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Abstract

Relativistic magnetic reconnection is a nonideal plasma process that is a source of nonthermal particle acceleration
in many high-energy astrophysical systems. Particle-in-cell (PIC) methods are commonly used for simulating
reconnection from first principles. While much progress has been made in understanding the physics of
reconnection, especially in 2D, the adoption of advanced algorithms and numerical techniques for efficiently
modeling such systems has been limited. With the GPU-accelerated PIC code WarpX, we explore the accuracy and
potential performance benefits of two advanced Maxwell solver algorithms: a nonstandard finite-difference scheme
(CKC) and an ultrahigh-order pseudo-spectral method (PSATD). We find that, for the relativistic reconnection
problem, CKC and PSATD qualitatively and quantitatively match the standard Yee-grid finite-difference method.
CKC and PSATD both admit a time step that is 40% longer than that of Yee, resulting in a ∼40% faster time to
solution for CKC, but no performance benefit for PSATD when using a current deposition scheme that satisfies
Gauss’s law. Relaxing this constraint maintains accuracy and yields a 30% speedup. Unlike Yee and CKC, PSATD
is numerically stable at any time step, allowing for a larger time step than with the finite-difference methods. We
found that increasing the time step 2.4–3 times over the standard Yee step still yields accurate results, but it only
translates to modest performance improvements over CKC, due to the current deposition scheme used with
PSATD. Further optimization of this scheme will likely improve the effective performance of PSATD.

Unified Astronomy Thesaurus concepts: Computational methods (1965); GPU computing (1969); Plasma
astrophysics (1261)

1. Introduction

High-energy radiation is observed from various astrophysi-
cal systems, such as pulsar wind nebulae, and from jets
in active galactic nuclei (Giannios 2010), X-ray binaries
(Tetarenko et al. 2017), and gamma-ray bursts (Piran 2004;
Kumar & Zhang 2015). In particular, pulsars produce high-
energy gamma-ray flares that evolve too rapidly to be explained
by conventional particle acceleration theory (Abdo et al. 2011;
Tavani et al. 2011). Magnetic reconnection is often invoked to
explain the rapid nonthermal particle acceleration and emission
in these systems (Lyutikov & Uzdensky 2003; Cerutti et al.
2012; McKinney & Uzdensky 2012; Nalewajko et al. 2015;
Petropoulou et al. 2019; Philippov et al. 2019).

During magnetic reconnection, magnetic field energy is
converted to particle kinetic energy in the form of both bulk
motion and plasma heating. For the highly magnetized
astrophysical systems, particle acceleration is caused by
relativistic magnetic reconnection, where the unreconnected
upstream plasma has a magnetic field energy density many
times its enthalpy density. The plasma gains relativistic bulk
and thermal velocities, and the particle energy distributions
develop nonthermal high-energy power-law tails. This popula-
tion of energized particles are thought to be a source of high-
energy emission.

Particle-in-cell (PIC) is a well-established method for
studying nonthermal plasma acceleration from first principles
(Birdsall & Langdon 1991). Each species in the plasma is
modeled with computational particles, which generate currents
as they move in the domain. The current is deposited on a
spatial grid and is a source term in the Maxwell equations. An
electromagnetic field-solve step (also referred to as a Maxwell
solve) calculates the electric and magnetic fields. The
electromagnetic forces are interpolated to the particle positions,
and their positions and velocities are advanced accordingly in
time. The PIC method therefore fully captures kinetic particle
acceleration, as well as the feedback of the accelerated plasma
onto the fields.
A number of PIC studies have investigated relativistic

reconnection for collisionless electron–positron (Zenitani &
Hoshino 2001, 2007; Cerutti et al. 2012; Sironi & Spitkovsky
2014; Nalewajko et al. 2015; Werner et al. 2016) and electron-
ion (Melzani et al. 2014) plasma in two-dimensions. Long thin
current sheets become unstable to the tearing-mode instability,
resulting in the formation and mergers of chains of trapped
plasma, called plasmoids. Simulations have also indicated that
reconnection progresses at a rate of approximately 0.1 in such
systems, normalized to the reconnecting magnetic field and the
Alfvén velocity (Guo et al. 2015; Cassak et al. 2017; Werner
et al. 2018). Cerutti et al. (2014) investigated the dispersion
relations of the tearing mode (in 2D) and the drift-kink mode
that develops in 3D. The fastest-growing tearing mode in
simulations has been shown to agree well with analytical
expectations (Zenitani & Hoshino 2007). Recent work with
PIC simulations has focused on the mechanisms underpinning
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the onset of reconnection and phases of particle energization
(Guo et al. 2019; Hakobyan et al. 2021; Sironi 2022). The
particle energy spectra that result from reconnection show hard
power laws that extend to high energies (Guo et al. 2015;
Werner et al. 2016, 2018; Petropoulou et al. 2019; Hakobyan
et al. 2021). These spectra can then be combined with radiation
models to predict observational signatures of reconnection in
astrophysical systems (Cerutti et al. 2013; Nalewajko et al.
2018).
While substantial progress has been made in understanding

particle acceleration in 2D, and more recently in 3D (e.g., Guo
et al. 2015; Zhang et al. 2021; Schoeffler et al. 2023),
algorithmic and computational innovation in PIC simulations
of such systems has been limited. Virtually all studies employ a
finite-difference time-domain Maxwell solver with a staggered
Yee grid (Yee 1966; sometimes called FDTD), and only a few
have explored the advantages of GPU acceleration for
astrophysical PIC simulations (Bussmann et al. 2013; Chien
et al. 2020; Xiong et al. 2023). The Yee approach is second-
order in both space and time. For certain plasma systems, the
numerical dispersion inherent to the method can lead to
significant errors. With the Yee solver using a time step at the
Courant limit, the numerical dispersion error is maximal along
the axes and zero along the principal diagonals of the cells. To
obtain solutions with less dispersion, we need alternate solvers,
eventually based on higher-order methods. Cole and Kärk-
käinnen proposed a nonstandard finite-difference approach to
mitigate the effects of numerical dispersion along the principal
axes when using the time step at the Courant limit
(Cole 1997, 2002; Kärkkäinen et al. 2006), which Cowan
et al. (2013) extended to noncubic cells. This combination is
known as the Cole–Kärkkäinnen–Cowan (CKC) scheme.
While numerical dispersion can be suppressed with CKC
along the main axes, it remains at other angles.

Higher-order methods, including Fourier-based spectral
methods, can be used to reduce dispersion even further.
Pseudo-Spectral Analytical Time Domain (PSATD; Haber
et al. 1973; Vay et al. 2013) is one such method, which enables
arbitrary-order accuracy that can be set at runtime. Because
they are finite-difference schemes, Yee and CKC are only
numerically stable when the time step is below a value set by
the Courant limit (see Section 2.3); on the other hand, PSATD
is based on analytical integration in Fourier space and has no
such constraint. In this paper, we compare the performance and
accuracy of the two nonstandard approaches, CKC and
PSTAD, for relativistic reconnection with the widely adopted
Yee scheme. While PSATD does not have a Courant stability
limit on the time step with regard to the Maxwell solve, an
overly large time step may still reduce the accuracy of the
simulation (as particles traveling close to the speed of light may
travel over a cell size in a single time step). We therefore
explore the performance and accuracy of PSATD with time
steps above the light travel time across a cell.

The PIC algorithm captures reconnection physics accurately
from first principles, but it can be computationally expensive,
especially when performing high-resolution simulations with
higher-order particle shape factors. Graphics processing units
(GPUs) can offer remarkable acceleration over conventional
CPU architectures for a number of scientific applications,
including PIC (Bussmann et al. 2013; Germaschewski et al.
2016; Chien et al. 2020; Vay et al. 2020; Myers et al. 2021).
We use the GPU-accelerated electromagnetic PIC code, WarpX

(Vay et al. 2020; Myers et al. 2021). It has excellent full-
machine scaling at leadership-class computing facilities,
including Summit and Perlmutter (NVIDIA GPUs) and the
world’s first reported exascale machine, Frontier (AMD
GPUs;Fedeli et al. 2022). The code is built on the AMReX
(Zhang et al. 2019) framework, which supports MPI+X
parallelism, where MPI enables inter-rank communications,
and X corresponds to an interface such as OpenMP, CUDA,
HIP, or SYCL for parallel programming on multicore CPUs or
GPUs. PIConGPU (Huebl 2019), VPIC 2.0 (Bird et al. 2022),
and the Plasma Simulation code (PSC; Germaschewski et al.
2016) also employ similar strategies that enable performance
portability and allow scaling to multiple GPU nodes.
Nonrelativistic magnetic reconnection has been used as a
comparison case to validate multiple GPU-accelerated PIC
codes, including PSC and sputniPIC (Chien et al. 2020), which
can make use of a single node with multiple GPUs, and a
CUDA Fortran single-GPU PIC code (Xiong et al. 2023).
In this paper, we perform first-of-their-kind 2D GPU

simulations of relativistic reconnection with the advanced
Maxwell solvers CKC and PSATD. Because these have never
before been used for relativistic reconnection, we validate our
results by comparing against simulations that use the conven-
tional Yee solver, which has been well studied for 2D systems.
In particular, we focus on the evolution of the current sheet
structures, the particle-field energy balance, particle energy
spectrum, and reconnection rate. We investigate the accuracy-
based constraints on PSATD time steps by parameterizing the
time step relative to the standard Courant limit of the finite-
difference simulations. As with the simulations with different
solvers, we compare our results with different time steps to the
baseline Yee simulations. For the same cell size, the Courant
limit for CKC admits a longer time step than Yee. PSATD is
unconditionally stable with limitations on accuracy that may be
imposed by other time-integration algorithms in the PIC
simulation. Both CKC and PSATD may allow for faster
simulations, so we compare the time to solution for these
advanced solvers and assess the performance gains of a large
time step with PSATD while holding the cell size constant.
The rest of the paper is organized as follows: in Section 2,

we describe our simulations, including details about the initial
configuration of the current sheets, the perturbation to trigger
reconnection, and the algorithmic and numerical parameters. In
Section 3, we discuss the accuracy and performance results
from using different Maxwell solvers. In Section 4, we present
the results from increasing the time step past the Courant limit
with PSATD. We summarize and discuss future directions for
our work in Section 5.

2. Simulation Setup

2.1. Harris-like Sheets

The simulations are initialized with two pair-plasma Harris-
like current sheets (Harris 1962) in equilibrium. This section
describes the configuration, which is summarized in the
diagram in Figure 1. Full details of the derivation are in the
Appendix, and summaries of important parameters can be
found in Table 1 (scaled units) and Table 4 (SI units). Input
files to replicate the simulations and analysis are available
online.3
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Far from the current sheets, in the upstream, the magnetic
field is ˆ= B zB0 . Its sign changes at the current sheets. Our
principal unit of time will be the inverse upstream electron
gyrofrequency, ( )w º- m eBc

1
e 0 , where c is the speed of light,

e is the elementary charge, and me is the electron mass. Our
base unit of length will be r w= -cc c

1, which is the nominal
relativistic Larmor radius. The current sheets are chosen to
have half-width δ= 12.15 ρc, and they extend in the y–z plane.
They are centered at x=±xc≡±Lx/2, where Lx is the half-
width of the domain in the x-direction, which spans the interval
[−Lx, Lx].

We establish spatial distributions of number density n(x) and
bulk velocity β(x):

⎛
⎝

⎞
⎠

( ) ( ) ( )
d d

= + -
+

+
-

n x n n n
x x x x

sech sech 1db b
c c

( ) ( ) ˆ ( )b b= yx x 2

⎛
⎝

⎞
⎠

ˆ ( )b
d d

=
+

-
-

y
x x x x

sech sech . 30
c c

Each species has number density n(x). Positrons have velocity
β(x), and electrons have velocity −β(x). The number density in
the upstream region is nb, and that in the current sheet is nd.
The bulk velocity at the center of the current sheet is β0, and ŷ
is the unit vector parallel to the y-axis. From Ampere’s Law,
∇× B= μ0J:

( ) ( ) ( )m b-
¶
¶

=
x

B en x x c2 , 4z 0

where B is the magnetic field, J is the current density, and μ0 is
the vacuum permeability. The factor of 2 in front of Jy is due to
there being two species, positrons and electrons, that contribute
to the total current density. Except where otherwise indicated,
all quantities are given in the observer frame. We solve
Equation (4) for Bz(x) with the boundary conditions

( ) ( ) ( )¥ = - =B B B0 . 5z z 0
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where

⎜ ⎟
⎛
⎝

⎞
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( )m b d
p

= + -B en c
n

n
2

2
1 . 7b

d

b
0 0 0

We choose the upstream “cold” magnetization s º
( )m =B n m c 30b0

2
0 e

2 . This is somewhat different from the
typical relativistic “hot” magnetization ( )s m= B hh 0

2
0 , with h

the relativistic enthalpy density. The temperature in the
upstream will be very mildly relativistic, with h 1.5nbmec

2,
so the hot magnetization is around 20, and σ∼ σh. Based on
either definition of magnetization, reconnection will proceed in
the highly relativistic regime.
We choose the current sheet overdensity to be a factor of

five, such that nd= 5nb. The skin depth in the current sheet is,
by definition,

( )l
w

º =
c

c
m

n e
, 8

d
e

p

e 0
2

where ωp is the plasma frequency in the current sheet. From the
quantities fixed thus far, λe= 2.45ρc. Combining Equation (7)
with expressions for σ and λe gives an expression for the

Figure 1. Diagram of the equilibrium double Harris-like sheet, before the
application of the perturbation. The current sheets are centered at x = ±xc and
have half-widths of δ in the x-direction. They extend infinitely in the y–z plane.
The current at x = xc (x = −xc) is into (out of) the plane. The upstream
magnetic field has magnitude B0. See Equations (1), (3), and (6) for expressions
for the number densities, particle velocities, and magnetic fields.

Table 1
Physical Parameters and Symbols Common to All of Our Simulations

Parameter Symbol Value

Background (cold) magnetization* σ 30
Background temperature* θb 0.15
Current sheet half-width* δ 12.15 ρc
Current sheet skin depth λe 2.45 ρc
Current sheet overdensity factor* nd/nb 5
Current sheet velocity β0 0.22 c
Current sheet temperature θd 1.57
Domain half-width (x)* Lx 2195 ρc
Domain half-width (z)* Lz 1058 ρc

Note. Quantities marked with * are freely chosen; others are derived.
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velocity at the center of the current sheet:

( ) ( )b
l s

d
=

+ -
=

p
c

1

1 2
0.22 . 9

n

n

n

n
0

2

e

d

d

b

b

We calculate the temperature profile from pressure balance
in the x-direction in the observer’s (unprimed) frame:

( ) ( ) ( )+ =P x P x C, 10gas mag

where C is a constant. The gas pressure Pgas= Txx where Tμ ν

is the stress-energy tensor. In the fluid (primed) frame,
q¢ = ¢T n mc2xx 2, where θ= kBT/(mec

2) is the dimensionless
temperature, and ¢n is the number density in the fluid frame.
The fluid bulk velocity is in the y-direction, so ¢ =T Txx xx.
The observer-frame number density is g= ¢n n , where

g b= -1 1 2 . Substituting,

( )qg= = -P T nmc2 11xx
gas

2 1

( )q b= -nmc2 1 . 122 2

The magnetic pressure,

( )
m

=P
B

2
, 13mag

2

0

does not need to be transformed, given that B is already in the
observer’s frame.

We now have

( )q b
m

- + =nmc
B

C2 1
2

. 142 2
2

0

Far from the current sheets,

( )=n n 15b

( )q q s h= = 16b

( )b = 0 17

( )=B B , 180

where we have chosen η≡ 200, so θb= 0.15. Solving for θ(x):

( ) ( ) [ ( ) ]
[ ( ) ] ( )

( )q
s h h

b
=

+ -

-
x

B x B

n x n x4

4

1
. 19z 0

2

b
2

The temperature at the center of the current sheet is calculated
by evaluating Equation (19) at x=±xc, giving θd= 1.57.

Electron–positron pairs are initialized at the start of the
simulation; they are arranged such that they are uniformly
spaced, and their momenta are initialized by sampling from a
Maxwell–Jüttner distribution at the local temperature θ
(Zenitani 2015).

We note that the setup described here is slightly nonstandard.
We have used spatially varying distributions of number density
(Equation (1)), bulk velocity (Equation (3)), and temperature
(Equation (19)) to represent both the upstream plasma and
current sheets. More commonly, the current sheet plasma (with
fixed hot temperature θd and drift velocity β0) is overlaid on a
domain filled with the upstream plasma (temperature θb,
number density nb). Consequently, at initialization, the plasma
at the center of the current sheets will have a two-temperature
distribution. The number density of the drifting plasma is the
only quantity that varies spatially. Ultimately, the resulting
current distributions are very similar, as are the induced

magnetic fields, and both configurations are in equilibrium. The
primary difference is that the values of θd and β0 used here
differ from those of Werner et al. (2018), whose Harris sheets
may otherwise appear identical to ours.

2.2. Perturbation

We add a perturbation to the equilibrium configuration in
order to control the location and number of x-points. We model
our perturbation after that of Werner et al. (2018), who add a
one percent sinusoidal perturbation to the vector potential,
which decreases the magnetic pressure at the z-axis just outside
of each of the current sheets:

⎜ ⎟ ⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥

( )

( ) ( )

ò
p p

=

´ -
-

A B x dx

L
z

x x

L
1 0.01 cos cos . 20

y z

z

c

x

51 2

We set the constant of integration equal to zero. In most studies
that use this perturbation, the cosine in z is not raised to any
power. We find that instead raising it to the 51st power narrows
the region being perturbed and thus reduces the number of
initial X-points in our configuration. This helps to ensure a
more consistent comparison between the simulations. How-
ever, after the initial phases of reconnection, the form of the
perturbation does not affect the results. The exact choice of
power is arbitrary, though it must be odd in order to maintain
the sign of the cosine term.
We initialize the fields in the simulation with

( ˆ)=  ´B yAy . The simulations will therefore all start with
∇ ·B= 0, which will be conserved by all numerical methods
used here.

2.3. Particle-in-cell Simulations

Simulations of relativistic electron–positron pair-plasma
reconnection were performed using the electromagnetic PIC
code WarpX (Vay et al. 2020; Myers et al. 2021). The two-
dimensional domain is discretized with a uniform grid with a
cell size of Δx=Δz= λe/4. Both the skin depth in the current
sheet and upstream Larmor radius ρc= 1.63Δx will be
resolved. Near the end of the simulation, the expectation is
that energized particles will have Larmor radii of ρc,f= σρc.
Because the grid resolves the smaller initial Larmor scale, it
will continue to resolve it throughout the simulation as it
grows.
The simulations were initialized with 64 particles per species

per cell, evenly spaced in both directions. At this particle
density, the overall results are converged, and statistical noise
is not significant. The grid extends to [−Lx, Lx]× [− Lz, Lz],
with Lx= 2195 ρc= 73.2 ρc,f and Lz= 1058 ρc= 35.3 ρc,f. The
simulations have a resolution of (7168× 3456) cells, and a
total of 3.1 billion particles. Periodic boundary conditions are
applied on all domain edges. The full domain is ∼70 ρc,f in the
smaller dimension, situating our simulations in the “large-
domain” regime, where particle acceleration is expected to be
primarily limited by the plasma properties rather than the box
size (Werner et al. 2016).
The choice of electromagnetic field solver sets the time

step. In this paper, three choices are explored: the standard
finite-difference time-domain method on a Yee grid
(here called “Yee”;Yee 1966), a nonstandard finite-difference
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Cole–Kärkkäinen solver with Cowan coefficients (CKC; Cole
1997, 2002; Kärkkäinen et al. 2006; Cowan et al. 2013), and a
pseudo-spectral analytical time domain (PSATD) method
(Haber et al. 1973; Vay et al. 2013) with a 16th-order stencil
(Vincenti & Vay 2016). On our uniform 2D grid with
square cells, Yee has a maximum stable time step ΔtC set
by the Courant–Friedrichs–Lewy (CFL) condition: D =tC

( )Dx c 2 . CKC admits a larger time step ΔtC=Δx/c.
Unlike the finite-difference schemes, PSATD does not have a
theoretical limit on time step, because it is unconditionally
stable. In that case, by default, WarpX sets the time step to be
the smallest cell light-crossing time ΔtC=Δx/c as a Courant-
like time step. For the remainder of the paper, we define the
“CFL factor,” simply denoted “CFL,” as a multiplying factor to
the CFL time step limit ΔtC of a given Maxwell solver, such
that the time step of a simulation is given by Δt= CFL×ΔtC.

Two sets of simulations were performed. The first set
compares the three electromagnetic field solvers with a time
stepΔt= 0.95ΔtC (CFL factor of 0.95). The second studies the
effect of time steps that exceed ΔtC with PSATD. While there
is no formal stability limit on the time step, the accuracy of our
simulations can be expected to deteriorate for CFL factors
larger than some value to be determined. Using a systematic
study of the evolution of the simulations for a range of CFL
factors, we will determine if and in what cases such a practical
time step ceiling exists.

By default, each Maxwell solver is paired with a current
deposition algorithm that guarantees charge conservation. The
Esirkepov deposition scheme (Esirkepov 2001) is charge-
conserving when used with either Yee or CKC (Vay et al.
2011). However, Gauss’s law is not satisfied when Esirkepov
deposition is combined with high-order PSATD. Vay et al.
(2013) developed a deposition scheme (hereafter referred to as
“Vay”) that preserves ∇ ·E= ρ/ò0 when used with PSATD.
Here, ρ is the charge density, so we also refer to algorithmic
combinations that satisfy this equation as “charge-conserving.”
We exclusively use Esirkepov with Yee and CKC. When not
otherwise specified, PSATD is coupled with the Vay deposi-
tion. These three combinations form our main comparison.
When measuring the time to solution, we find it instructive to
decouple the performance differences from the Maxwell
solvers and the current deposition schemes. To do so, we
compare the main three simulations against a PSATD
simulation with Esirkepov deposition. It happens that, for this
problem, PSATD+Esirkepov produces a correct result despite
violating Gauss’s law. Both deposition schemes use cubic
splines for the particles, and once on the grid, currents are
smoothed with a single-pass bilinear filter.

In all cases, the field gather operation also uses cubic splines.
We use a relativistic second-order Boris push to advance the
particle positions (Boris 1970).

3. Results: Maxwell Solvers

3.1. Energy Conversion and Particle Acceleration

The PIC simulations of reconnecting Harris-like
sheets (described in Section 2) were conducted until
reconnection has completed and magnetic energy is no
longer being converted to particle kinetic energy, at around
t= 8000– ( )w » ´- L c9000 4 2 zc

1 . The qualitative current
evolution of the Yee simulation is captured in Figure 2. The

other simulations evolve similarly. Shortly after the start of
the simulation, both the top and bottom current sheets (left
and right columns in Figure 2) collapse due to the
perturbation (Equation (20)) that lowers the magnetic
pressure just above and below the current sheet (second
row in Figure 2). Quasi-circular structures of trapped plasma
and current form, called plasmoids. They inherit their average
current from the current sheet where they form. Several
magnetic X-points form between the plasmoids in the current
sheets. The plasmoids move outward along the current sheet,
and occasionally they merge, as highlighted in the blue box
in the fourth row of Figure 2. This merger creates a new
current sheet antiparallel to the bulk current in the plasmoids,
and that extends perpendicularly from the original. This is the
site of “secondary reconnection.” At w» -t 8000 c

1, both
primary and secondary reconnection have ended, leaving a
single plasmoid at z≈± Lz (bottom row in Figure 2).
In all three of the Maxwell solvers studied, magnetic

reconnection proceeds at approximately the same rate and
with the same structures. Figure 3 compares the plasma
structures around the upper current sheet at w= -t 1470 c

1 for
simulations that use the Yee, CKC, and PSATD solvers.
Several small plasmoids have formed in each current sheet,
with a single larger one forming at the edge of the domain. The
exact positions and sizes of the smaller plasmoids differ
between the solvers, but the current sheet fragments in a similar
way in all cases.
Energy conversion and particle acceleration also proceed

similarly with all three solvers. When reconnection saturates at
around w= -t 6000 c

1, about 40% of the energy in electro-
magnetic fields has been converted to particle kinetic energy
(Figure 4). This includes energy associated with both thermal
and bulk motion. Energy conversion proceeds nearly identi-
cally for the first w-1800 c

1, after which there are slight
differences between the numerical methods. This initial interval
of identical evolution appears to be one of linear growth of the
tearing-mode instability. The amplitudes of the fastest-growing
spatial Fourier modes are approximately exponential in this
interval. At around w= -t 1800 c

1, the exponential growth
stops, suggesting the beginning of a nonlinear phase of
evolution. This nonlinearity coincides with the appearance of
small but noticeable differences between the energy conver-
sions when using the different solvers, suggesting that this
divergence is a consequence of nonlinear evolution. PSATD
+Esirkepov shows a similar result.
All simulations conserve energy to within one part in 2000,

which is well within an acceptable level of energy nonconser-
vation. The CKC simulation loses 4× 10−4 of the initial total
energy, slightly more than the 3.5× 10−4 and 3× 10−4 lost by
the Yee and PSATD simulations, respectively.
The three methods and PSATD+Esirkepov also produce

quantitatively similar particle acceleration. The highest particle
γ at the start of the simulation is around 30, while by the end of
reconnection at w= -t 8500 c

1, the fastest particles have
γ= 500, over ten times higher. The majority of the energy in
the domain is in particles with γ σ. Prior work has found that

g gµ a-dN d with α≈ 1–3 (Guo et al. 2015; Werner et al.
2016, 2018). This corresponds to power laws with indices
between 0 and −2 for the Lorentz factor distribution. Our
energy distributions roughly follow this slope (Figure 5).
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3.2. Reconnection Rate

The dimensionless reconnection rate

( )b = -
F

v B L

d

dt

1
21

xA 0

parameterizes much of the linear theory of reconnection (e.g.,
Werner & Uzdensky 2021). The Alfvén velocity is vA, and Φ is
the unreconnected flux. Directly measuring the amount of
unreconnected flux is difficult, so we instead use the
approximation β≈ vin/vout, where vin is the inflow velocity

Figure 2. Time evolution of top (left column) and bottom (right column) current and in-plane magnetic field (black lines) in the Yee simulation. The small
perturbation to the magnetic fields at z = 0 at the initial current sheets leads the current sheet to collapse at that point, thinning it out and causing reconnection to start.
The current sheet fragments into plasmoids, which move away from the center and merge with one another, causing secondary reconnection (e.g., region marked with
blue box). At the end, there is a single large plasmoid, and reconnection ends. The green box shows the region used to calculate average inflow velocity in Section 3.2.
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into the reconnection layer, and vout is the terminal exhaust
velocity downstream (Cassak et al. 2017; Liu et al. 2022). We
calculate vin by averaging |vx| within a region of size
xR× zR= 245 ρc× 980 ρc= 0.11 Lx× 0.92 Lz centered on (x,
z)= (− xc+ xR, 0). This region is marked by the green
rectangle in Figure 2. The measured inflow velocity is
relatively insensitive to the choice of xR and zR. The
measurement is also symmetric across the current sheet, i.e.,
moving the box to x=− xc− xR does not change the

measurement. The measurement is also similar on the other
current sheet. For the sake of simplicity, we therefore only
show reconnection rates on the +x side of the lower current
sheet. The vin average only includes cells in the upstream, i.e.,
where more than 70% of the plasma originated on the same
side of the current sheet. Because reconnection mixes plasma
across the current sheet, this excludes plasmoids and other
reconnection exhaust. The value of this threshold does not
strongly affect our results.
We measure the outflow velocity, vout, by taking the median

of the 10 highest cell-averaged z-velocities within δ= 12 ρc of
the center of the current sheet. By w= -t 1000 c

1, this
approaches the expected value of s s= + »v c c1A

2 .
This estimates of the reconnection rate for Yee, PSATD, and

CKC simulations are shown in Figure 6. The ratio vin/vout
grows nearly identically in all simulations from 0 to 0.2 at a
time of w-1200 c

1. For the following w-1200 c
1, the estimate of

the rate holds relatively constant between 0.15 and 0.2 before
dropping at around w= -t 2500 c

1. This coincides with 2Lz/c,
the light-crossing time across the current sheet. After this point,
the steady-state assumption under which β≈ vin/vout breaks
down as the reconnection fronts interfere with one another, due
to the periodic boundary condition.
The measurement of a rate between 0.15 and 0.2 matches the

expectation from prior work. Typically, β for nonrelativistic
reconnection is observed to be around 0.1, with higher rates for
relativistic reconnection (Blackman & Field 1994; Guo et al.
2015; Comisso & Bhattacharjee 2016; Liu et al. 2017).

3.3. Performance

Current sheet structures (Figure 3), energy conversion
(Figure 4), particle acceleration (Figure 5), and reconnection
rate (Figure 6) are all similar between the Yee, PSATD, and

Figure 3. Comparison between current sheet and magnetic field structure in
simulations using different Maxwell solvers. All snapshots are shown at

w= -t 1470 c
1. At this phase, all simulations show that the current sheet has

fragmented into several small plasmoids, and a single large plasmoid is forming
around the edge of the domain. There are small differences between the current
and magnetic field structures that are due to the nonlinearity of reconnection.
The energy conversion and particle acceleration are similar to one another (see
Figures 4 and 5).

Figure 4. Evolution of energy balance between electromagnetic fields (dashed
lines) and particles (solid lines) during reconnection simulations. The y-axis is
normalized to the total energy at the start of the simulation. Results from
different Maxwell solvers are shown in different colors (Yee: blue, CKC:
orange, PSATD+Vay current deposition: green, PSATD+Esirkepov current
deposition: red). The initial w~ -1500 c

1 of evolution is nearly identical between
all solvers, and after that all simulations show similar evolution, ending when
about 40% of the field energy has been converted to particle kinetic energy.

Figure 5. Distribution of particle Lorentz factor γ weighted by particle energy
at the start of the simulation (gray line) and once reconnection has ended
( w= -t 8500 c

1). We compare final distributions for the different Maxwell
solvers: Yee (solid blue), CKC (dashed orange), PSATD with Vay current
deposition (dotted green), and PSATD with Esirkepov current deposition
(dotted red). All three of the Maxwell solvers show very similar particle
acceleration, as does the PSATD+Esirkepov combination. The majority of the
new particle kinetic energy has gone into particles with γ ∼ σ. The spectral
slope varies between 0 and −2 (overplotted in black), which roughly matches
the ranges found in prior work (Guo et al. 2015; Werner et al. 2016, 2018).
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CKC Maxwell solvers. This suggests that reconnection
proceeds similarly in all of our simulations, demonstrating
that the results produced by the PSATD and CKC solvers for
the reconnection problem are comparable to those from the
more conventional Yee solver. The PSATD+Esirkepov
simulations also produce comparable results, despite the
violation of Gauss’s law. Adding this simulation to our
performance comparison allows us to decouple the perfor-
mance effects of the Maxwell solvers and current deposition
schemes.

In these reconnection simulations, the majority of the
runtime (∼60%) is spent in the current deposition routine,
the performance of which is unaffected by the Maxwell solver.
Consequently, the walltime per time step is approximately the
same between the Yee, CKC, and PSATD+Esirkepov runs.
CKC and PSATD permit a time step that is 40% longer than in
Yee, reducing the time to solution for CKC and PSATD
+Esirkepov by 40% and 30%, respectively, over the baseline
Yee (see Table 2). PSATD+Esirkepov’s steps take 10% longer
than Yee(+Esirkepov) or CKC(+Esirkepov), indicating that
the PSATD field-solve itself has only a small impact on the
computational performance. However, PSATD(+Vay) has a
50% longer time per step, due to differences in the current
deposition kernels. Thus, despite the longer time step permitted
by the PSATD field solver, there is only a slight net increase in
the time to solution. The implementation of Esirkepov
deposition in WarpX is highly optimized, so it is possible that
similar optimization in Vay deposition could make PSATD
+Vay a more advantageous combination. This is an area for
future work.

4. Results: Large Time Steps with PSATD

A particular advantage of the PSATD method over either
CKC or Yee is that it is not subject to a Courant stability
criterion. Consequently, we are able to further increase the time
step in the PSATD simulations by raising the CFL factor above
1. If other algorithmic choices are kept the same, then the time
per time step is unlikely to change, reducing the time to

solution. In this section, we study a sequence of simulations
that are identical except for their CFL factors and therefore time
steps. The CFL factors studied range from a baseline of
0.95–2.2. We refer to simulations in this sequence as CX.X
where “X.X” is the CFL factor. C0.95 is the simulation labeled
as “PSATD” in Section 3. As discussed in Section 2, we
exclusively use the Vay current deposition scheme for the
simulations in this sequence.
The statistical properties of the reconnecting plasma tend to

remain the same early in the simulations and for lower values
of the CFL factor. For values of the CFL factor 1.65, the
energy conversion from magnetic fields to particles proceeds
almost identically (Figure 7). We see the same behavior as with
the baseline runs (Figure 4), where during the initial

w~ -1500 c
1, about 20% of the field energy is transferred to

the particles. Following that phase, the energy conversion
proceeds more slowly, saturating at a final distribution where
about 40% of the energy is in particles and 60% remains in the
fields.
C1.7 matches the simulations with a lower CFL factor

through the main period of interest, until reconnection saturates
at around w-7000 c

1. In the last w-1000 c
1, it shows a slight

increase in both electromagnetic field and particle energy,
indicating that energy is not conserved. This is reflected in the
relative energy conservation (see Figure 8). Nonconservation
starts off small but increases sharply at around w= -t 7000 c

1,
reaching 1% by the end of the simulation at w= -t 9000 c

1.
The runs that all appear the same in the energy balance plot

(CFL factor �1.65, Figure 7) show greater degrees of energy
conservation. For runs with a CFL factor 1.6, nonconserva-
tion is comparable to the baseline, C0.95. C1.65 also shows
low levels of nonconservation until the very end of the
simulation, when it starts to increase. Left to run further, we
expect that nonconservation would continue to increase like in
the simulations with higher CFL factors. For the duration of the
simulation, C1.65 is within a reasonable tolerance, only
violating energy conservation by less than 1 part in 500.
For simulations with CFL factors �1.8, significant energy

nonconservation develops during the last part of reconnection,
much earlier than in C1.7. Errors in the energy have built up
significantly by w-4000 c

1 for C1.8, and by w-2000 c
1 for both

C2.0 and C2.2 (Figure 8). These are first apparent in the energy
conservation plot, but continue to grow until they show in the
plot of energy conversion (orange line in Figure 7). By

Figure 6. Estimated dimensionless reconnection rate vin/vout for simulations
with Yee (blue), CKC (orange), PSATD with Vay current deposition (green),
and PSATD+Esirkepov (red). The rate evolves similarly in all cases, peaking
at 0.2 and remaining between 0.15 and 0.2 from w= -t 1000 c

1 to w-2000 c
1.

This matches the expected “universal” reconnection rate of 0.1 (Comisso &
Bhattacharjee 2016; Liu et al. 2017).

Table 2
Performance Comparison between Solvers

Algorithmic Time Step Walltime Walltime to
Options ( )w-

c
1 per Step (s) w-1470 c

1 (s)

Yee 0.411 0.077 274.6
CKC 0.581 0.077 193.5
PSATD (+ Vay) 0.581 0.115 290.0
PSATD+Esirkepov 0.581 0.083 209.9

Note. The walltime per time step is similar for Yee, CKC, and PSATD
+Esirkepov, but 50% more expensive for PSATD(+Vay). Because PSATD
and CKC allow longer time steps, CKC reaches a solution 40% faster, and
PSATD(+Vay) is slightly slower than Yee. PSATD+Esirkepov performs
comparably to CKC, reflecting that walltime per step is largely governed by the
deposition scheme. These numbers are from simulations run to a final time of

w= -t 1470 c
1 with dynamic load balancing and no I/O on 21 OLCF Summit

nodes (126 GPUs).
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w= -t 6000 c
1 the field and particle energies are visibly

different from the baseline. C2.0 and C2.2 also show earlier
runaway growth in field and particle energy, but they are
omitted from Figure 7 for clarity.

The particle energy spectra further demonstrate agreement
between the simulations with a CFL factor 1.7 throughout the
majority of the simulation. Figure 9 compares the initial
particle energy distributions (gray lines) with those at

w= -t 2000 c
1 (mid-reconnection) and w= -t 8500 c

1 (after

reconnection, almost at the end of the simulation). At the
earlier time, all of the runs we study show close agreement with
the baseline C0.95 out to γ∼ 100. Those runs with a CFL
factor less than 2 also agree closely with one another at the
highest energies; there are few, if any, particles with Lorentz
factors in excess of 300. C2.0 shows a slight overabundance of
particles with γ∼ 100, which grows as the simulation
progresses. C2.2 shows an even larger overabundance of
high-energy particles, reaching a maximum Lorentz factor of
400, 30% higher than the maximum achieved by C1.8 at this
time. This also coincides with the beginning of the energy
nonconservation seen in Figure 8. The overabundance of high-
energy particles may directly cause the initial nonconservation,
but shortly thereafter we also see artificial heating in the cold
upstream. In C0.95 and the runs with lower (�1.7) CFL
factors, the cold upstream plasma appears as a peak at γ∼ 1,
and it remains largely unchanged even at the end of the
simulation. However, in C1.8 and above, this peak broadens
and moves out to γ∼ 4. This is apparent near the end of C1.8
(bottom panel, Figure 9). This also occurs in C2.0 and C2.2,

Figure 7. Energy balance between electromagnetic field (dashed lines) and
particle kinetic energy (solid lines) in PSATD simulations of magnetic
reconnection with a CFL factor greater than 1. CFL factors less than 1.7
produce results that are nearly identical to the benchmark C0.95. For larger
values (i.e., C1.8 in orange and C2.0 and C2.2, not shown), we see a qualitative
increase in both particle and field energy at progressively earlier times.

Figure 8. Relative energy conservation throughout reconnection simulations
with CFL factors greater than one. The baseline C0.95 is shown in solid, dark
purple. Up to C1.6 (dashed blue), energy nonconservation stays relatively small
and comparable to C0.95 (less than one part in 2000). This suggests that a CFL
factor 1.6 is sufficient to capture the necessary physics throughout the time
interval of interest ( w-t 9000 c

1). For most of the evolution, C1.65 (solid light
blue) also keeps a low degree of nonconservation, but larger errors in energy
appear at around w= -t 7000 c

1. By the end of the simulation, its
nonconservation is still less than 1%, but growing rapidly. As we further
increase the CFL factor, the rapid increase in energy errors moves to
progressively earlier times, with the runaway occurring before w-2000 c

1 for
C2.2 (red dashed–dotted line).

Figure 9. Distribution of particle energy as a function of Lorentz factor (γ)
mid-reconnection (top panel; w= -t 2000 c

1) and near the end of simulations
(bottom panel; w= -t 8500 c

1). The baseline C0.95 appears in solid dark purple.
Larger values of the CFL factor are shown in dashed and dotted lines. For the
values of the CFL factor �1.7, the distributions agree closely throughout the
simulations, especially at lower energies (100). At high energies, there are
small differences, which cannot be distinguished from statistical noise. As with
energy conservation (Figure 8), the simulations with the highest CFLs diverge
the earliest; for C2.0 and C2.2 (orange dotted and red dashed), we see
disagreement with the baseline simulations at w= -t 2000 c

1, while C1.8
(dashed orange) is still in agreement. By the end of the simulation, C1.8 shows
strong disagreement with the baseline, peaking at γ ∼ 4, rather than close to 1.
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beginning shortly after the time of the top panel; we omit their
distributions in the later panel for the sake of clarity.

At the end of the simulations, the runs with CFL factors
1.7 have particle energy distributions that agree almost
exactly for γ< 100. For the highest-energy particles, there are
minor differences, comparable to the spread seen in the
different electromagnetic solvers (see Figure 5). These highest-
energy particles are also the rarest—there are ∼5000 times
fewer particles at γ= 2 as there are at γ= 100, so the higher
energies are more subject to statistical noise.

The nonconservation seen for CFL factors �1.65 in Figure 8
appears to be at least partially driven by numerical heating in
the upstream region. The exact cause is uncertain, though we
expect it is a direct consequence of the large CFL factor, rather
than the under-resolution of a physical timescale. Coinciden-
tally, C1.65 has a time step just over w-1 c

1, meaning that the
cyclotron motion of upstream particles cannot be captured.
However, this heating does not occur if we obtain that same
time step by, for example, doubling the cell size in each
direction and reducing the CFL factor below 1. The effect is
driven by the upstream plasma. Simulations of a domain with
no current sheet, filled only with upstream (θ= 0.15, σ= 30)
plasma, show the same numerical heating.

The dimensionless reconnection rate is remarkably similar
for all runs except for C2.2 (Figure 10). As discussed in
Section 3.2, we are primarily interested in the value of the
estimated reconnection rate for w< -t 2000 c

1. Within that time
interval, the simulations all show a nearly identical rise to 0.2,
followed by a slight decline to 0.15 over the following

w-1000 c
1. C2.2 largely follows this pattern, but declines much

more quickly than the other runs at w= -t 2000 c
1. This

highlights the robustness of the reconnection rate and indicates
that it likely should not be used to diagnose whether the
simulations are producing correct results. At w= -t 2000 c

1,
C2.0 and C2.2 both show qualitative disagreement with the
baseline models in the high-energy particle spectra (Figure 9).

However, they agree with baseline models in the reconnection
rate measurement.
Of the diagnostics discussed here, energy conservation is the

most sensitive to numerical problems that arise due to a high
CFL factor. Because our simulations are closed systems, the
total energy should remain the same throughout the evolution,
providing a straightforward ground truth comparison. When
increasing the CFL factor, we find that the particle acceleration
and reconnection rate obtained from those simulations do not
deviate from the baseline until after energy nonconservation
begins to rise rapidly. Even C2.2 agrees with C0.95 for the first

w-1500 c
1 of the simulation, before its nonconservation starts to

increase. While particle energy spectra may match the baseline
even after energy nonconservation begins to run away
(e.g., C1.7 at w= -t 8500 c

1, bottom panel of Figure 9), we
would not be able to verify that particle acceleration was still
correct in the absence of a known baseline. When increasing
the CFL factor, we suggest using a runaway in energy
nonconservation as a heuristic for closed systems to determine
when a simulation result is unreliable.
In Table 3, we summarize the computational performance of

simulations with CFL factors greater than 1. Again, we
compare against the baseline C0.95 with the PSATD Maxwell
solver. We find that, between C0.95 and C2.2, the walltime to
simulate a fixed physical time interval decreases by half. Over
this range of CFL factors, the physical time step increases by a
factor of 2.3, and the walltime per time step increases by about
15%. Most of this walltime difference is because current
deposition is slower (on a per step basis) at higher CFL factors.
When particles move farther per step, they are more likely to
move between cells, and this likely reduces the cache
performance of the deposition routines.
The speedup obtained for a particular application is limited

by how high one can increase the CFL factor while maintaining
a reliable result throughout the time interval of interest. We
expect that the interval over which energy is conserved for a
given CFL factor will vary based on the problem setup. For the
configuration described here, a CFL factor of 2.2 may be
adequate if we were only interested in the onset of
reconnection. In that case, the time to solution will be 50%
of what it is in C0.95. In this study, we were interested in
following reconnection from its onset until it saturates. For that,
we needed a CFL factor of at most 1.7, and would have
terminated the simulation at around w-6500 c

1. At that CFL

Figure 10. Dimensionless reconnection rate estimated as the ratio of inflow to
outflow velocities in the current sheet (see Section 3.2). The rate appears to be
mostly insensitive to the CFL factor. This is largely because our estimate of the
reconnection rate is only valid for the first w-2000 c

1 of the simulations, when
energy nonconservation is minimal (Figure 8). C2.2 is the only run that shows
significant deviation in the first w-2500 c

1 of evolution, which coincides with a
runaway in its energy nonconservation.

Table 3
Performanceof Simulations with CFL Factors between 0.95 and 2.2

CFL Time Step Walltime Walltime to

( )w-
c

1 Per Step (s) w-1470 c
1 (s)

0.95 0.582 0.115 290.0
1.5 0.919 0.126 200.9
1.6 0.978 0.127 190.9
1.65 1.010 0.128 186.4
1.7 1.041 0.128 180.9
1.8 1.102 0.129 172.5
2.0 1.225 0.131 157.2
2.2 1.347 0.131 143.0

Note. These numbers are from otherwise-identical simulations run to a final
time of w= -t 1470 c

1 with dynamic load balancing and no I/O on 21 OLCF
Summit nodes (126 GPUs).
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factor, we reach the solution 1.6 times faster than in the
baseline C0.95.

5. Conclusions

We have performed first-of-their-kind particle-in-cell simu-
lations of relativistic reconnection with a 16th-order pseudo-
spectral Maxwell solver (PSATD) and a time step that exceeds
the conventional CFL limit. We find that PSATD and the
nonstandard finite-difference scheme CKC qualitatively and
quantitatively produce the same results as the standard second-
order finite-difference scheme Yee. We have verified that all
three schemes produce the same qualitative plasmoid evolution,
particle-field energy balance, particle acceleration, and recon-
nection rate (Figures 3–6). The particle energy distribution has
a power-law tail with a spectral slope α of ( )g g gµ a-dN d .
We measure α between 1 and 3, as expected (Guo et al. 2015;
Werner et al. 2016, 2018). The reconnection rate is between
0.15 and 0.2 for most of the linear phase of the simulation,
consistent with expectations for relativistic reconnection.

We also compare the performance of the solvers and
measure efficiency in terms of time to solution. For the same
CFL factor, CKC and PSATD allow for a time step that is
longer than that of Yee by a factor of 2 . The walltime taken
per step, though, depends more on the current deposition
scheme than on the Maxwell solver. The walltime per step is
the same in CKC as in Yee (which both use Esirkepov
deposition), giving a ∼40% speedup in time to solution. High-
order PSATD is only charge-conserving when used with Vay
deposition, which in its current WarpX implementation is not
as optimized as Esirkepov and is therefore more computation-
ally expensive. Thus, we decouple the comparison of the
solvers and current deposition methods by performing an
additional PSATD+Esirkepov simulation. In doing so, we
verify that PSATD itself is not the primary cause of the more
expensive time step. Despite not being charge-conserving,
PSATD+Esirkepov gives the correct answer for this problem,
and has a walltime per step only 10% higher than CKC or Yee.
In conjunction with the 2 larger time step allowed by
PSATD, this produces a net 30% reduction in time to solution.
A time step in the charge-conserving PSATD+Vay takes 50%
longer than in Yee, so it has a slightly longer time to solution
than the most commonly used charge-conserving Yee
algorithm.

Unlike either of the finite-difference schemes, PSATD is
numerically stable at any time step, even one greater than the
light travel time across a cell. We explore the accuracy and
performance of CFL factors >1 in the relativistic reconnection
problem. We find that the timescale of interest sets the
maximum allowable time step parameterized by the CFL
factor. Factors �1.65 conserve energy comparably well to the
baseline PSATD case until w= -t 8000 c

1, well past the end of
reconnection. In that interval, they show good agreement in
both particle acceleration (Figure 5) and reconnection rate
(Figure 10). A slightly higher CFL factor of 1.7 still shows
good agreement in energy distribution (Figure 7) and particle
acceleration, but it begins to show signs of runaway errors in
energy at w» -t 6500 c

1, right after reconnection saturates. This
suggests that, for this particular problem and computational
setup, the CFL factor could reach 1.7 without compromising
the accuracy of the simulation results during reconnection. As
we progressively increase the time step (up to a CFL factor of
2.2), runaway energy nonconservation begins earlier and

earlier. In the interval where energy is conserved, the other
diagnostics such as particle energization and reconnection rate
agree with the baseline case, suggesting that energy non-
conservation is a good diagnostic of when the simulation
results are reliable for closed systems with periodic boundary
conditions.
The walltime per time step only increases modestly with

CFL factor, about 15% from the baseline C0.95 to C2.2. The
increases in the time step outweigh the increases in walltime
per step, reducing the walltime per physical time by a factor of
about two between C0.95 and C2.2, if all other algorithmic
choices are unchanged. Comparing against CKC+Esirkepov,
the most efficient of the CFL = 0.95 simulations, we obtain a
25% reduction in time to solution by adopting a CFL factor of
2.2, and a <10% reduction by using the CFL factor of 1.7 that
we have determined to be suitable for our scientific purposes. If
a CFL factor below 1.7 were necessary, CKC+Esirkepov
would be the most efficient option, due to the faster current
deposition. Future work will include further optimization of the
Vay deposition routine, which would shift the trade-offs to
favor the PSATD+Vay combination in more situations. While
PSATD+Esirkepov was accurate in these simulations, we do
not recommend its use without an additional current correction
or divergence-cleaning operation to guarantee charge
conservation.
One of PSATD’s strengths is that it reduces numerical

dispersion that may appear when using Yee or CKC solvers.
While an exploration into the mitigating effect of the PSATD
solver on numerical dispersion in relativistic plasmas is outside
the scope of this paper, it is indeed a known effect that can
contaminate simulations of astrophysical jets, shocks, and
magnetic reconnection (Godfrey 1974; Melzani et al. 2013;
Godfrey & Vay 2014; Ikeya & Matsumoto 2015; Li et al. 2017;
Nishikawa et al. 2021; Tomita et al. 2022). PSATD can
therefore provide new opportunities to study highly relativistic
plasmas, a numerically challenging regime that characterizes a
number of astrophysical systems.
The numerical and algorithmic innovations leveraged in this

study can be used to enable larger and more efficient
simulations of astrophysical and laboratory plasmas (Ji et al.
2022). Our simulations are also some of the first GPU-
accelerated astrophysical PIC simulations. As a first step, we
have only focused on two-dimensional systems without
additional kinetic and radiative physics. A third spatial
dimension is dynamically important in reconnection because
it makes the current sheet susceptible to an additional
instability, called “drift-kink,” which can suppress particle
acceleration (e.g., Cerutti et al. 2014; Sironi & Spitkovsky
2014; Guo et al. 2015; Werner & Uzdensky 2017). CKC and
PSATD may be especially efficient in 3D because their time
steps are larger than Yee’s by a factor of 3 , rather than 2 in
2D. In many astrophysical reconnection environments, syn-
chrotron emission and pair production play an important role.
With WarpX, we will be able to take advantage of GPU-
accelerated exascale computing resources to perform 3D
simulations that include this radiative physics.
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Appendix
Magnetic Field Configuration

A.1. Equilibrium

In all of our simulations, we fix ρc= 4.1× 10−3 m, which
gives B= 0.42 T and fixes the other dimensional values in
Table 4. These are used in the WarpX simulations, which
require SI units. This choice of length scale is largely arbitrary.
In this nonradiative regime, the magnetization determines most
of the physics; the rest of the results will scale accordingly.

From the relationship between ρc and λe and the definition of
skin depth, we can calculate number density in the current sheet
nd:

( )
l

= = ´ -
n

m c

e
2.8 10 m , A1d

0
2

2
e
2

17 3

and in turn, the background number density nb= 5.6×
1016 m−3. At this density, a magnetization of 30 requires the
background magnetic field B0= 0.42 T.

After integrating Ampere’s Law (Equation (4)),
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To solve for the constant of integration C, we apply the
condition from Equation (5):
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First, taking the limit as x→∞ ,
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because ( ) =¥ xlim tanh 1x . To double precision, ( ) =xtanh 1
if x� 20, so the following is true if xc/δ� 40, which is the case
in our simulations:
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Combining the conditions on Bz as x→∞ and at x= 0
(Equation (5)):
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This yields the expression for magnetic field in Equations (6)
and (7):
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Table 4
Physical Parameters and Symbols Common to All of Our Simulations

Parameter Symbol Value

Background Larmor radius ρc 4.1 × 10−3 m
Background Larmor frequency ωc 7.3 × 10−10 s−1

Skin depth λe 0.01 m
Current sheet half-width δ 0.05 m
Background magnetization σ 30
Background magnetic field B0 0.42 T
Current sheet number density nd 2.8 × 1017 m−3

Background number density nb 5.6 × 1016 m−3

Current sheet velocity β0 0.22 c
Background temperature θb 0.15
Current sheet temperature θd 1.57
Domain half-width (x) Lx 8.96 m
Domain half-width (z) Lz 4.32 m
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The full expressions for the equilibrium fields and plasma
properties are
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A.2. Magnetic Field Perturbation

The magnetic field perturbation is based on the the vector
potential (Equation (20)), which is an integral of Bz(x)
(Equation (6)). We split B(x) into three types of terms, based
on functional form: constants, ( )arctan tanh terms, and tanh
terms. Constants are straightforward to integrate. The integrals
of the other two types of terms are
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Equation (A20) results from applying the simplification
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For the purposes of symmetry and preserving the periodic
boundary conditions, we have set the constant of integration
equal to zero.

The perturbation to the magnetic field is
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