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Parminder S Suchdev,6,7,8 Melissa F Young,1 Rafael Flores-Ayala,8 and Reina Engle-Stone9

1Hubert Department of Global Health, Emory University, Atlanta, GA, USA; 2McKing Consulting Corporation, Atlanta, GA, USA; 3The DHS Program, ICF
International, Rockville, MD, USA; 4Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, RI, USA; 5GroundWork, Fläsch,
Switzerland; 6Department of Pediatrics, Emory University, Atlanta, GA, USA; 7Emory Global Health Institute, Atlanta, GA, USA; 8Division of Nutrition,
Physical Activity and Obesity, US CDC, Atlanta, GA, USA; and 9Department of Nutrition, University of California, Davis, CA, USA

ABSTRACT
Background: Rising prevalence of overweight/obesity (OWOB)
alongside persistent micronutrient deficiencies suggests many
women face concomitant OWOB and undernutrition.
Objectives: We aimed to 1) describe the prevalence of the double
burden of malnutrition (DBM) among nonpregnant women of
reproductive age, defined as intraindividual OWOB and either ≥1
micronutrient deficiency [micronutrient deficiency index (MDI) > 0;
DBM-MDI] or anemia (DBM-anemia); 2) test whether the com-
ponents of the DBM were independent; and 3) identify factors
associated with DBM-MDI and DBM-anemia.
Methods: With data from 17 national surveys spanning low-
and middle-income countries (LMICs) and high-income countries
from the Biomarkers Reflecting Inflammation and Nutritional
Determinants of Anemia project (n = 419 to n = 9029), we tested
independence of over- and undernutrition using the Rao–Scott chi-
square test and examined predictors of the DBM and its components
using logistic regression for each survey.
Results: Median DBM-MDI was 21.9% (range: 1.6%–39.2%);
median DBM-anemia was 8.6% (range: 1.0%–18.6%). OWOB
and micronutrient deficiencies or anemia were independent in
most surveys. Where associations existed, OWOB was negatively
associated with micronutrient deficiencies and anemia in LMICs.
In 1 high-income country, OWOB women were more likely to
experience micronutrient deficiencies and anemia. Age was con-
sistently positively associated with OWOB and the DBM, whereas
the associations with other sociodemographic characteristics varied.
Higher socioeconomic status tended to be positively associated with
OWOB and the DBM in LMICs, whereas in higher-income countries
the association was reversed.
Conclusions: The independence of OWOB and micronutrient
deficiencies or anemia within individuals suggests that these forms
of over- and undernutrition may have unique etiologies. Decision-
makers should still consider the prevalence, consequences, and
etiology of the individual components of the DBM as programs

move towards double-duty interventions aimed at addressing
OWOB and undernutrition simultaneously. Am J Clin Nutr
2020;112(Suppl):468S–477S.

Keywords: double burden of malnutrition, women, anemia, over-
weight/obesity, micronutrients

Introduction
Until recently, efforts in low- and middle-income countries

(LMICs) to improve the nutrition of women of reproductive age
(WRA) largely focused on undernutrition (1). In the last decade,
evidence has emerged showing that overweight/obesity (OWOB)
prevalence now exceeds that of underweight among WRA in
most LMICs (2, 3). In contrast to the declining prevalence of
underweight among WRA (4), reductions in anemia prevalence,
which is often used as a proxy for micronutrient deficiencies in
the absence of micronutrient data (5), have been disappointing
(6). Nearly all countries are off course to meet the World
Health Assembly targets to reduce anemia among WRA by
50% between 2016 and 2025 (6); anemia prevalence decreased
from 43% to 38% between 1995 and 2011 among nonpregnant
WRA (7). As countries experience increases in OWOB alongside
modest reductions of anemia, many face what has been termed
the double burden of malnutrition (DBM) (8). The WHO
describes the DBM as the “coexistence of overweight, obesity,
or diet-related noncommunicable diseases with underweight
or micronutrient deficiencies at the population, household, or
individual level” (9). Failure to address the DBM is likely
to have serious health and economic consequences for WRA
and their nations (10–12), yet few LMICs have integrated
OWOB reduction among WRA into national nutrition policies
(13).
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Country governments increasingly recognize the need to
better target and design programs that address the full spec-
trum of malnutrition, and nutrition policies (e.g., supporting
breastfeeding, and nutrition education) have the potential to
simultaneously address over- and undernutrition. However, there
are limited data on the magnitude and correlates of the DBM
to inform double-duty actions, which are aimed at dually
addressing OWOB and undernutrition (9, 14). The breadth of
operational definitions for the DBM further complicates the
design of interventions to reduce the DBM. Although global
estimates of obesity (15%), underweight (10%), and anemia
(29%) among WRA have been characterized (15, 16), a data
gap remains for the burden of many micronutrient deficiencies
and an even greater gap on the coexistence of multiple forms of
malnutrition (4).

The ratio of obesity prevalence to undernutrition at the country
level (17) or household co-occurrence of adult overnutrition
and child undernutrition (18) are more common estimates of
the DBM than at the intraindividual level among existing
studies. As such, the extent to which over- and undernutrition
are present in the same individual across different settings is
unknown. One review in Latin America found the co-occurrence
of overweight and anemia within WRA ranging from 3% to
14% among 5 countries (19). Data from the USA found obese
and underweight women were at higher risk of vitamin defi-
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ciencies or anemia than normal-weight women (20). In Vietnam,
weight category and micronutrient deficiencies were generally
unrelated except that overweight women had better vitamin A
status (21).

Leveraging data from population-based surveys of micronutri-
ent status, our objectives were to 1) describe the prevalence of
the DBM among nonpregnant WRA, defined as intraindividual
OWOB and either micronutrient deficiency index (MDI) > 0
(DBM-MDI; OWOB and ≥1 micronutrient deficiency) or anemia
(DBM-anemia); 2) test whether the components of the DBM,
using a range of definitions, were independent; and 3) identify
factors associated with DBM-MDI and DBM-anemia among
WRA to guide intervention targeting. We focused our evaluation
on DBM-MDI because few studies have used micronutrient
deficiencies to characterize the undernutrition component of the
DBM, and on DBM-anemia because anemia is the global target
for women’s nutrition (22).

Methods

Data source and inclusion criteria

The Biomarkers Reflecting Inflammation and Nutritional
Determinants of Anemia (BRINDA) project harmonized indi-
vidual participant data from multiple national nutrition surveys,
which included data on anthropometry, anemia, inflammation,
and micronutrient deficiencies (www.brinda-nutrition.org) (23).
Methods describing the BRINDA database are available else-
where (24), and survey reports or publications from these
national surveys are available on the project website and in
Supplemental Table 1. Briefly, to be included, surveys must
have utilized a population-based representative sampling design,
and measured hemoglobin or a biomarker of micronutrient
status along with a biomarker of inflammation [C-reactive
protein (CRP) or α-1-acid glycoprotein (AGP)]. Seventeen of
19 national surveys sampling WRA had anthropometry data.
The inclusion criteria for this analysis were observations with
nonmissing BMI (in kg/m2) and hemoglobin, ≥1 micronutrient
biomarker [ferritin, soluble transferrin receptor (sTfR), retinol-
binding protein (RBP), retinol, zinc, vitamin B-12, folate, or
vitamin D], and a measure of inflammation (CRP or AGP), which
resulted in a loss of 0%–1.2% of survey sample size. Height
and weight outside the ranges 101.6–219.9 cm and 22.7–222.2
kg, respectively, were set to missing, as were BMI z scores
>+5 and <−5, which accounted for 39 lost observations. All
micronutrient biomarker values were retained with the exception
of 1 apparent outlier (AGP > 500 g/L) and 26 hemoglobin
concentrations outside the 40–180 g/L range, which brought the
analytic sample to n = 419 to n = 9029 per survey. Hemoglobin
was adjusted for altitude and smoking (25), where available
(Supplemental Table 2).

Creating the MDI

To consolidate information from the multiple micronutrient
biomarkers available per survey, we developed an MDI to
summarize the number of micronutrients for which biomarker
concentrations indicated low status at the individual level.
The MDI score ranged from 0, indicating no micronutrient
deficiencies, to 6, the maximum number of micronutrients

https://academic.oup.com/ajcn/
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assessed in an individual survey. Cutoffs used to define
deficiency were inflammation-adjusted ferritin < 15 μg/L
(26, 27) or inflammation-adjusted sTfR > 8.3 mg/L (28), retinol
or RBP < 0.7 μmol/L (29), vitamin B-12 < 150 pmol/L (30),
serum folate < 10 nmol/L (31), and 25-hydroxyvitamin D < 30
nmol/L (32). Zinc cutoffs were <70 μg/dL (morning fasted),
<66 μg/dL (morning nonfasted), and <59 μg/dL (afternoon) per
International Zinc Nutrition Consultative Group recommenda-
tions (33). Supplemental Table 2 presents the methodologies for
biomarker assessment by survey. The ordinal MDI score (range:
0–6) was collapsed into 3 levels with MDI = 0, MDI = 1,
or MDI > 1, representing 0, 1, or multiple micronutrient
deficiencies. We present results incorporating the MDI separately
for surveys that collected 1–2 micronutrients, to prevent skewing
results based on unavailable data.

Defining OWOB and the DBM

The definition for OWOB depended on age category. For
adolescent WRA, aged 15–19 y, we used the BMI-for-age z
scores from the WHO growth reference data (34). Overweight
ranged from +1 SD to +2 SD, and obesity was defined as BMI
>+2 SD. For adult WRA > 19 y old, overweight and obesity
were defined as BMI = 25 to <30 and BMI ≥ 30, respectively
(35). Although OWOB cutoffs vary regionally, we adopted WHO
cutoffs for consistency and because they are more conservative
than cutoffs with lower bounds for our primary analyses (21).
In secondary analyses, we also defined OWOB in Vietnam,
Cambodia, and Laos as BMI > 23 (36). Underweight was defined
as BMI-for-age z scores <−2 SD for adolescents and BMI < 18.5
for adults (35).

We initially defined the DBM 8 ways, each described with
a suffix. Our primary focus was on intraindividual concomitant
OWOB and MDI > 0 (DBM-MDI). An alternate definition was
concomitant OWOB and anemia (hemoglobin < 12.0 g/dL;
DBM-anemia). Concomitant OWOB and single micronutrient
deficiencies were also evaluated: DBM-iron, DBM-vitamin A,
DBM-zinc, DBM-vitamin B-12, DBM-folate, and DBM-vitamin
D. In secondary analysis, overlapping forms of undernutrition
were also described (short stature, defined as height < 145
cm, or underweight and micronutrient deficiencies or
anemia).

Variable definitions

Age categories were defined as 15–19, 20–29, 30–39, and
40–49 y old. The majority of surveys had an ordinal 3-level
socioeconomic status (SES) variable derived from individual
survey asset scores of household ownership or composition. In
the USA, Georgia, and Papua New Guinea (PNG), the poverty-
index ratio, employment (binary), and household income were
used to create SES, respectively. A binary SES variable in
Georgia was created for low SES (unemployment) or medium
SES (any employment). Respondent (or household head: Mexico,
2006) education was collapsed into 2 levels: none or primary
compared with secondary or higher. The 16 countries were
grouped into 4 geographic areas based on the WHO regions to de-
scribe patterns of association: Americas (Mexico, Ecuador, USA,
Colombia); Europe/Eastern Mediterranean (Azerbaijan, United
Kingdom, Georgia, Afghanistan, Pakistan); Africa (Cameroon,

Côte d’Ivoire, Malawi); and Southeast Asia/Western Pacific
(PNG, Cambodia, Laos, Vietnam).

Statistical analysis

Analyses were conducted in SAS version 9.4 (SAS Institute)
separately for each survey with cluster, strata, and weights. Anal-
yses were completed by 2 independent analysts; discrepancies
were resolved through discussion and consensus. Descriptive
characteristics and prevalence estimates were calculated using
the SURVEYFREQ and SURVEYMEANS procedures. To
test the independence of micronutrient deficiencies or anemia
and OWOB, we compared observed and expected prevalence
estimates of the DBM using the Rao–Scott chi-square test.
The observed and expected DBM prevalence estimates excluded
underweight women because they may be more likely to
experience micronutrient deficiencies and anemia, creating a
U-shaped relation between weight category and MDI > 0 or
anemia. Our primary focus was micronutrient malnutrition rather
than underweight and we wanted to narrow the comparison,
to compare women with normal and elevated BMI. To model
multivariable associations between sociodemographic character-
istics and the DBM, the SURVEYLOGISTIC procedure was
used (including the Firth option for zero observation cells).
Multivariable models included age, SES, residence (urban/rural),
and education based on data availability in each country. We also
modeled multivariable associations between sociodemographic
characteristics (age, SES, residence, education) and OWOB,
MDI > 0, and anemia to better interpret DBM predictors.

Ethical approval and role of the funding source

The study was reviewed by the institutional review board of
the NIH (protocol #11417) and deemed non–human subjects
research.

Results

Participant characteristics and prevalence of OWOB,
micronutrient deficiencies, and anemia

Of the 17 nationally representative surveys in the analysis,
Cambodia, Mexico 2012, and Pakistan did not sample women
aged <20 y; all other surveys included nonpregnant women
aged 15–49 y (Table 1). Rural residency ranged from 22.2%
(Colombia) to 91.0% (Malawi), and education patterns varied
from 100.0% of women in the USA reporting secondary/higher
education to 84.4% of women in Côte d’Ivoire reporting
none/primary education.

The median prevalence of OWOB was 40.5% (range: 8.0%,
Vietnam to 71.7%, Mexico 2012) (Figure 1). More than half of
WRA were OWOB in 6 surveys (Mexico 2006/2012, Ecuador,
USA, United Kingdom, and Azerbaijan). The prevalence of un-
derweight was greatest in Southeast Asian countries (Cambodia,
13.3%; Laos, 13.4%; and Vietnam, 20.1%) and Pakistan (16.8%).
Short stature ranged from <0.1% to 13.7% (Supplemental Table
3). Aside from Vietnam, all surveys had a greater proportion
of OWOB than underweight women. When the population-
specific definition for OWOB was applied to Cambodia, Laos,
and Vietnam, the prevalence of OWOB increased by 15.7, 13.0,
and 11.9 percentage points (pp), respectively.
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TABLE 1 Age, household characteristics, and educational attainment of women of reproductive age by survey: Biomarkers Reflecting Inflammation and
Nutritional Determinants of Anemia project1

Geographic grouping Country, survey year n Age,2 y Rural residence Low SES Low education3

Americas Mexico, 2012 3586 34.6 [22.3–41.1] 27.4 (25.7, 29.2) 38.3 (36.0, 40.7) —
Mexico, 2006 3006 31.1 [22.9–39.9] 29.6 (25.1, 34.0) 47.3 (43.3, 51.4) 59.9 (55.2, 62.6)
Ecuador, 2012 7129 29.3 [21.4–37.9] 28.9 (18.6, 39.1) 38.9 (33.6, 44.3) 30.6 (27.8, 33.5)
USA, 2006 3150 34.5 [24.4–42.3] — 26.1 (23.0, 29.3) 0.0 (0.0, 0.0)
Colombia, 2010 8809 27.6 [18.5–38.6] 22.2 (21.2, 23.2) 38.1 (36.7, 39.5) 51.1 (49.0, 53.2)

Europe/Eastern Mediterranean Azerbaijan, 2013 2642 31.0 [23.4–41.1] 53.8 (47.6, 60.1) 31.3 (27.8, 34.8) 5.1 (3.6, 6.7)
United Kingdom, 2014 876 35.7 [25.7–42.8] — 36.1 (31.4, 40.9) 8.8 (6.1, 11.5)
Georgia, 2009 1671 29.2 [26.5–32.0] 49.7 (42.8, 56.6) 19.3 (15.7, 22.8) 4.7 (3.2, 6.2)
Afghanistan, 2013 568 29.0 [24.1–34.3] — 7.2 (3.6, 10.9) —
Pakistan, 2011 9029 29.7 [25.7–34.6] 68.9 (66.1, 71.7) 42.5 (40.2, 44.8) 71.2 (69.3, 73.0)

Africa Cameroon, 2009 748 26.0 [22.0–31.0] 41.5 (31.5, 51.6) 42.6 (35.3, 50.0) 66.4 (62.5, 70.3)
Côte d’Ivoire, 2007 816 26.1 [20.9–32.0] 46.8 (42.9, 50.8) 38.8 (32.7, 44.9) 84.4 (80.8, 88.1)
Malawi, 2016 758 25.3 [19.6–35.5] 91.0 (83.5, 98.4) 42.6 (35.2, 50.1) 79.6 (73.8, 85.5)

Southeast Asia/Western Pacific Papua New Guinea, 2005 738 27.7 [20.7–35.3] 79.1 (69.3, 88.9) 39.5 (27.7, 51.3) 72.0 (66.6, 77.4)
Cambodia, 2014 419 29.8 [25.1–33.3] 86.9 (83.6, 90.2) 43.7 (35.6, 51.7) 69.0 (64.1, 73.9)
Laos, 2006 810 28.3 [20.0–36.8] 68.0 (54.2, 81.7) 38.8 (28.3, 49.4) 65.0 (55.3, 74.7)
Vietnam, 2010 1480 31.9 [24.1–40.1] 51.4 (49.5, 53.2) — —

1Values represent percentages (95% CIs) unless otherwise indicated; estimates account for cluster, strata, and weight. —, variable (or category)
unavailable. SES, socioeconomic status.

2Age shown as medians [IQRs].
3Education categorized as binary for modeling purposes: low represents none or primary attained, higher education (secondary or beyond) not shown.

Aside from iron status, which was assessed in all surveys, the
number and pattern of micronutrients measured by survey varied.
Individual micronutrient deficiency prevalence estimates ranged
from 0.3% to 39.9% (vitamin A), 6.4% to 84.7% (zinc), 1.0%
to 52.6% (vitamin B-12), 1.3% to 86.4% (folate), and 4.8% to
84.7% (vitamin D) (Table 2). Among 3 surveys that collected

data on all 6 micronutrients, the prevalence of MDI = 0 (i.e.,
individuals with adequate status for all micronutrients) ranged
from 8.0% (Pakistan) to 29.8% (Cambodia), and the prevalence
of MDI > 1 ranged from 17.1% (Cambodia) to 72.1% (Pakistan)
(Table 2). There were 5 surveys that measured 5 micronutrients,
although the micronutrients measured varied. Among those
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surveys, the prevalence of MDI = 0 ranged from 12.3% to 66.3%.
Among surveys that measured 1–2 micronutrients, the MDI = 0
prevalence ranged from 55.4% to 92.1% (Table 2).

Anemia prevalence ranged from 6.6% (USA) to 50.6% (Pak-
istan) (Table 2). Based on the WHO criteria of anemia severity
(37), the public health problem was severe (anemia ≥ 40%)
in 4 surveys, moderate (anemia = 20.0%–39.9%) in 6 surveys,
and mild (anemia = 5.0%–19.9%) in 7 surveys. The prevalence
of inflammation-adjusted ferritin < 15 μg/L ranged from 1.4%
(Georgia) to 43.7% (Mexico 2012). Iron deficiency anemia
prevalence ranged from 0.7% (Georgia) to 27.4% (Pakistan)
(Table 2).

Prevalence of the DBM

Among the 12 surveys that collected information on ≥3
micronutrients, the prevalence of DBM-MDI ranged from 7.5%
(Vietnam) to 39.2% (Afghanistan) (Table 3) with a median preva-
lence of 23.4%. In 5 surveys that collected information on only 1–
2 micronutrients, the prevalence of DBM-MDI ranged from 1.6%
(PNG) to 28.8% (Mexico 2006) with a median prevalence of
10.4% (Table 3). Prevalence of DBM-anemia ranged from 1.0%
(Vietnam) to 18.6% (Afghanistan) with a median prevalence of
8.6% (Table 3). Using a population-specific definition of OWOB
for Cambodia, Laos, and Vietnam, the prevalence of DBM-
MDI and DBM-anemia increased by a mean 7.5 pp and 3.3
pp, respectively. Prevalence estimates ranged for concomitant
OWOB and single micronutrient deficiencies: DMB-iron, 0.0%
(Cambodia) to 31.3% (Mexico 2012); DBM-vitamin A, 0.0%
(PNG, Cameroon, Azerbaijan) to 13.4% (Pakistan); DBM-zinc,
3.2% (United Kingdom) to 33.6% (Ecuador); DBM-vitamin B-
12, 0.0% (Cambodia) to 20.6% (Pakistan); DBM-folate, 0.8%
(Ecuador) to 40.9% (Georgia); and DBM-vitamin D, 0.5%
(Cambodia) to 35.3% (Afghanistan) (Table 3).

Independence of OWOB and micronutrient deficiencies or
anemia

In 13 of 17 surveys, the prevalence of DBM-MDI was no
different than what would be expected by chance, assuming
independent distributions of each condition (Table 3). In
Colombia, Ecuador, and Laos, OWOB women were less likely
to have MDI > 0 than normal-weight women (P < 0.02). In
the USA, OWOB women were more likely to have MDI > 0
than normal-weight women (P < 0.0001) (Table 3). The patterns
of independence were similar between DBM-MDI and DBM-
anemia; in 13 of 17 surveys OWOB was independent of anemia
(Table 3). DBM-anemia prevalence in Pakistan, Cameroon, and
PNG was ∼3 pp lower than expected (P < 0.001), indicating
lower odds of anemia among OWOB women. In the USA,
OWOB women were more likely to have anemia than normal-
weight women (P = 0.006) (Table 3). These associations
persisted when controlling for age and were not affected when
population-specific BMI cutoffs were used to define OWOB.

The patterns of independence between micronutrient deficien-
cies and OWOB differed by micronutrient, but overwhelmingly
the 2 conditions were not associated. The exception was for
vitamin D where in 3 of 6 surveys that measured vitamin
D (Pakistan, United Kingdom, and USA), OWOB women
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TABLE 3 Prevalence estimates of the percentage of concomitant OWOB and micronutrient deficiencies or anemia among women of reproductive age with
BMI > 18.5 kg/m2 by survey: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia project1

Geographic grouping Country, survey year Anemia MDI2 > 0 Iron Vitamin A Zinc
Vitamin

B-12 Folate Vitamin D
Obs. Obs. Obs. Obs. Obs. Obs. Obs. Obs.

Americas Mexico, 2012 9.9 32.3 31.3 — — 1.5 1.9 —
Mexico,3 2006 9.0 28.8 22.3 — 15.4 — — —
Ecuador,3 2012 8.5 35.6∗↓ 9.5∗∗∗↓ 1.5 33.6 0.9 0.8 —
USA, 2006 4.6∗∗↑ 21.9∗∗∗↑ 12.4 0.2 — 1.6 2.1∗∗↑ 10.5∗∗∗↑
Colombia, 2010 3.5 10.9∗↓ 10.9∗↓ — — — — —

Europe/Eastern Mediterranean Azerbaijan,3 2013 8.7 17.7 11.0 0.0 — 8.2 8.4 —
United Kingdom, 2014 4.8 26.1 10.3 0.9 3.2 4.8 — 18.5∗∗↑
Georgia,3 2009 10.3 10.4 0.7 — — — 40.9 —
Afghanistan, 2013 18.6 39.2 14.7 4.7 14.1 — — 35.3
Pakistan, 2011 15.4∗∗∗↓ 34.0 14.8∗↓ 13.4∗↓ 18.2∗∗∗↓ 20.6∗∗↑ 19.8 16.1∗∗↑

Africa Cameroon,3 2009 8.9∗∗∗↓ 30.7 7.5 0.0 29.4 4.1 7.6 —
Côte d’Ivoire,3 2007 11.9 23.4 6.6 0.1 — 2.4∗∗↓ 24.4∗∗∗↑ —
Malawi, 2016 3.6 12.2 2.9 0.1 11.0 1.0∗∗↓ 3.8 —

Southeast Asia/Western Pacific PNG, 2005 5.3∗∗↓ 1.6 2.8∗∗↓ 0.0 — — — —
Laos, 2006 4.8 2.3∗∗↓ 2.3∗∗↓ — — — — —
Cambodia, 2014 8.6 13.1 0.0 1.0 11.5 0.0 3.7 0.5
Vietnam,3 2010 1.0 7.5 1.5 0.2 6.4 1.5 1.1 1.2

1Values are percentages. Surveys in descending order of OWOB prevalence within geographic groups. Differences between observed and expected prevalence
estimates calculated using the Rao–Scott modified chi-square test accounting for complex survey design variables (cluster, strata, and weight). Women with BMI < 18.5
kg/m2 were removed from this analysis. Cutoffs to define deficiency: anemia (hemoglobin adjusted for smoking and altitude < 12.0 g/dL); iron (inflammation-adjusted
ferritin < 15 μg/L or soluble transferrin receptor > 8.3 mg/L); vitamin A (retinol-binding protein or retinol < 0.7 μmol/L); zinc according to the International Zinc
Nutrition Consultative Group; vitamin B-12 < 150 pmol/L; folate < 10 nmol/L (RIA Bio-Rad assay) or <6.8 nmol/L (microbiologic assay); and 25-hydroxyvitamin
D < 30 nmol/L. ∗,∗∗,∗∗∗Significance: ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.0001; ↑, observed prevalence was higher than expected; ↓, observed prevalence was lower than
expected. —, micronutrient not measured. MDI, Micronutrient Deficiency Index; OWOB, overweight/obesity; PNG, Papua New Guinea.

2Surveys that measured <3 micronutrients, and therefore have less opportunity to have a high prevalence of MDI > 0, were Mexico, 2006; Colombia, 2010;
Georgia, 2009; PNG, 2005; and Laos, 2006.

3Subsampled biomarkers and surveys include Mexico, 2006 (zinc, 60%); Ecuador (vitamin A, 75%); Azerbaijan (vitamin B-12, 50%); Georgia (folate, 20%);
Cameroon (vitamin B-12, 50%; folate, 50%); Côte d’Ivoire (vitamin B-12, 50%); and Vietnam (vitamin B-12, 30%). Subsampling explains discrepancies between
MDI > 0 and the individual micronutrient deficiencies (e.g., Georgia).

were more likely to be vitamin D deficient than expected
(Table 3). In 5 of 17 surveys, iron deficiency and OWOB were
associated and, among these, the observed prevalence of DBM-
iron was consistently less than expected; that is, individuals
with OWOB were less likely to have iron deficiency than
those with normal BMI. In 2 of 11 surveys that measured
folate, a higher prevalence of DBM-folate than expected was
observed in Côte d’Ivoire and the USA. There were significant
associations of OWOB with vitamin B-12, vitamin A, and zinc
deficiency in 3 of 11, 1 of 12, and 1 of 9 surveys, respectively
(Table 3).

Predictors of the DBM

Age had the most consistent patterns of association with the
DBM across surveys. Older age was associated with higher odds
of DBM-MDI in 9 and 13 surveys for women aged 30–39 y and
40–49 y, respectively (Figure 2). Among these, the odds of DBM-
MDI ranged from 1.5 (95% CI: 1.1, 2.2) (Cameroon) for 30–39
y to 3.5 (95% CI: 2.0, 6.1) (Vietnam) for 40–49 y, compared
with 20–29 y (Supplemental Table 4). Patterns of association
were similar between DBM-MDI and DBM-anemia with respect
to age: younger women (15–19 y) had lower odds of DBM-
MDI in 6 surveys and DBM-anemia in 4 surveys (remainder
nonsignificant) (Figure 2, Supplemental Table 4, Supplemental
Table 5). Older women (aged 30–39 y or 40–49 y) had higher
odds of DBM-anemia in 11 surveys. The association between age
and the DBM mirrored the association between age and OWOB.

Being 15–19 y old was associated with lower odds of OWOB
in 8 of 13 surveys, and being older was associated with higher
odds of OWOB in 16 of 17 surveys (Figure 2, Supplemental
Table 6).

In the Americas region, women with higher SES had lower
or similar odds of DBM-MDI and DBM-anemia compared
with women with lower SES. Higher SES was also associated
with lower odds of DBM-MDI in the United Kingdom. In
the Africa and Southeast Asia/Western Pacific geographic
groupings, higher SES was associated with higher or similar
odds of DBM-MDI and DBM-anemia (Figure 2, Supplemental
Tables 4, 5). Higher SES was associated with higher odds of
OWOB in 8 of 16 surveys, covering all geographic groups
except the Americas. In contrast, higher SES was sporadically
associated with lower odds of anemia (7 of 16 surveys)
and MDI > 0 (9 of 16 surveys) (Figure 2, Supplemental
Tables 7, 8).

In most surveys, associations between DBM-MDI or DBM-
anemia and urban residence or higher education were not
significant in adjusted models, except for 2 (or 4) surveys with
higher odds in urban residence for DBM-anemia (or DBM-
MDI) and 1 (or 2) surveys with higher odds among higher-
educated women for DBM-anemia (or DBM-MDI) (Figure 2,
Supplemental Tables 4, 5). Urban residence and higher education
were associated with greater odds of OWOB in 6 of 14 and 2 of 13
surveys, respectively. Urban residence was not often associated
with anemia or MDI > 0 (in 3 of 14 and 6 of 14 surveys,
respectively); yet, when there was an association it was more
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FIGURE 2 Patterns of associations between age, SES, residence, and education for OWOB, anemia, micronutrient deficiencies, and intraindividual DBM
among women of reproductive age with BMI (in kg/m2) > 18.5 by survey, organized by geographic groupings: Biomarkers Reflecting Inflammation and
Nutritional Determinants of Anemia project. Blue (↓) indicates protective, red (↑) indicates risk factor, gray (◦) indicates no association, and white indicates
the variable was unavailable. The column exposure variables represent the following: Age1 (15–19 y), Age2 (20–29 y; ref), Age3 (30–39 y), Age4 (40–49 y);
Urb (urban; ref = rural); SES1 (low SES; ref), SES2 (medium SES), SES3 (high SES); Educ (secondary or higher education; ref = none or primary education).
Women in the normal BMI category served as the reference and women with BMI < 18.5 were removed from these analyses. Supplemental Tables 4–8 present
the adjusted ORs used to populate the figure. DBM, double burden of malnutrition; DBM-anemia, double burden of malnutrition, defined using anemia as
the indicator of undernutrition; DBM-MDI, double burden of malnutrition, defined using micronutrient deficiency as the indicator of undernutrition; MDI,
Micronutrient Deficiency Index; OWOB, overweight/obesity; PNG, Papua New Guinea; SES, socioeconomic status.

often with higher odds of anemia (Figure 2, Supplemental Tables
7, 8).

Discussion
Intraindividual DBM was common among women from 17

nationally representative surveys in diverse geographic locations,
affecting on average 1 in 4 women. However, the prevalence
depended largely on how the DBM was defined. In all but
2 surveys, concomitant micronutrient deficiencies and OWOB
was more prevalent than DBM-anemia. However, the conditions
of over- and undernutrition were overwhelmingly independent.
Where OWOB and undernutrition were associated with one
another, a higher weight category tended to be associated with
lower prevalence of anemia and micronutrient deficiencies, espe-
cially in LMICs. The independence of over- and undernutrition
questions the practicality of a risk factor analysis for the DBM.
We decided a priori to assess the correlates of the DBM
along with its prevalence. In most countries, DBM correlates
patterned after correlates of OWOB (although some discordance
was observed). A synthesis of these findings suggests that
over- and undernutrition do not necessarily need to be targeted
simultaneously within individuals to successfully address the
DBM.

Our study findings highlight the influence that the definition
of the DBM has on its magnitude. When the DBM has been
estimated at the household level with malnourished dyads (e.g.,
stunted child and OWOB mother), modest prevalence estimates
ranged from <5% in a review of sub-Saharan Africa (18) to
predominantly <10% (38, 39). Intraindividual definitions of the
DBM in women using OWOB and anemia were reported to
realize prevalence estimates of ≤22% in urban strata (19, 40). A
DBM defined using cardiometabolic risk factors overlapping with
nutritional deficiencies found 23.5% of adults in Burkina Faso
affected, with higher prevalence among WRA (41). We found a
median DBM-MDI prevalence of 21.9% (range: 1.6%–39.2%),

or, in surveys measuring ≥3 micronutrients, 23.4% (range:
7.5%–39.2%), whereas the median DBM-anemia prevalence was
8.6% (range: 1.0%–18.6%). Median prevalence for DBM-iron
was 10.3% (range: 0.0%–31.3%). Across surveys, DBM-iron
prevalence ranged from 21.4 pp higher to 9.6 pp lower than DBM-
anemia prevalence, which furthers the evidence that anemia
may not be an appropriate proxy for iron deficiency in the
absence of iron status data (5, 42). Using the United Kingdom
as an example, DBM-MDI was 26.1% whereas DBM-anemia
was 4.8%, suggesting very different magnitudes of the DBM.
Further investigation of the relative contributions of individual
micronutrients to DBM-MDI within the United Kingdom sug-
gests that vitamin D and iron are the micronutrients of greatest
concern (DBM-vitamin D = 18.5%, DBM-iron = 10.3%), as well
as OWOB. These various definitions influence the prevalence
estimates of the DBM as well as their interpretation for program
development.

As new indexes of micronutrient deficiencies are developed
and applied, it is likely still useful to present results for individual
micronutrients. In a few cases, the MDI masked associations
between single micronutrient deficiencies and OWOB. For
example, in Pakistan MDI > 0 and OWOB were not statistically
associated, although OWOB Pakistani women were more likely
to be deficient in vitamins B-12 and D and less likely to be
deficient in iron, vitamin A, and zinc. Similarly, in Côte d’Ivoire,
OWOB women were more likely to be folate deficient, less
likely to be vitamin B-12 deficient, and there was no association
between MDI > 0 and OWOB. Without assessing the relation
between individual micronutrients and OWOB, this granularity
would have been overlooked. Using multiple micronutrients
for defining undernutrition is further convoluted by the distinct
interaction between micronutrients and the proinflammatory
condition of OWOB (27–29). For example, we did not find an
increased risk of iron deficiency among OWOB women as was
observed for obese women in Mexico and the USA (43, 44).
Five surveys exhibited an observed DBM-iron prevalence lower
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than expected (Ecuador, Colombia, Pakistan, PNG, and Laos)
which contradicts OWOB populations being at higher risk of
iron deficiency (45–47). Our findings were more consistent with
a study in Nicaragua where OWOB women were less likely
to have iron deficiency (48). Although the MDI was useful
for consolidating micronutrient deficiencies, single micronutrient
DBM estimates may be more informative for intervention
development.

OWOB and micronutrient deficiencies or anemia were in-
dependent in the majority of surveys, but when associated
OWOB women in LMICs were less likely to have anemia
or micronutrient deficiencies. These patterns of association
persisted when controlling for age and SES. Although the
differences between observed and expected prevalence estimates
tended to be small, they could translate to large discrepancies
in micronutrient deficiencies or anemia by BMI category. In
Laos, normal-weight women were approximately twice as likely
to have micronutrient deficiencies as OWOB women, and in
Cameroon 40% of normal-weight women had anemia compared
with 25% of OWOB women (data not shown). The independence
of over- and undernutrition has been described among stunted
child/overweight mother pairs (49), and in India where 19
phenotypes of the DBM were described (50). Negative asso-
ciations between measures of undernutrition (stunting, anemia)
and obesity have also been reported (19), challenging the notion
that “obesity is generally associated with worse micronutrient
status” (51). Instead, these associations may indicate that OWOB
women in certain settings are generally better-nourished than
women with BMI between 18 and 25. OWOB may be reflective
of prosperity and nutrient excess (macro- and micronutrient) in
LMICs entering the nutrition transition. That can be contrasted
with the positive association between OWOB and undernutrition
in the USA. The single micronutrient analyses of independence
from OWOB revealed an interesting pattern with vitamin D,
where the most positive associations were found respective to
how many comparisons were possible. OWOB women were more
likely to be vitamin D deficient than normal-weight women in
3 of 6 surveys in which this analysis could be conducted. The
pathophysiology of overweight or obesity on vitamin D status
may be implicated in this finding (52, 53).

In general, we found similar age and SES patterns predicting
DBM-anemia, DBM-MDI, and OWOB, suggesting that program
targeting for the DBM would pattern after targeting for OWOB.
Therefore, because OWOB individuals and their households are
targeted in obesity prevention or treatment programs, program
managers should be aware that many of these individuals
are likely to have concomitant micronutrient deficiencies or
anemia. This has been demonstrated at the household level
(54), but is likely less well documented at the individual level.
DBM-MDI and DBM-anemia were largely unassociated with
urban residence (exceptions: Mexico 2006, Ecuador, Azerbaijan,
Pakistan, Malawi), possibly owing to the trend of increasing
OWOB in rural areas (3). Similarly, higher education was
generally unassociated with DBM-MDI and DBM-anemia, but
these findings must be interpreted with caution given that
education was harmonized and may not mean the same thing
across countries.

The number of harmonized national nutrition surveys available
for analysis, and the investigation of the DBM using micronu-
trient deficiencies, were strengths of this analysis. However, the

cross-sectional nature of the data is a limitation and precludes
any life-course analysis of the DBM. We were further limited
in the risk factors analysis based on data availability (e.g.,
parity was unavailable in most of the survey data sets). The
surveys included in this study are a convenience sample of
nationally representative surveys and therefore cannot answer
questions for the DBM globally. Alternate risk factor analyses,
such as examining the independence of OWOB and micronutrient
deficiencies within different population subgroups (e.g., SES
categories), could aid in the understanding of the risk factor
patterns that were observed between the DBM and OWOB.
Variation in the micronutrients measured across surveys and
inconsistencies of field procedures and laboratory methods
are additional limitations that we addressed by doing survey-
specific analyses. The increased probability of MDI > 0 in
surveys that measured more micronutrients is noteworthy, but
we limited discussion of patterns of the MDI to among surveys
that measured the same micronutrients. Another limitation is
that certain micronutrient indicators (e.g., zinc and retinol/RBP)
are intended for population assessment (29, 33) but were
used at the individual level. Data on dietary intake, physical
activity, and cardiometabolic risk biomarkers would have been
useful for the risk factor analysis. Nevertheless, these analyses
characterize multiple definitions of intraindividual DBM and
identify populations most affected. Future work is needed to
understand contextualized situations within countries.

Although we are unable to ascribe causality with this
study design, the limited and negative associations between
OWOB and undernutrition that we and others have described at
household and regional levels (54–56) suggest that OWOB and
micronutrient deficiencies or anemia may have separate context-
specific etiologies. Therefore, we urge program managers to
not abandon interventions designed to address only 1 facet
of the DBM. Micronutrient deficiencies ranged from <8%
to >90% across surveys, highlighting that the micronutrients
of greatest concern differ substantially by country. Program
synergies may be explored, as suggested by recent calls for
“double-duty” interventions (9, 57), but rigorous testing of these
interventions for the explicit purpose of reducing multiple forms
of malnutrition is lacking. Understanding the effectiveness of
single interventions that aim to simultaneously reduce over- and
undernutrition along with interventions combatting components
of the DBM could help with identifying the most appropriate
intervention strategy. In addition, in settings where OWOB
women are less likely to be anemic or micronutrient deficient,
programs to address OWOB can incorporate careful planning and
monitoring to ensure that micronutrient deficiencies or anemia
are not exacerbated. For example, a poorly designed obesity
prevention program that focuses on caloric reduction but does not
meet individual micronutrient requirements may lead populations
to reduce their intake of energy-dense nutrient-dense foods
instead of energy-dense nutrient-poor foods. Similarly, programs
targeting the reduction of micronutrient deficiencies or anemia
among women need to ensure that OWOB prevalence does not
rise as a result of the program.

Concomitant OWOB and micronutrient deficiencies affected
>20% of WRA in the majority of countries we examined.
The conditions of OWOB and micronutrient deficiencies or
anemia were largely independent. These observations suggest
that interventions to address the components of the DBM may
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still lead to reductions in the DBM, but double-duty interventions
to address multiple facets of malnutrition simultaneously merit
exploration and evaluation. Given the heterogeneity in prevalence
and correlates of the DBM by survey, leveraging country-specific
data will be a critical step in developing programmatic responses.
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