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ABSTRACT
The parameterization of torsional/dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields. Quan-
tum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters
in these force field terms. To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry
optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of
values. However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the
chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses. In this paper, we propose
a systematic and versatile workflow called TorsionDrive to generate energy-minimized structures on a grid of torsion constraints by means
of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher
quality QM data for force field development. The capabilities of our method are presented for multi-dimensional scans and multiple initial
guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described. The method is implemented
in an open-source software package that is compatible with many QM software packages and energy minimization codes.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0009232., s

I. INTRODUCTION
The potential energy surface (PES) along the torsional dihe-

dral angle degrees of freedom is a crucial part of model poten-
tials for computer simulations of bio/organic molecules and poly-
mers, including commonly used molecular mechanics force fields.
“Proper” torsion angles (i.e., those involving four consecutively
bonded atoms a—b—c—d and labeled as ϕabcd) can be highly flex-
ible due to the periodic nature and relatively small range of the
free energy profile (often less than 5 kcal mol−1), which leads
to broadly diverse conformations and accessible barrier crossings
in ambient temperature experiments and simulations. Because the
torsional angle is a principal descriptor of molecular conforma-
tion, the torsional potential energy is important for determining
the thermodynamic distribution of molecular conformations and
kinetics of conformational changes. Therefore, accurate empirical
potentials, or molecular mechanics (MM) force fields are needed
to predict properties of interest such as biomolecular structure and

function, receptor-ligand binding free energies, and timescales of
protein folding.1–8

The four-body energy term for proper torsion in most force
fields uses a periodic functional form of the dihedral angle ϕabcd
represented as a truncated Fourier series, i.e.,

E(ϕabcd) =
Nk

∑

n=1
k(n)abcd(1 + cos(nϕabcd − ϕ

(n)
abcd;0)), (1)

where the sum is over periodicity n and Nk ≤ 6. The potential param-
eters for barrier height and phase shift k(n)abcd,ϕ(n)abcd;0 may be assigned
from parameter libraries based on the chemical environment, or
they may be specifically fitted (i.e., bespoke) for an individual tor-
sion angle of a specific molecule. The non-covalent interaction
between the terminal atoms of the torsion angle may also be modeled
using pairwise Coulomb and Lennard-Jones interactions on atoms
separated by exactly three bonds (i.e., “1–4 interactions”), which
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may be modified from conventional non-bonded terms using scal-
ing factors or alternative parameter values.9 Because the 1–4 dis-
tance depends strongly (but not exclusively) on the torsion angle, it
may be considered as another contribution to the torsional potential
energy.

Proper torsions have characteristics of both valence (i.e.,
bonded) and nonbonded regimes because the total energy includes
contributions from the quantum nature of covalent bonding such
as resonance and conjugation, as well as non-covalent interactions
such as electrostatic and steric effects on vicinal functional groups.
As the torsion angle is varied in a molecule, several important prop-
erties of the molecule are affected including the electronic character
of the central bond as well as steric and other nonbonded inter-
actions between groups on opposite sides of the bond.10–12 Impor-
tantly, the torsion angle dependence of these properties can induce
relaxations in the orthogonal degrees of freedom as the torsion angle
is varied. Such relaxations include bond stretching that accompa-
nies disruption of conjugation, the bending of angles to minimize
steric hindrance, and changes in distance between nonbonded func-
tional groups in order to avoid clashes or make intramolecular
contacts.

Force fields must accurately account for torsion-induced struc-
tural relaxations in order to produce accurate free energy profiles;
thus, the standard practice of generating quantum mechanical (QM)
data for MM force field parameterization involves minimizing the
QM potential energy with the torsion angle of interest constrained to
various values, e.g., on a regularly spaced grid.13–16 The result of this
calculation is a set of QM constrained optimized structures and ener-
gies that includes relaxation effects from orthogonal degrees of free-
dom, which can be used to develop more accurate torsion parame-
ters in the context of other energy contributions in the force field. In
addition, two or more dihedral angles can be varied independently
on a multi-dimensional grid to sample the conformational space
more broadly and/or to generate data for parameterizing torsion–
torsion coupling (also called CMAP) energy terms used in some
force fields.17,18

For relevant molecular systems, the feasible geometry optimiza-
tion methods involve local energy minimization starting from an
initial guess structure. The optimized structure and energy, as well
as the probability of the optimization algorithm successfully con-
verging to a minimum, both depend strongly on the initial guess.
The straightforward approach to this problem involves carrying out
a series of constrained minimizations where the constraint value is
scanned along the grid, and each minimization is initiated from the
optimized structure of the previous one.19 This calculation, which
we term a “serial relaxed scan,” is a standard feature in several widely
used quantum chemistry and geometry optimization codes.20–28

The serial relaxed scanning approach has some major draw-
backs.29 For one, the resulting optimized structures are dependent
on the chosen sequence of calculations, such as the direction of
the one-dimensional scan. This is because a series of constrained
minimizations often stays in the same qualitative local minimum as
determined by the orthogonal degrees of freedom even if another
local minimum with a lower energy is reachable by scanning in
the opposite direction; the other local minimum is found only if
the energy barrier vanishes, which is not guaranteed. The result
thus has a risk of including structures with unnecessarily high
potential energies, which are not appropriate for fitting force field

parameters because they introduce a bias toward thermodynami-
cally unlikely conformations. This problem becomes more serious
for multi-dimensional scanning as a greater number of choices need
to be made for the scanning direction, and the results may depend on
the ordering of dimensions. Another drawback is the lack of an effi-
cient way to use multiple initial guesses, such as those resulting from
a conformer generation method;30,31 intuitively, it should be possible
to perform one scan using several initial guesses and keep the low-
est energy structure from each but at a lower total cost compared to
running each scan independently.

In this manuscript, we describe a new systematic workflow for
generating optimized geometries along grids of torsion constraints
by wavefront propagation, which addresses the drawbacks of serial
relaxed scanning described above. The method, called TorsionDrive,
generates results that are independent of scan direction and natu-
rally incorporates multiple initial guesses into a single grid of con-
strained minimized structures. A predecessor to the present method
was used to scan the two-dimensional torsion angles of blocked
amino acid dipeptides in Ref. 8, but due to limitations of imple-
mentation, the method was limited to 2D grids and was not easily
applicable to other molecules. The present method can be applied to
any molecule subject only to the limits of the underlying energy and
gradient method. Furthermore, it is capable of driving an arbitrary
number of torsions to generate N-dimensional grids of optimized
structures and energies where N ≥ 1. The current workflow is imple-
mented as a Python package that interfaces with energy minimiza-
tion routines in a modular way, including the open-source geomeT-
RIC optimization package28 that uses externally obtained energy
and gradient information, as well as “native” optimization meth-
ods implemented in many quantum chemistry codes. The method is
released as an open source package32 and includes a number of use-
ful features such as including energy upper limits, extra constraints,
and limited scan ranges. In addition to the standalone operation
mode, TorsionDrive is also implemented as a service in the MolSSI
QCArchive ecosystem,33 and it is available to compute results for
any implemented gradient method in QCArchive; this includes not
only quantum chemistry methods but also some MM force fields
and recently developed neural network potentials parameterized by
machine learning methods.34

II. METHOD
The main idea of TorsionDrive can be described conceptu-

ally as scanning the torsion angles with wavefront propagation. The
details are illustrated by walking through a complete scan procedure,
shown in Fig. 1. Before the start of the scan, we specify the dihedral
angles in the molecule of interest using quartets of atomic indices
and the spacing (resolution) of the scan. A grid of constraint values
is created, which has the same dimension as the number of dihedral
angles provided. In the illustration, we perform a 1D scan with a 60○

spacing. The data associated with each grid point are represented by
a circle, which consist of one or more “optimization datasets” (i.e.,
the Cartesian coordinates of a constrained local minimum and cor-
responding QM energy and gradient). Importantly, each grid point
is able to contain multiple constrained optimization datasets that
may correspond to local minima with different energies and values
of the orthogonal degrees of freedom.
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FIG. 1. TorsionDrive method illustration. Steps proceed from top to bottom. Red:
new active point; orange: active point from last step; blue: inactive point; and arrow:
constrained optimizations that were carried out in the current step. See the text for
details.

Given the above input, TorsionDrive starts to iteratively fill and
refine the data of all grid points using constrained energy minimiza-
tions, denoted by the arrows in Fig. 1. Each constrained optimiza-
tion is specified by an initial molecular structure and a target set
of dihedral angle constraints, and the result is an optimized struc-
ture that matches the constraints with the other degrees of freedom
relaxed. Within this workflow, TorsionDrive specifies the optimiza-
tions and processes the output data, and the actual optimizations
are carried out via interfaces to other software packages. Multiple
constrained optimizations that are specified at the same step in the
workflow can be carried out in parallel. In the standalone operation
mode, TorsionDrive uses the Work Queue distributed computing
framework35,36 to take advantage of parallel resources. When Tor-
sionDrive is used as part of the QCArchive ecosystem,33 it works
as an application programming interface (API) to specify the con-
strained optimization inputs while QCArchive is responsible for job
management; this is described in detail in Sec. IV.

The steps of the example scan (i.e., rows in Fig. 1) are described
in the following example. For clarity of presentation, it is neces-
sary to define the basic procedures within a step and the separation
between steps. At the start of a step, constrained optimization cal-
culations are started based on the results of the previous step. Upon
completion of these calculations, some grid points are set as “active
points” as described below, and then, the step is concluded. The
result of one step is independent of the order of completion of the
individual optimizations within a step.

Step 1: An initial constrained optimization is performed starting
from the user-provided initial geometry of the molecule,
with constraints set equal to the closest dihedral grid point
(0○ in the example). After the optimization is completed,

the optimization data (structure and energy) are assigned
to the grid point, and it is set as an “active” point, denoted
by the red color.

Step 2: New constrained optimizations are launched from each
active point of Step 1 toward each of its neighboring
points. The number of neighboring points is equal to 2×
the dimension of the scan. In this example, there is one
active point at 0○ in step 1, and two constrained opti-
mizations are started at the two neighboring points (−60○

and 60○) in Step 2. The active points from the last step,
which are used to launch the optimizations in the previous
step, are colored orange. Upon completion of the two con-
strained optimizations, the two neighboring points gain
their initial set of optimization data, and they are set as
active points, colored in red.

Step 3: The two active points from Step 2 spawn new optimiza-
tions toward each of their neighbors. Two such con-
strained optimizations expand to the left and right, result-
ing in new active grid points at −120○ and 120○. The other
two constrained optimization are both targeted at the grid
point at 0○; thus, the grid point at 0○ gains two new sets
of geometries and energies, which are potentially better
(lower in energy), equal, or worse (higher in energy) com-
pared to the existing data. To determine which data to
keep, we compare the energy of each new result with the
current lowest energy at this grid point. In this example,
we assume that both new optimization results are equal to
or higher than the energy obtained from the original opti-
mization in Step 1. In such cases, the grid point is marked
as inactive (blue).

Step 4: The two active points from Step 3, located at −120○ and
120○, spawn four new constrained optimizations. Since
the dihedral grid is periodic, the “leftward” optimization
from −120○ wraps around to the “right-most” grid point
at 180○. The “rightward” optimization from +120○ also
targets this grid point. The result of the two new opti-
mizations is compared, and the one with the lowest energy
is assigned as the new data for the grid point at 180○,
which is assigned as active (red) in the current step. In
this example, the optimization from −120○ to −60○ results
in an equal- or higher-energy geometry similar as before.
However, the optimization from 120○ to 60○ results in
a lower-energy geometry due to finding a lower-energy
local minimum. To explore the potential energy surface
around this new lowest-energy local minimum, the 60○

grid point is set as an active point.
Step 5: The active points from Step 4 at 60○ and 180○ spawn four

constrained optimizations. In this example, we assume
that all four new optimizations result in equal or higher
energy structures compared to stored data, so all four
points are set to inactive.

Step 6: There are no active points from Step 5. The TorsionDrive
procedure is complete, and the data for the lowest-energy
structure at each grid point are compiled and saved. The
data from other constrained optimizations at equal or
higher energies are retained in the scratch space of the
calculation but are not considered to be part of the final
result.
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To summarize, the TorsionDrive scan follows these rules: (a)
Any grid point that gains its initial set of optimization data, or
new optimization data with lower energy than its current lowest
energy, is set to “active”. (b) All active points from the previous step
spawns new constrained optimizations, starting from the lowest-
energy structure, targeting all neighboring grid points. (c) If no
active point is left, the scan converges.

The above example only illustrates a simple 1D scan. It should
be noted that TorsionDrive supports dihedral scans of arbitrary
dimensions, with the minimum cost scaling as by O(2d ×Nd), where
N is the number of grid points on each dimension and d is the
number of dimensions. In addition, multiple initial geometries can
be provided to improve the coverage of the PES. Over the course
of applying this software package in ongoing research projects, we
have also created additional features that we found useful, which are
stated in Sec. III D.

III. RESULTS AND DISCUSSION
A. One-dimensional scanning example

A comparison between a 1D scan in TorsionDrive and a con-
ventional serial relaxed scan is shown in Fig. 2. The dihedral angle
to be scanned is indicated by the four highlighted atoms. In both
cases, the calculation is initiated from a single structure with a dihe-
dral angle of 0○, and scans were performed with a 15○ resolution.
Geometry optimizations were carried out using the geomeTRIC
software,28 and energies and gradients were calculated using density
functional theory (DFT), as implemented in the TeraChem soft-
ware package.26,27 A restricted Kohn–Sham wavefunction and the
B3LYP hybrid functional37 with the corresponding D3(BJ) empirical
dispersion correction38–40 were used.

The serial relaxed scan is carried out in the +ϕ direction, and
the result is clearly asymmetric as there are two regions in the plot
around −90○ and +90○ where the energy rises gradually and then
sharply drops making a sawtooth pattern. This occurs because as the

torsion angle deviates from planar, both atoms of the central bond
start to adopt pyramidal geometries. The energy barrier to pyramidal
inversion causes the optimizations to yield increasingly high-energy
structures and eventually breaks down causing the large energy drop.
Although the shape of this particular PES might be due to the lack
of multireference effects in the wavefunction,41 it is sufficient to
illustrate the general tendency of serial relaxed scans to get stuck
in local minima in the orthogonal degrees of freedom. By contrast,
the energy profile generated by TorsionDrive is more symmetrical,
as expected from the twofold symmetry of the molecule. The wave-
front propagation procedure initiates constrained optimizations in
both directions, and although the central atoms still adopt pyra-
midal geometries, both “branches” of the potential energy surface
are treated equally. Moreover, the final energy profile generated
by TorsionDrive has significantly lower energy barriers compared
to the serial scan though the barrier is still quite high at around
30 kcal/mol.

To compare the quality of these data for force field fitting,
we computed MM single point energies at the optimized struc-
tures using the recently developed Open Force Field “Parsley” small
molecule force field version 1.1.0,42,43 which did not include this
molecule in its training set. The results show that the highest-energy
conformations in the sequential scans have QM−MM energy differ-
ences that are more than twice as large as the wavefront propagation
scan (Fig. 2, red lines). These data would introduce unwanted biases
during force field fitting as the parameters would tend to minimize
the energy errors in the highly strained structures at the expense
of accuracy in the lower-energy regions. Therefore, we think that
the QM data from wavefront propagation can improve the “ingre-
dients” for force field fitting and ultimately lead to more accurate
parameters.

In terms of computational cost, the serial relaxed scan involved
a total of 24 constrained optimizations (601 gradient evaluations),
whereas the TorsionDrive calculation involved 19 wavefront prop-
agation steps with a total of 91 constrained optimizations (2073
gradient evaluations). Although the total computational cost of

FIG. 2. Comparison of one-dimensional torsion scans for zwitterionic 3-fluoro-4-(1,3,5-triazin-2-yl)phenol carried out at the B3LYP/6-31G∗ level of theory. Black: QM
constrained optimized energies; Blue: MM single-point energies at same geometries from OpenFF “Parsley” force field; Red: QM−MM energy difference. (a) Molecu-
lar structure with labeled indices for the torsion being scanned. (b) Result of the serial relaxed scan with the scan direction indicated and 3D rendering of the highest
energy structure. (c) Result of the wavefront propagation scan using TorsionDrive. The geomeTRIC package was used to carry out the constrained optimizations in both
cases.
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TorsionDrive is higher, we note that the wall time to job comple-
tion may actually be faster if sufficient parallel resources are made
available (for 1D scans, four parallel jobs is mostly sufficient).

B. Two-dimensional scanning example
Multi-dimensional torsion scans provide greater insight into

the conformational degrees of freedom of many biologically rele-
vant molecules. For example, the backbone torsion angles of proteins
occur in (φ, ψ) pairs, and amino acid side chains and glycosidic
bonds contain flexible chains with two or more connected torsions.
When scanning the torsion angle in two or higher dimensions, the
conventional serial scanning approach suffers from similar problems
as in the 1D case, but the problems may be more serious. In addi-
tion to the two choices of scan direction for each dimension, the
ordering of dimensions may also affect the results because only one
torsion angle may be varied between contiguous calculations, while
the others are held fixed. Molecular systems with two or more cou-
pled torsions tend to exhibit a high degree of flexibility, which also
increases the chances of multiple local minima that are easily missed
by a sequential scan.

Figure 3 compares the results for glutamine dipeptide for the
wavefront propagation scan with TorsionDrive and two sequen-
tial scans with different choices of dimensional ordering. The
grid spacing, level of theory, and software used were the same as
Sec. III A, and there are now 576 total points on the torsion grid

due to the increased dimensionality. The scan is initiated from a sin-
gle structure near the energy minimum where (φ, ψ) = (−83○, 62○).
While the results appear similar in the low-energy region near the
starting structure, there are major differences in the more distant
regions of the energy profiles. Namely, the serial scan results include
several high-energy “islands” in excess of +25 kcal/mol, whereas
the TorsionDrive scan results have much lower energies in these
regions. The sequential scan results also contain more sharp differ-
ences in the energy between adjacent grid points, for example, near
(+90, +90)○ in Fig. 3(c), whereas the TorsionDrive energy profile
is smoother. Some of the most significant differences between the
potential energy surfaces are highlighted by the starred regions, indi-
cating that both sequential scans visited higher-energy local minima
compared to the wavefront propagation scan. These results show
that serial scanning poses an increased risk of providing incorrect or
insufficient data compared to wavefront propagation scanning for
parameterizing force fields in simulations.

In terms of computational cost, the sequential relaxed scans
involved running 576 geometry optimizations and a total of
21 208/21 658 gradient evaluations, depending on the ordering of
dimensions. The TorsionDrive calculation ran for 33 wavefront
propagation steps, involving a total of 4953 energy minimiza-
tions and 166 714 gradient evaluations. The number of gradient
evaluations in the TorsionDrive calculation is about 7.5 times
greater than the sequential relaxed scans, but the wall time may be
greatly reduced if parallel resources are available as each wavefront

FIG. 3. Comparison of two dimensional
torsion scans of glutamine dipeptide at
the B3LYP/6-31G∗ level of theory. Con-
tour lines are drawn at 5 kcal/mol inter-
vals. (a) Line drawing and initial 3D struc-
ture of the scanned molecule. The two
coupled torsion angles being scanned
are denoted by red curved arrows and,
more specifically, by indexed atoms φ(1-
2-3-4) and ψ(2-3-4-5). (b) Wavefront
propagation scan with TorsionDrive. (c)
Sequential scan results in ψ-major order
(consecutive elements of ψ are next to
each other, and φ is incremented upon
completion of scanning ψ). (d) Sequen-
tial scan results in φ-major order (con-
secutive elements of φ are next to each
other). Red arrows conceptually illustrate
ordering of dimensions and scan direc-
tions. Starred regions indicate where the
potential energy surfaces differ signifi-
cantly (red = higher energy).
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propagation step could launch up to 300 energy minimizations in
parallel. In the ideal case that all calculations are able to run in par-
allel, the TorsionDrive calculation wall time would be equivalent to
around 33 sequential geometry optimizations.

One can also take advantage of parallelism in other ways, such
as by slightly modifying the sequential scanning approach to use the
results of a 1D scan along one dimension to start an array of 1-D
scans along the other dimension to create the 2D PES. In this case,
the number of sequential geometry optimizations is reduced to as
low as 26 (if one goes in both directions simultaneously). Figure S1
of the Supplementary material shows an example where a unidirec-
tional 1D scan along φ is used to start an array of 24 1D scans along
ψ. The shape of the PES and general locations of high-energy min-
ima are largely consistent with Fig. 3(c), in line with expectations.

C. Multiple initial structures
The wavefront propagation procedure of TorsionDrive is nat-

urally able to incorporate multiple starting conformations. The ini-
tial constrained optimizations are performed on all starting struc-
tures with the torsion angle constrained to the closest grid point. If
more than one initial structure is mapped to the same grid point,
the lowest energy optimized conformer is used to launch new con-
strained optimization for neighboring points. This feature is bene-
ficial because a grid of torsion angles can be covered in a smaller
number of wavefront propagation steps when starting from multiple
structures, and it also provides a natural way to consistently include
the lowest-energy local minimum from multiple initial guesses.

In many molecules, the potential energy surface includes cou-
pling across multiple torsion angles due to intramolecular non-
bonded interactions, with protein backbone torsion angles (φ, ψ)
being a well-known example. Ethylene glycol is an example of
a molecule with strong intramolecular interactions between the
hydroxyl functional groups. Figure 4 compares the results of a 1D
torsion drive started from one initial conformation (indicated with
+) and multiple initial conformations (indicated with ∗) together
with a 2D torsional PES. These calculations were performed within
the QCArchive infrastructure that provides TorsionDrive calcula-
tions as a service, as described in Sec. IV B. Energies and gradients
were calculated using the B3LYP-D3(BJ) functional and DZVP basis
optimized for DFT,44 as implemented in the Psi4 software pack-
age,23 and optimizations were carried out using the geomeTRIC
software.28

The results show that a 1D torsion scan started from a con-
formation where the hydroxyl groups are facing in opposite direc-
tions (4b upper) will fail to find the lowest energy conformer. How-
ever, when the 1D scan is started from multiple conformations
with different starting values of the O–C–C–O and H–O–C–C tor-
sion angles, the resulting scan includes some structures that contain
intramolecular hydrogen bonding character and lower overall ener-
gies (4b lower). Most conformers found by this scan are lower in
energy than the structures found in the other scan. The 2D scan is
shown in Fig. 4(c) with the two 1D scans mapped onto the heat-
map. While the H–O–C–C dihedral angle does not change a lot in
the scan started with one initial conformation (indicated with +), the
H–O–C–C dihedral angle of the scan started with multiple confor-
mations (indicated with ∗) changes to follow the lowest energy path
on the potential energy surface.

It is well known that intramolecular electrostatic contacts
(IECs), such as intramolecular hydrogen bonds, are much stronger
in the gas phase than in solvent.45,46 This can be attributed to
the dielectric solvent’s attenuation of electric fields and compet-
ing hydrogen bonding effects from the solvent, and is consistent
with the observation that non-polarizable force fields for condensed
phase simulation tend to underestimate gas-phase hydrogen bond
energies.47 Therefore, searching for the lowest-energy structure in
systems with strong gas-phase IECs could cause undesirable biases
when fitting parameters of non-polarizable force fields; polarizable
force fields are not as susceptible to this problem.48 One approach
to avoiding forming IECs in geometry optimizations is to mod-
ify the potential surface by adding artificial repulsive potentials
between groups expected to interact electrostatically49,50 or by using
an implicit solvent model. Another promising approach is to carry
out all steps of QM data generation and force field fitting with an
implicit solvent model.51 Current implicit solvent implementations
make it difficult to use the same solvent model for MM and QM dur-
ing force field fitting, though this effect appears to be minor; we look
forward to seeing more advances in this area in the future.

D. Generalized dihedral scanning
and restricted grid

TorsionDrive has several additional features for flexibility in
setting scanning coordinates for different molecular systems. First,
the scanned coordinate(s) are not required to be strict definitions
of proper torsion angles as four atoms in three sequential cova-
lent bonds; any dihedral angle defined by four atom indices can be
scanned, such as generalized torsion angles defined by four non-
consecutive atoms or improper torsion angles describing pyramidal-
ization. Second, the scan range can be restricted to focus computa-
tions on regions of interest, in case certain ranges of the dihedral
angle are not physically reasonable.

The usefulness of these non-conventional torsion degrees of
freedom is further enhanced by TorsionDrive’s robustness in build-
ing a smooth PES even for difficult systems. As an example, we con-
ducted dihedral scans on a molecular motor that works by rotating
around its torsion angle, as shown in Fig. 5. The subject molecule is a
crowded and strained alkene where rotation of central double-bond
torsion has to overcome a considerable energy barrier.52 Between the
two sides of the rotation barrier, there are also large structural dif-
ferences such as ring pucker flips. In this example, rotation around
the central double bond is characterized by a torsion angle defined
by four non-consecutive atoms because using consecutive atoms to
define the torsion angle would lead to poor projection of the barrier
onto the scanned coordinates.

The performance of TorsionDrive and conventional serial
scanning is compared in Fig. 5 where a generalized proper torsion
and improper torsion are scanned over. The serial scan started from
the (−30, 0) grid point, and the dimensions are ordered such that
consecutive optimizations involved changing the improper torsion
angle. A comparison of the two calculations shows that Torsion-
Drive and serial scanning produce markedly different potential sur-
faces, with TorsionDrive giving a superior result in terms of find-
ing much lower energy conformations. The serial scan succeeded
in locating the leftmost minimum near the start point of the scan
(−30, 0) but failed to obtain the other two local minima found by
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FIG. 4. Comparison of torsional potential surfaces computed using TorsionDrive with single vs multiple starting conformations. (a) One-dimensional scans of the torsion angle
formed by atoms O–C–C–O started from one conformation (+) vs multiple conformations (⋆). Red color indicates the lowest energy structure. (b) 3D renderings of lowest
energy structures found in (a). (c) 2D torsion scan along O–C–C–O and H–O–C–C torsion angles. 1D scan results for single and multiple starting conformations are mapped
onto the heat-map as (+, ⋆), with colored symbols indicating starting structures. The 1D scan using multiple starting conformations finds the lowest energy conformer on the
2D scan.

TorsionDrive. Moreover, the serial scan always yielded equal or
higher energy than TorsionDrive at each grid point and reached
many structures in excess of 40 kcal/mol on the right side of the
PES. The choice of dimensional ordering also affects the outcome of
a serial scan as the serial scan crashed at the (180, 0) grid point when
the opposite ordering was used, likely due to reaching an excessively
strained structure.

In summary, we think that the superior performance of Tor-
sionDrive is because it optimizes multiple structures at the same
grid point from different propagating directions. This procedure
makes the TorsionDrive result less sensitive to the sometimes unpre-
dictable convergence of geometry optimization methods to different
local minima depending on starting conformation. This procedure,
optionally augmented by using multiple starting conformations,
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FIG. 5. Comparison of 2D scans (generalized proper torsion—four atoms num-
bered in the chemical structure and improper torsion—marked by red in the above
chemical structure) for characterizing the PES of a molecular motor at the B3LYP-
D3/3-21G level of theory. Chemical structures of three local minima are drawn on
the top, with gray and bold, indicating “behind” and “in front of” the plane, respec-
tively; result of the wavefront propagation scan using TorsionDrive is shown in the
middle; result of the serial relaxed scan is shown at the bottom. The results were
generated using geomeTRIC as the geometry optimization method, interfaced with
Psi4 for gradient calculations.

results in a higher quality PES and much higher chances of find-
ing relevant local minima. In addition, TorsionDrive saves human
effort and wall time in troubleshooting and restarting crashed cal-
culations due to its robustness against the sometimes unpredictable
convergence failure of geometry optimizations.

E. Data analysis and visualization
The TorsionDrive software package includes Python scripts to

parse output files into formatted files containing energies, gradi-
ents, coordinates, and associated metadata. These file formats are
designed to facilitate automated fitting of force field parameters,
which we will describe elsewhere. Also provided are Jupyter Note-
books53 for interactive visualization of the resulting energy sur-
faces (powered by Plotly) and inspection of corresponding molec-
ular structures (powered by NGLview54). Figure 6 shows a typical
usage of the visualization notebooks. Upon execution of the code
cells, a contour is plotted to visualize the energies at each grid point,
and hovering the mouse pointer on the plot shows the dihedral and
energy values of the nearest grid point. Left clicking on the plot

FIG. 6. Image for the typical usage of the visualization notebook.

displays the optimized structure of the nearest grid point. The
displayed structure is interactive and can be rotated, translated,
zoomed, etc. Such synchronized visualization of energies and struc-
tures allow the user to efficiently examine critical points and other
features of the PES.

IV. SOFTWARE INFRASTRUCTURE
The described method naturally lends itself to several layers

of interoperability and parallelization strategies, which are detailed
below. The simplest invocation of TorsionDrive at the API layer
takes in a list of dihedral angles to scan over, the granularity of each
scan, and necessary information on the initial molecules (atomic
symbols and Cartesian coordinates). At every step, TorsionDrive
emits a series of dihedral angles to perform a constrained opti-
mization as well as the starting geometry, which can be evaluated
by many downstream programs. The next iteration is then started
by supplying the TorsionDrive procedure with the Cartesian coor-
dinates and final molecular energy of each constrained geometry
optimization.

This API design abstracts away the details of which program
is used to evaluate the constrained geometry optimization, allow-
ing many different quantum chemistry, semi-empirical, force field,
or machine learning (ML) potential programs to be used to generate
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the necessary values. This strategy is robust to new methodology and
program development and avoids being “locked into” a particular
software package. Several examples of this are using Python-based
geometry optimizers that are agnostic to the backend program to
evaluate these constrained geometry optimizations such as geomeT-
RIC, PyBerny,55 and PyOptKing.56 In addition, Python-based suites
of tools that attempt to abstract back ends exist, such as the Atomic
Simulation Environment (ASE)57 and QCEngine, allowing for many
additional programs to be used with a simplified interface.

A. Task execution systems
On top of allowing flexibility in the evaluated program, this

structure also provides integration with task execution system par-
allelization tools.58 Task execution systems are typically software
programs that can acquire computational resources on supercom-
puters through standard resource programs (e.g., SLURM59) and
automate the computation of tasks (constrained geometry opti-
mizations) on these resources. Tasks are typically computed via the
following procedure:

1. A central task scheduler is created on a head node.
2. The central task scheduler acquires compute nodes through the

local resource scheduler.
3. The compute nodes are harnessed by spawning a “worker” dae-

mon process, which can communicate tasks to and from the
scheduler via the local intranet.

4. Tasks are shipped from the central scheduler to a worker pro-
cess, and the results of the task are shipped back to the central
task scheduler.

Task execution systems allow the TorsionDrive calculation to
be parallelized not only across cores of a single node but also across
computational nodes even if the underlying quantum chemistry
program is not able to do so. There are many such task execu-
tion systems available such as Work Queue,35,36 Dask,60 Parsl,61

RADICAL Pilot,62 and Fireworks63 in the academic computing
space, which provide this service and can be trivially integrated
with TorsionDrive. At present, TorsionDrive supports Work Queue
when running in the standalone operation mode and, through the
QCArchive integration, supports several other task execution sys-
tems such as Dask, Parsl, RADICAL, and Fireworks. Figure 7(a)
shows how TorsionDrive interacts with task execution systems
when running in the standalone execution mode, i.e., outside of
QCArchive.

B. QCArchive integration
The MolSSI QCArchive project is a platform for comput-

ing, storing, analyzing, and sharing quantum chemistry data. The
QCArchive software infrastructure uses a client–server model; the
server (QCFractal) is a permanent Python-based server, which stores
quantum chemistry computations, runs “services” such as Torsion-
Drive to generate new quantum chemistry tasks, and provides an
API to search and organize previous computations, and QCPortal
is a Python-based API for interacting with the server suitable for
Jupyter Notebooks.53

Fundamentally, QCFractal is a tool to compute a large num-
ber of quantum chemistry primitives such as an energy or gradient
computation or procedures such as a geometry optimization with
a variety of different community packages. Building on top of this
core of primitives, it is easy to add workflows such as TorsionDrive
to the software stack due to its API layers, which are agnostic to
how the geometry optimization is evaluated. In addition, tools such
as QCFractal allow many TorsionDrives to be evaluated concur-
rently on one or more physical resources such as a campus cluster
or supercomputer to improve the possible parallelization of these
computations further. A general workflow with QCFractal would be
as follows:

1. A user submits one or more TorsionDrive computations to
QCFractal from the QCPortal front-end client.

FIG. 7. Diagrams showing two different modes of TorsionDrive operation. (a) In the standalone execution mode, the TorsionDrive algorithm will generate new geometry
optimizations that the task execution system ship to compute nodes and back to iterate over the procedure described in Sec. II. (b) Within the QCArchive ecosystem, the
user can submit a new TorsionDrive via QCPortal to interact with a QCFractal server, which can run many concurrent TorsionDrives.
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FIG. 8. An example usage of the
QCArchive infrastructure stack where
QCPortal is used to build a hydrogen
peroxide molecule from an XYZ file. Tor-
sionDrive is then submitted for the H–O–
O–H dihedral angle use the geomeTRIC
geometry optimizer and the PM6 level of
theory using MOPAC. The computation
is then retrieved from the server, and the
energy at 18○ is displayed.

2. The QCFractal server uses TorsionDrive to generate new
geometry optimizations to be computed.

3. The geometry optimizations are computed on one or more
physical resources where a physical resource can be a single
core to a large supercomputer through a task execution system.

4. Items 2–3 are iterated until convergence.

Figure 7(b) shows how the user is able to use TorsionDrive as
a service within the QCArchive infrastructure. An example usage of
the QCPortal client is show in Fig. 8. The object returned in this
image has API-based access to every geometry optimization and
gradient evaluation.

V. CONCLUSIONS
The reformulation of torsion angle scanning as wavefront prop-

agation comes with several important benefits that we think are
worth the increased computational cost. These benefits include
improved symmetry of the potential surface, which is related to the
calculation results being independent of any chosen scan direction
or dimensional ordering. The resulting potential energy surfaces
have fewer discontinuities compared to sequential scanning, and
in typical cases, lower-energy structures and potential minima can
often be found. Multiple initial guesses can be naturally incorpo-
rated, allowing the calculations to finish in reduced wall time, given
sufficient computing resources. This procedure also has a reduced
tendency to get trapped in high-energy local minima, resulting in
improved performance and reliability for challenging systems and
generalized choices of dihedral angles.

In terms of software, TorsionDrive is a flexible package that
can utilize either Python-based geometry optimization codes or
quantum chemistry packages with integrated geometry optimization
routines. It can run either in standalone mode and take advantage of

parallel resources using the Work Queue task execution system or as
a service in the QCArchive ecosystem that features centralized man-
agement of data and computer resources. Overall, we believe that
this component-based approach to software development allows
TorsionDrive to be a flexible piece of middleware that can be har-
nessed by a large number of external programs and incorporated
into existing software ecosystems in a straightforward manner. This
approach also helps users by enabling consistent approaches to
geometry optimizations or higher level workflows when using differ-
ent quantum chemistry software packages that may differ in terms of
the methods that are implemented in each.

SUPPLEMENTARY MATERIAL

The supplementary material contains input files for Torsion-
Drive calculations including quantum chemistry inputs and output
molecular structures and associated energies for Fig. 2–5. Structures
are provided as Cartesian coordinates in XYZ format.
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