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Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg
peak was investigated for typical clinical scenarios. The signal generation and detection processes
were simulated in order to determine the signal-to-noise limits.
Methods: An analytical model was used to calculate the dose distribution and local pressure rise
(per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm)
in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were
generated by the general 3D pressure wave equation implemented using a finite element method.
Various beam pulse widths (0.1–10 µs) were simulated by convolving the acoustic waves with
Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a
Butterworth bandpass filter with consideration of random noise based on a model of thermal noise
in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the
minimum number of protons required to generate a detectable pulse. The maximum spatial resolution
of the proton-acoustic imaging modality was also estimated from the signal spectrum.
Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central
frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the
order of 3–30×106 per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses
produced signal with lower acoustic frequencies, with 10 µs pulses producing signals with frequency
less than 100 kHz.
Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal
detection limit was established for proton-acoustic range validation. These limits correspond to a best
case scenario with a single large detector with no losses and detector thermal noise as the sensitivity
limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with
approximately 5×106 protons/pulse and beam current. C 2015 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4929939]

Key words: proton acoustics, proton therapy, range verification

1. INTRODUCTION

The treatment accuracy of current proton and ion therapy is
limited by the proton range uncertainty, which may adversely
affect patient outcomes. There is a sharp accumulation of
radiation dose at the distal end of the particle range (i.e., the
Bragg peak). Therefore, small changes in the proton range
can severely underdose the target volume and excessively
overdose adjacent critical organs.1 The range uncertainty
contributes to an increase in the planned treatment volume
(PTV). Thus, minimizing the uncertainty in the proton
range is a problem of great interest in proton and ion
therapy. Remote measurement of the Bragg peak position
is especially challenging considering that all protons in
the treatment beam are absorbed inside patient, leaving no
means of monitoring dose via proton detectors. Proton range
verification methods include PET (Ref. 2) and prompt gamma

imaging.3,4 These methods require inferring proton dose from
a spatial distribution of nuclear emissions which follows a
complex, nonlinear relationship. Finally, the PET method is
not real-time, and therefore may not be used to adjust a
treatment session as it occurs.

Acoustic signals produced by radiation traversing matter
have been previously investigated in nuclear physics as a
means for accelerator beam monitoring5 and in astrophysics
for cosmic particle detection.6 These methods were subse-
quently proposed in radiation oncology for verification of
proton and ion therapy7,8 and at least one instance of a proton-
acoustic signal in a patient study has been recorded.9 Ad-
ditionally, x-ray induced acoustic imaging has been demon-
strated as a feasible method for imaging spatially varying
dose distributions.10 The physical mechanism underlying the
proton-acoustic method is the thermoelastic pressurization of
matter upon proton irradiation, which is the same underlying
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physical mechanism as that in photoacoustic imaging.11 A
short pulse of proton radiation causes an instantaneous local
increase in temperature and pressure. The local pressure rise
travels outward in the form of ultrasonic pressure waves that
are subsequently detected by ultrasound transducer detectors.
The arrival time of the detected ultrasound pulse relative to the
time of the proton irradiation pulse is directly proportional to
the distance from the Bragg peak to the ultrasound detector.
This provides the basis of localizing the Bragg peak within
the patient. Studies by Jones et al. and Alsanea et al. indicate
that Bragg peak localization with about 1-mm precision may
be possible.12,13 These studies also showed that the use of
multiple ultrasound detectors may reconstruct a tomographic
image of the proton dose distribution.

The proton-acoustic method of verifying proton dose offers
several advantages. First, it provides real-time feedback,
allowing intratreatment adjustment. Second, spatial resolution
in ultrasound imaging is generally better than in nuclear
imaging methods; thus, it may better reduce proton range
uncertainty. Finally, ultrasonic instrumentation is generally
much less expensive than nuclear imaging instrumentation.

Proton-acoustic signal depends on a variety of parameters
such as the beam pulse width, energy, spot size, and
measurement noise. The limits of proton-acoustic detection
are currently not well understood. Given the recent attention
to proton and ion-acoustics research,12,14–16 we investigate the
detection limits on proton-acoustic signals in clinical proton
therapy scenarios. The sensitivity of proton-acoustic imaging
is ultimately limited by thermal noise within the ultrasound
transducers.17,18 By deriving the noise from fundamental
physical principles, we determine the detection threshold of
the proton-acoustic method. These results set the limit on the
sensitivity of the proton-acoustic method and should establish
a quick reference for assessing whether a given irradiation
scenario produces a detectable proton-acoustic signal. Finally,
we report the frequency and bandwidth of the proton-acoustic
signals. These features inform the selection of transducers in
proton-acoustics applications.

2. METHODS
2.A. Proton dose distribution

The semiempirical analytical model presented by Pedroni
et al.19 was used to calculate the dose distribution (per proton)
for beams of different energy and spot widths. This model has
demonstrated a dosimetric accuracy of 1%–2% compared
to measurements over a wide range of energies, field
sizes, and field shapes. The advantage of this model over
other approaches such as Monte Carlo simulation is its
computational simplicity and accuracy over a wide range
of proton beam parameters. In this model, the dose D due to
a single proton at a depth w and transverse distance x and y
for a proton beam with energy E is

D(x,y,w,E)=T (w,E)×G(x,σx (w,E))×G
�
y,σy (w,E)�. (1)

D is the statistically averaged dose per proton over an irradia-
tion with many protons, where T(w,E) is a semiempirical

depth-dose factor whose values have been previously tab-
ulated. The tabulated values of T used the theoretical
Bethe-Bloch proton stopping power formula to calculate the
proton energy loss vs depth from fundamental principles
and incorporated empirical data to fit functions that include
the effects of range straggling and nuclear interactions.
G(x,w,σx(w),E) and G(y,w,σy(w),E) are normal (Gaussian)
functions that characterize the transverse dose distribution in
the x and y directions, respectively. They have a mean value of
zero and the widths σx(w) and σy(w) characterize the lateral
spread of the beam with depth. σx(w) and σy(w) were found
by fitting a parameterized function representing accumulated
Coulomb scattering with depth to measurements of lateral
beam spreading. σx(w) and σy(w) are semiempirical factors
and we used tabulated values of σx(w) and σy(w) in our
simulations.

2.B. Initial pressurization and acoustic propagation

The energy deposited by the proton beam is considered
instantaneous leading to an instantaneous rise in pressure. The
initial local pressure rise P0 is assumed to be proportional to
the energy density deposited and the proportion is given by
the Grüneisen parameter Γ,

P0= ΓE = ΓρD, (2)

where E is the local energy density (in J/m3). Γ is a dimension-
less quantity and a value of Γ = 0.15 has been measured for
soft at physiological temperature and atmospheric pressure.20

Although Γ varies with both temperature and pressure, we
are concerned with only small temperature and pressure
rises here, and the variation in the Grüneisen parameter
Γ is thus negligible. The energy density is equal to the
dose D multiplied by the material density ρ, approximately
ρ= 1000 kg/m3 in soft tissue.

The initial local pressure at the proton Bragg peak produces
pressure waves carrying the thermoelastic energy away. The
pressure field pi at any point r and at time t can be calculated
by solving the general wave equation,(
∇2− 1

v2
s

∂2

∂t2

)
pi (r,t)= 0, (3)

subject to the initial condition, pi(r,0)= P0. The solution pi
is the resulting acoustic field due to an infinitesimal-width
impulse of the proton beam. In practice, the solution is valid as
long as the pulse width is shorter than the thermal confinement
time in the media. vs is the speed of sound in the acoustic
medium (vs is approximately 1500 m/s in soft tissue).

We solve the equations iteratively using the k-space pseu-
dospectral finite element method.21 Briefly, this method com-
putes the finite difference derivatives (∂/∂x,∂/∂ y,∂/∂z,∂/∂t)
in the frequency domain. The advantage of transforming the
pressure field into the frequency domain is that fewer grid
points are required for an accurate solution. The k-space
pseudospectral finite element method has been previously
implemented in  (Mathworks, Natick, MA) by the
group of Treeby and Cox in the k-Wave  toolbox21 and
has been used extensively in many acoustic simulation studies.
We provided the initial condition P0 and the field locations
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r as inputs into k-Wave which calculated the output pressure
waveform pi(t) at field point r . The wave propagation at each
time step also incorporates the attenuation of soft tissue, by
using a power-law exponential attenuation with attenuation
coefficient of 0.75 dB/(MHzˆy cm) and exponent y = 1.5.

pi(t) the impulse response of the acoustic field due to
a short, intense pulse of the proton beam. As long as the
condition of acoustic stress confinement is satisfied, the
temporal shape of the pulse does not matter. This means
the accumulated pressure does not dissipate away during
the irradiation if the pulse is sufficiently short. The stress
confinement time T for tissue is given by T = δ/v , where δ
is the radiation penetration depth or spot size and v is the
speed of sound in the medium. Taking the width of the Bragg
peak to be approximately δ = 1 cm, the stress confinement
time is approximately 6 µs. To find the response to proton
pulse widths on this scale or longer, we simply convolve the
impulse response with the excitation pulse temporal profile
G(t,0,σt), where G is a normalized Gaussian function with
mean 0 and standard deviation σt. The pulse width is the
full-width half maximum of G and is equal to 2.35σt. The
pressure field due to a proton pulse with width σt is thus

p(t)= pi (t)⊗G(t,0,σt). (4)

In effect, this is equivalent to dividing the proton beam impulse
into smaller excitation pulses spread over a time period of σt

and then summing the resulting fields from these impulses.
This convolution operation is valid because of the linearity of
Eq. (4) in both space and time.

p(r,t) in Eq. (4) is the actual pressure waveform at field
point r independent of any detector. The measured signal
is dependent on the transducer bandwidth. In principle, an
infinite bandwidth will preserve the shape and intensity
of the acoustic waveform; however, noise also increases
with bandwidth. Thus, there is a trade-off between high
measurement accuracy with a wide bandwidth detector and
low noise with a low bandwidth detector. The transducer
acts as a bandpass filter on the actual pressure waveform.
We simulate this effect by filtering pi(t) with a Butterworth
bandpass filter. Briefly, the effect of this filter is approximately
that of an ideal bandpass filter (i.e., rect function): all
frequencies in f (t) below f low and above fhigh are reduced
to zero amplitude, while the band of frequencies between
f low and fhigh has a gain of 1. It is known that the sharp
discontinuities in the ideal bandpass filter result in unrealistic
ringing artifacts; therefore, we used the Butterworth filter
instead to avoid these ringing artifacts. Notationally, we
represent the filtering operation as

p′(t)= B
�
pi (t), f low, fhigh

�
, (5)

where B( f (t), f low, fhigh) is the signal f (t) after it is filtered
by the first order Butterworth bandpass filter with lower and
upper cutoff frequencies f low and fhigh, respectively. The filter
response at f low and fhigh is exactly half (−3 dB) compared to
fmax, which is approximately equal to the central frequency
fcent = ( fhigh+ f low)/2. The spectrum of the acoustic signal
decreases with frequency. The cutoff frequency fhigh was
chosen such that the amplitude of the spectrum (Fourier

transform magnitude) at fhigh is equal to the noise amplitude:
i.e., frequencies above fhigh cannot be detected against the
noise. Once fhigh is chosen, f low is set as fhigh/3. This
sets the bandwidth ( fhigh− f low) equal to 100%∗ fcent (100%
bandwidth). Bandwidth of 100% is a typical bandwidth of
wideband piezo-electric ultrasound transducers.

2.C. Noise model

The dominant source of noise in low intensity ultrasound
applications is thermal noise inside piezoelectric element
of the ultrasound transducer. This is widely acknowledged
as the dominant noise source in the wider thermoacoustics
literature.17,18 Hayakawa et al. noted that electronic noise
interfered with their proton-acoustic measurements.9 How-
ever, in the Appendix we make calculations of electronic
noise from amplifier circuits and show that it is negligible in
comparison with the transducer thermal noise when low-noise
amplifiers are used to amplify the signal immediately after
transduction. The noise-equivalent pressure (noise in units of
pressure) is given by

N =
1
gl


4kT
C

, (6)

where k is Boltzmann’s constant, and T is the absolute
temperature of the transducer. C, g, and l are the capacitance,
piezoelectric modulus, and thickness, respectively, of the
piezoelectric element of the transducer. The square-root
term represents voltage noise due to thermal fluctuations
in capacitance C. The product gl is the sensitivity of the
transducer (e.g., in volts per pascal). From the definition
above, the following expression for N can be derived:17

N =


9.2kT

clϵϵ0g2A
fmax. (7)

A is the surface area of the piezomaterial and fmax is the
maximum detectable frequency of the transducer. cl and
εε0 are the speed of sound and dielectric permittivity of
the piezoelectric material, respectively. From Eq. (7), it
is seen that noise depends on the following factors: (1)
temperature, (2) the product η = clϵϵ0g

2, which is an intrinsic
quantity of the piezoelectric material, (3) A and fmax, which
depend on the physical dimensions of the piezo element.
The paper by Oraevsky and Karabutov17 lists the value of η
for different materials: lithium niobate, quartz, lead zirconate
titanate (PZT), and polyvinyldenefluoride (PVDF). Of these
materials, PZT has the highest piezo-electric efficiency
(η = 27×10−9 m3/s N, which is seven times greater than any
of the other materials). PZT is preferred for many wideband
ultrasound applications below 2 MHz.17 Therefore, we set
the value of η to that of PZT. The most sensitive detectors
are hydrophones with PZT transducer elements, and we have
assumed a submerged PZT hydrophone in this simulation
study.

Equation (7) can be written as N = N0


fmax, where N0 is
the noise spectral density. Assuming a PZT transducer with a
5 cm diameter (A= 20 cm2) and a value of η = 27×10−9 m3/s
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N for PZT and room temperature of 296 K, we calculated
a value of N0 = 2.7× 10−5 Pa/

√
Hz for the noise spectral

density of our transducer model. This is within the range of
transducer noise spectral density values for a wide variety of
transducers listed by Winkler et al.18 Given the large area of
the transducer and the assumption of no other noise sources,
this should be considered a reasonable minimum noise floor
for a PZT transducer. Although one can enhance sensitivity
with multiple detectors, we focus here on proton-acoustic
detection with a single-element transducer for simplicity.

For the calculation of N according to Eq. (7) in each of
the simulations, we set fmax equal to the maximum frequency
present in the acoustic signal: i.e., fmax is set to the frequency
at which the Fourier transform of the signal decreases below
the noise spectral density N0. We generated random noise ϵ
at each time point in the acoustic waveform by sampling a
Gaussian probability distribution. The noisy measured signal
pproton(t) in the simulation was thus calculated as

pproton(t)= p′(t)+ ϵ ∼G(0,N), (8)

where ϵ is a Gaussian random variable with mean 0 and
standard deviation N . This represents an average acoustic
signal on a per-proton basis.

We defined the per-proton SNR as the ratio of the noiseless
signal p′(t) peak value to the noise intensity N ,

SNR=
max(p′(t))

N
. (9)

To determine the minimum detectable dose, we multiplied the
per-proton dose by the ratio 4/SNR,

Ddet=D(0,0,dmax,E) 4
SNR

, (10)

where D(0,0,dmax,E) is the dose per proton at the Bragg peak
for a proton beam with energy E. This value of 4 for the
target SNR is based on the widely accepted Rose criterion for
minimum SNR in signal processing.22

2.D. Evaluation cases

We consider two different clinical proton therapy scenarios:
(i) a deep seated target. This represents a common prostate
cancer in a male adult; the target is treated with a 160 MeV
proton beam with a maximum dose depth of 17.2 cm, (ii) a
tumor at a shallower depth, such as in a pediatric patient. The
target is treated with a 100 MeV proton beam with a maximum
dose depth of 7.5 cm. For both scenarios we considered fields
with 1, 5, and 10 mm spot sizes.

3. RESULTS

Figure 1 displays the average dose distribution per proton
for two beams: 100 and 160 MeV with a 5-mm spot size.
Each proton delivers a statistically averaged dose on the
order of several nGy at the Bragg peak. For each beam,
the detector was located 4-cm distal to the Bragg peak.
Figures 2 and 3 depict the simulated acoustic signals in
the time-domain and frequency-domain, respectively. For the
purpose of illustration, we have chosen to display the results
for the 100-MeV beam with the 1-mm spot beam.

Figure 2 (left) shows both the actual field pressure p(t) and
the simulated measured signal ppulse(t) for a 0.1-µs pulse with
a 235-mGy dose. The acoustic pulse arrives approximately
26 µs after irradiation, indicating a detector distance of 40 mm
distal to the Bragg peak. The absolute pressures (on the order

F. 1. Dose distributions for the 100 MeV (left) and 160 MeV (right) beams. The dose values are the average dose per proton. The blue circular marker indicates
the position of the detector (4 cm distal to the Bragg peak in each case).
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F. 2. Simulated acoustic waveforms at a detector 4 cm from the Bragg peak of the proton beam. The beam had a 100-MeV energy and a 1-mm spot size.
Left: waveform for a beam with a 0.1-µs pulse width (235 mGy/pulse). Right: beam with a 10-µs pulse width (647 mGy/pulse). “Actual pressure” refers to
the waveform detected by an ideal noiseless detector with infinite bandwidth. “Detected pressure” refers to the waveform measured by the realistically modeled
transducer.

of 100 mPa) are indicated on the vertical axis. The narrow
pulse width relates to a 1-mm spatial resolution. The second
pulse (in the actual pressure waveform) that arrives after the
main pulse is from the phantom entrance (zero depth relative
to the proton beam); however, this secondary pulse cannot be
detected because it is much smaller than the detector noise.
Figure 2 (right) also shows the acoustic waveform for a 10-µs
pulse with a 647 mGy dose. The actual peak pressure is also
lower: 140 mPa for the 10-µs pulse compared to 250 mPa
for the 0.1-µs pulse, despite the higher dose and lower noise.
This is due to temporal widening of the signal, which also
leads to lower acoustic peak amplitudes. The spectrum was
calculated by taking the magnitude of the Fourier transform
of the acoustic waveform: P( f ) = |F{p(t)}|. For the beam
with the 0.1-µs pulse width, it is apparent that most of the
signal energy is concentrated around 60 kHz, with a second
lobe around 400 kHz (Fig. 3, left). Most of the signal energy
is concentrated at low frequencies; however, the useful spatial
information comes from the high frequencies. The spectrum
for the 0.1-µs beam contains signal at frequencies past 1 MHz,
but with diminishing amplitude. Therefore, the measurements

with high-frequency transducers requires increasingly higher
dose per pulse. When the pulse width is increased from 0.1-
to 10-µs, the maximum frequency decreases from around 500
to 100 kHz (Fig. 3, right). At this low frequency, the signal is
centered around 76 kHz. For pulse widths wider than 10-µs,
the signal will shift to even lower frequencies, which will
make it difficult to localize the acoustic pulse in time with
high precision.

Tables I and II show the minimum requirements in terms
of dose and number of protons for each of the scenarios in this
study. We also list the highest achievable spatial resolution
based on the spectral content of the acoustic signal. Here are
a few general observations regarding the results as a whole:
the required doses (at the depth of maximum dose) are on
the order of 50–500 mGy/pulse. The corresponding number
of protons is on the order of 2–20×106 per pulse. There are
also several identifiable trends in these data. First, as the pulse
width increases, the spectrum (indicated in Tables I and II by
the central frequency) shifts to lower frequencies. This was
depicted in Fig. 3. Second, as the beam spot size increases,
the minimum number of protons also increases. This is due

F. 3. Spectrum of acoustic waveforms at a detector 4 cm from the Bragg peak of the proton beam. The beam had a 100-MeV energy and a 1-mm spot size.
Left: spectrum for a beam with a 0.1-µs pulse width. Right: spectrum for a beam with a 10-µs pulse width. The dotted line is the magnitude of the transfer
function of the transducer. Actual pressure refers to the spectrum detected by an ideal noiseless detector with infinite bandwidth. Detected pressure refers to the
spectrum measured by the realistically modeled transducer.
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T I. Minimum detection requirements for 100 MeV beams (Bragg peak depth: 7.5 cm).

Beam energy
(MeV)

Pulse width
(µs)

Spot size
(mm)

Central frequency
(kHz)

Noise equivalent
pressure (mPa)

Minimum detectable
dose (mGy)

Minimum protons per
pulse

Required beam
current (nA)

100 0.1 1 326 26 235 3.1 × 106 5000
100 0.1 5 302 26 41 3.6 × 106 5700
100 0.1 10 302 25 20 4.9 × 106 7800

100 1 1 300 25 253 3.4 × 106 540
100 1 5 207 21 32 2.8 × 106 450
100 1 10 213 21 17 4.0 × 106 650

100 5 1 128 17 376 5.0 × 106 160
100 5 5 125 17 61 5.3 × 106 170
100 5 10 131 17 39 9.4 × 106 300

100 10 1 76 13 647 8.6 × 106 140
100 10 5 73 13 94 8.1 × 106 130
100 10 10 76 13 69 1.7 × 107 270

to the decreased density of deposited energy which directly
relates to the initial pressure. On the other hand, the minimum
detectable dose is largest for the smallest spot size, because
the dose at the Bragg peak is higher compared to a larger spot
size for a fixed proton number.

The required dose versus pulse width has a more
complicated relation. As the pulse width increases, the signal
amplitude decreases, which also decreases the SNR; however,
the signal is also contained within lower frequencies and the
reduced noise over a lower bandwidth partially offsets the
reduction in SNR. We observed that required dose decreased
with increasing pulse width for the 100 MeV beam, but
increased initially for the 160 MeV beam.

4. DISCUSSION

To assess whether the above simulation results are
reasonable, we compare them to existing experimental
measurements in similar irradiation scenarios. Sulak et al.5

measured the proton-acoustic signal amplitude in a water

phantom for a 158 MeV beam with a 10-mm spot size and
50-µs pulse width. In their measurement, the detector was
placed 8 cm distal to the Bragg peak. The signal amplitude
was measured for different proton numbers (Sulak, Fig. 17),
and it was found that the linear relationship between these
variables was approximately 0.9 dyne/cm2 pressure per
1017 eV energy deposition, which equates to 9×10−18 Pa/eV.
The closest corresponding situation in our simulations was
the 160 MeV beam with a 10-mm spot size and 10-µs
spill time (Table II, row 16). The central frequency of the
simulation result was 69 kHz which is close to experimental
result. The signal amplitude was 48 mPa (25 mPa noise-
equivalent pressure times SNR= 4) for 1.7×107 protons. This
equates to 1.6×10−17 Pa/eV peak pressure at detector per total
energy deposition. Adjusting for the measurement distance
from 4 to 8 cm, the acoustic amplitude is 7.9×10−18 Pa/eV
(simulation 12% lower than experiment). The smallest signal
detected in the Sulak study was with a 2×1016 eV energy
deposition, whereas we predicted the detectability limit at
4.9×1015 eV energy deposition (4.1 times lower). Despite

T II. Minimum detection requirements for 160 MeV beams (Bragg peak depth: 17.2 cm).

Beam energy
(MeV)

Pulse width
(µs)

Spot size
(mm)

Central frequency
(kHz)

Noise equivalent
pressure (mPa)

Minimum detectable
dose (mGy)

Minimum protons per
pulse

Required beam
current (nA)

160 0.1 1 381 28 796 2.4 × 107 39 000
160 0.1 5 353 27 147 2.1 × 107 34 000
160 0.1 10 346 27 81 3.1 × 107 49 000

160 1 1 295 25 734 2.2 × 107 3 600
160 1 5 283 24 117 1.7 × 107 2 700
160 1 10 276 24 65 2.4 × 107 3 900

160 5 1 98 15 288 8.8 × 106 280
160 5 5 94 14 46 6.7 × 106 220
160 5 10 97 15 33 1.2 × 107 390

160 10 1 67 12 410 1.3 × 107 200
160 10 5 65 12 62 9.0 × 106 150
160 10 10 67 12 51 1.9 × 107 300

Medical Physics, Vol. 42, No. 10, October 2015
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the high beam current at their research facility, the sensitivity
in the experimental study seems to have been somewhat
limited by electrical noise (a noise source not included in
our simulation). The authors noted that they “could not
eliminate the electrical noise associated with the cyclotron
generator.”

Tada et al.7 measured the proton-acoustic signal in a water
phantom for a beam with a 51-mm range (approximately 7 cm
dmax, 103-MeV energy), 10×10 cm field size, and 50-ns pulse
width. The measurement location was approximately 4.5 cm
distal to the Bragg peak. The closest corresponding situation
in our simulations was the 100 MeV beam with a 10-mm spot
size and 0.1-µs spill time (Table I, row 3). Tada et al. measured
a 0.12 Pa amplitude for a beam delivering 4 mGy/pulse at the
Bragg peak which corresponds to 2.2×10−17 Pa/eV pressure
per total energy deposition. In our study, the signal amplitude
was 100 mPa for 4.9×106 protons and 20 mGy/pulse dose.
This equates to 2.0×10−16 Pa/eV pressure per total energy
deposition. The difference between the experiment and our
simulation may be explained by the difference between the
two field sizes. The acoustic wave fronts from different lateral
parts of the Bragg peak do not always interfere constructively
as they would for a smaller spot size. As a consequence, the
experimental value of pressure/energy deposition is expected
to be smaller. The Tada study did not report a measured
sensitivity. Our predicted detectability limit was 20 mGy/pulse
which is larger than the 4 mGy/pulse dose rate in the Tada
study. This five-fold difference suggests that the authors must
have had to average together at least 25 pulses. The authors
noted that “the detected signals were noisy which necessitated
averaging them over hundreds of pulses.” Our results of signal
amplitudes and sensitivity appear to agree reasonably well
with the Sulak and Tada studies.

More recently, the study by Assmann et al.16 demonstrated
a clear proton-acoustic signal with an energy deposition as low
as 1012 eV. In comparison, the energy deposition requirements
in our simulations ranged from 0.6–9.6× 1014 eV. This
difference in detection limit arises from the substantial proton
energy difference. This experimental study used a 20 MeV
proton beam, which has a 4 mm range in water, whereas in our
simulations the energies are 100 and 160 MeV. At 20 MeV, the
beam has a very sharp Bragg peak of only 0.3 mm, which leads
to a sharp proton-acoustic pulse. In addition, the pulses were
averaged over 16 events for noise reduction. In addition to the
lower required dose in that study, the small irradiation volume
produced higher frequency acoustic signals up to 13.5 MHz,
which theoretically allows a spatial resolution of 55 µm.
For more clinically relevant proton energies, the minimum
detectable dose and spatial resolution scale as indicated by
our simulations.

We have tabulated the minimum dose and beam currents
required to detect a single pulse. The previous experiments
on the proton-acoustic method mainly used high beam
current research facilities. In practice, the maximum beam
current available at clinical proton therapy facilities is about
300 nA. As seen in Tables I and II, several of the simulation
scenarios require a beam current lower than 300 nA, indicating
feasibility. However, this does not impose an absolute limit on

beams with lower pulse intensities. Random noise, including
thermal noise, can be mitigated by averaging the proton-
acoustic signal over multiple pulses. In fact, this strategy was
used in the Tada and Assmann studies. The effective noise
decreases by a factor of

√
N , where N is the number of

pulses. For example, the detection limit for the 5-mm spot
size, 5-µs pulse width, 100-MeV beam is 9 mGy (25.6 nA
beam current). An irradiation with half the pulse intensity
(4.5 mGy, 12.8 nA current) can be detected by averaging the
acquired waveform over four pulses. The total dose required
for detection is then 4.5 mGy×4 = 18 mGy. The results in
Tables I and II are therefore applicable to proton beams with
lower proton numbers/beam currents than those indicated
here; the total dose and number of averages must be adjusted
accordingly.

In this study, we considered only the thermal noise in the
transducer piezo material as this is the main source of noise in
this application. Other sources of noise include thermal noise
in the patient, electronic noise, as well as electromagnetic
interference. The latter is not a random noise source, and
instead is often temporally correlated with the acoustic signal.
In this case, careful electronic shielding may be needed to
isolate the acoustic detection system from this interference.

Sulak et al. state that sensitivity of hydrophones can
approach N0 = 6× 10−7 Pa/

√
Hz which is 42 times lower

(better) than that calculated for the PZT transducer in these
simulations. These detectors are likely much larger than the
5-cm diameter hydrophone in our simulation, and would have
lower transducer noise. In principle, the required doses should
be 42 times lower with the best available hydrophones than
in this study. On the other hand, this improvement would
also be partially offset because the acoustic pulse reaches
different parts of the detector at different times. Nevertheless,
this detection strategy may be one way of reducing the noise
and increasing the sensitivity of proton-acoustic detection.

Although we considered a single transducer in this
simulation study, signal from multiple detectors can be
combined to reduce noise and increase the sensitivity of
this method. This would require precise calibration of time-
of-flight to the multiple detectors. The Bragg peak must also
be within the received focal spot of the multiple detectors.

A common clinical situation that we did not consider is
treatment using a spread-out Bragg peak (SOBP) to cover
large targets, i.e., wider than the width of a pristine Bragg
peak. Although we did not explicitly investigate this situation,
the many pulses within a SOBP can be treated separately in
time because this technique responds to irradiation on a
pulse-by-pulse basis. The localization of the SOBP can be
achieved by monitoring all the pulses that contribute to a
SOBP.

5. CONCLUSION

Proton-acoustic range verification has been simulated and
the detection limits of this method have been determined. An
analytical model was used to calculate the initial pressure
distribution from a single pulse. A finite element solver
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was used to find numerical solution of the general wave
equation and calculate the resulting acoustic waves from
the initial pressure. A realistic noise model was used to
simulate noise, and thus a realistic SNR, in the simulations.
The proton-acoustic model was evaluated in simulations
using two different proton energies, representing different
clinical scenarios. Other simulation parameters included
pulse widths, beam energy, and spot sizes. The detection
limits, in terms of noise, minimum dose per pulse, and
number of protons have been tabulated for irradiations with
various values of the simulation parameters. The required
doses ranged from 2 to 117 mGy/pulse corresponding to
0.6–6×106 protons/pulse. The signal-to-noise ratio can be
further improved by increasing the number of pulse averages,
which would be a step toward clinical applicability. The
ultrasound frequencies ranged from 65 to 385 kHz. Ultrasound
frequency decreases with proton beam pulse width with pulses
wider than 10-µs producing signal below 100 kHz, which may
degrade the precision of range verification.
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APPENDIX: ANALYSIS OF ELECTRICAL NOISE

In this Appendix, we analyze the impact of electrical
noise to the acoustic measurement. In particular, we seek
to estimate the noise added by the amplifier circuit to the

F. 4. Schematic of the non-inverting amplifier. The transducer is modeled
as an input voltage source Vs with an electrical impedance Zs. V0 is the
amplified signal output.

F. 5. Noise equivalent hydrophone amplifier circuit.

measured acoustic signal. This problem has been studied
previously by Yañez et al. and we apply their approach23

for our particular transducer and frequency range. A simple
noninverting operational amplifier (op-amp) circuit is shown
in Fig. 4. The transducer is modeled as an input voltage source
Vs with an electrical impedance Zs. V0 is the amplified signal
output. The noise in the output V0 comes from: the transducer
(random variations in Vs); the op-amp; and the resistors R1
and R2. By modeling the noise in each of the circuit elements
in Fig. 4, we obtain the following noise equivalent circuit in
Fig. 5.

Using the definition of capacitance and the formula
fmax = 0.44cl/l, [Ref. 14, Eq. (5)] the capacitance of the
transducer in this study can be calculated as

C =
ϵϵ0A

l
= 2.27

ϵϵ0A
cl

fmax= 2.8 nF.

We used the values of ϵϵ0, cl of PZT-5 taken from Oraevsky
et al., area A= 20 cm2, and a frequency of fmax= 100 kHz,
which is typical of the signals in this study. The transducer
impedance is calculated as Zs = |1/ jωC |, where ω = 2π f is
the angular frequency. Using f = 100 kHz, we calculate a
transducer impedance of Zs = 568Ω. In Fig. 5, the transducer
has been replaced with a voltage noise source en, and an
impedance Zs = 7.6 Ω. We have already calculated a noise-
equivalent pressure density of N0 = 2.7× 10−5 Pa/

√
Hz. To

convert to voltage noise, we multiply by the transducer gain
gl. Using Eq. (6), we obtain

es = N0 ·gl =


4kT

C fmax
=7.66 nV/

√
Hz.

T III. Noise specifications of common low-noise amplifier integrated
circuits.

Manufacturer Model

Voltage noise en(
nV/
√

Hz
) Current noise in(

fA/
√

Hz
)

Texas Instruments OPA847 0.85 2500
Maxim MAX4106 0.75 2500
Texas Instruments LMH6624 0.92 2300
Texas Instruments CLC425 1.05 1600
Texas Instruments OPA657 4.8 1.3
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T IV. Amplitude of noise in the various electrical components of the amplifier circuit. V0 is the overall noise
at the amplifier output.

Amplifier en
(
nV/
√

Hz
)

es
(
nV/
√

Hz
) |ZS | in

(
nV/
√

Hz
)

e1
(
nV/
√

Hz
)

R2in
(
nV/
√

Hz
) V0

(mV)

OPA847 0.85 7.66 1.42 0.29 1.24 0.25
MAX4106 0.75 7.66 1.42 0.29 1.24 0.25
LMH6624 0.92 7.66 1.31 0.29 1.14 0.25
CLC425 1.05 7.66 0.91 0.29 0.79 0.25
OPA657 4.80 7.66 7.4 × 10−4 0.29 6.4 × 10−4 0.29
Ideal 0 7.66 0 0 0 0.24

The op-amp has an internal voltage noise en and a current
noise in. In Table III, we have listed several op-amp integrated
circuits with their nominal values of en and in. Note that
most values of en are nearly one order-of-magnitude lower
compared to es. This is a hint that electronic noise will be
negligible compared to transducer noise. The gain of the
amplifier circuit is set by the values of the resistors R1 and
R2 and is equal to G = 1+R2/R1. We set an amplifier gain
of 100 using R1= 5 Ω, R2= 495 Ω. R1 is kept as reasonably
low as possible to minimize resistor thermal noise, but still
high enough to be greater than stray resistance (conductors,
wires, solder joints) in the circuit. Resistors R1 and R2 each
carry a voltage noise equal to

√
4kT R.

Yanes et al. have derived the expression for the output
noise density of this amplifier configuration,

v2
0 =G2

(
e2
n+e2

s+ |Zs |2i2
n+e2

1

)
+R2

2i2
n, (A1)

V0= v0
√

BW. (A2)

V0 is the overall noise at the amplifier output and is obtained
by multiplying v0 with the signal bandwidth. We chose a
bandwidth of 100 kHz as it is representative of the signals
studied in this work. The output noise when all noise sources
except the transducer are turned off is G2e2

s. This corresponds
to the situation the transducer signal is amplified by an ideal
noiseless amplifier. We have listed the overall noise values for
the five op-amp IC circuits and the ideal noiseless amplifier in
Table IV. The largest noise source is es, the transducer itself.
The next significant noise sources are the amplifier current
noise loaded by the transducer impedance and the amplifier
voltage noise, |ZS |in and en, respectively. The noise in the R2
resistor R2in has very little impact since it is not multiplied
by the op-amp gain.

The noise at the output of the ideal noiseless amplifier
is 0.24 mV, whereas in the selected real amplifier circuits it
is between 0.25 and 0.29 mV. Clearly, the noise from the
amplifier circuit is much lower than the noise contribution
from the transducer itself.

This analysis shows that electronic noise is not necessarily
the limiting factor in proton-acoustic measurements. We
considered five different commercially available low-noise
amplifier IC packages. To achieve this noise minimum in
practice, the amplifier circuit should be placed as close
to the transducer as possible. This requires integration of
the amplifier directly into the hydrophone assembly. This

approach amplifies the signal before the hydrophone cable
and thus minimizes the impact of stray signals picked up by
the cable.
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