof of Lemma 5.2 above as well

as Lemma 5.1 in [Pop08] and other similar results in the literature.

We will prove the contrapositive so let us assume that Q′ ∩ M̃ω * Mω Then proceeding

as in Lemma 5.1 in [Pop08] We see that

L2(Q) ≺ L2(M̃)	 L2(M)

as Q-bimodules. Now we decompose L2(M̃)	 L2(M) as an M -bimodule.

One can see that the above M -bimodule can be written as a direct sum of M -bimodules
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Mη̃sM
‖·‖2

, where the cyclic vectors η̃s correspond to an enumeration of all elements of ÃH

whose non-trivial coordinates start and end with non-zero powers of u.

Next, for every s, we denote by ηs the element of AH that remains from η̃s after deleting

all nontrivial powers of u. Also for every s let ∆s ⊂ H be the support of η̃s and observe that

if StabH(η̃s) denotes the stabilizing group of η̃s inside H then we have StabH (η̃s)(H \∆s) ⊂

H \∆s.

Hence we can consider the von Neumann algebra Ks = No(AoH\∆sStabH (η̃s)) and using

similar computations as in Lemma 5.1 of [Pop08], one can easily check that the map xη̃sy →

xηseKsy implements an M -bimodule isomorphism between Mη̃sM
‖·‖2

and L2(〈M, eKs〉).

Therefore, as M -bimodules, we have the following isomorphism

L2(M̃)	 L2(M) =
⊕

L2(〈M, eKs〉).

Thus we can get the following weak containment of Q-bimodules

L2(Q) ≺
⊕

L2(〈M, eKs〉).

Notice that, since ∆s is finite, and the action of H on itself is free, then StabH(η̃s) is

finite for all s. Also, since A is an amenable group we have that Ks lN N for all s. Thus

for all s we have the following weak containment of Ks-bimodules

L2(Ks) ≺
⊕

L2(〈Ks, eN〉) '
⊕

L2(Ks)⊗N L2(Ks)

Now if we induce to M -bimodules and restrict to Q-bimodules and use continuity of weak

containment under induction and restriction we get the following inclusions of Q-bimodules:
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L2(Q) ≺
⊕

L2(〈M, eKs〉)

'
⊕

L2(M)⊗Ks L2(Ks)⊗Ks L2(M)

≺
⊕

L2(M)⊗Ks L2(Ks)⊗N L2(Ks)⊗Ks L2(M)

'
⊕

L2(M)⊗N L2(M)

'
⊕

L2(〈M, eN〉)

Thus QlM N

We finish this section with a final theorem which allows us to locate regular subfactors

with large commutant.

Theorem 9.2. Let N be a finite von Neumann algebra. Let A and H be groups with A

non-trivial amenable and H non-amenable. Let Q ⊂ N oA oH = M be a subalgebra that is

not amenable over N . Let P = Q′ ∩M. If P is a regular subfactor of M then P ≺M N .

Proof. Applying Proposition 9.1 and following the proof of Theorem 5.1 above we see that

the deformation θt converges uniformly on the unit ball of P , and thus by Theorem 4.1 above

we have that P ≺M N o AH or P ≺M N oH.

Following the same argument as Theorem 5.1 if we assume that P ≺M N o AH and

P ⊀M N then we get Q ≺M N o A o H0 for some finite subgroup H0 ⊂ H. Since A is

amenable and H0 is finite then N o A o H0 lM N . So since Q ≺M N o A o H0 then by

Proposition 8.3 we have QlM N o A oH0. Then by part 3 of Proposition 2.4 in [OP10] we

have that QlM N contradicting our assumption.

Thus P ≺M N o H. Therefore, by Theorem 3.1, there exists nonzero projections p ∈

P, q ∈ N o H, a nonzero partial isometry v ∈ M, and a *-homomorphism ϕ : pPp →

q(N o H)q such that vx = ϕ(x)v,∀x ∈ pPp. Furthermore we have that v∗v = p and
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vv∗ = q̂ ∈ ϕ(pPp)′ ∩ qMq. Also, by Lemma 3.5 in [Pop06d] we know that pPp is a regular

subalgebra of pMp.

Then for all u ∈ NpMp(pPp) let us calculate:

ϕ(x)vuv∗ = vxuv∗

= vu(u∗xu)v∗

= vuv∗v(u∗xu)v∗

= vuv∗ϕ(u∗xu)vv∗

= vuv∗ϕ(u∗xu)

Now assume that P ⊀M N , then by part (2) of Lemma 3.4 in above we have that

vuv∗ ∈ N o H. Since pPp is regular in pMp we would then get that M ≺M N o H.

However, this is impossible since the fact that A is nontrivial implies that [M : NoH] =∞.
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CHAPTER 10

Proof of Uniqueness of Tensor Product Decomposition

In this section we prove our main theorem. Our main technical tool is the following, which

is proposition 2.7 in [PV11]. Before we state the result let us recall that two von Neumann

subalgebras M1,M2 ⊂M of a finite von Neumann algebra M are said to form a commuting

square if EM1EM2 = EM2EM1 .

Theorem 10.1 (Popa-Vaes, [PV11]). Let (M, τ) be a tracial von Neumann algebra with von

Neumann subalgebras M1,M2 ⊂M . Assume that M1 and M2 form a commuting square and

that M1 is regular in M . If a von Neumann subalgebra Q ⊂ pMp is amenable relative to

both M1 and M2, then Q is amenable relative to M1 ∩M2.

Notice that this theorem allows us to eliminate the case where Q is amenable over M1.

More specifically we have the following observation.

Proposition 10.2. Let G1 and G2 be groups. Let A be a finite amenable von neumann

algebra with an action of G1 ×G2, and let Q ⊂ AoG1 ×G2 be a nonamenable subalgebra.

Then there exists an i such that Q is not amenable over AoGi.

Proof. If we let A o Gi = Mi then it is easy to see that M1,M2 ⊂ M form a commuting

square. So if Q is amenable over both Mi we would have that it would be amenable over the

intersection, which is A. Since A is amenable this would imply that Q is amenable.

Finally combining the above results we can prove our main theorem (Theorem 8.1).

Proof. First let us mention that for the case n = 1, this is equivalent to the primeness of

II1-factors arising from Bernoulli shifts, which was proven in [Pop08].
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Now notice that we can writeM asM = NioσAioHi, whereNi = L(A1oH1)⊗ . . .⊗L(Ai−1o

Hi−1)⊗L(Ai+1 oHi+1)⊗ . . .⊗L(An oHn) and σ is the trivial action.

Let us define Q̂i = (Qi)
′ ∩M = Q1⊗ . . .⊗Qi−1⊗Qi+1⊗ . . .⊗Qk. Since Hi o Γi does not

have property Gamma for all i this implies, in particular, that Q1 is non-amenable. By

proposition 10.2, where we let A = C, we know that there is an i such that Q1 is not

amenable over Ni

Since Q̂1 is a regular subalgebra of M , then by Theorem 9.2 we get that Q̂1 ≺M N .

We complete the argument by following Proposition 12 and the induction argument of

the proof of Theorem 1 in [OP04].

Now we have the proof of the final result ( 8.2.)

Proof. Let A1 oH1, ..., An oHn, K1, ..., Km, σ, ρ be as above. Thus we know that since Ai oHi

is nonamenable for all i, then Kj is nonamenable for all j.

Now we know that there are actions on L∞(X) such that M = L∞(X)oA1 oH1 × · · · ×

An oHn ' (L∞(X)oK1 × · · · ×Km)t. We may assume that t = 1.

Let Ni = A o A1 o H1 × . . . Ai−1 o Hi−1 × Ai+1 o Hi+1 × · · · × An o Hn, so that we have

M = NioAi oHi. As in the proof of the previous theorem, since Ki is nonamenable, there is

an i such that L(K1) is nonamenable over Ni. Now by the proof of Theorem 9.2 this implies

that L(K1)′ ∩M = L(K2 × · · · ×Km) ≺ Ni oHi. Thus by Lemma 3.2 above we have that

A o K2 × · · · × Km ≺ Ni o Hi. Now since A o K2 × · · · × Km is a regular subalgebra we

have by Theorem 9.2 that AoK2 × · · · ×Km ≺ Ni.

Notice that now we can follow exactly as in the proof of Corolarry C in [CS11] to get our

desired result.
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