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Abstract

Developments in the mathematics of the A-model: constructing Calabi-Yau structures and
stability conditions on target categories

by

Alex Atsushi Takeda

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Vivek Shende, Co-chair

Professor Mina Aganagic, Co-chair

This dissertation is an exposition of the work conducted by the author in the later years
of graduate school, when two main projects were completed. Both projects concern the
application of sheaf-theoretic techniques to construct geometric structures on categories ap-
pearing in the mathematical description of the A-model, which are of interest to symplectic
geometers and mathematicians working in mirror symmetry. This dissertation starts with
an introduction to the aspects of the physics of mirror symmetry that will be needed for the
exposition of the techniques and results of these two projects. The first project concerns the
construction of Calabi-Yau structures on topological Fukaya categories, using the microlocal
model of Nadler and others for these categories. The second project introduces and studies a
similar local-to-global technique, this time used to construct Bridgeland stability conditions
on Fukaya categories of marked surfaces, extending some results of Haiden, Katzarkov and
Kontsevich on the relation between stability of Fukaya categories and geometry of holomor-
phic differentials.
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Chapter 1

Overview of mirror symmetry

1.1 Introduction

For the past 30 years, the study of mirror symmetry has been one a very active and fruitful
front of the interaction between physics and mathematics. One can trace the lineage of
mirror symmetry to the very fruitful study of QFT- and string-theoretic dualities of the 80s
and 90s; the physical argument for mirror symmetry can be phrased as an application of
T-duality in string theory to type II string theories compactified on Calabi-Yau threefolds.

Mirror symmetry provides a striking example of the power of physical arguments in
mathematics, since it suggests a deep relation between different types of geometry that
would not apparent for mathematicians working on either one of these fields. Perhaps the
most classical and prominent example of this phenomenon is the pioneering work of Candelas,
de la Ossa, Green and Parkes [26], where the authors conjecture a precise formula for the
number of rational curves of a fixed degree in the quintic threefold X ⊂ P4, given in terms of
periods of a different Calabi-Yau manifold (the mirror quintic). On the mathematical side,
this formula was proven by the work of Lian, Liu and Yau [76].

For mathematicians, one of the important developments in the study of mirror symmetry
is Kontsevich’s homological mirror symmetry conjecture [71]. This conjecture relates the
fields of symplectic geometry and complex geometry; roughly it can be interpreted to say
that the symplectic geometry of a Calabi-Yau manifold is very closely related to the complex
geometry of its mirror manifold.

One can assign certain categorical invariants to these manifolds, which should be non-
trivially related for mirror pairs of manifolds. On the complex side, the category to be
considered is the derived category of coherent sheaves, which is a very familiar object in
algebraic geometry. On the symplectic side, the category to be considered is the Fukaya
category, which first appeared in the work of Fukaya on Morse theory for Lagrangians. To
a given symplectic manifold X, this construction assigns a category whose objects are given
by Lagrangians in X, and whose morphisms come from intersection points; for the structure
of this category to be made precise, one needs to qualify these statements properly.
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This dissertation will focus on some recent mathematical developments on geometric
structures on certain Fukaya categories. The results presented here are from my own work
[100, 107] completed during my graduate studies in collaboration with my academic advisor.
These papers address the construction of two kinds of geometric structures on Fukaya cat-
egories, namely Calabi-Yau structures and Bridgeland stability conditions. In this chapter
we will review some of the background material on these topics, with an emphasis on the
physics behind them; most of the material in here is based on the now-classical references
[57, 8]

There are many different versions of Fukaya categories developed over the past decades,
and to provide a comprehensive review of the field would be beyond the scope of this thesis;
the interested reader can consult some more comprehensive monographs and reviews such
as [46, 10]. Here we will limit ourselves to a schematic overview of some specific topics that
will be important for the exposition of original research.

1.2 Mirror symmetry for Calabi-Yau manifolds

Generalities about SCFTs

Here we will follow the exposition in Kapustin and Orlov’s 2003 lectures on mirror symmetry
[63] and their work on this subject [65].

Mirror symmetry can be seen algebraically as a symmetry of the N = (2, 2) supercon-
formal algebra, without necessarily a relation to geometry. The full set of generators and
relations for this superconformal algebra is quite complicated, and can be found eg. in [65]
(where it is referred to as the N = 2 super-Virasoro algebra). This algebra contains two
copies Lm, L̄m of the Virasoro generators, together with another set of even generators Jn, J̄n,
and as odd generators, two copies of the set N = 2 supersymmetry generators Q±n , Q̄

±
n .

An N = (2, 2) superconformal field theory (SCFT) is a 2d CFT endowed with an action
of this algebra; such a theory assigns to the circle a space of states H which will have the
structure of a module over the N = (2, 2) superconformal algebra. One can understand this
action by the fact that this algebra is a supersymmetric extension of the Virasoro algebra,
which is itself a central extension of the algebra of vector fields on the circle. This algebra
has an outer automorphism M which we will call the mirror automorphism

Ln 7→ Ln, Jn 7→ −Jn, Q±n → Q∓n

We will then say that two SCFTs H1,H2 are mirror if there is an isomorphism H1 ↔ H2

such that the mirror map intertwines the action of the superconformal algebra on the two
sides.

The sigma model

The relation between this story to the phenomenon in Calabi-Yau geometry that interests
mathematicians is given by the construction of the N = (2, 2) sigma model. The data
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required to define such a model is a Calabi-Yau manifold equipped with a B-field, ie. a
triple (X, g,B) where X is a compact complex manifold with trivial canonical class, g a
Kähler metric on X and B ∈ H2(X,R)/H2(X,Z) is the B-field.

This model [57, Ch. 13] can be defined classically by a Lagrangian that is a supersym-
metric extension of a 2d sigma model; it is a theory of a map φ : Σ→ X of a surface Σ into
the target space X, with action given by

S =

∫
Σ

L =

∫
Σ

(
−gij∂µφi∂µφj + φ∗B + fermionic terms

)
ie. we use the map φ to pull back to Σ both the Kähler metric and the B-field.

It is believed that one can quantize this model preserving the N = (2, 2) symmetry to
get an SCFT; this is known at least near the large volume limit. This gives a space of states
H with an action of the superconformal algebra; this space also receives gradings from the
actions of the even generators of the supeconformal algebra.

One can then ask what is the relation between this action and the geometry of the original
Calabi-Yau manifold. The commutation relations above imply, for example, that the BRST
operator D = Q0 + Q̄0 squares to zero. This is interpreted as a differential on the space
H, and one can argue that the cohomology of D recovers the Hodge theory of the original
manifold X; this cohomology gets two gradings from the generators J0, J̄0 and therefore at
degrees (p, q) one gets a cohomology group, and its dimension is given by the Hodge number
hp,q(X).

If two different Calabi-Yau manifolds X,X ′ give mirror SCFTs in the sense we mentioned
above, one can follow the gradings to deduce that we must have the following relation between
the Hodge numbers

hp,q(X) = hn−p,q(X ′)

which, when plotted in the Hodge diamond, gives some justification for the name ‘mirror
symmetry’.

Topological twisting

The picture of mirror symmetry in terms of N = (2, 2) SCFTs is physically compelling, but
mathematically quite hard to make sense of, since these theories are not yet fully axiomatized
into mathematics. There is, however, another picture of mirror symmetry that captures its
interesting phenomena, and whose two sides can be defined mathematically. This is obtained
by a procedure called topological twisting, first proposed by Witten in [113]. Here we present
a concise description of the two twists of the N = (2, 2) sigma model, based on the exposition
in [57, Ch. 16].

Topological twisting can be seen as a way of modifying the theory so that one can
compute its partition function on a curved worldsheet Σ, while preserving some amount of
supersymmetry. This changes the value of the partition function of the theory on curved
surfaces, but preserves its value on flat surfaces; in particular the Hilbert space assigned to
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a circle (which is the module over the superconformal algebra we discussed above) stays the
same, since it can be calculated by a flat cylinder.

Twisting these theories requires first relating the Euclidean symmetry of the theory with
its R-symmetry. For the N = (2, 2) sigma model, let us denote by U(1)E the rotation group
inside the Euclidean symmetry group of the worldsheet. The R-symmetry group of the
sigma model depends on the geometry of the target space X one is considering; for the case
of immediate interest, where X is Calabi-Yau, the theory has two different unbroken U(1) R-
symmetries, the vector and the axial symmetries. These symmetries rotate the supercharges
of the theory; the vector symmetry U(1)V acts by

Q± 7→ e−iαQ±, Q̄± 7→ eiαQ̄±

and the axial symmetry U(1)A acts by

Q± 7→ e∓iαQ±, Q̄± 7→ e±iαQ̄±

Topologically twisting the sigma model involves choosing either one of these two U(1) sym-
metries to use; we’ll denote by U(1)R this choice. In the Calabi-Yau case, since we have the
two choices above we will call the A-twist the case where we choose U(1)R = U(1)V and the
B-twist the case U(1)R = U(1)A.

The twisting procedure can be seen as a two-step process. We first change what we
consider to be the ‘Euclidean’ symmetries of the theory; this means that instead of using
the spin connection to gauge the symmetry U(1)E, we use it to gauge the diagonal subgroup
U(1)E′ inside U(1)E × U(1)R. Mathematically, this can be seen as a reinterpretation of the
symbols φ, ψ±, ψ̄± that denote the fields on Σ, ie. after the twist they will denote sections
of different bundles, with different charges under the various U(1) symmetries; the exact
description of these changes is given eg. in [57, Sec.16.2.2].

The second step involves choosing a supercharge Q that transforms as a scalar after
twisting; for the A-twist this charge is QA = Q̄++Q−, and for the B-twist it is QB = Q̄++Q̄−
Then one declares that the only ‘physical’ operators of the theory are operators commuting
with Q, and that the ‘physical’ Hilbert space is given by states annihilated by Q. We will
denote by O a Q-closed operator, ie. an operator such that [Q,O] = 0; the correlation
function of a collection of operators Oi is then given by a path integral

〈O1 . . .On〉 =

∫
DφDψ±Dψ̄±e−SO1 . . .On

which can be computed by Q-localization.
Moreover, using the nilpotency of the supercharge Q, one can show that Q-exact opera-

tors, ie. operators of the form Oexact = {Q,O′} are zero in this theory, in the sense that any
correlation function involving it vanishes by integration by parts

〈OexactO1 . . .On〉 =

∫
DφDψ±Dψ̄±e−S{Q,O′}O1 . . .On = 0
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so that this represents the zero element in the algebra of operators.
An important feature of the twisted sigma model is that the stress energy tensor T µν is Q-

exact; this implies that by the reason above that the theory is invariant under variations of the
worldsheet metric. This is the reason for calling it a topological twist; historically these were
some of the first topological theories that were discovered. The field of topological quantum
field theory has since become very vast, and in more current literature, theories such as these
are known as ‘Witten-type TQFTs’ or ‘cohomological field theories’, as opposed to other
types of TQFTs such as Chern-Simons or Dijkgraaf-Witten theories, where the partition
function is literally independent of variations of the metric, as opposed to independent up
to cohomologically exact terms.

By now, many examples of twisted theories have appeared in the literature about super-
symmetric field theories. All of these examples rely on the existence of exceptional homo-
morphisms from the Euclidean symmetry group to the R-symmetry group. Some of these
are not fully topological in the sense mentioned above, but rather have a mix of topologi-
cal and holomorphic dependence on different coordinates, a feature that appeared early in
Kapustin’s study of S-duality in gauge theories [62].

The A- and B-models with CY target

Let X denote a Calabi-Yau manifold of complex dimension n. As described above, there are
two distinct topological twists of the N = (2, 2) sigma model with target X; let us discuss
the main features of each one of these twists.

The A-model

Point operators in the A-model are assembled out of the fields that have become scalars after
the topological twist, ie. the fields ψ− and ψ̄+, and the 2n (real and imaginary) components
of the field φ : Σ→ X. That is, a general point operator is of the form

O = f(φ)i1...ipψ
i1
− . . . ψ

ip
− ψ̄

j1
+ . . . ψ̄

jq
+

where the f is some (not necessarily holomorphic) function on the target space. One can
argue that these components transform under change of coordinates in a way that these
operators should be identified with a (p, q)-form on X; explicitly in a holomorphic chart in
X we can identify

ψi− 7→ dzi, ψ̄i+ 7→ dz̄i

Under this identification, the supersymmetry generators Q−, Q̄+ act as ∂, ∂̄, respectively, so
that the chosen supersymmetry QA acts as the de Rham differential d = ∂+ ∂̄. Therefore the
physical operators get identified with the group of de Rham cohomology classes H∗dR(X,C)
of the target space.

The sum of all the cohomology groups of X have a natural ring structure given by
the ordinary cup product; here they also acquire another ring structure coming from the
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chiral ring structure of the underlying SCFT; ie. the product of cohomology classes given by
operators O1, . . . ,On is their correlation function. This, in turn, is given by a path integral
over all maps φ : Σ → X. We can split this into a sum over the integral homology class
β ∈ H2(X,Z) of the image of Σ.

〈O1 . . .On〉 =
∑

β∈H2(X,Z)

〈O1 . . .On〉β

The important feature of these topological models is that supersymmetric localization implies
that this integral only received contributions from a very restricted subset of maps Σ →
X, which makes possible a rigorous mathematical definition of this path integral. In this
case, QA localization means that only holomorphic maps Σ→ M contribute; therefore this
correlation function can be expressed as an integral over a well-defined moduli space of maps
MΣ(X, β).

〈O1 . . .On〉β = e−(ω−iB)β

∫
MΣ(X,β)

ev∗1 ω1 . . . ev∗n ω
n

with an integrand in terms of tautological classes on the moduli space.
When properly defined, these integrals give the correlation function in terms of the

Gromov-Witten invariants of X; and endow the (de Rham) cohomology H∗(X,C) of X
with a new product, which can be shown to be a deformation of the ordinary cup product.
The resulting ring is referred to as instanton-corrected cohomology or, more commonly in
the mathematical literature, quantum cohomology of X.

It is important to remark that the A-model can be defined on any Kähler manifold X,
and not necessarily on a Calabi-Yau; it will then have a mirror that is not necessarily a
geometric sigma model, instead being given by a Landau-Ginzburg model. Also, up to a
correct notion of equivalence, the A-model depends only on the symplectic structure of X;
different choices of complex structures required to define the moduli space of holomorphic
maps give equivalent models. So the A-model can be said to capture the ‘symplectic side’ of
the geometry of X.

The B-model

For the B-twist of the sigma model, let us take again X to be a Calabi-Yau, since one requires
the axial symmetry to be part of the R-symmetry group of the SCFT.

Similarly to what we described above for the A-model, after performing the B-twist, one
can identify what (combinations) of the fields give scalars, and then from them assemble
the point operators of the theory. It turns out that certain combinations of components
of the fields φ and ψ̄ transform as holomorphic vector fields ∂/∂zi and others transform as
anti-holomorphic one-forms dz̄i; therefore a general point operator is given by an expression

O = ω
j1,...,jq
i1,...,ip

dzi1 . . . dzip
(

∂

∂zj1

)
. . .

(
∂

∂zjq

)
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ie. an form in Ω0,p(X,∧qT ) where T is the holomorphic tangent bundle. Under this identi-
fication the supersymmetric charge QB acts as the Dolbeault differential ∂̄ so the space of
physical states is given by the total sum of Dolbeault cohomology groups H0,∗(X,∧∗T ).

As for the A-model, the path integral giving the n-point correlator of the B-model can
be computed by supersymmetric localization. However, the action of the supercharge QB

on the coordinates φi of the map φ : Σ→ X is δφi = 0, which in turn means that the path
integral localizes to constant maps ∂µφ

i = 0. So the correlation is given by an integral over
the target space X itself:

〈O1 . . .On〉 =

∫
X

〈ω1 ∧ · · · ∧ ωn,Ω〉 ∧ Ω

where Ω is the given holomorphic n-form.
The statement of mirror symmetry for Calabi-Yau manifolds is that given a Calabi-Yau

manifold X of dimension d, there is another Calabi-Yau X ′ of the same dimension, such
that the A-model on X is equivalent to the B-model on X ′ and vice-versa; this implies, in
particular, a deep relation between the Gromov-Witten invariants ofX, which are notoriously
hard to calculate, and periods of certain differentials on X ′, which were a subject of classical
interest in complex geometry; this is the starting point of the calculations of Candelas et al.
[26].

1.3 The homological mirror symmetry conjecture:

D-branes, Fukaya categories and coherent sheaves

Kontsevich’s 1994 Homological Mirror Symmetry conjecture [71] suggested that the phe-
nomenon of ‘closed string’ mirror symmetry as we sketched above could be explained as
a shadow of a categorical equivalence, relating the symplectic and complex geometries of
mirror spaces. The enumerative statements of mirror symmetry could then be derived from
this categorical equivalence by taking certain invariants on both sides.

More specifically, this conjecture states that given a mirror pair of Calabi-Yau manifolds
X,X ′, there is an equivalence of categories between the derived Fukaya category of X and
the derived category of coherent sheaves of X ′. At the time of this conjecture, while the
derived category of coherent sheaves was a familiar object to algebraic geometers, the Fukaya
category was a more obscure construction, coming from Lagrangian Floer theory. This object
was initially defined by Fukaya as an A∞-category, motivated by the existence of natural
product structures in Lagrangian Floer homology. Very roughly, the objects of the Fukaya
category are Lagrangians and the morphisms are generated by intersection points between
these.

Decades later, there is still quite a bit of discussion on what are the most natural ‘correct’
structures on Fukaya categories for general manifolds (eg. whether one should include im-
mersed objects or define it as a curved A∞-category etc.). This is not so much of a problem
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to the HMS conjecture since most of these differences seem to disappear once one passes to
the derived category. In this dissertation we will later deal with some classes of examples
where particular combinatorial models for the Fukaya category exist.

Some years after the proposal of the HMS conjecture, with the development of the theory
of D-branes in string theory, it became clear that this correspondence should be understood
in terms of an equivalence of the categories of boundary conditions of the A- and B-models
on mirror spaces. More specifically, from the point of view of the open string topological
theories, the category of boundary conditions for the A-model (category of A-branes) should
be given by some version of the Fukaya category, and on the B-side the category of B-branes
should be given by the derived category of coherent sheaves.

There is some difficulty in reconciling these two points of view; for example it takes a non-
trivial amount of effort to argue that on a general coherent sheaf should provide a consistent
boundary condition for the B-model. There are also problems on the other side; for exam-
ple, Kapustin and Orlov [64] argued that the A-model can also admit other non-Lagrangian
boundary conditions, the so-called coisotropic branes. These have appeared prominently in
applications in high-energy physics [87], but on the mathematical side their existence and
relation to the statement of homological mirror symmetry is still quite mysterious; though
there is evidence that their understanding is fundamental in making precise some construc-
tions that are of interest in mathematics, especially in the area of quantization [55].

In this section we will give a cursory introduction to these objects, with out applications
of later chapters in mind. For a more comprehensive exposition of the topic of D-branes in
mirror symmetry, the reader can consult the references [57, Ch.37-39] and [8, Ch.3]; here we
will mostly follow these references.

Branes in the supersymmetric sigma model

We will analyze the possible boundary conditions for the sigma-model geometrically, roughly
following the first reference mentioned above. Let us first fix X a CY n-fold, and now let
us consider a boundary condition given by a submanifold C ⊂ X; this means that we will
be quantizing a theory of open strings that are constrained to end on C. It turns out to be
more natural to generalize this point of view and also allow a U(1) gauge field A on C.

The action for an open string traveling along a worldsheet Σ ⊂ X with boundary ∂Σ ⊂ C
is then given by

S =

∫
Σ

L =

∫
Σ

(
−gij∂µφi∂µφj + φ∗B

)
+

∫
∂Σ

φ∗A+ fermionic terms

The equations of motion for the action above can be written succinctly in terms of
holomorphic/antiholomorphic coordinates z, z̄ on the worldsheet σ by

∂φi

∂z
= Ri

j

∂φj

∂z̄



CHAPTER 1. OVERVIEW OF MIRROR SYMMETRY 9

when we set the fermion and B-fields to zero. The matrix Rij is defined as an orthogonal
matrix-valued function on C, defined by

R = (g|TC − F )−1(g|TC + F )

where F is the curvature two-form of the gauge field A. This equation of motion gets
deformed in the presence of fermions, but one can also use this matrix R for the equations
of motion of the fermionic fields ψ±; these relate the left and right moving fermions as a
reflection relation

ψi+ = Ri
jψ

j
−

along C. A full treatment of these equations of motion, including special cases where more
boundary conditions are present due to ‘generalized geometry’, can be found in [75].

This sketch of the equations of motion above is enough to illustrate that it is not possible
to preserve all the of the N = (2, 2) supersymmetry with such a boundary condition, since
that algebra rotates between the left and right-moving fermions and the reflection relation
above must break part of that supersymmetry. It turns out that for each of the topological
twists of this sigma model it is possible to preserve the necessary amount supersymmetry,
as long as the submanifold C and gauge field A satisfy appropriate equations.

A-branes

We use the complex structure J on the Calabi-Yau target X and pick local holomorphic and
anti-holomorphic coordinated indexed by i = 1, . . . ,m and ī = 1̄, . . . , m̄. To preserve the
supersymmetry under the generator QA, the diagonal blocks Ri

j and Rī
j̄ have to be zero, and

the matrix-valued function R needs to be block off-diagonal.
Writing R = (g|C − F )−1(g|C + F ), one can interpret this condition in terms of the

geometry of C and the curvature of the U(1) bundle on it; one possible solution is given by

J2|TC = −1, ω|C = 0, F = 0

where J exchanges the tangent and normal directions to C, so J2 is well-defined as an
endomorphism of TC. Therefore C is a middle-dimensional Lagrangian submanifold with a
flat U(1) connection (in the presence of background field B this gets modified to F = B|C).
This describes a rank 1 Lagrangian brane; one can consider also higher-rank branes carrying
U(N)-vector bundles for N > 1; as usual in D-brane constructions, this arises from stacks
of rank 1 branes, where the U(1)N gauge group gets enhanced to U(N) by the presence of
massless states.

In general one needs to worry about quantum effects that might make such a bound-
ary condition anomalous; the most important example of such an effect for us is the axial
anomaly. From Subsection 1.2, remember that when the target X is Calabi-Yau there are
two U(1) R-symmetries of the sigma model; and upon performing the A-twist we used up the
vector symmetry U(1)V ; the resulting axial symmetry U(1)A is still unbroken in the closed
string A-model. In order for the A-brane supported on the Lagrangian C to have vanishing
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anomaly, we have the following condition. Consider the holomorphic CY m-form Ω; at any
point p ∈ C we define ξ(p) ∈ S1 to be the phase such that

=(e−iπξ(p)Ω|C) = 0

this defines a map ξ : C → S1 which represents a class in H1(C,Z), called the Maslov class
of the Lagrangian cycle C 1. The axial symmetry is anomalous if this class is non-vanishing.
So we will restrict attention to Lagrangian branes of vanishing Maslov class.

This motivates the identification between A-branes and the Fukaya category of La-
grangian submanifolds; the vanishing Maslov class condition also plays a role in lifting the
grading in Lagrangian Floer homology to a Z-grading [10]. There are still many subtle
facts about the A-model that have not been formalized completely into the mathematical
language. Most notably, in the solution above we could have tried to solve the supersym-
metry equations with F 6= 0, ie. with a non-flat U(N) vector bundle. This leads to the
discovery of coisotropic branes [64], supported on submanifolds of dimension greater than
the middle dimension n. The resulting equations for φ and F often do not have non-trivial
solutions; notable exceptions are the cases of hyperkähler targets analyzed in works such as
[55]. The exact relation of these other boundary conditions with the mathematical setting
of the HMS conjectures is still quite mysterious; very recently [69] gave some constructions
of large classes of examples of coisotropic branes, conjectured to be related to a number of
conjectures in algebraic geometry. For the rest of this dissertation we will restrict attention
to Lagrangian A-branes.

Strings between A-branes

Here we sketch the general arguments on why the spaces of strings in the A-model should
be related to the morphism spaces of the Fukaya category. Consider two rank one A-branes
supported on Lagrangians L0, L0 intersecting transversely at a finite set of points p1, . . . , pN .

According to the principle of cohomological field theories, in the A-model we should
interpret the supercharge QA as a differential acting on the space of string states stretch-
ing between the branes, and the corresponding physical Hilbert space will be given by the
cohomology with respect to QA. Let us sketch how this works in the case at hand.

The Dirichlet condition along the branes L0, L1 means that to compute the Hilbert space
H(L0, L1) we will quantize the theory of maps from a strip

φ : [0, 1]× R→ X

Parametrizing this strip by coordinates (σ, τ), the boundary conditions read

φ(0, τ) ∈ L1, ∂σφ(0, τ) ∈ φ∗NL0

1The Maslov class (or index) of a Lagrangian can be defined for any symplectic manifold, without
reference to complex or CY structures; one can prove that the definition given in the text is independent of
those choices and agrees with the definition using the topology of the Lagrangian Grassmannian
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and similarly for the other end at σ = 1. There are similar conditions for the fermions ψ±, ψ̄±.
Let us denote the space of such paths by Ω(L1, L2). In terms of variational derivatives, the
supercharge QA acts on this space as

iQA = δ + δh∧

where h is a function measuring ‘how far’ the map φ is from a constant fixed map φ0. This
function itself depends on these choices but its variation is given by

δh =

∫
[0,1]

(
−igijδφidφ̄j + igijdφ

iδφ̄j
)
dσ

The closed states under QA then correspond to critical points of the function h which
by the formula above are constant maps localized at a given intersection point p ∈ L0 ∩ L1.
A similar analysis in the higher rank case shows that the states then should be spanned by
morphisms between the stalks of the vector bundles at the intersection points, so our model
for the space of states is the cohomology complex

H(L0, L1) =

( ⊕
p∈L0∩L1

HomC((E1)p, (E2)p)

)/
Im(QA)

One can then ask two things: whether the axial R-symmetry gives a consistent grading on
the set of intersection points by ghost number, such that this is an honest Z-graded complex
of vector spaces, and whether this is truly a chain complex ie. Q2

A = 0. The answer to the
first question is quite delicate in the general case due to the anomaly of the axial symmetry
2, but in the CY case we are considering this anomaly vanishes and one can choose a well-
defined grading of the critical points such that QA has homogeneous degree 1. The second
question, of whether the differential squares to zero, is connected to some delicate questions
of bubbling of Lagrangians and appropriate perturbations; in particular it can be shown that
these problems do not happen if L0 and L1 bound no holomorphic disks of positive area so
this is the setting we will assume.

This differential can then be computed by supersymmetric localization, just as the closed
string n-point functions were. Here localization implies that we can restrict attention to maps
φ : Σ→ X that are holomorphic with respect to the complex structure of X. To calculate the
differential, let us look at the moduli of holomorphic strips; index considerations imply that
the only nonzero contributions to the path integral come from strips connecting intersection
points of adjacent degree, ie. maps φ satisfying

∂̄φi = 0, φ(0, τ) ∈ L0, φ(1, τ) ∈ L1, lim
τ→±∞

φ(σ, τ) = p±

2In particular, for non CY targets the discussion in the text needs to be appropriately modified, consid-
ering instead covers of the path space Ω(L0, L1); for a discussion of these issues see [57, p. 39.4.2].
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where p± are intersection points with degree satisfying µ(p+)− µ(p−) = 1. The differential
Q acts then by mapping the classes supported at the intersection points as [p−]→ [p+], up
to a factor encoding the area of the disk 3.

Having in mind the proposed relation between the A-model and the Fukaya category, we
will denote this complex of states by Hom∗(L0, L1), with grading by ghost number. One
can interpret the map above, instead as a map from a strip, as a map from a disk with
two marked points along its boundary. Then it becomes natural to consider the analogous
question with n ≥ 2 marked points along the boundary, constrained to map respectively
to Lagrangian branes L0, . . . , Ln−1 ; a similar localization argument as above indicates that
the path integral should count holomorphic maps from this disk, and these counts should
be assembled into “higher structure maps” giving relations between the morphism spaces
Hom(L0, L1), . . . ,Hom(Ln−2, Ln−1),Hom(Ln−1, L0). Later, in Section 2.2 we will see how
these higher structure maps are formalized in the Fukaya category setting as the notion of
an A∞-structure.

B-branes

Let us discuss the boundary conditions on the other side of mirror symmetry, for the B-
twist of the sigma model with a Calabi-Yau target. The main parts of this thesis, in all
subsequent chapters, will not really need to discuss B-branes, as they will all concern the
Fukaya category, so we will limit ourselves to a cursory introduction to B-branes, mostly in
the spirit of motivating the appearance of the derived category in mirror symmetry.

Consider again a brane supported on a submanifold C, together with a bundle E → C,
and let us look at the supersymmetry conditions. Again using local holomorphic and anti-
holomorphic coordinates on the target space indexed by i = 1, . . . ,m and ī = 1̄, . . . , m̄, the
equations for the matrix R that must be satisfied to preserve the supersymmetry generated
by QB imply that R is block-diagonal with respect to J , ie. Ri

j̄ = Rī
j = 0. So J now

preserves the tangent and normal directions to C, which implies that C is a holomorphic
submanifold of X. The equations for the connection now imply that its curvature satisfies
F ∈ Ω1,1(C,End(E)), meaning that E is a holomorphic vector bundle 4.

Strings between B-branes

For simplicity let us discuss the case where the submanifold C is all of X, and two different
B-branes will just be specified by two holomorphic vector bundles E0, E1 → X. A general
discussion of the space of states in the B-model would involve a discussion of the problem
of 1d supersymmetric quantum mechanics such as in [57, Sec.10.4], but fortunately for our
purposes when the target X is CY, one can show that the space of states reduces to the
space of fermionic zero modes.

3depending on which ground ring one is using to define the Fukaya category; see the review [10]
4This is technically only strictly true when the B-field is zero.
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This means that if we are parametrizing the worldsheet of this string as a strip φ :
[0, 1] × R → X with coordinates σ, τ as before, and with fermionic fields ψ±, ψ̄±, we will
consider only states where φ, ψ±, ψ̄± have no σ-dependence. The boundary condition forces

ψ− − ψ+ = ψ̄− − ψ̄+ = 0

and the algebra of the two remaining fermionic degrees of freedom generates the Hilbert
space of the theory

n⊕
p=0

Ω0,p(X,E∗0 ⊗ E1) =
n⊕
p=0

Ω0,p(X,End(E0, E1))

as ψ̄i+ + ψ̄i− 7→ dz̄i and ψi+ + ψi− 7→ gij
∂
∂z̄j

.
Just as in the case of the closed string B-model, under this identification the supersym-

metry generator QB acts on the vector bundle End(E0, E1) as the Dolbeault differential ∂̄,
so the physical Hilbert space of strings between these branes is given by the total Dolbeault
cohomology

H(E0, E1) =
n⊕
p=0

H0,p(X,End(E0, E1))

Also analogous to the closed string B-model, the correlators here can also be computed
simply in terms of the wedge product of differential forms, integrated against the Calabi-
Yau holomorphic n-form Ω. That is, given forms

a ∈ Ω0,p(X,Hom(E0, E1)), b ∈ Ω0,q(X,Hom(E1, E2)), c ∈ Ω0,n−p−q(X,Hom(E2, E0))

with corresponding insertion point operators Wa,Wb,Wc, the correlation function up to all
orders and genera is simply given by integrating the trace over the space of constant maps:

〈WaWbWc〉 =

∫
X

Tr(a ∧ b ∧ c) ∧ Ω

One can argue also by localization under QB that there are no instanton corrections to these
correlation functions; this is one of the aspects in which the B-model appears much simpler
than its mirror.

The appearance of the bounded derived category of coherent sheaves

Even in the original formulation of the HMS conjecture by Kontsevich [71], the category
appearing on the B-side was already the bounded derived category of coherent sheaves.
One can motivate this by the arguments that 1) even for the most classical setting of mirror
symmetry between Calabi-Yau manifolds, comparing the set of objects of the Fukaya category
to the set of holomorphic vector bundles on the mirror, one notices that there are not enough
vector bundles and 2) even a naive characterization of B-branes as above shows that one must
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also include objects encoding holomorphic vector bundles supported on lower-dimensional
submanifolds.

Still, one must motivate the appearance of the features of the derived category from
physical arguments; this is the main topic of investigations for a series of papers by Sen [97],
Douglas [38], Sharpe [98], Aspinwall-Lawrence [7] and others around the year 2000.

Let us sketch some of the main ideas concerning the appearance of the grading and the
importance of quasi-isomorphisms, following mostly [8, Sec.5.3]. From the perspective of
the B-model as a topological open string theory, this extra grading comes from the U(1)
R-symmetry and takes integral values. One can combine boundary conditions of different
degrees; if En, n ∈ Z are vector bundles on X, a boundary condition for the B-model with
target X can be given by

E =
⊕
n

En

It is important to note that from the perspective of the SCFT coming from the (untwisted)
sigma model with CY target X, there is a slightly different description of this grading,
which takes values in U(1) or R instead of Z. In the sigma model, one can compute the
R-charge from the geometric data on X; for example, for some vector bundle E → X, the
corresponding charge is [7]:

Z(E) =
1

π
= log

∫
X

eB+iJch(E)
√
td(TX) + . . .

which, though naively valued in U(1), turns out to be more naturally valued in the universal
cover R by a monodromy argument. The relation between this R-valued charge in the
SCFT and the Z-valued charge in the B-model has been historically explained by the fact
that not every superposition of bundles is a boundary condition preserving the necessary
supersymmetry QB; for this to happen the charges defined above need to differ by integer
amounts, so by an overall degree shift they can all be made Z-valued. This is a partially
satisfying explanation; a more complete explanation can be found in the discussion of the
concept of Π-stability in 2d SCFTs [39, 6].

As for the appearance of chain complexes, this comes from the fact that chiral operators
of R-charge one give deformations of boundary conditions. For example, for a B-type a
single holomorphic bundle E and a class δA(0,1) ∈ Ext(E,E), we can deform this boundary
condition by changing the BRST operator acting on the states by

∂̄ 7→ ∂̄ + δA(0,1)

A similar argument can be used to understand any R-charge one operator; consider now the
superposition E =

⊕
nE

n as above, and operators dn ∈ Hom(En, En+1), d =
∑

n dn. One
can write a boundary deformation of the action which corresponds to a deformation of the
BRST charge by

Q 7→ Q+ d
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and now asking that this operator squares to zero corresponds to dn+1dn = 0 which is the
condition for a complex.

Moreover, a similar argument shows that given a homotopy equivalence between com-
plexes E and F , that is a pair of maps composing to the identity up to a homotopy, the
spaces of string states differ by a Q-exact quantity; this motivates the appearance of the ho-
motopy category K(Coh(X)). One needs to extend this argument a bit to get to the derived
category. This has been explained early on the history of the subject as a consequence of
the existence of open string tachyonic states associated with extension morphisms [97]; after
condensation flowing under the RG flow should parallel the corresponding equivalence in the
derived category.

There is another argument for the appearance of the derived category due to Aspinwall
and Lawrence, involving the idea of ‘physical equivalence’; this basically says that if two
boundary conditions have equal correlators with every other boundary condition, then they
should be considered the same. More precisely, given two objects E,E ′ of the homotopy
category K(Coh(X)), they are said to be physically equivalent if for any other object F we
have Ext∗(E,F ) ∼= Ext∗(E ′, F ) and Ext∗(F,E) ∼= Ext∗(F,E ′) and moreover the products
given by the 3-point functions agree; then one can prove [7] that K(Coh(X)) modulo these
relations is equivalent to the derived category.
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Chapter 2

TCFTs, Calabi-Yau structures,
microlocal models for Fukaya
categories

In this chapter, we will introduce the general mathematical formalism of open-closed 2d
TQFTs, and also discuss some extensions of that concept, designed to accommodate theories
such as the A and B-models with CY targets that we discussed in Ch.1. For us, this model
will come in the notion of a topological conformal field theory, or TCFT for short.

The purpose of providing exposition of this topic is to give a context for the presentation
of one of this dissertation’s main results, which concerns the construction of Calabi-Yau
structures on certain categories. As we will see below, the boundary conditions of a TQFT
form a category, and given some category C, a compatible pair of a A∞ structure and a
Calabi-Yau structure determines a TCFT with C as its boundary conditions.

As part of the background for the results of Chapter 3, we will also introduce the gen-
eralizations of the Fukaya category for non-compact manifolds that will appear there, and
discuss a particular model for this category, in terms of categories of microlocal sheaves, that
has been a very active topic of research in recent years, and which we will use as the main
application of the techniques of Chapter 3.

2.1 The TQFT/TCFT perspective

All the mathematical models for topological theories that we will be working with are in the
spirit of the Atiyah-Segal axioms [9, 95], which formalize the algebraic structure of partition
functions of a topological theory. The subject of TQFTs has been studied so much, and
from so many perspectives, that by now one can find in the literature a great number of
introductory texts; the reader can consult [45] for an earlier reference, and [108] for an
introductory account of the recent developments on the mathematics of TQFTs.
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We will not attempt to give a general account of TQFTs but instead pass directly into
the context of open-closed 2d TQFTs, which is the setting that is most relevant to us.

2d open-closed TQFTs

Here we follow the exposition in [8, Sec.2.1]. The starting point of an open-closed theory is
a category B of boundary conditions. Note that in the case of a theory obtained from a 2d
sigma model of maps from the worldsheet Σ of a string, the objects a, b, . . . of this category
would label branes on which the string is allowed to end. For convenience we will often just
refer to these objects in general as branes.

The open-closed theory assigns two types of spaces of states: spaces of states Oab on open
strings stretching between branes a and b, and spaces of states C on the closed string.

The structure of a 2d open-closed TQFT (over C) is given by:

1. C-vector spaces C, and Oab for any pair of branes a, b

2. A commutative Frobenius algebra structure on C given by a multiplication map with
identity 1C and a trace map θC : C → C)

3. Associative bilinear products Oab ⊗Obc → Oac

4. A nondegenerate trace map θa : Oaa → C giving a non-necessarily commutative Frobe-
nius algebra structure on Oaa

5. Linear maps ιa : C → Oaa and ιa : Oaa → C

This collection of maps satisfies a number of relations [8, Sec.2.1.2] that can be encoded
in a finite number of surface diagrams; then the ‘sewing theorem’ implies that this data
uniquely defines the TQFT.

One consequence of these relations is that for any pair a, b, the composition

Oab ⊗Oba → Oaa
θa−→ C

is a nondegenerate pairing, giving a canonical duality between Oab,Oba. This defines the
structure of a Calabi-Yau category. We will later discuss this concept in greater detail.

TCFTs

We would like to regard the A- and B-models in this functorial formalism. However there is
a subtle distinction, that turns out to be essential. This formalism of 2d open-closed TQFTs
is better suited for theories that are topologically invariant on the nose. On the other hand,
the topological twists we care about are ‘Witten-type’ or cohomological field theories; ie. in
each case there is a BRST operator Q such that a deformation of the worldsheet leaves the
action invariant just up to Q-exact terms.
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Therefore to get a better functorial picture of these models, one must work in a properly
cohomological setting, where one remembers eg. the chains on the worldsheet instead of its
mere homeomorphism type. The model that we will use is usually called in the literature
by the name of topological conformal field theories (TCFTs). These were initially discussed
by Segal and described by Getzler in [53]. Later, Costello [30, 31] developed this framework
and applied it to context of higher-genus mirror symmetry. Here we will follow the notation
and formalism of these papers.

Let us fix a set Λ of branes, ie. boundary conditions. A TCFT is defined as an appropriate
functor from a geometrically-defined category OCdΛ depending on Λ and an integer d which
should be thought of as the dimension of the target space. This functor is a cochain-level
enhancement of the data of a 2d open-closed TQFT as we defined above.

The category OCdΛ has as objects collections of boundary circles, which can be closed
strings or open strings. That is, its objects are quadruples (C,O, s, t), where C ∈ Z≥0 is the
number of closed strings, O ∈ Z≥0 is the number of open strings, and s, t : O → Λ are the
source and target maps for each open string.

For a pair of such objects (C±, O±, s±, t±), consider the moduli space MΛ(+,−) of Rie-
mann surfaces with incoming closed/open boundaries C+, O+ and outgoing closed/open
boundaries C−, O−. There is a ‘determinant’ local system det on this moduli space, whose
fiber is defined from from the topology of the corresponding surface [30, Sec.3]. Let us then
define the morphisms between these two objects to be the twisted chains on this moduli
space, ie.

HomOCdλ(+,−) := C∗(MΛ(+,−), detd)

One can prove that this defines a category enriched over the category of chain complexes.
This is only true after one takes care of some technicalities involved in this definition; see
the reference above for a full treatment.

Definition 1. [30] An open-closed TCFT of dimension d on a set Λ of boundary conditions
(for some field k) is a symmetric monoidal functor

Φ : OCdΛ → Modk

to the category of differential graded k-vector spaces.

One can define appropriate subcategories CdΛ,OdΛ of closed and open string states and
write analogous definitions of closed or open TCFT.

This definition above gives a chain-level enhancement of the notion of an 2d open-closed
TQFT; for a more modern perspective on the subject, in the setting of the cobordism hypoth-
esis of Baez-Dolan [11] later proved by Lurie, these TCFTs should be regarded as ‘extended’
2d TQFTs [78, Sec.4.2].
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2.2 A-infinity categories and Calabi-Yau structures

Comparing the definition of a TCFT with our previous definition of a TQFT, one can ask
whether there is an intrinsic structure on the set Λ that uniquely characterizes a given TCFT,
the same way that the structure of a Frobenius algebra/category characterizes a 2d TQFT.
The answer turns out to be yes; but one needs first to define an appropriate homotopical
enhancements of the associativity condition and the trace function. These enhancements
are captured respectively by the notions of an A∞-category and a compatible Calabi-Yau
structure.

A∞-categories

A A∞-category is a generalization of a category to a structure where composition of mor-
phisms is only associative up to higher coherence maps. The degree conventions for defining
an A∞ structure vary a bit throughout the literature; for consistency with later parts of this
dissertation let us use a different convention from [30]; in our formulas the complexes are
graded cohomologically, and not homologically.

Let Λ be a set of objects as before.

Definition 2. A A∞-category with Λ as a set of objects is the data of Z-graded k-vector
spaces Hom(X, Y ) for any pair X, Y ∈ Λ and for every integer n ≥ 1 and tuple Xi a map

µn : Hom(X0, X1)⊗ Hom(X1, X2)⊗ · · · ⊗Hom(Xn−1, Xn)→ Hom(X0, Xn)

of degree 2− n, satisfying the relations∑
i+j+k=n

(−1)|a1|+···+|ak|−kµi+1+k(a1, . . . , µ
1+i+k(ak, . . . , an−i), . . . , an) = 0

The A∞-categories we will use are all (strongly) unital, ie. there is a distinguished identity
morphism 1X ∈ Hom(X,X) of degree zero satisfying appropriate identity relations.

Calabi-Yau structures on A∞-categories

A Calabi-Yau structure on a A∞-category is a generalization of a Frobenius structure on an
associative algebra. Calabi-Yau structures will play a very prominent role in Chapter 3 of
this dissertations; there we will present a more modern and precise definition, in the context
of dg categories.

For the current application to A∞-categories and TCFTs, we will use the following simpler
definition. In the terminology we will introduce later, this would correspond to a A∞ version
of a right or proper Calabi-Yau structure.

Definition 3. A Calabi-Yau structure on a A∞-category D is a collection of nondegenerate
pairings

Hom(X, Y )⊗ Hom(Y,X)
〈,〉−→ k[−d]
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which are symmetric (under switching the factors) and compatible with the A∞ structure
maps, satisfying

〈µn(a1, . . . , an−1), an〉 = (−1)n+|a0|
∑
|ai|〈µn(a1, . . . , an), a0〉

for all possible choices of n and morphisms.

In the context of the TCFT, these pairings will be given by what the theory assigns to a
cap that closes an incoming state of two strings. The relevance of the definition of Calabi-
Yau structure to the study of TCFTs is evident from the main theorem of Costello’s first
paper on the subject:

Theorem 1. ([30, Thm.A]) The category of open TCFTs of dimension d with set of branes
Λ is equivalent to the category of Calabi-Yau A∞-categories with set of objects Λ.

Moreover there is a universal way of associating to such a theory an open-closed TCFT
and a closed TCFT; this construction uses Hochschild homology of categories, which we will
introduce later in Chapter 3.

This theorem motivates the main discussion in the next chapter; constructing Calabi-Yau
structures on categories of geometric interest is useful since it allows one to use the formalism
of TCFTs to define invariants, in the same way that one can use it to (in principle) calcu-
late higher Gromov-Witten invariants. We will be concerned in the following chapter with
constructing Calabi-Yau structures on ‘topological Fukaya categories’, which are a model
for Fukaya categories of non-compact symplectic manifolds. To the writer’s knowledge, a
further study of the use of TCFT methods in this context has not yet been conducted.

2.3 Liouville manifolds and the wrapped Fukaya

category

In this section we will describe some generalizations of the Fukaya category for dealing
with non-compact spaces. These categories appear since it has been long understood that
the most natural setting of mirror symmetry is not necessarily restricted to sigma models
with CY targets; instead one should consider the more general setting of Landau-Ginzburg
models which appear as mirrors of non-CY manifolds. We will skip a discussion of Landau-
Ginzburg models in this dissertation, since they will not directly appear in later sections,
but the interested reader can consult [57, Ch.13,39] for a thorough introduction to their
appearance in physics and their mathematical structures.

However, one consequence of this generalization of mirror symmetry to Fano and general
type varieties is that, when one tries to apply the Fukaya/coherent sheaf picture of mirror
symmetry to cases where the mirror is not proper or smooth, it becomes clear that the
ordinary Fukaya category (with compact Lagrangians as objects) cannot be the right A-
side category. One way of seeing this is that the derived category of a singular variety has
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objects with infinite-dimensional endomorphism algebra, which cannot correspond to the
endomorphisms of any compact Lagrangian.

A solution to this problem was proposed by Abouzaid and Seidel in [4], in the form of
the wrapped Fukaya category. This is a category defined for a class of non-compact sym-
plectic manifolds called Liouville manifolds; in particular this includes Weinstein manifolds
as an important special case. In this section we will review the general ideas behind the
construction of this category.

Wrapped Fukaya categories

Liouville manifolds and their skeleta

The following discussion is taken mostly from [2]; we will use the notations and conventions
of that reference. A Liouville manifold is an open symplectic manifold (M,∂M,ω) with a
one-form λ (the Liouville form) such that dλ = ω and the vector field Z = ω−1λ is outward-
pointing on the boundary ∂M . We also require that away from a compact set M in, the
manifold M can be expressed as

M = M in ∪∂M (∂M × [1,∞))

and if we denote by r ∈ [1,∞) the coordinate along the cylindrical boundary, we require
the proportionality λ = rλ|∂M with λ|∂M a contact structure on ∂M . We will call this
neighborhood of the boundary the cylindrical end or collar of M .

Given a Liouville manifold (M,λ, Z), consider the subset

Sk(M) =
⋂
t<0

φtZ(X)

ie. the attracting set of the negative flow of the vector field Z; we will call this the skeleton
of the Liouville manifold M .

Example. As a simple example of a Liouville manifold, consider M = T ∗X for some compact
n-dimensional manifold X, with Liouville form locally given by λ =

∑
i p dqi (in Darboux

coordinates) and vector field Z given by scaling of the fiber; the skeleton of M is this case
is just the zero section X.

In general, the topology of Liouville manifolds can be difficult to understand because
the Liouville vector field may have complicated dynamics; one can avoid that by using a
Lyapunov function. A Weinstein manifold is a Liouville manifold (M,λ, Z) together with a
Morse function h : M → R such that Z is gradient-like with respect to h. For M a Weinstein
manifold, the skeleton of M is composed of the union of the stable manifolds of each zero of
the Liouville vector field; and compatibility with the Liouville form implies that each such
stable manifold is isotropic.

For a generic Weinstein structure on a manifold, the top-dimensional cells of the skele-
ton L = Sk(M) will be middle-dimensional; therefore the skeleton is a (possibly singular)
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Lagrangian. We will be working in this case, so we will just refer to L as the Lagrangian
skeleton. For a more comprehensive exposition of these and other topics in open symplectic
geometry, one can consult eg. the reviews [28, 42].

Example. [82] Following the previous example of the cotangent bundle M = T ∗X, pick a
Morse function f : X → R and a Riemannian metric g on the base. Consider the function

FX(x, ξ) = ξ(∇gf |x)

One can check that for small enough ε + 0, the one-form λ = λ0 + dFX , where λ0 is
the standard one-form on T ∗X, is a Liouville form compatible with the Morse function (on
T ∗X)

h(x, ξ) = g(ξ, ξ) + f(x)

. The skeleton of this is still the zero-section X, but now stratified by the Morse cells coming
from the function f (which are isotropic submanifolds of T ∗X).

Wrapped Floer cohomology and wrapped Fukaya category

In order to discuss Floer theory with non-compact Lagrangians, one must make some choices
about the behavior at infinity. We will fix a Hamiltonian function H on M that is quadratic
in the cylindrical end; that is we have H(y, r) ∝ r2 in ∂M × [1,∞). We will also need to
consider almost-complex structures J that are compatible with ω and are of ‘contact type’ in
the collar. For technical reasons we have to make appropriately generic choices of Liouville
form, Hamiltonian function and almost-complex structure; it can be shown that the category
we will construct does not depend on these choices, as long as they are made appropriately
generically.

We will only consider Lagrangians L ⊂M that are exact and cylindrical near infinity, ie.
in the cylindrical end they are given by

∂L× [1,∞) ⊂ ∂M × [1,∞)

where ∂L is a Legendrian in the contact manifold ∂M . Moreover, just like in the case of the
Fukaya category of compact manifolds, in order for our categories to be Z-graded we need
to put further restrictions on the Lagrangian; namely we require that L be spin and that
(twice) its relative Chern class vanish: 2c1(L,M) = 0.

Given two Lagrangians L1, L2 satisfying the conditions above, we consider time 1 chords
of the Hamiltonian flow φH between L1 and L2; under the genericity assumptions one can
show that these chords are all non-degenerate and the set of such chords is discrete; let us
denote this set by X(L1, L2).

Under the vanishing conditions on the Lagrangians, the Maslov index defines an integral
grading on the space X(L1, L2), which we denote by deg(x). For our purposes, it will suffice
to use the simpler description of the set as the transverse intersections between L1 and L2

wrapped by the time 1 flow under the Hamiltonian vector field, ie. X(L1, L2) = L1∩φH(L2).
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For any coefficient field k, we define the wrapped Floer complex CW ∗(L1, L2) to be the
k-vector space spanned by the elements of X(L1, L2), and graded by the Maslov degree.
Analogously to the holomorphic strips defining the differential in the ordinary Lagrangian
Floer homology, there is then a notion of a moduli space R(x0, x1) of between two elements
x0, x1, which basically counts pseudo-holomorphic strips. The actual definition of this moduli
space is subtle since to ensure transversality one needs to consider families of compatible
almost-complex structures instead of fixing one; for the full definition see [2, Sec.2.1].

There is a translation R-action on the space of flows; we will quotient by this action to
define R(x0, x1). Then for generic choices, R(x0, x1) is a compact manifold of dimension
deg(x0)−deg(x1)−1, so when this dimension is zero, counting points defines a differential d
of degree +1, which can be proven to square to zero, defining the wrapped Floer cohomology
HW ∗(L0, L1).

It can then be shown [2] that there are composition and higher structure maps between
wrapped Floer complexes; this defines a A∞-category W(M), called the wrapped Fukaya
category of M , whose objects are exact Lagrangians, conical at infinity as above, and mor-
phisms are given by the wrapped Floer complex construction.

Example. Consider the cylinder M = T ∗S1, with standard exact symplectic form and Hamil-
tonian given by H = p2, where p is the coordinate along the fiber. Consider the exact
Lagrangian L given by the fiber over a point x ∈ S1.

Figure 2.1: Wrapped Fukaya category of the cylinder T ∗S1. The red lines are a Lagrangian L
given by the fiber together with its time 1 and 2 flows. The shaded triangle gives a nontrivial
product x0 · x1 = x1.

The intersections between L and the time 1 flow φH(L) can be indexed by Z, with zero
corresponding to the point x on the base. Let us denote then these points by xi, i ∈ Z.
There are no holomorphic disks (in this case bigons on the surface M) so as a graded vector
space the wrapped Floer cohomology of L is given by CW ∗(L,L) = span({xi}).
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To understand the A∞ structure, one must also calculate products; the shaded triangle
in Figure 2.1 gives a non-trivial product x0 · x1 = x1 (see [10, Sec 4.2] for a more detailed
explanation), and likewise we get products

xi · xj = xi+j

for any i, j. One can also check that all the higher morphisms µn vanish, so as a A∞-algebra,
the wrapped Floer cohomology is given by

CW ∗(L,L) = k[x, x−1], deg(x) = 0

Since the fiber is the only exact Lagrangian up to Hamiltonian isotopy, it follows that it
generates the categoryW(M), which is in this case equivalent to the category of A∞-modules
over the A∞-algebra CW ∗(L,L).

In fact, something similar to the example above happens for the cotangent bundle M =
T ∗X of any closed manifold X. If L is a cotangent fiber, then we have the following result
of Abouzaid.

Theorem 2. [3] There is an isomorphism of A∞-algebras

CW ∗(L,L) ∼= C−∗(Ω∗X)

between the wrapped Floer complex and chains on the based loop space of the base X.

It has also been proven by Abouzaid [1] that the cotangent fiber generatesW(M), which
implies that this category embeds fully faithfully into the category of A∞-modules over the
A∞-algebra C−∗(Ω∗X).

2.4 Topological Fukaya categories

In 2009, Kontsevich [72] suggested that the wrapped Fukaya category of certain types of
Liouville domains could be computed by a sheaf-theoretic calculation, localized to a certain
singular Lagrangian. Since this proposal, there has been quite a lot of work [50, 49, 81,
85] (among others) making this proposal precise and proposing explicit models for these
categories. In this section we will introduce the part of these definitions and results that will
be relevant for us.

These (co)sheaf-theoretic models for Fukaya categories, to which we will refer by the name
of topological Fukaya categories, actually also provide models for another type of Fukaya-
type category one can associate to an open symplectic manifold, the so-called infinitesimal
Fukaya category. In this section we will provide a brief introduction to these models; the
literature on topological Fukaya categories is by now extensive. We will just mention the
main elements that will be necessary to discuss the original results of the work presented in
the next chapter, such as infinitesimal vs. wrapped Fukaya categories, microlocal sheaves
and arboreal singularities.
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Infinitesimal Fukaya categories

In order to introduce the microlocal sheaf models for Fukaya categories, let us first discuss
another type of Fukaya category one can associate to some open symplectic manifolds, called
the infinitesimal Fukaya category. This category appears in the work of Seidel [96] and
Nadler-Zaslow [86], among others.

This category is a variant of the category we describe in the previous section; one still con-
siders some kinds of exact Lagrangians as objects, but the difference is roughly that instead
of considering a large wrapping, given by a time one flow under a Hamiltonian, one instead
wraps infinitesimally. An advantage of this category is that because of this infinitesimal
deformation, together with compactness restrictions on the wrapping Hamiltonian, there are
finitely many intersections between Lagrangians, making their Hom spaces finite-dimensional
(which is not the case for the wrapped Fukaya category).

It was eventually understood that these categories can be seen as a special case of a
construction of Seidel of a Fukaya-type category for a Lefschetz fibration; we will not need
to discuss this so-called Fukaya-Seidel category, but the details about this specific kind of
Fukaya-Seidel category (for a Stein manifold) can be found in [96, Sec.III.19].

The cotangent bundle

While the existence of a relation between Fukaya categories and microlocal/constructible
sheaves had been suggested by earlier works, the work of Nadler and Zaslow [86] provided
the first explicit description of this correspondence, for the case of the Fukaya category
of a cotangent bundle. We will summarize the definition given in [86, Sec.5], with some
simplifications.

Given a cotangent bundle M = T ∗X of dimension 2n, one considers Hamiltonian func-
tions H : T ∗X → R that are ‘controlled’ in the sense that outside of some compact set
K ⊂ T ∗X, the Hamiltonian is given by H(x, ξ) = |ξ|. We also fix some topological data on
T ∗X, such as a trivialization of the bicanonical class and a pin class.

One can define the infinitesimal Fukaya category F(T ∗X) as a union of smaller categories.
Let us fix a conical Lagrangian Λ ⊂ T ∗X, and define a category F(T ∗X)Λ. An object in
this category is given by an exact Lagrangian L ⊂ T ∗X, appropriately conical at infinity
and asymptotic to Λ, equipped with a vector bundle E → L with flat connection. 1

Just as before, one can use the Maslov index to define a degree of each intersection point
between such Lagrangians. To calculate the morphism space between two objects (L1, E1)
and (L2, E2), one uses the Hamiltonian function to flow the second Lagrangian a ‘small
amount of time’ δ and consider the intersection L1 ∩ φδH(L2). The morphism space is then
generated by those points

HomF(T ∗X)Λ
(L1, L2) =

⊕
p∈L1∩φδH(L2)

Hom(E1|p, E2|p)[− deg(p)]

1One is also required to specify a ‘brane structure’ and ‘perturbation datum’, but this technical discussion
won’t matter for our exposition.
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One can then define composition and higher A∞ structure maps; for this purpose it is better
to allow for more general perturbations than above, see [86, Sec.5.4] for details.

The category F(T ∗X) can be defined as an appropriate union of all these categories;
more specifically, for any finite collection of objects, there is a conical Lagrangian such that
F(T ∗X)Λ contains them. For convenience let us assume that our conical Lagrangian Λ always
contains the zero section X (which may turn it into a singular Lagrangian). Therefore in
this convention the smallest choice of conical Lagrangian will be Λ = X.

Example. Let us return to the setting of Example 2.3 where X = S1. We must fix a
Hamiltonian that agrees with H = |p| outside of some compact set; let us then just pick a
smooth function H(p) that interpolates between −p, p < K and p, p > K for some positive
constant K.

Consider the trivial choice of conical Lagrangian given by the base S1. Since this is
compact, objects of F ∗ (T ∗X)S1 are given by compact Lagrangians equipped with flat
vector bundles; since these are all Hamiltonian isotopic to the zero section, each object is
equivalent to the circle S1 with a finite-dimensional local system; so we have an equivalence
of categories

F(T ∗S1)S1
∼= Loc(S1)

Figure 2.2: Left: the cylinder with Lagrangian skeleton S1. Every Lagrangian in F(T ∗S1)S1

is Hamiltonian isotopic to the zero section. Right: the cylinder with Lagrangian skeleton Λ.
There are more objects, eg. the Lagrangian L which asymptotes to Λ at infinity

For comparison, consider the case where Λ has two extra half-lines, ie. is the union of the
zero section with the cone of over two points, one in each component of ∂(T ∗S1) as in the
right side of Figure 2.2. Here there are extra Lagrangians, which wrap around the base S1

some number of times and asymptote to the two points at infinity. For concreteness, consider
one such Lagrangian L that does not wrap around the base. Perturbing it to calculate the
infinitesimal Floer complex, we see that there is a single intersection between L and φδH(L).
Therefore we have

HomF(T ∗S1)(L, φ
δ
H(L)) ∼= k
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where we equipped L with a trivial rank one local system.
One can show [85] that there is an equivalence of categories

F(T ∗S1)Λ
∼= Mod(K)

where K is the Kronecker quiver •⇒ •. Under this equivalence, the object L above gets sent
to the object k ⇒ 0, and there is an equivalence between the subcategory F(T ∗X)S1 (given
by local systems on the base) and representations of K where both maps are isomorphisms.

In particular the trivial rank one object of F(T ∗X)S1 corresponds to k
1

⇒
1
k.

Microlocal sheaves

The motivation behind the idea of studying these Fukaya categories by sheaf-theoretic meth-
ods lies in the fact that negative time flow of the the Liouville vector field Z contracts the
manifold to a lower-dimensional space, namely its skeleton Sk(M). The fact that the nega-
tive flow preserves the important features of Fukaya categories can be seen as the idea behind
Kontsevich’s [72] initial suggestion to model the (wrapped) Fukaya category in terms of an
object supported only on the skeleton L, namely a cosheaf of categories.

The work of Nadler [81, 85, 86] and others [50, 51, 102] has identified categories of
microlocal sheaves as candidates for these (co)sheaves of categories. Microlocal sheaves are
objects of microlocal geometry defined and studied by Kashiwara and Schapira [66]; this
formalism packages facts about the study of the local geometry of cotangent bundles into a
sheaf-theoretic framework.

We will not attempt to give an exposition of microlocal sheaves in this chapter, since we
will not need them for the results of the next chapter; the interested reader can consult the
original reference [66] for more details. We will instead just introduce some of the formal
properties of the categories of microlocal sheaves, and present the results in the literature
that relate them to Fukaya categories. For the more careful reader, the technical terminology
relating to dg categories and sheaves of categories can be found in Section 3.2 in the next
chapter, where we will introduce the concepts in greater detail.

Here we follow some of the exposition in [85, Sec.3]. Consider the manifold M = T ∗X,
with some closed (possibly singular) Lagrangian subvariety Λ. To any conic (ie. invariant
under scaling) open subspace U ⊂ T ∗X, there is dg category µ ShΛ(U) of microlocal sheaves
on U with singular support along Λ; its objects are locally given by constructible sheaves
along the base X ∩ U with singular support described by the Lagrangian Λ|U .

For any inclusion U ′ ∈ U of conical open sets, there is a restriction functor µ ShΛ(U)→
µ ShΛ(U ′); moreover all these restriction functors assemble into a sheaf of categories. We
have the following theorem of Nadler.

Theorem 3. [83] There is a quasi-equivalence µ ShΛ(X)
∼→ F(T ∗X)Λ. Moreover if one

considers all possible choices of Λ, there is a quasi-equivalence

Shc(X)
∼→ F(T ∗X)
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between constructible sheaves on the base and the infinitesimal Fukaya category.

There is a similar microlocal model for the wrapped Fukaya category, proposed in [85].
There is a cosheaf of dg categories µ ShwΛ, which Nadler calls wrapped microlocal sheaves.
Note that due to this being a cosheaf, there are corestriction maps W(U) → W(V ) for
inclusions U ↪→ V of conical open sets.

Example. Consider again the example M = T ∗S1, and let us pick Λ = S1 to be the zero-
section. Locally, on a contractible open set U , the cosections µ ShwΛ(U) are given by the
category Modk of dg vector spaces (just like the sections of the sheaf µ ShΛ). However, over
the whole circle, the cosections are given by

µ ShwΛ(S1) ∼= Perf(k[x, x−1])

ie. the category of dg k[x, x−1]-modules that are perfect over the algebra k[x, x−1] itself.
This category is bigger than the category Mod(fd)(k[x, x−1]) ∼= Loc(S1) of finite-dimensional

(over k) modules. For example, the module given by k[x, x−1] over itself is not finite-
dimensional over k, but it is a perfect object over k[x, x−1].

Note that in the example above the global cosections agrees with our calculation of the
wrapped Fukaya category. The correspondence between wrapped microlocal sheaves and the
wrapped Fukaya category conjectured by Nadler has recently been proven in the work of
Ganatra, Pardon and Shende in the form of the following result, which is stated for more
general choices of Λ, which give a partially wrapped version of the Fukaya category. 2

Theorem 4. ([50, Thm.1.1]) Let Λ be the Lagrangian skeleton of a Liouville domain M .
The triangulated completion of the (partially) wrapped Fukaya category W(M) is equivalent
to the global cosections µ ShwΛ(M).

2.5 Arboreal singularities

Arboreal singularities were introduced by Nadler [81, 84], with the goal of providing com-
binatorial models for the microlocal sheaf categories discussed above. Arboreal singularities
make up a particularly simple class of Legendrian (or Lagrangian, depending on the chosen
embedding) singularities.

We will below give a combinatorial description of arboreal singularities, following Nadler’s
definitions but also establishing some calculations that were presented in [100]. First let us
recall the following result by Nadler [84], which establishes the algorithm for expanding gen-
eral singularities into arboreal singularities. This result is presented in terms of Legendrian
singularities. Let S∗X denote the spherical projectivization of the tangent bundle T ∗X;
this is a contact manifold, and consider a singular Legendrian Λ ⊂ S∗X. We are interested

2Note that this result applies more generally than to cotangent bundles, which is the context we intro-
duced microlocal sheaves earlier
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in ‘non-characteristic deformations’ of Λ, ie. deformations that induce equivalences of the
categories of microlocal sheaves. Under mild assumptions on Λ, Nadler proves that:

Theorem 5. [84, Thm.1.1] There is an algorithm that produces a non-characteristic defor-
mation that takes Λ to a singular Legendrian Λarb with only arboreal singularities.

Combined with results cited previously, this suggests that one can always reduce the cal-
culation of the wrapped Fukaya category to microlocal sheaves on locally arboreal spaces; re-
cent results on the relation between such non-characteristic deformations and Lagrangian/Legendrian
geometry can be found in the work of Starkson [105].

Each arboreal singularity corresponds to a tree (nonempty, finite, connected and acyclic
graph) and one can construct an explicit local model for the singularity, realizing it as a
singular Legendrian. In this section we recall definitions and results of [81].

Gluing construction of arboreal singularities

Let T be a tree, and V (T ), E(T ) its sets of vertices and edges, with n = |V (T )|. For each
vertex α ∈ V (T ), let us denote by

T(α) = RV (T )\{α}

the Euclidean space of dimension n− 1 with coordinates xγ(α), γ 6= α.
For each edge α−β, we define an equivalence relation on T(α)tT(β) given by identifying

the points with coordinates {xγ(α)} and {xγ(β)} when

xβ(α) = xα(β) ≥ 0 and xγ(α) = xγ(β), γ 6= α, β

In words, this equivalence relation glues the Euclidean spaces T(α) and T(β) along the
respective half-spaces {xβ(α) ≥ 0} and {xα(β) ≥ 0}.

The arboreal singularity T associated to the tree T is the quotient space

T =
⊔

α∈V (T )

T(α)

/
∼

where ∼ denotes the equivalence relation generated by all the edges in E(T ).
As defined above, the arboreal singularity T is a singular space of top dimension n − 1.

It is easy to see that this space admits some natural stratifications, coming from this gluing
construction. In [81], Nadler gives a way of associating each stratum of this space with a
correspondence of trees.

Trees and correspondences

Here we will also use correspondences of trees to define a stratification on the arboreal
singularity T. However we will proceed in a different way from the original construction of
Nadler, giving this stratification in more functorial terms.
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Figure 2.3: Gluing of A3 from the discs (or equivalently, Euclidean planes) A3(•).

A correspondence of trees p is a diagram

R
q
� P

i
↪→ T

where R,P, T are trees, and the maps q, i are respectively surjective and injective maps of

graphs. An isomorphism of correspondences R
q
� P

i
↪→ T and R′

q′

� P ′
i′

↪→ T ′ is the data of
isomorphisms R ∼= R′, P ∼= P ′, T ∼= T ′ which intertwine the maps.

Given trees and maps Q ↪→ R � S, the fiber product graph Q×R S is the subtree of S
whose vertices map to the image of Q. Thus correspondences can be composed:

(P � Q ↪→ R) ◦ (R � S ↪→ T ) = (P � Q×R S ↪→ T )

Definition 4. The category Arb has correspondences of trees as its objects. The Hom sets
are

Hom(p′, p) := {q | p = q ◦ p′}/isomorphism

Composition is given by composition of correspondences, which makes sense since given
q ∈ Hom(p′, p) and q′ ∈ Hom(p′′, p′), we have p = q ◦ p′ = q ◦ q′ ◦ p′′.

Lemma 6. Arb is a poset – i.e., for any correspondences p′, p there is, up to isomorphism,
at most one q such that p = q ◦ p′.

Proof. Suppose (P � Q ↪→ R) ◦ (R � S ↪→ T ) = (P � N ↪→ T ). We want to reconstruct
(P � Q ↪→ R) from just (R � S ↪→ T ) and (P � N ↪→ T ).

The map N = Q×R S → S determined by taking the (necessarily unique) factorization
of N ↪→ T as N ↪→ S ↪→ T . From this we can characterize Q as the image of N under the
map S � R. The map Q � P is determined by the (necessarily unique) factorization of
N � P into N � Q� P .

Definition 5. Let T be a tree. We write ArbT for the subcategory of Arb of correspondences
R � S ↪→ T , or equivalently, for the subcategory of objects admitting a map from pT =
(T � T ↪→ T ).
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Functorial construction of the arboreal singularity

Recall that the nerve of a category C is the simplicial complex whose vertices are the objects
of C, morphisms are the edges, triangles are commuting triangles giving compositions, etc.
When C is a poset, this is also called the order complex.

Definition 6. If T is a tree, we write T for the nerve of the category ArbT . This is a
stratified space, the arboreal singularity of T that will serve as our local model for locally
arboreal spaces. We write Tint for the union of simplices containing pT , and Tlink for the
complement of this union.

The space T is conical; the initial object pT ∈ ArbT gives the cone point and Tlink gives
the link. It follows from the results of [81] that the definition of T above agrees with Nadler’s
gluing construction we presented above, at the level of homeomorphism type. The advantage
of presenting the arboreal singularity as the nerve of a category is that it will allow us to
easily construct sheaves on the arboreal singularity by giving functors out of the category
Arb, as we do below in Section 3.4.

Example. We write A2 for the tree • − •. We label the vertices α and β. There are four
correspondences: the trivial correspondence p0 = (α − β) � (α − β) ↪→ (α − β), the
correspondence • � (α − β) ↪→ (α − β), and two correspondences • � • ↪→ (α − β) for
inclusions of α or β.

We abbreviate these by enclosing in parenthesis those vertices of A2 which get identified
in the quotient R � S. So, for example, we will denote the three nontrivial correspondences
by α, β, (αβ) and the trivial correspondence simply by αβ.

In the poset structure, the three nontrivial correspondences are incomparable, and the
correspondence p0 is smaller than all of them. Thus there are 7 strata in the order com-
plex A2: the four 0-simplices [αβ], [α], [β], [(αβ)], and three 1-simplices [αβ → α], [αβ →
β], [αβ → (αβ)]. This can be realized as the following stratified space of dimension one
(Figure 2.4). Note that A2 is the disjoint union of 3 points, each labeled by a 0-simplex
[q] 6= [p0]

Figure 2.4: Arboreal singularity A2. For simplicity we use the notation described above for
each correspondence
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Example. We write A3 for the tree • − • − •, whose vertices we label α − β − γ. There are
eleven correspondences: the trivial one, four correspondences of the form [• → •] � . . . and
six of the form [•] � . . . . There are 45 strata in the order complex A3: 11 zero-dimensional,
22 one-dimensional and 12 two-dimensional strata, assembled as in Figure 2.5.

Figure 2.5: Arboreal singularity A3. For simplicity we label only the 0-simplices; the labels
on all other simplices can be deduced from their vertices

The link Alink
3 can be glued out of copies of A2. Note also that the realization of this

space admits a coarser stratification, with 5 zero-dimensional, 10 one-dimensional and 6
two-dimensional strata.
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Chapter 3

Calabi-Yau structures on topological
Fukaya categories

In this chapter, we will present the results and proofs of [100], which were results obtained
by the author of this dissertation jointly with his academic advisor. That paper develops
a technique for constructing Calabi-Yau structures on categories that admit a description
in terms of global sections of certain constructible (co)sheaves of categories. Thus we will
first develop some local-to-global methods for constructing Calabi-Yau structures, and then
apply them in the context of interest.

As presented in the previous chapter, Calabi-Yau categories are generalizations of Frobe-
nius algebras suitable to capture the algebraic structure of enriched 2d topological field
theories. Among the examples of Calabi-Yau categories one finds: categories of sheaves
on Calabi-Yau algebraic varieties (the topological B-model), categories of Lagrangians in
symplectic manifolds (the topological A-model) [88], and cluster-tilted categories in algebra
[70].

Such categories give rise to a host of numerical invariants: the partition function, or
Gromov-Witten type invariants [31], and (for CY3 categories) the BPS, or the Donaldson-
Thomas type invariants [73]. Moreover, their moduli spaces of objects carry shifted sym-
plectic structures and quantizations thereof [21, 91, 25].

Our goal here is to further expand the inventory of Calabi-Yau categories to include
the topological Fukaya categories as defined in the previous chapter, using the microlocal
model for these categories. The motivation for taking these combinatorial models for the
Fukaya category is twofold. One is that it is easy to make computations and prove structural
results. For example, the global cosections of a constructible cosheaf on a finite type space
are computed by a homotopy finite colimit; hence for such a cosheaf whose stalk categories
are finite, the global cosections are finite as well.

Secondly, the combinatorial description, or rather its relation to categories of sheaves
with prescribed microsupport, often allows the identification of (topological) Fukaya cate-
gories with categories of interest elsewhere in mathematics. In particular, many authors
have formed moduli spaces from variously decorated surfaces, and constructed symplectic or
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Poisson structures on these spaces. These include wild character varieties [16, 17, 18], mul-
tiplicative Nakajima varieties [114, 15], the cluster varieties “from surfaces” [52] and their
higher rank generalizations [92, 43]. It is explained in [103, 102] that all of these construc-
tions can be realized naturally as moduli spaces of sheaves with prescribed microsupport.
Another sort of example comes from the augmentation variety of knot contact homology
[41]; the relation to sheaves with prescribed microsupport is explained in [40].

3.1 Summary of results

As mentioned in Section 2.2, the data of a Calabi-Yau structure on a category F is a collection
of pairings; these can be seen as an isomorphism of the diagonal bimodule with a shift of its
dual. In fact there are two such notions, corresponding to two ways of dualizing the diagonal.
The first, called a proper or right Calabi-Yau structure, corresponds to isomorphism of the
diagonal bimodule with its shifted linear dual. This is often discussed in terms of the
corresponding system of isomorphisms Hom(x, y) ∼= Hom(y, x)∗[−d]. The other variant,
called a smooth or left Calabi-Yau structure, corresponds to an isomorphism between the
diagonal bimodule and a shift of its bimodule dual. Both these structures can be specified
in terms of a trace on or element of the Hochschild complex HH(F), this being the (derived)
tensor product of the diagonal bimodule of F with itself, and the state space associated to
the circle by the topological field theory. In fact one must therefore require that everything
respect the natural circle action on the Hochschild complex; we will denote by HH(F)S1

the homotopy S1-invariants (fixed points) and by HH(F)S1 the homotopy S1-coinvariants
(orbits) with respect to this action.

From a constructible sheaf F of categories on X, we wish to produce from local data
a map HH(F(X)) → k[−d]; from a constructible cosheaf of categories F on X, we wish to
produce from local data a map k[d]→ HH(F(X)).

Hochschild homology is functorial, so U 7→ HH(F(U)) determines a presheaf. In general
it is not a sheaf: when C is the constant sheaf of categories, HH(F(U)) can be identified with
cochains on the free loop space of U . Nevertheless we may form the sheafification HH(F)
of this presheaf; the resulting sheaf carries a suitable S1 action inherited from the local
S1 actions. We then seek a local construction of a morphism HH(F)(X) → k[−d]. This
sheaf also carries a suitable S1 action inherited from the local S1 actions. By composition
with the natural morphism HH(F(X))→ HH(F)(X), such a morphism would determine an
orientation. The local data which integrates to such a map is precisely a morphism to the
Verdier dualizing sheaf. Moreover, it is possible to formulate a local version of the condition
that the resulting trace induces a perfect pairing.

Definition 7. (Local orientations) Let X be a stratified topological space of dimension d;
we write ωX for its Verdier dualizing sheaf. Let F be a sheaf of categories on X. Then an
orientation of (X,F) is a morphism

HH(F)S1 → ωX[−d]
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For an open subset U ⊂ X, and objects x, y ∈ F(U), we write F∆(x, y) for the con-
structible sheaf of morphisms on U . An orientation induces a morphism

F∆(x, y)→HomU(F∆(y, x), ωU)[−d]

We say the orientation is non-degenerate if this morphism is an isomorphism; this is only
possible if the stalks of F are proper categories, in the sense that its morphism spaces are
perfect complexes of k-modules.

Example. Let M be a manifold and k a field. Let Loc be the sheaf of categories of local
systems of k-vector spaces on M . Then HH(Loc) = kM . An orientation of (M,Loc) is a
choice of isomorphism kM ∼= ωM [− dimM ], i.e., an orientation of M in the sense of topology.

We show (Prop. 19) that if X is compact, a non-degenerate local orientation indeed
induces a proper Calabi-Yau structure on F(X), and more generally (Prop. 20) that if
the noncompactness of X is exhausted by ∂X, then F(X) → F(∂X) carries a relative right
Calabi-Yau structure.

Often, proper categories arise as the finite dimensional module categories over some
category with infinite dimensional Hom spaces – e.g., finite rank C-local systems on M as
representations of the algebra of chains C∗(ΩM), generally infinite-dimensional over C. In the
cases of interest, these infinite dimensional preduals have a different sort of finiteness: they
are homologically smooth, in the sense that the diagonal bimodule is perfect as a bimodule.
In this case one can ask for a cotrace inducing an isomorphism of the diagonal bimodule
with its bimodule dual. Such is called a smooth or left Calabi-Yau structure. It is more
fundamental, in particular inducing a right Calabi-Yau structure on the finite-dimensional-
module category. There is also a relative version of this notion [20]. If the sheaf F is the
pseudo-perfect modules over a cosheaf of smooth categories W , we show that an orientation
of F also induces smooth Calabi-Yau structures on sections of W :

Theorem 7. Let (X, ∂X) be a stratified space of dimension d with compact boundary ∂X,
with a locally saturated constructible cosheaf of smooth categories W and its sheaf of pseudo-
perfect modules Wpp. Then a non-degenerate local orientation on Wpp induces a relative
proper (or right) Calabi-Yau structure of dimension d on the restriction

Wpp(X)→Wpp(∂X)

together with a compatible (absolute) proper Calabi-Yau structure of dimension (d − 1) on
Wpp(∂X), and a relative smooth (or left) Calabi-Yau structure of dimension d on the core-
striction

W(∂X)→W(X)

together with a compatible (absolute) smooth Calabi-Yau structure of dimension (d − 1) on
W(∂X).
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In [112], the authors construct moduli spaces of objects in dg categories with suitable
finiteness conditions; which are satisfied for a homotopy-finite colimit of smooth proper
categories, hence for the global sections of our cosheaves. While the moduli construction
takes as input a category likeW(X), the resulting spaceM(W(X)) parameterizes objects in
Wpp(X). In particular, the inclusion of the boundary ∂X→ X gives a mapW(∂X)→W(X)
hence W(X)pp → W(∂X)pp and correspondingly on moduli M(W(X)) → M(W(∂X)). If
W carries a relative orientation, then, as we have shown, the map W(∂X)→W(X) is (left)
Calabi-Yau.

By the main theorem of [21], this implies that the corresponding map on moduliM(W(X))→
M(W(∂X)) is a derived Lagrangian morphism in the sense of [91, 25]. From such a result
we can deduce:

Corollary 8. Let (X, ∂X) be a stratified space of dimension d with compact boundary ∂X,
with a locally saturated constructible cosheaf of smooth categories W and its sheaf of pseudo-
perfect modules Wpp. Then a non-degenerate local orientation on the sheaf of proper cate-
goriesWpp gives a (3−n)-shifted symplectic structure on the moduli spaceMW(∂X) parametriz-
ing objects in Wpp(∂X) and a Lagrangian structure on the morphism

MW(X) →MW(∂X)

corresponding to restriction of objects in Wpp(X) to the boundary. In the case where ∂X = ∅
this gives a (2− d)-shifted symplectic structure on the moduli of global objects MW(X).

The main motivation and example will be the co/sheaves which microlocal sheaf theory
associates to a (singular) Legendrian. We restrict attention to the ‘arboreal’ setting of [81].
As we survey in Section 3.6, many categories of interest arise in this setting. In fact, by the
results of [84], results in the arboreal setting suffice to treat the general case; we will not
however explain the reduction in detail.

The arboreal singularities of [81] are a certain class of local models of Legendrian singu-
larities. The microlocal sheaf theory equips the underlying topological spaces with certain
constructible co/sheaves of categories. The resulting co/sheaves can be built directly from
the representation theory of tree quivers.

We adopt here the latter combinatorial point of view. In brief, to each tree T is attached
a certain stratified topological space T such that each stratum is labelled by a tree and each
attaching map is labelled by a correspondence of trees. There is a constructible cosheaf of
smooth categories WT on T, whose stalks are quiver representation categories, and whose
cogenerization maps are given in terms of correspondences of quivers. By construction, the
cosheafWT is locally saturated and exact. We will also be interested in the sheaf of categories
formed by its pseudo-perfect modulesWpp

T ; this is a sheaf of proper categories. We will show:

Theorem 9. Let ~T be a rooted tree, and T the corresponding arboreal singularity. Then
HH(Wpp) and the dualizing complex ωT[− dimT] are isomorphic. The isomorphism is unique
up to a scalar, and induces a non-degenerate orientation on Wpp.
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Let us now indicate how these notions globalize.

Definition 8. A locally arboreal space is a stratified space X equipped with a locally
saturated and exact cosheaf of dg categories W such that (X,W) is locally modelled on
(T× Rn,WT).

Thus if (X,W) is a locally arboreal space, the obstruction to its global orientability is the
nontriviality of the rank one local system Hom(HH(Wpp), ωX[− dimX]). This is classified
by the corresponding element of H1(X, k∗). We will show that this is in fact an element
of H1(X,±1), which we term the first Stiefel-Whitney class of the locally arboreal space
(X,W). When this obstruction vanishes, a choice of isomorphism HH(Wpp) ∼= ωX[− dimX]
determines a relative left Calabi-Yau structure on W(∂X)→W(X), and a right Calabi-Yau
structure on Wpp(X)→Wpp(∂X).

3.2 DG categories

The categories of microlocal sheaves appearing in this model are differential graded cat-
egories ; here we will first specify the scope of our definitions, relying on notations and
definitions of [48], and will later review some facts relevant to us, following in some parts
[20, 21].

We will use the (∞, 1)-categories of dg categories introduced in [48, Sec. 10.3]. Following
that reference, we denote by DGCatcont the (∞, 1)-category whose objects are presentable
complete and cocomplete (ie. containing all limits and colimits) dg categories over k and
whose morphisms are (exact) continuous (ie. colimit-preserving) functors. This category is
endowed with a symmetric monoidal structure given by a tensor product ⊗, and an internal
Hom functor right-adjoint ⊗ which we will denote by Hom. We have another category
DGCat of presentable dg categories with the same objects, but whose morphisms include
non-continuous (exact) functors.

We also denote by dgcat the category of small, idempotent-complete dg categories over
k, with morphisms given by exact functors. Taking compact objects gives a functor (−)c :
DGCatcont → dgcat, and taking ind-completion gives an adjoint functor Ind : dgcat →
DGCatcont. If C is a compactly generated category [48, Def. 7.1.3], then there is a canonical
equivalence Ind(Cc)→ C.

For ease of notation we will call by ‘dg category’ an object of DGCatcont and by ‘small
dg category’ and object of dgcat.

Limits and colimits of dg categories

Throughout this chapter and the next, we will need to take many limits and colimits of dg
categories; fortunately the following construction (rephrased from [48, Sec. 7.2.6] in terms
of dg categories) allows us to freely exchange colimits for limits and vice-versa, provided we
take them in the appropriate category.
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Let I be an index category and CI : I → DGCatcont be a diagram of dg categories.
Suppose that each one of the functors Ci → Cj also preserves compact objects; this gives rise
to a diagram

CcI : I → dgcat, i→ Cci
Taking right adjoints to the morphisms Ci → Cj gives us a diagram

CRI : Iop → DGCat

where the morphisms may not be continuous. The following result means that the colimit
of small dg categories can be computed in terms of a limit of dg categories.

Lemma 10. [48, Cor. 7.2.7] There is a canonical equivalence Ind (colimI CcI)→ limIop CRI

Constructible sheaves and cosheaves of categories

A C-valued presheaf on a stratified space X is a functor F : Opens(X)op → C; it is a sheaf if
carries covers to limits; ie. for any open set U and cover U =

⋃
i Ui the natural map F(U)→

limiF(Ui) is an equivalence. Likewise, a C-valued cosheaf is a functor F : Opens(X) → C;
it is a cosheaf if it carries covers to colimits, ie. the natural map colimiF(Ui) → F(U) is
an equivalence for any cover. When C is an (∞, 1)-category, the functor, limits and colimits
should all be understood in the (∞, 1)-categorical sense.

In the rest of this dissertation, by (co)sheaf of small categories we mean a (co)sheaf
valued in the (∞, 1)-category dgcat of small idempotent-complete dg categories with exact
functors. As a consequence of Lemma 10, if we consider instead the category DGCat of large
dg categories we can freely exchange between limits and colimits. Inspired by this we make
the following definition.

Definition 9. (Co/sheaves of categories) A co/sheaf of categories F is a sheaf valued in
the (∞, 1)-category DGCat of dg categories, whose restriction maps F(U)→ F(V ) for any
inclusion of opens U ⊆ V preserve limits and colimits.

It is a general fact that if a functor ρ preserves limits and colimits, it has left adjoint
ρ` which preserves compact objects. Using this fact together with Lemma 10 we have the
following equivalent definition, which motivates the name “co/sheaf”.

Lemma 11. The data of a co/sheaf of categories is the same as the data of a cosheaf valued in
DGCatcont of dg categories with continuous functors, whose corestriction functors moreover
preserve compact objects.

Given any co/sheaf of categories F we can restrict to compact objects to get a cosheaf of
small categories F c. Conversely, given a cosheaf of small categories W we can ind-complete
to get a co/sheaf IndW . There is a canonical equivalence of cosheaves of small categories
(IndW)c →W .
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The sheaf of pseudo-perfect modules over a cosheaf of small categories

Let Perf denote the full subcategory of Vect whose objects are the perfect complexes of
vector spaces. This is small category, ie. an object of the (∞, 1)-category dgcat.

Definition 10. For any small dg category C, its category of pseudo-perfect modules Cpp is
the object of dgcat defined by

Cpp := Hom(Cop,Perf)

By [48, Lem. 10.5.6], the ind-completion of DG categories can be described by modules:
there is a canonical equivalence Ind C ∼−→ Mod -C = Hom(C,Vect). Therefore Cpp can be
identified with a full subcategory of Ind C.

Let us now apply this definition to sheaves and cosheaves. We assume the regularity
condition that X can be stratified by finitely many strata, and that this stratification can
be refined to a finite simplicial complex. We fix this stratification from now on, and restrict
attention to sheaves and cosheaves constructible with respect to it.

Definition 11. Let X be a stratified space and W a cosheaf of small categories on X, with
corestriction maps ιVU : W(U) → W(V ) for U ⊆ V . Then the sheaf of pseudo-perfect
modules Wpp is a sheaf of categories assigning

U 7→ W(U)pp

with restriction maps given by the pullback (ιVU )∗.

Wpp is easily seen to be a sheaf, since for a cover U = ∪iUi we have

Wpp(U) = Hom(W(U),Perfk) ∼= Hom(colim
i
W(Ui),Perfk) ∼= lim

i
Hom(W(Ui),Perfk) = lim

i
Wpp(Ui)

One can also identify the sheaf of pseudo-perfect modules Wpp with a subsheaf of co/sheaf
IndW . Let us now assume that every category of sections W(U) is a smooth category.

Lemma 12. [112] If A is a smooth dg category, then every pseudo-perfect module over A is
also perfect (i.e. compact in Mod -A). Conversely, if A is proper, then every perfect module
over A is pseudo-perfect.

The Yoneda embedding gives a canonical fully faithful functor C → Ind C, whose essential
image lies in (Ind C)c when C is any stable category. By general facts, the Yoneda map is
an equivalence to its image when C is idempotent-complete; therefore for any C ∈ dgcat we
have a canonical equivalence C ∼−→ (Ind C)c = Perf -C. Thus when all the sections W(U) are
smooth categories, for any open set U we have a fully faithful embedding Wpp(U)→W(U).
Note that this is not a map of either sheaves or cosheaves, since it maps sections of a sheaf
to cosections of a cosheaf. By the lemma above, this is an equivalence if and only if W(U)
is smooth.
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Definition 12. Let W be a cosheaf of small categories on X. We say that W is locally
saturated if all stalks are smooth and proper.

Lemma 13. Let W be a locally saturated cosheaf of small categories. Then the maps
Wpp(Uε) → W(Uε) are quasi-isomorphisms for all small enough open sets Uε. Also, for
any open set U , W(U) is smooth and finite type and Wpp(U) is proper.

Remark. Note that by the regularity condition that our stratification can be refined to a
finite simplicial complex, each open simplex in that complex is contractible and therefore
“small enough” in the sense that all the stalks in it are isomorphic to the sections over that
open simplex.

Proof. By constructibility around any point there is a small open Uε such that the stalk is
isomorphic to W(Uε); together with Lemma 12 this proves the first assertion. Moreover,
any open set U can be covered by finitely many such small open sets Uε (eg. neighborhoods
of the open simplices of the finite simplicial refinement); the lemma follows from the fact
that finite colimits of smooth categories are smooth and finite limits of proper categories are
proper.

3.3 Calabi-Yau structures and local orientations

Calabi-Yau structures on dg categories

Let us denote by Vect the category of dg vector spaces over k; this is the unit object in
DGCatcont for the tensor product ⊗.

Modules and bimodules

We define the (underived) categories of right A-modules, left A-modules and A,B-bimodules
by using the internal Hom functor in DGCatcont:

mod -A = Hom(Aop,Vect), A- mod = Hom(A,Vect), A- mod -B = Hom(A⊗Bop,Vect)

We will denote by Mod -A := D(mod -A) etc. the corresponding derived categories of
modules. These categories are ‘categories of presheaves’ valued in Vect, so by a general fact
of category theory are both complete and cocomplete. Moreover all limits and colimits can
be computed objectwise, ie. taking the limit or colimit commutes with evaluation of the
(bi)module at a fixed object of A.

We will say that an object P of Mod -A is perfect or compact if the functor Mod -A →
Vect given by M 7→ HomMod -A(P,M) commutes with filtered colimits (equivalently, direct
sums thus and all colimits). We will denote as Perf -A the full dg subcategory of Mod -A
spanned by such objects, and analogously we can define A- Perf as a full dg subcategory of
A- Mod.
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There is a tensor product ⊗B : A- mod -B ⊗ B- mod -C → Vect pairing right and left
modules; this gives rise to a left derived tensor product ⊗LB : A- Mod -B⊗B- Mod -C → Vect
pairing derived categories.

We will need to compute such derived functors; for that we can use any appropriate model
structure on categories of modules over dg categories such as the one given in [111]. We will
most leave references to the model structure implicit unless we need to use it explicitly.

Diagonal bimodule

We have a distinguished bimodule A∆ ∈ Mod -Ae given by morphisms in the category A:

A∆(a, a′) = HomA(a, a′)

Here we denote Ae = A ⊗ Aop. We will alternatively denote by A∆ the equivalent objects
in Ae- Mod and A- Mod -A. Tensoring over A with the diagonal bimodule also gives the
identity morphism on any category of bimodules, ie.

−⊗LA A : B- Mod -A → B- Mod -A

is canonically equivalent to the identity functor.

Hochschild complex

We write
HH(A) := A∆ ⊗LAe A∆ ∈ Vect

for the Hochschild complex of A, where the A∆ are viewed either as elements of Mod -Ae
and Ae- Mod. We will denote by HHn(A) = Hn(HH(A)) the Hochschild homology of A.

The derived tensor product above can be computed by taking any projective resolution
of bimodules PA → A; in particular one can take the bar resolution [77]. Tensoring over Ae

with the diagonal bimodule gives then the reduced bar complex C
bar

(A) representing HH(A).
This complex carries a canonical homotopy S1 action, whose homotopy orbits HH(A)S1 and
fixed points HH(A)S

1
were classically termed the cyclic and negative cyclic complexes, with

homology groups denoted by

HCn(A) = H∗(HH(A)S1), HC−n (A) = H∗(HH(A)S
1

)

Explicit representatives for these complexes can be given by using the formalism of mixed
complexes [77]; we refer the reader to [115, Sec. 2.4] for an explicit application of this
formalism to the context of dg categories.

One can also consider Hochschild homology with coefficients in an arbitraryA,A-bimodule
M, defined by

HH(A,M) := A∆ ⊗AeM∈ Vect

.
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Linear and bimodule duals

Consider the linear duality functor Homk(−, k) on the dg category Vect. For any M in
A- mod -B, we define its linear dual

M∗ = Homk(M, k)

which is an object of B- mod -A. Explicitly, as a functor M∗ : B ⊗ Aop → Vect, it is given
by

(b, a) 7→ Homk(M(a, b), k)

For any bimodule M there is an (underived) adjunction

−⊗A⊗BopM : B- mod -A� Vect : Homk(M,−)

M is called linear-dualizable (or right-dualizable) if the natural transformation −⊗kM∗ →
Homk(M,−) is an equivalence of functors. Equivalently, M is linear-dualizable if it always
evaluates to a perfect k-complex, i.e. M(a, b) ∈ Perfk for every (a, b) ∈ A ⊗ Bop. In that

case, there is a canonical isomorphism of bimodules M '→ (M∗)∗, so we also get another
adjunction

M∗ ⊗A⊗Bop − : A- mod -B � Vect :M⊗k −

Taking linear duals is naturally contravariant; this defines a functor (−)∗ : A- mod -B →
(B- mod -A)op. Since k is an injective object, this functor is exact and therefore defines a
functor

(−)∗ : A- Mod -B → (B- Mod -A)op

between the derived categories. When M is linear-dualizable, one can check that the ad-
junctions above are Quillen adjunctions so they also give adjunctions of derived categories

−⊗LA⊗BopM : B- Mod -A� Vect : −⊗Lk M∗

M∗ ⊗LA⊗Bop − : A- Mod -B � Vect :M⊗Lk −

We will define another kind of dual: consider the bimodule dual of M defined using the
internal Hom of bimodules

M∨ = HomA⊗Bop(M,A∆ ⊗k B∆)

which is an object of B- mod -A. Explicitly, this is given by

M∨(b, a) = HomA⊗Bop(M(−,−′),A∆(−, a)⊗k B∆(−′, b))

For any bimodule M there is an adjunction

M⊗k − : Vect � A- mod -B : HomA⊗Bop(M,−)
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M is called bimodule-dualizable (or left-dualizable) if the natural transformationM∨⊗A⊗Bop
− → HomA⊗Bop(M,−) is an equivalence of functors. EquivalentlyM is bimodule-dualizable
if it is perfect as a bimodule (ie. a compact object in that category). In that case we get a

canonical isomorphism of bimodules M '→ (M∨)∨, and we also have another adjunction

−⊗kM∨ : Vect � A- mod -B : −⊗A⊗BopM

It is easy to see that taking bimodule duals is natually contravariant; this defines a functor
(−)∨ : A- mod -B → (B- mod -A)op. However, in this case this functor is only right-exact ; to
mark the difference let us then denote by

(−)! : A- Mod -B → (B- Mod -A)op

its left derived functor between the derived categories. Explicitly, this can be computed by
taking any projective bimodule resolution PM → M and taking the object represented by
P∨M. The adjunctions above can also be checked to give Quillen adjunctions [20, Sec.3] so in
the case that M is bimodule-dualizable we get adjunctions of derived categories

M⊗Lk − : Vect � A- mod -B :M! ⊗LA⊗Bop −
−⊗Lk M! : Vect � A- mod -B : −⊗LA⊗BopM

Remark. These duals are also called in the literature respectively right dual and left dual,
or respectively proper dual and smooth dual ; this comes from looking at M as an object of
A⊗Bop- Mod -k. However since we will already have too many objects labelled by the words
right and left we will use the terminology linear and bimodule dual to avoid confusion.

Properness and smoothness

A dg category A is said to be proper if all the Hom spaces are perfect as k-complexes, which
is equivalent to the diagonal bimodule A∆ being linear-dualizable. In this case the dual of
Hochschild homology can be computed in terms of the linear dual A∗∆ (by adjunction):

RHomk(HH(A), k) = RHomk(A∆ ⊗LAe A∆, k) = RHomAe(A∆,A∗∆)

A dg category A is said to be smooth if the diagonal bimodule is perfect as a module over
Ae, or equivalently bimodule-dualizable. In this case the Hochschild homology of A can be
calculated in terms of A!

∆:

HH(A) = RHomk(k,A∆ ⊗LAe A∆) = RHomAe(A!
∆,A∆)

When the category A is both proper and smooth, these bimodules give endofunctors on
Perf -A, and moreover the functors − ⊗A A!

∆ and − ⊗A A∗∆ are inverse autoequivalences.
[20].
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The discussion above also holds for coefficients in an arbitrary A,A-bimodule M. That
is, if A is proper there is a canonical isomorphism

RHomk(HH(A,M), k) = RHomAe(M,A∗∆)

and if A is smooth there is a canonical isomorphism

HH(A,M) = RHomAe(A!
∆,M)

.

Calabi-Yau structures

Definition 13. A d-dimensional proper (or right) Calabi-Yau structure on a proper dg
category A is a map of complexes

HH(A)S1 → k[−d]

so that the induced morphism in RHom(HH(A), k[−d]) = RHomAe(A,A∗[−d]) is an isomor-
phism.

A d-dimensional smooth (or left) Calabi-Yau structure on a smooth dg category A is a
map

k[d]→ HH(A)S
1

so that the induced morphism in RHom(k[d],HH(A)) = RHomAe(A![d],A) is an isomor-
phism.

Remark. Note that we require these maps to be compatible with the S1 action; we can
equivalently look at the data of a proper CY structure as a dual cyclic homology class [ξ∗] ∈
Homk(HCd(A), k), and the data of a smooth CY structure as a negative cyclic homology
class [ξ] ∈ HC−d (A). The resulting CY structures can be shown to be independent of the
choice of representatives ξ∗, ξ; this is shown explicitly in [115] for the smooth CY structures
and the argument there can be easily adapted to the proper case.

Suppose that A is smooth, and P is a full dg subcategory spanned by a set of locally
proper objects, i.e. for any objects p ∈ P and a ∈ A, the Hom space is a perfect complex:
A(a, p) ∈ Perfk. Then it can be proven [20] that a smooth CY structure on A automatically
gives a proper CY structure on P . Explicitly, consider the functor

D : A- Mod -A → (P- Mod -P)op

which to an A,A-bimodule M associates the P ,P-bimodule

(p, q) 7→ RHomA(M(q,−),A∆(p,−))
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Proposition 14. The functor D maps A∆ to P∆, A!
∆ to P∗∆, and the induced map

HH(A) = RHomAe(A!
∆,A∆)→ RHomPe(P∆,P∗∆) = RHomk(HH(P), k)

is compatible with the S1 action and takes smooth Calabi-Yau structures to proper Calabi-
Yau structures. Moreover if P ∼= A is smooth and proper, then the functor D is an auto-
equivalence.

Remark. Note that if A is not both smooth and proper, in general one cannot reverse the
procedure above and get a smooth CY structure on A from a proper CY structure on some
proper subcategory P .

Relative Calabi-Yau structures

Consider a dg functor f : A → B between two dg categories. This gives functors between
the module categories: writing F = f ⊗ f op : Ae → Be there is an adjunction of (derived)
functors

F! : A- Mod -A� B- Mod -B : F ∗

The functor F ∗ is easy to calculate explicitly: the underived functor given by sending a
(B,B)-bimodule N to the bimodule

(a, a′) 7→ N (f(a), f(a′))

is already exact, so the (derived) functor F ∗ is precisely given by this construction. Its left
adjoint F! is more complicated: for a A,A-bimodule M we have

F!M =M⊗LAe F ∗(Be) = (f op)∗(B∆)⊗LAM⊗LA f ∗(B∆)

In the last term, (f op)∗(B∆) is an object of B- Mod -A given by pulling back the diagonal
bimodule B∆ on the right, i.e.

(f op)∗(B∆)(b, a) = B∆(b, f(a))

and f ∗(B∆) is an object of A- Mod -B given by pulling back B∆ on the left, i.e.

f ∗(B∆)(a, b) = B∆(f(a), b)

We can compute this derived functor by taking any projective resolution PM → M and
calculating PM ⊗Ae F ∗(Be) using the underived tensor product.

There is a natural ‘unit’ morphism of (A,A)-bimodules u : A∆ → F ∗B∆, which on pairs
of objects (a, a′) maps

A(a, a′) 7→ B(f(a), f(a′))

By adjunction this gives a ‘counit’ morphism of (B,B)-bimodules c : F!A∆ → B
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These functors also interact nicely with the linear and bimodule duals we defined above:
for any bimodule N ∈ B- Mod -B we have a canonical equivalence

F ∗(N ∗) = (F ∗N )∗

Conversely, for a bimodule-dualizableM∈ A- Mod -A one can use the adjunctions above to
show that there is a canonical equivalence

F!(M!) = (F!M)!

.
A functor f : A → B induces a map of Hochschild complexes f] : HH(A) → HH(B),

compatible with the S1 action. We define the relative Hochschild complex

HH(f) := Cone(HH(A)→ HH(B))

An explicit representative for this complex can be given by HH(A)[1] ⊕ HH(B) with differ-
ential given by the matrix

dHH(f) =

(
dHH(A) f]

0 dHH(B)

)
Similarly, we define the relative cyclic complex HHS1(f) = Cone(HH(A)S1 → HH(B)S1) and

relative negative cyclic complex HHS1

(f) = Cone(HH(A)S
1
(A)→ HH(B)S

1
).

Let us first discuss the case where A and B are proper categories. An element φ ∈
RHomk(HH(f), k[−d+ 1]) is determined up to homotopy by the data of dual cycles

φB : HH(B)→ k[−d+ 1], φA : HH(A)→ k[−d]

such that φA gives a null-homotopy of φB ◦ f], ie. satisfying the equations

φB ◦ dHH(B) = 0, φA ◦ dHH(A) + φB ◦ f] = 0

Properness implies that we have isomorphisms

RHomk(HH(A), k) = RHomAe(A∆,A∗∆), RHomk(HH(B), k) = RHomBe(B∆,B∗∆)

Let us fix any two projective resolutions PA → A∆ and PB → B∆. The element φ gives then
two morphisms of bimodules

φA : PA → A∗∆[−d], φB : PB → B∗∆[−d+ 1]

We can pull this last map back using F ∗ and compose it with (appropriate lifts of) the unit
map u : A∆ → F ∗B∆ and its dual u∗ : F ∗B∗∆ → A∗∆ to get a morphism

PA
u−→ F ∗PB

F ∗φB−−−→ F ∗B∆[−d+ 1]
(−1)−d+1u∗−−−−−−−→ A∗∆[−d+ 1]
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One can check that the condition φA ◦ dA + φB ◦ f] = 0 is equivalent to the condition
that the corresponding morphism of bimodules φA gives a nullhomotopy to the composition
above. By functoriality, this gives a morphism of distinguished triangles in A- Mod -A:

PA
u //

��

F ∗PB //

F ∗φB
��

Cone(u)

��

Cone((−1)−d+1u∗)[−1] // F ∗B∗∆[−d+ 1]
(−1)−d+1u∗

// A∗∆[−d+ 1]

Let us now discuss the case where A and B are smooth. A degree d element of HH(f) is
determined up to homotopy by the data of cycles

ξA : k[d− 1]→ HH(A), ξB : k[d]→ HH(B)

such that ξB gives a null-homotopy of f] ◦ ξA, ie. satisfying the equations

dHH(A) ◦ ξA = 0, dHH(B) ◦ ξB + f] ◦ ξA = 0

Smoothness gives us isomorphisms HH(A) = RHomAe(A!
∆,A∆) and HH(B) = RHomBe(B!

∆,B∆)
and then the data above gives morphisms (after lifting to the projective representatives)

ξA : P !
A[d− 1]→ PA, ξB : P !

B[d]→ PB

Using the derived pushforward F! and (appropriate representatives of) the counit map c :
F!A∆ → B∆ and its bimodule dual u! we get a morphism

P !
B[d− 1]

(−1)d−1c!−−−−−→ F!P
!
A[d− 1]

F!ξA−−→ F!PA
c−→ PB

and it can be checked [115, Prop 2.26] that ξB gives a nullhomotopy of this composition and
that we get a morphism of distinguished triangles

P !
B[d− 1]

(−1)d−1c!
//

��

F!P
!
A[d− 1] //

F!ξA
��

Cone((−1)d−1c!)

��

Cone(c)[−1] // F!PA
c // PB

It can be checked that these two morphisms of distinguished triangles are independent
(up to quasi-isomorphism) of the choice of (dual) cycle φ, ξ representing a given (dual) class
and projective resolutions.

Definition 14. (Relative Calabi-Yau structures)[20] A d-dimensional proper (or right) rel-
ative Calabi-Yau structure on dg functor f : A → B between proper dg categories is a dual
cyclic class

[φ] ∈ (HCd−1(f))∨ = H0(Homk(HH(f)S1 , k[−d+ 1]))
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such that the induced map of distinguished triangles in A- Mod -A (first of the two above)
is an isomorphism.

A d-dimensional proper (or right) relative Calabi-Yau structure on dg functor f : A → B
between smooth dg categories is a negative cyclic class

[ξ] ∈ HC−d (f)

such that the induced map of distinguished triangles in B- Mod -B (second of the two above)
is an isomorphism.

Sheaves, cosheaves, bimodules and Hochschild homology

Our goal is to use sheaves and cosheaves of categories to construct absolute and relative
Calabi-Yau structures on categories and functors of interest; for this we will need to un-
derstand how the process of taking Hochschild homology of categories interacts with the
(co)sheaf condition.

Evaluating sheaves and cosheaves of categories

The (co)sheaf condition on pre(co)sheaves of categories implies that the Hom spaces between
objects also follow gluing conditions. This is made precise by the following lemmata.

Lemma 15. (The diagonal sheaf of bimodules F∆) Let F be a constructible sheaf of small
categories on X, with restriction functors denoted ρVU : F(V ) → F(U). Let us denote
RV
U = ρVU ⊗ (ρVU )op. Then the F(X)- Mod -F(X)-valued presheaf that assigns

U 7→ (RX
U)∗F(U)∆

with restriction maps given by applying (RX
V )∗ to the canonical ‘unit’ maps

F(V )∆ → (RV
U )∗F(U)∆

is a sheaf.

Proof. For any category A, its category of bimodules A- Mod -A = Hom(A,Vect) is by
definition the category of Vect- valued presheaves on Ae; by general facts of category theory,
limits and colimits in such categories can be computed pointwise; ie. for any (x, y) ∈ Ae
taking limits or colimits in A- Mod -A commutes with evaluation at (x, y). So for the lemma
above it is enough to check that for any two objects x, y ∈ F(X), the presheaf

U 7→ (RX
U)∗F(U)∆(x, y) = F(U)(ρVUx, ρ

V
Uy)

is a sheaf. This follows immediately from the fact that F is a sheaf of categories.

There is an analogous statement for cosheaves:
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Lemma 16. (The diagonal cosheaf of bimodules W∆) Let W be a constructible cosheaf of
dg categories over X, with corestriction functors denoted ιVU :W(U)→W(V ). Let us denote
IVU = ιVU ⊗ (ιVU )op. Then the W(X)- Mod -W(X)-valued precosheaf that assigns

U 7→ (IXU )!W(U)∆

with corestriction maps given by applying (IXV )! to the canonical ‘counit’ maps

(IVU )!W(U)∆ →W(V )∆

is a cosheaf.

For the proof, see [100, Sec.2.3]

Sheafified and cosheafified Hochschild homology

Let X be a topological space and F a sheaf of dg categories over X. Taking Hochschild com-
plexes gives a covariant functor, so there is a corresponding presheaf of complexes HHpre(F)
given by HHpre(F)(U) = HH(F(U)). This is not generally a sheaf; we write HH(F) for its
sheafification. All the restriction functors are compatible with the S1 action so we can also
define the negative cyclic complex sheaf HH(F)S

1
and the cyclic complex sheaf HH(F)S1 ,

with maps of sheaves
HH(F)S

1 → HH(F)→ HH(F)S1

There is naturally a morphism of presheaves HHpre(F) → HH(F), and in particular a
morphism

HH(F(U))→ HH(F)(U)

on any open set U , compatible with the S1 actions.

Example. Let Loc be the constant sheaf of categories over X with stalk Perfk. Then the
Hochschild complex presheaf is given by cochains on the loop space; this is obtained by
dualizing the statement of [77, Thm 7.3.14]. The corresponding cyclic complex presheaf is

HHpre(Loc)S1(X) = HH(Loc(X))S1
∼= C•(LX)S1

where we take the homotopy orbits of the S1 action that rotates the loop. On the other hand
the local sections over contractible open sets is HH(Loc(U)) ∼= k, with trivial S1 action and
its sheafification is the constant sheaf kX and hence its derived global sections is cochains on
X itself.

HH(Loc)S1(X) = C•(X)

The localization morphism HHpre(Loc)S1(X)→ HH(Loc)S1(X) is the pullback on cochains
C•(LX)S1 → C•(X) corresponding to the inclusion of constant loops.
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We can do the same for a cosheaf of categoriesW over X: we get a precosheaf HHpre(W),
with a cosheafification HH(W) and maps of cosheaves

HH(W)S
1 → HH(W)→ HH(W)S1

and a natural morphism of precosheaves HH(W)→ HHpre(W) (from the cosheafification),
which over any open set U gives a map compatible with the S1 actions

HH(W)(U)→ HH(W(U))

Example. Let Locw be the constant cosheaf over X with stalk Perfk. Over any connected
open set U , the sections are perfect modules over the chains on the based loop space of U :
Locw(U) = Perf -ΩU . The Hochschild homology precosheaf is given by chains on the free
loop space HHpre(Locw)(U) = HH(Locw(U)) ∼= C(LU).

On the other hand the Hochschild homology cosheaf is constant with stalk HH(Perfk) = k
and trivial circle action, so the global sections of the cyclic cosheaf are areHH(Locw)S

1
(X) =

C∗(X). The colocalization morphism HH(Locw)(X) → HHpre(Locw)(X) is given by the
pushforward of chains under inclusion of constant loops C(X) → C(LX), which naturally
factors through the (homotopy) fixed points of the circle action.

Proposition 17. Let W be a locally saturated constructible cosheaf of triangulated dg cat-
egories on X, and Wpp its sheaf of pseudo-perfect modules. Then the Hochschild homology
cosheaf HH(W) and the Hochschild homology sheaf HH(Wpp) are linear duals. Moreover
the S1 actions are compatible.

Proof. On sufficiently small open sets Uε there is an isomorphism Wpp(Uε) ∼= W(Uε) and
the functor D of Proposition 14 gives an anti-involution of W(Uε)- Mod -W(Uε) which maps
W(Uε)

! to W(Uε)
∗ and gives isomorphisms

HH(Wpp(Uε)) ∼= HH(W(Uε))
∼→ Homk(HH(W(Uε)), k)

Taking a cover of any open set U by such small open sets gives an isomorphism

HH(Wpp)(U) ∼= lim
Uε

Homk(HH(W(Uε)), k) = Homk(colim
Uε

HH(W(Uε)), k) = Homk(HH(W)(U), k)

However since the local categories are smooth and proper the local Hochschild homologies
HH(W(Uε)) are perfect complexes and therefore HH(Wpp)(U) is perfect, so we also have an
isomorphism

HH(W)(U) ∼= Homk(HH(Wpp)(U), k)
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Local orientations on sheaves of categories

Definition 15. Let X be a stratifiable space of pure dimension d, and let F be a constructible
sheaf of proper dg categories on X. A local orientation on F is a morphism of sheaves

Θ : HH(F)S1 → ωX[−d]

where ωX is the Verdier dualizing complex of X.

Remark. Recall that on an open set U , we have H∗(U, ωX[−d]) = H∗(U, ∂U ; k). If x ∈ X is
a point with a compact conical neighborhood U , we have

ωX[−d]|x = H∗(U ; ∂U) ∼= H∗(U ;U \ x).

Thus a morphism kX → ωX[−d] at stalks is an element of Hd(U ;U \ x), i.e. an orientation
on X in the classical sense. So when F = Loc a (non-zero) local orientation on F is an
orientation on X.

Let pt : X → ∗. Then there is a canonical “integration” map Γc(X, ωX) = pt!pt
!k → k.

We shift this map by the dimension d of X to get it as Γc(X, ωX[−d])→ k[−d].

Proposition 18. Let (X,F) as above, with X compact. Then composing the following mor-
phisms gives a map from the cyclic complex

HH(F(X))S1 → Γ(X,HH(F)S1) ∼= Γc(X,HH(F)S1)→ Γc(X, ωX[−d])→ k[−d]

For any open V ⊆ X and pair of objects x, y ∈ F(V ), there is a Vect-valued sheaf
F∆(x, y) on V given by evaluating the diagonal bimodule sheaf; explicitly it assigns

U 7→ F(U)(ρVUy, ρ
V
Ux)

for U ⊆ V . The trace pairing to Hochschild homology gives us a map of sheaves

F∆(x, y)⊗V F∆(y, x)→ HH(F)|V
Θ→ ωV [−d]

which by adjunction gives us a map of sheaves

Θ̃ : F∆(x, y)→ Hom(F∆(y, x), ωV )[−d]

Note that the rhs is a shift of the Verdier dual, which we can denote by DVF∆(y, x)[−d]

Definition 16. (Local nondegeneracy) A local orientation Θ is nondegenerate if, on any
open V ⊂ X and two objects x, y of F(V ), the morphism of sheaves on V

Θ̃ : F∆(x, y)→ DVF∆(y, x)[−d]

is an isomorphism.
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Proper Calabi-Yau structures and sheaves of categories

Proposition 19. Assume X is compact, and let Θ : HH(F)S1 → ωX be a nondegenerate
local orientation on a sheaf F of proper categories. Then the induced map from the cyclic
complex HH(F(X))S1 → k[−d] defines a d-dimensional proper Calabi-Yau structure on the
global sections F(X).

Proof. Note that for any pair of objects x, y in F(X), we can take global sections of the
morphism Θ̃ and get an isomorphism

F(X)∆(x, y)
∼→ Γ(X,DXF(X)∆(y, x))[−d] ∼=

Γc(X,DXF(X)∆(y, x))[−d] ∼= Homk(F(X)∆(y, x), k)[−d] = F(X)∗∆(x, y)

where we used the fact that X is compact in going from sections to compactly supported sec-
tions and the definition of the linear dual F(X)∗∆ of the diagonal bimodule. By functoriality
this isomorphism between is exactly the one coming from the identification Hom(HH(F(X)), k) ∼=
HomF(X)- Mod -F(X)(F(X)∆,F(X)∗∆) coming from the same local orientation.

In the relative case:

Proposition 20. Assume (X, ∂X) is a stratified space with compact boundary, such that
the boundary is transverse to the stratification, and let Θ : HH(F)S1 → ωXX[−d] be a
nondegenerate local orientation on a sheaf F of proper categories. Then the local orientation
Θ induces a d-dimensional relative proper Calabi-Yau structure on the restriction functor
∂ : F(X)→ F(∂X) and a (d− 1)-dimensional (absolute) proper Calabi-Yau structure on the
boundary sections F(∂X).

The relative case also follows from a Verdier duality argument, but more complicated;
see [100, Sec.2.4] for the proof.

Smooth Calabi-Yau structures and cosheaves of categories

Proposition 21. As above, let W be a locally saturated cosheaf of smooth dg categories
on a stratified space X with compact boundary ∂XX, and Wpp its sheaf of pseudo-perfect
modules; this is a sheaf of proper dg categories. Then a non-degenerate local orientation
Θ : HH(Wpp)→ ωX[−d] on the sheaf Wpp gives a d-dimensional relative smooth Calabi-Yau
structure on the corestriction functor W(∂X)→W(X), and a (d−1)-dimensional (absolute)
smooth Calabi-Yau structure on the boundary cosections W(∂X)

The proof of this proposition will proceed similarly to the construction of the cosheaf
of compactly supported cochains on a topological space X. Explicitly, consider a inclusion
of open sets U ⊂ V and consider the distinguished triangle coming from the long exact
sequence of relative homology with coefficients in k

C∗(∂U)→ C∗(U)→ C∗(U ; ∂U)
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By Poincaré duality C∗c (U) ∼= Homk(C∗(U ; ∂U), k), yet there is no obvious restriction map
C∗(V ; ∂V ) → C∗(U ; ∂U) corresponding to the inclusion of compactly supported cochains
C∗c (U) → C∗c (V ). Indeed, ∂U 6⊆ ∂V so there is no natural map between C∗(∂U) and
C∗(∂V ). Moreover, if ∂U ⊂ ∂V , the map would go in the wrong direction.

The solution is to replace C∗(U ; ∂U) by C∗(X|U) := C∗(X,X \U◦). Consider inclusion of
pairs (U ; ∂U) ⊆ (X;X \ U◦) giving a map of distinguished triangles

C∗(∂U) //

��

C∗(U) //

��

C∗(U ; ∂U)

∼
��

C∗(X \ U◦) // C∗(X) // C∗(X|U)

Because C∗ is a cosheaf (i.e. excision holds), the left hand side square is a pushout square and
the right vertical map is a quasi-isomorphism. There is also an inclusion of pairs (X,X\V ◦) ⊆
(X,X \ U◦) and a corresponding map C∗(X|V ) → C∗(X|U), and standard arguments imply
that the assignment

U 7→ C∗(X|U)

is a sheaf, meaning that U 7→ Homk(C∗(X|U), k) is a cosheaf, which by the quasi-isomorphism
above computes the compactly-supported cohomology. One can then prove Poincaré duality
for a non-compact manifold M of dimension d by locally constructing a quasi-isomorphism
C∗c (U) ∼= Cd−∗(U) compatible with the corestriction maps, and using the cosheaf property
to globalize it to an isomorphism C∗c (M) ∼= Cd−∗(M)

In our proof of Proposition 21 we use the same argument but replacing the cosheaf of
cochains with cosheaves of bimodules; see [100, Sec.2.4].

3.4 A local orientation on an arboreal singularity

We will show that the arboreal singularity T, equipped with an appropriate sheaf of categories
N , admit local orientations. More precisely, we will show that a rooting of T induces a
canonical isomorphism HH(N ) ∼= ωT[1− |T |], which is moreover nondegenerate.

In order to define this sheaf of categories, we will need to first review some standard facts
about categories of quiver representations.

Quiver representations

We recall some relevant facts about quiver representation theory, and set notation. Let ~T
be a quiver, i.e., a directed graph. We write k[~T ] for the path algebra of the quiver, whose
generators are the vertices and arrows, subject to the relations that the vertex generators are
idempotent, and ab = 0 unless the head of a is the tail of b (and the head and tail of a vertex
are itself). That is, we read paths from left to right and consequently quiver representations
correspond to right modules over this algebra.
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Example. For the quiver 1→ 2→ 3→ · · · → n, the path algebra can be identified with an
algebra of triangular n× n matrices. The matrix |i〉〈j| corresponds to the unique path from
the i’th vertex to the j’th vertex. The composition |i〉〈j||j〉〈k| = |i〉〈k| corresponds to the
left-to-right composition rule (i→ j)(j → k) = (i→ k).

The path algebra k[~T ] can be seen as a dg category that has only one object, with

endomorphisms given by the algebra k[~T ] concentrated in degree zero. Let us denote by

Mod(~T ) := Mod -k[~T ] = Hom(k[~T ],Vect)

the (derived) dg category of right modules over k[~T ]. We can also define the category of
ordinary modules by

mod(~T ) := Hom(k[~T ],modk)

taking the underived internal hom in the category of k-linear categories from the path algebra
to the category modk of k-modules. The dg category Mod(~T ) is a dg enhancement of the

derived category of the k-linear category mod(~T ).

If the quiver Q is acyclic, the dg category k[~T ] is triangulated, smooth and proper [112]

and thus, the notions of perfect and pseudo-perfect modules agree; a module M ∈ Mod(~T )

is a representation of the path algebra k[~T ] in complexes of k-modules, and M is (pseudo-

)perfect if its underlying k-module is a perfect complex. We will denote by Perf(~T ) the

category of such modules full dg subcategory of Mod(~T ) spanned by such objects. Note that

this case (Q is acyclic) we also have Perf(~T ) = Hom(k[~T ],Perfk).

For vertices α, β ∈ ~T , we write α ≥ β when there is a path from α to β, and we denote
this unique path by |α〉〈β|. These compose in the usual way, |α〉〈β||β〉〈γ| = |α〉〈γ|, and
all other compositions vanish. We are particularly interested in the case when the edge
directions arise from the choice of a fixed root vertex of T , by directing all the edges toward
the root. We pronounce α ≥ β as “alpha is above beta” or “beta is below alpha”, so that
everything is above the root.

We write Pα := |α〉〈α|k[~T ] for the right module of “paths from α”; since ~T is a tree, it is
the representation which assigns k to each vertex admitting a path from α (i.e., each vertex
below α in the notation above), and all morphisms isomorphisms. All paths must come

from somewhere, so there is an internal direct sum splitting k[~T ] =
⊕

α |α〉〈α|k[~T ] as right

k[~T ]-modules. The modules Pα are in fact the indecomposable projectives of the category

mod(~T ), and the category Perf(~T ) is their triangulated hull inside of Mod(~T )
When α ≥ β, i.e., there is a path |α〉〈β|, then composition with this path gives a morphism

|β〉〈β|k[~T ] → |α〉〈α|k[~T ]

x 7→ |α〉〈β|x

In fact, up to scalars this is the only morphism in mod(~T ); since these modules are projective,

this remains true in Mod(~T ) and Perf(~T ).
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Quivers corresponding to the same underlying tree but different arrow orientations have
representation categories related by reflection functors, defined in [14]. A source (sink) is

a vertex that only has outgoing (ingoing) arrows. Given a source α, let sα ~T be the quiver

obtained by reversing all the arrows at α. There is a reflection functor R+
α : mod(~T ) →

mod(sα ~T ), which in fact preserves compact objects and so induces a dg derived equivalence

Perf(~T )→ Perf(sα ~T ). Likewise, at sinks there are similar reflection functors R−α . The quiver
structure for a rooted tree has all arrows pointing to the root. Because the underlying graph
is acyclic, two such structures corresponding to different roots ρ1, ρ2 can be related by a
sequence of moves sα. Thus the derived categories Mod(~T ) and Perf(~T ) depends only on the
underlying tree (up to non-canonical equivalence). Choosing a root determines a t-structure,
and determines the distinguished set of projective generators {Pα}.

Correspondence functors

Given a root of T , a correspondence R � S ↪→ T induces root vertices, hence arrow
orientations, of S and R – the root of S is the closest vertex in S to the root of T , and the
root of R is the image of the root of S.

We can identify k[~S] with the quotient of k[~T ] by the two-sided ideal generated by all

paths that are not contained in ~S. This gives a map k[~T ]→ k[~S] and by extension of scalars

we get a functor Mod(~T ) → Mod(~S). Tensoring with a perfect module preserves compact

objects so this restricts to a functor Perf(~T )→ Perf(~S).

On the other hand, given a quotient S
q
� R we can construct the following morphism

of k-algebras k[~R] → k[~S]. For simplicity, assume the quotient corresponds to collapsing
one connected subtree Q ⊂ S; the general case can be deduced by iterated quotients like
these. Let ρ be the root in the induced quiver structure on Q, i.e. the lowest vertex in Q.
The quotient identifies q(α) = q(ρ) for all α ∈ Q. Consider the function s : V (R) → V (S)
between the sets of vertices given by

s(β) =

{
q−1(β) β /∈ Q
ρ β ∈ Q

This is a one-sided inverse to q, since q ◦ s = id on V (R). This determines a morphism

k[~R]→ k[~S], which acts on paths as

|α〉〈β| 7→ |s(α)〉〈s(β)|

That is, this sends a path in ~R to the shortest path in ~S whose start and end-points map to the
original start and end-points in ~R. One can check that this commutes with compositions,
defining a map of algebras k[~R] → k[~S], and moreover that this map presents k[~S] as a

perfect module over k[~R]. So restriction of scalars under this map gives a functor Mod(~S)→
Mod(~R) which preserves compact objects and restricts to a functor Perf(~S)→ Perf(~R)
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We get a ‘big functor’ c�p : Mod(~T ) → Mod(~R) and a ‘small functor’ cp : Perf(~T ) →
Perf(~R) by composing the functors above.

Lemma 22. The big functor c�p preserves products and coproducts.

Proof. Restriction of scalars is a right adjoint and always preserves arbitrary products, more-
over coproducts in Mod(~R) are be calculated as coproducts of the underlying k-module so
restriction also preserves coproducts. As for extension of scalars, it is a left adjoint and
always preserves coproducts, and also preserves products when the bimodule is of finite
presentation, which is the case for k[~S] seen as a (k[~T ], k[~S])-bimodule.

Lemma 23. Let cp : Perf(~T )→ Perf(~R) and c�p : Mod(~T )→ Mod(~R) be the functors induced

by a correspondence p : R
q
� S

i
↪→ T . Let α ∈ T be a vertex. Then

cp(Pα) =

{
Pq(i−1(α)) α ∈ i(S)

0 otherwise

The morphism Hom~T (Pα, Pβ)→ Hom~R(cp(Pα), cp(Pβ)) sends |β〉〈α| → |q(i−1(β))〉〈q(i−1(α))|
(and hence is an isomorphism) when these are defined; otherwise it is zero. The exact same
description holds for the functor c�p

Proof. In general, if we are given a quiver ~T and a right k[~T ]-module M , in order to identify
which module we have it is sufficient to look at the k-vector spaces M (α) = M |α〉〈α| for
each vertex α, and whenever there is an arrow µ→ α, the map M (µ) →M (α) given by right
multiplication by |µ〉〈α|, since this data determines the module M .

Consider first the functor Perf(~T ) → Perf(~S). The image of P (α) is the k[~S]-module

Pα ⊗k[~T ] k[~S]. If α lies outside S, every in path Pα can be expressed as |α〉〈α|x, which gets

sent to zero the quotient to k[~S]. If α ∈ i(S), exactly the paths in Pα exiting ~S are sent

to zero, and Pα ⊗k[~T ] k[~S] is spanned by all paths in ~S starting at i−1(α) so this module is
Pi−1(α).

Now for the functor Perf(~S) → Perf(~R), for some vertex β of S, let M be the image of
Pβ under this functor. Remembering that this functor is induced by a map of k-algebras

f : k[~R]→ k[~S], for any vertex λ of R we have an isomorphism of k-vector spaces

M (λ) = M |λ〉〈λ| ∼= Pβf(|λ〉〈λ|) = Pβ|s(λ)〉〈s(λ)|

which is k exactly when s(λ) ≤ β or equivalently λ ≤ q(β). The morphisms between the
M (λ) are given by multiplication by |µ〉〈λ|; we need to check that these are isomorphisms
whenever there is an arrow µ→ λ and µ ≤ q(β). As maps of vector spaces,

M (µ) |µ〉〈λ|−→ M (λ)
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is the same as the map

Pβ|s(µ)〉〈s(µ)| |s(µ)〉〈s(λ)|−→ Pβ|s(λ)〉〈s(λ)|

which is an isomorphism since s respects the partial ordering ≤. This identifies the module
M with the indecomposable projective Pq(β) in Perf(~R).

Putting the two functors together we get the first half of the result. For the morphisms,
the nontrivial case to check is when α ≤ β and α, β ∈ i(S). At the level of paths, the map
|β〉〈α| ∈ Hom~T (Pα, Pβ) is given by pre-concatenation with the path |β〉〈α|. After applying
the functor cp this becomes a map in Hom~R(cp(Pα), cp(Pβ)) given by concatenation with the
path |q(i−1(β))〉〈q(i−1(α))|, which is nonzero since S is connected. By definition the functor
cp is the restriction of c�p to compact objects so the exact same calculation holds for the big
categories.

Definition 17. Fix a rooted tree ~T . We define a functor into small categories N : ArbT →
dgstk at the level of objects by

(R � S ↪→ T ) 7→ Perf(~R)

and a big functor N� : ArbT → dgStRk at the level of objects by A morphism (R � S ↪→
T ) → (R′ � S ′ ↪→ T ) is by definition a correspondence p = (R′ � S ′′ ↪→ R); we send

this respectively to the functors cp : Perf(~R) → Perf(~R′) and c�p : Mod(~R) → Mod(~R′)
determined by this correspondence.

Note that this prescription does give a functor to dgStRk because the functors c�p preserve

limits. Therefore, by taking left adjoints we also get a functor (N�)L : (ArbT )op → dgStLk
which sends the correspondence p to the left adjoint (c�p)

L : Mod(~R′)→ Mod(~R). Moreover
since the functor N� also preserves coproducts its left adjoint preserves compact objects, so
we can restrict it and get a functor Nw : Perf(~R′)→ Perf(~R).

The sheaf and cosheaf associated to an arboreal singularity

Constructible sheaves on simplicial complexes

We briefly recall how to describe constructible sheaves on a simplicial complex. For a simplex
σ in a simplicial complex X, we write Star(σ) for the union of open simplices whose closure
contains σ. To give a sheaf F on X, constructible with respect to the stratification by
simplices, it suffices to give the values of F on the open sets Star(σ), and the corresponding
restriction maps F(Star(σ)) → F(Star(τ)) when Star(τ) ⊂ Star(σ), i.e., when σ lies in
the closure of τ . The appropriate diagrams should commute. Our definition of simplicial
complex demands that the closure of an open simplex is a closed simplex, so there are no
non-trivial overlaps, hence no descent conditions.

The restriction F(Star(σ))→ Fσ is then necessarily an isomorphism, so one could instead
discuss “generization maps” Fσ → Fτ when σ lies in the closure of τ ; this is the so-called “exit
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path” description of a constructible sheaf. A similar description works for any sufficiently
fine stratification.

Functors give sheaves and cosheaves on the nerve

Recall that a functor F : X → Y determines a Y-valued constructible sheaf Nerve(F ) on
Nerve(X ) as follows. On objects, we set

Nerve(F )([x1 → x2 → · · · → xn]) = F (xn)

and the generization maps are given by

Nerve(F )([xm → · · · → xm′ ]→ [x1 → x2 → . . .→ xn]) = F (x′m → xn)

where the map x′m → xn comes from the fact that xm → · · · → xm′ was a subsequence of
x1 → x1 → . . .→ xn. The fact that these restriction maps satisfy the appropriate conditions
to determine a sheaf is immediate from the fact that F is a functor. Note this sheaf is
constructible on a much coarser stratification than the stratification by all simplices.

Nadler’s sheaf and cosheaf

Let ~T be a rooted tree. Above we constructed functors

N : ArbT → dgstk and N� : ArbT → dgStRk

Definition 18. The ‘small’ Nadler sheaf N (or NT when we want to specify T) is the sheaf
of categories on T = Nerve(ArbT ) given by the nerve of the functor N : ArbT → dgstk. The
‘big’ Nadler sheaf N � is the sheaf given by the nerve of the functor N�.

As in section 3.2, the sheaf N � valued in dgStRk gives a cosheaf valued in dgStLk upon
taking left adjoints (in fact the data of these two objects is the same). Moreover, the
restriction maps of the sheaf N � preserve coproducts [85, Prop. 3.16], so their left adjoints,
the corestriction maps of the cosheaf N �, preserve compact objects.

Definition 19. The wrapped cosheaf W is the dgstk-valued cosheaf obtained from the
cosheaf N � by restriction to the full subcategories of compact objects.

By definition, the stalks of N or W over any stratum is the saturated (smooth and

proper) Perf(~R) for some finite acyclic quiver ~R. Thus, by finiteness of the stratification,
N (U) is proper for any open set U ⊆ T since a finite limit of proper categories is proper.
Analogously,W(U) is smooth and finite type for any open U since a finite colimit of smooth
and finite type categories is smooth and finite type. From the fact that the cosheaf W is
locally saturated in the sense of Section 3.3 it follows that:

Lemma 24. [85, Prop. 3.16] The Nadler sheaf N is equivalent to the sheaf Wpp of pseudo-
perfect modules over the wrapped cosheaf W.
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By construction the generization maps between stalks of the cosheaf W are left adjoint
to the generization maps of the sheaf N . Note that over bigger open sets U , there is still a
map N (U) ↪→W(U) equivalent to the inclusion of a full dg subcategory, but in general this
will not be essentially surjective; W(U) can be a bigger category.

Remark. For the rest of this section, we will keep writing the sheaf as N for conciseness,
but in fact the cosheaf W is the more fundamental object; one can obtain N ∼= Wpp by
taking pseudo-perfect modules, and the ‘big’ co/sheaf N � by cocompletion, but W cannot
be obtained from N if one doesn’t have knowledge of N �. Thus in our definition of locally
arboreal space 8 we take W as part of the data.

Let p be a correspondence R � S ↪→ T . We write T(p) for the union of all simplices
[p1 → p2 · · · → p]. Then T =

∐
T(p), and, by definition, any sheaf associated to a functor

from ArbT is constant on the T(p). In fact, each T(p) is topologically an open cell of
dimension |T |− |R| [81, Prop 2.14].1 In particular, T(pT ) is the unique zero dimensional cell.
Moreover, T(p) =

∐
p′≤p T(p′).

Figure 3.1: Coarser stratification of the arboreal singularity A2, by the strata A2(p).

Fix T and denote N = NT. Because N is constructible with respect to a stratification by
a union of cells which all adjoin pT , the restriction map Γ(T,N )→ NpT is an isomorphism.

In particular, Γ(T,N ) ∼= Perf(~T ). Given an object X ∈ Γ(T,N ) = Perf(~T ), the germ at

a point in T(R � S ↪→ T ) is an element of the category Perf(~R). The desired object is
produced by applying the correspondence functor cp obtained from (R � S ↪→ T ) to X.

Hom sheaves

The correspondence functors also give a coherent choice of maps between Hom spaces. Sup-
pose we are given elements x, y ∈ Γ(T,N ) = Perf(~T ). Because N is a sheaf of dg categories
on T, we can evaluate the corresponding diagonal sheaf of bimodules and get the Vect-valued
sheaf N∆(x, y), on T. This is just the hom sheaf; it is the nerve of the functor

(R � S ↪→ T ) 7→ Hom~R(cp(n), cp(n
′))

1Nadler writes LT for our T and LT (p) for our T(p) in [81]. Our notation is chosen to emphasize that no
symplectic geometry or microlocal sheaf theory is directly needed to understand the essentially combinatorial
definitions and proofs.
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By definition, the generization maps between the stalks of the Hom sheaf are induced by
the correspondence functors cp cp : Hom~T (x, y)→ Hom~R(cpx, cpy)

We will need explicit descriptions of the Hom sheaves between the generating projectives
Pα. Since we know what the functors cp do to the projective objects from Lemma 23, it is
just a matter of assembling the sheaf of the morphisms between Hom spaces.

Definition 20. For α a vertex of T , we write

T(α) :=
∐
α∈S

T(R � S ↪→ T )

Remark. Nadler gives an explicit construction of the arboreal singularities: for each vertex
α of T , take a copy of R|T |−1 with coordinates xγ(α), γ 6= α. The interior of T is recovered
by gluing these spaces: for each edge {α, β} ∈ E(T ), identify points with coordinates xγ(α)
and xγ(β) whenever xβ(α) = xα(β) ≥ 0 and xγ(α) = xγ(β) for γ 6= α, β. Comparing
this construction with the combinatorial definition [81, Sec. 2] it is proven that the strata
T(R � S ↪→ T ) sit in the closure of the Euclidean space corresponding to α exactly when
α ∈ S. Thus T(α) is homeomorphic to a closed ball of dimension |T | − 1.

The following calculations are new.

Proposition 25. The sheaf N∆(Pα, Pα) is the constant rank one sheaf on T(α).

Proof. Let us describe the functor on ArbT whose nerve is the sheaf N∆(Pα, Pα). By Lemma
23, on objects this functor is:

(R � S ↪→ T ) 7→ Hom~R(Pq(i−1(α)), Pq(i−1(α))) =

{
k, α ∈ i(S)

0, otherwise

These Hom spaces have the identity as a basis element, which must be preserved by the
functorial structure, hence gives a global section trivializing the sheaf hom.

To describe other Hom sheaves we have to worry about the orientation of the arrows in
the quiver. More generally let

T(α, β) :=
∐
α,β∈S

q(i−1(α))≤q(i−1(β))

T(R � S ↪→ T )

Proposition 26. The sheaf N∆(Pα, Pβ) is the constant rank one sheaf on T(α, β).

This can be deduced by a similar proof, see [100, Sec.3].
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Figure 3.2: The subsets A3(•, •) where A3 has the quiver structure α → β ← γ. Note that
the subsets T(λ1, λ2) depend on the directions of the arrows in T , and moreover as in the
proof above for any vertices λ1, λ2, the difference between T(λ1, λ2) and T(λ1) ∩ T(λ2) is at
most deletion of some boundary strata.

The dualizing complex of an arboreal singularity

Verdier’s dualizing complex on a space X is usually defined as ωX = pt!k, where pt is
the map to a point. An explicit representative is given by the “sheaf of local singular
chains”. That is, let C−d be the sheaf which on sufficiently small open sets is given by
C−d(U) = Cd(X,X \ U ; k), where Cd is the singular d-chains, and the sheaf structure is
defined by the evident restriction maps. The singular chain differential collects these into a
complex of sheaves, which is quasi-isomorphic to the dualizing complex.

We can restrict the stratification of T given by the T(p) to T◦; this stratification of T◦
by open simplices T◦(p) agrees exactly with the stratification originally presented in [81].
Since each stratum is an open simplex, the neighborhoods of every point along each strata
are all homeomorphic, so the dualizing complex of T◦ is constructible with respect to this
stratification We will only need to calculate the dualizing complex on the open arboreal
singularity T◦, and moreover T◦ ↪→ T is an open inclusion, so we can identify ωT◦ with
the restriction of ωT. To give a complete description of the dualizing complex, it suffices to
identify each stalk ω

−(n−1)
T (T◦(p)) over each stratum, together with the necessary generization

maps.

Proposition 27. With notation as above, the stalk of ωT at a stratum labelled by a corre-
spondence p = (R � S ↪→ T ) is concentrated in degree −(n−1), where it is given by a direct
sum decomposition

ω
−(n−1)
T (T◦(p)) ∼=

⊕
α∈R

kα ∼= k|R|

where each kα ∼= k. Now suppose we have correspondences p′ = q ◦ p, where p = (R′ �

S ′ ↪→ T ) and q = (R′
q
� Q

i
↪→ R). Then the simplex [p] is in the closure of [p→ p′] and the
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generization map ωT(T(p))→ ωT(p′) is given, in the decomposition above, by⊕
α∈R

kα →
⊕
β∈R′

kβ

where 1 ∈ kα gets sent to 1 ∈ kq(α) if α ∈ S and 0 otherwise. In other words, the map adds
all the factors corresponding to vertices that get identified by the quotient q. Moreover, if
one picks an orientation of a top stratum of T, there is a canonical choice of isomorphisms
above.

The proof follows from a direct computation of the dualizing complex ωT, for which we
use a decomposition of the singularity into discs 3.3 and use Mayer-Vietoris for relative
homology. See [100, Sec.4] for the full proof.

Figure 3.3: A pair of discs appearing in the Mayer-Vietoris decomposition of ωA3 . The
relative homology of their intersection on the right vanishes relative to the outer boundary

The Hochschild homology and the cyclic homology sheaf

Recall that the Hochschild homology of an algebra A is calculated by the Hochschild chain
complex

HH(A) : · · · → A⊗ A⊗ A→ A⊗ A→ A

where A⊗n is placed in degree −n, and the differential d−n : C−n(A)→ C−n+1(A) given by

d(xn ⊗ · · · ⊗ x0) = xn−1 ⊗ · · · ⊗ x0xn +
n−1∑
i=0

(−1)ixn ⊗ · · · ⊗ xi+1xi ⊗ · · · ⊗ x0

Remark. Recall that even though we denote HH we are still using a cohomological (increas-
ing) grading for all our complexes; in most definitions of Hochschild homology this is given
in positive degrees and graded homologically but we invert the degrees since this is more
natural in the context of Hochschild homology as a left derived tensor product.

We are interested in the stalks of the Hochschild homology sheaf HH(N ) and of the
cyclic homology sheaf HH(N )S1 , which are the Hochschild/cyclic homology of the stalks

of N , i.e., of the categories Perf(~T ). To calculate these, recall that Hochschild/cyclic ho-
mology is invariant under dg Morita equivalences, and for any dg-algebra A, there is a
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quasi-isomorphism of Hochschild complexes HH(A) ∼= HH(Perf -A) with the Hochschild ho-
mology of the category of perfect A-modules, with compatible S1 actions Thus we need only
know the Hochschild homology HH∗(k[~T ]) = H∗(HH(k[~T ])) and the circle action on it. But
this is a well known result in the case of an acyclic quiver:

Proposition 28. [27] Let ~Q be an acyclic quiver. Then HH0(k[ ~Q]) = k|Q| and all higher
Hochschild homologies vanish. Moreover the S1 action on the Hochschild complex is trivial,
i.e. the cyclic complex is given by

HH(k[ ~Q])S1 = H∗(BS1)⊗ HH(k[ ~Q]) = k[u]⊗ HH(k[ ~Q])

with u being the canonical generator of H∗(BS1) in degree 2, and the map HH(k[ ~Q]) →
HH(k[ ~Q])S1 sends x 7→ 1⊗ x

Proof. For convenience of the reader, we indicate the proof. Since ~Q is a tree, k[ ~Q] has a
basis whose elements are the paths from vertex α to vertex β. These include the idempotents
|α〉〈α|. Consider the subspace ∆n of k[ ~Q]⊗n spanned by the powers of the idempotents
|α〉〈α|⊗n, and its complement Ln spanned by all other tensor products of paths.

The Hochschild chain complex then splits as C∗(k[ ~Q]) = ∆∗ ⊕ L∗. The complex L∗ is

acyclic, ultimately because ~Q has no cycles. The diagonal subcomplex ∆∗ is |Q| copies of
the Hochschild chain complex for the base field k.

As for the cyclic homology, consider Connes’ long exact sequence connecting the Hochschild
homology HH∗(k[~T ]) = H∗(HH(k[~T ])) and cyclic homology HC∗(k[~T ]) = H∗(HH(k[~T ])S1):

· · · → HHn(k[~T ])→ HCn(k[~T ])→ HCn−2(k[~T ])→ HHn−1(k[~T ])→ · · ·

The result then follows immediately.

Since all the S1 actions we consider will be trivial, we will ignore it from now on; every
map out of HH(k[~T ]) can be factored through the map HH(k[~T ])→ HH(k[~T ])S1 by sending
u 7→ 0, so for all our applications we can just construct maps out of/into the Hochschild
homology HH itself.

There is a natural basis on HH0(Perf( ~Q)) = HH0(k[ ~Q]) ∼= k|Q|, given by the images of

the idempotents |α〉〈α| ∈ k[ ~Q], or equivalently, of the modules Pα ∈ Perf( ~Q). Note that this

basis depends on ~Q and not just the underlying graph. In terms of these bases, Lemma 23
gives the generization functors of the Hochschild homology sheaf.

Proposition 29. Let p = (R � S ↪→ T ) be a correspondence inducing a functor Perf(~T )→
Perf(~R). The induced map between Hochschild homologies is given by

|α〉〈α| 7→

{
|q(i−1(α))〉〈q(i−1(α))| if α ∈ i(S)

0 otherwise
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Comparison

Comparing Proposition 27 with Propositions 28 and 29 gives an abstract isomorphism
HH(N ) ∼= ωT[1− n].

Remark. Again, technically this is an isomorphism of sheaves only on the open arboreal
singularity T◦, but this difference will be of no effect to our calculations.

The choice of this isomorphism is not unique, but as we saw above, upon fixing the
decomposition of T as the union of discs T(α) and an orientation of one of these discs, we
get distinguished bases for the stalks of ωT[1 − n]. In addition if we pick a root in T this
induces choices of roots in all R, and we get sets of distinguished elements |α〉〈α| in all the
stalks ofHH(N ). We can then make a canonical choice of isomorphismHH(N )

∼−→ ωT[1−n],
which on a stalk over the stratum T(R � S ↪→ T ) gives the isomorphism

HH0(k[~R])
∼−→

⊕
α∈V (R)

kα

sending |α〉〈α| to 1 ∈ kα ∼= k in the direct sum decomposition of proposition 27.

Nondegeneracy

Recall we have constructed an isomorphism HH(N )
∼−→ ωT[−d], with d = |T | − 1; more-

over since the S1 action on HH(N ) is trivial, this naturally descends to an isomorphism
HH(N )S1

∼−→ ωT[−d]

Theorem 30. The local orientation given by the map HH(N )S1
∼−→ ωT[−d] constructed

above is nondegenerate in the sense of Definition 16.

The proof follows from a Verdier duality argument; see [100, Sec.4.1] for the full argument.

3.5 Global orientations

We have constructed above local orientations on the local models (T,WT), by giving a non-
degenerate orientation on the sheaf NT =Wpp

T of pseudo-perfect modules. For an arbitrary
locally arboreal space (X,W), it follows that the Hochschild homology sheaf HH(Wpp) is
locally isomorphic to the dualizing complex, and has trivial S1 action. In this section we
study the obstruction to global orientability, and note a class of examples in which it vanishes.

The obstruction to orientability

Note, by Verdier duality, Hom(ωX, ωX) = kX . It follows that on a locally arboreal space
(X,W), we have HH(Wpp) ∼= ωX ⊗ L, for some locally constant rank one sheaf L. Such
sheaves are classified by H1(X, k∗).
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Theorem 31. The obstruction to orientability is the image of a class w1(X,W) ∈ H1(X,±1).

Proof. Rather than work with sheafified Hochschild homology, we could have worked with
a sheafified Grothendieck group K0. The Dennis trace map from K-theory to Hochschild
homology induces a morphism K0(Wpp) → HH(Wpp). Evidently K0(Perf(~T )) = Z|T |. This
morphism becomes an isomorphism after tensoring with k. The above matching with the
dualizing sheaf would have all worked just as well for K0 as HH, except now we can work
over Z. In particular we see that K0(Wpp) ∼= ωX ⊗ L over Z. Thus L is classified by an
element of H1(X,Z∗) = H1(X,±1).

Remark. The space of choices of possible W over a given locally arboreal space X is a torsor
over

H1(X,Aut(W)) nH2(X,Aut(1W)) = H1(X,Z) nH2(X, k∗)
There are no other terms because there is no higher local automorphisms of the cosheaf
W , since Hochschild cohomology of the tree quivers is just k in degree zero and nothing
else [111]. Here, the fact that the connected components of the local automorphisms of
the cosheaf of categories W are just the shift functor can be seen by observing that, for
an arboreal singularity T, the restriction from T to the smooth locus of T remembers the
subcategories generated by every indecomposable.

Our w1(X,W) is the reduction mod 2 of the above H1 information; which takes values in
a vector space rather than a torsor because we have now the basepoint given by comparison
with the dualizing sheaf.

Global orientations from immersed front projections

The Kashiwara-Schapira sheaf

One way in which locally arboreal spaces (X,W) can arise is by taking, inside the cotangent
bundle T ∗M of an ambient manifold M , the union of the zero section and a cone over
a general position Legendrian which itself has arboreal singularities. The sheaf Wpp then
arises as the restriction of the so-called Kashiwara-Schapira sheaf of categories [81], and the
cosheaf W is the cosheaf of “wrapped microlocal sheaves” described in [85].

The resulting categories are already quite rich. On the one hand, they provide powerful
invariants in symplectic and contact geometry which are closely related to, but conceptually
simpler than, the holomorphic curve invariants. On the other hand, many spaces of interest
for other reasons can be constructed as moduli of objects in these categories, e.g., positroid
varieties, cluster algebras from surfaces, and wild character varieties [103, 102]. We will
recall some explicit examples in Section 3.6.

Let us briefly recall the notions of microlocalization and of the Kashiwara-Schapira sheaf
of categories. Given a sheaf F on a manifoldM , the locus of codirections in which the sections
fail to propagate is called the microsupport of F . The properties of the microsupport are
developed in [67], where in particular it is shown that the microsupport is a conical co-
isotropic subset of T ∗M , which is Lagrangian if and only if F is constructible.
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Let M be a manifold and L ⊂ T ∗M a conical Lagrangian. We write shL(M) for the
category of sheaves with microsupport in L. A fundamental result is that the category of
sheaves with microsupport in L localizes, not only over M , but in fact over L.

Theorem 32. [67, Chap. 6] The category shL(M) of sheaves on M with microsupport in L
is the global sections of a constructible sheaf of categories on L, obtained by sheafifying the
presheaf

U 7→ {shL(M)}/{shL∪T ∗M\U(M)}

We call this sheaf the Kashiwara-Schapira sheaf on L, and write it as µloc.
In the neighborhood of a smooth point of L, there is a non-canonical isomorphism from

µloc to the category of derived local systems on L.

In particular, a (possibly singular) Legendrian Λ ⊂ T∞M carries a Kashiwara-Schapira
sheaf, given by restricting the Kashiwara-Schapira sheaf from the union of M with the
positive cone over Λ. It follows from the theory of contact transformations developed in [67,
Sec. 7] that the stalk of this sheaf at a point depends only on the local contact geometry. A
more global version of this statement appears in [54].

The relation to the sheaves of categories on the locally arboreal spaces is the following:

Theorem 33. [81] For each a rooted tree ~T , there is a Legendrian embedding T ↪→ T∞RT

and a canonical isomorphism N ∼= µloc.

Remark. It follows from the theory of contact transformations that for any Legendrian em-
bedding T ↪→ T∞RT (with behavior at the singularities constrained in a sense clarified in
[84]), there is again an isomorphism N ∼= µloc. The union of the cone over T and the zero
section RT is again an arboreal singularity, corresponding now to the graph obtained by
attaching one vertex below the root of ~T and making this the new root. Again the sheaf
µloc on this larger space is identified with the sheaf N .

Immersed front projections

We say that a Legendrian Λ ⊂ T∞M has an immersed front projection when the projection
Λ → M is an immersion. In this case, there is a natural identification of the Kashiwara-
Schapira sheaf with the category of local systems on Λ, i.e., µloc(Λ) = loc(Λ).

We say that the front projection has normal crossings when it is locally diffeomorphic to
a union of coordinate hyperplanes.

Lemma 34. Let M be a manifold, Λ ⊂ T∞M a smooth Legendrian with normal crossings
projection Let m ∈ M be a point where the front projection of Λ is immersed with normal
crossings image. Let U be a conical neighborhood of m in X = M ∪ R+Λ. Then there is
a canonical isomorphism of (U, µloc) with (a trivial factor times) an arboreal singularity
corresponding to a star quiver, given by a single root vertex with as many leaves as there
points of Λ over m.
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Proof. Let π : T∞M →M , and d = dimM . Around a smooth point of π(Λ) on the base M ,
U is homeomorphic to Rd with a d-dimensional half-space glued to a coordinate hyperplane,
which is homeomorphic to the local model A2 × Rd−1.

Figure 3.4: The case d = 2. The neighborhood of a point in the front projection of the
Legendrian Λ is homeomorphic to either A2 × R = Star1 × R or A3 = Star2. Note that in
general it is the star quivers Stark that appear, and not the Ak series

Similarly, around a singular point of π(Λ) by the normal crossings condition, U is home-
omorphic to Rd with k half-spaces glued along k coordinate hyperplanes. Consider now the
arboreal singularity Stark corresponding to the star quiver with k leaves; this is homeomor-
phic to Rk with k half-spaces glued along coordinate hyperplanes. By comparison we have
a homeomorphism U ∼= Stark × Rd−k.

Consider now the Kashiwara-Schapira sheaf µlocX. By the inspection above and results
of Nadler [81, 84], on a neighborhood homeomorphic to some arboreal singularity model
U ∼= Stark × Rd−k, this sheaf is locally isomorphic to the Nadler sheaf of categories NStark ,
and there is a corresponding cosheaf µlocwX of wrapped microlocal constructible sheaves. So
(X, µlocwX) is a locally arboreal space, with a sheaf of categories µlocX = (µlocwX)pp, and by
the following result a sufficient criterion for its orientability is the orientability of the base
manifold M .

Theorem 35. Let M be a compact oriented manifold of dimension d, with a given orientation
kM

∼−→ ωM [−d]. Let Λ ⊂ T∞M be a smooth Legendrian whose projection to M has normal
crossings, and X = M ∪ R+Λ. Then the locally arboreal space (X, µlocwX) admits a local
orientation, given by an isomorphism HH(µlocX)

∼−→ ωX[−d], extending the orientation on
M , i.e. which agrees with the given orientation on M when restricted to the smooth locus
on M .

This follows from the fact that the coorientation of the front projection of the Legendrian
is globally defined in a coherent way; see [100, Sec.5] for the proof.
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3.6 Examples

In this section we recall various categories which arise as the global sections of a sheaf or
cosheaf of categories on an oriented locally arboreal space. As a consequence of our results,
we conclude the existence of certain absolute and relative Calabi-Yau structures.

To relate this discussion to the subject of shifted symplectic geometry, in this section we
will use the main theorem of [21]. This theorem determines, from an absolute d-dimensional
smooth Calabi-Yau structure on a category A, a (2− d)-shifted symplectic structure on the
the moduli MA of objects in App, and from a relative d-dimensional smooth Calabi-Yau
structure on f : A → B, a Lagrangian structure on the morphism MB → MA into the
(3− d)-shifted symplectic space MA.

Assuming the result above will give rise to shifted symplectic structures, Poisson struc-
tures, quantizations, etc. in the appropriate circumstances [91, 25]. Direct application of our
methods yield constructions in the “type A” cases; e.g. the moduli space for a point isMPerf

inside which one can find the various BGLn. We expect that the desired symplectic struc-
tures for the analogous moduli spaces for other groups can be constructed via Tannakian
considerations as in [104, Sec. 6], but do not develop this in detail here.

Remark. In this section to ease notation we will denote the moduli stack of objects using
a blackboard bold capital to distinguish it from the category, e.g. the category of perfect
complexes is denoted Perf and the moduli stack of perfect complexes is Perf =MPerf , same
for local systems Loc and Loc.

The associated graded of a filtration

Let X be a comb: a one-dimensional space formed as the union of R and the positive cone
on some n points {pi} at positive contact infinity. The category Sh{pi}(R) is equivalent to
the category Filtn of n-step filtered perfect complexes, which just means sequences of perfect
complexes

F0 → F1 → . . .→ Fn

Corollary 36. The functor

Filtn → Perf
⊗(n+1)
k ×Perfk

F0 → . . .→ Fn 7→ (F0, Cone(F0 → F1), Cone(F1 → F2), . . . , Cone(Fn−1 → Fn)), Fn

has a 1-dimensional relative proper Calabi-Yau structure, and so assuming the theorem in
[20] the corresponding map of moduli spaces of objects

Filt→ Perf×(n+1)×Perf

is a Lagrangian mapping to a 2-shifted symplectic space.

Proof. This follows immediately from Theorem 35. Alternatively, the fact that the comb is
orientable follows from its being contractible.
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Remark. Note that following the description in 35, the decomposition into “discs” (here
intervals) is such that the boundary of the ith interval is given by the endpoints (+∞)−(pi),
if we pick the positive orientation on the base manifold R. So in the Lagrangian map of
moduli stacks the first factor Perf×(n+1) is endowed with the opposite 2-shifted symplectic
structure, where the last factor Perf has the usual 2-shifted symplectic structure.

Figure 3.5: The comb X. We pick a decomposition of X into overlapping intervals; in this
case the ith interval has endpoints pi and +∞, and extending the positive orientation on R,
its boundary is (+∞)− (pi).

Restricting to the open substack Filt◦n where all Fi and all Cone(Fi → Fi+1) can be
represented by vector spaces in degree zero, we see that the image of the morphism above
in each factor Perf lands in some substack BGLmi ⊂ Perf, and moreover that each map
Fi → Fi+1 is injective. Denoting m0 = dimF0,mi = dimCone(Fi → Fi+1) and m = dimFn,
this implies that m0 + · · ·+mn = m. So Filt◦n splits into components labelled by collections
of integers m, {mi}, and each component has a 2-shifted Lagrangian morphism

Filt◦n(m, {mi})→ (BGLm0 × · · · × BGLmn)× BGLm

which can be interpreted as a 2-shifted Lagrangian correspondence between BGLm and BL
for the Levi subgroup corresponding to the partition {mi}. This was originally shown in
[94], where a Lagrangian correspondence

BP

|| ""

BG BL

is used to define the “partial group-valued symplectic implosion”. Note that once we fix
the decomposition m = m0 + · · · + mn, we can identify the substack Filt◦n(m, {mi}) as the
classifying space BP for the parabolic P corresponding to L: a map from some other space
X → Filt◦n(m, {mi}) determines an invariant filtration of the vector space km, therefore up
to equivalence it is the data of a P -bundle over X.

Invariant filtrations near punctures on surfaces

Let Σ be an oriented surface with boundary consisting of n circles; draw a collection of mi

concentric circles at each boundary component, and choose co-orientations and therefore
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Legendrian lifts. Let Λ denote the union of these lifts. Just as in the previous subsection,
the corresponding category ShΛ(Σ) amounts to the category of sheaves on Σ with invariant
filtrations at the punctures. Note that Λ ∪ ∂Σ is just a union of m =

∑
mi circles.

Corollary 37. The morphism ShΛ(Σ)→ Loc(Λ∪∂Σ) = Loc(S1)×m is 1-shifted Lagrangian.

Proof. This follows immediately from Theorem 35.

Again, we can take the substack ShΛ(Σ)◦ on which the restriction of the sheaf to Σ has
cohomology concentrated in degree zero; the resulting space is an Artin stack is the classical
sense, and as in the comb example above, it has components labelled by the microlocal ranks
along the boundary components; the morphism splits into components

ShΛ(Σ)◦({mi})→ [
GL(m1)

GL(m1)
]× · · · × [

GL(mn)

GL(mn)
]

where the stacky quotient is taken with respect to the adjoint action.
To get a space with a symplectic structure, one can choose correspondingly another 1-

shifted Lagrangian morphism to the moduli space of local systems around the boundary,
and performing Lagrangian intersection between the two 1-shifted Lagrangians as in [93]
this gives a 0-shifted symplectic space.

Corollary 38. The moduli space of local systems on a surface equipped with invariant filtra-
tions at the punctures, of which the conjugacy classes Ci of the associated graded holonomies
are pre-specified, carries a 0-shifted symplectic structure.

Proof. As in Safronov [93], this can be deduced from the above corollary (which has a
different proof in that paper) by observing that fixing a conjugacy class C in a reductive
group G determines a Lagrangian morphism [C

G
]→ [G

G
]. Performing Lagrangian intersection

between ShΛ(Σ)◦({mi}) and [ C1

GL(m1)
] × · · · × [ Cn

GL(mn)
] gives the symplectic structure on the

moduli space with prescribed holonomies.

Example. Consider Σ an oriented surface with boundary ∂Σ = union of n circles, without
any Legendrians. The Artin stack Sh(Σ)◦ has disjoint components LocGL(m)(Σ) labelled by
the rank m of the local system, and so we have 1-shifted Lagrangian morphisms

LocGL(m)(Σ)→ (LocGL(m)(S
1))×n =

[
GL(m)

GL(m)

]×n
and picking n conjugacy classes Ci in G, we can perform the intersection and get the so-called
“tame” character variety of Σ.

Example. Take Σ to be the open cylinder with n concentric circles around one of the boundary
components, and no circles around the other. Fixing the ranks m = m1 + · · · + mn at each
boundary, we get a 1-shifted Lagrangian morphism

ShΛ(Σ)◦ → LocGLm(S1)× LocGLm1
(S1)× · · · × LocGLmn (S1) =

[
G

G

]
×
[
L

L

]
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Figure 3.6: On the surface Σ with two punctures, and with fixed microlocal rank along
the concentric circles of Λ. If we look at the substack of ShΛ(Σ) of objects with rank 0 at
the punctures, the microlocal rank conditions mean we have rank 3 local systems equipped
with invariant filtrations near each puncture; in this particular case we have two filtrations
respectively of the form 0 ⊂ k ⊂ k2 ⊂ k3 and 0 ⊂ k ⊂ k3

where L is the Levi subgroup corresponding to the partition {mi}. This example also appears
in [93], as a 1-shifted Lagrangian correspondence[

P
P

]
~~   [

G
G

] [
L
L

]
where the identification of our space with [P

P
] comes from the observation that an invariant

filtration on Σ is the same data as a P -local system on S1.

Figure 3.7: The restriction to the upper boundary components can be assembled into a map
to [L

L
] where L is a Levi subgroup of G = GLm given by the integers {mi}. The restriction

to the lower boundary components is a map to [G
G

] giving the monodromy of the G-local
system

Another way of deducing this particular case is by writing Σ as the product of a circle
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and a comb (as in 3.6). Therefore we have an equivalence of derived stacks

ShΛ(Σ) = RMap(S1,Filtn)

and the Lagrangian correspondence is obtained from the correspondence in section 3.6 by
applying the mapping stack functor RMap(S1,−), which shifts the degree down to the 1-
shifted Lagrangian correspondence above.

Remark. In the rank one case, when ki = 1, the correspondence [B
B

] → [G
G

] × [T
T

] is a group

version of the Grothendieck-Springer correspondence, and we have [B
B

] ∼= [ G̃
G

] where G acts

on the Springer resolution G̃ by conjugation.

Stokes filtrations near punctures on surfaces

Rather than take an invariant filtration around a puncture, one can allow the filtration itself
to undergo monodromy. The resulting notion generalizes the notion of Stokes structure; we
will call it a Stokes filtration. In most works, this was presented as suggested above: in terms
of a sheaf on the boundary circle equipped with a filtration that itself varies. This notion
can be found e.g. in [80]. Defining what precisely it means for a filtration to vary along a
circle is nontrivial and somewhat mysterious at the points where the steps in the filtration
cross.

We prefer to turn this notion sideways: rather than a filtered sheaf on S1 with varying
filtration, we take a sheaf on S1 × R with microsupport in a prescribed Legendrian braid
closure. This determines a filtration in the R direction, just as in the previous examples; as
it happens, the above notion exactly captures at the crossings the notion in [80] of Stokes
filtration. This idea seems to have been known to the experts, but we have not found any
systematic exposition of it in the classical literature.2

We made some attempt in this direction in [103, Sec. 3.3]. Here we simply recall that the
Deligne-Malgrange account of the irregular Riemann-Hilbert correspondence on Riemann
surfaces can be formulated as follows. Suppose we are given a Riemann surface Σ with
marked points pi, and a specification of a (possibly ramified) irregular type τi, i.e., formal
equivalence class of irregular singularity, at each. Then there is an associated Legendrian link
Λ =

∐
Λ(τi), a union of links localized near the pi, and an equivalence of categories between

the irregular connections with these singularities, and the full subcategory of ShΛ(Σ) on
objects which have cohomology concentrated in degree zero, and appropriate rank stalks
and microstalks. The corresponding component of the moduli space is the moduli space of
Stokes data. Finally, the microlocal restriction morphism ShΛ(Σ) → Loc(Λ) is what would
have classically been called “taking the formal monodromies”.

2More precisely, we only know the following other occurrences of this picture. In [34], there is a letter
from Deligne in which the Stokes sheaf is viewed as a sheaf on an annulus rather than a filtered sheaf on a
line. In [68], the idea that a Legendrian knot can be associated to a Stokes filtration appears as a remark.
Finally, the drawing of at least the projection of a knot already appears in the original work of Stokes [106].
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Corollary 39. The morphism from a moduli space of Stokes data to the moduli space of
formal monodromies is 1-shifted-Lagrangian.

Corollary 40. A moduli space of Stokes data with formal monodromies taking values in
prescribed conjugacy classes is 0-shifted-symplectic. In particular, any open substack which
happens to be a scheme is symplectic in the usual sense.

This recovers and generalizes all constructions of symplectic structures in e.g. [16, 17,
18] for GLn connections.

Example. (Wild character variety) Consider a disc Σ punctured at the origin and a trivial
rank n vector bundle E → Σ, where the origin is marked with the irregular type

Q(z) =
A

zr
, r ∈ Z, A ∈ treg ⊂ gln

i.e. A has all distinct eigenvalues. A meromorphic connection ∇ on E has this irregular type
if it can be brought by a local analytic gauge transformation to the connection defined by
the connection one-form dQ.

By the irregular Riemann-Hilbert correspondence, the category of meromorphic connec-
tions on the trivial vector bundle with this irregular type is equivalent to the category of
Stokes data. From the Stokes data, one can recover the monodromy of ∇ and the formal
monodromy; this latter is an element of the centralizer ZG(A) (in this case, the maximal
torus T ) up to conjugation.

The moduli of Stokes data with fixed monodromies and formal monodromies is commonly
known as the wild character variety. Upon fixing conjugacy classes CG, CT in G and T , the
wild character variety can be described as a quasi-Hamiltonian quotient [16]

(G× T × (U+ × U−)r) //CG,CT (G× T )

where U± are the unipotent subgroups corresponding to the maximal torus T . The moment
map to G is taking the monodromy around the singularity, and the map to T is taking the
formal monodromy.

In our description, this category of Stokes data becomes a full subcategory of the category
ShΛ(Σ) of microlocal sheaves, for a corresponding Legendrian link Λ ⊂ T∞ around the
singularity. The monodromy and formal monodromy then become literal monodromies of
the local systems one gets by restriction to the boundary. To explicitly construct Λ, one can
follow the prescriptions in [103, Sec. 3.3]. This can be heuristically stated in terms of the
asymptotics of flat sections, i.e. the growth behavior of the solutions to

df

dz
=
dQ

dz
f(z)

In this case, the solutions are spanned by n different solutions fi ∼ exp(λiz
−r), where λi are

the eigenvalues of A, and we only keep the exponential part of the asymptotics. The Stokes
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phenomenon refers to the fact that these corresponds to asymptotics of solutions in different
sectors; as we go from one sector to the other, the growth of these solutions changes. On each
sector, we draw concentric strands for the fi, ordering them by growth: the faster-growing
ones further from the origin. Whenever we cross a Stokes ray, where the solutions fi, fj
switch growth asymptotics, we introduce a crossing between the i and j strands.

Figure 3.8: The Legendrian link for the irregular type 1/z3. The Legendrian link Λ ⊂ T∞Σ is
obtained by lifting the projection using the outward coorientation. The dashed lines are the
Stokes rays, where the asymptotics of formal solution changes. Note that each component
of the link is unknotted with itself: this is true of all the examples of this form.

In the case we described above (A ∈ treg), the corresponding Legendrian link Λ is the
closure of a (n, 2r) braid , cooriented outward, where we enforce the condition that the
rank of the stalk inside Λ is zero, and the microlocal ranks on each component of Λ is one.
What we call the moduli of Stokes dataMΛ is the moduli of objects in the full subcategory
of ShΛ(Σ)◦ with those rank conditions. The maps given by restriction to the boundary
components can be assembled into a 1-shifted Lagrangian map

MΛ →
[
G

G

]
×
[
T

T

]
where [G

G
] is G-local systems on the boundary of the disc, and [T

T
] is rank one local systems on

Λ. In this description, taking quasi-Hamiltonian quotient corresponds to taking intersection
with another Lagrangian [CG

G
]× [CT

T
]. The explicit description of the moduli space MΛ can

be obtained by following the prescriptions in [102]; one can check that this stack can in fact
be expressed as the quotient [(G× T × (U+ × U−)r)/(G× T )], agreeing with the previously
existing description.

Example. With the same notation of the previous example, consider the irregular type

Q =
A

zr/2
, A ∈ treg ⊂ gln
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where r is some odd number. Following the discussion in the last example, we get n solu-
tions fi ∼ exp(λiz

−r) The strands i and j will cross whenever fi and fj “switch” growth
asymptotics. Suppose for instance that λi, λj ∈ R. Writing z = Reiθ the asymptotics will
switch whenever Re(z−r/2) = 0, i.e. on the rays

θ =
π

r
+

2nπ

r

There are r such rays between any pair i, j even if λi, λj /∈ R: the expression for the rays
is more complicated by the number of rays doesn’t change. Therefore Λ is the closure of a
(n, r) braid.

Figure 3.9: The Legendrian link for the irregular type 1/z3/2. The microlocal rank on the
link Λ is 1.

The case where n = 2, r = 3 gets us a trefoil and appears in Stokes’ discussion of the
Airy equation [106]. Note that the trefoil has only one component, so the formal monodromy
map lands in Lock∗(S

1) ∼= [k
∗

k∗
] which doesn’t stand for T

T
for any maximal torus T ⊂ GL2.

This explains why this more general case cannot be described just in terms of moment maps
into subgroups of G.

Remark. One can play many variations on the theme of Stokes filtrations and irregular
singularities. Considering connections with matrices A that are not in the regular locus of g,
it becomes necessary to look at further less singular terms in the expression for dQ. To find
the corresponding Legendrians one can still follow the prescriptions in [102]. One obtains
cablings of torus knots by other torus knots and cablings of torus knots by such cablings and
so on.

But there are many other knots that one can consider: pick any positive braid and close
it around the origin into a Legendrian Λ. Picking rank conditions and monodromies around
the components of Λ, this gives a symplectic space MΛ that doesn’t necessarily come from
an irregular meromorphic singularity. We can expect these spaces to carry some of the same
structures as the tame and wild character varieties; whether this is true remains a topic of
future research.



CHAPTER 3. CALABI-YAU STRUCTURES ON TOPOLOGICAL FUKAYA
CATEGORIES 76

Remark. For moduli of Stokes data for connections on higher dimensional complex varieties,
the corresponding Riemann-Hilbert theorem recently been proven [33]. We expect that it can
be reformulated into an analogous “microsupport in certain smooth Legendrians” version,
from which we would be able to immediately deduce the existence of the shifted symplectic
structure.

Positroid varieties, multiplicative Nakajima varieties, and other
cluster structures

The combinatorics of cluster algebras arising from surfaces was originally organized around
data given variously as a graph on a surface, a triangulation on a surface, etc [92, 43, 52,
44]. One presentation of this data is in terms of the so-called “alternating strand diagram”,
the manipulation of which by combinatorial topology [110] underlies various theorems of the
cluster algebra.

The authors in [103] present the perspective that the alternating strand diagram should
be viewed as a Legendrian knot, that triangulations of the surface give rise to Lagrangian
fillings of it, and that all the corresponding cluster algebraic formulas are computing the
Floer homology between such fillings. In particular, the corresponding cluster X-variety was
identified as a moduli space of “rank one” objects in ShΛ(Σ), where Λ is the Legendrian lift
of the alternating strand diagram, and Σ is the base curve.

In [101], a slightly different perspective is taken: rather than work from Σ,Λ, we began
with a Legendrian L — one could view it as one of the above-mentioned fillings of Λ —
and attached Weinstein handles to its cotangent bundle along Legendrians which project to
simple closed curves. This perspective is yet more general than the previous.

It includes as a special case the multiplicative Nakajima quiver varieties of [32, 114, 15];
this being the case where the attaching circles are contractible. Indeed, this case is very close
to the presentation in [15]. In that reference, rather than locally arboreal singularities, they
consider the spaces which are locally either a smooth surface or modeled on the Lagrangian
singularity given by the union of the zero section and the conormal to point. However, this
local model admits a noncharacteristic deformation to the union of the zero section and the
positive conormal to a circle. The deformation is just given by the contact isotopy induced
by the Reeb flow; the fact that it is noncharacteristic follows then immediately from [54].

Thus, the present work recovers all constructions of symplectic and Poisson structures on
such spaces. It will be interesting to investigate how the deformation quantization formalism
of [25] interacts with these notions.

The augmentation variety of knot contact homology

Consider a knot or link K ⊂ S3. Naturally associated to this is the category of sheaves
constructible with respect to the stratification S3 = K ∪S3 \K. This study of this category
led recently to a proof that the Legendrian isotopy type of the conormal torus to a knot
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determines the knot [99]. In an appropriate sense, it is equivalent to the a category of
augmentations of knot contact homology [40].

The union of the conormal to the knot with the zero section is not arboreal, but as the
above discussion of [15], this can be remedied by perturbing the conormal torus by the Reeb
flow, resulting in a skeleton given by the union of the zero section and the positive conormal
to the inward (or outward) co-oriented boundary of a tubular neighborhood of the knot.

In any case, we can study the space of objects in this category. It has a map to the
category of local systems on T 2, which by the results here, becomes a 0-shifted Lagrangian
morphism on moduli spaces. We note that the study of this moduli space was also suggested
in [15].

To select a connected component (indeed, the connected component corresponding to
what is usually called the augmentation variety), we can pick those sheaves whose microsup-
port on the conormal torus is rank one in degree zero, i.e., what are called simple sheaves in
[67]. We restrict further to the open locus on which objects which have no global sections,
the main point of which is to eliminant constant summands. Let us write A1(K) for this
component.

Restriction to the microlocal boundary gives a map A1(K)→ Lock∗(T
2) = (k∗)2. There

is an analogous map in knot contact homology, described in [5, 41]. Note that objects in
A1(K) are easy to understand: they are a local system in the complement of K, which
is extended by a codimension one subspace of meridian invariants along K; or possibly a
nontrivial rank one local system supported on K.

From this point of view it is clear both why A1(K) contains the classical A-polynomial
curve, and also what are the other components: the A polynomial curve has to do with SL2

representations of the fundamental group; any such becomes, after rescaling by an eigenvalue
of the meridian, a GL2 representation with a meridian invariant subspace. Similarly it is clear
what the other components of A1(K) are. Thus we have shown that the morphism A1(K)→
k∗×k∗ is (0-shifted) Lagrangian. Quantization of this morphism features prominently in the
conjectures of [5].
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Chapter 4

Stability and Fukaya categories

It has been understood since the work of Douglas and others [39, 38] that understanding the
appearance of derived categories in mirror symmetry requires thinking about the problem
of stability of branes in the relevant SCFTs. This investigation arises from attempting to
reconcile the multitude of objects in the derived category with their description as physical
boundary conditions.

One of the most evident problems is that the derived category seems to have too many
objects. Moreover, this category has auto-equivalences given by nontrivial monodromies, for
example around nontrivial loops in the moduli space of complex structures of the underlying
variety. Under these autoequivalences, objects with a simple physical description such as
(submanifolds with) vector bundles get sent to more exotic objects. Therefore, if the use
of the derived category is consistent, one must correctly interpret these exotic boundary
conditions as particular combinations of branes. Following these and other clues, Douglas
suggested the notion of Π-stability on SCFTs which is partially inspired by slope stability
(or ‘µ-stability’) of vector bundles.

Inspired by the notion of Π-stability in physics, Bridgeland [22] proposed a notion of
stability for general triangulated categories, which can be seen as a refinement of the notion
of t-structures. One of the features of Bridgeland stability is that the space of stability
conditions itself can be given the structure of a complex manifold, with interesting actions
on it coming from automorphisms of the category. Calculating this space for categories of
geometric interest, such as derived categories of algebraic varieties, has been a very active
line of research [79, 13, 90, 89, 58]. A recent advance in this direction of research is the
proof [74] that a candidate family of stability conditions on the quintic threefold inspired by
Douglas’ initial proposal in fact does give a family of Bridgeland stability conditions.

On the other hand, a similar understanding on the other (A-side) of mirror symmetry
is still lacking. It has been conjectured for a while that Bridgeland stability conditions
on A-side categories associated to Calabi-Yau varieties should reflect something about the
geometry of special Lagrangians. In the literature this is often referred to as the Thomas-Yau
conjecture, after [109], though strictly speaking Thomas and Yau in that reference make no
mention of Bridgeland stability conditions, and instead use different notions of stability.
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In this chapter we will present the definition and basic properties of Bridgeland stability
conditions, and mention some recent developments in understanding them on the A-side
of mirror symmetry. In particular, we will focus on the work of Haiden, Katzarkov and
Kontsevich [56], which constructs Bridgeland stability conditions on Fukaya categories of
surfaces. The constructions in that paper establish a precise relation between Bridgeland
stability and an analog of special Lagrangian geometry, given by quadratic differentials.

In preparation for the following chapter, where we define a relative notion of stability
conditions, we prove here some general lemmas about stability in such Fukaya categories,
following the author’s own work in [107].

4.1 Bridgeland stability conditions and the

Thomas-Yau conjecture

Bridgeland stability conditions

Let us introduce the definition of a Bridgeland stability condition. Let us fix a triangu-
lated category D and a lattice (finitely generated abelian group over Z) Λ, with a fixed
homomorphism K0(D)→ Λ.

Before we define a Bridgeland stability condition, let us define the notion of a slicing.

Definition 21. [23] A slicing P on D is a collection of full additive subcategories Pφ for
φ ∈ R, such that

• Pφ[1] = Pφ+1

• If X ∈ Pφ and Y ∈ Pψ with φ > ψ, then HomD(X, Y ) = 0

• For every 0 6= X ∈ D there is a sequence of real numbers φ1 > · · · > φn

0 // X1
}}

// . . . // Xn−1
// Xn = X
xx

A1

^^

An

dd

where Ai ∈ Pφi and each triangle is distinguished.

We will refer to objects in Pφ as semistable objects of phase φ. A slicing should be
understood as a refinement of a t-structure; for any interval I ⊆ R, let us denote PI =⊔
φ∈I Pφ. Then one can prove that setting τ>0D = P(0,+∞) gives a bounded t-structure

whose heart is A = P(0,1].

Definition 22. [23] A Bridgeland stability condition on the category D is a pair (Z,P),
where Z ∈ Hom(Λ,C) and P is a slicing on D compatible with Z in the sense that for every
0 6= X ∈ Pφ, Z(X) = m(X)eiπφ for some m(X) > 0.
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Note that for simplicity we denoted Z(X) for the value of Z at the image of [X] under
the map K0(D)→ Λ.

In order to state the important deformation result of Bridgeland which gives the space
of stability conditions the structure of a complex manifold, we need to restrict attention to
stability conditions which obey the following finiteness property, known in the literature as
the support property [73, 12]:

Definition 23. A stability condition σ = (Z,P) satisfies the support property if

inf
06=Xsemistable

|Z(X)|
‖[X]‖

= C > 0

, where ‖·‖ is a norm on Λ⊗ R.

From now on, we will only consider stability conditions satisfying the support condition
above; in [23] these are referred to as ‘locally-finite’ stability conditions. Let Stab(D) denote
the set of such stability conditions.

Theorem 41. [23] The set Stab(D) naturally has the structure of a complex manifold, and
the map Stab(D)→ HomZ(Λ,C) is a local homeomorphism of complex manifolds.

Special Lagrangians and the Thomas-Yau conjecture

While a lot is known about Bridgeland stability conditions on categories of coherent sheaves,
it has been difficult to make similar progress on A-side categories. However there are many
expectations about what (some) Bridgeland stability conditions on the Fukaya category of a
Calabi-Yau manifold should look like. From the physics of branes in the SCFT, it is evident
that stability in the A-model should be roughly given by minimality condition, which for
Lagrangian branes takes the form of the special Lagrangian condition.

Let Y be a Calabi-Yau m-fold with Calabi-Yau form Ω ∈ Ωm,0(Y ). A special Lagrangian
submanifold is an oriented Lagrangian submanifold L such that there is a real number ξ(L),
called the phase of L, such that we have

=(e−iπξ(L)Ω|L) = 0

ie. the phase of Ω is the constant ξ(L) when restricted to L.
We denote by Z(L) =

∫
L

Ω the BPS central charge of the brane. Note that we have
ξ(L) = arg(Z(L))/π, and from this perspective the phase is only defined mod 2; as usual in
Floer theory if we want to lift our gradings to Z we must have some vanishing conditions
and make choices in grading the Lagrangian submanifolds; in the case we will present in the
rest of this chapter these choices come with the grading of a surface.

Now we will describe a theorem due to Joyce [61] motivating the relation between spe-
cial Lagrangian geometry and stability conditions, following the exhibition in [8, Sec.5.2.1].
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Consider a family of CY m-folds Yz for z in some small disk D ∈ C centered at zero, and sup-
pose that Y0 has two transversely intersecting special Lagrangians L1, L2 with equal phases.
Then in the neighborhood of zero we have the following result about existence of special
Lagrangians

Theorem 42. Inside of Yz, there is a special Lagrangian close to the connected sum of L1

and L2 if and only if ξ(L2) ≤ ξ(L1).

This shows that the special Lagrangian geometry behaves with respect to deformations
of complex moduli very much like the slicings of semistable objects in a Bridgeland stabil-
ity condition under deformations of stability conditions; for example one has walls of real
codimension one giving a wall-and-chamber structure. Based on this type of comparison, it
has been conjectured by Thomas-Yau [109], Joyce [60], Bridgeland [22] and others that the
choice of CY form determines a Bridgeland stability condition on the derived Fukaya category
DπF(Y ). More specifically, in terms of stability data, we have the following conjecture:

Conjecture 1. Let (Y,Ω) be a CY m-fold as above. Then there is a natural Bridgeland
stability condition (Z,P) on DπF(Y ) such that the central charge Z is given by the compo-
sition

K0(DπF(Y ))→ Hm(Y,Z)
∫

Ω−−→ C

of the natural map to homology with the integral of the CY form, and if L is a special
Lagrangian with phase φ, then there is a semistable object in Pφ supported on L

There are many possible enhancements/modifications of this conjecture; for a recent
review of the technical aspects and progress on the subject the reader can consult eg. [60].

4.2 Fukaya categories of marked surfaces

Though the remainder of this chapter and the next one, we will discuss one context in which
the relation between Bridgeland stability conditions and a version of special Lagrangian
geometry is fully realized. This is the case of stability conditions on partially wrapped Fukaya
categories of marked surfaces. It has been understood in recent years that these definitions
fit in the framework of partially wrapped Fukaya categories of Liouville manifolds, which is
an analog of the fully wrapped case that we discussed in 2.4.

In [56], Haiden, Katzarkov and Kontsevich (which we will refer from now on by the
acronym HKK) construct Bridgeland stability conditions on these categories by using ge-
ometric data on the surface; specifically they use a quadratic differential with prescribed
singularities. An equivalent description is that one starts from certain flat metrics on the
surface. This perspective makes the connection to the Thomas-Yau conjecture mentioned
above more explicit; the choice of flat metric should be seen as analogous to the choice of
Calabi-Yau form.
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Here we will first present the Fukaya category of a marked surface and then some lemmas
appearing in the author’s own work [107] that will be important for the main results of the
next chapter. The exposition of the Fukaya category of a marked surface will mostly follow
[56], which the reader can consult for a more complete account.

Marked surfaces

A graded marked surface (Σ,M, η) is a topological surface Σ with boundary ∂Σ, a set of
marked boundary intervals M ⊂ ∂Σ and a grading or line field η, ie. a section of the
projectivized tangent bundle: η ∈ Γ(Σ,PTΣ). A graded surface has a shift automorphism
which we will denote [1] given by the generator of π1(PTpΣ) at every point.

Figure 4.1: Schematic depiction of the data defining a graded curve. Here the line field of Σ
is given by the parallel black lines, the red line is a curve in Σ and the green arrow depicts
the paths c̃, which can be seen as choices of paths between the line field and the tangent to
the curve. The two curves depicted here differ by a shift [2]

The choice of grading η allows us to give a grading to curves in Σ, which will be important
for giving a Z-grading on the Fukaya category. A graded curve is given by a triple γ = (I, c, c̃)
where I is a 1-manifold, c : I → Σ is an immersion and c̃ is a choice of homotopy class of
path from the tangent vector field of c(I) to the line field. We will set the requirement that
c(∂I) ⊂ M , that is if I is an interval (as opposed to a circle) its ends must be mapped to
the marked part of the boundary of ∂Σ.

This data allows us to associate an integer degree to each transverse intersection point
between graded curves. Let p be a point of transverse intersection between immersed curves
γ1, γ2. Then one can associate a degree of intersection ip(γ1, γ2) by comparing the homotopy
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classes of paths c̃1, c̃2. These degrees satisfy the following relation:

ip(γ1, γ2) + ip(γ2, γ1) = 1

and also behaves well under the shift automorphism, ie. ip(γ1[m], γ2[n]) = ip(γ1, γ2) +m−n.

The Fukaya category

While there are different possible strategies for defining the Fukaya category of a marked
surface, here we will follow the conventions and definitions of [56], and present a geometricity
result from that reference that relate that definition to other approaches.

Let (Σ,M) be a marked surface as above. An arc is an embedded interval with ends in
M , not isotopic to an interval inside M itself. We call an arc a boundary arc if it is isotopic
to a connected component of ∂Σ \M . We call a collection of pairwise disjoint, non-isotopic
arcs an arc system. An arc system A is full if A includes all the boundary arcs and Σ \A is
a disjoint union of polygons.

Figure 4.2: A marked surface with a system of arcs in red. The marked boundary intervals
are denoted by solid black lines and the unmarked ones by dotted black lines. Note that if
we were to count the red arcs and add arcs isotopic to the dotted black lines, we would have
a full sysyem of arcs

Let us fix a full arc system A on Σ. Let us define a boundary path between arcs X and
Y to be an oriented path in Σ, isotopic to an interval in M , starting at an endpoint of X
and ending at an endpoint of Y . We require this path to follow the reverse orientation of
∂Σ, ie. keep the interior of Σ to its right hand side.

Then [56, Prop.3.1] there is a strictly unital A∞-category FA(Σ) with:

• Set of objects A.
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• Morphisms between X, Y given by homotopy classes of boundary paths b from X to
Y , with degree given by

|b| = ip(X, b)− iq(Y, b)
where p, q are the start and end of b.

• Composition given by concatenation of boundary paths when possible, and zero oth-
erwise.

• Higher operations given by polygons; ie. if b1, . . . , bn is a sequence of paths bounding
a polygon, then for any path b beginning at the end of b1 we have

µn(bn, . . . , b1b) = (−1)|b|b

and for every path b ending at the beginning of an

µn(bbn, . . . , b1) = b

The A∞ category FA(Σ) clearly depends on A, in a strict sense, but one can show that its
Morita equivalence class is independent of the choice of full arc system A. Consider then the
category of twisted complexes (in the sense of [19]) over FA(Σ); up to quasi-equivalence this
triangulated category is independent of the choice of arc system. We will take this category
F(Σ) := Tw(FA(Σ)) to be our model for the topological Fukaya category of (Σ,M).

It will be important for our calculations to have explicit descriptions of the indecompos-
able objects of F(Σ); a priori, since we are taking twisted complexes, one would expect a
generic object not to have a geometric interpretation. Fortunately we have the following
result establishing the geometricity of objects in this category.

Theorem 43. [56, Theorem 4.3] Every isomorphism class of indecomposable objects in F(Σ)
can be represented by an admissible graded curve with indecomposable local system, unique
up to graded isotopy.

An admissible graded curve is either an immersed interval ending at marked intervals
or an immersed circle, which does not bound a teardrop. An important role will be played
by objects that can be represented by embedded curves. Let us from now on call an object
an (embedded) interval object if it can be represented by an (embedded) interval, and a
(embedded) circle object if it can be represented by an (embedded) circle. Note that every
local system on an embedded interval is trivial so an indecomposable embedded interval
object necessarily has a rank one local system.

Another result of [56] is a description of K0(F(Σ)) for surfaces Σ without unmarked
boundary circles (which is the case that we are considering here). The grading on Σ gives a
double cover τ by the orientation of the foliation lines; consider the local system of abelian
groups Zτ = Z⊗Z/2 τ .

Theorem 44. [56, Theorem 5.1] There is a natural isomorphism of abelian groups K0(F(Σ)) ∼=
H1(Σ,M;Zτ ).
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4.3 Lemmas about stability conditions

In this section we collect some lemmas about stability conditions in general, and also about
the specific case where D = F(Σ) is the Fukaya category of a marked surface Σ. Throughout
the rest of this document we will only deal with the “fully stopped” case, ie. the case where
each boundary circle in ∂Σ has at least one marked interval.

Stability conditions and genericity

We will make use of genericity assumptions, which will play an important role in later proofs.
To express genericity we need to define walls in this space, following [24]. Let us fix a class
γ ∈ Λ, and consider other classes α such that α and γ are not both multiples of the same
class in Λ.

Definition 24. The wall Wγ(α) ⊂ Stab(D) is the subset of stability conditions such that
there is a phase φ ∈ R and objects A,G with respective classes α, γ such that A ⊂ G in the
abelian category Pφ.

Each wallWγ(α) is contained within a codimension one subset of Stab(D) where Z(α)/Z(γ)
is real, and we have the following local finiteness result:

Lemma 45. [24, Lemma 7.7] If B ⊂ Stab(D) is compact then for a fixed γ only finitely
many walls Wγ(α) intersect B.

Note that this is not true if we consider the whole collection of walls for all γ; the union of
all walls can be dense in Stab(D). So we will have to be specific when discussing genericity.

Definition 25. Let Ξ ⊂ Λ be a finite subset of classes. Take

WΞ =
⋃
γ,α∈Λ

Wγ(α)

ie. the union of all closures walls for classes in Λ; we will say a stability condition σ is
Ξ-generic if σ ∈ Stab(D) \ W̄Ξ.

By local finiteness, W̄Ξ is a locally-finite union of closed subsets so Ξ-genericity is an
open condition. The connected components of Stab(D) \ W̄Ξ will be called the Ξ-chambers.

We will later make use of the following simple fact, which holds for any stability condition,
generic or not.

Lemma 46. If X = E⊕F then HNLen(X) is equal to the total number of distinct phases ap-
pearing among the HN decomposition of E and F . In particular, max(HNLen(E),HNLen(F )) ≤
HNLen(X) ≤ HNLen(E) + HNLen(F ).
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Proof. Follows from uniqueness of the HN decomposition, and the fact that given a HN
decomposition of E and F one can algorithmically produce an HN decomposition of E ⊕
F .

We will also need prove the following proposition, which constrains the type of objects
that can be stable under some stability condition. This will play an important role in our
later theorems.

Proposition 47. For any stability condition σ ∈ Stab(F(Σ)), every stable object is either
an embedded interval object or an embedded circle object.

Proof. Since L is indecomposable its support cannot have more than one connected compo-
nent. Thus the only objects we have to rule out are objects whose representatives all have
self-intersections; we will call these truly immersed objects.

A stable object L must have Exti(L,L) = 0 for i < 0. Let L be a truly immersed objects
and pick a representative of L with minimal number of self-intersections, supported on an
immersed curve γL. Perturbing L to calculate endomorphisms, we see that a self-intersection
point p of γL contributes classes to Ext∗(L,L) in degrees ip and 1− ip, where ip is the degree
of intersection at p. These classes are nonzero by minimality of self-intersections, so if there
is a self-intersection point with ip 6= 0, 1, one of these degrees is negative and therefore L
cannot be semistable.

Figure 4.3: A truly immersed Lagrangian L. The self-extension L → E → L at the self-
intersection point p splits as a direct sum E = F ⊕G.

The only case left to consider is when γL only has self-intersection points of degree 0
and 1; each one of these points gives nonzero classes in Hom(L,L) and Ext1(L,L). Let us
pick one of these points p, and consider the corresponding nontrivial extension L→ E → L.
Note that the support of E is given by two superimposed curves so we have a direct sum
decomposition E = F ⊕ G. But by assumption L is stable of phase φL, so E,F and G are
also all semistable of the same phase. Consider now the abelian category PφL of semistable
objects of that phase. Since the stability condition is locally finite, this category is finite
length; therefore the Jordan-Hölder theorem applies [59]. Since the length of E is 2, F and
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G are length one, and by uniqueness of the simple objects in the Jordan-Hölder filtration (up
to permutations) we must have F ∼= G ∼= L. But this is impossible because E is a nontrivial
extension so E 6= L⊕ L.

Remark. Note that the proof above does not preclude a self-intersecting object L from being
semistable; it just cannot be simple in PφL . In fact this even happens generically: take Σ to
be the annulus with one marked interval on each boundary circle and grading such that the
nontrivial embedded circle is gradable; by mirror symmetry the category F(Σ) is equivalent
to Db(Coh(P1)). Under this equivalence, the rank one circle object with monodromy z ∈ C×
gets mapped to the skyscraper sheaf Cz on P1, and the interval object I with both ends on
the outer boundary, wrapping the annulus once, gets mapped to the skyscraper sheaf C∞
on P1.

The space of stability conditions on this category is known to be isomorphic to C2 as
a complex manifold [90], and there is a geometric (top dimensional) chamber in Stab(P1)
where all the rank one skyscraper sheaves are stable. In particular, the nontrivial extension
I → L→ I, represented by an immersed Lagrangian with one self-intersection as in Figure
4.4, is semistable. So self-intersecting objects do appear generically, but they always have
Jordan-Hölder decompositions into embedded objects.

Figure 4.4: The annulus mirror to Db(Coh(P1)). For a geometric stability condition on P1,
the truly immersed object L (corresponding to an irreducible rank 2 skyscraper sheaf Ox2)
is semistable.

The result above characterizes which objects can be stable, namely embedded intervals
and embedded circles with indecomposable local systems. It turns out that similar index
computations also allows us to constrain the form of the HN decompositions of objects.

Definition 26. (Chain of stable intervals) Let us fix a stability condition σ ∈ Stab(F(Σ))
and consider an indecomposable object X in F(Σ). We say that X has a chain of stable
intervals decomposition (cosi decomposition) under σ if there is

• A sequence of stable (therefore embedded) interval objects X1, . . . , XN and a sequence
of marked boundary intervals M0, . . . ,MN , where the support γi of the object Xi has
ends on Mi−1 and Mi,
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• Extension morphisms ηi ∈ Ext1(Xi, Xi+1) or ηi ∈ Ext1(Xi+1, Xi) corresponding to the
shared Mi marked boundary (including an extension at M0 = MN if X is a circle
object),

such that the iterated extension by all the ηi is isomorphic to X.

Figure 4.5: A chain of stable intervals with N=4.

Remark. Note that the order X1, . . . , XN here is not directly related to the ordering of
semistable objects in the HN decomposition of X; in particular there is no constraint on the
phases of the Xi, and the extension maps can go either way.

Note that if X has a cosi decomposition then its HN decomposition can be produced
from it by grouping together all stable interval objects of the same phase.

Lemma 48. If X has a cosi decomposition under σ, then it is essentially unique, ie. the
sets {Xi} and {Mi} are uniquely defined up to isomorphism.

Proof. Follows from the uniqueness of the HN filtration and the uniqueness (up to permu-
tation) of the Jordan-Hölder filtration on each finite-length abelian category Pφ.

This decomposition also captures the isotopy class of the object X. Let us produce an
immersed curve γ from this data as follows: for each i, if the extension map ηi belongs to
Ext1(Xi, Xi+1) we connect γi to γi+1 counterclockwise (ie. by a boundary path following Mi

and keeping Σ to the right), and if ηi ∈ Ext1(Xi+1, Xi) we use the corresponding clockwise
path from γi to γi+1. From the geometricity result in Theorem 43 we can deduce that:

Lemma 49. The curve γ is isotopic to the support γX of the object X.

The following lemma will be central to our proofs later, and essentially means that cosi
decompositions are not allowed to cross each other. From now on, we will leave the extension
morphisms implicit and denote a cosi decomposition by its stable intervals.

Lemma 50. Let X and Y be two objects with respective cosi decompositions (X1, . . . , Xm)
and (Y1, . . . , Yn). We choose representatives for all the stable intervals such that the number
of crossings between these two chains of intervals is minimal. Then on the surface Σ there
are none of the following polygons
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1. Polygons bounded by the two chains and two transversal crossings between stable inter-
vals.

2. Polygons bounded by the two chains and two common marked boundary intervals (with
boundary paths inside the polygon).

3. Polygons bounded by the two chains, one transversal crossing and one common marked
boundary interval (with a boundary path inside the polygon).

Figure 4.6: The three kinds of polygons of stable intervals that cannot appear by Lemma
50. Here we have polygons with k = 3 sides on the left and l = 2 sides on the right. The
shaded interior means that these polygons bound disks inside of Σ.

Remark. In case (2), we exclude the trivial bigon with isomorphic sides. This case is obviously
allowed, and happens whenever X and Y share a same interval in their cosi decompositions.
From all cases, we exclude the degenerate configuration where all the objects around the
polygon are multiples of the same class in K0(F(Σ)). For cases (2) and (3), the parenthetical
condition is there because the chains could meet at some marked boundary interval ‘on the
other side of the polygon’. For instance again in the case of the annulus 4.3, for an ‘algebraic’
stability condition on P1 the two intervals (corresponding to line bundles on P1) are stable
and we can have the following bigon of stable objects; but the boundary path giving the
extension runs outside the polygon.

Proof. Let us first prove that it is sufficient to prove the statement for adequately generic
σ. By standard arguments, the locus of Stab(D) in which the all the objects Xi, Yi are
stable is open. Consider now the collection Ξ ⊂ Λ containing all the classes of these objects;
the corresponding union of walls W̄Ξ is a locally-finite union of closed subsets of positive
codimension. So we can find some other stability condition σ′, arbitrarily close to σ, where
Xi, Yi still give cosi decompositions of X, Y , and where the phases of any Xi and Yj are
pairwise distinct when [Xi] and [Yj] are not proportional. If the noncrossing statement of the
lemma is true for σ′ it is also true for σ since it makes no further reference to the stability
condition.

Let us start with the first type of polygon. Assume the polygon has k edges on the
right and l edges on the left, and for ease of notation we label the intervals in this polygon
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Figure 4.7: Again, the annulus ∆∗(1,1) mirror to P1. Under this correspondence F(∆∗(1,1))
∼=

Db(Coh(P1)) we have I1
∼= O(1) and I2

∼= O with Hom(I2, I1) spanned by ηx, ηy. Note that
is not a counterexample to case (2) of Lemma 50 since the polygon doesn’t bound a disk.

starting by 1 on both sides. Without loss of generality shift the grading of X such that
the intersection point p has index ip(X1, Y1) = 1. By minimality of crossings p contributes
nonzero classes in Ext1(X1, Y1) and in Hom(Y1, X1). Since both are stable objects, this
implies that

phase(Y1) ≤ phase(X1) ≤ phase(Y1) + 1.

Smoothing out each one of the chains of intervals separately, one gets a bigon with vertices
at p and q; the existence of the embedded bigon constrains the index of q to be iq(Xk, Yl) = 0,
and by the same argument we have

phase(Xk) ≤ phase(Yl) ≤ phase(Xk) + 1.

By assumption, all the other vertices of this polygon give, on the left hand side, extension

maps Xi
+1−→ Xi+1, and on the right hand side, extension maps Yi+1

+1−→ Yi. Since all these
maps appear in HN decompositions we must have the following inequality between phases

phase(Xi) ≤ phase(Xi+1 for all 1 ≤ i ≤ k−1, phase(Yj) ≥ phase(Yj+1) for all 1 ≤ j ≤ l−1

, which together with the previous inequality gives that the phases are all equal. But since
we excluded the degenerate polygons, at least two of the K0 classes of this object these
objects are not multiples of the same class so by Ξ-genericity of σ′ they have distinct phases.
The three other cases are proven by small variations of this same argument.

Remark. Note that the two chains might still share a common stable interval; this is not
ruled out by the argument above and in fact happens generically. Similarly, note that our
definition of chain-of-intervals decomposition above does not exclude the possibility that the
chain of intervals overlaps with itself. Again, in the annulus example consider some algebraic
stability condition such that the stable objects are two intervals I1, I2 connecting the outer
and inner boundary, and consider the embedded interval object also connecting the two
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boundaries but wrapping around more times; this object has a cosi decomposition given by
multiple copies of I1 and I2.

Self-overlapping chains of intervals will pose some serious technical difficulties later on,
so we will rule them out with the following criterion. Let X be an indecomposable object
with a cosi decomposition (X1, . . . , XN), with Xi supported on γi.

Definition 27. This is a simple cosi decomposition if all the γi are in pairwise distinct
isotopy classes, all the marked boundary intervals M1, . . . ,MN are pairwise distinct and also
distinct from the ends M0,MN+1 of X.

This condition implies that among the stable objects Xi, one does not find more than
one copy of any given isomorphism class, or any of its shifts more than once. Moreover, only
successive intervals share marked boundary components, so among these objects the only
nontrivial degree zero homs are the self-homs and the only non-trivial extension homs are
between adjacent intervals.

Lemma 51. If X has a simple cosi decomposition as above, then its HN envelope HNEnv(X)
is equivalent to either:

• The Fukaya category of the disk ∆N+1 with N +1 marked boundary intervals, or equiv-
alently the derived category of the AN Dynkin quiver, if X is an interval object with
ends on distinct marked boundary intervals, or

• The Fukaya category of the annulus ∆∗p,q with p and q inner and outer boundary inter-
vals for some p+q = N +1 and grading of index zero around the circle, or equivalently
the derived category of the ÃN quiver, if X is a circle object.

Proof. We can prove this constructively by giving a map of arc systems. Consider the (non-
full) arc system given by all the intervals γi; this defines an A∞-category A. Since this is
a chain of arcs there are no polygons so all the higher structure maps µi between them are
trivial. Note that HNEnv(X) is obtained by taking the triangulated closure of A.

If X is an interval object, let us denote by m the number of indices i such that the
extension map at Mi it ‘on the left’ ie. given by an extension map in Ext1(Xi+1, Xi).
Similarly we denote by n the number of extensions ‘on the right’ ie. given by an extension
map in Ext1(Xi, Xi+1); we have m+ n = N − 1. Consider the disk ∆N+1 with the following
arc system: position m of the marked boundary intervals on the left and n on the right,
with the remaining two on the top and bottom. There is then a unique chain of arcs αi
starting from the bottom and ending at the top such that αi and αi+1 meet on the left if the
extension is in Ext1(Xi, Xi+1) and on the right if the extension is in Ext1(Xi+1, Xi).

This arc system gives an A∞-category equivalent to A, since the morphisms all agree and
all the higher structure maps are zero. The argument for the circle case is similar, except
we put m of the marked boundary components on the inner boundary circle and n on the
outside (considering also the extension given by M0 = MN)
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In general, objects will not have a simple cosi decomposition, but the following topolog-
ical condition is sufficient.

Lemma 52. Let X be an object with a cosi decomposition, supported on an embedded
interval γ separating the surface Σ into two connected components, such that the two ends of
γ belong to distinct marked boundary intervals. Then X has a simple cosi decomposition.

Proof. Let us write as before γ1, . . . , γN for the intervals and M1, . . . ,MN−1 for the marked
boundary intervals between them. We would like to rule out the possibility of having repeated
intervals or marked boundary intervals.

Suppose that the subsequence

Mi, γi+1,Mi+1, . . . ,Mi+k−1, γi+k,Mi+k

repeats itself, ie. all those intervals and marked boundary components are isomorphic to

Mj, γj+1,Mj+1, . . . ,Mj+k−1, γj+k,Mj+k

for some other j. For simplicity assume that j > i + k so there’s no overlap; and let us
assume that k is maximal. Let us also assume that i > 0 and j + k < N so that we are in
the middle of the chain and not at the ends, and that j is the smallest index possible with
these properties (because this sequence could in principle repeat many times).

There are then four possibilities for the extension maps at Mi and Mi+k, as below:

Figure 4.8: Four possible cases for extensions within a self-overlapping chain.

If we are in the first case or third case, note that concatenating the chain by those
boundary walks leads to a self-crossing of γX . This self-crossing cannot be eliminated by
isotopy, because due to Lemma 50 there are no polygons of stable intervals bound by the
chain. Since we assumed that X is an embedded interval object this is impossible.

As for the second case and fourth case, note that concatenating the chain by those
boundary walks leads to an embedded interval that does not separate the surface into two
parts, contradicting the topological condition.
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The special cases to be dealt with are when this repeated sequence is at one end of
the chain; in this case it is easy to see that the concatenation is always non-trivially self-
intersecting, unless the overlap is just a single boundary component M0 = MN which we also
excluded by assumption. The more general case of repeated intersections, nested intersec-
tions etc. poses no essential difficulties and can be argued by repeating the argument above
recursively.

With these lemmas, we prove the following proposition constraining the form of the HN
decomposition of an object.

Proposition 53. Let X be an rank one indecomposable object of D = F(Σ) and σ ∈ Stab(D)
any stability condition. Then X is either a stable circle or has a chain of stable intervals
decomposition under σ.

Proof. Suppose that X is not a semistable circle. Consider the HN decomposition of X
under σ and further decompose each semistable factor of phase φ using the Jordan-Hölder
filtration on the abelian category Pφ. We get then a total filtration

0 // X1

π1
}}

// X2

π2
}}

// . . . // XN−1
// XN = X
πnwwA1

ε1=0

^^

A2
ε2
aa

AN
εn
ee

where each factor Ai is stable but the phases φi might repeat.
We will prove by induction on the total length N . The case N = 1 is obvious. Assume

now that the statement is true for any object of total length N − 1, and take an object X
as above.

Consider the extension XN−1 → XN → AN . Since the object AN is stable, by Lemma
47 it is either representable either by an embedded interval or an embedded circle. We will
treat these cases separately.

If AN is an interval object supported on a embedded interval αN , and XN−1 is supported
on some collection of immersed curves γN−1. Note that we can also express XN−1 as an
extension

AN [−1]→ XN−1 → XN

, so we conclude that XN−1 is either supported on a single immersed curve (interval or circle)
or a direct sum of two intervals.

We choose αN and γN−1 to have minimal intersections with each other. The extension
map η ∈ Ext1(AN , XN−1) comes from a linear combination of classes corresponding to trans-
verse intersection points between αN and γN−1, and shared marked boundary intervals; let
us write

η = c1M1 + c2M2 +
∑
p

cpp

where M1,M2 are extension maps given by the marked boundary intervals at the end of
AN and p labels extension maps coming from intersection points. Note that the coefficients
c1, c2, cp are not uniquely defined.
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Figure 4.9: One example where AN extends XN−1 with an extension map c2M2 + cpp. Using
only the extension at p we obtain X ′ which is the sum of two interval objects (each of smaller
total length), which can be extended at M2 to give X. In this case XN−1 and AN shared the
other boundary too; this does not have to be the case in general

We see that it is impossible to have c1 = c2 = 0. If the extension happens only at trans-
verse intersection points, then this extension is supported on two (or more) superimposed
curves which is impossible since we assumed XN = X was indecomposable.

Consider then the modified extension map

η′ =
∑
p

cpp

and the corresponding extension XN−1 → X ′ → AN . This is supported on a set of curves
that share the marked boundary intervals M1 and/or M2 and moreover can be extended at
those to obtain the original object X. This topologically constrains X ′ to be of one of three
types:

1. X ′ = I1⊕ I2, two intervals which can be extended at a common boundary to form the
interval object X,

2. X ′ = I1 ⊕ I2 ⊕ I3, three intervals which can be extended at two common boundaries
to form the interval object X,

3. X ′ = I1⊕ I2, two intervals which can be extended at both common boundaries to form
a circle object X.

Whichever case we are in, since total length is additive, the indecomposable factors
I1, I2, I3 are all of length ≤ N − 1 so by the induction hypothesis they have cosi decom-
positions, which can then be composed at the shared marked boundaries to give a cosi
decomposition for X.
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It remains to deal with the case where AN is a circle object. Since there is no boundary,
the extension map η ∈ Ext1(AN , XN−1) must be given by a linear combination

η =
∑
p

cpp

of the classes given by transverse intersections p between αN and γN−1. Assume first that
N ≥ 3; then N − 1 ≥ 2 and therefore XN−1 is not a semistable circle so by the induction
hypothesis it has a cosi decomposition coming from concatenating intervals α1, . . . , αN−1.

We see that every transverse intersection of index 1 between αN and γN−1 must come
from one or more transverse intersections of index 1 between αN and another αi. However
this gives a nonzero class in Hom(Ai, AN) which cannot happen if φAi ≥ φAN , so the only
possibility is that these have the same phase (ie. appear together in the HN filtration). But
this is also impossible: since Ai and AN are both simple objects in the abelian category PφAi ,
the existence of this nonzero morphism implies that Ai ∼= AN which cannot happen since
one is a circle object and another is an interval object.

The only last case to deal with is when N = 2 and X is an extension of two stable circle
objects A1, A2; by the same argument as above this can only happen if the two circles are
isomorphic but then X cannot be rank one.

One easy consequence of this result is that the monodromy of the local system carried
by the immersed curve does not matter for its stability.

Corollary 54. Fix any stability condition σ as above, and X any rank one object supported
on a curve γ. If X is stable under σ, then any other rank one object X ′ supported on γ is
also stable under σ.

Proof. Suppose otherwise; then X ′ has a cosi decomposition. But the same chain of intervals
can be concatenated to give X as well, by taking different multiples of the extension classes
between the intervals in the chain, contradicting the assumption.

The only indecomposable objects not covered by Theorem 53 are circle objects with
higher rank local systems, but this will cause no further problems:

Lemma 55. Let X be an indecomposable object supported on a circle γ with higher-rank
local system. Then there are two possibilities for X:

1. X is a semistable interval whose stable components are all rank one objects supported
on γ,

2. X has a decomposition as as chain of semistable intervals, ie. similar to a cosi
decomposition except that every piece is a direct sum of stable intervals instead of a
single stable interval.
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Proof. Suppose X carries a rank r indecomposable local system L. If the rank one objects
supported on γ are stable, then we pick r such objects with monodromies given by the
eigenvalues of L; using the self-extension of the circle we can present X as an iterated
extension of these objects, proving that X is semistable, so we are in case (1). Otherwise,
these rank one objects have a cosi decomposition; again we take r copies of this chain of
stable intervals and extend them appropriately to construct the local system L, and we are
in case (2).

Combining the results above, we conclude that certain kinds of embedded intervals always
have simple cosi decompositions.

Corollary 56. Let X be an object of F(Σ) represented by an embedded interval γX with
trivial rank one local system, such that γX cuts the surface into two, and has ends on distinct
marked boundary intervals. Then X has a simple cosi decomposition under any stability
condition, and thus there is an abstract equivalence of triangulated categories HNEnv(X) ∼=
Db(AN).

4.4 The HKK construction

In this section we will present a construction by Haiden, Katzarkov and Kontsevich [56] of
stability conditions on the Fukaya categories we defined in Section 4.2. This construction
gives stability conditions starting from some geometric data on the surface; one starts with
a quadratic differential on a compactification of Σ with singularities of prescribed type.

To define such quadratic differentials, one must pick a complex structure on this com-
pactification; this is an indication that the choice of quadratic differential here plays an
analogous role as the choice of Calabi-Yau form in the Thomas-Yau conjecture. In Chapter
5 we will introduce some formalism that will allow us to prove in some cases that every
Bridgeland stability condition in fact comes from such geometric data.

Flat surfaces

Let us first define the structure that will be used to define such stability conditions.

Definition 28. A flat surface is a (possibly non-compact) topological surface X with a
choice of complex structure and a section of the square of the holomorphic tangent bundle
of X.

Equivalently, this structure can also be presented as a flat Riemannian metric on an
oriented surface, together with a covariantly constant foliation η (the horizontal foliation).
We consider only surfaces whose metric completions have conical singularities; these can be
finite-angle singularities, where a neighborhood of the singularity is homeomorphic to finitely
many half-planes glued together, or infinite-angle singularities, where the neighborhood is
homeomorphic to an union of half-planes indexed by Z.
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Let us fix now a surface with boundary (Σ, ∂Σ). We will define the stucture of a real
blowup of a flat surface with underlying surface Σ to be the structure of a flat surface of
Σ \ ∂Σ, such that every neighborhood of a component of ∂Σ is homeomorphic to the real
blow-up of a conical singularity. Contracting ∂Σ one gets a flat surface X with conical
singularities at a collection of points P .

If moreover Σ comes with a grading η (ie. a line field) one can ask that there be a
homeomorphism of graded surfaces between Σ \ ∂Σ and X \P ; we will denote byM(Σ) the
moduli space of such flat surfaces X.

Fix now such a flat surface X. A saddle connection on X is a geodesic whose ends
converge to points in P ; the phase of such a saddle connection will be the angle it makes
with the horizontal foliation η divided by π; this is a real number defined mod 2. Consider
now the collection of saddle connections that are horizontal, ie. have phase zero. In a generic
situation, cutting along the horizontal saddle connections gives a nice decomposition of the
flat surface. More specifically, we have the following result:

Proposition 57. [56, Prop.2.4] Let X be a connected marked surface with finitely many
boundary components and with infinite area. Then, possibly after a arbitrarily small rotation
of the flat structure, the horizontal saddle connections divide X into finitely many horizontal
strips of finite height and (possibly infinitely many) horizontal strips of infinite height.

A saddle connection that is entirely contained inside a single horizontal strip of finite
height will be called a simple saddle connection.

HKK stability conditions

Consider now a real blowup (Σ, ∂Σ) of a flat surface X with quadratic differential ϕ. The
horizontal foliation of X gives rise to a grading η of Σ. Moreover, for every finite-angle
singularity of ϕ we mark the whole corresponding component of ∂Σ, and for every infinite-
angle cone singularity we put a marked interval in the corresponding component of ∂Σ.

For example, following the classification of (possibly exponential-type) singularities of
quadratic differential in [56, Sec.2], this is equivalent to assigning the following markings:

• Every simple pole or zero of ϕ gives a marked circle in the corresponding component
of ∂Σ

• Every exponential-type singularity of the type ϕ ∼ exp(p(z)) gives deg(p) many marked
intervals in the corresponding component of ∂Σ

Consider the Fukaya category F(Σ) of this graded marked surface (Σ, ∂Σ, η). The integral
of
√
ϕ gives a map ∫

√
ϕ : H1(Σ, ∂Σ;Zτ )→ C
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which composed with the natural map of Theorem 44 gives a central charge Z : K0(F(Σ))→
C. Now let us define full subcategories Pφ for each φ ∈ R to be spanned by objects repre-
sented by simple saddle connections of phase φ.

Theorem 58. [56, Thm.5.1] The data (Z,P) define a stability condition on F(Σ), and
moreover the map

M(Σ)→ Stab(F(Σ))

is a local homeomorphism to its image.

This implies that the image ofM(Σ) is an union of connected components of Stab(F(Σ)).
Some simple explicit examples are also computed in [56], namely the disk and the annulus,
where one can prove that there are no other components of Stab(F(Σ)); we will recall some
of these calculations later in Section 5.3.

In the following chapter we will address this question by presenting a definition of a
relative stability conditions on these categories. This definition will satisfy cutting and
gluing relations, which allow us to prove that in the ‘fully stopped’ case these HKK stability
conditions do in fact cover all of Stab(F(Σ)).
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Chapter 5

Relative stability conditions

In this chapter, we will present the main parts of the author’s work [107]. The starting point
of that paper is the observation that HKK stability conditions, which are given by quadratic
differentials as we have seen in the previous section, can be constructed by a local-to-global
principle.

This is quite unusual for Bridgeland stability conditions. For example, suppose that one
is given a category Ci presented as a colimit of a diagram of categories Ci, i ∈ I (as it is the
case in the cosheaf description of the Fukaya category). Checking whether a pair (Z,P) is
a stability condition requires knowing the morphism spaces in C and checking the necessary
conditions for giving a slicing, which turns out to be quite complicated in terms of the local
categories Ci.

Another argument for this is that the two parts of a stability condition, the central
charge and the slicing, have opposite functorialities. Given a colimit C = colimi∈I Ci with
maps Ci → C, the central charge naturally pulls back from C and the slicing naturally
pushes forward to C. While there are ways of getting around this in certain examples,
for example using semiorthogonal decompositions such as in [29], those techniques are not
directly applicable to our context.

Summary of results

The initial motivation for [107] is the observation that [56] provides an enticing counterex-
ample to this trend, since it builds stability conditions on F(Σ) from geometric objects with
nice functorial properties, namely flat structures, which glue along nicely under a decom-
position of the surface. For example, given a decomposition of Σ into two pieces Σ1 and
Σ2 mutually overlapping along a rectangular strip R, and a flat structure on Σ, restricting
the flat structure to each side gives a flat structure (with the new boundary ‘at infinity’).
Moreover, once one defines the appropriate notion of compatibility between flat structures
along the strip, one can glue compatible flat structures on Σ1 and Σ2 into a flat structure
on Σ.
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This work can be seen as an effort towards abstracting this idea of cutting and gluing
into a construction that only makes reference to the stability conditions themselves. The
appropriate local pieces of this construction will be given by the definition of relative stability
conditions on a marked surface. A relative stability condition on Σ with respect to some
unmarked boundary arc γ is an ordinary stability condition on another surface Σ̃, obtained
from Σ by an appropriate modification along γ.

This definition behaves well under certain decompositions of surfaces. Let RelStab(Σ, γ)
denote the set of relative stability conditions on Σ relative to γ. we prove that this set is
naturally a Hausdorff space, with a topology inherited from the topology of the spaces of
(ordinary) stability conditions. Consider a decomposition Σ = ΣL ∪γ ΣR into two surfaces
glued along boundary arcs. Our main technical result is about the existence of cutting and
gluing maps relating stability conditions on Σ and relative stability conditions on ΣL and
ΣR.

Theorem 59. There is a relation of compatibility along γ defining a subset Γ ⊂ RelStab(ΣL, γ)×
RelStab(ΣR, γ) and continuous maps

Stab(F(Σ))
cut−→ Γ

glue−−→ Stab(F(Σ))

which compose to the identity.

Consider now any marked graded surface Σ that is ‘fully stopped’, ie. every boundary
circle has at least one marked interval. Assume also that at least one boundary circle has at
least two marked intervals. In Section 5.3, we define a procedure for reducing the calculation
of StabF(Σ) to the calculation of (ordinary) stability conditions on three base cases: the
disk, the annulus and the punctured torus.

In all of these cases it can be shown that every stability condition is an HKK stability
condition, ie. the map M(−)→ Stab(F(−)) is an isomorphism. The cases of the disk and
of the annulus are dealt with in [56], but the calculation for the case of the punctured torus
is new. Theorem 59 implies that the gluing map Γ→ Stab(F(Σ)) is surjective, so knowing
that all the base cases are fully described by HKK stability conditions we deduce the same
for the surface Σ.

Theorem 60. Every stability condition on F(Σ) is an HKK stability condition, ie. given
by a flat structure on Σ.

As mentioned above, this author believes that the value of this construction is not nec-
essarily in its specific application to the case of Fukaya categories, but rather in its use for
constructing and analyzing stability conditions sheaf-theoretically. It would be very fortu-
nate if these tools could be rephrased in purely categorical terms, without direct reference
to the geometry of Σ. In general terms, the idea is to define relative stability conditions on
fully faithful functors A → B that can be glued to give stability conditions on pushouts of
the form B ∪A B′.
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For that purpose, we have tried to make the definitions of relative stability conditions
as functorial (ie. independent of the explicit description of the surface) as we could, but it
has not yet been possible to rephrase the relevant definitions and lemmas in such terms. In
particular the theorems involving the cutting and gluing maps of Section 5.2 still depend
on the underlying topological structure of the surfaces; one of the main questions to face
before generalizing them to other types categories is to find equivalents of the ‘non-crossing’
Lemma 50.

It is likely that this kind of construction could be extended beyond Fukaya categories of
surfaces; this motivates many possible directions of future study. One obvious such direc-
tion is towards extending the definition of relative stability conditions to wrapped Fukaya
categories of higher-dimensional symplectic manifolds, using the microlocal model discussed
previously in Chapter 2. Due to the sheaf-theoretic properties of the microlocal sheaf model,
and the relatively simple local nature of the categories involved (ie. quiver representation
categories), it appears that this model would be very suitable to the application of relative
stability conditions, since the study of stability conditions on quiver representation categories
is in general much simpler than on ‘more geometric’ categories.

The notion of relative stability conditions also opens up the possibility of using these
sheaf-theoretic techniques to address some questions about dynamics on surfaces; the work
of Dimitrov, Haiden, Katzarkov and Kontsevich [37, 35, 36] investigates the relation between
dynamical systems on surfaces and stability conditions on their Fukaya category. The relation
between Teichmüller theory and stability conditions was already noted in [24, 47], and in
particular there is a close relation between the set of stable phases Φ (which we analyze for
some cases in Section 5.3) and measures of dynamical entropy for categories. For now, the
possible applications of our methods to such questions remain topic of current and future
investigations.

5.1 Relative stability conditions on Fukaya categories

of surfaces

In this section, we present a notion of stability conditions on a surface Σ relative to part
of its boundary. This construction will exhibit functorial behavior and satisfy cutting and
gluing relations. First we will give some presentations of the category F(Σ) that will be
useful in stating that definition.

Pushouts

In [56], it is shown that given a full system of arcs on Σ, one can define a graph G dual to
it and a constructible cosheaf E of A∞-categories on G such that:

Theorem 61. [56, Theorem 3.1] The category F(Σ) represents global sections of the cosheaf
E, ie. is the homotopy colimit of the corresponding diagram of A∞-categories.
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We will describe how to use this result to express F(Σ) as certain useful homotopy
colimits. Let γ be some embedded interval dividing Σ into two surfaces, ΣL and ΣR. Suppose
that we have a chain of intervals γ1, . . . , γN in distinct isotopy classes connecting n+1 distinct
marked boundary intervals M0, . . . ,Mn, such that their concatenation gives the interval γ.

Lemma 62. Σ admits a full system of arcs A = AL t Aγ t AR such that every arc in AL
has a representative contained in ΣL, every arc in AR has a representative contained in ΣR,
and Aγ = {γ1, . . . , γN}.

Proof. Consider a (non-full) system of arcs Aγ given by the ‘closure’ of Aγ = {γ1, . . . , γN};
that is containing also a chain of arcs connecting all the marked boundary intervals to the
left of the chain γ, and the analogous chain to the right of it.

Figure 5.1: The (non-full) system of arcs Aγ and its closure Aγ. The green arcs are elements
of Aγ \ Aγ.

Since all the intervals in Aγ are non-intersecting and not pairwise isotopic there is some
full arc system A of Σ containing them; and since γ (and therefore the chain made by the
γi) cuts the surface into two we can partition the arcs A that are not among the γi into left
and right subsets AL and AR. By construction every arc in AL is contained in ΣL and every
arc in AR is contained in ΣR.

Consider this arc system A. Let us define Σ̃L to be the smallest marked surface with an
inclusion into Σ that contains all the arcs in AL t Aγ; we define Σ̃R analogously.

We see that topologically, Σ̃L, Σ̃R can being constructed from ΣL,ΣR by attaching a disk
along γ, that is

Σ̃L = ΣL ∪γ ∆m, Σ̃R = ΣR ∪γ ∆n

where ∆k is the disk with k marked boundary intervals. By minimality of these surfaces, we
must have (m− 2) + (n− 2) = N − 1.

Let us denote the triangulated closure of the object represented in an arc system by 〈A〉.
Then we have F(Σ̃L) = 〈AL t Aγ〉 and F(Σ̃R) = 〈AR t Aγ〉. Using the cosheaf description
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Figure 5.2: The two ‘modified’ surfaces Σ̃L and Σ̃R. Each one is obtained from ΣL,ΣR re-
spectively by adding more marked intervals (m and n of them) along the boundary according
to the chain. In this example N = 4,m = 2, n = 1.

above we can assemble all these categories into the following cube diagram:

〈Aγ〉 //

��

F(Σ̃R)

��

〈γ〉 //

ee

��

F(ΣR)

99

��

F(ΣL)

yy

// F(Σ)
∼=
%%

F(Σ̃L) // F(Σ)

where the inner and outer squares, and the top and left sides are all pushouts (ie. homotopy
colimits).

Main definitions

Consider now some surface S with an embedded interval γ which connects two adjacent
marked boundary intervals M,M ′, and runs parallel to the unmarked boundary interval
between them (for example we can take (S, γ) = (ΣL, γ) as above).

Definition 29. A relative stability condition on the pair (S, γ) is the data of:

• A surface S̃ = S ∪γ ∆n where ∆n is a disk with n marked boundary intervals, with a
given inclusion map S ↪→ S̃,

• A stability condition σ̃ ∈ Stab(F(S̃)).
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Note that the first condition implies that the embedded interval γ ⊂ S̃ cuts the surface
into two, so by Lemma 52 any indecomposable object C supported on γ has a simple cosi
decomposition under σ̃.

Fix a relative stability condition σ = (Z,P) and let us denote by C1, . . . , CN the corre-
sponding chain of stable intervals in the decomposition of C, supported on arcs γ1, . . . , γN .
As in the previous subsection, we can take (ΣL,ΣR) = (S,∆n); this defines an arc system
AL t Aγ t AR on S̃.

Restricting stability conditions and minimality

Consider now the central charges

ZL = Z|〈ALtAγ〉, ZR = Z|〈AγtAR〉

and the ‘candidates for slicings’ PL,PR, given by intersecting the full triangulated subcate-
gories Pφ with the full triangulated subcategories 〈AL t Aγ〉, 〈Aγ t AR〉, respectively.

Lemma 63. σ|L = (ZL,PL) and σ|R = (ZR,PR) give stability conditions on the subcategories
〈AL t Aγ〉 and 〈Aγ t AR〉.

Proof. The compatibility between the central charges and filtrations is obvious by construc-
tion; we only need to check that PL,PR do in fact give slicings, ie. that every object in
either category has an HN decomposition by objects in each restricted slicing. This can
be checked on indecomposable objects and follows from Lemma 50; every indecomposable
object on either side can be represented by some immersed curve keeping to the same side
of the chain γ, so therefore its HN decomposition under the original stability condition σ
cannot cross to the other side.

Note that this construction σ → (σ|L, σ|R) does not give a map from the entire stability
space Stab(F(S̃)) to any other stability space; as σ varies, the target categories 〈AL t Aγ〉
change since the decomposition of the interval object C changes as we cross a wall. However,
this only happens across some specific kinds of walls, defined by the following condition:

Definition 30. The relative stability condition σ is non-reduced if there are two interval

objects Ci, Ci+1 extended on the right (ie. by an extension map Ci+1
+1−→ Ci), with the same

phase.

By standard results [24], the subset of non-reduced stability conditions is contained in a
locally finite union of walls of Stab(F(S̃)) walls, so the subset of reduced stability conditions
is composed of open chambers.

Lemma 64. Within each chamber C of reduced relative stability conditions, the target sub-
category 〈AL tAγ〉 is constant and the map Stab(F(S̃))→ Stab(〈AL tAγ〉) is continuous.
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Proof. Within each reduced chamber C, the chain γ is constant except for the (internal) walls
on which two (or more) adjacent interval objects of the same phase Ci, Ci+1 are extended

on the left (ie. by an extension map Ci
+1−→ Ci+1). However, though the chain Aγ changes

across such a wall, by construction of AL we see that 〈Aγ tAL〉 stays constant. Continuity
follows from the fact that a small enough neighborhood of every stability condition on some
category D is isomorphic to (K0(D))∨ = HomZ(K0(D),C) and in that neighborhood the
map Stab(F(S̃)) → Stab(〈AL t Aγ〉) is described by the projection dual to the inclusion
K0(〈AL t Aγ〉)→ K0(F(S̃)).

For our later uses, we would like to define a notion of minimality, in the sense that the
integer n of marked boundary intervals of ∆n is as small as possible.

Definition 31. A relative stability condition σ on (S, γ) minimal if every marked boundary
interval of ∆n appears in the simple chain of stable intervals decomposition of C.

Another way of phrasing the minimality condition is:

Lemma 65. σ is minimal if and only if and 〈AR〉 ⊆ 〈Aγ〉.

The space of relative stability conditions

For our purposes, the part of the stability condition ‘on the disk side’ does not matter; we
realize this by using an equivalence relation. Let σ ∈ Stab(F(S̃ = S ∪ ∆m)) and σ′ ∈
Stab(F(S̃ ′ = S ∪ ∆n)) be two relative stability conditions on (S, γ). As above, one can
(non-uniquely) pick corresponding arc systems AL t Aγ t AR and A′L t A′γ t A′R on S̃ and

S̃ ′, and restrict stability conditions to each side.
We will see that we need to be careful about genericity when defining the correct equiv-

alence relation. For motivation let us first define a naive notion of equivalence:

Definition 32. (Naive equivalence) σ ∼naive σ
′ if there is an equivalence of categories

〈AL t Aγ〉 ∼= 〈A′L t A′γ〉

(compatible with the embedding of F(S) on both sides) such that the restricted stability
conditions σ|L and σ′|L agree.

It is clear from the definition above that ∼naive defines an equivalence relation on the
set of relative stability conditions on (S, γ). We would like to define the space of relative
stability conditions as the quotient of the space

S =
⊔
n≥2

Stab(F(S ∪γ ∆n))

by the relation ∼naive, but it turns out that this space is ill-behaved. For instance, it is not
Hausdorff, because the graph Γ∼naive ⊂ S× S of the naive relation is not a closed subset.
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Figure 5.3: The surfaces S ∼= ∆2 and S̃ ∼= S̃ ′ ∼= ∆3. The category F(S) is equivalent to
Mod(A1) and F(S̃) is equivalent to Mod(A2).

Example. Take the simple example where S ∼= ∆2 with unique (up to shift) indecomposable
object C and S̃ ∼= S̃ ′ ∼= ∆3, with objects A,B,C as below.

We have a distinguished triangle A→ C → B. Consider two infinite families of stability
conditions on F(∆3), {σm = (Zm,Pm)} and {σ′m = (Z ′m,P ′m)} with m ∈ Z+, on F(∆3) given
by the central charges

Zm(A) =
1

3
+ i

1

m
, Zm(B) =

2

3
− i 1

m

Z ′m(A) =
2

3
+ i

1

m
, Z ′m(B) =

1

3
− i 1

m

with A,B and C stable in all of them, picking phases for all these objects between −1/2
and 1/2. Each one of these sequences converges in Stab(F(∆3)) respectively, to the stability
conditions σ∞, σ

′
∞ with central charges

Z∞(A) =
1

3
, Z∞(B) =

2

3

Z ′∞(A) =
2

3
, Z ′∞(B) =

1

3

where A,B are stable but C is only semistable, with Jordan-Hölder factors A,B.
Seen as relative stability conditions on (∆2, γ), all the σm, σ

′
m for any m are equivalent

under ∼naive; the subcategory 〈ALtAγ〉 is F(∆2) = 〈C〉 and the central charge of C is 1 for
all finite m. On the other hand, σ∞ and σ′∞ are not equivalent under ∼naive, since for those
two 〈AL t Aγ〉 is the whole category. Thus (σ∞, σ

′
∞) ∈ Γ∼naive \ Γ∼naive.

As in the example above, the problem always arises when we have relative stability
conditions which are non-reduced. Consider a relative condition σ on (S, γ) given by a
stability condition on F(S̃) for some S̃ = S ∪γ ∆n, where the object C supported on γ has
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a cosi decomposition C1, . . . , CN . Assume that σ is non-reduced; this means that there is
a nonempty set of indices R ⊂ {1, . . . , N} such that the extension map is ‘on the right’ (ie.
∈ Ext1(Ci+1, Ci)) and Ci and Ci+1 have the same phase. Let us suppose that the set R is of
the form j, j + 1, . . . , j +m for some 1 ≤ j ≤ j +m ≤ N − 2 with all objects Cj, . . . , Cj+m+1

having the same phase φ; the general case (where R is the disjoint union of a number of
those subsets) will not be any more difficult.

Consider now the reduced arc system given by

Ared
γ = {γ1, . . . , γj−1, γ̃, γj+m+2, . . . , γN},

where γ̃ is obtained by concatenating the intervals γj, . . . , γj+m+1 at themmarked boundaries
Mi with index i ∈ R. Let us now define a reduced restriction σred given by restricting the
data of σ to the subcategory 〈AL t Ared

γ 〉, and then adding to the category Pφ the objects
supported on γ̃.

Lemma 66. σred is a stability condition.

Proof. It suffices to prove that every object in the subcategory 〈AL t Ared
γ 〉 has an HN

decomposition into stable objects also in that same subcategory. Because of Lemma 50, the
only way this could fail is if there is some indecomposable object X of 〈AL tAred

γ 〉 in whose
decomposition some but not all of the stable interval objects Cj, . . . , Cj+m+1 appear (if all
of them appear we just replace that semistable object with the stable object C̃ supported
on γ̃). But this cannot happen for phase reasons, following a similar argument as the proof
of Lemma 50.

For completeness let us define σred = σ|L if σ is reduced. With this definition we can now
state the correct notion of equivalence.

Definition 33. (Equivalence) σ ∼ σ′ if there is an equivalence of categories

〈AL t Ared
γ 〉 ∼= 〈A′L t A′red

γ 〉

(compatible with the embedding of F(S) on both sides) such that the reduced restricted
stability conditions σred and σ′red agree.

It is clear from the definition that∼ is an equivalence relation on the set S =
⊔
n≥2 Stab(F(S∪γ

∆n)).

Lemma 67. There is a unique minimal and reduced relative stability condition in each
equivalence class of the equivalence relation ∼.

Proof. Consider some relative stability condition σ; as above it defines a stability condition
σred on the subcategory 〈ALtAred

γ 〉. Note that this subcategory is also of the form F(S∪γ∆n),
with n = |Ared

γ |+ 1, and also by construction σ is equivalent to the reduced σred when both
are viewed as relative stability conditions on (S, γ).
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Suppose now that we have two stability conditions σ ∼ σ′ which are minimal and thus
reduced; then the arcs in AR,A′R can be generated by the other arcs so by compatibility we
have

F(S̃) ∼= 〈AL t Aγ〉 ∼= 〈A′L t A′γ〉 ∼= F(S̃ ′),

but it is easy to see that no two categories F(S ∪γ ∆n) are equivalent for different n (for
example by taking K0) so S̃ ∼= S̃ ′ (compatibly with the embedding of S) with equivalent
stability conditions.

Definition 34. (Space of relative stability conditions) Let us define RelStab(S, γ) as the set
of minimal and reduced stability conditions; this set is given the quotient topology by the
identification RelStab(S, γ) = S/ ∼,

Proposition 68. The space RelStab(S, γ) is Hausdorff.

Proof. This is equivalent to showing that the graph Γ∼ of the equivalence relation is closed
in S × S. Since S is an disjoint union this is equivalent to showing Γ∼ is closed in each
component Stab(F(S̃))× Stab(F(S̃ ′)).

The spaces Stab(F(S̃)) have a wall-and-chamber structure where the walls are the locus
of non-reduced stability conditions. By standard arguments, the union of all walls is a locally
finite union of real codimension one subsets. The complement is composed of open chambers,
and by Lemma 64 the target subcategory T = 〈AL t Aγ〉 is constant on each chamber.

In the interior of each chamber

C = Cρ × Cσ ⊂ Stab(F(S̃))× Stab(F(S̃ ′)),

the locus Γ∼ is the preimage of the diagonal ∆ ⊂ Stab(T ) × Stab(T ), so it is closed by
continuity.

Let us look at the walls surrounding the chamber C, and start with a simple codimension
one wall W , ie. the locus at the boundary of C where the phases φi, φi+1 of two adjacent
interval objects Ci, Ci+1 (with an extension to the right) agree. There are two possibilities:
φi < φi+1 or φi > φi+1 inside of C. In the former case, comparing the target categories we
see that the reduced target category T red

W on the wall is equal to the usual target category
TC in the interior of the chamber, so we can apply the same argument as inside the chamber
and conclude that Γ∼ ∩W is closed.

In the latter case T red
W is smaller than TC, as it doesn’t contain the objects Ci, Ci+1, only

their extension. However, the closure Γ∼ ∩ C meets W along a closed locus contained within
Γ∼ ∩W , as the reduced equivalence condition is strictly weaker than the naive equivalence
condition on W . The general case for walls of higher codimension is essentially the same
and can be obtained iteratively.

Now, over the entire space Stab(F(S̃))× Stab(F(S̃ ′)), since each point is surrounded by
finitely many reduced chambers and Γ∼ is closed within the closure of each one of them, Γ∼
is the locally finite union of closed subsets.

Remark. Unlike the space of stability conditions Stab(F(S)), the space RelStab(S, γ) is not
a complex manifold; in fact it is a stratified space, with cells of unbounded dimension.
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Compatibility

Consider now two surfaces S and S ′ with embedded intervals γ, γ′ and relative stability
conditions σ ∈ RelStab(S, γ) and σ ∈ RelStab(S ′, γ′). Given any two such surfaces, we can
glue them by identifying γ = γ′ and obtain a surface S ∪γ S ′. Since there is a full arc system
on this surface containing the arc γ, one can take the ribbon graph dual to this arc system
and get a pushout presentation

F(S ∪γ S ′) = F(S) ∪F(γ) F(S ′).

The relative stability conditions σ, σ′ have unique minimal and reduced representatives by
Lemma 67. However they also have many minimal but non-reduced representatives.

Definition 35. A compatibility structure between σ and σ′ is the following data:

• Minimal representatives σ̃ ∈ Stab(F(S̃)) and σ̃′ ∈ Stab(F(S̃ ′)) of σ and σ′.

• Inclusions of surfaces

S ↪→ S̃ ↪→ S ∪γ S ′, S ′ ↪→ S̃ ′ ↪→ S ∪γ S ′,

such that the images of the embedded intervals in the cosi decompositions of γ and γ′ agree
as an arc system Aγ inside of S ∪γ S ′, and the restrictions σ̃|〈Aγ〉 and σ̃|〈Aγ〉 are the same
stability condition in Stab(〈Aγ〉).

5.2 Cutting and gluing relative stability conditions

In this section, we will explain how to cut (ordinary) stability conditions into relative stability
conditions and glue relative stability conditions into (ordinary) stability conditions. This
will allow us to reduce the calculations of stability conditions on general surfaces Σ to the
calculation of stability conditions on simpler surfaces. Before we present these procedures,
we will need to use the following generalization of a slicing.

Definition 36. A pre-slicing Ppre on a category C is a choice of full triangulated subcate-
gories Ppreφ for every φ ∈ R, such that Hom(X, Y ) = 0 if X ∈ Ppreφ and Y ∈ Ppreψ , φ > ψ.

Remark. This is the same data as a slicing, except that we don’t require the existence of
Harder-Narasimhan decompositions for objects.

Definition 37. A pre-stability condition on C is the data of a central charge function Z :
K0(C)→ C and a pre-slicing Ppre satisfying the usual compatibility condition Z(X)/|Z(X)| =
eiπφ if X ∈ Ppreφ .

Let us denote by PreStab(C) the set of all pre-stability conditions on C. It is obvious
that we have an inclusion of sets

Stab(C) ↪→ PreStab(C).
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Cutting stability conditions

We return to the setting of a surface Σ that is cut into ΣL,ΣR by an embedded interval γ
supporting a rank one object C.

Consider a stability condition σ ∈ Stab(F(Σ)). By Corollary 56, the object C has
a simple cosi decomposition into objects C1, . . . , CN supported on arcs γ1, . . . , γN , which
connect the marked boundary intervals M0, . . . ,MN . As in subsection 5.1, there is then a
full system of arcs

A = AL t Aγ t AR
such that every arc in AL has a representative contained in ΣL, every arc in AR has a
representative contained in ΣR, and Aγ = {γ1, . . . , γN}.

Each extension between Ci and Ci+1 happens either on the left (ie. by an extension map

Ci
+1−→ Ci+1) or on the right (ie. by an extension map Ci+1

+1−→ Ci). Let m, n be the numbers
of indices with extension on the left and right, respectively, plus 2; we have by definition
m− 2 + n− 2 = N + 1 = number of marked boundary intervals along the chain.

Then we have surfaces Σ̃L = ΣL ∪γ ∆m and Σ̃R = ΣR ∪γ ∆n such that

F(Σ̃L) = 〈AL t Aγ〉, F(Σ̃R) = 〈AR t Aγ〉.

Consider the restrictions

σL = σ|〈ALtAγ〉, σR = σ|〈AγtAR〉

that is, as in the previous section we take the data given by restricting the central charges
and intersecting the slicings with each full subcategory.

Lemma 69. σL, σR are stability conditions on F(Σ̃L),F(Σ̃R).

Proof. The condition Z(X) = m(X) exp(iπφX) on every semistable object X is satisfied by
construction, so we just need to check that every object X ∈ FL has a HN filtration, ie. that
PL indeed defines a slicing.

It is enough to check this on indecomposable objects. By geometricity, every such object
X is represented by an immersed curve in Σ̃L with indecomposable local system. Consider
its image in F(Σ) which is also an immersed curve, and its chain-of-interval decomposition
under σ.

If X is an interval object, then both of its ends are on marked boundary components
belonging to Σ̃L, and since the associated chain of intervals is isotopic to the support of X,
if any of those intervals in in ΣR, then the chain must cross back to ΣL, creating a polygon
of the sort prohibited by Lemma 50. And if X is a circle object then it is by definition
supported on a non-nullhomotopic immersed circle, so by the same argument its chain of
intervals cannot cross over to ΣR without also creating a prohibited polygon. Thus every
stable component of the HN decomposition is in FL.
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We then use the inclusions of marked surfaces ΣL ↪→ Σ̃L and ΣR ↪→ Σ̃R to interpret these
stability conditions as relative stability conditions:

Definition 38. The cutting map

cutγ : Stab(F(Σ))→ RelStab(ΣL, γ)× RelStab(ΣR, γ)

sends a stability conditions σ as above to the image of the stability conditions (σL, σR).

By Lemma 67 every element of RelStab has a unique minimal and reduced representative,
so we can alternatively define the cutting map by using the ‘reduced restriction’ of Lemma
66

cutγ(σ) = (σred
L , σred

R ).

Lemma 70. The map Stab(F(Σ))
cutγ−−→ RelStab(ΣL, γ)× RelStab(ΣR, γ) is continuous.

Proof. We must look separately at the maps to each side; let us prove continuity of the map

Stab(F(Σ))
cutL−−→ RelStab(ΣL, γ). Recall that in subsection 5.1 we define the topology on

the RelStab spaces as the quotient topology inherited from S =
⊔
n Stab(S ∪γ ∆n).

Note that the construction for the map cutL does not give a manifestly continuous map
since the target T = 〈AL t Aγ〉 changes across walls in Stab(F(Σ)). We remediate this by
locally defining other maps that are continuous, and which agree with cutL after identifying
by the equivalence relation ∼.

Let σ be a stability condition on F(Σ) such that σL = σ|〈AL∪Aγ〉 is a non-reduced stability
condition, and let us say that under σ the object C supported on γ has a decomposition into
C1, . . . , CN supported on embedded intervals γ1, . . . , γN with respective phases φ1, . . . , φN .
Non-reducedness means that there is some collection of indices i such that Ci, Ci+1 have the
same phase, and are extended on the right. For simplicity, suppose first that we have a single
such index; the general case can be deduced by iterating this argument. Let us denote Cbot

to be the object obtained by concatenating C1, . . . , Ci, and Ctop to be the object obtained
by concatenating Ci+1, . . . , CN .

By standard arguments, the locus on which the objects C1, . . . , CN are simple is open,
so there is a neighborhood U 3 σ on which all these objects are simple, and with a complex
isomorphism U ∼= (K0(F(Σ)))∨. If necessary we further restrict U such that on this open set
the φi−1 6= φi and φi+1 6= φi+2. This implies that on U the chains C1, . . . , Ci and Ci+1, . . . , CN
gives cosi decompositions of Cbot and Ctop, respectively.

Consider now a fixed target category Tfix given by the target Tσ = 〈AL t Aγ〉 at σ.
We argue that for every stability condition σ′ ∈ U , σ′|Tfix

is a stability condition. Note
that this doesn’t follow immediately from Lemma 50 since along some chambers in U , the
pair Ci, Ci+1 is not the cosi decomposition of any object so we cannot directly use the
non-crossing argument.

Nevertheless, we can use a small modification of that argument. Consider some inde-
composable object X in the subcategory Tfix; by geometricity this can be represented by an
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immersed curve ξ to the left of the chain of intervals, and by the results of Chapter 4, X has
a cosi decomposition into intervals ξ1, . . . , ξM whose concatenation is isotopic to ξ.

Now, since both ends of ξ are to the left of the γ chain, and this chain is divided into two
stable chains, extended on the left, the only way that the ξ chain can cross the γ chain is it if
crosses the chain for Cbot or Ctop (or both). But again this is prohibited by the noncrossing
argument of Lemma 50.

Thus this defines a map c̃utγ : U → Stab(Tfix) which by construction is continuous and
agrees with cutγ on U ; doing this for every wall gives continuity of cutγ.

Note that by construction we have representatives σL ∈ Stab(F(Σ̃L)) and σR ∈ Stab(F(Σ̃R))
of the relative stability conditions σred

L , σred
R , and also inclusions of surfaces Σ̃L ↪→ Σ and

Σ̃R ↪→ Σ. It follows directly from the construction above that:

Lemma 71. This is a compatibility structure between σred
L and σred

R .

Gluing stability conditions

As in the previous section consider a surface cut into two parts by an embedded interval
Σ = ΣL ∪γ ΣR. Suppose we have relative stability conditions σL ∈ RelStab(ΣL, γ) and
σR ∈ RelStab(ΣR, γ) with some compatibility structure between them (as in Definition 35).

Unpacking this data, we have non-negative integers m and n and stability conditions
σL = (ZL,PL) on

FL = F(Σ̃L) = F(ΣL ∪γ ∆m)

and σR = (ZR,PR) on
FR = F(Σ̃R) = F(ΣR ∪γ ∆n)

representing σL, σR, together with inclusions of marked surfaces ΣL ↪→ Σ̃L ↪→ Σ and ΣR ↪→
Σ̃R ↪→ Σ.

The compatibility condition implies that the chain-of-intervals decomposition CL
1 , . . . , C

L
N

of the indecomposable object CL ∈ FL supported on γ ⊂ Σ̃L and the chain-of-intervals
decomposition CR

1 , . . . , C
R
N of the indecomposable object CR ∈ FR supported on γ ⊂ Σ̃R are

of the same length N on both sides, and that the central charges agree, ie.

ZL(CL
i ) = ZR(CR

i )

for all i. Also compatibility also requires that the extension maps ηLi and ηRi go the same
direction, ie. either both go forward

ηLi ∈ Ext1(CL
i , C

L
i+1) and ηRi ∈ Ext1(CR

i , C
R
i+1)

or both go backward

ηLi ∈ Ext1(CL
i+1, C

L
i ) and ηRi ∈ Ext1(CR

i+1, C
R
i )
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so we have the relation (m− 2) + (n− 2) = N − 1 due to minimality of σL and σR.
The compatibility structure gives an identification between the images of CL

1 , . . . , C
L
N and

CL
1 , . . . , C

L
N inside of F(Σ); we denote this full subcategory spanned by these arcs 〈Aγ〉 as

in previous sections. This gives a pushout presentation

〈Aγ〉 //

��

FR
jR
��

FL
jL // F(Σ)

From this data we will produce a central charge function K0(F(Σ))→ C and a pre-slicing
P on F(Σ).

The central charge

Applying the functor K0 to the pushout above gives us a diagram of Z-modules

K0(〈Aγ〉) //

��

K0(FR)

��

K0(FL) // K0(F(Σ))

Lemma 72. This is a pushout of Z-modules.

Proof. A priori this need not be a pushout, since K0 does not necessarily commute with
colimits. However note that in this case we have an explicit description of the K0 groups in
terms of H1 groups because of Theorem 44, and the result follows from the fact that we are
gluing along a single chain.

More explicitly, note that K0(F(S)) for some marked surface S is generated by the arcs
in an arc system modulo relations coming from polygons. Completing Aγ to a full arc system
AL t Aγ t AR we see that since there are no polygons crossing between the two sides of
the chain, so the set of relations on K0(F(Σ)) is the union of the sets of relations defining
K0(FL) and K0(FR); this implies the statement above.

By compatibility of the relative stability conditions σL and σR, the central charges on
both sides agree when restricted to K0(〈Aγ〉), so we get a map Z : K0(F(Σ))→ C; this will
be our central charge.

The pre-slicing

We will define full subcategories Pφ of semistable objects in two steps. Let us first define
initial subcategories P ′φ by

P ′φ = jL((PL)φ) ∪ jR((PR)φ)

ie. we take the images of the semistable objects under σL and σR to be stable in F(Σ).



CHAPTER 5. RELATIVE STABILITY CONDITIONS 114

Now let us algorithmically add some objects to the slicing by the following prescrip-
tion. We first define a particular kind of arrangement of stable objects. Remember that
M0, . . . ,MN are boundary components of F(Σ) appearing in a chain of intervals that com-
pose to γ. Let us partitionM =ML tMγ tMR whereMγ = {M0, . . . ,MN},ML are the
other boundary components coming from ΣL and MR are the other boundary components
coming from ΣR.

Definition 39. A lozenge of stable intervals is the following arrangement of intervals:

• Four distinct marked boundary components M`,Mr,Mup,Mdown, where

M` ∈ML, Mr ∈MR, Mup,Mdown ∈Mγ

• A chain of intervals α1, . . . , αa linking M` to Mup, such that αi supports a stable object
Ai ∈ P ′phase(Ai)

, and

phase(A1) ≤ · · · ≤ phase(Aa)

• A chain of intervals β1, . . . , βb linking Mup to Mr, such that βi supports a stable object
Bi ∈ P ′phase(Bi)

, and

phase(B1) ≤ · · · ≤ phase(Bb)

• A chain of intervals δ1, . . . , δd linking M` to Mdown, such that δi supports a stable object
Di ∈ P ′phase(Di)

, and

phase(D1) ≥ · · · ≥ phase(Dd)

• A chain of intervals η1, . . . , ηd linking Mdown to Mr, such that ηi supports a stable
object Ei ∈ P ′phase(Ei)

, and

phase(E1) ≥ · · · ≥ phase(Ee)

such that the phases of these stable objects satisfy

phase(D1) ≤ phase(A1) ≤ phase(D1) + 1, phase(B1) ≤ phase(Aa) ≤ phase(B1) + 1,

phase(Bb) ≤ phase(Ee) ≤ phase(Bb) + 1, phase(Dd) ≤ phase(E1) ≤ phase(Dd) + 1.

and such that these four chain of stable intervals bound a disk. This is pictured below in
Figure 5.4 for ease of presentation.

Consider now the complex number

Z(X) :=
∑
i

Z(Ai) +
∑
i

Z(Bi) =
∑
i

Z(Di) +
∑

Z(Ei),

which is the central charge of the object X supported on the interval from M` to Mr one gets
by successive extensions of the Ai, Bi or Di, Ei. The equality follows from well-definedness
of Z.
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Figure 5.4: A lozenge of stable objects with a = 3, b = 2, d = 2, e = 1.

Definition 40. We call such a lozenge unobstructed if there is a choice of branch of the
argument function arg : C× → R such that the following inequalities between the phases are
satisfied:

phase(D1) ≤ arg(Z(X)) ≤ phase(A1), phase(Bb) ≤ arg(Z(X)) ≤ phase(Ee).

Figure 5.5: The central charges of the objects in an unobstructed lozenge (left) and in an
obstructed lozenge (right).

It follows from the inequalities above that if a lozenge is unobstructed then there is
only a single choice of arg(Z(X)) satisfying the condition; let’s call it φX ∈ R. For every
unobstructed lozenge we find, let us declare that the corresponding X is semistable of phase
φX . So we define Pφ to be spanned by all objects in P ′φ plus all objects of phase φ that we
obtained from unobstructed lozenges.

Lemma 73. The data Z and P as above define a prestability condition on F(Σ).

Proof. The compatibility between the argument of Z and the phase of the subcategories P
is automatic from the definition, since every stable object either comes directly from one
side or has central charge and phase defined by the formula above. So we only have to prove
that P is in fact a preslicing: we must show that Hom(X, Y ) = 0 if X ∈ PφX and Y ∈ PφY
with φX > φY .

By definition, each full subcategory Pφ can be spanned by three full subcategories

PLφ = jL((PL)φ), PRφ = jR((PR)φ), P♦
φ ,
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where P♦
φ has all the objects of phase φ obtained from unobstructed lozenges. Note that P♦

φ

is disjoint from the other two, but PLφ and PRφ are not disjoint; in fact their intersection is
spanned by the objects supported on the chain of intervals {γi}.

Let us check vanishing of the appropriate homs. It is enough to check on stable objects.
If X, Y ∈ PL then

Hom(X, Y ) 6= 0 =⇒ φX ≤ φY

automatically since they’re both semistable in FL and FL → F(Σ) is fully faithful; same for
the case X, Y ∈ PR. So there are four remaining cases:

1. X ∈ PLφX and Y ∈ PRφY

2. X ∈ P♦
φX

and Y ∈ PLφY

3. X ∈ PLφX and Y ∈ P♦
φY

4. X ∈ P♦
φX

and Y ∈ P♦
φY

All the other cases can be obtained symmetrically by switching left and right. Let us treat
each case separately:

1. We can find representatives of X, Y contained in the images of Σ̃L, Σ̃R respectively,
such that neither intersects the chain {γi}; so there are no intersections between them.
The only way we can have Hom(X, Y ) 6= 0 is if X and Y are intervals sharing a
common boundary component at one of the Mi along the chain, with a boundary path
from X to Y .

Consider then Ci and shift its grading so that the morphism X → Ci is in degree zero;
then by index arguments the morphism Ci → Y is also in degree zero. But since these
three objects are stable we have

φX ≤ φCi ≤ φ(Y ).

2. Let X be obtained from an unobstructed lozenge with notation as in Definition 39,
and Y ∈ FL. Consider the distinguished triangle B → X → A and let us apply the
functor Hom(−, Y ) to get a distinguished triangle

Hom(A, Y )→ Hom(X, Y )→ Hom(B, Y ).
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Since Y comes from FL, it has a representative that stays to the left of the chain and
therefore of B so by assumption we have Hom(B, Y ) = 0. Thus if Hom(X, Y ) 6= 0
then Hom(A, Y ) 6= 0. Since A is given by the iterated extension of the Ai, there must
be some Ai with Hom(Ai, Y ) 6= 0; but Ai and Y are both in the image of FL we must
have φAi ≤ φY , and also by construction φX ≤ φA1 so we have

φX ≤ φA1 ≤ φAi ≤ φY .

3. Suppose we have an unobstructed lozenge with sides A,B,D,E and diagonal Y . A
similar argument as in case (2) shows that if Hom(X, Y ) 6= 0, then Hom(X,D) 6= 0,
and then for some i we have Hom(X,Di) 6= 0

φX ≤ φDi ≤ φDd ≤ φY .

4. This case can be obtained by an iterated version of the argument in case (2). Let us
denote the two lozenges by AX , BX , DX , EX with diagonal X and AY , BY , DY , EY with
diagonal Y . Suppose that Hom(X, Y ) 6= 0, and consider the triangle DX → X → EX .
Consider first the case Hom(DX , Y ) = 0 then Hom(EX , Y ) 6= 0. Now consider the
triangle BY → Y → AY . Since EX and AY have representatives contained in the
right and the left side, respectively, and don’t share a boundary component we have
Hom(EX , AY ) = 0 so we must have Hom(EX , BY ) 6= 0. But then there must be indices
i, j such that Hom((EX)i, (BY )j) 6= 0 so then

φX ≤ φ(EX)i ≤ φ(BY )j ≤ φY .

The other case is Hom(DX , Y ) 6= 0. Consider the triangle BY → Y → AY . By an
analogous argument we can find indices i, j such that

φX ≤ φ(AX)i ≤ φ(DY )j ≤ φY .
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Uniqueness of compatibility structure

In the same setting as the previous subsection, let Γ ⊂ RelStab(ΣL, γ)× RelStab(ΣR, γ) be
the locus of pairs of relative stability conditions (σL, σR) such that there exists a compatibility
condition between σL and σR.

Lemma 74. For each (σL, σR) ∈ Γ, there is a unique compatibility structure between σL and
σR up to equivalence.

Proof. Let us first prove that the numbers m,n defining Σ̃L, Σ̃R are unique. Consider the
subset

Mσ ⊂ S =
⊔
n≥2

Stab(F(ΣL ∪γ ∆n))

of its minimal (but possibly not reduced) representatives. Given σ̃ ∈Mσ we consider the cosi
decomposition of the rank one object C supported on γ as before, and define the numbers
int(σ̃), ext(σ̃) to be respectively the number of internal/external extensions in the γ chain, ie.
the number of indices i such that the corresponding extension happens on the left/right, ie.
by an extension map ∈ Ext1(Ci+1, Ci)/∈ Ext1(Ci, Ci+1). This defines constructible functions
int, ext : Mσ → Z≥0 such that int(σ̃) + ext(σ̃) = N − 1, where N − 1 is the total length of
the object C under σ̃.

We argue that the function int is constant; by Lemma 67 there is a unique minimal and
reduced representative σred of every relative stability condition. However, reduced restriction
does not change the int of a stability condition, so int(σ̃) = int(σ̃red) = int(σred) on all of
Mσ. We define the same functions on the right side for the relative stability condition
σ′ ∈ RelStab(ΣR, γ). Compatibility implies that int(σ̃) = ext(σ̃′), ext(σ̃) = int(σ̃′), but
since int is constant there is only one possibility for the value of ext. Comparing with the
gluing map we have m = ext(σ̃), n = ext(σ̃′).

This determines the isomorphism type of the surfaces Σ̃L and Σ̃R. Consider now the
inclusion of marked surfaces jL : Σ̃L ↪→ ΣL ∪γ ΣR. By definition of compatibility structure,
jL|ΣL agrees with the inclusion ΣL ↪→ ΣL ∪γ ΣR, so the ‘left part’ of jL is fixed; jL is
determined up to equivalence by the images of the extra m − 2 marked boundary intervals
in the disk ∆m attached along γ (two of the marked boundary intervals are fixed to the ends
of γ).

Analogously, jR is determined up to equivalence by the image of the extra n− 2 marked
boundary intervals of ∆n. But the images of the extra m − 2 marked intervals under jL is
contained in the image of the marked intervals coming from ΣR under jR, so they are fixed;
the same is true for the image of the extra n − 2 marked intervals under jR. Minimality
implies that the subcategory 〈AL t Aγ〉 is the whole category F(Σ̃R) so once we fix σ, the
representative σ̃ is completely determined by its restriction to 〈Aγ〉 ∼= F(∆N+1).

By the classification of stability conditions on the Fukaya category of a disk presented
in [56, Section 6.2], stability conditions on F(∆N+1) are entirely determined by the central
charges and phases of the N + 1 intervals in the chain. Let us label the marked boundary
intervals M0, . . . ,MN in sequence. We argue that the central charges and phases of the
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objects C1, . . . , CN are unique using the following ‘zip-up’ procedure. Consider first the
object C1; since M0 is in the common image of ΣL and ΣR, and M1 is ‘internal’ (in the
subset counted by the int function) to either of those surfaces, the interval supporting C1

is contained in the image of either ΣL or ΣR, so its central charge Z(C1) and phase φ1 are
fixed by either σL or σR.

Suppose without loss of generality that the interval supporting C1 is in the image of ΣL,
and consider now C2. There are two possibilities for M2; either it is internal to ΣL or to
ΣR. In the former case since M1 and M2 are in the image of the same side ΣL, Z(C2) and
φ2 are fixed by σL. In the latter case, C2 is not in the image of either ΣL or ΣR, but we
consider the concatenation C1+2 given by extending at M1; both ends of this object are in
the image of ΣR so the central charge Z(C1+2) of this (non-stable) object is fixed by σR. So
Z(C2) = Z(C1+2)− Z(C1) is also fixed. Moreover, among the shifts of C2, there is a unique
one with the extension map at M1 in the correct degree, so φ2 is also fixed. Proceeding by
induction we find that all Z(Ci), φi are fixed by the initial data σL, σR.

Relation between cutting and gluing maps

Because of the uniqueness of compatibility structure proven above and Lemma 73, we can
define a gluing map

RelStab(ΣL, γ)× RelStab(ΣR, γ) ⊃ Γ
glueγ−−−→ PreStab(F(ΣL ∪γ ΣR))

which produces a prestability condition.
A priori it is not obvious whether these are actual stability conditions, however this can

be shown to be the case when we start with an actual stability condition σ ∈ F(Σ).

Theorem 75. The composition

Stab(F(Σ))
cutγ−−→ Γ

glueγ−−−→ PreStab(F(Σ))

is equal to the canonical inclusion Stab(F(Σ)) ↪→ PreStab(F(Σ)).

Note that the theorem can be also stated as saying that the gluing map lands in Stab(F(Σ))
and gives an right-inverse to the cutting map. It is then immediate from the definitions that
this is also a left-inverse; the cutting map forgets all the stable objects coming from the
lozenges so the composition

Γ
glueγ−−−→ Stab(F(Σ))

cutγ−−→ Γ

is the identity on pairs of compatible relative stability conditions.
We will need the following lemma in the proof of 75:

Lemma 76. Let X be a stable interval object (under σ), with a representative that crosses
the interval γ once. Then there is an unobstructed lozenge (under σL, σR) with diagonal X.
Conversely, the diagonal of every unobstructed lozenge is stable under σ.
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Proof. Let C1, . . . , CN be the cosi decomposition of the object C supported on γ. Note
that X cannot cross this chain multiple times, since this would create a polygon of the sort
prohibited by Lemma 50. Let us say then that X intersects one Cj transversely. Then we
have Ext1(Cj, X) ∼= Hom(X,Cj) ∼= k; consider the corresponding extension and cone

Cj → A⊕ E → X, B ⊕D → X → Cj.

Each one of the objects A,B,D,E is an embedded interval object and by Proposition 53
has a cosi decomposition; we denote the objects in these chains by {Ai}, {Bi}, {Di}, {Ei},
respectively.

We argue that {Ai} and {Bi} only have extensions on the right, and {Di}, {Ei} only have
extensions on the left. Note first that the chains of intervals {Ai}, {Di} and the interval γ
don’t intersect mutually, since this would contradict Lemma 50. Consider the chain made up
of supports of the Ai and Di[−1]. This chain together with γ bounds a disk, therefore every
extension is on the right; this translates to extensions on the right ∈ Ext1(Ai, Ai+1) and
extensions on the left Ext1(Di+1, Di). An analogous argument applies to B and E; note that
since none of these chains crosses γ, and γ separates Σ, they do not intersect one another.

Thus we have a lozenge whose diagonal is X; it remains to prove it is unobstructed.
Suppose that the lozenge A,B,D,E is obstructed; therefore we must have at least one of
the following inequalities

φA1 ≤ φX , φD1 ≥ φX , φBb ≥ φX , φEe ≤ φX .

Suppose first that φA1 < φX . Consider then the object X ′ given by the iterated extension
of A2, . . . Aa, B1, . . . Bb, we then have a distinguished triangle

X ′ → X → A1

and the map X → A1 cannot be zero since X ′ is indecomposable (by Theorem 43), which
cannot happen since φX > φA1 . The other cases are similar; moreover, the case of coinciding
phases poses no further problems since we can always take σ to be appropriately generic
(since we need to be off of finitely many walls).

This proves one of the directions. For the converse, suppose that we have an unobstructed
lozenge A,B,D,E as above, with diagonal object X which is not stable. By construction
X is an embedded interval, so it has a chain-of-interval decomposition {Xi} under σ. There
are two mutually exclusive cases:
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1. There are representatives for all the Xi contained in the lozenge, ie. contained in the
disk bounded by the lozenge or running along its sides.

2. At least one of the representatives necessarily crosses out of the lozenge.

The concatenation of the chain {Xi} is isotopic to the object X. Therefore in case (2), if
the chain crosses out of the lozenge along one of the sides it must cross back in, and along
the same side, since each of the objects A,B,D,E cuts the surface into two. Therefore we
have a configuration prohibited by Lemma 50.

As for case (1), every extension between Xi and Xi+1 must happen at one of the marked
components along the boundary of the lozenge. Note that even though the chain {Xi} may
not be simple (intervals could in principle double back), it must not cross itself by the same
lemma, and therefore there are only two options: either Xi and Xi+1 share a boundary
component along the top of the lozenge (ie. along A or B sides) and the extension happens
on the right, or it is along the bottom (ie. along D or E sides) and the extension happens on
the left. Suppose that at least one of the intervals Xi ends on the A side; let i be maximal
among such indices. Then Xi+1 stretches between the A side and another side of the lozenge,
however its phase is smaller than Xi so this contradicts the existence of a nontrivial extension
on the right ∈ Ext1(Xi, Xi+1). The same argument can be applied along any of the other
sides, in the case where no interval ends on the A side. Therefore there cannot be more than
one stable interval, and X itself is stable.

The lemma above should be interpreted as stating that the unobstructed lozenges “see”
all the stable interval objects that were eliminated by cutting along γ.

Proof. (of Theorem 75) For clarity let us denote σ = (Z,P) ∈ Stab(F(Σ)), (σL, σR) =
((ZL,PL), (ZR,PR)) for its image under the cutting map, and σg = (Zg,Pg) for the pre-
stability condition glued out of σL and σR. It is clear that the central charges Z and Zg
are the same; it is enough to check on a set of generators and we can pick the arc system
AL t Aγ t AR where the central charges agree by construction.

As for the (pre)slicings, the inclusion Pg ⊆ P is a direct consequence of Lemma 76,
since every diagonal of an unobstructed lozenge under σL, σR is stable under σ. As for the
inclusion P ⊆ Pg, by Theorem 47 every stable object is either a stable embedded interval or
a stable embedded circle; again by Lemma 76 the stable embedded intervals correspond to
unobstructed lozenges and appear in Pg, and as for the stable circles, they must not cross
the chain {γi} by Lemma 50 so they are either entirely contained in FL or FR and therefore
also appear in Pg. So Pg is in fact a slicing and equal to P .
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5.3 Calculations

In the previous section, we outlined a procedure for cutting stability conditions on F(Σ) along
some embedded interval γ into relative stability conditions. This procedure only works when
the object supported on γ has a simple cosi decomposition, and from Lemma 52 we know
that embedded intervals cutting the surface into two necessarily have this property.

Consider some general surface Σ with genus g and punctures p0, p1, . . . , pn withm0,m1, . . . ,mn

marked boundaries, respectively. Suppose that m0 ≥ 2. We can then decompose the surface
into a disk with some number of marked boundary intervals, possibly some annuli with two
marked boundary intervals on the outer boundary circle, and possibly some punctured tori
with two marked boundary intervals on the boundary circle.

Figure 5.6: A decomposition of the surface Σ into a disk, possibly several annuli and possibly
several punctured tori.

Note that for each one of these pieces, when modified by gluing some disk ∆n along a
boundary, give rise to the following kinds of surfaces:

1. The disk ∆n with n ≥ 2 marked boundary intervals

2. The annulus ∆∗p,q with p, q marked boundary intervals on the outer and inner boundary
circle, respectively

3. The punctured torus T ∗n with n marked boundary intervals

on which we need to calculate the space of (ordinary) stability conditions.
By the main theorem of [56] (Theorem 5.3) the locus of HKK stability conditions in

Stab(F(Σ)) is a union of connected components. Thus, if every stability condition can be
continuously deformed into an HKK stability condition, then all stability conditions are
HKK stability conditions.

We will use this strategy for the three base cases; in fact we will prove that every stability
condition can be continuously deformed to a stability condition with finite heart. This
argument already appears for the case of the disk and the annulus in [56]; we will reproduce
it in greater detail so that its use in the context of the punctured torus is clearer.
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Finite-heart stability conditions

The definitions and lemmas here seem to be standard in the literature to some extent and
may appear with different formulations; for clarity we will assemble them here.

Definition 41. A stability condition σ ∈ Stab(D) is finite-heart if the corresponding heart
H is a finite abelian category, ie. a finite length abelian category that furthermore only has
finitely many isomorphism classes of simple objects.

Note that finite-length only means that every object is finite-length but those lengths
could be unbounded; this doesn’t happen in the cases we care about because of the following
standard fact.

Lemma 77. If H is finite-length and rk(K0(H)) = rk(K0(D)) <∞ then H is finite, and in
particular the number of isomorphism classes of simple objects is equal to rk(K0(D)).

We have the following criterion to determine when some stability condition is finite-heart,
based on the set of stable phases Φ ∈ S1, ie. the set of phases of stable objects.

Lemma 78. If Φ has a gap around zero (ie. S1 \ Φ contains an open interval I 3 0) and
K0(D) <∞ then σ is finite-heart.

Remark. This fact is used in [56] but left unstated. The clear statement and proof of this
lemma were informed to me by F. Haiden.

Proof. Note that φ is symmetric under a Z2 rotation so having a gap around zero means
that Φ is contained in a strict cone in the upper half-plane. Thus there is K > 0 such that
|=(Z(X))| > K · |<(Z(X))| for any semistable object X. We will argue that the set of
semistable imaginary parts

{=(Z(E))|0 6= E ∈ Pφ, φ ∈ R}

is discrete. Suppose that there is an accumulation point, which without loss of generality
we assume to be a > 0; we can then pick a sequence of pairwise non-isomorphic semistable
objects {En} such that limn→∞ |=(Z(En))− a| = 0; in particular for δ > 0 we can pick the
sequence such that |=(Z(En))− a| < δ for every n, so picking 0 < δ < a gives |<(Z(En))| <
K(a+ δ)

But since Λ is finite rank and the En are all distinct, we have limn→∞‖En‖ = ∞. We
then have

|Z(En)| < |=(Z(En))|+ |<(Z(En))| ≤ (K + 1)|<(Z(En))| ≤ (K + 1)K(a+ δ) = const.

So we have limn→∞
|Z(En)|
‖En‖ = 0 contradicting the support condition.

So since the set of imaginary parts of objects in the heartH is discrete and bounded below
by zero, any strictly descending chain of objects is finite, and therefore H is finite-length,
and thus σ is finite-heart by the assumption rk(K0(D)) <∞.
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Using the formalism of S-graphs presented in Section 6 of [56], one can prove the following
lemma (which is implicitly used in the proofs of Theorems 6.1 and 6.2 of that same paper)

Lemma 79. If σ is a finite-heart stability condition on F(Σ) then it is an HKK stability
condition.

For each of the three base cases, we will see that every stability condition can be deformed
to a finite-heart stability condition.

The disk

(Section 6.2 of [56]) We have F(∆n) ∼= Mod(An−1), which up to shift has finitely many
indecomposable objects. Thus any heart is a finite abelian category, and every stability
condition is finite-heart and therefore HKK.

The annulus

There are two different kinds of annulus; one where the nontrivial circle is gradable, ie. has
index zero, and one where it has index nonzero. Consider first the annulus ∆∗p,q,(m) with p, q
marked boundary components and grading m 6= 0 around the circle.

We argue that the set of stable phases is finite. Let us fix some embedded interval object
I0 to have winding number zero, and measure the winding number of every other interval
or circle with reference to it. By the classification of objects, there are only finitely many
primitive (ie. non multiple) classes in K0(F(∆∗p,q,(m))) whose winding number is less than
some fixed N in absolute value, so if there are infinitely many non-isomorphic stable objects
there must be a sequence of stable objects Xi with winding number →∞.

Consider some object Xi with winding number Ni which intersects I0 transversely Ni

many times. Since the circle has index m 6= 0, this contributes classes to both Ext∗(I0, Xi)
and Ext∗(Xi, I0) in a range spanning (m− 1)Ni degrees. But this is impossible as Ni →∞
since the stable components of I0 have a minimum and maximum phase.

Consider now the annulus with zero grading. We have F(∆∗p,q,(0))
∼= Mod(Ãp+q−1). So

we have Γ = K0(F(∆∗p,q,(0))) = Zp+q, and denote by S ⊂ Γ the subgroup generated by the
circle around the annulus. Let E ⊂ Γ be the set of classes of indecomposable objects. By
the classification of objects E/S is finite so the only possible accumulation point in the set
of stable phases Φ is arg(Z(S)). After a rotation (which can be arbitrarily small) we can
guarantee that Φ has a gap around zero and apply Lemma 78.

The punctured torus

The calculation of this case is new. From the cutting procedure we know that only need to
consider the punctured torus T ∗n with n ≥ 2 marked boundary components. In fact there are
many inequivalent such punctured tori, with different gradings. Let us pick simple closed
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curves L and M as longitude and meridian, and denote by iL, iM the index of the grading
along them. By picking different curves we get indices differing by an action of SL(2,Z) so
the set of distinct graded punctured tori is Z2/SL(2,Z). The orbits of SL(2,Z) on Z2 are
labelled by gcd, so each orbit contains a unique pair of the form (0,m).

Let us fix a grading such that (iL, iM) = (0,m). It will be important for us to know what
are the circle objects. The classes in π1(T ∗) which are representable by simple closed curves
are the curves winding (p, q) times around the longitude and meridian, with gcd(p, q) = 1,
plus the curve MLM−1L−1, ie. the circle around the puncture.

For any of these tori, the index of the circle around the puncture is always 2 for topological
reasons (it bounds a punctured torus) so this curve is never gradable. On the torus with
(iL, iM) = (0,m 6= 0) torus the index of the (p, q) curve is mq 6= 0 if q 6= 0, so all of the
embedded circle objects are supported on the longitude L. On the torus with (iL, iM) =
(0, 0), every simple closed curve is gradable and supports embedded circle objects.

Remark. This is the fundamental reason why the calculation for the (0, 0) will be more
involved than the case of the annulus; in that case the lattice spanned by the circle objects
inside of K0(D) is rank one, so there can be at most one direction of phase accumulation.
In the punctured torus, the central charges of stable objects could in principle occupy every
direction of the lattice, making Φ dense; we will prove that this doesn’t happen generically.

The (0,m 6= 0) torus

Let us denote D = F(T ∗n,(0,m)) where n is the number of marked boundaries. This case will
be very similar to the index zero annulus. There is only one type of embedded circle object
L, since no other circles are gradable. Let Γ = K0(D) and E ⊂ Γ be the set of classes of
stable objects.

We argue that the set E/〈L〉 is finite. Suppose otherwise, and note that by the classi-
fication of embedded curves, the number of embedded curves with winding numbers (p, q)
with |q ≤ N | is infinite, but they form finitely many orbits in K0(D) under the action of
the subgroup 〈L〉. Thus, if we have an infinite sequence of stable objects {Ei} with winding
numbers (pi, qi) and pairwise distinct classes [Ei] ∈ K0(D)/〈L〉, there is a subsequence with
limi→∞ |qi| =∞.

This is impossible in any stability condition. Note that an object with winding qi along
the meridian intersects L transversely |qi| times; but since m 6= 0 the difference in degree
between each two consecutive intersections is |m|, so the amplitude of nonzero degrees in
both Hom(Ei, L) and Hom(L,Ei) is m(qi− 1). Since |qi| → ∞ we can find stable objects Ei
with arbitrarily large amplitude morphisms in both directions which is impossible since L
has some HN decomposition with finitely many semistable factors, having a minimum and
a maximum phase.

From the fact that E/〈L〉 is finite we can proceed as in the annulus case, and after an
infinitesimal rotation we can guarantee that any stability condition has an gap in Φ.
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The (0, 0) torus

Let us denote D = F(T ∗n,(0,0)), where n is the number of marked boundaries. We will first

need some facts about K0(D). By Theorem 5.1 of [56] there is an isomorphism

K0(F(Σ,M)) = H1(Σ,M ;Zτ ),

where Zτ is the Z-local system associated to the orientation double cover of the foliation. In
our case, since we are looking at the foliation with (0, 0) winding, Zτ is trivial.

Let us pick an explicit set of generators of K0(D) as below: first choose a basis of H1(T,Z)
and a labeling M1, . . . ,MN of the marked boundary components. The classes [L] and [M ]
are represented by circles around the longitude and meridian, and [Ei], i = 1, . . . , N is
represented by intervals that connect adjacentMi andMi+1 along the boundary. Consider the
object X winding around the longitude with ends at M1,MN . Extending it by E1, . . . , En−1

and by En both give L, so in K0 we have
∑n

i=1[Ei] = 0
So the classes [L], [M ], [E1], . . . , [En−1] give a basis of K0(D). Since every immersed curve

has well-defined winding numbers, we have a projection map

w : K0(D)−→Z2 = Span([L], [M ])

taking a curve of (p, q) winding numbers to p[L] + q[M ]. The following lemma tells us that
the distribution of stable phases is not essentially changed by w.

Lemma 80. For any sequence of stable objects {Xk} (with all Xk pairwise distinct) if
limk→∞ arg(Z(Xk)) exists then

lim
k→∞

arg(Z(w([Xk]))) = lim
k→∞

arg(Z(Xk))

Proof. By the classification of indecomposables, X is represented by some circle or interval
with winding (p, q). If X is a circle we already have w([X]) = [X]. Given embedded interval
with boundaries on M1,Mi, one can express it as the concatenation of p copies of the interval
winding along the longitude with both ends at M1 (whose class is [L]), q copies of the interval
winding along the meridian with both ends at M1 (whose class is [M ]) and a chain of intervals
E1, . . . , Ei−1 connecting M1 to Mi. This chain can wind around the circle any number of
times, but since

∑n
j=1[Ej] = 0, its class is always [E1] + · · ·+ [Ei]. Applying |Z(·)|, since this

sum is bounded above we have

|Z(X)− Z(w(X))| ≤ C

for some fixed constant C.
Consider now the stable objectsXk. Without loss of generality suppose that limk→∞ arg(Z(Xk)) =

0 (ie. the positive real direction). These objects can be represented by embedded intervals;
note that there are finitely many embedded intervals with fixed winding numbers. Thus
in the infinite sequence of distinct objects {Xk} we must have p2

k + q2
k → ∞ so therefore

|Z(Xk)| → ∞ and <(Z(Xk))→ +∞.
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The triangle inequality,

|Z(Xk)| − C ≤ |Z(w(Xk))| ≤ |Z(Xk)|+ C

also implies similar inequalities for the real and imaginary parts. Since |<(Z(Xk))| → ∞ we
have

lim
k→∞

|=(Z(w(Xk)))|
|<(Z(w(Xk)))|

≤ lim
k→∞

|=(Z(Xk))|+ C

|<(Z(Xk))| − C
= lim

k→∞

|=(Z(Xk))|
|<(Z(Xk))|

= 0.

so limk→∞ arg(Z(w(Xk))) = limk→∞ arg(Z(Xk)) = 0.

Corollary 81. If the set of stable phases Φ is dense in S1 then the set

Φw = {arg(Z(w(X))) | Xstable}

is also dense in S1

We will also need to know a bit more about which objects necessarily intersect trans-
versely.

Lemma 82. Consider two embedded objects X and Y with winding numbers (pX , qX) and
(pY , qY ), respectively. If |pXqY − qXpY | ≥ 2 then X and Y intersect transversely.

Proof. If X is a circle with (pX , qX) = (1, 0), then any Y with |qY | ≥ 1 intersects X trans-
versely; if X is an embedded interval with (pX , qX) = (1, 0), then circles with |qY | ≥ 1
intersect X transversely but intervals with |qY | = 1 may not. On the other hand, wind-
ing more times around the meridian by requiring |qY | ≥ 2 necessarily causes a transverse
intersection. Applying the right element of SL(2,Z) that sends (1, 0) 7→ (pX , qX) gives the
statement of the lemma.

The following lemma gives an existence result for a certain kind of stable object.

Lemma 83. Let σ ∈ Stab(D) be a stability condition on D = F(T ∗N). Then there is some
stable object represented by an embedded interval with nonzero winding and ends at different
marked boundaries.

Proof. Suppose otherwise; by the classification of embedded curves, there are three remaining
possibilities for a stable object:

1. A semistable circle with winding 6= (0, 0),

2. A semistable interval with winding 6= (0, 0) both ends on the same marked boundary,

3. A semistable interval with (0, 0) winding and ends possibly on different marked bound-
aries.
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Two objects of type (2) ending on the same marked boundary M will have extension
morphisms between them, but we argue that if they have different classes in K0(D) these
morphisms cannot appear in the HN decomposition of any object. By keeping track of the
grading with respect to the (0, 0) grading on the torus, we note that if we grade the intervals
such that deg(f) = 1, then deg(g) = 0. Thus φB ≤ φA and by genericity φB 6= φA since
[A] 6= [B], so f ∈ Ext1(A,B) cannot appear in the HN decomposition.

Thus every interval with winding (p, q), gcd(p, q) = 1 and ends on the same marked
boundary must be semistable, since there is no way to express it as a valid extension of
the objects above. We argue that this is impossible in a generic stability condition. Take
for example the semistable interval J with winding (1, 0) and both ends on some marked
boundary M , and consider another embedded interval J ′ with winding (0, 1), with ends on
M and M ′ 6= M . By assumption, J ′ is not semistable so it must have a chain-of-intervals

Figure 5.7: Left: two stable objects A,B of type (2). Right: one stable object J of type
(2) and one (not semistable) embedded interval J ′, in whose decomposition some object I
of type (3) must appear, causing a prohibited polygon (shaded) to appear.

decomposition with at least two distinct phases; consider the interval objects in this chain
that end at M ; since the other end of the chain is at another marked boundary, among these
objects there must be at least one semistable interval J ′0 of type (3) above (ie. with zero
winding). We see immediately that such an interval has an essential transversal intersection
with J ; therefore the rest of the chain (after J ′0) must cross J as well. But this configuration
is prohibited by Lemma 50.

So there must be some semistable interval object I ′ with nonzero winding and ends on
different marked boundary intervals. If I is not stable, consider its Jordan-Hölder filtration
into stable objects; among these there must be one stable interval object I connecting two
distinct marked boundaries.

Using the lemmas above, in the following calculation we show that an adequately generic
stability condition does not have dense phases in S1.

Lemma 84. Let σ ∈ Stab(D) be a stability condition on D = F(T ∗N). Then possibly after a
infinitesimal deformation the set of stable phases Φ has a gap, ie. S1 \ Φ contains an open
interval.
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Proof. By the previous lemma, there must be some stable interval I with nontrivial wind-
ing and ends on distinct marked boundary components. Applying an appropriate SL(2,Z)
automorphism, we can assume this stable interval I has winding numbers (1, 0), ie. winds
around the longitude once. Let L be the rank one trivial circle object also with winding
number (1, 0).

The subset of Stab(D) where I is stable is open by standard results [24] so there is
a neighborhood U of σ where I is stable. From the description of K0(D) we know that
[I] 6= [L], so Z(I), Z(L) are not parallel in the complement of a codimension one wall. Thus,
possibly after an infinitesimal deformation inside of U , we can guarantee that I is stable and
Z(I), Z(L) have different arguments.

Consider the trivial rank one objects L and M (which may or may not be stable) sup-
ported along the longitude and meridian, with gradings so that

deg(M, I) = deg(M,L) = 0

and for simplicity let us rotate and scale the stability condition so that Z(L) = 1. Since
[L] 6= [M ] and we fixed Z(L) ∈ R, for a generic stability condition we must have Z(M) /∈ R.
Let us treat the case =(Z(M)) > 0 first; the other case follows from an analogous argument.

Suppose now that Φ is dense in S1; by Lemma 81 ,Φw is dense too. For a choice of
winding numbers (p, q), let us denote by

Xp,q = {(p′, q′) | q > 0, |pq′ − qp′| ≥ 2} ⊂ Z2

the set of winding numbers whose objects necessarily intersect transversely with objects of
winding number (p, q), with positive winding around the meridian.

The set X1,0 corresponding to I is given by q ≥ 2; so at infinity X1,0 approaches a sector
(with angle π). Remember that for any N there are only finitely many indecomposable
objects with winding satisfying p2 + q2 ≤ N . By density of Φw we can find some stable
object X0 with winding numbers (p0, q0) ∈ X1,0.

Consider now the set X1,0 ∩ Xp0,q0 ; this set is composed of lattice points inside of two
components of a subset of R × R+. At infinity, the right component approaches a sec-
tor with angle spanning (0, arctan(q0/p0)) and the left component approaches a sector at
(arctan(q0/p0), π). Note that here we are choosing arctan to be valued between 0 and π.
Using density, let us pick some object X1 with (p1, q1) in the right component, and X−1 with
(p−1, q−1) in the left component. Note that since the sectors span positive angles we can pick
these objects with q1, q−1 arbitrarily large; since

|=(Z(X))−=(Z(w(X))| = |=(Z(X))− qX=(Z(M))|

is bounded for any indecomposable object X we can also guarantee that =(Z(X1)) and
=(Z(X−1)) are positive.

We would like to iterate this process; at the nth step we will have objects {Xk}−n≤k≤n
with winding numbers (pk, qk) running clockwise in angle, ie. 0 ≤ arctan(qk/pk) ≤ π is
decreasing. The set

X1,0 ∩ Xp−n,q−n ∩ · · · ∩ Xp0,q0 ∩ · · · ∩ Xpn,pq
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Figure 5.8: Left: the set Xp,q for (p, q) = (3, 4) is composed of the Z2 dots inside of the
shaded area. Note that all these sets have two parts, each of which at infinity approaches
a sector with finite angle. Right: after the first iteration we consider X1,0 ∩ X3,4. Note that
after any number of iterations the each side of this set still approaches a sector with finite
angle at infinity.

at infinity approaches two sectors at (0, arctan(qn/pn)) and (arctan(q−n, p−n), π); since each
of these sectors has nonzero angle we can use density and repeat the process by picking stable
objects X−n−1, Xn+1 in each sector, also both with central charge with positive imaginary
part. Also from density of Φ it follows that we can pick objects such that

lim
k→+∞

arctan(qk/pk)) = 0, lim
k→−∞

arctan(qk/pk)) = π.

Iterating to infinity we get stable objects . . . , X−1, X0, X1, . . . all mutually transversely
intersecting, that also transversely intersect I as well. Taking appropriate shifts we can
guarantee that all these objects have phases 0 ≤ φk ≤ 1. We then get that

lim
k→+∞

φk = 0, lim
k→−∞

φk = 1.

Let dk be the degree of the intersection between Xk and I, and fk be the degree of the
intersection between Xk and Xk+1. Let us shift I such that d0 = −1. The triangles with
sides Xk, Xk+1, I give the relations dk = dk+1 + fk. Since all the objects are stable we have
inequalities for the phases

φk ≤ φI + dk ≤ φk + 1, φk ≤ φk+1 + fk ≤ φk + 1.

But we chose the shifts such that all the φk are in (0, 1), so we must have fk = 0 for all k,
and therefore dk = −1 for all k, so φk − 1 ≤ φI ≤ φk.

Taking the two limits k → +∞ and k → −∞ gives us φI = φL = 0 which contradicts
the genericity of σ.
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Figure 5.9: Stable circle L and stable interval I with ends on different boundary components,
together with transversely intersecting stable objects Xi, i ∈ Z.

5.4 Conclusions

The calculations for the three base cases above show that the every generic stability condition
on those categories is an HKK stability condition; because of [56, Theorem 5.3] the image
of the moduli of HKK stability conditions in Stab(D) is an union of connected components,
so for all these cases there are only HKK stability conditions.

The cutting and gluing procedures allow us to reduce the calculation to the three base
cases, and because of Theorem 75 this proves Theorem 60: every stability condition on a
graded surface Σ is an HKK stability condition, ie. given by a quadratic differential with
essential singularities.

Future directions

An obvious direction of future inquiry is the extension of the definition of relative stability
conditions to Fukaya categories of higher-dimensional spaces.

With inspiration in the conjectures of Kontsevich [71], the wrapped Fukaya category
of a Weinstein manifold has recently been proven [50, 49, 51] to localize to a cosheaf of
categories on the Lagrangian skeleton of the Weinstein manifold, the same way that the
Fukaya categories that we considered here can be calculated by a cosheaf on the dual graph.

The naive generalization of Definition 29 to this cosheaf in higher dimensions is easy to
write down, but it still unclear whether one has the same nice results. We believe that the
main difficulty in establishing similar results in more generality is that we lack equivalents
of Lemmas 47, 50 and Theorem 53; and more fundamentally we are not aware of geometric
representability results such as Theorem 43 in higher dimensions. Note that these were very
important to prove our results, since even defining the cutting and gluing maps required:

1. Constraining the isomorphism type of the category HNEnv(X) for a certain class of
object X (Lemma 52).
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2. Having a non-crossing Lemma 50, which lets us separate the HN decomposition of
some objects into a left and a right side.

We are of the opinion that answering the analogous questions for higher dimensions is the
first step towards progress in that direction.

Another area of future research is to explore the relations between relative stability
conditions and the work of Dimitrov, Haiden, Katzarkov and Kontsevich [37, 35, 36], which
relates stability conditions on Fukaya categories of surfaces to questions about dynamics on
the surface. In particular, it is likely that the cutting and gluing procedures of Section 5.2
can be used to say something about the distribution of stable phases for general surfaces;
once we cut a surface Σ into disks, annuli and punctured tori, the collection of stable objects
in F(Σ) can be produced algorithmically from collections of stable objects on each piece.
It appears that one could use this to give a partial answer to Question 4.9 of [37], about
the existence of conditions on a triangulated category T constraining the distribution of
accumulation points in the set of stable phases; this will be a topic of future research.



133

Bibliography

[1] Mohammed Abouzaid. “A cotangent fibre generates the Fukaya category”. In: Ad-
vances in Mathematics 2.228 (2011), pp. 894–939.

[2] Mohammed Abouzaid. “A geometric criterion for generating the Fukaya category”.
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de l’IHÉS 117.1 (2013), pp. 271–328.

[92] Alexander Postnikov. Total positivity, Grassmannians, and networks. 2006. arXiv:
math/0609764.

[93] Pavel Safronov. “Quasi-Hamiltonian reduction via classical Chern–Simons theory”.
In: Advances in Mathematics 287 (2016), pp. 733–773.

[94] Pavel Safronov. “Symplectic implosion and the Grothendieck-Springer resolution”.
In: Transformation Groups 22.3 (2017), pp. 767–792.

[95] Graeme B Segal. “The definition of conformal field theory”. In: Differential geomet-
rical methods in theoretical physics. Springer, 1988, pp. 165–171.

[96] Paul Seidel. Fukaya categories and Picard-Lefschetz theory. Vol. 10. European Math-
ematical Society, 2008.

[97] Ashoke Sen. “Tachyon condensation on the brane antibrane system”. In: Journal of
High Energy Physics 1998.08 (1998), p. 012.

[98] Eric Sharpe. “D-branes, derived categories, and Grothendieck groups”. In: Nuclear
Physics B 561.3 (1999), pp. 433–450.

[99] Vivek Shende. The conormal torus is a complete knot invariant. 2016. arXiv: 1604.
03520.

[100] Vivek Shende and Alex Takeda. Calabi-Yau structures on topological Fukaya cate-
gories. 2016. arXiv: 1605.02721.

[101] Vivek Shende, David Treumann, and Harold Williams. On the combinatorics of exact
Lagrangian surfaces. 2016. arXiv: 1603.07449.

http://arxiv.org/abs/1507.01513
http://arxiv.org/abs/1604.00114
http://arxiv.org/abs/math/0411220
http://arxiv.org/abs/math/0609764
http://arxiv.org/abs/1604.03520
http://arxiv.org/abs/1604.03520
http://arxiv.org/abs/1605.02721
http://arxiv.org/abs/1603.07449


BIBLIOGRAPHY 139

[102] Vivek Shende, David Treumann, and Eric Zaslow. “Legendrian knots and constructible
sheaves”. In: Inventiones mathematicae 207.3 (2017), pp. 1031–1133.

[103] Vivek Shende et al. Cluster varieties from Legendrian knots. 2015. arXiv: 1512.08942.

[104] Carlos T Simpson. “Higgs bundles and local systems”. In: Publications Mathématiques
de l’IHÉS 75 (1992), pp. 5–95.

[105] Laura Starkston. “Arboreal singularities in Weinstein skeleta”. In: Selecta Mathemat-
ica 24.5 (2018), pp. 4105–4140.

[106] George Gabriel Stokes. “On the discontinuity of arbitrary constants which appear in
divergent developments”. In: Transactions of the Cambridge Philosophical Society 10
(1864), p. 105.

[107] Alex A Takeda. Relative stability conditions on Fukaya categories of surfaces. 2018.
arXiv: 1811.10592.

[108] Constantin Teleman. “Five lectures on topological field theory”. In: Geometry and
Quantization of Moduli Spaces. Springer, 2016, pp. 109–164.

[109] Richard P Thomas and S-T Yau. Special Lagrangians, stable bundles and mean cur-
vature flow. 2001. arXiv: math/0104197.

[110] Dylan P Thurston et al. “From dominoes to hexagons”. In: Proceedings of the 2014
Maui and 2015 Qinhuangdao Conferences in Honour of Vaughan FR Jones’ 60th
Birthday. Centre for Mathematics and its Applications, Mathematical Sciences Insti-
tuted. 2017, pp. 399–414.
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