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A Heisenberg uncertainty relation is derived for spatially-gated electric ∆E and magnetic ∆H

fields fluctuations. The uncertainty increases for small gating sizes which implies that in confined
spaces the quantum nature of the electromagnetic field must be taken into account. Optimizing the
state of light to minimize ∆E at the expense of ∆H , and vice versa should be possible. Spatial
confinements and quantum fields may alternatively be realized without gating by interaction of the
field with a nanostructure. Possible applications include nonlinear spectroscopy of nanostructures
and optical cavities and chiral signals.

I. INTRODUCTION

The electric and the magnetic field operators Ê(r) and Ĥ(r′) at two different points in space do not commute.
This implies the existence of a Heisenberg uncertainty relation between them. In his 1927 Chicago lecture notes [1],
Heisenberg had calculated this uncertainty for fields averaged over a box of size l and obtained (∆E)(∆H) > ~c/l4.
This implies that for a sufficiently small box, electromagnetic field fluctuations are strong enough so that the quantum
nature of the fields may not be ignored. Heisenberg did not have a particular application in mind but was rather
interested in clarifying a fundamental issue: the corpuscular vs wave nature of photons. Thanks to recent advances
in nano optics [2] this uncertainty may be tested experimentally in nanostructures. Here we examine it for spatially-
gated [2] electric and magnetic fields. An important consequence of our study is that spectroscopy of nanostructures
may not be fully described by classical fields since this uncertainty may not be neglected. Spatially-gated fields thus
have an intrinsic quantum nature that should have experimental signatures.
To derive the Heisenberg uncertainty relation for spatially gated electric and magnetic fields, we introduce two

vector gate functions η and γ, associated with the electric and magnetic fields that give rise to two gate function
dependent gauge invariant Hermitian gated electric and magnetic field operators, defined by

Ê(η) =

∫

drη(r) · Ê(r), Ĥ(γ) =

∫

drγ(r) · Ĥ(r). (1)

In the following sections we shall derive the commutation relation and the corresponding Heisenberg uncertainty
relation that have the form

[Ê(η), Ĥ(γ)] = −i~h(η, γ)Î, (∆Ê(η))(∆Ĥ(γ)) ≥ (~/2)|h(η, γ)|. (2)

In Eq. (2) we have used a standard notation (∆Q̂) = (∆Q̂)Ψ for the uncertainty of a Hermitian operator acting in
Hilbert space (and thus defining an observable) in a quantum state |Ψ〉,

(∆Q̂)Ψ =

√

〈Ψ|(Q̂− 〈Ψ|Q̂|Ψ〉Î)2|Ψ〉. (3)

Details of the derivation of Eq. (2), based on standard theory of light-matter interactions [3, 4], are presented in
appendices A and B.
The connection between the uncertainty relation and commutator depends on the particle statistics and holds for

any system of bosons. It applies in our case, since the EM field is a system of free bosons (photons). By applying a
proper quantization procedure we can compute the commutator in Eq. (2), resulting in

h(η, γ) = 4πc

∫

dr(curlη(r)) · γ(r) = −4πc

∫

dr(curlγ(r)) · η(r). (4)

In deriving Eq. (4) one should note the fact that the electromagnetic field is a system with first class constraints
(using Dirac’s terminology [5]) that give rise to gauge invariance, or, stated differently, that photons have transverse
polarization.
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II. COMMUTATION RULES AND THE HEISENBERG UNCERTAINTY OF GAUSSIAN GATED

FIELDS

The contribution to the measurement of the electric or the magnetic field at point r in space comes from some small
region around r, due to the spatial error bar of a measurement device. Here we is describe this by using Gaussian
gates for both electric and magnetic fields. To that end we introduce a family of Gaussian approximations for the
Dirac δ-function

δ(r; l) =
1

(
√
2πl)3

exp(−(r2/2l)2), (5)

and the corresponding Gaussian-gated electric and magnetic fields

E(r; l) =

∫

dr′δ(r − r′; l)E(r′), H(r; l) =

∫

dr′δ(r − r′; l)H(r′). (6)

The Heisenberg uncertainty relation for (∆Ej(r; l))(∆Hs(r
′; l)) is completely determined by the commutator of the

corresponding gated operators [3, 6]

[Êj(r; l), Ĥs(r
′; l)] = 4πci~εjsm

∂

∂rm
δ(r − r′;

√
2l),

∂

∂rm
δ(r − r′;

√
2l) = − 1√

2l

rm − r′m√
2l

1

(
√
4πl)3

exp

(

− (r − r′)2

4l2

)

, (7)

these immediately lead to the Heisenberg uncertainty relation

(∆Ej(r; l))(∆Hs(r
′; l)) ≥ 4π

~c√
2l

1

(
√
4πl)3

|rm − r′m|√
2l

exp

(

− (r − r′)2

4l2

)

|εjsm|. (8)

To derive Eq. (7) we applied Eq. (A15) and computed h(η, γ) for Gaussian gate functions making use of Eq. (4). The
Gaussian integrations are easily performed. A similar calculation shows that in the case of not necessarily identical
Gaussian gates, the Heisenberg uncertainty relation for (∆Ej(r; l))(∆Hs(r

′; l′)) still has a form of Eq. (8), with the
gate size l in the r.h.s. replaced by

leff =

√

l2 + (l′)2

2
. (9)

Eq. (8) provides a clear physical interpretation for the 1/l parameter in the Heisenberg’s uncertainty formula. Eq. (8)

depends on a single parameter: the gate size l. The (~c)/(
√
2l) factor represents the 1/l Heisenberg’s parameter in

energy units; the
√
2 factor is specific to the Gaussian form of the gate. More precisely the (~c)/(

√
2l) factor is the

energy of a photon, whose wavelength is given by the gate size. The second factor 1
(
√
4πl)3

is of the order of the inverse

volume of the gate region. Their product thus represents the energy density of a photon, restricted to the gate region
(according to the Heisenberg uncertainty principle for a photon, considered as a quantum particle). It is worth noting
that (∆E)(∆H) has units of energy density. The dimensionless product of the last two factors in Eq. (8) characterizes
the overlap of the gates, so that when |r − r′| ≫ l the uncertainty vanishes. It is also interesting to note that at
r = r′ the uncertainty vanishes as well, provided the gate profiles are identical. One way to look at this dependence
is that even if the original field is classical and contains many photons, the nano-gated field may contain only a few
photons, and for a sufficiently short gate it will, therefore, show quantum effects.
To get a sense of the fluctuation magnitudes, we compare (∆E)(∆H) for a Gaussian gate with l = 1nm = 10−9m

with the EH product in a pulse with the intensity I = 1015 J · s−1 · cm−2 = 1019 J · s−1 ·m−2. The maximal value of
the dimensionless function (the product of the last two factors in the r.h.s. of Eq. (8)) is 1/

√
e ≈ 0.6, so that we have

for l = 1nm = 10−9m and hc ≈ 2× 10−25 J ·m,

(∆E) · (∆H) ∼ 4π
~c√
2l

1

(
√
4πl)3

1√
e
=

1

4π
√
2π

√
e

hc

l4
≈ 1

4π
√
2π

√
e

2× 10−25 J ·m
10−36m4

≈ 1

4π
√
2π

√
e
2× 1011J ·m3.(10)

Making use of the Poynting vector

S = − c

4π
[E,H ], so that I = S =

c

4π
EH (11)

we have

E ·H =
4π

c
I ≈ 4π

1019 J · s−1 ·m−2

3× 108m · s−1
≈ 4π

1

3
× 1011 J ·m−3, (12)
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so that

(∆E) · (∆H)

E ·H ≈ 1

(4π)2
√
2π

√
e
· 6 ≈ 0.6

100
· 6 ≈ 4× 10−2. (13)

Finally setting E = H for a plane wave and ∆E = ∆H for a coherent state of the electromagnetic field we obtain

∆E

E
≈ 0.2 (14)

implying that for a nanometer gate quantum effects are non-negligible even for a very strong pulse, which is usually
thought of as classical.

III. UNCERTAINTIES OF THE GATED ELECTRIC AND MAGNETIC FIELDS FOR A COHERENT

STATE

We now compute the uncertainties of the gated and electric and magnetic fields prepared in a coherent sate. Since,
in the coordinate representation, this state is simply a displaced ground state, the problem is reduced to computing
the variance of the quantum fluctuations of the gated fields in vacuum, i.e., we have

(∆E(η))2 = 〈Ω|(Ê(η))2|Ω〉, (∆H(γ))2 = 〈Ω|(Ĥ(γ))2|Ω〉. (15)

The computation is carried out by introducing the photon creation/annihilation operators, see appendix B for details.
Applying the continuum limit to Eqs. (B12) and (B13) we obtain

(∆E(η))2 =

∫

dk

(2π)3
2π~ck((η̃∗(k) · η̃(k))− k−2(η̃∗(k) · k)(η̃(k) · k)),

(∆H(γ))2 =

∫

dk

(2π)3
2π~ck((γ̃∗(k) · γ̃(k))− k−2(γ̃∗(k) · k)(γ̃(k) · k)). (16)

Hereafter we assume a Gaussian gate, i.e., η(r) = uδ(r; l) and γ(r) = vδ(r − r0; l), with δ(r; l) given by Eq. (5),
and u and v are unit vectors. A simple inspection of Eq. (16) shows that the uncertainties do not depend on a
particular choice of u, v, and r0 (reflecting the Poincare symmetry of the vacuum state), and, for our case, we have
∆H(γ) = ∆E(η), so that we need only compute ∆E(η). Choosing the z-axis along u, and applying the spherical
coordinates, we obtain upon substitution of the Fourier transform

η̃j(k) = e−(l2k2/2) (17)

of δ(r; l) into Eq. (16)

(∆E(η))2 =
2π~c

(2π)3

∫ ∞

0

k2dk

∫ 2π

0

dϕ

∫ π

0

sinh θdθk(1 − sin2 θ)e−l2k2

=
~c

2π

∫ 1

−1

dττ2
∫ ∞

0

dkk3e−l2k2

=
1

3π

~c

l4
, (18)

so that

(∆E(η))2 = (∆H(γ))2 =
1

3π

~c

l4
. (19)

In section II we identified the maximal value of the r.h.s. of the Heisenberg uncertainty principle for EM-field for
Gaussian gates of identical shape, with respect to the shift between the gates [see Eq. (10)], so that the uncertainty
Heisenberg principle is indeed satisfied

(∆E(η)) · (∆H(γ)) =
1

3π

~c

l4
>

1

2
√
2π

√
e

~c

l4
. (20)

The commutator of Ê and Ĥ is a number which determines the lower bound of their uncertainty. This bound
does not depend on the quantum state of the field and exists also in the vacuum state. We can then associate
it with vacuum fluctuations. The ∆E and ∆H uncertainties do depend on the quantum state of light. We thus
found that the vacuum state (and hence the coherent state) fluctuations are larger than the minimal uncertainty.
This is similar to the results, reported in [7] that the minimal product of precision in intensity and degree of spatial
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localization is achieved not at coherent states, but rather at the Epanechnikov distributions. Points of future interest
include (i) finding a quantum state that satisfies the minimum uncertainty, (ii) investigating the connection of the
presented uncertainty relations to the intensity vs spatial localization counterparts, explicitly considered in [7], and
(iii) minimizing ∆E or ∆H to create squeezed fluctuations [8, 9]. Another future goal is to identify an experimental
signal that is sensitive to this uncertainty, e.g., chirality in a nanostructure [10–12].
An alternative experimental realization of the present ideas is possible using nano-structures, rather than spatial

gating. Let us consider a setup whereby a nano sample interacts with a small part of a beam. The entire beam has
many photons and is classical but the relevant part of the beam that interacts with matter in this measurement is only
a nano slice that contains very few photons and should therefore be described by a quantum light. The measurement
should thus show quantum light effects even though it employs a classical field! A simple analogy of this state of
affairs exits in the time/frequency (rather than space) domain. When a short broad-band pulse interacts with a
system which has a narrow spectral line, only few of its spectral components participate, and the experiment can be
described by an effective narrow band (and long) pulse. The temporal resolution is eroded and not given by the pulse
duration. The experiment may be then described by an effective pulse which is different from the incoming pulse [13].
This is the temporal analogue of the spatial gating discussed here.
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Appendix A: Quantization of the Electromagnetic Field and the Heisenberg Uncertainty Relation

In this appendix we derive the commutation relation [Eq. (4)] between the gated electric and magnetic field opera-
tors. We start with quantization of electromagnetic field in vacuum, considered as a dynamical system. Its classical
action is given by

S[A(r), A0(r); Ȧ(r), Ȧ0(r)] =

∫

dtL; L =
1

8π

∫

dr(E2 −H2);

E = c−1Ȧ− ∂A0; Hi = εijk∂jAk, ∂j =
∂

∂rj
. (A1)

To switch to the (classical) Hamilton formalism, we identify the conjugate momenta as variational derivatives

πj(r) =
δL

δAj(r)
=

1

4πc
Ej(r); π0(r) =

δL

δA0(r)
=

1

4πc
E0(r) = 0, (A2)

the second relation π0(r) = 0 indicates that we are dealing with a dynamical system with constraints. The classical
Hamiltonian is obtained in a standard way

H =

∫

dr(π0(r)Ȧ0(r) + π(r) · Ȧ(r))− L =
1

8π

∫

dr(E2 +H2) +
1

4π

∫

drE · ∂A0

=
1

8π

∫

dr(E2 +H2)− 1

4π

∫

drA0divE, (A3)

where we have made use of Eq. (A2). The Poisson bracket has a standard form

{Ej(r), Ak(r
′)} = 4πcδjkδ(r − r′), {E0(r), A0(r

′)} = 4πcδ(r − r′). (A4)

For the constraint E0(r) to be preserved by the dynamics, we need to have Ė0(r) = 0, which combined with the

Hamilton equation Ė0(r) = {H, Ė0(r)} and upon a direct computation of the r.h.s. of the latter [making use of
Eqs. (A3) and (A4)], yields divE(r) = 0, referred to as the secondary constraints. Computation of the time derivative
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of the secondary constraints yields 0, meaning that there are no higher-order constraints, so that the complete set of
them is given by

E0(r) = 0, divE(r) = 0; (A5)

obviously the Poisson bracket between constraint is zero, so that all constraints are type-1 in Dirac’s classification.
Gauge invariant quantization is performed using a canonical quantization of a dynamical system with type-2 (weak)

constraints. A state in the extended Hilbert space is represented by a wavefunction Ψ[A(r), A0(r)] with the electric
field operators naturally defined as variational derivatives

Ê0(r) = −4πci~
δ

δA0(r)
, Êj(r) = −4πci~

δ

δAj(r)
. (A6)

The constraints are applied in a weak sense, i.e., we introduce a physical subspace of the wavefunctions that satisfy
the conditions Ê0(r)Ψ = 0 and div Ê(r)Ψ = 0, or explicitly

δ

δA0(r)
Ψ = 0,

∂

∂rj

δ

δAj(r)
Ψ = 0, (A7)

which means that a physical wavefunction is a one that does not depend on the scalar potential and the longitudinal
component of the vector counterpart. A physical, or equivalently a gauge invariant, operator is a one that acts closely
in the physical subspace.
To simplify the application of constraints we switch to the momentum domain. To that end we consider the space

as a box of size L (with volume V ) with periodic boundary conditions, so that the quantization conditions for the
photon wavevector are kL = 2πn, with n ∈ Z

3, allowing to represent

A(r) =
1√
V

∑

k

Ake
ik·r, Ak =

1√
V

∫

X

drA(r)e−ik·r. (A8)

We further associate with each allowed k an orthonormal basis set (e
(α)
k

|α = 1, 2, 3), with e
(α)
k

= n = |k|−1k and
represent

Ak =

3
∑

α=1

Aα,ke
(α)
k

, Ek =

3
∑

α=1

Eα,ke
(α)
k

, (A9)

resulting in

{Eα,k, Aβ,k′} =
4πc

V

∫

drdr′eik·r+ik′·r′{e(α)
k

·E(r), e
(β)
k′ ·A(r′)}

= 4πc

∫

drdr′

V
eik·r+ik′·r′

e
(α)
k

· e(β)
k′ δ(r − r′) = 4πce

(α)
k

· e(β)
k′ δk+k′,0. (A10)

Applying the constraints we have E
(3)
k

= 0, so that

E(r) =
1√
V

∑

k

2
∑

α=1

e
(α)
k

eik·rEα,k, H(r′) =
i√
V

∑

k′

2
∑

β=1

[k′, e
(β)
k′ ]e

ik′·r′

Aβ,k′ , (A11)

and denoting with (uj | j = 1, 2, 3) a lab frame, we compute

{Ej(r), Hs(r
′)} = {uj ·E(r),us ·H(r′)} =

i

V

∑

kk′

∑

αβ

(e
(α)
k

· uj)([k
′, e

(β)
k′ ] · us)e

ik·r+ik′·r′{Eα,k, Aβ,k′}

= −4πci

V

∑

k

∑

αβ

(e
(α)
k

· uj)([k, e
(β)
−k

] · us)(e
(α)
k

· e(β)−k
)eik·(r−r

′), (A12)

where the summation in Eq. (A12) runs over α, β = 1, 2. We further compute
∑

αβ

(e
(α)
k

· uj)([k, e
(β)
−k

] · us)(e
(α)
k

· e(β)−k
) =

∑

αβ

(e
(α)
k

· uj)([us,k] · e(β)−k
)(e

(α)
k

· e(β)−k
)

= (
∑

α

(uj · e(α)k
)e

(α)
k

) · (
∑

β

([us,k] · e(β)−k
)e

(β)
−k

) = (uj · [us,k]) = [uj ,us] · k = εjsm(um · k) = εjsmkm. (A13)
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Note that in the first expression in the second line in Eq. (A13) the summation runs over α, β = 1, 2, whereas to
obtain the next equality in the chain, the summation has to be extended to its full range α, β = 1, 2, 3. This is indeed
allowed, since the summand with β = 3 turns out to 0, which also implies that the scalar product of the summand
with α = 3 with the sum over β also turns out to zero, so that the summations can be safely extended to their full
ranges. Upon the substitution of Eq. (A13) into Eq. (A12), we obtain

{Ej(r), Hs(r
′)} = −4πc

V

∑

k

εjsmikmeik·(r−r
′) = −4πcεjsm

∂

∂rm

1

V

∑

k

eik·(r−r
′) = −4πcεjsm

∂

∂rm
δ(r − r′).(A14)

Finally, we make use of Eq. (A14) to compute the Poisson bracket of the gated variables

{E(η), H(γ)} = −4πcεjsm

∫

drdr′ηj(r)γs(r
′)

∂

∂rm
δ(r − r′) = 4πcεjsm

∫

drdr′δ(r − r′)
∂ηj(r)

∂rm
γs(r)

= 4πc

∫

drεsmj
∂ηj(r)

∂rm
γs(r) = 4πc

∫

dr(curlη(r)) · γ(r) = h(η, γ). (A15)

with h(η, γ) given by Eq. (4).
Upon canonical gauge invariant quantization of the electromagnetic field, Eq. (A15) provides the expression for the

commutator of the gated operators, given by Eq. (2).

Appendix B: Uncertainties of the Gated Electric and Magnetic Fields in a Coherent State: Details

We start with representing the EM field operators in terms of the creation/annihilation operators

Âα,k = ukaα,k + u∗
k
a†α,−k

, Êα,k = vkaα,k + v∗
k
a†α,−k

, (B1)

together with a choice e
(α)
−k

= e
(α)
k

, u−k = uk, u−k = uk so that the conditions Âα,−k = Â†
α,k and Êα,−k = Ê†

α,−k

that reflect the real nature of the electromagnetic field are satisfied. Upon quantizing the expression for the Poisson
bracket [Eq. A10)] and postulating the commutation relations for the photon operators we obtain

[Êα,k, Âβ,k′ ] = −4πi~ce
(α)
k

· e(β)
k′ δk+k′,0, [aα,k, a

†
β,k] = δαβδk,k′ , (B2)

by substituting Eq. (B1) into Eq. (B2), we obtain

−4πi~cδαα′δk,−k′ = −4πi~ce
(α)
k

· e(α
′)

k′ δk+k′,0 = [vkaα,k + v∗ka
†
α,−k

, uk′aα′,k′ + u∗
k′a

†
α′,−k′ ]

= (vku
∗
k − v∗kuk)δαα′δk,−k′ , implying vku

∗
k − v∗kuk = −i4π~c. (B3)

We further have

Êα,kÊα,−k = v∗
k
vk(a

†
α,kaα,k + a†α,−k

aα,−k) + v∗
k
vk + (v2

k
aα,kaα,k + (v∗

k
)2a†α,−k

a†α,k),

Âα,kÂα,−k = u∗
k
uk(a

†
α,kaα,k + a†α,−k

aα,−k) + u∗
k
uk + (u2

k
aα,kaα,k + (u∗

k
)2a†α,−k

a†α,k), (B4)

the Hamiltonian H of the EM-field in vacuum reads

H =
∑

k

∑

α

Hα,k, (B5)

with

Hα,k =
1

8π
(v∗

k
vk + k2u∗

k
uk)(a

†
α,kaα,k + a†α,−k

aα,−k) +
1

8π
(v∗

k
vk + k2u∗

k
uk)

+
1

8π
(v2

k
+ k2u2

k
)aα,kaα,−k +

1

8π
(v2

k
+ k2u2

k
)∗a†α,ka

†
α,−k

. (B6)

Combining the condition that the unwanted terms [the last two terms in Eq. (B6)] disappear with Eq. (B3) we obtain
a system of two equations

v2
k
+ k2u2

k
= 0, vku

∗
k
− v∗

k
uk = −i4π~c (B7)

whose solution

uk =

√

2π~c

k
, vk = −i

√
2π~ck, (B8)
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results in the explicit expressions

Aα,k =

√

2π~c

k
(aα,k + a†α,−k

), Eα,k = −i
√
2π~ck(aα,k − a†α,−k

). (B9)

Upon substitution of Eq. (B8) into Eqs. (B5) and (B6) we obtain the standard expression for the Hamiltonian H
of the EM-field, recast in terms of the photon creation/annihilation operators

H = E0 +
∑

k

∑

α

~cka†α,kaα,k, E0 =
1

2

∑

k

∑

α

~ck. (B10)

Upon the substitution of Eqs. (A11) and (B9) into Eq. (1) we obtain

Ê(η) =

∫

drη(r) ·E(r) =
1√
V

∑

kα

∫

drη(r) · e(α)
k

Eα,k = −i
∑

kα

(η−k · e(α)
k

)i
√
2π~ck(aα,k − a†α,−k

), (B11)

and further, making use of Eq. (B11) and applying abbreviated notation 〈•〉 = 〈Ω| • |Ω〉 we obtain

(∆E(η))2 = 〈(Ê(η))2〉 = −
∑

kα

∑

k′α′

(η−k · e(α)
k

)(η−k′ · e(α
′)

k′ )
√
2π~ck

√
2π~ck′〈(aα,k − a†α,−k

)(aα′,k′ − a†α′,−k′)〉

=
∑

kα

∑

k′α′

(η−k · e(α)
k

)(η−k′ · e(α
′)

k′ )
√
2π~ck

√
2π~ck′δk,−k′δαα′ =

∑

kα

2π~ck(η−k · e(α)
k

)(ηk · e(α)
k

)

=
∑

k

2π~ck(η−k − k−2(η−k · k)k) · (ηk − k−2(ηk · k)k)

=
∑

k

2π~ck((η−k · ηk)− k−2(η−k · k)(ηk · k)) =
∑

k

2π~ck((η∗
k
· ηk)− k−2(η∗

k
· k)(ηk · k)). (B12)

A similar computation for the uncertainty of the magnetic field yields

(∆H(γ))2 =
∑

k

2π~ck((γ∗
k · γk)− k−2(γ∗

k · k)(γk · k)). (B13)

These result in Eq. (16) in the main text.
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