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Symbioses between bacteria and eukaryotes are ubiquitous, yet our understanding 

of the interactions driving these associations is hampered by our inability to 

cultivate most host-associated microbes. Here, we used a metagenomic approach to 

describe four co-occurring symbionts from the marine oligochaete Olavius 

algarvensis, a worm lacking a mouth, gut, and nephridia. Shotgun sequencing and 

metabolic pathway reconstruction revealed that the symbionts are sulfur-oxidizing 

and sulfate-reducing bacteria, all of which are capable of carbon fixation, providing 

the host with multiple sources of nutrition. Molecular evidence for the uptake and 

recycling of worm waste products by the symbionts suggests how the worm could 

eliminate its excretory system, an adaptation unique among annelid worms. We 

propose a model which describes how the versatile metabolism within this symbiotic 

consortium provides the host with an optimal energy supply as it shuttles between 

the upper oxic and lower anoxic coastal sediments which it inhabits. 
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Symbiosis plays a major role in shaping the evolution and diversity of eukaryotic 

organisms
1
. Remarkably, only recently has there been an emerging recognition that most 

eukaryotic organisms are intimately associated with a complex community of beneficial 

microbes that are essential for their development, health, and interactions with the 

environment
2
. This renaissance in symbiosis research stems from advances in molecular 

approaches that have enabled the study of natural microbial consortia using cultivation-

independent methods
3-5

. Metagenomic analyses have provided a new dimension in the 

study of community organization and metabolism in natural microbial communities
6-10

. 

To date, however, genomic analyses of symbiotic microbes from eukaryotes have been 

confined to individual strains (for the only exception see Wu et al.
11

), limiting our ability 

to understand the intricate interactions involving communication, competition, and 

resource partitioning that shape symbiotic microbial communities. 

Here, we used random shotgun sequencing and nucleotide-signature based binning 

to study the symbiotic community in Olavius algarvensis. This marine worm belongs to a 

group of oligochaetes (phylum Annelida) that lack a mouth, gut, and anus, and are unique 

among annelid worms in having reduced their nephridial excretory system
12

. They live in 

obligate and species-specific associations with multiple extracellular bacterial 

endosymbionts located just below the worm cuticle
12

. Since the symbionts have yet to be 

grown in culture, their phylogeny has only been accessible through 16S rRNA analysis 

and fluorescence in situ hybridization (FISH)
13,14

. O. algarvensis lives in coastal 

Mediterranean sediments and harbors a chemoautotrophic sulfur-oxidizing 

Gammaproteobacterium ( 1 symbiont) and a deltaproteobacterial sulfate reducer ( 1 

symbiont), recently shown to be engaged in an endosymbiotic sulfur cycle
14

. An 

additional gamma- and deltaproteobacterial symbiont ( 3 and 4 symbionts) of unknown 

function occur consistently in these hosts, and in some individuals a spirochete has been 

observed as a minor part of the symbiotic consortium (see Supplementary Figure S1a)
12

.  
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Given that most chemosynthetic hosts harbor only one or two bacteria, the 

associations of gutless oligochaetes with multiple symbionts are remarkable, raising a 

series of questions about their interactions with each other, their host, and the 

environment. How does the symbiosis compensate for the loss of digestive and excretory 

systems in the host, what do the various partners gain from this relationship, and is it 

mutually obligate? What is the selective advantage for O. algarvensis in harboring 

multiple symbiotic partners? Our metagenomic analyses explain how the bacterial 

consortium meets the energy and waste management needs of its oligochaete host. We 

describe how resource partitioning between the phylogenetically diverse symbionts 

benefits both the symbionts and the worm in the heterogeneous environment. Finally, we 

propose a model showing that the selective advantage of harboring multiple symbionts 

lies in their ability to supply their host with energy from an abundant and diverse supply 

of reducing equivalents and electron acceptors as it shuttles between the oxidized and 

reduced sediment layers.  

 

Metagenomic data analysis and binning 

Pooled samples of 200 O. algarvensis specimens per library were shotgun sequenced (see 

Supplementary Information, Supplementary Fig. S1b) and the sequences assembled using 

the whole-genome shotgun assembler JAZZ
15

 (Supplementary Methods, Supplementary 

Fig. S2). To assign the metagenomic scaffolds to their phylotype origin, we used a 

combinatory binning approach based on intrinsic DNA signatures (see Supplementary 

Methods). Binning of the Olavius spp. symbionts’ metagenome resulted in the formation 

of four distinct clusters (Fig. 1). The presence of the corresponding rRNA operons, which 

represented the only rRNA operons found in these bins and the assembly, enabled us to 

identify them as the O. algarvensis symbionts 1, 4, 1, and 3 (Fig. 1, Supplementary 
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Table S1, Supplementary Table S2 providing a comparison to other symbiont genomes). 

This study illustrates the usefulness of our nucleotide frequency method for the 

assignment of metagenomic scaffolds from a natural microbial community to a phylotype 

when using shotgun sequencing. It would not have been possible to reconstruct genome 

assemblies of the four symbionts based purely on GC contents and scaffold read depth, 

and without any closely related, fully sequenced reference genome.  

Symbiont bin assignments based on 16S rRNA genes were confirmed by 

phylogenetic analysis of predicted proteins within each cluster of scaffolds 

(Supplementary Fig. S3), and the clusters were furthermore supported by the distribution 

of 49 single-copy genes. Although the populations are not clonal, the frequencies of 

polymorphic sites found in the four symbiont bins, ranging from 0.01-0.1% 

(Supplementary Table S4), were rather low compared to environmental microbes such as 

those from the acid mine drainage
8
. The following discussion describing the metabolism 

of the symbionts is based on the genes found in each symbiont bin. With a focus on 

capturing the core metabolic pathways present in the community, it is of minor 

importance if the genes within each bin originated from a single strain or represent a pan-

genome of several very closely related strains
16

. 

 

Carbon and energy metabolism 

Gammaproteobacterial symbionts. Chemoautotrophic symbionts feed their hosts by 

providing them with organic carbon from autotrophic CO2 fixation driven by oxidation of 

reduced inorganic compounds such as sulfide. In agreement with previous studies 

indicating the chemoautotrophic, sulfur-oxidizing nature of the O. algarvensis 1 

symbiont
12

, our analysis of the 1 bin revealed the presence of genes required for 

autotrophic CO2 fixation via the Calvin-Benson-Bassham cycle using type I ribulose 1,5-
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bisphosphate carboxylase-oxygenase (RubisCO) (cbb), the oxidation of reduced sulfur 

compounds (such as dsr, fcc and sox), and the storage of sulfur in globules (sgpB 

encoding one of three known sulfur globule proteins). 

Unexpectedly, our metagenomic analyses revealed, that the 3 symbiont of O. 

algarvensis is also a sulfur-oxidizing chemoautotroph. Several gutless oligochaete 

species are known to harbor 3 symbionts but the metabolism of these bacteria was 

previously unknown and the benefit of harboring additional Gammaproteobacteria is 

unclear. The nearly complete genomic sequence for the O. algarvensis 3 symbiont 

obtained in this study is notable, as this is the first sequenced genome from a 

chemoautotrophic symbiont. The 3 bin carries all the genes required for a thiotrophic 

(sulfur-oxidizing) metabolism including those needed for the oxidation of reduced sulfur 

compounds (including dsr, apr, sat, fcc, and sox) as well as autotrophic CO2 fixation by 

means of genes closely related to but phylogenetically distinct from the 1 symbiont (Fig. 

2). The absence of sulfur globule proteins in the near complete 3 bin suggests that these 

symbionts do not store sulfur, supporting transmission electron microscopy analyses 

showing that only 1 symbionts contain sulfur globules (Giere, pers. communication). In 

addition to using oxygen as an electron acceptor, the presence of nap and nir gene 

clusters suggests that the 3 symbionts couple oxidation of reduced sulfur compounds to 

dissimilatory nitrate reduction under oxygen-limiting conditions (Fig. 2). In deeper 

sediment layers with neither oxygen nor nitrate both Gammaproteobacteria have the 

ability to use fumarate as an electron acceptor for the oxidation of reduced sulfur 

compounds (Fig. 2).  

 

 Deltaproteobacterial symbionts. The presence of genes characteristic of 

dissimilatory sulfate reduction (such as dsr, qmo, and apr) in both the 1 and 4 bins 

suggests that these symbionts are sulfate-reducing bacteria that use oxidized sulfur 
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compounds such as sulfate as an electron acceptor, thereby producing sulfide (Fig. 2). In 

addition to the syntrophic cycling of sulfate and sulfide between the gamma- and 

deltaproteobacterial O. algarvensis symbionts
14

, intermediate sulfur compounds such as 

tetrathionate and thiosulfate may be cycled between the symbionts. The 4 symbiont 

appears to be able to reduce sulfur compounds of intermediate oxidation states, as 

suggested by the presence of a multi-heme cytochrome most closely related to 

tetrathionate reductase of Shewanella oneidensis
17

 and located in a chromosomal cluster 

with molybdopterin-dependent dehydrogenase related to thiosulfate reductase of 

Wolinella succinogenes. Cycling of intermediate sulfur compounds is energetically more 

favorable than the exchange of sulfide and sulfate, as shown previously in experiments 

with free-living sulfate reducers and sulfur oxidizers
18

.  

Heterotrophy is important in sulfate-reducing bacteria and correspondingly we 

found in the 1 bin genes for the transport and utilization of a large variety of 

carbohydrate substrates, including uronic acids (glucuronate, galacturonate and 

fructuronate), xylose, fructose, dihydroxyacetone, and polyols (mannitol, sorbitol and 

glycerol). While all sulfate-reducing bacteria are heterotrophic, only some fix CO2 and it 

is intriguing that both deltaproteobacterial symbionts are capable of autotrophic carbon 

fixation via the reductive acetyl-coenzymeA (CoA) pathway, as well as via the reductive 

tricarboxylic acid (TCA) cycle (Fig. 2). Thus, O. algarvensis has established an 

association with four symbionts that are all capable of providing it with organic carbon 

through three different autotrophic pathways.  

One of the most common electron donors for autotrophic sulfate-reducing bacteria 

is hydrogen. We found gene clusters for periplasmic Ni-Fe hydrogenases, transmembrane 

high-molecular-weight cytochrome c (hmc) complex, and tetraheam type II tetrahaem 

cytochrome c3 (TpII-c3) in the bins of both sulfate-reducing symbionts, as well as TpI-c3 
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in the 1 bin (Fig. 2). This is a compelling indication for the uptake and oxidation of 

molecular hydrogen using sulfate as an electron acceptor
19

. It is not clear if hydrogen is 

provided by the -symbionts. Within the 3 bin, we found genes encoding a pyruvate 

ferredoxin oxidoreductase (POR), typically used in an alternative route for pyruvate 

oxidation
20

 and indicative of hydrogen release from low-potential ferredoxins. Released 

hydrogen could subsequently be taken up by the sulfate-reducing symbionts leading to 

hydrogen syntrophy within the microbial consortium. Alternative electron donors to 

hydrogen include glycerol, lactate, proline and betaine, and potentially glycolate and 

other 2-hydroxy acids, as well as succinate, acetate and propionate.  

 

Symbiont host interactions 

“Feeding” of the host. In other chemosynthetic associations, the symbionts provide 

their hosts with nutrition using either reduced sulfur compounds or methane as their 

energy source
21

. In the O. algarvensis symbiosis, both reduced sulfur compounds and 

hydrogen can be used as energy sources, and all four symbionts have the potential to fix 

CO2 into organic carbon via autotrophy. In addition, the sulfate-reducing symbionts can 

feed the oligochaete host through heterotrophy by taking up dissolved organic carbon 

compounds from the environment. Largely all amino acids and a variety of vitamins can 

be synthesized by the symbionts to provide their host with these required nutrients 

(Supplementary Table S5). Nutrient transfer to the host is likely to occur via intracellular 

uptake and digestion of the bacteria, as the number of genes encoding amino acid 

exporters was not elevated in the symbionts when compared to those of free-living 

bacteria and the only known family of sugar exporters
22

 was not encoded in any of the 

symbiont bins. This conclusion is supported by morphological analyses showing 

symbiont lysis in the basal region of the worm’s epidermis
23

. 
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Host waste recycling. The reduction of nephridia in the oligochaete host, used for 

the excretion of nitrogenous waste compounds and osmoregulation, suggests that its 

symbionts have adapted to carry out these functions. Most aquatic organisms excrete 

ammonium but urea, which also functions as a common organic osmolyte, has also been 

found in marine worms with symbionts, such as the hydrothermal vent worm Riftia 

pachyptila
24

. The genome bins for the 1, 4 and 3 symbionts encode a bidirectional 

uniporter (Amt family transporter
25

) for the counter ion-independent and energy-

independent uptake of ammonium. A likely urea ABC transporter for urea uptake is 

present in the 3 bin, adjacent to an urease operon encoding genes involved in urea 

hydrolysis. Ammonium and urea uptake by the symbionts would not only aid the host in 

the removal of these toxic waste products, but also lead to the conservation of valuable 

nitrogen by the symbionts (Fig. 3).  

Marine invertebrates are typical osmoconformers, maintaining their cell volume 

largely with organic osmoregulatory compounds such as amino acids, taurine, glycine 

betaine, trimethylamine N-oxide (TMAO), and urea, as well as polyols and sugars
26

. The 

presence of gene clusters encoding proteins used for taurine and glycine betaine import 

and catabolism in the 3 bin may indicate the use of these osmolytes as both, a carbon 

and nitrogen source
27

 (Fig. 3). Furthermore, we found pathways for TMAO degradation 

in the O. algarvensis symbionts. Microbial TMAO degradation includes its conversion to 

trimethylamine by TMAO reductase and further demethylation of trimethylamine either 

by trimethylamine and dimethylamine dehydrogenases found in Bacteria
28

 or by 

trimethylamine, dimethylamine and monomethylamine methyltransferases found mostly 

in Archaea
29

. Genes coding for the key enzymes in both pathways were present in the 3 

and 1 symbionts, suggestive of their TMAO catabolic activity (Fig. 3). The availability 

of the osmolyte TMAO would furthermore be particularly advantageous for the sulfur-
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oxidizing symbionts that could use this organic carbon compound as an alternate electron 

acceptor in the absence of oxygen or nitrate. As just described, the 3 bin encodes 

enzymes likely to be involved in the reduction of TMAO, although their specificity for 

this substrate could not be clearly identified.  

Polyamines are essential in all organisms for DNA stabilization, DNA replication, 

and cell proliferation
30

 and represent additional products of host protein breakdown. We 

found abundant gene clusters encoding ABC transporters for the uptake of the 

polyamines putrescine and spermidine in the 1 bin, and putrescine in the 3 bin (Fig. 3).  

Finally, evidence is provided for the recycling of host fermentation waste products 

such the dicarboxylate succinate, as well as the monocarboxylates acetate and propionate. 

Pathways for their utilization and a variety of potential dicarboxylate transporters, and 

likely monocarboxylate transporters were found in all four symbiont bins. The 1 bin 

encodes 23 tripartite ATP-independent periplasmic (TRAP)-T family dicarboxylate 

transporters
31

, some of which are likely involved in monocarboxylate and dicarboxylate 

transport (Fig. 3).  

 

A mutually obligate relationship? 

The lack of a digestive and excretory system in O. algarvensis means that its symbionts 

are crucial for its survival. But is this relationship mutually obligate or can the symbionts 

survive outside of the host in a free-living stage? Several pieces of evidence from the 

sequence data and the metabolic reconstruction analyses suggest a lack of evidence for 

obligate host-dependence of any of the symbionts. This includes the observation that the 

genomes of the extracellular bacteria do not show AT-bias or genome size reduction 

(Supplementary Table S2) and there was no obvious loss of essential metabolic pathways 
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in the 1 or 3 bins suggestive of host-dependence, as is the case for many obligate host-

associated bacteria
32,33

. Finally, we found genes required for cell motility via a flagellum 

in the 1, 4, and 3 bins. While this evidence suggests that the symbionts associated 

with the worm may have a free-living stage, the presence of a remarkable number of 

transposases in the 3 and 1 symbiont bins (7.5% and 20.5% respectively; 

Supplementary Tables S4, S6) suggests that these symbionts may be in transition to an 

obligate symbiotic lifestyle. Bacteria which have recently evolved into obligate 

symbionts show an increase in frequency of mobile elements, representing a source for 

chromosomal rearrangements and gene inactivation
34

 (for symbiont transmission 

hypotheses see Supplementary Information). 

 

From the metagenome to the environment 

The oligochaete symbiosis is inseparably linked to the geochemical properties of the 

environment, needing access to both reduced and oxidized compounds for energy 

production and net carbon fixation (Fig 4). In the upper oxic sediment layers of the O. 

algarvensis habitat where no sulfide is present, both the 1 and the 3 symbiont can use 

reduced sulfur compounds produced internally by the sulfate-reducing symbionts in a 

syntrophic sulfur cycle. (We have shown previously that the sulfate-reducing symbionts 

can produce sulfide in O. algarvensis under microaerobic conditions comparable to those 

in the lower oxic zone at 2 – 5 cm sediment depth
14

). The 1 symbiont can also gain 

energy independently of the sulfate-reducing symbionts by oxidizing the large supply of 

sulfur stored in its cytoplasm. For both gammaproteobacterial symbionts, oxygen would 

be the energetically most favorable electron acceptor (Fig. 4).  

As the worm migrates downwards, it encounters sediment layers in which oxygen 

is no longer present. Under these conditions, the 3 symbiont can use nitrate from the 
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environment for the oxidation of reduced sulfur compounds. Given the extremely low 

concentrations of sulfide in this layer as well as in the deeper reduced sediment layers of 

the Elba habitat (in the low nM range
14

), it is likely that the sulfate-reducing symbionts 

provide a large part of the reduced sulfur compounds for the -symbionts under most 

conditions.  

In the deeper sediment layers characterized by reducing conditions and the absence 

of oxygen or nitrate, hydrogen oxidation by the sulfate-reducing symbionts may occur, in 

which hydrogen is used as an energy source for the autotrophic fixation of inorganic 

carbon. As hydrogen concentrations are commonly very low in most marine sediments, 

heterotrophic pathways should also play an important role for the deltaproteobacterial 

symbionts under these reducing conditions. Although energetically less favorable than 

nitrate or oxygen, organic electron acceptors including TMAO (host-derived) and 

fumarate (produced by the -symbionts) are provided internally within the symbiosis and 

may be used by the -symbionts for the oxidation of reduced sulfur compounds. This 

would enable the 1 symbiont to replenish its sulfur stores, which could be fully oxidized 

using the energetically more favorable electron acceptor oxygen when the worm returns 

to the oxic zone. Fumarate respiration by the -symbionts would produce succinate, 

which could be used by the deltaproeobacterial symbionts as an energy source and 

reoxidized to fumarate, thus leading to a syntrophic cycling of reductants and oxidants.  

Our analysis of the O. algarvensis microbial genomes has provided insights on how 

resources are used and shared among the different symbionts and with their host, and 

how different metabolic pathways are used by the symbionts to generate energy as the 

worm migrates through the chemocline. We have shown how the O. algarvensis 

symbiosis is unique among known chemosynthetic symbioses, as reductants and oxidants 

are not only supplied from the environment but also internally to drive energy production. 
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Thus, this comprehensive metagenomic analysis shows that these highly integrated 

synergistic assemblages of multiple bacterial partners provide their eukaryotic host with 

an optimal energy supply and waste management through resource partitioning and 

cooperation during syntrophic cycling of oxidized and reduced compounds. 
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Methods  

O. algarvensis specimens were collected off Capo di Sant’ Andrea, Elba, Italy. 

Metagenomic libraries were constructed from 200 pooled O. algarvensis specimens per 

library. A small insert pMCL200 library was made from a nycodenz-separated, 

symbiont-enriched sample and two pCC1Fos fosmid libraries were constructed using the 

CopyControl
TM

 Fosmid Library Construction Kit (Epicentre). 16S rRNA PCR libraries 

were created from the DNA sources used for each of the libraries and approximately 384 

clones sequenced and analyzed. From the shotgun libraries, we created 204 Mb of vector-

and quality-trimmed sequence. This data was assembled using JAZZ, resulting in a set of 

2,286 scaffolds, which were binned using a combinatory approach based on dimer to 

hexamer frequencies using the newly developed program
35

. Final clusters with 511 

scaffolds were verified by phylogenetic affiliation of each scaffold based on the most 

common phylogeny of its predicted proteins, by a Bayesian classifier, and by checking 

for paralogs of 49 genes that typically occur with only one copy per genome (Kunin et al, 

unpublished). To assess nucleotide sequence variation within the bins, we analyzed the 

multiple alignment of the JAZZ assembly. Potential open reading frames (ORFs) were 

identified using “mORFind” (Waldmann, unpublished) and annotation performed with 

the GenDB v2.2 system
36

 and MicHanThi
37

. The annotated symbiont metagenome was 

loaded into the metagenomics version of Integrated Microbial Genomes/M (IMG/M)
38

 

(http://img.jgi.doe.gov/m).  

 

Details for all methods used are provided in the Supplementary Information. 
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Figure 1 

Clustering of the symbiont scaffolds. Visualization of the first three components 

of a principal component analysis, in which GC-content, net read depth, z-scores 

for all possible 64 trinucleotides and 256 tetranucleotides were incorporated with 

equal weight (z-scores calculated with TETRA39, normalized by length). The 

colors represent the four clusters of scaffolds (calculated with MetaClust), that 

were binned based on GC-content, dinucleotide relative abundance, Markov 

model-based statistical evaluations of tri-, tetra and pentamer over- and under-

representation and normalized chaos game representations for tri- to hexamers; 

sequences < 5 kb are not represented. Scaffolds containing 16S rRNA genes are 

tagged. 

 

Figure 2 

Reconstruction of the symbionts’ physiology. PHA, polyhydroxyalkanoates. CM, 

cell material EMP, Embden-Meyerhof pathway. TCA, tricyclic acid. C-taxis, 

chemotaxis. APS, adenosine 5’-phosphosufate. G 3-P, glyceraldehyde 3-

phosphate. Hmc, high-molecular-weight cytochrome c. TpI/II-c3, tetrahaem type 

I/II tetrahaem cytochrome c3. H2ase, hydrogenase. PEP, phosphoenolpyruvatye. 

CoA, coenzymeA. ?, indicates the lack of nitric oxide reductase in the 3 genome 

bin. TRAP, tripartite ATP-independent periplasmic. Numbers in parenthesis 

indicate the numbers of amino acids/vitamin biosynthesis pathways found 

(Supplementary Table S5).  

 

Figure 3 
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Reconstruction of symbiont host interactions. The metagenomic data uncovered 

pathways for the uptake and recycling of organic osmolytes and excretion 

products of the worm by its symbionts. TMAO, trimethylamine N-oxide. TMA, 

trimethylamine.  

 

Figure 4 

Model for energy metabolism in the symbiosis. O. algarvensis inhabits shallow 

Mediterranean ocean sediments (5 - 15 cm depth). Electron acceptors and 

donors are available to the symbionts in all sediment layers, with some supplied 

from the environment (shown in the box and triangles) and some internally 

(shown next to the worms). Carbon is gained autotrophically using reduced sulfur 

compounds ( -symbionts) or hydrogen ( -symbionts) as well as heterotrophically 

( -symbionts). cms = cm below sea floor. SRS, sulfate-reducing symbionts. SOS, 

sulfur-oxidizing symbionts. TMAO, trimethylamine N-oxide. AM, anaerobic 

metabolites. Sred, reduced sulfur compounds. Sox, oxidized sulfur compounds. 

OrgC, organic compounds. 
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Symbiosis insights through metagenomic analysis of a microbial consortium 

 

Supplementary Information 

 

 

1. Supplementary Methods 

 

Specimen collection  

Juvenile and adult Olavius algarvensis specimens were collected in May and September 

2004 from 5.6 m water depth in silicate sediments around sea grass beds of Posidonia 

oceanica in a bay off Capo di Sant’ Andrea, Elba, Italy (42°48'26"N, 010°08'28"E). The 

worms were removed from the sediment via decantation with seawater and identified 

under a dissection scope. Fresh samples collected in September 2004 were kept in the 

original sediment and seawater for 3 days until preparation. All other specimens were 

cleaned by successive washes in sterile seawater, snap-frozen on dry ice and stored at –

80ºC until further processing. O. algarvensis is the dominant species at the collection site, 

however an additional gutless oligochaete species named O. ilvae co-occurs
1
. 

Identification at the species level requires careful examination of individual sexually 

mature worms by an expert and was thus not possible for this study.      

 

Bacterial symbiont enrichment for the 3 kb library 

Bacterial cells from approximately 200 live worms (~180 mg of sample containing ~2x 

10
8
 bacteria) were enriched using discontinuous nycodenz density gradient 

centrifugation. Briefly, fresh worms were removed from the sediment via decantation, 

cleaned by successive washes in sterile seawater and gently homogenized in 2 ml 

phosphate-buffered saline (PBS), pH 7.4 using a glass dounce homogenizer. A step 

gradient of 1.146-1.083 g/ml density was prepared with Histodenz
TM

 (Sigma, St. Louis, 

MO) in 5 ml OpiSeal Polyallomer tubes (Beckman Coulter, Fullerton, CA) and the cell 

suspension loaded on top of the gradient. The overlain gradient was then centrifuged at 

10,000 g in a Beckman L8-M ultracentrifuge and SW 55Ti swing rotor for 1 h at 4ºC. 

Following centrifugation, 200-300 μl fractions were withdrawn from the bottom of the 
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gradient tube and diluted with 10 vol of PBS to remove excess nycodenz. Cells were 

pelleted and resuspended in PBS and fractions evaluated semi-quantitatively for the 

enrichment of bacterial cells using real-time PCR amplification of 16S and 18S rRNA 

genes. As expected, the best enrichment of bacterial cells was found in higher density 

fractions, which were subsequently used for DNA extraction.     

 

DNA extraction 

For the fosmid libraries, metagenomic high molecular weight (HMW) DNA was 

extracted from approximately 200 pooled frozen worms for each library. The frozen 

worms were ground into fine powder under liquid nitrogen with mortar and pestle, 

transferred to a screw-cap tube and DNA extracted using the Qiagen Genomic-tip 

(Qiagen, Valencia, CA) according to the manufacturer’s instructions. Approximately 60 

μg of HMW metagenomic DNA was purified per 200 frozen specimens. For the 3 kb 

library, metagenomic DNA was extracted from nycodenz gradient enriched bacterial cells 

using Bactozol
TM

 (Molecular Research Center, Inc., Cincinnati, OH) according to the 

manufacturer. Fresh cells recovered from three combined nycodenz fractions yielded 

~400 ng of DNA. DNA concentrations and purities were assessed by agarose gel 

electrophoresis and spectrophotometric analysis.   

 

Shotgun library construction & end-sequencing 

Three metagenomic shotgun libraries were constructed for this study: one 3 kb library 

from live worms collected in September 2004 and two fosmid libraries from frozen 

worms collected in April 2004 and September 2004. 

 

3 kb library. A small insert library was constructed from DNA derived from the 

nycodenz-enriched sample collected in September 2004. Briefly, 300 ng of metagenomic 

DNA was randomly sheared to 2-4 kb fragments using a HydroShear (GeneMachines, 

San Carlos, CA). The sheared DNA was separated on an agarose gel, gel-purified using 

the QIAquick Gel Extraction Kit and end-repaired using the End-it
TM

 DNA End-Repair 

kit (Epicentre, Madison, WI) according to the manufacturer’s instructions. After an 

additional agarose gel separation, 2-4 kb DNA fragments were gel-purified once more. 
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The entire DNA extract was blunt-end ligated into 100 ng of pMCL200 vector O/N at 

16ºC using T4 DNA ligase (Roche Applied Science, Indianapolis, IN) and 10% (vol/vol) 

polyethylene glycol (Sigma). The ligation was phenol-chloroform extracted, ethanol 

precipitated and resuspended in 15 μl TE. According to the manufacturer’s instructions, 1 

μl of ligation product was electroporated into ElectroMAX DH10B™ Cells (Invitrogen, 

Carlsbad, CA) and plated on selective agar plates. Positive library clones were picked 

using the Q-Bot multitasking robot (Genetix, Dorset, U.K.) and grown in selective media 

for sequencing.  

 

Fosmid libraries. Fosmid libraries were constructed using the CopyControl™ Fosmid 

Library Production Kit (Epicentre). Briefly, ~20 μg of metagenomic DNA derived from 

the frozen samples was randomly sheared using a HydroShear, blunt-end repaired as 

described above and separated on an agarose pulse-field gel O/N at 4.5 V/cm. The 35 kb 

fragments were excised, gel-purified using AgarACE
TM

 (Promega, Madison, WI) 

digestion, followed by phenol-chloroform extraction, and ethanol precipitation. DNA 

fragments were ligated into the pCC1Fos
TM

 Vector. The ligation was packaged using 

MaxPlax
TM

 Lambda Packaging Extract and used to transfect TransforMax
TM

 EPI300 

Escherichia coli. Transfected cells were plated on selective agar plates and fosmid clones 

picked using the Q-Bot multitasking robot and grown in selective media for sequencing. 

 

End-sequencing. Plasmids were amplified using the TempliPhi
TM 

DNA Sequencing 

Template Amplification Kit (Amersham Biosciences, Piscataway, NJ) and sequenced 

using standard M13 –28 or –40 primers and the BigDye sequencing kit (Applied 

Biosystems, Foster City, CA) according to the manufacturer’s instructions. The reactions 

were purified using magnetic beads and run on an ABI PRISM 3730 (Applied 

Biosystems) capillary DNA sequencer (for research protocols, see www.jgi.doe.gov).  

 

16S rRNA libraries & phylogenetic analysis 

16S rRNA PCR libraries were created from DNA sources used for all three metagenomic 

libraries. Amplification of 16S rRNA genes was performed using the bacteria-specific 

universal primers 27f (5’-AGAGTTTGATCCTGGCTCAG-3’) and 1492r (5’-
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GGTTACCTTGTTACGACTT-3’)
2
. The following cycling conditions were used: 94°C 

for 5 min, followed by 20 cycles of 94°C for 30 sec, 55°C for 25 sec, 72°C for 90 sec, 

and an extension at 72°C for 7 min. To minimize heteroduplex formation, a 

reconditioning step was applied
3
. Briefly, PCR reactions were diluted 10-fold into fresh 

reaction mixtures of the same composition and cycled three more times using the above 

parameters. PCR products of five replicate reactions were combined, gel-extracted as 

described above and ligated into the pCR4-TOPO vector using the TOPO TA Cloning 

Kit (Invitrogen). Ligations were then electroporated into One Shot TOP10 

Electrocomp™ E. coli cells and plated on selective media agar plates. Approximately 384 

clones per library were picked and grown in selective media for sequencing (see above). 

The bi-directional 16S rRNA gene sequence reads were end-paired and trimmed 

for PCR primer sequence and quality. Approximately 3% of the sequences were removed 

as putative chimeras by identification with Bellerophon
4
. The resulting chimera-free 

sequences were evaluated using BLAST analysis
5
 against sequences in the NCBI 

database and the 16S rRNA sequences of the O. ilvae and O. algarvensis symbionts 

(unpublished data). Phylogenetic trees were calculated by neighbor joining analyses 

using the ARB software package (www.arb-home.de)
6
. Only sequences  1,400 bp were 

used for tree construction.  

 

Processing, analysis & assembly of shotgun data  

Initial data set. The initial data set was derived from the three shotgun libraries described 

above. We sequenced 279,157 reads from the 3 kb library, containing 279 Mb of raw 

sequence. 36,095 reads were sequenced from the two 35 kb libraries, containing 37 Mb 

of raw sequence. The reads were screened for vector using cross_match, then trimmed for 

vector and quality
7
. Reads < 100 bases after trimming were excluded. This reduced the 

amount of data to 250,034 reads (185 Mb) of 3 kb library end-sequence, and 31,414 reads 

(19 Mb) of 35 kb library end-sequence.  

 

Analysis of unassembled shotgun sequences. Unassembled shotgun sequence reads 

(trimmed for vector sequence and quality) were evaluated using BLAST analysis
5
 against 

the NCBI nr database (BLASTx, e-value 1e-3) and NCBI nt database (BLASTn), as well 
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as the 16S rRNA gene sequences of the O. ilvae and O. algarvensis symbionts 

(BLASTn).  

 

Jazz assembly parameters. The data was assembled using release 2.8 of JAZZ, a WGS 

assembler developed at the JGI
7,8

. A word size of 13 was used for seeding alignments 

between reads. The unhashability threshold was set to 50, preventing words present in 

more than 50 copies in the data set from being used to seed alignments. A mismatch 

penalty of -30.0 was used, which will generally assemble sequences that are more than 

about 97% identical. As the different organisms in the data set were expected to be 

present at different sequence depths, the usual depth-based bonus/penalty system was 

turned off.  

 

Post-assembly analysis. The initial assembly contained 5,016 scaffolds, with 42 Mb of 

sequence, of which 37% were gaps. As JAZZ links contigs into scaffolds based on 

fosmid paired-end information and pads these gaps with N’s based on the known 

approximate insert fosmid size, many scaffolds are gapped. The scaffold N/L50 was 

122/73 kb, while the contig N/L50 was 741/8.2 kb. If the scaffolds are sorted by total 

length in descending order, the scaffold N50 value is equal to the number of scaffolds one 

needs to go down the list before one has encompassed half of the total scaffold sequence 

in the set. The scaffold L50 value is then the total length of the smallest scaffold in the 

“top half” of this list. The Contig N50 and L50 are values analogous to the scaffold N50 

and L50 values with the difference that the contig values are calculated using net, instead 

of total, scaffold lengths. Redundant scaffolds were identified by aligning all scaffolds 

with less than 5 kb of contig sequence against those with more than 5 kb of contig 

sequence using BLAST-like alignment tool
9
. Any scaffolds from the former set that 

matched any of the larger over more than 80% of their length were excluded. Short 

scaffolds (< 1 kb of contig sequence) were also excluded. The unassembled reads and 

short scaffolds largely represent the lower abundance species as well as worm DNA 

within this environmental sample, as suggested by the presence of the metagenomic reads 

encoding the O. ilvae symbionts 16S rRNA genes within this shrapnel. The filtering left 

2,286 scaffolds, with 39 Mb of sequence, of which 40% was gap. The scaffold N/L50 
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was 106/80 kb, while the contig N/L50 was 606/9.6 kb. Approximately 61% of the reads 

fell into the filtered assembly. This filtered scaffold set served as the starting point of all 

downstream analyses. 

 

Binning  

Scaffolds from the Olavius spp. symbionts’ metagenome were binned by a combinatory 

approach based on the following intrinsic DNA signatures: (a) GC-content (b) 

dinucleotide relative abundance
10

 (c) Markov model-based statistical evaluations of tri-, 

tetra and pentamer over- and under-representation
11

 and (d) normalized chaos game 

representations for tri- to hexamers Deschavanne
12,13

. Values for (c) and (d) were 

computed by ocount and cgr, two self-written C-programs that are available from 

www.megx.net/tetra. 

A self-written Java program (MetaClust
14

) was used to automatically trigger the 

individual calculations and subsequently store them in a MySQL database. Seven 

different combinations of subsets of the individual methods were built for all scaffolds 

exceeding 50 kb and imported into Cluster 3.0
15

. The data was normalized and a 

hierarchical clustering was computed using complete linkage and the Euclidian distance 

as distance measure. The corresponding result files were analyzed using Java TreeView 

(http://genetics.stanford.edu/~alok/TreeView/) and merged into consensus clusters in a 

semi-automatic manner by parsing the Java TreeView result files. This procedure was 

repeated for all scaffolds exceeding 15 kb and thereafter for all scaffolds exceeding 5 kb. 

Shorter scaffolds were discarded because (a) the reliability of signature-based scaffold 

affiliation declines with decreasing sequence lengths and (b) the fraction of short 

unassembled scaffolds contain chimeric sequences. After each of these steps, the newer 

and the former clusters were compared and ambiguous scaffolds were sorted out. A 

Bayesian classifier
16

 was trained with all scaffolds  50 kb and subsequently used to 

assign some of the much shorter scaffolds with ambiguous classifications. Final clusters 

were verified threefold, (a) by phylogenetic affiliation of each scaffold based on the most 

common phylogeny of its predicted proteins (BLASTp, e-value  1e-5, NCBI nr) (b) by a 

Bayesian classifier and (c) by checking for paralogs of 49 genes that typically occur with 

only one copy per genome (Kunin et al, unpublished). 
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Despite all the support for our binning, it is noteworthy that the approach is 

statistical by nature and thus the bins likely do contain false positive. It should also be 

stressed that the binning-approach benefits from a low diversity and a confined habitat of 

the to be separated organisms, since successful separation becomes the more problematic 

the higher the diversity of a sample gets. Low-diversity symbiotic communities are 

optimal samples in this regard, although their assembly and binning can be affected by an 

elevated proportion of lateral gene transfer among the symbionts. 

 

Gene prediction and annotation 

Potential open reading frames (ORFs) were identified using the meta gene prediction 

software “mORFind” (Waldmann, unpublished) developed at the MPI-Bremen. This 

system analyzes and combines the output of the three commonly used gene-finders 

CRITICA
17

, GLIMMER3
18

 and ZCURVE
19

 to enhance sensitivity and specificity. To 

resolve conflicts, an iterative post-processing algorithm is used taking into account signal 

peptide
20

 and transmembrane
21

 predictions, ORF-length, and the number of gene-finders 

by which an ORF has been predicted. The system was adapted to deal with typical 

problems of community sequencing projects like ambiguities, stretches of Ns, and 

fragmented genes. Annotation was performed with the GenDB v2.2 system
22

, seeking for 

each predicted ORF observations from similarity searches against sequence databases (nr, 

Swiss-Prot, Kegg-Genes, release December 2005) and protein family databases (Pfam 

(release 19.0), InterPro (release 12.0, InterProScan version 4.2)), and from predictive 

signal peptide- (SignalP v3.0
20

) and transmembrane helix-analysis (TMHMM v2.0
21

). 

tRNA genes were identified using tRNAScan-SE
23

 and rRNA genes were detected by 

standard similarity searches (BLAST
5
) against public nucleotide databases and the 16S 

rRNA sequences of the O. ilvae and O. algarvensis symbionts. Predicted protein coding 

sequences were automatically annotated with the software MicHanThi
24

 developed at the 

MPI Bremen. The system simulates the human annotation process using fuzzy logic. 

First, informative BLAST observations are selected taking into account several BLAST 

parameters. The gene product is then assembled by functional clustering of observations 

and by selection of the most supported one. Each annotation is labelled by the 

corresponding reliability value to support further human inspection. Once the gene 
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product is set, MicHanThi adds further information like gene name, EC, and GO numbers 

to each protein coding gene based on Swiss-Prot and InterPro observations, respectively. 

A functional classification was performed with similarity searches against COG v2
25

. All 

ORFs described in this publication were manually refined. All binned scaffolds were 

furthermore analyzed for the presence of clustered regularly interspaced short 

palindromic repeats (CRISPRs) using the CRISPR PILER-CR v1.0
26

. 

The annotated Olavius spp. symbionts’ bins were incorporated into the 

metagenomics version of the U.S. Department of Energy Joint Genome Institute 

Integrated Microbial Genomes (IMG)
27

, IMG/M (http://img.jgi.doe.gov/m), a data 

management and analysis platform for metagenomic data. This facilitates access and 

visualization and comparative analyses of the data in the context of other metagenomic 

datasets and all publicly available complete microbial genomes. 

 

Community heterogeneity 

To assess nucleotide sequence variation within the binned scaffolds or bins, we analyzed 

the multiple alignment of the JAZZ assembly. A site was considered polymorphic, if at 

least two reads showed at least two different nucleotides (or gaps) in regions covered by 

4-20 reads. Frequencies of polymorphic sites (the total number of polymorphic sites 

divided by the total number of nucleotide sites at 4-20X read depth) were averaged over 

all contigs assigned to a given bin.  

  

Nucleotide sequence deposition 

The metagenomic unassembled sequence reads have been deposited into the NCBI trace 

archive. Assembled sequences from the Olavius spp. symbionts’ metagenome have been 

deposited into the NCBI database under the project accession AASZ00000000.  



 9 

2. Supplementary Figures and Legends 
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Supplementary Figure S1. (a) Phylogenetic relationship of the O. algarvensis endosymbionts 

(blue) based on parsimony analyses of 16S rRNA sequences. Bar, 10% estimated sequence 

divergence. (b) Characterization of the metagenomic libraries and the 16S rRNA PCR 

libraries. Percentage of 3 kb and fosmid library end reads (unassembled) with similarities to 

proteins of bacterial and archaeal, eukaryotic or viral origin (BLASTx, e-value 1e-3, NCBI nr) 

(top chart row). Unknown = reads with no similarity to proteins in the public databases. The 

middle chart row indicates the relative phylotype abundance in the DNA used for each library 

based on 16S rRNA PCR library sequences. For both fosmid libraries this phylotype comparison 

is a good indication of the natural bacterial abundance, as the DNA originated from pooled 

worms that were not density fractionated as were those for the 3 kb library. s = spirochete. Other 

includes 16S rRNA phylotypes of low abundance species. The relative phylotype abundance 

based on 16S rRNA gene representation within the metagenomic 3 kb library reads is shown in 

the bottom pie chart.  
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Supplementary Figure S2. Length, sequence depth and GC content distributions of the 

JAZZ assembled, filtered scaffold set. (a) Net scaffold length vs. mean scaffold sequence 

depth (excluding gaps). (b) Net scaffold length vs. GC content. (c) Mean scaffold sequence 

depth (excluding gaps) vs. GC content. The filtered set comprises 2,286 scaffolds with a 

combined net length of 23.7 Mb. The 511 scaffolds that were binned based on nucleotide 

signatures are shown in red (comprising a net length of 20.1 Mb). 
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Supplementary Figure S3. Phylogenetic scaffold affiliations within the nucleotide signature 

based symbiont clusters. Visualization of the first three components of a principal component 

analysis (PCA), in which GC-content, net read depth, z-scores for all possible 64 trinucleotides 

and 256 tetranucleotides were incorporated with equal weight (z-scores calculated with TETRA 

and normalized by length); sequences < 5 kb are not represented. Phylogenetic affiliation of each 

scaffold was based on the most common phylogeny of its predicted proteins and is indicated by 

color.   
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Supplementary Figure S4. Distribution of the genes identified for 1 and 3 bins by broad 

functional category of clusters of orthologous groups of proteins (COGs) (e-value 1e-5), as 

compared to the complete genomes of Desulfovibrio vulgaris Hildenborough and 

Thiomicrospira crunogena XCL-2. Categories which show gene representations below 0.2 % 

are excluded. Both symbiont genome bins show a higher incidence of genes involved in amino 

acid as well as lipid transport and metabolism as compared to the non-symbiotic bacteria, while 

genes involved in translation, ribosomal structure and biogenesis show a lower relative 

abundance. Genes involved in replication, recombination and repair are furthermore highly 

represented within the 3 bin.   
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3. Supplementary Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table S1. General features of the O. algarvensis  symbiont bins

1 4 1 3

Assembly statistics

Genome bin size [bp] 13,536,737 6,382,161 5,317,000 4,647,793

Gaps filled with N's [%] 16 52 73 12

Number of scaffolds 226 172 91 22

GC content [%] 49.2 54.6 57.5 55.7

Mean total read depth* 7.1 1.6 0.8 4.6

Mean net read depth* 8.4 3.3 3.0 5.2

Mean total length [bp] 59,897 37,106 58,429 211,263

Mean net length [bp] 50,593 17,887 16,059 185,783

Gene predictions

Protein coding genes 12,084 3,012 1,872 4,154

Genes with similarity to nr 7,505 2,399 1,302 3,778

Genes with similarity to COG 5,340 1,919 831 3,083

Number of rRNA operons 1 1 2** 1

Number of tRNA genes 49 23 17 33

Number of tRNA synthetases 26 22 12 26

*normalized with respect to length.

**one complete rRNA operon and one partial 16S rRNA gene.

nr, non-redundant Genbank. 
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28-31
 

Supplementary Table S2. General features of the O. algarvensis  symbiont genome bins as compared to the genomes

of other extracellular as well as intracellular endosymbionts

endosymbiont (class) host organism

Genome 

(bin) 

size* 

[Mb]

GC 

content 

[%]

Number 

of 

protein 

coding 

genes

Number 

of rRNA 

operons

Number 

of tRNA 

genes

O. algarvensis  1 symbiont ( -Proteob.) annelid O. algarvensis 13.5 49.2 12,084 1 49

O. algarvensis  4 symbiont ( -Proteob.) annelid O. algarvensis 6.4 54.6 3,012 1 23

O. algarvensis  1 symbiont ( -Proteob.) annelid O. algarvensis 5.3 57.5 1,872 2** 17

O. algarvensis  3 symbiont ( -Proteob.) annelid O. algarvensis 4.6 55.7 4,154 1 33

Photorhabdus luminescens 28 ( -Proteob.) nematodes (Heterorhabditidae) 5.7 42.8 4,839 7 85

Vibrio fischeri ES114
29

 ( -Proteob.) bobtail squid  Euprymna scolopes 4.3 38.3 3,647 12 119

Bradyrhizobium japonicum 30 ( -Proteob.)*** soybean  Glycine max 9.1 64 8,317 1 50

Buchnera aphidicola
31

 ( -Proteob.)*** aphid Baizongia pistacea 0.6 25 504 1 32

* including plasmids.

**one complete rRNA operon and one partial 16S rRNA gene.

*** intracellular endosymbiont location.
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Supplementary Table S3. Amino acyl tRNA synthetase genes in the O. algarvensis 

symbiont bins 

1 4 1 3

Glutamyl- and glutaminyl-tRNA synthetase 1 0 3 3

Alanyl--tRNA synthetase 1 1 0 1

Phenylalanyl-tRNA synthetase 1 1 0 1

Aspartyl/asparaginyl-tRNA synthetase 1 0 0 0

Arginyl-tRNA synthetase 1 1 1 1

Isoleucyl-tRNA synthetase 1 1 0 1

Phenylalanyl-tRNA synthetase beta subunit 1 1 0 2

Histidyl-tRNA synthetase 1 0 1 2

Tyrosyl-tRNA synthetase 0 0 0 1

Seryl-tRNA synthetase 1 1 0 2

Aspartyl-tRNA synthetase 1 1 1 1

Tryptophanyl-tRNA synthetase 1 0 1 0

Cysteinyl-tRNA synthetase 1 3 0 1

Threonyl-tRNA synthetase 2 1 0 1

Prolyl-tRNA synthetase 1 1 1 1

Leucyl-tRNA synthetase 1 1 2 1

Valyl-tRNA synthetase 1 2 0 1

Glycyl-tRNA synthetase beta subunit 1 0 0 2

Glycyl-tRNA synthetase alpha subunit 1 0 0 1

Lysyl-tRNA synthetase class II 2 2 0 2

Lysyl-tRNA synthetase class I 0 0 0 0

Pseudouridine-tRNA synthetase 3 2 0 1

Methionyl-tRNA synthetase 2 2 1 0

tRNA-dihydrouridine synthetase 0 1 0 0

tRNA(IIe)-lysidine synthetase 0 0 1 0
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Supplementary Table S4. Repeats and polymorphic sites in the O. algarvensis 

symbiont bins

1 4 1 3

Number of transposases 276 17 389 313

Percent of transposases 2.3 0.6 20.5 7.5

Number of integrases 30 3 28 78

CRISPR elements yes no no no

Number of polymorphic sites* 7565 144 422 1280

Frequencies of polymorphic sites** [%] 0.08 0.01 0.1 0.04

*a site was considered polymorphic, if at least two reads showed at least two different nucleotides 

   (or gaps) in regions covered by 4-20 reads.

**averaged over all contigs assigned to a given bin.
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Supplementary Table S5. Amino acid and vitamin biosynthesis genes in the

O. algarvensis  symbiont bins

1 4 1 3

amino acid biosynthesis

histidine + + ± +
phenylalanine + + ± +
tyrosine + + ± +
leucine + + ± +
isoleucine + + ± +
valine + + ± +
tryptophan + + - +
arginine + + ± +
lysine + + ± +
methionine + + ± +
threonine ± + ± ±
serine + + ± +
proline + + ± +
glycine + + ± +
cycteine + + ± ±
asparagine + + ± ±
glutamine + + + +
alanine + + + +
aspartic acid + + + +
glutamic acid + + - +
selenocysteine + + - -
pyrrolysine + + - -
coenzymes and cofactor biosynthesis

biotin - + + +
cobalamin + + + -
coenzyme A + + + +
riboflavin and FAD + + + +
heme + + + +
NAD + + + +
pyridoxal phosphate + + + +
thiamin + + + +
ubiquinone + + - +

+ at least 80% of the required synthesis genes are present
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Supplementary Table S6. Transposase genes in the O. algarvensis 

symbiont bins

1 4 1 3

IS1 - - 48 -

IS106 - - 3 -

IS110 - - 8 -

IS111A - - 3 -

IS111A/IS1328/IS1533 - 1 - -

IS116 - - 5 -

IS116/IS110/IS902 - 1 - -

IS1249 10 - - -

IS1479 - - - 1

IS1480 - - 1 -

IS1595 1 - - -

IS1663 - - 1 -

IS180 - - 3 -

IS186 13 - - -

IS200 - - 5 2

IS21 2 - - -

IS298 - - 1 -

IS3 - - - 4

IS3/IS911 1 - 12 59

IS3231 28 - - -

IS4 60 - 52 77

IS5 - - 4 -

IS630 1 - 73 -

IS641 - - - 27

IS642 - - 2 -

IS643 1 - - -

IS653 2 - - -

IS66 1 - - 9

ISChy4 2 - - -

ISCps6 - - - 1

ISDvu4 2 6 - -

ISEcp1 - - 13 -

ISGsu4 5 - - 7

ISGsu6 1 - - -

Iso-IS1 - - 20 -

ISPpu8 3 - - -

ISPsy19 - - 1 -

ISPsy5 - - - 1

ISR013 5 - - -

ISRm - - 4 -

ISRm22 - - - 18

ISRPsy14 5 - - -

ISSod13 5 8 - -

ISSpo2 - - 1 -

ISSpo3 1 - - -

ISSpo8 99 - - -

ISxac3 1 - - -

Tnp 3 - - -

TnpA - - 16 2

Transposase 10 - 75 13

Transposase & inactivated derivates - 1 19 81
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4. Supplementary Discussion 

 

Sample characterization 

O. algarvensis specimens were collected from shallow subtidal sediments off the island 

of Elba, Italy. O. algarvensis is the dominant gutless oligochaete species at the collection 

site, where a second gutless oligochaete species, O. ilvae co-occurs in low abundance
1
. 

Shotgun libraries were constructed from pooled fresh endosymbiont enriched sample (3 

kb library), as well as pooled frozen worm specimens (fosmid libraries), due to the 

unavailability of large amounts of fresh sample. We generated 185 million bases (Mb) of 

3 kb library end sequence and 19 Mb of fosmid end sequence, for a total of 204 Mb of 

high-quality shotgun sequence data. BLAST analysis
5
 of the unassembled sequence reads 

as well as 16S rRNA gene analysis indicated that the 3 kb library largely consists of O. 

algarvensis symbiont DNA, supporting our choice of this library for in-depth sequencing 

(Supplementary Fig. S1b). 

To estimate the relative abundance of the O. algarvensis symbionts within the 

libraries, we performed 16S rRNA PCR amplification of each source DNA using parallel 

PCR reaction aliquots, low PCR cycle numbers and a reconditioning step to minimize 

PCR bias as well as chimera and heteroduplex formation
3
. The 16S rRNA gene analysis 

of the DNA source used for the 3 kb library construction revealed that sequences derived 

from the O. algarvensis symbionts were highly represented (Supplementary Fig. S1b), 

dominated by 1 and 3. Additional 16S rRNA sequences derived from an unknown 

Deltaproteobacteria closely related to O. algarvensis 1, O. ilvae 1 and other bacterial 

species at low abundance. 16S rRNA gene sequences found within the metagenomic 3 kb 

library showed a similar distribution of phylotypes (Supplementary Fig. S1b). 16S rRNA 

gene analyses of DNA used for the fosmid libraries showed that all three samples differed 

in their symbiont species distribution and in contamination with O. ilvae symbionts 

(Supplementary Fig. S1b). This may be due to variations in oligochaete species 

distribution patterns.  
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Metagenomic data analysis and binning 

The metagenomic shotgun sequences were assembled using the whole-genome 

shotgun assembler JAZZ
8
, resulting in a total of 2,286 scaffolds with a combined total 

length of 39.3 Mb (net length not including gaps was 23.7 Mb; Supplementary Fig. S2) 

and a longest scaffold of 1.9 Mb (total length). Binning of the Olavius spp. symbionts’ 

metagenome resulted in 511 scaffolds (Supplementary Fig. S2) forming four distinct 

clusters, identified as O. algarvensis symbionts 1, 4, 1, and 3, as based on 16S rRNA 

genes. Symbiont bin assignments were supported by phylogenetic analysis of predicted 

proteins within each cluster of scaffolds the distribution of 49 single-copy genes. Only 

one gene, secG encoding the preprotein translocase SecG subunit, was found in duplicate 

and only in the 1 bin (sequence similarities between the two copies of secG were 95% at 

the nucleotide level and 98% at the amino acid level). This could indicate the presence of 

more than one strain in this bin and might explain its large size of 13.5 Mb (total length), 

although genomes of comparable size are known from the Deltaproteobacteria (e.g. 

Polyangium cellulosum) (http://genomesonline.org)
32

. The single occurrence of 48 out of 

49 single-copy genes in the 1 bin and the presence in single copy of other key genes, 

such as most ribosomal proteins, cell division genes, flagellum genes and amino acyl 

tRNA synthetases (Supplementary Table S3), is however indicative of the presence of a 

single dominant strain.  

 

Carbon fixation in the -symbionts 

Carbon fixation within both deltaproteobacterial symbionts is possible via the reductive 

acetyl-CoenzymeA (CoA) pathway and also likely via the reductive tricarboxylic acid 

(TCA) cycle. Both bins encode citrate lyase and oxoglutarate-ferrodoxin oxidoreductase, 

which catalyze two out of three potentially irreversible steps in the TCA. The third 

potentially irreversible step is catalyzed by succinate dehydrogenase (SDH). Depending 

on the specific implementation of this enzyme, it could be either reversible (as in Bacillus 

subtilis) or irreversible (as in E. coli, which has a separate succinate dehydrogenase and 

fumarate reductase). Succinate dehydrogenase is encoded in both proteobacterial 

symbionts, yet we are unable to determine in which direction their SDH catalyzes its 

reaction and whether it is reversible. The proteins highest percent identity is to the 
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actinobacterial succinate dehydrogenase. In actinobacteria, this enzyme strictly catalyzes 

succinate oxidation, while a second enzyme catalyzes fumarate reduction. However, in 

general the direction of reaction of SDH/QFR is dependent on the structure and type of 

cytochrome subunit; yet we were unable to find any cytochrome subunit in 

deltaproteobacterial bins (and no hydrophobic anchor subunit for that matter). The lack of 

subunit may either be due to the incompleteness of these genome bins, or the symbionts 

have a very unusual form of this enzyme, a soluble form. A soluble fumarate reductase is 

known in methanogenic archaea, where a soluble donor (coenzyme M) is used instead of 

a quinone. 

 

Osmolyte breakdown 

Bacterial
33

 and archaeal
34

 TMAO breakdown pathways are present in the O. algarvensis 

symbionts: several homologs of trimethylamine/dimethylamine dehydrogenase are found 

in the 3 and 1 symbiont bins and 22 proteins from the trimethylamine:corrinoid 

methyltransferase family were encoded in 3, 1 and 4 symbionts, as well as on 

unassigned scaffolds. Six genes coding for dimethylamine:corrinoid methyltransferase 

and two genes encoding monomethylamine:corrinoid methyltransferase are present in the 

1 bin. Like their archaeal counterparts, at least two proteins from the 1 symbiont 

coding for trimethylamine methyltransferases and all proteins encoding dimethylamine 

methyltransferases are interrupted by an amber stop codon UAG, which is most likely 

translated to pyrrolysine. This is supported by the presence of pyrrolysine-specific 

aminoacyl-tRNA synthetase and PylS-associated genes in the 1 symbiont. 

Tetrahydrofolate appears to be the most likely acceptor of methyl groups in the 

symbionts due to the presence of at least three homologs of 

methylcobalamin:tetrahydrofolate methyltransferase MtvA from the vanillate 

demethylase complex of Moorella thermoacetica
35

. Some of the methylamine 

methyltransferase genes are found in chromosomal clusters with the genes encoding 

putative enzymes from the glycine oxidase/dimethylglycine dehydrogenase family and 

the molybdopterin dehydrogenase family, suggesting the existence of branched and 

possibly novel pathways for degradation of trimethylamine N-oxide. 
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Secondary metabolites  

Many marine invertebrates are associated with endo- and epibiotic microorganisms 

producing secondary metabolites of large molecular diversity, which led us to evaluate 

the symbiont bins for genes indicative for the biosynthesis of such compounds. Both 

deltaproteobacterial bins encode genes likely involved in polyketide and non-ribosomal 

peptide synthesis, including non-ribosomal peptide synthases, polyketide synthases, and 

methyltransferases. The products of these genes could be toxins and antibiotics, used 

possibly by the hosts as a protection against predation, or signaling molecules involved in 

symbiont - host interactions. 

None of the symbiont genome bins were found to encode any of the key enzymes 

involved in the biosynthesis of steroid hormones and catecholamines (dopamine, 

norepinephrine, epinephrine). Homoserine lactone synthases, involved in quorum 

sensing, were also not encoded in any of the symbionts. It is not possible to decipher 

which compounds produced by the symbionts could have an effect on host behavior 

based on gene content alone. 

 

Symbiont transmission  

Symbiotic bacteria without a free-living stage are transmitted vertically from one 

generation to the next. In gutless oligochaetes, at least some of the symbionts may be 

transmitted vertically in a smear-like infection as the eggs exit the worm and pass genital 

pads packed with the symbiotic bacteria
36

. However, the deposition of the eggs directly 

into the surrounding sediments would also offer free-living bacteria from the 

environment an opportunity to invade the egg. It is therefore possible that some of the 

symbionts are inherited vertically from the parents and some horizontally from the 

environment. It is also possible that the same symbiont is transmitted vertically as a rule, 

but can also be acquired from the environment as shown for the Wolbachia symbionts in 

arthropods
37,38

. The low levels of polymorphism in all four symbiont bins of O. 

algarvensis do not exclude horizontal transmission, as selection by the host for a single 

bacterial strain is well known from other marine symbioses in which the symbionts are 

acquired from the environment, such as the luminescence symbioses between squid and 

Vibrio fischeri
39,40

. 
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