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ABSTRACT OF THE DISSERTATION

Expanding the 171Yb+ toolbox:

the 2Fo7/2 state as resource for quantum information science

by

Conrad Harrison Roman

Doctor of Philosophy in Physics

University of California, Los Angeles, 2021

Professor Wesley C. Campbell, Chair

The 171Yb+ ion has seen wide scale adoption as a trapped ion qubit across the globe for use in

quantum information experiments. It has emerged as a mature and highly efficient platform

for large scale quantum simulation and as the workhorse for pushing trapped ion quantum

computation into the realm where the so called “quantum advantage” may be realized.

In this thesis we investigate and develop methods of performing state preparation and

measurement of the 171Yb+ ground state qubit that takes advantage of the often overlooked

long lived 2Fo7/2 state. By performing narrow-band optical pumping of qubit population to

the 2Fo7/2 state, we show that high fidelity state preparation and measurement in 171Yb+

is possible without the need to enhance photon detection efficiency. We achieve a state

preparation and measurement fidelity of F = 0.99984+4
−4, the best to date demonstrated in

any qubit platform we are aware of, limited by our single qubit gates. We use multiple

microwave pulses to show that a state preparation and measurement fidelity of 0.99993+2
−3 is

achievable with better single qubit gates.

We then utilize the optically separated qubit populations to perform high fidelity back-

ground free state detection of the ground state qubit with mode locked lasers, achieving a

state preparation and measurement fidelity of F = 0.9993+3
−6 in the presence of large amounts
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of background scatter. This method increased the signal to background ratio by a factor of

150, and provides a pathway to faithful qubit readout in environments where rejection of

excitation laser scatter is difficult.

We begin development of a new trapped ion quantum information paradigm, utilizing

additional qubits hosted in metastable electronic states to improve the flexibility of quantum

information processors. The metastable qubit we develop in 171Yb+ is a zero-field clock state

qubit in the 2Fo7/2 state. We identify the qubit transition frequency and develop a method

for heralding state preparation of both computational basis states. The ability to herald

state preparation allows us to demonstrate high fidelity state preparation and measurement

of the metastable qubit, achieving a fidelity of F = 0.9995+2
−3. In this proposed architecture,

dissipative operations in the ground state manifold can be implemented in the presence of

metastable qubit for sympathetic cooling, and we quantify the effects these lasers may have

on the metastable qubit.
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CHAPTER 1

Introduction

It has been long realized that there may be power in scaling down the fundamental bits used

for computation, to the point where the bits can no longer be modeled classically [Fey82].

The scaling down of modern transistor technology, which aims to continuously increase the

transistor density within processors by decreasing the size of the individual transistors, is

already in the realm where quantum effects need to be accounted for. Suppression of electron

tunneling within transistors at the < 10 nm scale is an active area of research. If instead of

suppressing the quantum nature of these devices, we construct our bits as purely quantum

mechanical objects, a new range of applications arises.

Collections of quantum bits (“qubits”) can be brought together and made to interact in

well engineered ways to perform quantum computations. The advantage here becomes clearer

when we consider the size of the computational space of an N-bit computer. Classically, an

N-bit computer can encode N-bits of information, with the information represented by a bit

in the states 0 or 1. Quantum mechanically, an N-qubit quantum computer can encode 2N

bits of information with careful engineered entanglement between the qubits. As a simple

example, consider a 2 qubit quantum computer. The state of a single qubit |qi〉 can be

written as:

|qi〉 = α |0〉+ β |1〉 (1.1)

where the constants α and β are the amplitudes of each qubit state. If we now have two

qubits, the combined state of the two qubit system can be written

|ψ〉 = |q1〉 ⊗ |q2〉 = α |00〉+ β |11〉+ η |01〉+ ρ |10〉 (1.2)
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The two qubits now contain information encoded in the amplitudes across four different

quantum states. It is the careful and creative manipulation of these amplitudes that leads

to powerful quantum information algorithms. The common example given is that if we had

a fully controlled 500 qubit quantum computer, we would have a computational space of

2500 ≈ 10150 amplitudes, more than there are particles in the known universe (and hence

more information than could be ever stored in a classical computer the size of the known

universe).

But, with great information, comes the necessity for great control. Algorithms are often

designed such that the amplitudes of all the individual states, at the end of an algorithm,

coherently interfere in such a way as to provide an answer of interest. This interference is

delicate, and can be completely washed out by perturbations from the environment, poor

implementation of quantum gates, or simply by limitations of our qubit. It was the discovery

of fault tolerant quantum error correction that gave the quantum information community

hope that a real processor large enough to perform computationally interesting tasks may

one day be feasible [Sho96].

Although there is great promise in the future for producing fault tolerant error corrected

quantum computers, current systems lack the necessary gate fidelities and qubit register

sizes to make use of these codes. These current machines have been dubbed noisy inter-

mediate scale quantum devices (NISQ devices)[Pre18], and still may have many uses both

academically and practically.

1.1 Trapped ion quantum information

The quantum information platform discussed in this thesis is composed of multiple atomic

ions levitated in high quality vacuum as to isolate the ions from background gasses. The

qubit is defined by choosing two appropriate quantum states of the ion that should be able

to satisfy the Divencenzo criteria [DiV00]:

1. The system must be scalable with well defined qubits
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2. The qubits must all be able to be initialized to a well known initial state

3. The qubit coherence times must significantly exceed the gate times

4. The system must have access to a gate set that comprises a universal gate set for

quantum computation

5. There must be a way to measure and distinguish the qubit states

Items (2-5) have all been demonstrated in various ion species with various qubit encodings

[HAB14, NSD86, CHC19, WLQ21]. The qubits are certainly well defined and understood

(1), but proving that the system is scalable is hard to prove theoretically. The essential

requirement agreed upon for scalability is that the addition of more qubits does not cause

an exponential increase in the necessary resources.

With the primitives for creating a quantum computer established, the choice of ion species

and qubit type becomes the next step. Each species and isotope thereof has its own advantage

and disadvantage. In general, there are three types of qubits widely used in trapped ion

quantum information experiments: hyperfine qubits (∼ GHz), Zeeman qubits (∼ MHz), and

optical qubits (∼ THz). For a great review on the different types of qubits and best attained

fidelities for each gate primitive in each type see [BCM19]. We choose to work with the

nuclear spin 1/2 isotope of Yb+ that hosts a zero field clock state hyperfine qubit that has

demonstrated extreme coherence times in excess of 1 hour [WLQ21], high fidelity microwave

and laser driven single qubit gates [EHH20, PDF20], and two qubit gates comparable to the

best demonstrated in any ion species [PDF20, BBF21].

With current devices still limited in size and gate depth, we are still in the era of NISQ

devices. While not always true, measurement of the trapped ion qubit register will often

happen in single shot at the end of an algorithm or simulation, causing the end result to be

exponentially sensitive in the state preparation and measurement of the entire register. For

a SPAM infidelity ε ≡ 1−FSPAM , the readout fidelity of the entire register will be (1− ε)N .

As an example, with 50 ions and a SPAM infidelity of 1%, the end multi qubit state will be

readout correctly only (99%)50 = 60.5% of the time. It is therefore advantageous in the NISQ
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devices to perform high fidelity SPAM, with even an order of magnitude increase providing

a serious win ((99.9%)50 = 95%). It will be the main focus of this thesis to improve upon

the SPAM fidelity in the 171Yb+ qubit system, and develop new techniques that may help

relax other technological restraints such as the need to low laser background scatter and high

numerical aperture imaging systems.
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CHAPTER 2

Ions and ion trapping

Most trapped ion based technologies will rely on the ability to operate for extended period of

time with long ion crystal lifetimes. These ion traps vary in size, design, and characteristics,

but all function to serve a similar purpose: confine ions for a time suitable to perform the

desired experiments. Generally, the purpose of the trap will drive the design considerations.

Ion traps can exhibit extremely long trapping lifetimes (> 1 week), and trap large num-

bers of ions (> 100), making it a suitable technology for many areas of research.

2.1 RF trap

It is a well known result of classical electrostatics that a charged particle trajectory cannot

be stably confined with static electric fields alone, a result of Earnshaw’s theorem. Visually,

if the particle is to remain trapped in equilibrium by some force, any perturbation to its

position should cause the force to return the particle to the equilibrium point after some

relaxation time. Forces of the form F = −kr have this property, known as restorative forces,

that direct the particles motion back to the equilibrium position when excursions from the

equilibrium point are made.

In order to create a potential that, on average, traps charged particles in stable trajecto-

ries, we utilize time dependent electric potentials. The goal is to produce potentials of the

form φ(r, t) = φo(αxx
2 + αyy

2 + αzz
2) cos(Ωrf t), where Ωrf is the frequency of the applied

potential and the αi’s are constants that must satisfy Gauss’ law in the absence of a charge

distribution. Specifically,
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∇ · E = −∆φ(r, t) = −2φ0 cos(Ωrf t)
∑
i=x,y,z

αi = 0

=⇒
∑
i=x,y,z

αi = 0
(2.1)

where ∆ = ∇ ·∇ is the Laplacian operator. This criteria is satisfied when αx +αy +αz = 0.

The ion trap used for these experiments is of the ring type geometry, creating an oblate

potential with azimuthal symmetry [YSD15]. To determine what the constant coefficients

must be, it’s easiest to solve the Laplacian equation in cylindrical coordinates (and ignoring

the time dependence for the moment). Gauss’ law for the potential in cylindrical coordinates

is given by

∆φ(ρ, ϕ, z) =
1

ρ

∂

∂ρ

(
ρ
∂φ

∂ρ

)
+

1

ρ2

∂2φ

∂ϕ2
+
∂2φ

∂z2
= 0

φ(ρ, ϕ, z) = φo(αxρ
2 cos2(ϕ) + αyρ

2 sin2(ϕ) + αzz
2)

(2.2)

We can immediately set the dependence on variation in ϕ equal to zero since the solution

must be azimuthally symmetric (cannot depend on variations in ϕ). Ignoring the second

term in the Laplacian and performing some simple derivatives, we get

αx cos2(ϕ) + αy sin2(ϕ) = −αz
2

(2.3)

Since the solution must hold for all values of ϕ, this indicates that αx = αy, and therefore

αx = αy = −αz
2

(2.4)

which has solution (αx = αy = 1, αz = −2), giving the potential the form φ(r, t) = φ0(x2 +

y2 − 2z2) cos(Ωrf t). In the lab, we will also apply time independent voltages, φ1(r), to

compensate for any stray electric fields that may be present near the center of the ion trap.
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The potential is then

φ(r, t) =
φo
r2
o

(x2 + y2 − 2z2) cos(Ωrf t) +
φ1(r)

r2
o

(2.5)

where the factor ro has been introduced and is a scaling factor that accounts for the specific

geometry of the ion trap. For our trap, ro is determined via numerical simulations in Comsol

to be 512 µm [YSD15]. The equations of motion can be found for the principle coordinate

ri(t) with {r1, r2, r3} = {x, y, z}, and are

r̈i(t) = −2eαiφ0

mr2
0

ri(t) cos(Ωrf t)−
2eαiφ1

mr2
0

ri(t)

→ r̈i(t) + ri(t)
(2eαiφ0

mr2
0

cos(Ωrf t) +
2eαiφ1

mr2
0

)
= 0

(2.6)

The change of variable ξ = Ωt
2

leads to

d2r̃i
dξ2

+ r̃i(ai − 2qi cos(2ξ)) = 0

ai =
8eαiφ1

mΩ2
rfr

2
0

qi = − 4eαiφ0

mΩ2
rfr

2
0

(2.7)

Where for simplicity it has been assumed that the static potentials are applied to the same

electrodes that form the radiofrequency potential. This differential equation is the Mathieu

differential equation, for which there are known solutions. The differential equation above

describes a simple harmonic oscillator with periodically modulated spring constant. Stable

solutions to these equations are of the form [Gho95],

r̃(ξ) = A

+∞∑
n=−∞

C2n cos(2n± β)ξ +B

+∞∑
n=−∞

C2n sin(2n± β)ξ (2.8)

where the coefficients C2n satisfy a recursion relation found by inserting equation 2.8 into

equation 2.7.

The trap parameters in table 2.1 are typical values used in our experiment. Using these

values, we can see that in our experiment the |ai|’s will be in the range {0.0, 0.002} depending

7



on the applied DC potentials, and the |qi|’s will be in the range {0.03, 0.06}. Thus, both

of these parameters for all principle axis directions will satisfy ai � qi � 1. In this limit

Typical ion trap parameters
φ0 φ1 Ωrf r0

300 Volts <10 Volts 2π× 47 MHz 512µm

Table 2.1: Typical values for ion trap parameters in our lab.

it will be often useful to think of the ion trap in the pseudopotential approximation, where

the trapped ion is thought of as located in a harmonic potential well. Following the work in

[Gho95], we can make a few assumptions:

1. Solutions will be of the form r̃i = Ri + µi, where Ri represents the secular motion of

the trapped ion and µi represents the micromotion for the i = {x, y, z}

2. The amplitude of the secular motion is much larger than the amplitude of the micro-

motion, Ri � µi.

3. The timescales of the motion are such that dµi
dt
� dRi

dt

With these assumptions it can be shown that the solutions for the secular motion in the ith

direction follow the equation of motion

d2Ri

dt2
+
(
ai +

q2
i

2

)Ω2
rf

4
Ri = 0 (2.9)

which is identical to the simple harmonic oscillator with natural frequency ωi =
Ωrf

2

√
ai +

q2i
2

,

known as the secular frequency. The solution for the micromotion coordinate is µi =

− qiRi
2

cos(2ξ). This assumption holds in the limit that ai � qi. Plugging µi = r̃i − Ri

into the equation for the micromotion coordinate, and solution to the secular motion of the

form Ri(t) = Ro
i cos(ωit+ φo), the solution for the ion motion in these limits is

r̃i = Ro
i cos(ωit+ φo)

(
1− qi

2
cos(Ωrf t)

)
(2.10)
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Where the first term reflects the secular motion of the trapped ion, and the second term

represents the intrinsic micromotion of the ion in the trap. This intrinsic micromotion is

unavoidable, and in fact necessary for effective trapping of ions.

x(t)

y(t)

z(t)

0 5.×10-7
1.×10-6

1.5×10-6
2.×10-6
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Figure 2.1: Solutions to the ion’s equation of motion in the RF trap. The initial displacement
in the x̂ direction was made slightly different than the ŷ direction to prevent overlap of the
solutions. The motion exhibits two distinct timescales and amplitudes: the fast motion with
small amplitude is micromotion that occurs at the trap frequency Ω. The slower oscillatory
motion with larger amplitude is the secular motion in the trap, whose frequencies are given

by ωi =
Ωrf

2

√
ai +

q2i
2

.

If just the large amplitude secular motion is considered, the ion is effectively trapped in

a purely three dimensional harmonic oscillator with a potential of the form

Ψ =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (2.11)

where the ωi’s are the secular frequencies. The depth of the pseudopotential for the ith

principle coordinate is given by

Di =
m

2
ω2
i r

2
o (2.12)
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2.2 Ion trap loading

Ion traps are “loaded” by introducing the desired ion within the region of the ion trap where

laser cooling can be performed. Since the force of the ion trap fields are conservative, the

kinetic energy must be below the trap depth for trapping to occur. Given the relatively high

trap depth in large ion traps (of order ∼ couple eV), the velocity capture range of an ion

trap can be quite large. For an ion with m = 171 AMU, 2 eV of kinetic energy corresponds

to ∼ 1500 m/s, or an external temperature of 23000 K.

There are a few ways to create ions within the trapping region, the most common being

photoionization of a thermal beam and ion creation via laser ablation. More sophisticated

methods of trap loading are under current investigation to perform fast and efficient trap

loading, a likely requirement for large scale trapped in quantum information processors

[VAS19, BMC16].

The ion trap in our experiment is loaded by performing 1+1 resonance enhanced multi-

photon ionization of ytterbium atoms produced from a thermal source directed at the ion

trap center. For ytterbium, this is done by addressing the 1S0 → 1P0 transition at 398.9 nm,

followed by the absorption of a photon at λ ≤ 394 nm to excite one of the two valence

electrons into the continuum, resulting in a singly ionized ytterbium ion. In practice, we use

our Doppler cooling laser at 369 nm for the second step for convenience.

The thermal source is a stainless steel tube with ∼ 1 mm opening containing natural

abundance ytterbium metal which is resistively heated for trap loading. Anywhere from 2-3

Amperes of current are run though the tube to produce a thermal beam directed at the trap.

In order to be isotopically selective, we align the 399 nm laser k-vector perpendicular

to the average direction of the thermal beam to reduce Doppler broadening of the 399 nm

resonances from each isotope. At a current of 2.2 A, we find that we reliably load a single ion

in about 1-5 minutes with 100 µW of 399 nm light focused to a waist of ω0 ≈ 40µm at the

center of the trap. Much faster loading times have been observed in our system (< 30 s) with

the introduction of ∼ 0.5 mW of 369 nm mode locked laser, likely due to in increased rate
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Figure 2.2: Simple energy level diagram of neutral ytterbium atoms. We choose to pho-
toionize on the strong 1S0 → 1P1 transition since it only requires one additional laser and is
a well established technique.

of ion creation on the second step of photoionization. Faster loading rates have also been

observed with mode locked lasers addressing the neutral 1S0 → 1P1 transition due to the

addressing of a larger number of velocity classes by the laser’s broad comb tooth structure

[DAB06].

2.3 Doppler cooling

Once the atom has been photoionized it still likely has large amounts of kinetic energy.

To cool the ion’s external energy to a point suitable for experiments, we apply a velocity

dependent force in the form of Doppler cooling. For simplicity, assume the ion is in a 1D
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harmonic potential Ux = 1
2
mω2

xx
2 and that the laser cooling beam propagates in the x̂

direction as an infinite plane wave. It is assumed that the timescales of all absorption and

spontaneous emission events are much shorter than the oscillation period in the potential,

equivalent to the assumption that ωx � Γ, Rscatt, where Γ is the spontaneous decay rate of

the excited state and Rscatt is the scattering rate induced by the applied laser. Micromotion

will also be neglected, but has been given a formal treatment in [CGB94].

The scattering force exerted on an atom is proportional to how much momentum is

transferred to it (~k) and the rate at which momentum can be transferred (proportional to

the scattering rate). This can be written as Fscatt = ~kRscatt = ~kΓρee, where ~k is the

momentum of a photon with wavelength λ = 2π/k, Γ is the spontaneous decay rate of the

excited state, and ρee is the excited state probability given by

ρee =
Ω2/Γ2

1 + 2Ω2

Γ2 + (2∆
Γ

)2
=

1

2

s

1 + s+ (2∆
Γ

)2
(2.13)

Ω is the resonant Rabi frequency, ∆ = ω− ωo − k · vx(t) is the effective laser detuning from

resonance, and s = 2Ω2/Γ2 is the saturation parameter. Here vx(t) = vo cos(ωxt) is the simple

harmonic motion of the ion in the x̂ direction. The dependence of the laser detuning on the

ion velocity causes the scattering force to be higher when the velocity opposes the direction

of the laser propagation (in the limit that kvx < ω − ωo). Since the scattering/absorption

process is much faster than the ion motion, many events where the ion absorbs momentum

~k, followed by spontaneous emission in a random direction, can occur, leading to a net

damping effect on the ion motion. To see how the damping arises in the limit that the ion

velocity is small, the scattering force can be linearized about vx = 0 to get

Fscatt ≈ ~kΓ
Ω2/Γ2

1 + 2Ω2

Γ2 + (2∆′

Γ
)2

(
1 + kvx

8∆′/Γ2

1 + 2Ω2

Γ2 + (2∆′

Γ
)2

)
(2.14)

Where we have redefined the detuning ∆′ = ω − ωo to be the laser detuning from the

non-shifted atomic resonance. The second term on the right hand side of equation 2.14 is

negative for laser frequencies lower than the natural atomic transition frequency, called “red”
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detuned, thereby providing a damping force to the ion motion.

The state of the ion is in equilibrium when the cooling rate due to the damping force is

equal to the heating rate due to the randomness of photon absoption and emission. Analysis

of these processes is given in many standard texts on laser cooling [MS99, CGB94, WI79],

through which an expression for the mean squared velocity of the ion can be determined to

be

m〈v2〉 =
~Γ

4

(
− Γ

2∆
− 2∆

Γ

)
(2.15)

which is minimized when the detuning is ∆ = −Γ/2. The temperature of the ion inside the

harmonic well at the optimal detuning is then

TD =
1

kB

1

2
m〈v2〉 =

~Γ

2kB
(2.16)

where it has been assumed that the spontaneously emitted photons are emitted in the ±x̂

directions. Small corrections can be made for true emission into three dimensions by an

electric dipole.

For a single trapped 174Yb+ ion, the standard Doppler temperature is 470 µK. For an

ion trapped in a 1D harmonic well with secular frequency ω = 2π× 1 MHz, this give a mean

thermal phonon number of n̄ ≈ 10.

2.4 Micromotion compensation

In general, without active compensation of stray electric fields, there will be electric fields

acting on the ion that displace it from RF null in the trap (the geometric point/line in space

where the derivative of the RF electric field is always zero). Voltages are applied to the

electrodes on the trap to create electric fields to cancel out these stray electric fields. Here

we will list some techniques we have used to determine the location of the RF null.

There are two types of micromotion in an ion trap, usually called intrinsic and excess

micromotion. Intrinsic micromotion is always present, and is the direct result of the second
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term in 2.10 due to the secular motion of the ion causing excursions from the RF trap null.

Excess micromotion is due to not properly compensating for stray electric fields, resulting

in the ion not residing at the three dimensional node of the trap electric field. As shown in

[BMB98], an uncompensated stray electric field Edc will alter the solution to the ion motion

to lowest order in ai, qi to be

r̃i(t) ≈
(
R1
i +Ro

i cos(ωit+ φo)
)(

1 +
qi
2

cos(Ωrf t)
)

(2.17)

where R1
i = eEdc · r̂i/mω2

i leads to an overall displacement to the ion position, as well as

additional micromotion with amplitude ∼ R1
i qi/2.

2.4.1 Micromotion modulation of the Doppler cooling transition

The simplest way to detect excess micromotion is to observe its effect on the spectral line-

shape of the cooling transition. This method is easily applied when ΩRF ≥ Γ, and helps for

coarse micromotion compensation. The excess micromotion of the ion, in the ion frame, leads

to phase modulation of the incident, near resonant laser light that to us, the experimenter,

will result in resonances at ±nΩrf in the optical spectrum with n ∈ N0. If the spectral

lineshape as a function of detuning of a stationary unperturbed ion is given by Γ(∆), with

∆ = ω − ωo, then the micromotion modulated spectra can be approximated as

Γ(∆, β) ≈
∞∑

n=−∞

J2
n(β)Γ(∆ + nΩrf ) (2.18)

where β is the modulation depth of the micromotion given by β = 1
2

√
(
∑

i=x,y kiR
1
i qi)

2 ∝ R1,

proportional to the displacement from the trap center, and the Jn are Bessel functions of

the first kind [BMB98].

The extreme coarse version of this protocol, is to detune the Doppler cooling laser so that

it is on resonance with the first order red detuned micromotion sideband, and alter the ion

position to decrease the fluorescence observed on the PMT. This works best if the cooling
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Figure 2.3: Interleaved linescans, and inferred modulation depths as a function of displace-
ment from the trap center. The linear relationship with displacement is clear, with an overall
offset from β = 0 due to a combination of intrinsic micromotion (small effect) and a likely
miscalibration of where the true RF null is (large effect). The background shows the linescans
of the cooling transition used to determine the micromotion modulation depth. The far right
peak is the natural resonance, and the peaks to the left are the n = -1, -2 order micromotion
sideband. The total scan width is 120 MHz, spanned by scanning a double passed AOM.
Amplitude variation as a function of AOM frequency was not taken into account, but can
be with simple calibration.

laser has a relatively large waist at the ion position, and projects onto all principle axes of

the trap.

2.4.2 Variation of RF amplitude

A coarse tactic involves variation of the RF amplitude and observing the ion’s change in

position. The effect of the stray field is to displace the ion from the trap center, and the

magnitude of this displacement is proportional to 1/ω2
i . Thus if we increase (decrease) the

RF amplitude, we will be decreasing (increasing) the displacement of the ion from the RF

null.

While this works in theory to some precision, in our experiment we have found this tactic
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unreliable. We believe this is due to a slight DC bias on the RF ring that changes as the

RF amplitude is varied, which causes the ion to displace as a function of RF amplitude even

when it is well micromotion compensated (up to the precision of our other techniques).

2.4.3 Photon correlation technique

A more sophisticated photon correlation technique can also be used to aid micromotion

compensation. In this scheme, a photon time tagging device is triggered on a specific phase

of the applied RF signal, and photons detected by a suitable photon counting device are

time tagged with respect to a trigger in phase with the applied RF. By binning the photon

arrival times from t = 0 to t = 2π/Ωrf , we can directly observe the effect of micromotion

modulation on the photon arrival time. This method has the benefit that it can give explicit

information about when the ion crosses the RF null as it is displaced in the trap. See

[BMB98] for example traces of the signal. In our lab we use TimeHarp 260P time correlated

single photon counter to timetag photon arrival times with 10 ps precision with respect to

the trigger from the RF. Example traces of a micromotion compensated ion, and intentional

displacements to either side of the RF null are shown in Figure 2.4.

2.4.4 Observation of micromotion on motion sensitive transitions

While not available on our experiment at the time this is written, we soon will have the

capability to couple at least one of our qubits in 171Yb+ to motion via stimulated Raman

transitions. With this available, multiple new avenues to micromotion compensation are

available, the most straightforward of which would be the direct observation of micromotion

sidebands in the qubit spectrum. The micromotion sideband can be scanned over, and the

ion displaced throughout the trap to minimize the sideband amplitude. Other experiments

that are sensitive to motional heating of the ion may also aid in micromotion compensation.
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Figure 2.4: TCSPC trace examples. The blue trace shows the case where no micromotion
is detected by the Doppler cooling laser. The other two traces show the presence of excess
micromotion by moving the ion to either side of the RF null by adjusting the compensating
electric field linearly in what we call the y-direction. There is also precise 320 MHz mod-
ulation of the photon arrival times that we have not investigated. We suspect it may be
related to the frequency of our 935 nm single pass AOM operated at 320 MHz, as no other
RF signal in our lab occurs at this precise frequency. The compensated signal is given an
artificial offset of +150 counts/bin to separate it from the other two signals.
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CHAPTER 3

Light matter interactions

The primary method for controlling the state of a trapped ion is by engineering pulses

of electromagnetic radiation to manipulate the electronic state of the ion. Typically this

radiation comes in the form of laser light, but sometimes can be longer wavelength radiation

in the form of microwave or radiofrequency radiation. We will be interested in both resonant

interaction, where the applied radiation is nearly resonant with a particular transition, and

off resonant interactions, and how they can affect the state of the ion.

3.1 Electric dipole transitions

The electric dipole interaction can be written as HE1 = −d · E, with d = −er the dipole

moment of the electron and E an electric field interacting with the electron. Here I have

assumed that e is the magnitude of the fundamental charge. The electric field is generally

time dependent and can be written as a plane wave E = Eε̂ cos(k · r− ωt), where k = 2π
λ

k̂

is the wavevector of the electromagnetic wave, r is the position of the electron, E is the

electric field amplitude, and ε̂ is the polarization unit vector of the electric field.

The transition matrix element is

−〈e|d · E |g〉 =
eE

2
(〈e| r · ε̂ |g〉 ei(k·r−ωt) + h.c) (3.1)

We can make the electric dipole approximation which states that the wavelength of the

radiation is much longer than the length scale associated with the size of the atom, therefore
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eik·r ≈ 1.

−〈e|d · E |g〉 =
eE

2
(〈e| r · ε̂ |g〉 e−iωt + h.c) (3.2)

The position vector can be written in terms of spherical harmonics Yl,m, which is useful

for when we want to compare the relative strengths of transitions. The dot product of the

position vector and the laser polarization is

r · ε̂ = r sin(θ) cos(φ)εx + r sin(θ) sin(φ)εy + r cos(θ)εz

= r

√
4π

3

(
Y1,−1

1√
2

(εx + iεy)− Y1,1
1√
2

(εx − iεy) + Y1,0εz

)
= −r

√
4π

3

(
Y1,−1ε̂+1 + Y1,1ε̂−1 − Y1,0ε̂0

) (3.3)

Matrix elements of the dipole operator can now be expressed as overlap integrals of the

spherical harmonics, which are rank-1 spherical tensors with the equivalence T kq = Yl=k,m=q.

It will be convenient to evaluate the matrix element of the electric dipole operator between

two states in order to determine the coupling strength between the two states, if it exists. A

general state which we wish to consider will have quantum numbers {n, l, s, I, J, F,mF}. We

can write the electronic dipole moment operator d̂ as a rank k = 1 spherical tensor operator,

T 1
q , which can readily be expressed in terms of the spherical harmonics as shown above.

This representation will help us apply the Wigner-Eckart theorem for simplifying the matrix

element and comparing relative transition strengths. The Wigner-Eckart theorem can be

written for a irreducible spherical tensor operator T kq in the |γ, J.mJ〉 basis as

〈γ′, J ′,m′J |T kq |γ, J,mJ〉 = (−1)J
′−m′J 〈γ′, J ′| |T k| |γ, J〉

 J ′ k J

−m′J q mJ

 (3.4)

Where all additional quantum numbers are lumped into {γ′, γ}. A useful property of the

Wigner 3-J symbol for determining an allowed transition is that the sum of the components

in the lower row must be zero in order for the 3-J symbol to be non-zero, mJ −m′J + q = 0.

Another helpful relation will be the repeated reduction rule, which is sometimes referred
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to as the spectator theorem, stemming from the fact that we will remove the dependence of

the reduced matrix elements on angular momenta that are not participating in the interaction

(hence, they are spectators to the interaction). The spectator theorem can be formulated as

follows: if the total angular momentum operator is J = J1 + J2 and [T kq ,J2] = 0 for all q,

then we can further simplify the reduced matrix element as

〈γ′, J ′1, J ′2, J ′| |T k| |γ, J1, J2, J〉 =

(−1)J
′
1+J2+J+k

√
(2J ′ + 1)(2J + 1) 〈γ′, J ′1| |T k| |γ, J1〉

J ′1 J ′ J2

J J1 k

 δJ ′2,J2 (3.5)

With these tools we can write down a relatively simple formula for the electric dipole

matrix element. We will assume that the polarization of laser light is such that only a single

arbitrary value of q couples the two states. First we remove the dependence on the magnetic

quantum number with the Wigner-Eckart theorem

〈n′, l′, s′, I ′, J ′, F ′,m′F | d1
q |n, l, s, I, J, F,mF 〉 =

(−1)F
′−m′F 〈n′, l′, s′, J ′, I ′, F ′| |d1| |n, l, s, J, I, F 〉

 F ′ 1 F

−m′F q mF

 (3.6)

Where we have dropped the subscript q from d to indicate that the magnetic projection

dependence is all contained in the Wigner 3-j symbol now. The nuclear spin of the atom

does not directly couple to the electric field of the laser, so we can apply the spectator

theorem with (J1, J2, J) = (J, I, F ) and set I = I ′ to get

〈n′, l′, s′, I, J ′, F ′| |d1| |n, l, s, I, J, F 〉 =

(−1)J
′+I+F+1

√
(2F + 1)(2F ′ + 1)

J ′ F ′ I

F J 1

 〈n′, l′, s′, J ′| |d1| |n, l, s, J〉 δI′,I (3.7)
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We could further reduce the reduced matrix element, but it is easier at this point to take

advantage of the fact that most strong electric dipole transitions that we use have measured

values for the excited state lifetime. It is easier to use this fact, along with results attainable

by applying Fermi’s golden rule, to write an expression for the reduced matrix element in

the above equation in terms of experimental values. The reduced matrix element can be

written as [BKD05]

∣∣〈n′, l′, s′, J ′| |d1| |n, l, s, J〉
∣∣2 =

3πε0~c3

ω3
o

(2J ′ + 1)γp (3.8)

where γp = ηγ is the partial linewidth of the transition |n′, l′, s′, J ′〉 ↔ |n, l, s, J〉 given by

the total decay rate of the excited state, γ, times the branching ratio of the specific decay

path of interest, η. The total expression for the electric dipole matrix element is

〈γ′, I ′, J ′, F ′,m′F | d1
q |γ, I, J, F,mF 〉 = (−1)F

′−m′F+J ′+I+F+1
√

(2F + 1)(2F ′ + 1)(2J ′ + 1) F ′ 1 F

−m′F q mF

J ′ F ′ I

F J 1


√

3πε0~c3

ω3
o

γp (3.9)

3.2 Electric quadrupole transition

Electric quadrupole transitions are the result of the laser electric field gradient applying a

force that couples to the induced quadrupole moment of a given transition. The Hamiltonian

governing the transition can be written as

HE2 = Q̂∇E (3.10)

where Q̂ is the induced quadrupole moment. The analysis given here follows the work in

[Roo00, Jam98]. The Rabi frequency of the electric quadrupole interaction can be written

as [Jam98]

ΩE2 =

∣∣∣∣eE2~ 〈e| r̂ir̂j |g〉 ε̂ikj
∣∣∣∣ =

∣∣∣∣∣eE2~
2∑

q=−2

〈e| r2C(2)
q |g〉 c

(q)
ij ε̂ikj

∣∣∣∣∣ (3.11)
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Where C
(2)
q are rank-2 spherical tensors and c

(2)
ij are rank-2 tensors containing geometric

information related to the field polarization and propagation direction. ε̂i are the polarization

unit vectors of the applied field and kj are the components of the laser k-vector. Explicit

expressions for c
(2)
ij are found in the appendix of [Jam98]. For brevity, these matrices can be

generated from the spherical basis vectors via the relation

ε̂1 = − 1√
2
{1,−i, 0}

ε̂0 = {0, 0, 1}

ε̂−1 =
1√
2
{1, i, 0}

→ c
(q)
ij =

√
10

3
(−1)q

1∑
n=−1

1∑
m=−1

1 1 2

n m −q

 ε̂inε̂jm

(3.12)

where ε̂jm is the jth component of the m spherical basis vector.

Assuming that the general states of interest have hyperfine structure, and therefore can

be expressed as |ψ〉 = |γ, I, J, F,mF 〉, we can apply the Wiger-Eckart theorem to get

ΩE2 =

∣∣∣∣∣∣eE2~ 〈γ′, I ′, J ′, F ′| |r2C(2)| |γ, I, J, F 〉
2∑

q=−2

(−1)F
′−m′F

 F ′ 2 F

−mF q mF

 c
(q)
ij ε̂ikj

∣∣∣∣∣∣
(3.13)

Now choosing our coordinate system identically to [Roo00], we define the angle φ to be the an-

gle between the laser k-vector and the magnetic field and ψ to be the angle between the laser

polarization and the projection of the magnetic field into the plane of incidence. This means

our system is, choosing the magnetic field to be in the ẑ direction, k̂ = {sin(φ), 0, cos(φ)}

and ε̂ = {cos(ψ) cos(φ), sin(ψ),− cos(ψ) sin(φ)}.

The tensor product ζ(q) = c
(q)
ij ε̂ikj contains all geometric information regarding the rel-

ative transition strengths of each q = ∆mF transition as a function of the experimental
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parameters ψ and φ. The tensor products are given by

ζ(0) = |cos(ψ) cos(φ) sin(φ)|

ζ(±1) =
1√
6
|cos(ψ) cos(2φ) + i cos(φ) sin(ψ)|

ζ(±2) =
1√
6

∣∣∣( cos(ψ) cos(φ) + i sin(ψ)
)

sin(φ)
∣∣∣

(3.14)

The relative strengths as a function of φ and ψ are plotted in Figure 3.1. The main electric

quadrupole transition driven during experiments in this thesis (when we care about address-

ing a particular transition) is the 2S1/2 ↔ 2D5/2 transition, where we try to drive |∆mF | = 2

transitions. All lasers in our experiment are incident at a 90 degree angle with respect to

Figure 3.1: Relative strength of the different |∆mF | transitions as a function of the angle φ
between k and B, and the angle ψ between the laser polarization ε̂ and the projection of B
in the plane of incidence.

the magnetic field (φ = 90).

3.3 Magnetic dipole transitions

In our experiment the primary method for coherent qubit manipulation is via application

of resonant microwaves delivered by a standard gain horn antenna. The gain of the horn is

quoted in dBi, which is a means of quantifying the directionality of the horn as compared to

an isotropic radiator. For our horn, the quoted gain is 20 dBi, which is to say the radiation

in the direction of propagation is 100× more intense than if the same amount of microwave
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power was radiated by an isotropic radiator (which has 0 dBi gain by definition).

The microwave radiation couples with a non-vanishing magnetic dipole matrix element

between two states. Since the qubit states we choose to use are two hyperfine levels within

the same fine structure state, an electric dipole moment between the states is parity forbid-

den (∆L = 0). The application of microwaves near resonance effectively perturbs the free

Hamiltonian by the M1 interaction Hamiltonian

HM1 = µ ·B(t, ω) = −µzBz cos (ωt+ φ) (3.15)

Where µ is the magnetic moment of the atom, ω is the frequency of the applied microwaves,

Bz is the amplitude of the magnetic field of the propagating electromagnetic wave at the

ions position, and φ is the phase of the applied microwaves.

Setting ~ = 1, the Hamiltonian including the qubit states takes the form

H(t) = −ωo
2
|0〉 〈0|+ ωo

2
|1〉 〈1| − Bz cos(ωt+ φ)

(
µ01 |0〉 〈1|+ µ10 |1〉 〈0|

)
(3.16)

Where µnm = 〈n| µ̂ |m〉 is the matrix element of the magnetic dipole operator. Then assuming

some general two superposition of the two basis states, |ψ〉 (t) = c0(t) |0〉+c1(t) |1〉, we use the

time dependent Schrodinger equation to solve for the time dynamics under this Hamiltonian.

iċ0 = −ωo
2
c0 − c1µ01Bz cos(ωt+ φ)

iċ1 =
ωo
2
c1 − c0µ

∗
01Bz cos(ωt+ φ)

(3.17)

We will now define the Rabi frequency as Ω = µ01Bz for convenience. If we now go into

the co-rotating frame via the substitution c0 = b0e
iω0t/2 and c1 = b1e

−iω0t/2, we arrive after

algebraic simplification

ḃ0 = iΩb1e
−iω0t cos(ωt+ φ)

ḃ1 = iΩ∗b0e
iω0t cos(ωt+ φ)

(3.18)

Expressing the oscillating field in terms of complex exponentials, and performing the rotating
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wave approximation by dropping terms that oscillate at ω0 + ω, we get

ḃ0 = i
Ω

2
b1e

iφeiδt

ḃ1 = i
Ω∗

2
b0e
−iφe−iδt

(3.19)

with δ = ω − ω0. To eliminate the time dependence in the system, we can again go into

a co-rotating frame via the substitution b0 = a0e
iδt/2 and b1 = a1e

−iδt/2. Inserting these

substitutions and performing some simple algebraic simplifications, we get

ȧ0 = i
Ω

2
a1e

iφ − iδ
2
a0

ȧ1 = i
Ω∗

2
a0e
−iφ + i

δ

2
a1

(3.20)

Which have general solutions of the form

a0(t) = A1 cos

(
ΩRt

2

)
+

1

ΩR

(
− iδA1 + iΩA2 cos(φ)− ΩA2 sin(φ)

)
sin

(
ΩRt

2

)
a1(t) = A3 cos

(
ΩRt

2

)
+

1

ΩR

(
iδA3 + iΩA4 cos(φ) + ΩA4 sin(φ)

)
sin

(
ΩRt

2

) (3.21)

Where ΩR =
√

Ω2 + δ2 is the generalized Rabi frequency, and the Ai’s are constants to be

determined by initial conditions. To find the matrix for a general rotation of the initial state

|ψ〉 = a |0〉 + b |1〉, we must find how this matrix should transform the basis state |0〉 and

|1〉 separately. This is equivalent to asking the question how does this system evolve in time

under this interaction when I have initialized the |0〉 state, or the |1〉 at t = 0?

Case 1: preparation of the |0〉 state at t = 0. Under these circumstances, the initial

conditions are a0(0) = 1 and a1(0) = 0. Using the latter condition it is easy to show that

A3 = 0 and a1(t) = Ω∗

ΩR
A4e

−iφ sin
(

ΩRt
2

)
. Using this solution, plugging back into 3.20 and

evaluating at t = 0, we can easily find that A4 = i, leaving us with a1(t) = iΩ∗

ΩR
e−iφ sin

(
ΩRt

2

)
.

We run the exact same procedure for a0(t), with the exception of using the other differential

equation for ȧ0(t) in 3.20 to find a0(t) = cos
(

ΩRt
2

)
− i δ

ΩR
sin
(

ΩRt
2

)
Case 2: preparation of the |1〉 state at t = 0. With the initial conditions a0(0) = 0 and
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a1(0) = 1, we can use the exact same procedure as in case 1 to find a0(t) = iΩ
ΩR
eiφ sin

(
ΩRt

2

)
and a1(t) = cos

(
ΩRt

2

)
+ i δ

ΩR
sin
(

ΩRt
2

)
Now we can fill in a matrix that will evolve any general initial state under the application

of this interaction.

R(Ω, δ, φ, t) =

cos
(

ΩRt
2

)
− i δ

ΩR
sin
(

ΩRt
2

)
iΩ∗

ΩR
e−iφ sin

(
ΩRt

2

)
iΩ∗

ΩR
eiφ sin

(
ΩRt

2

)
cos
(

ΩRt
2

)
+ i δ

ΩR
sin
(

ΩRt
2

)
 (3.22)

This matrix will allow for the evolution of any initial state given the phase, detuning, and

intensity of the applied radiation field, which in our case is typically microwave radiation at

12.642 GHz. Where it will become particularly useful is when we consider more complicated

microwave pulse sequences, typically designed to be robust to pulse area (θpulse = ΩRt)

errors, detuning errors (δ), or both.

3.3.1 Generalization to four level system

Since our qubit is hosted in the 2S1/2 and the nuclear spin of 171Yb+ is 1/2, there will be more

than just two states in the 2S1/2 manifolds that can be coupled by the applied microwave

radiation.

These additional states can affect the dynamics of the two approximate two level system

if the conditions Ω02 � δB and Ω03 � δB aren’t met. The Hamiltonian for the driven four

level system is nearly identical to that of the two level system

HM1 =
∑
n

ωn |n〉 〈n| − Ω0n cos(ωt+ φ)
(
|0〉 〈n|+ |n〉 〈0|

)
(3.23)

where the energies, in vector form, are ωn = {−ω0

2
, ω0

2
, ω0

2
− δB, ω0

2
+ δB}, and Ω0n are the

resonant Rabi frequencies of each transition.
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Figure 3.2: Structure of the 2S1/2 in 171Yb+ . The qubit is defined between the zero-field
clock states |0〉 and |1〉. The magnetic field sensitive states |2〉 = |F = 1,mF = −1〉 and
|3〉 = |F = 1,mF = 1〉 are detuned from the qubit frequency by δB ≈ ±µB|B| due to the
linear Zeeman shift.

This Hamiltonian can be written in the rotating frame of the qubit as

HM1 =


0 Ω01

2
ei∆teiφ Ω02

2
ei∆teiφ Ω03

2
ei∆teiφ

Ω01

2
e−i∆te−iφ 0 0 0

Ω02

2
e−i∆te−iφ 0 −δB 0

Ω03

2
e−i∆te−iφ 0 0 δB

 (3.24)

where it has been assumed that the Rabi frequencies are real. The detuning of the microwaves

from the clock qubit resonance is defined as ∆ = ω − ω0. To solve this system of equations,

the Python package QuTiP is used to numerically solve for the populations in all four

states. Input values for the Rabi frequencies are based on experimental measurements,

easily determined by performing Rabi flopping scans of each transition.
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3.3.2 M1 transition rate

One limitation that every qubit has is the lifetime of the qubit states. Often the qubit

state lower in energy is the lowest state available to the electron, and will have an effectively

infinite lifetime. The more energetic state though will need to couple to the lower qubit state

via some interaction that will allow us to interact the two states. In the case of optical qubits

this is often an electric quadrupole interaction (E2), or in the case of hyperfine qubits this is

a magnetic dipole (M1) interaction. The lifetime of optical qubits’ upper states are often in

the 1-60 second range, depending on ion choice (one extreme exception is the 2S1/2 ↔ 2Fo7/2

electric octupole (E3) transition used in a few places around the world as an optical atomic

clock, with an upper state lifetime rivaling hyperfine qubits at about 5 years [HSL16]). So

what is the lifetime of a hyperfine qubit?

The lifetime of the upper qubit state will depend on the energy separation between that

state and any lower energy states it can decay to, and the strength of the coupling to those

states. Coupling to the lower states will depend on what moments of the free electromagnetic

field the two states couple to, with the lowest order non vanishing moment generally the

strongest. For hyperfine qubits defined in the fine structure ground state (often the 2S1/2 for

ionic qubits), this lowest order moment is the M1 moment.

The magnetic dipole operator is M ∝ L + 2S, and can mediate transitions between fine

structure states (for instance, nD5/2 ↔ nD3/2), or between different magnetic states within a

particular fine structure state (for instance, 2S1/2 |F = 0〉 ↔ 2S1/2 |F = 1,mF 〉). The coupling

arises from effective magnetic dipole moments of the atom coupling to magnetic fields. Part

of the atomic magnet moment is from the intrinsic spin angular momentum of the valence

electron, S, and the other is from the orbital magnetic moment of the atom arising from L.

The latter idea can be visualized in a classical picture as the electron orbiting around the

nucleus as a current loop that itself will have an net magnetic moment.

The transition rate will depend on the reduced magnetic dipole matrix element between

the two states of interest, which does not depend on the magnetic quantum number. As-

suming the atom has hyperfine structure, we can first remove the dependence on the nuclear
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spin, which to lowest order does not partake in the interaction.

〈nJIF |L+ 2S |n′J ′IF ′〉 = (−1)J+I+F ′+1
√

(2F ′ + 1)(2F + 1)× J F I

F ′ J ′ 1

 〈nJ | |L+ 2S| |n′J ′〉
(3.25)

where now we need to simplify the reduced matrix element of the magnetic moment operator.

First we will rewrite L+ 2S = J + S, and the separate matrix elements are

〈nLSJ | |S| |n′L′S ′J ′〉 = (−1)S+L′+J ′+1
√

(2J + 1)(2J ′ + 1)
√
S(S + 1)(2S + 1)×S J L′

J ′ S 1

 δSS′δnn′δLL′

〈nJ | |J | |n′J ′〉 = δnn′δJJ ′
√
J(J + 1)(2J + 1)

(3.26)

which can be combined with the previous result that removed the top layer of angular

momentum coupling to give the full expression

〈nJIF |L+ 2S |n′J ′IF ′〉 = −(−1)J+I+F ′+1δSS′δnn′δLL′
√

(2F ′ + 1)(2F + 1)× J F I

F ′ J ′ 1


(
δJJ ′

√
J(J + 1)(2J + 1) + (−1)S+L′+J ′+1

√
(2J ′ + 1)(2J + 1)×

√
S(S + 1)(2S + 1)

S J L′

J ′ S 1


)

(3.27)

As a result, magnetic dipole transition selection rules are that J ′ = J ± 1, J and that

the parity of the initial and final states be the same (L = L′). If the orbital angular

momentum of the transition cannot change, then it follows that the principal quantum

number nmust remain unchanged as well due to orthogonality relationships of the hydrogenic

radial wavefunctions.

With this matrix element, transition rates between various states where M1 transitions

are permitted can be calculated if the energy separation is known. The magnetic dipole
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transition rate can be written as [SNM01]

Ai→j =
2.69735× 1010(Hz nm3)

λ3

|〈nJIF |L+ 2S |n′J ′IF ′〉|2

2F ′ + 1
(3.28)

Where the denominator is the degeneracy of the initial state and the wavelength is in nanome-

ters. If a transition in a nuclear spin zero isotope is to be considered, you simply need to

neglect (3.25) and just use the results from (3.26), with the degeneracy dictated by the total

angular momentum J’ rather than F’.

This can now be used to predict the lifetime of the upper qubit state in 171Yb+. The

transition frequency is ω = 2π× 12.642812 GHz, a wavelength in vacuum of 2.37 cm. This

gives a transition rate using (3.28) of 2.02×10−12 Hz, or a lifetime of about 15600 years.

There will also be interest later in knowing the Einstein A coefficient for the 2D5/2 →
2D3/2 due to the non vanishing magnetic dipole moment of the transition. Using the energy

level values found in the NIST spectral database, the wavelength of the transition can be

calculated to be

λD =
1

EJ=5/2 − EJ=3/2

=
1

24332.69 cm−1 − 22960.80 cm−1
= 7.295 µm (3.29)

We will be particularly interested in the 2D5/2 |F = 3〉 → 2D3/2 |F = 2〉 decay path, a small

error channel in the electron shelving scheme to be described later. Using the calculated

wavelength, the Einstein A coefficient is Ai→j = 28 mHz. With an upper state lifetime of

τ5/2 = 7.2 ms, the branching ratio to the 2D3/2 |F = 2〉 is ξ = (Ai→j)(τ5/2) = 2× 10−4.

3.4 Stimulated Raman transitions

In order to drive coherent rotation of a microwave frequency qubit with laser fields, two laser

fields with a frequency difference near the qubit frequency can be used. Consider the system

shown in Figure 3.3: the qubit states are {|0〉 , |1〉} with energies E = ~{ω0, ω1} (the energy
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zero is defined at ω = 0), and are separately coupled to the excited state |e〉 with energy

E = ~ωe. The unperturbed Hamiltonian is (setting ~ = 1),

H0 = ω0 |0〉 〈0|+ ω1 |1〉 〈1|+ ωe |e〉 〈e| (3.30)

Figure 3.3: Three level system interacting with two far detuned lasers. The qubit is defined
between the |0〉 and |1〉 states with separation Eq = ~ωq = ~(ω1 − ω0). Each qubit states
is separately coupled to the excited state |e〉 via separate laser beams with frequencies ωL0

and ωL1. The two lasers are detuned by different amounts from the excited state, indicated
as ∆0 and ∆1

The low lying states |0〉 and |1〉 are coupled to the excited state |e〉 by two separate

lasers with electric fields E0 and E1 via interaction with the electric dipole moment of the

transition. The electric fields can be expressed as

Ei(t) = Ei cos (ki · r − ωLit) =
Ei
2

(
ε̂ie

i(ki·r−ωLit) + ε̂∗i e
−i(ki·r−ωLit)

)
(3.31)

where I have assumed the field amplitudes to be real. The coupling of the applied fields to
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the ion are via the electric dipole interaction given by Hint = −d ·E, which can be expanded

in the basis states of the problem. I will assume that the interaction does not couple |0〉 and

|1〉 directly, so the terms 〈0|Hint |1〉 = 〈1|Hint |0〉 = 0.

Hint = −
∑
i

∑
j

|i〉 〈i|d ·E |j〉 〈j| =

− 〈0|d ·E |e〉 |0〉 〈e| − 〈e|d ·E |0〉 |e〉 〈0|

− 〈1|d ·E |e〉 |1〉 〈e| − 〈e|d ·E |1〉 |e〉 〈1|

(3.32)

Recognizing that there will be two applied fields, such thatE = E0+E1 (which are implicitly

time dependent), and that our beginning assumption that each field only couples one ground

state to the excited state, this expression can be simplified to

Hint = −〈0|d ·E0 |e〉 |0〉 〈e| − 〈e|d ·E0 |0〉 |e〉 〈0|

− 〈1|d ·E1 |e〉 |1〉 〈e| − 〈e|d ·E1 |1〉 |e〉 〈1|

= −H0e |0〉 〈e| − He0 |e〉 〈0| − H1e |1〉 〈e| − He1 |e〉 〈1|

(3.33)

The total Hamiltonian of the system is then given by

H = H0 +Hint =ω0 |0〉 〈0|+ ω1 |1〉 〈1|+ ωe |e〉 〈e|

− H0e |0〉 〈e| − He0 |e〉 〈0| − H1e |1〉 〈e| − He1 |e〉 〈1|
(3.34)

We will begin with the time dependent Schrodinger equation, i∂t |ψ〉 = H |ψ〉, to an arbitrary

state |ψ〉 = c0 |0〉 + c1 |1〉 + ce |e〉, where the coefficients are time dependent and evolve

according to the Hamiltonian. The resulting partial differential equations are

iċ0 = ω0c0 −H0ece

iċ1 = ω1c1 −H1ece

iċe = ωece −He0c0 −He1c1

(3.35)
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The first rotation we will make is to rotate each solution at its natural unperturbed frequency,

cn = bne
−iωnt for n = {0, 1, e}, which results in the new coupled partial differential equations

iḃ0 = −H0ebee
−i(ωe−ω0)t

iḃ1 = −H1ebee
−i(ωe−ω1)t

iḃe = −He0b0e
i(ωe−ω0)t −He1b1e

i(ωe−ω1)t

(3.36)

Looking at Figure 3.3, we can relate the frequencies above to experimentally controllable

parameters: ωe−ω0 = ωL0 + ∆0 and ωe−ω1 = ωL1 + ∆1. At this point we need to provide a

more explicit representation of the interaction matrix elements. Generally,the matrix element

will look like

Hnm = 〈n|d ·Ei |m〉

=
Ei
2

(
〈n|d · ε̂i |m〉 ei(ki·r−ωLit) + 〈n|d · ε̂∗i |m〉 e−i(ki·r−ωLit)

) (3.37)

Entering this into the partial differential equations, we will find that certain terms oscillate

at ∆i, and others will oscillate at twice the laser frequencies. Since after integration, the

parts of the solution that go as ei2ωLi will pick up a factor of 1
2ωLi

<< 1
∆i

, we will drop terms

that oscillate at optical frequencies an retain the slower evolving terms that should represent

the relevant dynamics of the system.

iḃ0 = −be
E0

2
〈0|d · ε̂∗0 |e〉 e−i∆0te−ik0·r

iḃ1 = −be
E1

2
〈1|d · ε̂∗1 |e〉 e−i∆1te−ik1·r

iḃe = −b0
E0

2
〈e|d · ε̂0 |0〉 ei∆0teik0·r − b1

E1

2
〈e|d · ε̂1 |1〉 ei∆1teik1·r

(3.38)

Defining the single photon Rabi frequency as Ωn = −En 〈n|d · ε̂∗n |e〉 and noting that 〈n|d ·

33



ε̂∗n |e〉 = 〈e|d · ε̂n |n〉, the above equations become

iḃ0 = be
Ω0

2
e−i∆0te−ik0·r

iḃ1 = be
Ω1

2
e−i∆1te−ik1·r

iḃe = b0
Ω0

2
ei∆0teik0·r + b1

Ω1

2
ei∆1teik1·r

(3.39)

Now we will want to eliminate the excited state from the dynamics, which we can do by

adiabatic elimination. This is done by directly integrating the equation for ḃe, under the

assumption that the dynamics are dominated by the terms that oscillate at ∆0,1, implying

the time dependent populations b0,1 remain approximately constant over these timescales.

As long as the detuning from the excited states of the Raman laser is sufficiently larger

than the two photon Rabi frequency, this approximation remains valid. Direct integration

therefore gives us

be = b0
Ω0

2

(1− ei∆0t)

∆0

eik0·r + b1
Ω1

2

(1− ei∆1t)

∆1

eik1·r (3.40)

Inserting equation 3.40 into the previous coupled differential equations effectively decouples

the dynamics of the ground states from the excited states. We get

iḃ0 = b0
Ω2

0

4∆0

e−i∆0t(1− ei∆0t) + b1
Ω0Ω1

4∆1

e−i∆0t(1− ei∆1t)e−i(k0−k1)·r

iḃ1 = b1
Ω2

1

4∆1

e−i∆1t(1− ei∆1t) + b0
Ω0Ω1

4∆0

e−i∆1t(1− ei∆0t)ei(k0−k1)·r
(3.41)

The rotating wave approximation can be made such that terms that oscillate at ∆0,1 can be

eliminated as they will average out over the timescales associated with the coherent evolution

of b0,1. To make this assumption work, we will now assume that the Raman lasers are equally

detuned from the excited state (∆0 = ∆1 ≡ ∆). This gives

iḃ0 = −b0
Ω2

0

4∆
− b1

Ω0Ω1

4∆
e−i(k0−k1)·r

iḃ1 = −b1
Ω2

1

4∆
− b0

Ω0Ω1

4∆
ei(k0−k1)·r

(3.42)
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Identifying δi = Ω2
i /4∆ and Ω̃ = Ω0Ω1/2∆, the effective two level Hamiltonian matrix can

be written

Heff =

 −δ0 − Ω̃
2
e−i(k0−k1)·r

− Ω̃
2
ei(k0−k1)·r −δ1

 (3.43)

3.4.1 Spontaneous scattering rate due to Raman lasers

We can get an estimate of the spontaneous emission rate due to populating the excited state

by looking at the excited state population in equation 3.40. We will make the simplifications

Ω0 = Ω1 ≡ Ω, and ∆0 = ∆1 ≡ ∆, and the assumption that the timescale of a gate tgate ∼ π/Ω̃

is much slower than 1/∆ so that we can ignore terms in 3.40 that oscillate at ∆. These terms

will oscillate rapidly over the time tgate and average to zero. With these assumptions, the

excited state population can be expressed as

|be|2 =
Ω̃2

4∆2
(|b0|2 + |b1|2 + b0b

∗
1e
i(k0−k1)·r + b∗0b1e

−i(k0−k1)·r)

=
Ω̃2

4∆2
(ρ00 + ρ11 + ρ01e

i(k0−k1)·r + ρ10e
−i(k0−k1)·r)

(3.44)

The spontaneous emission rate can then be expressed as Rspon = Γ|be|2 = Γρee.
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CHAPTER 4

The ytterbium ion

Our ion species of choice are the various isotopes of element 70, ytterbium. There are 7

isotopes of ytterbium with stable nuclei, and the m = 171 isotope with a nuclear spin I

= 1/2 is the workhorse qubit in many quantum information experiments. The only other

stable isotope with non-zero nuclear spin is the m = 173 isotope with a nuclear spin I =

5/2. Throughout this thesis, the primary isotopes that we work with are 174Yb+, 171Yb+,

and 173Yb+.

4.1 Relevant states, branching ratios, and linewidths

The energetic ground state of Yb+ has electron configuration 4f146s (2S1/2 ), a filled 4f inner

shell and a single valence electron in the outer 6s shell. The other hydrogen like states in

Yb+ are the different fine structure components of the 4f146p (2Po
1/2, 2Po

3/2) and 4f145d (2D3/2,

2D5/2) electron configurations.

Most remaining electronic states that are utilized in the Yb+ ion are not composed of

a full shell and a single valence electron, but instead an unfilled core shell (4f13) and two

valence electrons. These states arise due to the fact that it takes less energy to promote one

of the core electrons to outer electron orbitals than to second ionize the Yb ion. In most

ion species, the amount of energy necessary to remove a core electron exceeds the second

ionization energy of the ion. In the Yb+ isotopes, the required energy is only 2.65 eV (467

nm from the ground state) to reach the lowest lying state with an unfilled core, well below

the 12.18 eV needed for second ionization and creation of Yb2+. It should be noted that

there are other levels with signle valence electron and closed core shell and higher principle
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quantum number n, but the next level is 4f146d 2D3/2 at ∼ 62100 cm−1, more energetic than

any state considered throughout this thesis.

The 2Fo7/2 is the lowest lying of these states with electron configuration 4f136s2.

Relevant states in Yb+

State Lifetime Daughter states Branching ratio
2S1/2 ∞ ns n/a n/a
2Po

1/2 8.12(2) ns [OHM09] {2S1/2, 2D3/2} {0.995, 0.005} [OYM07]
2Po

3/2 6.15(9) ns [PRK97] {2S1/2, 2D3/2, 2D5/2} {0.9875 0.0017, 0.0108} [FFE18]
2D3/2 52.7(2.4) ms [YM00] {2S1/2} {1.0}
2D5/2 7.2(3) ms [TRG97] {2S1/2, 2Fo7/2, 2D3/2} {0.17, 0.83, 2×10−4∗} [TRG97]
3[3/2]o1/2 37.7 ns {2S1/2, 2D3/2} {0.982, 0.018}
1[3/2]o3/2 29.3 ns ∗∗ {2S1/2, 2D3/2, 2D5/2} {0.975, 0.003, 0.022}∗∗
2Fo7/2 ∼5 yrs {2S1/2} {1.0}

Table 4.1: ∗ This value is from theoretical calculations of the M1 decay rate, not from
[TRG97]. ∗∗ These values are calculated from theoretical Einstein A coefficients provided
by the DREAM collaboration at Mons University. Error bars for the branching ratios from
publications can be found in the provide citations.

4.2 Hyperfine structure

Atoms that possess non-zero nuclear spin (I 6= 0) will exhibit additional structure within

each fine structure state due to the interaction of the nuclear spin and the orbital angular

momentum of the valence electron (with the exception of when J = 0, as in the 1S0 state

in 171Yb). This interaction splits each fine structure state into sublevels with frequency

splittings ranging anywhere from 10’s of MHz to 10’s of GHz. A rule of thumb is that

electron orbitals with larger overlap with the nucleus exhibit stronger interaction with the

nucleus (in particular the ground 2S1/2 state in alkali earth like atoms).

In general, an atom with nuclear spin I may exhibit 2I + 1 nuclear moments, with the

I = 0 case the trivial electric monopole moment [Cas36, Ste20]. At low field strengths, the

hyperfine interaction can be treated as a perturbation to the spin-orbit interaction, and the

total angular momentum of the atom that is constant within a single state is F = I+J. The

good eigenstates of the system are then |γ, J, I, F,mF 〉, and within a fine structure state the
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Figure 4.1: Diagram of most relevant levels in the 171Yb+ ion for this thesis. Superscript
“o” on term symbols is used to indicate that the state has odd parity. All above transitions
with the exception of the 467 nm 2S1/2 ↔2Fo7/2 electric octupole transition have been driven
in our lab.

total angular momentum can take on values from F ∈ {|J − I|, |J − I|+1, ..., J+I−1, J+I},

and within a hyperfine level mF ∈ {−F,−F + 1, ..., F − 1, F}.

4.2.1 Magnetic dipole hyperfine interaction

The first non-trivial moment for non-zero nuclear spin is the magnetic dipole interaction.

The magnetic moment of the nucleus is

µI = gIµNI (4.1)
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where µN is the nuclear magneton and gI is the nuclear g-factor. The nuclear magneton is

related to the Bohr magneton by the mass ratio of the electron to the proton, which is (in

experimentalist units)

µN =
me

mp

µB = 762 Hz/Gauss (4.2)

And the nuclear g-factors for the two Yb isotopes with nuclear spin are1

gI(
171Yb+) = +0.98734

gI(
173Yb+) = −0.2592

(4.3)

The interaction of the nuclear magnetic moment with the magnetic field Bel created by the

electrons at the the location of the nucleus is

Hm.dipole = µI ·Bel ≡ AM1I · J (4.4)

where the equivalence is made recognizing that the nuclear magnetic dipole moment scales

as I and that the magnetic field produced by the valence electrons at the core scales as J

[Woo80]. This simplifies the problem to measuring the hyperfine splitting (equivalent to

measuring the magnetic dipole hyperfine constant, AM1).

The operators in equation 4.4 can be rewritten as

I · J =
1

2
(F2 − I2 − J2) (4.5)

which in turn gives the diagonal elements of the magneitc dipole hyperfine interaction Hamil-

tonian as

∆E =
1

2
AM1

[
F (F + 1)− I(I + 1)− J(J + 1)

]
(4.6)

In the absence of higher order hyperfine interaction, the so called interval rule holds, which

is that the energy splitting between the level with total angular momentum F and level

with total angular momentum F − 1 is given by ∆E(F ) = AM1F . Below is a table of

1https://easyspin.org/documentation/isotopetable.html
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experimentally measured AM1 for various states in 171Yb+ and 173Yb+.

AM1 in various fine structure states of Yb+

State Hyperfine Levels (isotope) AM1
2S1/2 F = 0, 1 (171) 12.642812118 GHz [FSL97]

F = 2, 3 (173) 3.497240079 GHz [MBG87]
2Po

1/2 F = 0, 1 (171) 2.105 Ghz [MGH94]

F = 2, 3 (173) -581 MHz [MGH94]
2Po

3/2 F = 1, 2 (171) 875.4 MHz [FFE18]

F = 3, 4 (173) -245 MHz [BM92]
2D3/2 F = 1, 2 (171) 430 MHz [ET96]

F = 1, 2, 3, 4 (173) -110 MHz ∗∗ [Ita06]
2D5/2 F = 2, 3 (171) -63.368 MHz [TEM21]

F = 0, 1, 2, 3, 4, 5 (173) 3.47 MHz ∗∗ [Ita06]
2Fo7/2 F = 3, 4 (171) 905.1 MHz ∗

F = 1, 2, 3, 4, 5, 6 (173) -240 MHz ∗∗ [DF16]
1[5/2]5/2 F = 0, 1, 2, 3, 4, 5 (173) -55 MHz ∗∗ [PSW12]

Table 4.2: Summary of measured hyperfine magnetic dipole coefficients. Uncertainties have
been left out and can be found in the respective citations. Note that m = 173 fine struc-
ture levels with J ≥ 3/2 will have higher order contributions from the electric quadrupole
(BE2) and magnetic octupole (CM3) hyperfine interactions, discussed below. ∗ 2Fo7/2 interval
measured in our lab, unpublished. ∗∗ Theoretical prediction.

4.2.2 Higher order hyperfine interactions

For atoms with nuclear spin I > 1/2 and fine structure state with J > 1/2, there can be

higher order interactions between the electron and the nuclear moments. The next two higher

order moments are due to the nuclear electric quadrupole moment (BE2) and the magnetic

octupole moment (CM3). Includng these terms, the hyperfine interaction Hamiltonian can

be written as [Arm71, Ste20]

HHFS = AM1I · J +BE2fE2(I · J) + CM3fM3(I · J) (4.7)

where the coefficients are functions of the nuclear spin and electron angular momentum
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J, given in [Arm71, Ste20] as

fE2 =
3(I · J)2 + 3

2
I · J− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)

fM3 =

[
10(I · J)3 + 20(I · J)2 + 2(I · J)

[
− 3I(I + 1)J(J + 1) + I(I + 1) + J(J + 1) + 3

]
− 5I(I + 1)J(J + 1)

]
/
[
I(I − 1)(2I − 1)J(J − 1)(2J − 1)

]
(4.8)

For the stable ytterbium isotopes, these higher order interactions only apply to 173Yb+ with

nuclear spin I=5/2. Very few of these higher order moments have been measured in the

ionic 173 isotope, but some theoretical estimates have been made. The energy shift from the

energetic centroid can be written as [Ste20]

∆EHFS =
1

2
AM1K +

3
2
K(K + 1)− 2I(I + 1)J(J + 1)

4I(2I − 1)J(2J − 1)
BE2+

5
4
K2(K + 4) +K[I(I + 1) + J(J + 1) + 3− 3I(I + 1)J(J + 1)]− 5I(I + 1)J(J + 1)

I(I − 1)(2I − 1)J(J − 1)(2J − 1)
CM3

(4.9)

where K = F (F + 1)− I(I + 1)− J(J + 1).

Higher order hyperfine coefficients in 173Yb+

State BE2 CM3
2Po

3/2 1460 MHz (meas) [BM92]
2D3/2 951 MHz [Ita06]
2D5/2 1190 MHz [Ita06]
2Fo7/2 -4762 [DF16]

-5330 MHz [XLC20] 4.53× 10−4 MHz/(b ×µN) [XLC20]
-3680 MHz [PSW12]

1[5/2]5/2 -1720 MHz [PSW12]

Table 4.3: Unless denoted as an experimental measurement, all above numbers are theoretical
calculations.
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4.3 Laser cooling Yb+

Laser cooling of any of the Yb+ isotopes only requires two lasers: a 369 nm laser and a

935 nm laser. Strong photon scattering on the 2S1/2 to 2Po
1/2 transition is achieved at 369

nm, and repumping of the metastable 2D3/2 is performed at 935 nm. This repumper is

necessary to facilitate continuous photon scattering (and hence cooling) on the stronger

transition because the 2Po
1/2 can decay to the relatively long lived 2D3/2 about 1 out of every

200 scattered photons, corresponding to a branching ratio of 0.005.

To trap individual ions for extended periods of time, an additional repump laser is nec-

essary to depopulate the long lived 2Fo7/2 , which can be populated without direct laser

coupling. It is believed that various collisional pathways exist that can transfer an electron

during Doppler cooling to the 2Fo7/2 [SDN09], and it was shown that the transition rate to

the long lived state is a function of the background pressure of buffer gasses. Various re-

pumping schemes have been explored for returning an ion in the 2Fo7/2 to the cooling cycle

[Sug99]. A laser at 3.4 µm can be used to couple the 2Fo7/2 to the 2D5/2 , but the relatively

long lifetime (7.2 ms) and unfavorable branching ratio to the 2S1/2 (0.17) make this ineffi-

cient. A common choice is to use a 638 nm laser to couple 2Fo7/2 to 1[5/2]o5/2, which can in

principle decay to either low lying 2DJ state. In our lab, we repump the 2Fo7/2 at 760 nm,

coupling to the 1[3/2]o3/2, which has the advantage that it has electric dipole coupling to the

2S1/2 , producing a favorable branching ratio (0.975) to 2S1/2 and short lifetime (29.3 ns).

The 760 nm laser couples the two states via an electric quadrupole transition amplitude,

and therefore has an extremely small branching fraction. Even with 10’s of mW of 760 nm

laser and reasonable beam waists (ω0 ∼ 30µm) at the ion’s position, the transition remains

well under saturated. This means that more laser power would be a win and speed up the

repumping of the 2Fo7/2 .

Laser cooling of the non-spin zero isotopes require extra optical tones due to the presence

of hyperfine structure. For 171Yb+ , a free space resonant EOM 2 at 7.379 GHz is used to

2New Focus Model 4851, 3W microwave power
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produce a second order sideband +14.758 GHz from the laser carrier, which is set to be

-10 MHz from the 2S1/2 |F = 1〉 ↔ 2Po
1/2 |F = 0〉 transition. The second order sideband

repumps the 2S1/2 |F = 0〉 state to the 2Po
1/2 |F = 1〉 transition, which is populated by off

resonant excitation to the 2Po
1/2 |F = 1〉 by the laser carrier tone. The modulation frequency

is set to be on resonance with the repump transition when the carrier is -10 MHz of the

transition for optimal Doppler cooling.

An additional laser tone at -3.07 Ghz is necessary on the 935 nm laser for repumping of

the 2D3/2 |F = 2〉 state, which is only populated via 369 nm coupling to the 2Po
1/2 |F = 1〉

state. This tone is applied with a fiber EOM 3.

4.4 The ground state qubit

The ground state qubit in 171Yb+ is a hyperfine zero-field clock state qubit within the

2S1/2 manifold. Specifically, the qubit states are |0〉g = 2S1/2 |F = 0,mF = 0〉 and |1〉g =

2S1/2 |F = 1,mF = 0〉. While any of the three mF states in the 2S1/2 |F = 1〉 manifold is a

suitable choice for a qubit along with |0〉g , the |1〉g state is chosen due magnetic insensitiv-

ity near zero field. This means that when the external magnetic field at the ion’s position is

zero, there is no linear Zeeman shift of the qubit frequency. The quadratic shift of the qubit

frequency is δ2 = (310.8Hz/G2)|B|2.

In order to lift the degeneracy of the Zeeman states in the ground and all excited states,

a small magnetic field is applied by applying current to a coil mounted directly to the

vacuum chamber. This is done to avoid coherent dark states on the cooling transitions that

would suppress laser scatter on the 2S1/2 ↔ 2Po
1/2 transition, and therefore our cooling power

[JG02]. While this added external field does mean we operate the ground state qubit away

from the clock condition, the field is small enough that only a small linear sensitivity to

magnetic field fluctuations remains.

3AdvR, ∼ 20 mW microwave power
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4.4.1 |0〉g state preparation

The |0〉g state can be prepared extremely fast in the 171Yb+ ground state qubit due to

electric dipole selection rules on the 2S1/2 → 2Po
1/2 transition. Application of laser light

driving the 2S1/2 |F = 1〉 → 2Po
1/2 |F = 1〉 transition will cause population to quickly fall

into the |0〉g state. This laser tone should be +2.105 GHz of the laser carrier, which is

created by phase modulation of the laser by a free space EOM 4.

Figure 4.2: Diagram of laser tones and driven transitions for incoherent preparation of the
|0〉g state.

The polarization of the optical pumping beam is chosen so that all transitions are driven

so no population is stranded in any of the three magnetic sub-levels of the 2S1/2 |F = 1〉.

4New Focus Model 4431, 2W microwave power
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Once excited to the 2Po
1/2 |F = 1〉, the electron will decay to |0〉g 1/3 of the time, and back

into one of the 2S1/2 |F = 1〉 sub-levels 2/3 of the time. The polarization of the 935 nm laser

beam is set such that all dipole allowed transitions are driven to prevent population trapping

in the 2D3/2 |F = 2〉.
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Figure 4.3: Preparation of the |0〉g state as a function of optical pumping duration. Two
different optical intensities are shown here as examples. High fidelity state preparation of
the |0〉g state can be achieved in just a few microseconds.

4.4.2 |1〉g state preparation

Preparation of the |1〉g state is a two step process: first the |0〉g state is prepared via in-

coherent optical pumping as described above, followed by a θp = π rotation of the qubit

with resonant microwaves. Here θp is the pulse area of the (typically) rectangular microwave

pulse given by θp = Ωt, where Ω is the resonant Rabi frequency, and corresponds to the

polar angle on the Bloch sphere through which the qubit state is rotated. So, to perform a
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full rotation from |0〉g to |1〉g , the pulse area needs to be π, and thus the radiation applied

for a time tπ = π/Ω.
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Figure 4.4: Microwave Rabi flopping of the ground state qubit. Population in the |1〉g state
as a function of microwave interrogation duration. The optimal time for a θp = π rotation
here is about 27 µs. Each data point is the result of 500 experiments.

Preparation of the |1〉g state is done in this way because there is not a high fidelity avenue

to preparing the state incoherently. If there was, that would likely be the method of choice,

just like the |0〉g state.

4.4.3 Qubit state readout

Readout is performed by applying laser light resonant with the 2S1/2 |F = 1〉 → 2Po
1/2 |F = 0〉

transition, with polarization such that the bright state (|1〉g ) produces the maximal number

of photons. If we assume the laser used for detection is linearly polarized and has propa-

gation direction perpendicular to the applied magnetic field, the excited 2Po
1/2 |F = 0〉 state
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population can be analytically solved for [ETH10] (slight modification of similar equation

from [JG02]),

Pe =
3

4

Ω2

3

cos2 θ sin2 θ

1 + 3 cos2 θ

1

(γ′/2)2 + ∆2(γ′
2

)2

=
(γ

2

)2

+
Ω2

3
cos2 θ

1− 3 cos2 θ

1 + 3 cos2 θ
+

cos2 θ

1 + 3 cos2 θ

(
Ω4

36δ2
B

+ 4δ2
B

) (4.10)

Where Ω is the resonant Rabi frequency as defined in [ETH10] ([JG02] has a slight difference

in definition), δB = µB|B| is the energy shift of the 2S1/2 |F = 1,mF = ±1〉 states due

to the linear Zeeman effect, ∆ is the detuning from the mF = 0 ↔ mF = 0 transition,

γ = 2π × 19.6 MHz is the natural linewidth of the transition, and θ is the angle between

the laser electric field polarization and the quantization axis. Generally speaking, since the

relative strength of the three 2S1/2 |F = 1,mF 〉 → 2Po
1/2 |F = 0〉 transitions are the same,

the optimal polarization will have about equal amounts of σ−, σ+, and π polarization. This

occurs when the the laser polarization is at an angle of θ = arccos 1√
3

= 54.7◦ with respect

to the applied magnetic field, such that the projection onto B is 1/3 (resulting in 1/3 π

contribution) and projection perpendicular to B is 2/3 (resulting in 1/3 σ− and 1/3 σ+). In

the limit of large magnetic field, the excited state population can approach 1/4, as expected

in a fully saturated multilevel driven system with three ground states and one excited state

(all states become equally populated in the limit of infinite saturation). Optimization of

resonant Rabi frequency as a function of the applied magnetic field is discussed in various

publications [JG02, ETH10], with the optimized resonant scattering rate given by [NVG13],

Γopt =
γ

6

s

1 + 2
3
s+ (2∆

γ
)2

(4.11)

where s = 2Ω2/γ2 is the on resonance saturation parameter and the result assumes the on

resonance Rabi frequency has been set to match the optimal given in [JG02], Ω = 2δB.

This transition, along with repumping of the 2D3/2 |F = 1〉 → 3[3/2]o1/2 |F = 0〉, forms a
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Figure 4.5: Diagram of laser polarization and frequency used to perform closed cycling of
the |1〉g state for state readout.

closed cycling transition that includes the |1〉g state, and not the |0〉g state. If the qubit

is projected into the |1〉g state, many photons are scattered, collected, and counted by

photon time tagging electronics. Conversely, if the qubit projects into |0〉g , no photons

are scattered and no photons should be scattered. Results from a state preparation and

measurement (SPAM) experiment of the ground state qubit using this readout scheme are

shown in Figure 4.6.

This method for qubit readout has the advantage of scattering on a strong electric dipole

transition, making it fast and efficient. The large hyperfine splitting in the 2Po
1/2 (2.105

GHz) relative to the atomic linewidth (19.6 MHz [OHM09]) allows for high fidelity readout

in a short period of time before qubit states begin to mix. This mixing sets a fundamental

limit to the measurement fidelity if the histogram discrimination technique is used for state
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Figure 4.6: Histograms resulting from the individual state preparation and measurement
of both qubit states using the standard I = 1/2 hyperfine qubit readout scheme. In this
particular histogram, light collecting objectives on both sides of the ion trap are used to
increase the photon detection efficiency. The state preparation and measurement fidelity of
|0〉g is F|0〉g = 0.9970(5), and the |1〉g state is F|0〉g = 0.9905(9), resulting in a total fidelity

Fq = 0.9937(8). Each histogram is the result of 10000 attempts.

detection. Following the work in [ABH06] with updated values for the atomic properties,

if ideal photon detection efficiency was possible (unit efficiency), state readout fidelity of

Fideal = 1− 5× 10−6 is in theory possible.

Despite the relatively large ratio ωHFP/ΓP ≈ 100, the off resonant excitation to the upper

hyperfine manifold is what limits the state detection fidelity in 171Yb+ . In a realistic exper-

iment, there will be two rates: there will be a rate at which population in the 2S1/2 |F = 1〉

is pumped dark during state detection, and also a rate at which the |0〉g is pumped bright,

both via coupling to the 2Po
1/2 |F = 1〉. The latter rate is smaller by nearly an order of

magnitude due a larger detuning of ωHFS + ωHFP ≈ 14.7 GHz.

Proper treatment of these effects for both detection via the 2Po
1/2 (hyperfine selective,

all polarizations) and via the 2Po
3/2 (hyperfine selective, polarization σ±) can be found in

[ABH06], with additional treatment of the former case specifically related to 171Yb+ in

[ETH10].
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4.5 Readout statistics

When we perform a state preparation and measurement experiment, we are attempting to

create a pure state, and detect it via laser induced fluorescence (the states being {|0〉, |1〉}).

The goal of the experiment is to determine the binomial distribution parameters that result

from the combined state preparation and measurement sequence, where each time we ask

the binary output question “was the ion in |1〉?” (or for shelving state detection, “was the

ion in |0〉?”). Each attempt at state preparation and measurement is a Bernoulli process,

where the result is either a success or a failure, typically determined by prior knowledge of

the attempted state and the number of photons detected. At the end of the experiment, we

are provided with a two key parameters: the number of trials (nt), the number of failures

(nf ), the interpretation of which can change based on the experiment. For instance

• In a SPAM measurement, a “failure” is when we attempt to prepare a qubit basis state,

measure the result, and find that we did not measure or prepare that state properly.

This could mean we attempted to prepare |0〉g , but detected a number of photons

Nγ > d, where d is the histogram discriminator. Conversely, this could mean we

attempted to prepare |1〉g , but detected a number of photons Nγ < d. Both scenarios

are failures.

• In a Rabi experiment, we will select one of the basis states to be out definition of

“success”, and any event that fails to create that state is a “failure”. For instance, at

the tRabi = π/2ΩRabi time on a Rabi flop, we expect to “fail” 50% of the time since we

are attempting to create the state |ψ〉 = 1√
2
(|0〉g + |1〉g).

When the number of experimental trails nt and the number of successes, nt - nf , are known,

the probability of success can be estimated as p =
nt−nf
nt

= 1−nf/nt. Now we want to assess

our confidence in this measurement by placing a confidence interval around p. Intuitively,

the more trials that are performed the more confident we can be that the mean outcome

of our experiment accurately represents the true value of p since we have sampled from the
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distribution a larger number of times. A common method of assigning a confidence interval

about p is to assume the error is normally distributed about the observed value of p. This

gives the simple result,

p±

√
p(1− p)

nt
(4.12)

It turns out that the normal approximation does not hold well when the success probabilities

are close to 0 or 1, where the binomial distribution becomes asymmetric and non-Gaussian.

In this case, we need a new way to assign a confidence interval. This will often be useful for us

when performing SPAM experiments with electron shelving, or using shelving state detection

to perform some other experiment since we will often not perform enough experiments to

significantly sample from our distribution of errors near the extremes (0 or 1). The Wilson

score interval can be expressed as

p± =
ns + z2

2

nt + z2
± z

nt + z2

√
nsnf
nt

+
(z

2

)2

(4.13)

where p± is the value at the edge of the confidence interval ± from the mean, at a desired

confidence level set by the z-score value z (where z = number of standard deviations from the

mean to contained within the confidence interval). If we were to report a measured values

as (lower bound, mean, upper bound), then it would be reported as (p−, p, p+). The Wilson

interval remains reliable when the success probabilities are near the extreme and when the

number of samples are low [Wal13].

4.6 Spectroscopy

Throughout this thesis we will utilize transitions that either need to be periodically cali-

brated, such as out 369 nm and 935 nm transitions for laser cooling, or frequencies estab-

lished since they are new transitions that we have never driven before. Here we will detail

some of the spectroscopy we have done. In most cases below, the quoted frequencies are
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read off from our wavemeter 5 as the laser software lock is used to scan the laser frequency.

The corresponding ion fluorescence and wavemeter reading is recorded every 100-200 ms

(depending on the laser) and the results are plotted.

4.6.1 2S1/2 → 2Po
1/2

We routinely perform an experiment to calibrate the line center for the 369 nm laser by

performing an experiment where we interleave Doppler cooling of the ion with interrogations

of the electric dipole transition at variable detunings. By interleaving the cooling and inter-

rogation of the ion, we can observe the spectral line shape on the blue side of resonance and

produce full Lorentzian line shapes that would not be possible by simply scanning the laser

frequency from red to blue over resonance.
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Figure 4.7: Interleaved line scan of a single 171Yb+ ion. The detuning on the x-axis is
controlled by a double pass acousto-optic modulator, and is referenced to the center frequency
of the AOM.

The ion is Doppler cooled for 1 ms at ∆ = - 10 MHz, followed by interrogation for 100 µs

at a fixed detuning during which time photons are counted. Each data point is the result of

5High Finesse WS-U
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repeating this procedure 100 times at a fixed detuning. Observed spectral line widths (full

width half maximum) on a typical day are in the range Γ′ ∈ 2π × [22, 30] MHz, determined

by fitting the data to a Lorentzian profile. Broader line widths typically indicate power

broadening or poor Doppler cooling.

This experiment, when run, is designed to automatically run the scan and perform a

fitting routine to update the location of the line center in our global parameters shared

amongst the various experiments. This makes it easy to ensure that we are always applying

369 nm laser light at the desired detuning from resonance. For longer experiments, we have

the ability to integrate these tracking diagnostic experiments within the longer experiment

for tracking of drifts in the lab.

4.6.2 2Fo
7/2 ↔ 1[3/2]o3/2

The transition from the 2Fo7/2 state to the 1[3/2]o3/2 state is a critical one throughout this

thesis. It is an electric octupole transition that we use to transfer population back to the

2S1/2 from the 2Fo7/2 . Despite the weakness of the transition moment, the fast decay of

the excited state (∼29 ns) and favorable branching to the ground state (0.975) makes it an

attractive pathway for retrieving population stranded in the 2Fo7/2 .

To perform spectroscopy of the transition, we load multiple 171Yb+ ions in the trap.

The ions are continuously pumped into the 2Fo7/2 while Doppler cooling by applying 411

nm light resonant with the 2S1/2 |F = 1〉 → 2D5/2 |F = 3〉 transition, which will populate

both hyperfine manifolds in the 2Fo7/2 . On separate scans, the 760 nm laser are scanned in

frequency around the known center frequency, and we observe a decrease in fluorescence as

the laser becomes off resonant due to population trapping in the 2Fo7/2 .

Both lasers are shifted in frequency by +160 MHz by separate acousto-optic modulators,

which is not taken into account on the frequency axis in Figure 4.8.
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Figure 4.8: The 2Fo7/2 |F = 3〉 → 1[3/2]o3/2 |F = 1〉 transition is shown on the left, and the
2Fo7/2 |F = 4〉 → 1[3/2]o3/2 |F = 2〉 transition is shown on the right. The resulting lineshapes
are fit to a micromotion modulated spectrum since large amounts of excess micromotion
was present during these scans. The difference in overall fluorescence is because a different
number of ions were in the trap for each scan, leading to differing overall peak fluorescences.

4.6.3 2D5/2 ↔ 1[3/2]o3/2

The 2D5/2 ↔ 1[3/2]o3/2 transition at 976 nm will be used to aid in depopulating the 2Fo7/2 by

quenching the 1[3/2]o3/2 → 2D5/2 → 2Fo7/2 decay path. It will also serve as a critical tool for

enhancing our preparation of the |0〉g state via as second incoherent optical pumping step

along with the 411 nm laser (which will be address in later chapters).

Figure 4.9: All three allowed transitions are shown in this figure. The 2D5/2 |F = 2〉 ↔
1[3/2]o3/2 |F = 1〉 is shown on the left, and the 2D5/2 |F = 2〉 ↔ 1[3/2]o3/2 |F = 2〉 is shown on

the right in black. The 2D5/2 |F = 3〉 ↔ 1[3/2]o3/2 |F = 2〉 is shown in blue, shifted from the

neighboring transition by the 2D5/2 hyperfine splitting.
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The above scans are taken by Doppler cooling multiple ions in the trap while driving the

2S1/2 |F = 1〉 → 2D5/2 |F = 2, 3〉 transition, while also illuminating the ion with 760 nm laser

light to help depopulate the 2Fo7/2 . As the 976 nm laser is scanned over the two resonances,

the coupling induced to the 1[3/2]o3/2 quenches the electric dipole decay to the 2Fo7/2 from

the 2D5/2 state, resulting in an increase in fluorescence. The two transitions in black in

Figure 4.9 are separated by the bracket state hyperfine splitting, which these scans imply is

∆HFB = 2π× 8.861(3) GHz. The difference in center frequency for the two resonances on

the right hand side of Figure 4.9 is due to the 2D5/2 hyperfine splitting. From the data, we

measure the splitting to be ∆HFD = 2π× 188(2) MHz.

The 976 nm laser is shifted in frequency by +320 MHz by an acousto-optic modulator,

which has not been taken into account on the frequency axis in Figure 4.9.

4.6.4 2D3/2 ↔ 1[3/2]o3/2

The 2D3/2 ↔ 1[3/2]o3/2 will be of interest when performing electron shelved state detection

of the ground state qubit in 171Yb+ . This transition can be used to repump a particular

rare decay from the 2D5/2 to the 2D3/2 that can cause errors during state detection. This

transition is around λ = 861 nm, and we used the output of a continuous wave titanium

sapphire laser to perform the spectroscopy with approximately 100 µW of laser light.

To perform the spectroscopy, a single 171Yb+ ion was loaded into the trap. The intensity

of the 935 nm repump laser is reduced well below saturation such that the ion fluorescence

is reduced by a factor of ∼ 10. The 861 nm laser can aid the repumping of the 2D3/2 during

laser cooling by driving population to 1[3/2]o3/2, which predominantly decays back to the

2S1/2 state. Due to potential decays to 2D5/2 that can populate 2Fo7/2 during the spectroscopy,

lasers at 976 nm and 760 nm are used to depopulate 2D5/2 and 2Fo7/2 directly. As the 861

nm laser is scanned over resonance while Doppler cooling, we see an increase in fluorescence

due to an increased rate of population depletion from 2D3/2 .

The measured hyperfine splitting of the 1[3/2]o3/2 state based on this spectroscopy is

∆HFB = 2π× 8.876(2) GHz. This measured splitting is inconsistent with the above mea-
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Figure 4.10: Spectroscopy of the 861 nm laser transition. The clear increase in fluorescence is
due to an increased repump rate of the 2D3/2 . The two transition shown are 2D3/2 |F = 1〉 →
1[3/2]o3/2 |F = 1〉 (left) and 2D3/2 |F = 1〉 → 1[3/2]o3/2 |F = 2〉 (right). We do not directly

observe the transitions from 2D3/2 |F = 2〉 performing the scans in this way due to the very
small amount of population that resides there in steady state laser cooling.

surement performed on the 2D5/2 |F = 2〉 → 1[3/2]o3/2 |F = 1, 2〉 transitions. The cause of

this discrepancy is unknown, but could be due to some uncalibrated systematic effects such

as an AC Stark shift of the 2D3/2 due to continuous illumination with the 935 nm laser.
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CHAPTER 5

The Experiment

Most trapped ion quantum information systems have many common components necessary

for day to day operation. A short, but by no means comprehensive, list of some components

is: an ion trap housed in a ultra-high vacuum system, lasers, optical modulators, radio-

frequency and microwave-frequency synthesizers, and some form of experimental control.

Here I will go through the main aspects of our experimental setup and try to highlight why

certain design choices were made.

5.1 The trap

The trap used in all experiments throughout this thesis is an oblate Paul trap, or a “ring”

trap, whose potential is formed by applying a radiofrequency potential to a ring. In fact

two of these traps, identical in design and fabricated at the same time, were used: the first

one experienced damage that I will briefly discuss later. Many of the details of this trap are

addressed in [YSD15]. This particular geometry results in strong confinement in all three

dimensions without the need for static fields.

The ion trap was fabricated by Translume. The base is a monolithic 1 mm thick piece

of fused silica. For conductive regions of the trap, the layering process began with 20 nm

thick layer of titanium, followed by a 500 nm thick layer of gold, with gaps in the coating

between the separate conducting regions. In the side of the trap there are trenches with 200

µm diameter openings that taper down conically to 100 µm in diameter at the RF ring for

delivery of laser beams and neutral Yb atoms.

Typical secular frequencies in our ion trap are {ωx, ωy, ωz} ≈ 2π×{0.5, 0.5, 1.0}MHz. The
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Figure 5.1: Ion trap used throughout this work. The RF is connected to the hook on the
right hand side, and the trace leads to the ring at the middle. The stainless steel tube in the
bottom right is the neutral Yb oven directed through a laser etched conical section in the
side of the trap, and on opposing side is a trench for neutral Yb atoms to be deposited into.
A metallic guard is placed between the oven and RF feedthrough to prevent Yb deposition
on the RF trace.

strong confinement in the z-direction causes ion crystals to form in 2 dimensional triangular

lattices as shown in Figure 5.2.

The ion trap is housed in a 6” stainless steel octagon with recessed UV grade fused silica

re-entrant viewports on top and bottom. This was done to allow for high numerical aperture

(NA) optical access from both sides of the trap. The windows on the sides of the chamber

are 2.75” UV grade fused silica viewports AR coated at 369 nm to avoid stray scatter of 369
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Figure 5.2: Various ion crystal structures observed in our trap. Each image is composed
of a different number of 174Yb+ ions ranging from 1 to 9. Larger ion crystals have been
loaded, but are hard to keep crystallized due to excess micromotion experienced by all ions
not residing at the center.

nm light.

5.1.1 Trap breakage

The first iteration of this ion trap trapped ions quite well for over 5 years. Over time, the

application of high voltage RF caused degradation of the gold lamination on the RF ring,

and a portion of the ring became delaminated from the surface. Even though this happened,

the trap still created a suitable potential for trapping ions, but with degraded stability.

The initial sign that something was in fact wrong was ion position drifting around in the

trap, indicating some sort of time dependent phenomena in the local electric field (either

the stray fields were changing, or something about the RF was changing). The ion drift

eventually became large enough to cause ion loss, limiting our lifetime to m̃inutes and the

trap often un-loadable.
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Figure 5.3: Images taken of the broken ion trap once removed from the vacuum chamber. A
part of the RF ring gold coating is missing and shows the exposed titanium beneath. These
images were taken through a microscope objective with a standard cell phone camera.

5.2 Vacuum chamber

The ion trap is housed in a 6” stainless steel octagon with recessed UV grade fused silica

rentrant viewports on top and bottom. This was done to allow for high numerical aperture

(NA) optical access from both sides of the trap. The windows on the sides of the chamber

are 2.75” UV grade fused silica viewports AR coated at 369 nm to avoid stray scatter of 369

nm light.

We utilize three separate pumps that remain attached to the chamber: a 20 L/s ion pump

from Agilent, a titanium sublimation pump housed in a 6” diameter nipple (TiSub), and a

non-evaporable getter from SAES (NEG).
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5.2.1 Trap replacement

When we replaced the broken ion trap, the chamber was entirely disassembled and slightly

rearranged so that each part could be cleaned before baking the chamber. Most standard

stainless steel components were cleaned in three stages: deionized water with Alcanox, fol-

lowed by acetone, and lastly methanol. All step were performed by submerging the part in

an ultrasonic bath with the solvent for about 30 minutes each. After cleaning, each part was

wrapped in clean UHV grade foil and stored before assembly in a clean area. The exceptions

were the main octogon, and the TiSub nipple due to their size and various parts that were

already mounted and inside that we did not wish to remove.

Once assembled, the chamber was places inside a convection oven and evacuated by a

turbopump. The oven was ramped at a rate of 2◦ C every 5 minutes until reaching 205◦ C,

limited by the fused silica - stainless steel seal on the chamber windows. Background gas

constituents were monitored with a residual gas analyzer. With the turbopump operating,

many components were outgassed by applying current: the TiSub, the NEG, and the neutral

Yb oven.

The NEG was also activated while the turbopump was on, as it has been observed that

NEG activation can cause extreme outgassing that can make an ion pump inoperable if it

is the only other pump used to clean out the debris from the NEG [Huc15]. The NEG

was activated once at the beginning of the bake (heated to ∼ 500◦ C), and conditioned

various times (heated to ∼ 200◦ C) before closing the bakeable valve. Each time the NEG

was conditioned, we observed a spike in the H2 partial pressure on an RGA, followed by an

exponential decay to a baseline below the previous baseline. This was repeated until the

baseline remained unchanged.

The bakeable valve was closed with the ion pump activated, and the chamber continued

to bake for ∼ 2 weeks. Once the chamber temperature was ramped back down to room

temperature, the pressure read by our ion gauge was 1.6×10−10 Torr. Repeated firing of the

TiSub over the course of the next two weeks reduced the pressure to a final value of 3×10−11

Torr.
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5.3 The lasers

The quick list of lasers used in this experiment is: 369 nm, 399 nm, 411 nm, 760 nm, 935 nm,

976 nm, and a mode locked laser. The purpose of all these lasers is briefly covered below.

Then the lasers will each be detailed in their own subsections with more specifics.

Practical trapping of Yb+ ions only requires three lasers at 399 nm, 369 nm, and 935

nm. The 399 nm laser is the first step in 1+1 REMPI of neutral Yb atoms, the second step

being facilitated by the 369 nm laser. Once the neutral Yb atom has been photoionized, the

369 nm and 935 nm lasers facilitate laser cooling in the {2S1/2 ↔ 2Po
1/2 → 2D3/2 ↔ 3[3/2]o1/2

} cycle, where the right arrow is meant to emphasize that this is a four level laser cooling

cycle.

In reality, we have quite a few additional lasers. Two 760 nm lasers separated by 5.257

GHz are needed to deplete population that becomes trapped in the 2Fo7/2 state via the

1[3/2]o3/2 state. This state is thought to be populated during standard laser cooling via

collisional transfer of 2D3/2 → 2D5/2 , which decays strongly to the metastable state via a

3.4 µm photon. Due to the extreme lifetime of the 2Fo7/2 (∼ 5 years), an ion that ends up in

this state will not be recovered via spontaneous emission back to the ground state without

laser assisted repumping. Additionally, for electron shelving in Yb+ the 760 nm lasers are

necessary at moderate intensities to achieve fast retrieval of population in the metastable

state back into the cooling cycle.

The other key laser for electron shelving is the 411 nm laser, which drives the 2S1/2 ↔
2D5/2 electric quadrupole transition. In reality we will want the ability to drive separate

hyperfine transitions during the course of a shelving experiment, so we will require two 411

nm beams separated by the 2D5/2 hyperfine splitting of 191 MHz.

Two lasers that facilitate more specific tasks in the electron shelving experiment are

the 861 nm and 976 nm lasers. The 976 nm laser repumps population in the 2D5/2 to the

1[3/2]o3/2. This will be useful for two reasons: it will speed up recovery of 2Fo7/2 population by

suppressing the 1[3/2]o3/2 → 2D5/2 → 2Fo7/2 decay channel, and it will also facilitate a second
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method for incoherent preparation of the |0〉g state. The 861 nm laser addresses the 2D3/2 →
1[3/2]o3/2 transition, which is used to suppress errors in dark state population readout caused

by 2D5/2 → 2D3/2 magnetic dipole decay during electron shelving. This error channel will be

discussed in more detail when covering the electron shelving scheme.

The mode locked laser served various purposes throughout this thesis, first used for direct

laser cooling of Yb ions, and second for background free state detection of the 171Yb+ qubit.

5.3.1 The 369 nm system

The 369 nm laser is a MogLabs ECDL direct diode laser. The laser provides about 7 mW

of laser light directly out of the laser head, and a large power hit is taken by using an

anamorphic prism pair to clean up the laser mode extra-cavity. After an optical isolator, a

little over 3 mW of laser light is available for three purposes: fiber to a wavemeter, locking

to an optical cavity, and to deliver to the experiment.

The laser is first split on a polarizing beam splitter, with the majority of the light coupled

into a single mode fiber and delivers typically 1 mW to the main optical table. The remaining

light is split on a 45/55 pellicle, one portion going to the wavemeter and the other through

a second optical isolator to the optical cavity. The second optical isolator is there to prevent

feedback of optical cavity to the laser, which we discovered was necessary after initially

setting up the cavity.

The portion of the light delivered to the experiment is first passed through a double pass

AOM setup, for a total frequency shift of +400 MHz. The zeroth order of the first pass of

the double pass is picked off with a D-mirror, and sent through a single pass AOM at about

+350 MHz and delivered to the experiment as a protection beam.

The double passed light is then delivered through a series of three AOMs set up in a

parallel configuration: the zeroth order of AOM n goes directly into the n+1 AOM. All

three AOMs have a fixed frequency shift of +110 MHz.

The first of the three is sent through a resonant free space electro optic phase modula-
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tor (EOM) with a resonant frequency of 7.379 GHz1. The positive second order sideband

frequency is chosen such that when the 369 nm laser carrier frequency is set 10 MHz red de-

tuned of the 2S1/2 |F = 1〉 → 2Po
1/2 |F = 0〉 cooling line, the sideband will have zero detuning

from the 2S1/2 |F = 0〉 → 2Po
1/2 |F = 1〉 repump line. This beam facilitates efficient Doppler

cooling of all Yb+ isotopes, with the exception of 173Yb+, which due to a different hyperfine

structure requires a separate phase modulator for laser cooling.

The second AOM is passed through a similar resonant free space EOM with reso-

nant frequency 2.105 GHz2. The positive first order sideband will resonantly drive the

2S1/2 |F = 1〉 → 2Po
1/2 |F = 1〉 transition which will optically pump population to the |0〉g

state.

The third AOM is simply sinlge passed at +110 MHz to provide laser light resonant

with the 2S1/2 |F = 1〉 → 2Po
1/2 |F = 0〉 transition for CW state detection of the ground state

qubit in the standard I = 1/2 scheme.

All beams are delivered to the ion trap via single mode optical fibers.

5.3.2 The 399 nm system

The 399 nm laser is a Toptica DL 100 Pro ECDL, which outputs about 20 mW of laser power

directly out of the laser head. The optical setup for this laser is far simpler than the 369

nm laser: the laser output is first shaped with an anamorphic prism pair, passed through

an isolator, and split between delivery to the ion trap and the wavemeter. The laser has

no active or passive frequency stabilization, so before loading the trap we simply adjust the

laser frequency on the wavemeter by hand.

1New Focus Model 4851, ∼3W of microwave power used

2New Focus Model 4431, microwave power set to optimize positive first order sideband intensity
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5.3.3 The 935 nm system

The 935 nm laser is a distributed Bragg reflector (DBR) laser from Toptica. The laser

outputs about 10 mW of laser power, which is passed through an anamoprhic prism pair

and an optical isolator. The light is then split on a PBS, with one leg going to the wavemeter

and the other through a fiber KTP crystal phase modulator3 that exhibits large bandwidth

modulation with little microwave power. This modulator is generally driven at 3.070 GHz

for efficient laser cooling of 171Yb+ due to off resonant population of the 2D3/2 |F = 2〉 level

during laser cooling, and direct population of the same level during |0〉g state preparation.

The output of the fiber modulator is passed through a +320 MHz single pass AOM

which is then subsequently coupled into a fiber to the ion trap. The frequency of this laser

is software locked with the built in DACs in our wavemeter4.

5.3.4 The 760 nm laser systems

Since we require significant optical intensity of two 760 nm laser tones separated by about

5 GHz, we use two separate DBR lasers for each tone5. Each laser outputs about 50 mW of

laser power, with each passing through a anamorphic prism pair and an optical isolator. A

small portion of each laser’s power is sent to the wavemeter for software locking, with the

remaining power for both lasers separately passed through +160 MHz AOMs. The positive

first order from both AOMs are combined on a PBS and overlaid with the 935 nm laser on

a 45◦ dichroic beam splitter6 into the fiber to the trap. Each of the lasers delivers about 15

mW to the ion, for a total of about 30 mW of laser power.

The frequencies for the two lasers are set so that the red and blue beams drive the

2Fo7/2 |F = 3〉 → 1[3/2]o3/2 |F = 1〉 and 2Fo7/2 |F = 4〉 → 1[3/2]o3/2 |F = 2〉 transitions respec-

3AdvR KTP Phase Modulator

4High Finesse WS-U, 8 channel fiber switch

5Photodigm PH760DBR080T8, TO-8 packaging

6Semrock FF776-Di01-25x36
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tively.

5.3.5 The 976 nm system

The 976 nm laser is a fiber output butterfly packaged DBR laser from ThorLabs that provides

about 30 mW out of the fiber. The laser is split directly out of the laser with a PBS, with a

small amount of power going to the wavemeter and the majority delivered through a +320

MHz single pass AOM. The laser is then combined on a 50/50 beamsplitter with the 861 nm

laser, and subsequently overlaid with the 935 nm laser on a PBS before being overlaid with

the 760 nm lasers.

This laser is generally set to drive the 2D5/2 |F = 2〉 → 1[3/2]o3/2 |F = 1〉 transition for

incoherent preparation of the |0〉g state. This is achieved by applying 411 nm laser light

driving the 2S1/2 |F = 1〉 → 2D5/2 |F = 2〉 transition, along with the 976 nm laser. This will

cause population to eventually decay directly into the |0〉g qubit state.

5.3.6 The mode-locked laser

The mode locked laser is a Spectra Physics Tsunami laser head pumped with a Spectra

Physics Millenia eV 532 nm pump laser (15W max ouput power). The Tsunami system is

a Ti:Sapph mode locked laser capable of broad center frequency tuning via an intracavity

birefringent filter. We always operate the laser in the picosecond pulse width regime, where

the Tsunami laser head is operated as an active mode locked laser (as opposed to a passive

mode locked laser, like many femtosecond mode locked lasers). A part within the laser head

called the GTI (Gires-Tournois interferometer) controls the pulse width of the picosecond

system, and in our lab we have separate GTIs for providing 30 ps, 10 ps, and 1 ps pulse

widths. On the Yb+ experiment, the 10 ps GTI was used for the cooling and detection

experiments, and was converted to the 1 ps GTI for stimulated Raman transitions.
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5.4 The electronics

5.4.1 The “pulser”

The main device in our lab that controls the experiment is what we call the pulser. It is a

FPGA controlled system with 16 phase coherent direct digital synthesizers (DDSs), 32 TTL

output channels, and photon counting capabilities with 10 ns photon time-tagging resolution

[PK15]. The DDSs can generate RF frequencies up to 800 MHz, limited in part by the 2

GHz reference clock for the system. The DDSs are used for three main purposes in the

experiment: one provides the radiofrequency necessary for the ion trap, two are dedicated

to driving microwave qubit transitions of the m and g type qubits, and the rest are used to

drive AOMs.

The pulser system is controlled by the master FPGA7. Pulse sequences are loaded onto

the master FPGA before an experiment executes, and distributes the pulse sequence to local

FPGA chips on each of the DDS boards 8. The DDS boards can be switched in amplitdue,

phase, and frequency with 40 ns resolution, while the TTLs can be generated with 10 ns

resolution. The specifics of DDS performance can be found in [PK15], and the resolutions

of each setting are briefly listed below, taken from [PK15].

Characteristic Resolution Range

Frequency 0.1 pHz 0 o 800 MHz
Amplitude 0.004 dB -60 to 0 dBm

Phase 0.0055 deg 0 to 360 deg
Frequency ramp rate 113 Hz/ms max 7.45 MHz/ms
Amplitude ramp rate 0.0017 dB/ms max 22.9 dB/ms

Table 5.1: Resolution and range of each programmable feature of each DDS. Data is trans-
ferred to each DDS FPGA as a 128 bit number, with memory allocation of {64, 14, 16, 16,
16 } bits per characteristic, from top to bottom above. All numbers taken from [PK15]

A number of the features of these DDS boards will be important when we consider

implementing composite pulse sequences for high fidelity population transfer of |0〉g → |1〉g.

7Opal Kelly XEM6010

8Altera Cylcone IV
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5.4.2 Trap DC voltages

The DC voltages applied to the 8 trap electrodes are provided by Analog Devices AD660

DAC chips. The chips are controlled by a master FPGA, same one as the pulser. Each

DAC chip is passed through a 4 stage RC filter board, the outputs of which are connected

directly to feedthrough pins on the vacuum chamber with short wires. Electrical ground for

the chips is provided on one of the feedthrough pins near the trapping region.

5.4.3 Microwave sources

We have two main microwave sources in our lab: one PXIe module from MagiQ that pro-

vides microwave tones at 7.37 GHz, 2.105 GHz, and 3.07 GHz for our various electro optic

modulators needed for laser cooling and qubit operations in 171Yb+ , and an HP 8672A for

qubit operations.

To make a phase agile source for qubit manipulation, we mix a DDS from the pulser with

the 8672A output to produce a tone at the qubit splitting. Band pass filters are used to filter

out unwanted frequencies produced in the mixing process at ≈ + 400 MHz and + 800 MHz

from the carrier tone. We have also built but not yet implemented a circuit that multiplies

a DDS input by 32 to produce a microwave signal reosnant with the qubit. The design was

based on the design outlined in [Har13]. The main downside of the frequency multiplied

device is a loss in phase resolution due to the frequency multiplication process. That being

said, the resulting phase resolution of 0.176 deg should be sufficient for most applications.

5.5 The experimental control

The workhorse of the experiment is the pulser, which performs all programmed pulse se-

quences and counts and timetags photons.

Nearly all experimental control software is written within the LabRAD framework created
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at UCSB 9. LabRAD allows for control of nearly any piece of hardware on our experiment

that is connected to any computer on the local area network. In general, each device may

have a server and a client. The server wraps the hardware commands in Python and creates

easily used functions to communicate with the hardware. The clients are Python GUIs that

communicate with the servers to provide an easy way to interface with the hardware.

Lastly there are the scripts that we write to perform experiments, within which we

can communicate with any device connected to our local LabRAD instance, program and

execute pulse sequences with the pulser, and retrieve and analyze data. For more details

regarding LabRAD in our experiment, please see [Ran20, Chr20] and various online resources

on GitHub.

9https://github.com/labrad
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CHAPTER 6

Laser cooling with mode locked lasers

Strong optical transitions in singly ionized atoms often require laser light in the ultravio-

let (UV) to drive, and can even be energetically separated enough to necessitate vacuum-

ultraviolet photons (< 200 nm) [WD75, HS75, NHT78, WDW78]. Continuous wave laser

light becomes increasingly hard to produce in quantity at these wavelengths, and adds sig-

nificant complexity to any experiment wishing to address transitions at these wavelengths.

One of the advantages of mode-locked lasers is their high instantaneous intensity, which can

be used for efficient frequency doubling via single passes though non-linear crystals. Mode

locked lasers have even been used to reach deep regions of the extreme ultraviolet (EUV) (<

100 nm) via a process known as high-harmonic generation.

In our work here, we aimed to demonstrate efficient laser cooling of a trapped ion with

only a single mode of a resonant mode-locked laser. In order to efficiently Doppler cool the

ion’s motion in the trap, we must be able to apply a strong velocity dependent force with the

laser and scatter many photons to achieve reasonable cooling rates. This is most efficiently

achieved by addressing the atomic transition with a single longitudinal mode of the mode

locked laser (a single “comb tooth”).

6.1 Scattering rate

In order to Doppler cool a trapped ion, we need to scatter photons on a strong transition.

The scattering rate of a stationary atom due to illumination with a resonant mode locked

laser is [FBA03]
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Γcomb(∆) =
1

Tr

sin2( θ
2
) sinh

(
Tr
2τ

)
cosh

(
Tr
2τ

)
− cos2( θ

2
) cos(∆Tr)

(6.1)

where Tr is the repetition period of the mode locked laser, τ is the lifetime of the excited state,

θ =
∫

Ω(t)dt is the pulse area defined as the integral of the instantaneous Rabi frequency

over the length of the interaction time with a single pulse, and ∆ = ωtooth − ωatom is the

detuning of a reference comb tooth from the atomic transition. This equation was derived

under the assumption of a comb of optical teeth with uniform intensity, equivalent to the

assumption that the pulse duration τp is much shorter than the repetition period Tr.

First thing to note in eq 6.1 is that the maximum scattering rate is Γmax = tanh(Tr/2τ)
Tr

achieved when θ = π. This will not be optimal for laser cooling though, as when the pulse

area is π the dependence on comb tooth detuning, and therefore the atom’s velocity, is

removed. Throughout this experiment we generally worked in the regime where θ < π/2.

In order to address the ion with a single comb tooth, coherences between the ion and

the laser must build up by interacting with multiple pulses in a pulse train. Visualized on a

Bloch sphere, the first pulse at t = 0 will create an excitation by an angle θ, followed by a

time Tr of free evolution. As the next pulse arrives at t = Tr, the relative phase of the Bloch

vector and the optical phase of the pulse will determine what happens. If a longitudinal

mode of the mode locked laser is near resonance with the atomic transition, then the ion will

continue to get further excited. If there is a detuning between the longitudinal mode and the

ion, then rotation will occur about a different axis and the excitation will be suppressed. It

is this build up of pulse-to-pulse coherence that is necessary to address the atomic transition

with a single comb tooth. In our system, the excited state lifetime of the Yb+ 2Po
1/2 state is

τ = 8.12 ns [OHM09], and after a pulse excited an ion initially in the 2S1/2 , it has a 78%

chance of spontaneously emitting a photon by the time the next pulse arrives Tr = 12.3 ns

later. This means that by the time the second pulse arrives, more often than not the ion

will lose all information about the optical phase of the previous pulse.

To help understand the importance of the two pictures of this interaction (comb teeth

vs broadband pulses), we consider the comb tooth visibility, defined as V = (Γmax −
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Γmin)/(Γmax + Γmin), where Γmax/min are the maximum and minimum scattering rates from

eq 6.1 as the reference comb tooth is scanned over a range δf = 1/Tr ≡ fr. The visibility

turns out to be

V = cos2
(θ

2

)
sech

(
Tr
2τ

)
(6.2)

which remains surprisingly high at 0.77 in the θ → 0 limit with our system parameters despite

the previous argument. This occurs because the coherence of a superposition between two

states decays at half the rate compared to the populations within the excited state due to

spontaneous emission, and therefore coherences actually can build up when τ ∼ Tr.

100 50 0 50 100
/2 = ( tooth atom)/2  [MHz]

10

20

30

40

50

Fl
uo

re
sc

en
ce

 [k
Co

un
ts

/s
]

Figure 6.1: Collected fluorescence as the comb teeth are scanned over resonance. In the
scattering rate predicted from equation 6.1 is shown in grey, clearly deviating from the
theoretical model when the nearest comb tooth is blue detuned from resonance. In the
theory plot θ = 0.38π, and the overall rate is scaled for photon detection efficiency.
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6.2 The experiment

The laser used is a Spectra Physics Tsunami Ti:Sapph tunable mode-locked laser set to

405.645 THz (∼ 740 nm), and subsequently frequency doubled to match the resonance of

the 2S1/2 to 2Po
1/2 transition in Yb+. The repetition period of the laser is tunable within

a small range, and was ∼ 12.3 ns for these experiments. The pulse width was τp = 10 ps,

corresponding to an optical bandwidth of ≈ 100 GHz.

Ions are loaded into the trap with the standard Doppler cooling lasers, and then illumi-

nated with the UV mode locked laser light to observe its effect on the ion. When observing

the ion fluorescence rate due to the interaction with the mode locked laser, the continuous

wave 369 nm laser is removed from the trap and the 935 nm laser remains to repump the

2D3/2 . To see how well eq 6.1 models the scattering rate in our system, we vary the location

of comb teeth relative to atomic resonance. This is done by varying a voltage on an intracav-

ity piezoelectric actuator behind one of the mirrors inside the mode locked laser cavity. This

piezo causes the repetition rate of the laser to change by small amounts, causing a change

in the comb tooth spacing in frequency space. Scanning the repetition rate effectively scans

the teeth over resonance in the optical regime. Data from a scan performed with a single

trapped 174Yb+ ion is shown in Figure 6.1. The data is taken by switching the 935 nm laser

on/off every 100ms, the difference of which results in a signal that is mainly from the ion

with the ∼ 170 kCounts/s of background scatter from the mode locked laser removed. The

collected fluorescence from the ion is well modeled by equation 6.1 when the detuning of the

nearest comb tooth is red detuned (∆ < 0), but exhibits deviation from theory when blue

detuned (∆ > 0).

To see what is happening blue of resonance, we perform the same scan but observe the

ion on an EMCCD camera instead of collecting fluorescence with the PMT. Images of the ion

are taken when the nearest comb tooth was red detuned from resonance (at approximately

∆ = −2π × 15 MHz in Figure 6.1) and blue detuned from resonance (at approximately

∆ = 2π × 30 MHz in Figure 6.1)
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Figure 6.2: Images taken of the ion when the nearest comb tooth is red detuned from reso-
nance (left) and blue detuned from resonance (right). The ion is oscillating with significant
amplitude along the principle axis of the trap we designate as x̂.

To model the interaction between the ion and the mode locked laser, we consider the

energy transfer to to the ion due to the laser-ion interaction, including spontaneous emission

and classical harmonic motion of the ion. All the following work will consider secular cycle

averaged values instead of instantaneous, as the secular motion is slow compared to all other

timescales in the experiment. The energy in the harmonic motion of the ion is E = 1
2
mω2

xx
2
o,

where xo is the amplitude of oscillation and ωx is the oscillation frequency. The rate of

energy transfer from the laser to the ion is

dE

dt
= −β(E)

2E

m
+ S(E) (6.3)

where S(E) is the stochastic heating term from spontaneous emission and randomness in

absorption, and β(E) is a damping coefficient resulting from the laser-ion interaction. We
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will model these two terms as

S(E) = (1 + ξ)
~2|k|2

2m
Γ(∆, xo)

−2E

m
β(E) = 〈F · vsec〉Tsec

(6.4)

where Γ(∆, xo) is the secular cycle averaged scattering rate for an ion with harmonic ampli-

tude xo, ξ = 2/5 is a geometric factor taking into account the dipole radiation pattern of

spontaneous emission [LBM03], F = ~kΓcomb is the scattering force, and vsec is the instan-

taneous secular velocity.

6.3 Modeling scattering rate data

To average over the secular motion, we need to take into account how it effects the relevant

parameters governing the laser-ion scattering rate. If the ion is oscillating, it will be taking

excursions from the RF null of the trap (assuming stray electric fields had already been

compensated for), which can cause excess micromotion. Thus, we include the effects of

micromotion modulation of the scattering rate. Additionally, the ion will be oscillating with

peak speed vx = ωxx0 at x = 0, creating a time dependent Doppler shift that should be

taking into account. The time dependent Doppler shift will be δω = k ·vx = kωxxo sin(ωxt),

where k is the projection of the mode locked laser k-vector onto the principle axis of motion.

The secular averaged scattering rate, included the effects of micromotion and setting φ = 0,

can be written as

Γ(∆, xo) =
1

2π

∫ 2π

0

dχ
∑
n

J2
n

(
kxo

q

2
cos ξ

)
Γ(∆ + nΩrf + kωxxo sinχ) (6.5)

where Jn is the nth Bessel function of the first kind, q ≈ 2
√

2ωx/Ωrf = 0.03 is the Mathieu

q parameter, Ωrf is the RF frequency applied to the ion trap, and χ = ωxt. The argument

in the Bessel function is the time dependent modulation depth of the ion motion [BMB98].

Using the above equation with x0 = 0 when the nearest comb tooth is red detuned, and
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x0 = 4.9µm when the nearest comb tooth is blue detuned to reflect the change in oscillation

amplitude, we find a better quantitative agreement with the observed line scan.
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Figure 6.3: Collected fluorescence as the comb teeth are scanned over resonance. In the
scattering rate predicted from equation 6.5 is shown in grey, agreeing significantly better
with the observed line shape. The theoretical plot is not a fit, and is scaled by eye with no
offset.

Qualitatively, once the nearest comb tooth is blue detuned it amplifies the motion of the

ion in the trap in the direction the k-vector projects onto most strongly (in our case the

direction we are calling x̂). This causes the secular motion of the ion to be excited to an

amplitude such that the Doppler shift at x = 0 shifts the ion into resonance with a tooth

that is red detuned in that frame. Once the motion is damped enough, it is on resonance on

the blue side with the other tooth again, and the process continues.
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6.4 Dynamics of the interaction

To determine the oscillation amplitude of the ion motion in the trap and understand why

the ion remains in the trap when the nearest optical tone is blue detuned, we can investigate

the dynamics of equation 6.3. In particular, we will be interested in two things: for fixed

detuning, what values of xo will cause the power delivered to the ion to vanish, and what is

the behavior in the small oscillation limit.

The secular cycle averaged amplitude damping coefficient β(E) is given by

β(E) =
~k

2πωxxo

∫ 2π

0

dχ sin(χ)
∑
n

J2
n

(
kxo

q

2
cos ξ

)
Γ(∆ + nΩrf + kωxxo sinχ) (6.6)

Rewriting 6.3 as
dE

dt
= −β(x0)ω2

xx
2
o + S(xo) (6.7)

by allowing E = 1
2
mω2

xx
2
o. The terms on the right hand side can now be numerically inte-

grated over a secular cycle for a fixed detuning as a function of the oscillation amplitude. The

results of the numerical integration with our experimental parameters are shown in Figure

6.4.

There are clearly many solutions for dE
dt

= 0, and of particular interest are oscillation

amplitudes xk at which dE
dt
|xk = 0 and d2E

dtdx0
|xk < 0. At these locations, the oscillation will be

stable and maintained. Since the derivative with respect to oscillation amplitude is negative,

if the amplitude decreases more energy is pumped in to the ion motion to return it to the

zero crossing. Conversely, if the amplitude increases, the amplitude will be damped and

returned back to the zero crossing.

When the reference tooth is red detuned from resonance, the model predicts an oscillation

amplitude of x∗0 ≈ 90 nm for ∆ = −π/2Tr, far below the resolution of our imaging system (≈

1µm). High order oscillation amplitudes are resolvable by our imaging, so we can investigate

them and compared to theory.
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Figure 6.4: The power delivered to the ion, averaged over a secular cycle, shown ∆ = −2π×15
MHz (left) and ∆ = 2π×15 MHz (right). For the purpose of these plots, only the first order
micromotion sideband is included. Blue shading indicates oscillation amplitudes where the
laser-ion interaction has a net damping effect, and red shading indicates amplitudes where
the interaction has a net amplification effect. Bleeding of the shading near zero crossings is
artificial and should be ignored.

To create these larger oscillation amplitude states, we connect a signal generator to one

of the trap DC electrodes to “tickle” the ion. The frequency of the applied electric field is

chosen to be close to ωx so that energy is transferred into that particular mode of motion.

The process of creating the higher order oscillating modes is stochastic and not deterministic

when done this way. Averaged images of the ions in higher oscillatory fixed points are shown

in Figure 6.5, with the corresponding vertical column sums of those images show in Figure

6.6.

To determine the classical turning point of these fixed oscillations, we fit the column

summed data to a convolution of the simple harmonic oscillator probability density function

(SHO PDF) and a Gaussian profile. The SHO PDF, which is the probability of finding the

ion at position x in a window dx at a random time t, is given by

Psho(x, xo) =
1

π

1√
x2
o − x2

(6.8)

We numerically convolve a Gaussian profile with Psho(x, xo) and fit the data to extract xo,

the classical turning point where the ion has vanishing velocity.
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Figure 6.5: Integrated camera images of different velocity classes at fixed oscillation ampli-
tudes while illuminating the ion with the mode locked laser alone. The top 4 images are the
first 4 stable amplitudes when the nearest comb tooth is red detuned from resonance. The
lower 3 are the first 3 fixed amplitudes when the nearest comb tooth is blue detuned from
resonance.

6.5 Temperature derivation

In the limit of small oscillation amplitude (E → 0) and with the nearest comb tooth red

detuned from the cooling transition, an expression for the Doppler temperature can be

derived. At this point, the power delivered to the ion will be vanishing, indicating that the

damping and stochastic terms in equation 6.3 are equal to one another. With that we can

write
dE

dt
→ 0 : E =

1

2
m
S(E)

β(E)
(6.9)
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Figure 6.6: Column sums of the images shown in Figure 6.5. By calibrating our imaging
system we can convert pixels to microns and fit the fluorescence to the convolution of a
Gaussian and the probability density function of a simple harmonic oscillator. Vertical
dashed lines indicate the fitted classical turning point of the harmonic motion. The turning
points in red are x∗r = {0.09, 8.71, 16.90, 24.96}µm, and turning points in blue are x∗b =
{4.94, 12.74, 20.68}µm.

where the expressions for the stochastic heating and damping must be evaluated in the

xo → 0 limit. We will start with the stochastic term.

6.5.1 Small oscillation amplitude limit of stochastic heating

The stochastic heating term written out in full is given by

S(E) =
~2k2

2m
(1 + ξ)

1

2π

∫ 2π

0

dχ
∑
n

J2
n

(
kxo

q

2
cos ξ

)
Γ(∆ + nΩrf + kωxxo sinχ) (6.10)

As x0 tends to 0, the argument of the Bessel function will tend to 0 as well. In this limit

only the 0th order Bessel function will survive, with all higher orders vanishing in the small

argument limit. This physically makes sense as well: as the oscillation amplitude, and
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therefore the excursions from the RF null, tend to zero, the effects of excess micromotion

will also vanish. We now have, setting n = 0,

S(E) =
~2k2

2m
(1 + ξ)

1

2π

∫ 2π

0

dχΓ(∆ + kωxxo sinχ) (6.11)

The scattering rate within the integrand is

Γ(∆ + kωxxo sinχ) =
1

Tr

sin2( θ
2
) sinh

(
Tr
2τ

)
cosh

(
Tr
2τ

)
− cos2( θ

2
) cos(∆Tr + Trkωxxo sinχ)

(6.12)

which can be simplified by expanding the term cos(a+ ε) in the denominator about ε = 0

to get

Γ(∆ + kωxxo sinχ) =
1

Tr

sin2( θ
2
) sinh

(
Tr
2τ

)
cosh

(
Tr
2τ

)
− cos2( θ

2
) cos(∆Tr) + Trkωxxo sinχ cos2( θ

2
) sin(∆Tr)

(6.13)

This expression can be expanded to second order in xo as a/(b+ ε) about ε = 0. This gives

Γ(∆ + kωxxo sinχ) = Γ(∆)− Γ(∆)
Trkωxxo sinχ cos2( θ

2
) sin(∆Tr)

cosh
(
Tr
2τ

)
− cos2( θ

2
) cos(∆Tr)

(6.14)

Using this expression for the scattering rate in the integrand for the stochastic heating term,

the second term vanishes since
∫ 2π

0
sinχdχ = 0, and we get

S(E) =
~2k2

2m
(1 + ξ)Γ(∆) (6.15)

6.5.2 Small oscillation limit of damping term

Starting from equation 6.6 and applying the identical approximation to the cycle averaged

scattering rate, we get

β(E) =
~k

2πωxxo

∫ 2π

0

dχ sinχ
(

Γ(∆)− Γ(∆)
Trkωxxo sinχ cos2( θ

2
) sin(∆Tr)

cosh
(
Tr
2τ

)
− cos2( θ

2
) cos(∆Tr)

)
(6.16)
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The first term integrates to 0, and the second term goes as
∫ 2π

0
sin2 χdχ = π, which gives us

the final expression for the damping coefficient in the small amplitude limit as

β(E) = −~k2

2
TrΓ(∆)

cos2( θ
2
) sin(∆Tr)

cosh
(
Tr
2τ

)
− cos2( θ

2
) cos(∆Tr)

(6.17)

6.5.3 Temperature expression and limits

Putting the two expressions above together with equation 6.9, we can form an expression for

the steady state temperature of the ion while being cooled by the mode locked laser.

TD =
~

2kBTr
(1 + ξ)

(
cot(∆Tr)−

cosh
(
Tr
2τ

)
cos2( θ

2
) sin(∆Tr)

)
(6.18)

The detuning red of resonance that minimizes the temperature of the ion can readily be

solved for by setting dTD
d∆

= 0 and solving for the detuning, which gives

∆opt = − 1

Tr
arccos

( cos2( θ
2
)

cosh
(
Tr
2τ

)) (6.19)

We can make equivalence arguments about mode locked lasers and continuous wave lasers

and take appropriate limits of the above equations to ensure that they reduce to the well

known formulas for the Doppler temperature and optimal detuning for laser cooling in the

continuous wave limit.

In the limit where the repetition period of the mode locked laser tends to 0 (comb tooth

spacing, frep → ∞) and the pulse area tends to θ2 → soT
2
r /2τ

2. In both of these limits,

the Doppler temperature reduces to TD → ~/(2kBτ) and the optimal detuning reduces to

∆opt → −1/2τ , precisely the result obtained in the continuous wave limit.
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CHAPTER 7

Mode-locked lasers for background-free qubit state

readout

As quantum processors continue to scale to larger number of qubits, it is natural that many

system components will be miniaturized along the way. One such system is the photon collec-

tion and detection systems in trapped ion quantum processors, which in many experimental

setups are large and bulky. Current research aims to forego the large ex-vacuo imaging for

trap integrated photon detection systems, such as avalanche photodiodes (APDs) and su-

perconducting nanowire single photon detectors (SNSPDs) [TVM21]. These detectors would

be integrated into the surface of a 2D surface trap, and ions would reside directly above the

detector during qubit state readout. The close proximity to the detector (∼ 100µm) provides

large solid angle photon detection, but the system lacks the large imaging setup used for

spatially filtering background scatter from the excitation lasers.

Other optical cycling schemes have been proposed where the detected fluorescence is at

a different wavelength than the excitation lasers, which is limited to ions with low lying

DJ states [LAS12, HSC08]. These schemes suffer from reduced collection rate of detection

photons while still being subject to the same off resonant errors. In the case of Ref. [HSC08],

large amounts of laser power (∼ 0.25 W) are needed to quickly drive an electric quadrupole

transition, a roadblock for the scheme as a scalable solution.

A potential solution to this background scatter is the use of temporal filtering of the

excitation light, instead of spatial filtering [BN97]. If excitation on the detection transition

can occur in a period substantially shorter than the excited state lifetime, then the excitation

can occur periodically in pulses, with photon detection and counting only occurring during
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the period between excitation pulses when the laser light is not present. The spontaneous

decay rate of excited states used for detection of trapped ion qubits are typically of order

100 MHz, making use of standard optical devices such as acousto-optic modulators for fast

excitation difficult. Instead of modulated CW lasers, we can use a resonant mode-locked

laser for the fast excitation with pulse width O(1ps) and pulse separation O(10ns) that is

suitable for efficient excitation and high duty cycle photon detection.

Figure 7.1: Time domain picture of background free state detection scheme. The excitation
pulses (blue) enter the trap, excite the ion, and leave before the ion spontaneously emits.
After the pulses leave, we collect and count photons emitted by the ion (maximum of 1 per
excitation pulse) until the next excitation pulse arrives. The probability of finding the ion
in the excited state as a function of time is shown in green following a full excitation to |e〉.

The essence of the background free state detection with mode-locked lasers is shown in

Figure 7.1. Ground state population is excited near t = 0 by a pulse or pulse pair from the

mode-locked laser, after which spontaneous emission can occur. If the spontaneous emission

event occurs in the dead time between excitation pulses, it is most likely that the photon

came from the ion and not from the excitation laser. Photons that are detected near the

time when the pulse was in the ion trap region are rejected and filtered out. This filtering
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could be accomplished by gating a PMT signal in phase with the repetition rate of the

mode-locked laser, such that no photon clicks are registered while the pulse is present in the

trap. Instead, we utilize a time correlated single photon counter (TCSPC) that can time

tag photon arrival times with 10 ps precision with respect to a periodic trigger signal. This

device will register all collected photons and allow for temporal filtering of the photons based

on their arrival time relative to a trigger from the mode-locked laser. The device takes two

inputs: a reference clock and the photon signals to be time tagged. The TCSPC 1. will begin

its time tagging clock once it receives a trigger from the reference clock, and time stamp

signals it receives from the photon detector until the next clock trigger occurs.

The mode locked laser we use is a Spectra Physics Tsunami laser oscillator operating

at 740 nm. The pulses from the laser are frequency doubled to 369.5 nm by single passing

through a critically phase matched LBO crystal, and subsequently directed through a single

pass AOM and directed to the ion via single mode fiber. During the direct hyperfine qubit

readout section outlined below, the 740 nm pulses are first passed through the Mach-Zehnder

interferometer before frequency doubling.

We want to reference the photon arrival times to the mode lock laser pulse repetition rate,

so a small amount of the 740 nm mode locked laser light is focused onto a photodiode with

1 GHz bandwidth, and the signal is sent as the clock to the TCSPC. The remaining pulsed

is light frequency doubled to ∼ 369 nm and delivered to the ion. The ion and background

laser scatter at 369 nm is imaged onto a photon counting PMT 2 by an off the shelf laser

focusing objective 3. When the PMT successfully detects a photon, it outputs TTL pulses

10 ns in length. We measure the timing jitter of the produced TTL pulses by observing the

spread in photon arrival times due to the pulsed laser alone. Since the laser pulse duration of

10 ps is equivalent to the timing resolution of the TCSPC (10 ps), the pulses are effectively

delta function impulses we can use to measure the response of the PMT. The timing jitter is

1PicoQuant TimeHarp 260p

2Hamamatsu H10682-210

3Special Optics 54-17-29-λ
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found to be approximately 400 ps, determined by estimating the full width half maximum of

the observed signal due to the pulses alone (see black trace in Figure 7.2. The timing jitter

is often referred to in literature as the transient time spread (TTS).
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Figure 7.2: Example traces from the TCSPC. A single trapped 174Yb+ ion is laser cooled with
the mode locked laser, and the detected photons are timetagged by the TCSPC. Example
traces where the 935 nm laser is on/off are shown above, the off situation is meant to emulate
the electron shelved qubit by leaving population stranded in the 2D3/2 .

We perform initial characterization of the system with a trapped 174Yb+ ion as seen in

Figure 7.2. In the trace without the repump laser on, the prompt scatter at t ≈ 1 ns is

due to the mode locked laser scatter, and by t = 4 ns the detected counts are dominated

by the dark counts of the PMT (∼40 Hz). With the repump laser on, the same incident

laser scatter is observed followed by the exponential decay of the excited state with lifetime

τ = 8.12 ns [OHM09]. Standard time tagging of photons by our FPGA system would contain

no phase information about the arrival times with respect to the arrival of the mode locked

laser pulses, so we wouldnt be able to distinguish pulsed laser photons from ion produced
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photons. With this temporal information provided by the TCSPC, we can apply a temporal

filter that chooses which region of time relative to the trigger to count photons for qubit

state readout.

7.1 Direct hyperfine qubit readout

Continuous wave laser readout of a nuclear spin 1/2 hyperfine qubit can be performed on the

closed cycling transition 2S1/2 |F = 1〉 → 2Po
1/2 |F = 0〉, which works well due to the large

hyperfine splittings in the 2S1/2 and 2Po
1/2 relative to the natural linewdith of the transition.

The mode-locked laser we use has a pulse width of τp = 10 ps, corresponding to a bandwidth

of ∼ 100 GHz, which will drive all allowed transitions between the 2S1/2 and 2Po
1/2 . Thus

if we attempted just to use the mode locked laser for state detection, both the |1〉g and

|0〉g states would produce approximately the same number of laser induced fluorescence

photons, making the states indistinguishable measuring this way.

To circumvent this problem, a simple pulse shaping scheme can be used to coherently drive

the desired transition and coherently suppress the undesired ones. This is achieved by passing

the mode locked laser pulses through a single pass, unbalanced Mach-Zehnder interferometer,

effectively turning each 10 ps pulse into two 10 ps pulses separated in time by δt = δL/c,

where δL is the optical path length difference between the two arms of the interferometer.

The alteration of the mode-locked laser pulse train by the interferometer can be thought of

as an optical frequency filter acting on the broadband comb spectrum. If we imagine an

optical frequency comb with infinite bandwidth, and pass that through the aforementioned

unbalanced Mach-Zehnder inteferometer, the output ports of the interferometer will contain

copies of the input with the optical spectrum modulated by cos
(
c
δL

+ φi
)2

and sin
(
c
δL

+ φi
)2

.

The phase difference between the two ports, φi, is controlled by altering the optical phase

difference between the two arms.

As a first test with the interferometer, we perform a resonant Ramsey experiment on the

2S1/2 ↔2Po
1/2 transition of a single trapped 174Yb+ ion. The center frequency of the laser is
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Figure 7.3: Simplified diagram of the experimental setup for direct detection of the hyperfine
qubit with mode locked laser pulses.

first tuned to resonance by illuminating the ion with single pulses, and adjusting the center

frequency to maximize the laser fluorescence via direct Doppler cooling with a single comb

tooth [IRJ18]. Pulse pairs separated in time by ≈ 237 ps are then let into the trap, with all

continuous wave 369 nm laser light removed. Photons are timetagged by the TCSPC, and

background scatter from the laser is filtered out by only recording the number of photons

detected between 4 ns and Trep =12.5 ns. Voltage applied to a piezoelectric actuator in the

interferometer changes the pulse pair temporal separation by 10s of attoseconds. Resulting

Ramsey fringes are shown in Figure 7.4.

In 171Yb+ , we can think of the four hyperfine manifolds of the 2S1/2 and 2Po
1/2 states as a

simple four level model in order to determine what the delay time between pulses should be.

We will assume that the three allowed transitions (all except 2S1/2 |F = 0〉 ↔ 2Po
1/2 |F = 0〉)

here are approximately uncoupled two level systems, which is to say that the dynamics of each
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Figure 7.4: Optical Ramsey fringe of a single trapped 174Yb+ ion. The vertical axis is the
average number of background free detected photons emitted from the ion in a 3000 attempts
of 80 µs interrogation with the pulsed laser.

system are independent of each other. The hyperfine splittings are, approximately, ωHFS =

2π × 12.6 GHz and ωHFP = 2π × 2.1 GHz. If we are rotating at ωo = ωP,F=0 − ωS,F=1 and

the qubit was prepared in some arbitrary superposition, then after the first pulse hits the ion

all allowed transitions are driven. For this to remain coherent (not affected by spontaneous

emission), we want the delay between the pulses to be much shorter than the excited state

lifetime, so δt� 8.12 ns. If that condition is held, then by the time the second pulse interacts

with the ion the superpositions of the undesired excitations will have acquired phases eiωHFP δt

(2S1/2 |F = 1〉 ↔ 2Po
1/2 |F = 1〉) and ei(ωHFP+ωHFS)δt (2S1/2 |F = 0〉 ↔ 2Po

1/2 |F = 1〉), while

the desired transition in the rotating frame has acquired no additional phase.

If the delay time is chosen appropriately, we can make it so that the accumulated phase of

the desired superposition is zero, while the two undesired superpositions accumulate a minus

sign. This is equivalent to the condition that ωHFP δt = (2n + 1)π and (ωHFS + ωHFP )δt =

(2m + 1)π for any two integers n,m ∈ Z. Due to the fact that the hyperfine splittings are

near integer multiples of each other (ωHFS/ωHFP = 6.006), with only a two pulse sequence

we can satisfy the above conditions by waiting for a time δt = 237 ps.
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This logic allows for identifying the coarse delay time between the pulse pairs necessary

to ensure that the relative phase relationship of the desired and undesired transitions is

met (δφ = π), but the fine optical phase difference between the pulses still needs to be

adjusted. Setting the coarse delay correctly ensures that the superpositions have the correct

relative phase, but setting the optical phase shift correctly ensures that the desired transition

experiences a coherent excitation and the undesired ones experience a coherent suppression

of excitation. As in Figure 7.4, we want to fine tune the delay so that the desired cycling

transition is at the top of a fringe, while the two undesired transitions are simultaneously at

the bottom of a fringe.

Figure 7.5: Diagram of three (approximately) uncoupled two level systems. The undesired
transitions are indicated with red arrowd, where the desired transtion is in blue.

An initial experiment we developed to set the optical phase between pulse pairs began

with state preparation of both |0〉g and |1〉g , interrogated the ion for a variable amount

90



of time by pulse pairs at a fixed pulse separation, and then measured the qubit popu-

lation at the end. If the optical phase difference is set appropriately, excitations on the

2S1/2 |F = 0〉 → 2Po
1/2 |F = 1〉 and 2S1/2 |F = 1〉 → 2Po

1/2 |F = 1〉 transitions should be

suppressed. Therefore, population prepared in |0〉g should remain in |0〉g and popula-

tion prepared in |1〉g should remain in the 2S1/2 |F = 1〉 manifold, as scattering on the

2S1/2 |F = 1〉 → 2Po
1/2 |F = 0〉 transition is what we desire and will mix popuation through-

out the manifold. Example traces are shown in Figure 7.6 for different interferometer settings

near 237 ps.
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Figure 7.6: Example traces from mode locked laser population mixing experiment. Each
color represents a different voltage setting on the interferometer. Traces that begin near 0
had |0〉g as the initial state, and traces that begin near 1 has |1〉g as the initial state. As
the interrogation time increases, so does the state mixing.

This experiment can be performed at various piezo voltages. The decay in contrast

between the two states as a function of time is fit to an exponential decay at each piezo

voltage. As we scan the interferometer over a full free spectral range (1 FSR = 4.21 GHz),

we see two optimal settings of the optical phase difference, corresponding to nearly equivalent
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settings where the undesired transitions are suppressed, and the desired one is excited. In

practice, the interferometer distance is locked by passing a 760 nm laser through at a slightly

different elevation than the pulsed laser, and locking the interferometer length to the side of

an interference fringe. The length is locked by feeding back to the piezo, and the length is

scanned by adjusting the wavemeter software lock set point of the 760 nm laser.
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Figure 7.7: Contrast decay time constant (τ) as a function of 760 nm laser lock frequency,
referenced to a lock point of minimal state mixing. The IR laser only needs to be changed by
∼ 2.1 GHz to change the frequency domain dynamics of the pulse pairs delivered to the ions
because the IR ML laser pulses are passed through the interferometer, and then frequency
doubled, resulting in a factor of 2.

7.1.1 Results

With the interferometer set appropriately, we can begin to perform direct detection of the

qubit with mode locked laser pulses. The initial experiment we run is to observe the TCSPC

time traces due to illumination by the mode-locked laser after preparation of the qubit basis

states (|1〉g and |0〉g ), with the interferometer locked at the appropriate phase. If we have
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any hope of state discrimination, we must be able to distinguish between the trace produced

after |0〉g preparation and the trace produced after |1〉g preparation. The accumulation of

many such timetraces is shown in Figure 7.8. Although we do have clear discrimination
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Figure 7.8: TCSPC time traces resulting from multiple preparations and interrogations of
the |1〉g and |0〉g states, separately.

between the |1〉g and |0〉g state in Figure 7.8, it is also clear that the trace for |0〉g does

not bottom out at the PMT dark counts as the traces in Figure 7.2 did for the “dark” ion.

This is due to the fact that even with the interferometer set optimally, we still experience a

significant number of scattered photons on the undesired transitions.

We can directly observe the effect of the interferometer setting on the qubit state discrim-

ination by detecting Rabi flopping of the qubit with the pulse pairs in two instances: with

the interferometer set at the correct phase (desired transition at top of a fringe, undesired

transitions at bottom of fringes), and with the interferometer at the least optimal phase

(desired bottom of fringe, undesired top of fringes).
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Figure 7.9: Direct detection of Rabi flopping the ground state qubit with resonant mode
locked laser pulse pairs. The vertical axis is the average probability of detecting a photon
on a single experiment. The mode-locked laser interrogation time for detection is set to
t = 25µs.

The data is taken by recording timetags from the TCSPC on each experiment, and

counting how many occur between 2.5 ns and 12.6 ns with respect to the trigger pulse. Each

data point is repeated 10000 times, with the total number of detection photons returned.

Single shot state detection of the qubit is not performed because we cannot collect enough

state dependent scattered photons before state mixing occurs.

Rotations of the qubit are clearly observed when the interferometer phase is set correctly.

The baseline of the Rabi curve does not bottom out at the PMT dark counts due to finite

state mixing, as discussed earlier. When the interferometer phase is set δφ = ±π from

the optimal setting, no qubit rotations are observed due to poor state discrimination. The

overall number of photons scattered is also higher because all ground state levels produce

laser-induced fluorescence.
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7.1.2 Ramsey fringes and approximate two level systems

To see more precisely what is happening to the three allowed transitions as the optical phase

difference of the two pulses is changed, we developed a way to observe each of the three

fringes separately, similar to the fringe obtained in Figure 7.4. To isolate the three, approx-

imately separate two level systems relevant for for direct detection of the 171Yb+ hyperfine

qubit, three different schemes for state preparation and readout (with cw lasers) before and

after the mode locked Ramsey zones are utilized. For each, we limit the pulsed laser interro-

gation duration and strength to the regime where approximately 1 photon is emitted since

subsequent emission can mix the qubit states.

State preparation of the desired ground state (either |0〉g or |1〉g ) is followed by a short

(≈ 4µs) interrogation of low pulse area Ramsey pairs prepared by a fixed fine delay of the

Mach-Zehnder interferometer. Standard state detection is then performed to reveal any

population residing in the 2S1/2 |F = 1〉 manifold. This sequence is repeated as the delay

stage piezo voltage is scanned to produce the individual Ramsey fringes. Depending on

which Ramsey fringe is being probed, an additional microwave π pulse may be used before

state readout to reorganize population in the ground state. For all fringes, the mode locked

laser is π-polarized so that only δmF = 0 transitions are driven.

The schemes for acquiring the three separate fringes are outlined below, each designed to

ideally leave the electron in the 2S1/2 |F = 1〉 manifold 2/3 of the time at the top of a fringe,

while ideal execution at the bottom of a fringe will leave the population in |0〉g . These

values are then used to convert measured populations to excitation probability.

• |0〉g → 2Po
1/2 |F = 1〉: the only allowed transition is to the 2Po

1/2 |F = 1,mF = 0〉 state.

Spontaneous emission from this state will distribute 1/3 of the population to |0〉g , and

2/3 to the 2S1/2 |F = 1〉 manifold.

• 2S1/2 |F = 1〉 → 2Po
1/2 |F = 1〉: the 2S1/2 |F = 1,mF = −1〉 state is prepared initially.

The mode locked laser can excite the electron to the 2Po
1/2 |F = 1,mF = −1〉 state,

after which the population is evenly distributed amongst the 2S1/2 |F = 1,mF = −1〉,
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|1〉g , and |0〉g states. Before state readout, a microwave π-pulse is applied between

the |0〉g and 2S1/2 |F = 1,mF = −1〉 states.

• |1〉g → 2Po
1/2 |F = 0〉: |1〉g is prepared initially, and the only allowed transition is the

one of interest. Successful excitation and subsequent spontaneous emission will leave

the electron population evenly distributed amongst the 2S1/2 |F = 1〉 states. Before

state readout, a microwave π-pulse is applied on the mF = 0→ mF = 0 transition.
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Figure 7.10: Pulsed Ramsey experiment of the individual allowed 2S1/2 ↔ 2Po
1/2 hyperfine

transitions. The coarse delay between the pulses is set to approximately 237 ps, correspond-
ing to an interferometer free spectral range of 4.21 GHz. As can be seen here, the target
transition (blue) is nearly exactly π out of phase with the transitions we wish to suppress
(red, orange). By locking the interferometer at a location where the 2Po

1/2 is maximally ex-
cited to the F = 0, and minimally to the F = 1, we can perform state selective readout of
the qubit with these pulses.

An example acquisition of the three Ramsey fringes with the coarse pulse delay set to

237 ps is shown in Figure 7.10. The phase shift between the electron wave packets is clearly
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observable, and validates our choice of coarse delay time.

7.2 Shelved hyperfine qubit readout

Instead of reading out the ground state qubit populations with the mode locked laser im-

mediately following state preparation, we can first shelve the population in |1〉g to the long

lived 2Fo7/2 state, as described in other chapters. By mapping population in |1〉g to a sepa-

rate electronic state 100’s of THz detuned from our cycling transition, we can perform state

readout with the mode locked laser without pulse shaping and directly interrogate the cycling

transition. Higher laser intensity can be used now to scatter more state dependent photons

since we are no longer concerned with population mixing, all while still taking advantage of

the background free readout provided by this scheme.
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Figure 7.11: Comparison of electron shelved state detection with a mode locked laser with
and without temporal filtering. The green shaded region on the inset indicates the photons
that were used for the histograms on the left.

In this experiment the ion is either prepared in the |1〉g or |0〉g state, after which the

2S1/2 ↔ 2D5/2 is driven at 411 nm to shelve the |1〉g population to the 2Fo7/2 . After shelving,

the ion is illuminated with the resonant mode locked laser and 935 nm light. Time traces are

collected by the TCSPC and offloaded at the end of an experiment for analysis. To illustrate
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the power of temporal filtering, Figure 7.11 shows histograms of the same timetraces: one

where temporal filtering is not employed, the other where the photon counting window is

chosen to eliminate photons from the mode locked laser.

Without temporal filtering, the histograms exhibit significant overlap, yielding a low

state preparation and measurement fidelity of F = 0.76 ± 0.01. Instead, if we only count

the photons that arrive from t = 3 ns until the next trigger, the background scatter from

the mode locked laser is filtered out and the state preparation and measurement fidelity is

increased to F = 0.9993+3
−6.

To illustrate the use of this detection technique, we detect ground state qubit Rabi

flopping in the presence of large amounts of background scatter. After electorn shelving, we

detect the remaining population in |0〉g with resonant pulses from the mode-locked laser.
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Figure 7.12: Rabi flopping observed by a combination of electron shelving and background
free state detection with the mode locked laser.
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CHAPTER 8

Electron Shelving in Yb+

Electron shelving is a technique for readout of a quantum state in multi level atoms. In

quantum information related experiments, it involves the transfer of population in a compu-

tational basis state to an auxiliary state that is outside the cycling transition used for laser

induced fluorescence. After population transfer, if the qubit projects into the unshelved

state, it will scatter many photons during laser induced fluorescence. Conversely, if the

qubit projects into the shelved state, it resides outside the cylcing transition and produces

no photons. Electron shelving detection of a trapped ion was first demonstrated in [NSD86]

with a single trapped Ba+ ion.

8.1 Electron shelving

The essence of electron shelving of trapped ions is to take quantum information encoded

somewhere in an atom, and “shelve” it to a different electronic state that does not scatter

photons during the readout process. Two common ways that this is achieved:

• Shelve to a detuned hyperfine state that, due to polarization and frequency selectivity,

does not scatter photons during the readout process (e.g. Be+, Mg+). This is typically

employed in ions lacking low lying metastable D states.

• Shelve to a long lived excited state that is optically separated from the cycling transition

used for detection (e.g. Ca+, Ba+, Sr+, Ra+). The metastable state typically used is

the 2D5/2 state.

The advantage of shelved stated detection, as opposed to hyperfine selective readout in
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I = 1/2 ions, is that transfer of population to a long lived state allows for longer periods of

laser induced fluorescence.. As with any other method for qubit state readout, the detection

process must be state selective and desirably high fidelity. So, we must have a way to

selectively transfer one of the qubit states to the metastable manifold, after which laser

induced fluorescence will reveal which computational basis state we projected into.

8.2 Electron shelving in 171Yb+

8.2.1 A quick note on SPAM

In this chapter, we will be distinguishing between the two essential parts of a SPAM mea-

surement: state preparation and measurement. The electron shelving scheme that will be

described below is a method for measurement, not state preparation. The population transfer

process will project the qubit, and transfer the population to the shelved state.

State preparation is the process through which we prepare the separate computational

basis states, in this case |1〉g and |0〉g . Many states outside of the qubit subspace will be

used to perform the some aspect of qubit state preparation, but in the end an (ideally) pure

electronic state will be prepared before the electron shelving process begins. With how well

the electron shelving scheme in 171Yb+ works, it turns out that this is the harder part of the

SPAM measurement.

8.2.2 Shelving to the 2D5/2

It is possible to utilize the low lying 2D5/2 in 171Yb+ as a shelved manifold, and has recently

been demonstrated in [LRR21]. In other ions where the 2D5/2 is the shelved manifold, the

only decay paths are via an electric quadrupole coupling to the ground state and a magnetic

dipole coupling to the 2D3/2 . Since both of these couplings are much weaker (. Hz) than

electric dipole couplings (∼ MHz), the lifetime of the shelved manifold is generally long (∼

seconds). This is not the case in Yb+, though, due to the presence of the low lying 2Fo7/2 ,

which provides an electric dipole coupling decay pathway via spontaneous emission of a 3.4
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µm photon.

The presence of the electric dipole pathway from the 2Fo7/2 causes the lifetime of the

2D5/2 to be 7.2 ms, and therefore a challenging pathway to electron shelving. In [LRR21], a

state preparation and measurement fidelity of 99.8% was achieved via 2D5/2 electron shelv-

ing. The shelving was performed by concatenating a series of five π pulses on the |0〉g →
2D5/2 |F = 2〉 transition at 411 nm, with each pulse addressing a different magnetic sublevel

in the hyperfine manifold. This was followed by 100 µs of Doppler cooling laser light to

detect the remaining population in the ground state.

Just like standard I = 1/2 hyperfine qubit state detection, this method requires high

numerical aperture lenses for light collection so that the detection time can be reduced for

effective histogram separation and suppression of 2D5/2 spontaneous emission errors. It also

adds the complication of necessitating fast and coherent optical qubit operations for electron

shelving, which may be hard to scale to large multi-ion systems.

8.2.3 Shelving to the 2Fo
7/2

Shelving to the 2Fo7/2 is achieved via incoherent narrow band optical pumping of the |1〉g state

to the 2Fo7/2 via the 2D5/2 |F = 3〉 at 411 nm. The method relies on the spontaneous emission

of the 2D5/2 to the 2Fo7/2 for population transfer, so the speed limit is set by the 2D5/2 lifetime

(7.2 ms) and branching to the 2Fo7/2 (0.83) [TRG97].

A benefit of using this transition in I = 1/2 ions is that the g-factors of 2S1/2 |F = 1〉

and 2D5/2 |F = 3〉 are both equal to 1. What this means is that to first order we cannot

resolve transitions with the same change in magnetic quantum number mF . The second

order Zeeman effect will break this degeneracy, but this is of order kHz which we cannot

resolve in our experiments. After the first scattered photon from 2D5/2 during population

transfer, population that decays back to 2S1/2 |F = 1〉 can reside in any of the magnetic

sub-levels, but since gF (2S1/2 )= gF (2D5/2 ), all transitions with the same ∆mF are nearly

degenerate.
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To see how long we need to optically pump to achieve the desired level of population

transfer, we can look at some simple rate equations and develop them with increasing levels

of complexity.

Basic three level model: We will assume this is a three level system, where the lowest

state has an infinite lifetime, the shelved manifold has a lifetime of 5 years, and the excited

state has a lifetime of τD = 7.2 ms. The branching ratio of the excited state to the 2S1/2 is

0.17, and to the 2Fo7/2 is 0.83.

Figure 8.1: Simplified grotrian diagram of relevant states for electron shelving. The 411 nm
laser drives population in the 2S1/2 to the 2D5/2 , which can decay directly to the 2Fo7/2 for
long term storage.

If all population starts in the ground state, then the population in the shelved manifold

will evolve as

ṗF = γDζpD (8.1)

where ζ = 0.83 is the branching to the shelved manifold, γD is the decay rate of the interme-

diate D state, and pi is the population in the state “i” (which are implicitly assumed to be

time dependent). Since we are not coherently populating the 2D5/2 , there will be no popu-
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lation inversion, but instead the transition will be saturated by the 411 nm laser (pS = pD).

This condition, along with the fact that population is conserved (pD + pS + pF = 1), means

we can eliminate pD from the above equation and get

ṗF =
1

2
γDζ(1− pF ) (8.2)

This can be readily integrated with the initial condition pF (t = 0) = 0 to get

pF (t) = 1− e−t
γDζ

2 = 1− e−t
ζ

2τD (8.3)

In this model, the effective time constant of the shelved state population is τ = 2
γDζ

= 17.3

ms. The fidelity of the population transfer can be written as

F(t) = pF (t) + ζpD(t) = pF (t) +
ζ

2
(1− pF (t)) (8.4)

where the second term arises from the fact that at the time when shelving is stopped, 83%

of any remaining 2D5/2 population will emit to the 2Fo7/2 and result in successful population

transfer. While this model is appropriate for determining population transfer fidelity for

moderate shelving times (< 500 ms), the finite lifetime of the 2Fo7/2 will come into play at

some point.

Including finite lifetime of 2Fo
7/2 : To include the finite lifetime of the 2Fo7/2 into the

model, we incorporate a term for spontaneous emission of population to 2S1/2 from 2Fo7/2 .

We will also now incorporate a term R0 that represents the population transfer rate between

2S1/2 and 2D5/2 .

ṗS = −R0pS + (R0 + (1− ζ)γD)pD + γFpF

ṗF = γDζpD − γFpF

ṗD = R0pS − (R0 + γD)pD

(8.5)

While symbolic integration software (Mathematica) can find analytic solutions to these equa-
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tions, I have not found them to be particularly enlightening or useful. The key here is that

the limit on the population transfer fidelity is set by the competing rates of population trans-

fer into (ζγD) and out of (γF ) 2Fo7/2 . The t → ∞ limit of equation 8.4 using the solutions

above can be found to be

lim
t→∞
F(t) = 1− γF ((1 + ζ)R0 + γD)

γDγF +R0(ζγD + 2γF )
(8.6)

This suggests that the population transfer limit via incoherent narrow band optical pumping

is ∼ 1− 10−10.

This model suggests that if we shelve for 200 ms, we will achieve population transfer

better than 0.99999, which will be the minimum population transfer fidelity we want to

work with for high fidelity operation so that the contribution to the error budget is minimal.

In principle, shelving can be performed for a longer period of time to get better population

transfer.

The models discussed above will describe the shelving process in even isotopes of Yb+

fairly well. As we will show below, there will be other decay processes that will limit the

fidelity of population transfer for qubit measurement in 171Yb+ .

Accounting for magnetic dipole decay during population transfer: In 171Yb+ ,

there exists a magnetic dipole transition moment between 2D5/2 |F = 3〉 and 2D3/2 |F = 2〉

discussed in the next section that will need to be taken into account when performing

qubit state selective population transfer of |1〉g to 2Fo7/2 . The theoretical branching of

2D5/2 |F = 3〉 to 2D3/2 |F = 2〉 is 2 × 10−4, implied from the theoretical magnetic dipole

transition rate of 28 mHz. This decay is repumped to the ground state with the 935 nm

laser and will branch to the 2S1/2 |F = 0〉 and |F = 1〉 with probability 1/3 and 2/3 respec-

tively. For simplicity in the model, we will ignore the details of the repumping and treat

the repump events as instantaneous so that 2D5/2 |F = 3〉 branches to the ground state hy-

perfine manifolds directly. This approximation is valid in the regime where the repumping

rate (< 1µs) is much faster than the decay rate of 2D5/2 (7.2 ms), which is true in the
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171Yb+ system. Additionally, we will treat all decays from 2Fo7/2 as errors that populate

|0〉g so we can avoid modeling the hyperfine structure in the 2Fo7/2 . Since the attainable

fidelity is limited primarily by the M1 decay, changing the state to which 2Fo7/2 population

decays has no observable effect on the numerical results. The system of equations is

ṗS1 = −R0pS1 + (R0 + (1− ζ)γD +
2

3
χγD)pD + γFpF

ṗS0 =
1

3
χγDpD

ṗF = γD(ζ − χ)pD − γFpF

ṗD = R0pS − (R0 + γD)pD

(8.7)

where χ = 2×10−4 is the branching ratio to 2D3/2 |F = 2〉, and S1 and S0 are the F = 1 and

F = 0 hyperfine manifolds in the ground state, respectively. The addition of the magnetic

dipole decay channel is modeled as a channel that weakens the decay path to 2Fo7/2 , which

has little effect on the overall dynamics. This decay channel quickly populates |0〉g , and

limits state selective population transfer of |1〉g to 2Fo7/2 to 0.99992 for times t > 0.2 ms.

We measure population transfer fidelity of the 2S1/2 |F = 1〉 manifold to the 2Fo7/2 state

by first preparing |0〉g , followed by a series of three microwave π-pulses: first on the |0〉g →

|1〉g transition, followed by one each on the |0〉g → 2S1/2 |F = 1,mF = ±1〉 transitions. This

is followed by manifold selective population transfer at 411 nm for variable times up to

tshelve = 300 ms. We measure combined 2S1/2 |F = 1〉 manifold and population transfer

fidelities of 0.99991+3
−4 at 200 ms, and 0.99992+3

−4 at 300 ms. Both results are consistent with

the aforementioned limits set by the magnetic dipole decay.

8.2.4 Sources of infidelity during population transfer

There will be two main sources of error during an attempt to transfer the |1〉g population to

the 2Fo7/2 : off resonant excitation to the 2D5/2 |F = 2〉 hyperfine level, and a non vanishing

magnetic dipole moment between 2D5/2 |F = 3〉 and 2D3/2 |F = 2〉.
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Figure 8.2: Shelving infidelity as a function of time, with all above models shown. Blue
dotted line ignores the finite lifetime of 2Fo7/2 , solid blue line includes it. The orange curve
includes the magnetic dipole decay channel, and the red curve is 1 − e−γF t. Data taken at
variable shelving times shown on plot. For long shelving times, the data agrees quite well
with the basic rate model. Experimental data at times ≤ 100 ms tend to perform better
than the simple rate model, which could be explained by a slight asymmetry of the 2S1/2 and
2D5/2 populations.

To estimate an upper bound on the error caused by off resonant scatter to the incorrect

hyperfine manifold, we will look at the ratio of the scattering rates. There will be two sets

of parameters: one characterizing the 2S1/2 |F = 1〉 → 2D5/2 |F = 3〉 transition and another

characterizing the 2S1/2 |F = 1〉 → 2D5/2 |F = 2〉 transition. This is necessary since the

relative coupling strengths are different by about a factor of 3 [TEM21]. The saturation

intensity for the two transitions are

Isat,3 =
πhc

3λ3
η3γ = 70.4 µW/m2

Isat,2 =
πhc

3λ3
η2γ = 28.9 µW/m2

(8.8)

Where λ = 411 nm, γ = 1/τ = 2π×22 Hz, and (η3, η2) = (0.17, 0.07) are the branching ratios
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of the two upper hyperfine manifolds back to the lower ground state manifold [TEM21]. An

upper bound on the amount of power used during the experiments is P = 2 mW, and an

estimated beam waist ω0 = 40µm. This gives

I =
2P

πω2
0

= 796 kW/m2

s3 ≈ 1.1× 1010

s2 ≈ 2.7× 1010

(8.9)

and a resonant Rabi frequency on the shelving line of Ω = 2π × 281 kHz. This is calculated

under the assumption that the ion is located radially at the center of an ideal Gaussian beam

profile, and at z = 0 where the intensity is the highest. In practice, we have not observed

Rabi frequencies this high, determined coarsely by detuning the laser and observing the AC

Stark shift of the |1〉g state via Ramsey spectroscopy.

The ratio of the off resonant scattering rate to the resonant scattering rate is

R(∆ = 2π × 191 MHz, s = s2)

R(∆ = 0, s = s3)
= 1.8× 10−7 (8.10)

This is even further suppressed by the fact that even if an off resonant excitation occurs, it

still correctly shelves the population 83% of the time, and only mixes population into the

|0〉g 11% of the time. The off resonant scattering rate is calculated with these parameters

to be ∼ 30µHz, which should be no issue during electron shelving. Given this scattering

rate, the probability of an off resonant scattering event in 200 ms is 6× 10−6 without taking

into account the decreasing population as a function of time in 2S1/2 |F = 1〉. This limit is

user-tunable, and can be suppressed by narrowing of the 411 nm laser and decreasing the

laser intensity.

The more important effect turns out to be the magnetic dipole decay between the two DJ

states, an often overlooked effect due to its relatively small strength. The transition rate was

derived in Section 3.3.2, resulting in a M1 transition rate of 28 mHz. Electric quadrupole

contributions to this rate are about 3 orders of magnitude smaller, and therefore are neg-
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ligible. This transition rate results in a branching ratio of 2 × 10−4 to the 2D3/2 |F = 2〉.

This state is typically repumped to the 3[3/2]o1/2 |F = 1〉, which will branch to the ground

state F = 1 and F = 0 manifolds with probabilities 2/3 and 1/3 respectively. Therefore, the

contribution to our population transfer fidelity is
∑∞

n=0 η
n
3 (1/3)(2 × 10−4) = 8 × 10−5, our

largest “physics limited” source of infidelity. The form of this infidelity stems from the fact

that there will be multiple spontaneous emission events from the 2D5/2 during the population

transfer process, each of which has a finite probability of mixing the qubit states due to an

M1 decay.

There are multiple ways this error channel can be avoided or suppressed. The most

straightforward method is to depopulate the 2D3/2 |F = 2〉 manifold via an electric dipole

transition to an odd parity electronic state with J = 3/2 and total angular momentum

F = 2. This can be readily achieved by driving population to 2Po
3/2 at 1.35 µm, or to

1[3/2]o3/2 at 861 nm. While both of these schemes do not completely eliminate the potential

for state mixing, they highly suppress the error channel to less than 1× 10−6. Alternatively,

one can attempt to depopulate the intermediate 2D5/2 |F = 3〉 manifold in a state selective

way before a spontaneous emission event can occur. This can be achieved with the addition

of a 3.4 µm laser to drive population between the intermediate manifold and the target

metastable manifold.

8.3 Optical pumping, preparation of |0〉g

The first step in state preparation is the start in a simple state that we can prepare with

high fidelity and speed. For nuclear spin 1/2 ions, this is typically the 2S1/2 |F = 0〉 = |0〉g
due to the ease of incoherent optical pumping. This is achieved by illuminating the ion with

laser light resonant with the 2S1/2 |F = 1〉 ↔ 2P1/2 |F = 1〉 transition. After excitation to

the 2P1/2, the ion will decay into the |0〉g state 1/3 of the time. The laser light can simply

be left on for a suitable amount of time until the desired state has been prepared with high

certainty, which typically takes on the order of ∼ 10 µs.
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The question we aim to answer is how high is that certainty, and what are the limits

to this scheme? If we had the ability to provide a spectrally pure laser resonant with the

optical pumping transition, the limit of that process would be the competing rate at which

population is pumped out of the |0〉g state by that same laser light via the only allowed

transition to the 2P1/2 |F = 1〉 manifold. The scattering rate of optical pumping and the off

resonant out-pumping are given by

Rin =

(
1

3

)(
2

3

)
Γ

2

s

1 + s
(8.11)

Rout =

(
2

3

)
Γ

2

s

1 + s+ (2∆
Γ

)2
(8.12)

where the detuning of the out coupling light is ∆ = 2π×12.6 GHz, and the natural linewidth

of the transition Γ = 2π × 19.7 MHz. The ratio of these rates will give us an answer for the

steady state population that we can expect in the F = 1 manifold of the ground state.

Rout

Rin

=
2(1 + s)

1 + s+ (2∆
Γ

)2

s→0−−→ 2

1 + (2∆
Γ

)2
(8.13)

This gives a steady state population of 1.8×10−6, or a |0g〉 state preparation fidelity F|0〉g ≈

0.999998.

Without the availability of a separate UV laser, typically an electro-optic modulator

(EOM) is used to produce laser light for optical pumping. As the laser propagates through

the EOM, it will undergo phase modulation at the applied modulation frequency that results

in optical sidebands with intensity ∝ I0|Jn(β)|2, where β is the modulation depth determined

by the intensity of the applied modulation electric field.

The population dynamics during optical pumping can be approximated by a set of rate

equations modeling the populations of the 2S1/2 |F = 1〉 and 2S1/2 |F = 0〉 while interacting

with laser light exiting the EOM. If we allow no population to reside in the excited state

and ignore the effect of the 2D3/2, which is approximately true given the short lifetime of the
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excited state (∼ 8 ns) and weak branching to the metastable manifold (0.005), we can use a

two level model to find the dynamics. The rate equations can be approximated by

ṗ0(t) =
(2

3

)(1

3

)
p1(t)

[
R(0, sOP ) +R(ωHFP , sC)

]
−(2

3

)
p0(t)

∑
n

R(∆n, |Jn(β)|2s0)

ṗ1(t) = −ṗ0(t)

(8.14)

Where R(∆, s) is the scattering rate induced by one of the accounted for laser tones. The

sum is over n = 0 to 8, and the ∆n is the detuning of the positive nth order sideband from the

2S1/2 |F = 0〉 → 2Po
1/2 |F = 1〉 transition that would move population out of the |0〉g state.

The factor of 2/3 in the first term reflects that at any point, one of the three 2S1/2 |F = 1〉 →
2Po

1/2 |F = 1〉 transitions is a coherent dark state of the system [NVG13], and the factor of

1/3 is the branching back to the |0〉g state. Likewise, the factor of 2/3 in the second term is

the branching back to the |1〉g state.

It was observed by addition of extra terms that included other sidebands in the first term

of the rate equations above did not result in a significant change in the optimal modulation

depth or the infidelity of the process. Another detail to take into account is the possibility

that our EOM does not phase modulate all input laser light and full carrier suppression

is not possible. We will use the parameter η to model this, defined as the fraction of the

carrier that goes unmodulated. There will be two effects here: the first is that for η = 0,

the equations should reduced to the original model, and for η = 1 all terms except for the

carrier should have zero intensity. This is modeled by letting sc = |J0(βopt)|2s0(1− η) + ηs0,

and s0 → (1 − η)s0 for all other terms, where η is the fraction of the input light that goes

unaffected by the modulation process (i.e. if the zeroeth order Bessel function was zero-

ed out, this is how much carrier light would still pass through the modulator). Setting the

modulation depth to the numerical optimal of β = 1.75 and scanning η we find unsurprisingly

that the optical pumping gets worse as η increases.

This model fails to take into account the effect of laser polarization of the optical pumping
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Figure 8.3: Optical pumping infidelity as a function of EOM modulation depth, β. The
optimal modulation depth is β = 1.75 given an input saturation intensity s0 =1. This
value of the modulation depth is just below the maximum value of |J1(β)| at β =1.84 that
optimizes the optical pumping intensity.

beam, along with the Zeeman substructure of both fine structure states. In order to take

these effects into account, an 8 level system would need to be simulated with arbitrary

couplings between the states (which gets more difficult when trying to account for all the

EOM sidebands). Another issue with this simulation is its speed: since the full Hamiltonian

will have to take into account the hyperfine splittings, we will not be able to rotate out the

time dependence at the hyperfine energy splittings, which means that numerical simulations

will need to take step sizes on the order of δt ∼ 1/ωHFS ∼ 80 picoseconds.

With this model, it seems clear that the E1 optical pumping scheme is fairly insensitive

to the input microwave power. So long as the modulation depth is set in the neighborhood of

β = 1.75, and the unmodulated index η remains moderately small, infidelities below around

10−5 should be easily achievable, in theory. What this does not take into account is all
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Figure 8.4: Bessel functions plotted as a function of the modulation depth, β. The solid
vertical line indicates the numerically solved optimal modulation depth for optical pumping
with high fidelity.

the experimental complexity that goes into performing these experiments, and potential not

obvious sources of error. Some of these, to name a few, are RF pickup on AOMs, leak-

through light on unwanted lasers (in particular the Doppler cooling AOM), and ion heating

during the shelving process.

In order to improve upon this standard E1 mediated optical pumping, additional tech-

niques are necessary to improve the |0〉g preparation. The limiting factor in the above scheme

is the large linewidth of the dipole transition, and the ratio of that linewidth to the respective

hyperfine splittings. Since there is nothing we can do to change the inherent structure of

the ion, we need to take advantage of other transitions. The ideal situation would be the

following:

1. An excited state connected to the 2S1/2 |F = 1〉 states via a moderately weak transition
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Figure 8.5: Infidelity of optical pumping as a function of the unmodulated carrier fraction,
η, with an input saturation parameter of s0 = 1.. The minimum occurs at η = 0 with an
optical pumping infidelity of 4.2×10−6, and the maximum occurs at η = 1 where the optical
pumping fidelity is 0.943, corresponding to optical pumping with the carrier tone alone.
This was simulated at the numerical optimal modulation depth of β = 1.75, which assumed
a perfect modulator (η = 0).

(E2 or M1 for instance). The low lying 2DJ states are candidates for some ions.

2. A second excited that has a couple properties:

• Decays quickly and with high probability to the ground state

• Has the correct grand total angular momentum F to allow for optical pumping to

the |0〉g state.

These last two requirements limit us to excited states that have a strong dipole moment

with the 2S1/2 ground state, and thus must have odd parity. If the decay is to be via an

electric dipole transition, then the grand total angular momentum must also be F = 1 so

that decays to the |0〉g qubit state is possible. Luckily in Yb+, there are many relatively low
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lying odd parity states that we can use, so there are a few schemes to achieve this goal:

1. Step 1: 2S1/2 |F = 1〉 ↔ 2D3/2 |F = 2〉 (E2 at 435 nm), followed by Step 2: 2D3/2 |F = 2〉

↔ 3[3/2]o1/2 |F = 1〉 (E1 at 935 nm)

2. Step 1: 2S1/2 |F = 1〉 ↔ 2D5/2 |F = 2〉 (E2 at 411 nm), followed by Step 2: 2D5/2 |F = 2〉

↔ 1[3/2]o3/2 |F = 1〉 (E1 at 976 nm)

Since we are already implementing the E2 transition at 411 nm to perform electron shelving,

this is the natural choice in our lab. This method for optical pumping is used as a secondary

method following standard electric dipole mediated optical pumping. If the first stage of

optical pumping can be performed with infidelity ε, where we assume the error is population

residing in the upper hyperfine manifold, then the second stage of optical pumping should

improve preparation of the |0〉g state to F|0〉g = 1 − (1 − F2)ε where F2 is the fidelity of

the second stage. We have separately quantified our ability to perform this second state

of optical pumping, and have found that |0〉g state preparation fidelities > 0.999 are easily

achieved in less than a few milliseconds.

There are other sources of experimental infidelity as well. One of the more important

ones is leak-through laser light from other laser paths that should not be activated during

the optical pumping sequence of the experiment. In particular, we should be very concerned

about the path used for Doppler cooling of ions because leak-through of light on this path may

have light resonant with the |0〉g → 2Po
1/2 |F = 1〉 transition which would actively depopulate

the |0〉g state. I say may because there may be two mechanisms for this leak-through laser

light: the first is some sort of specular scatter in the AOM crystal causing the laser wavevector

to be identical to that of the AOM’s first order diffracted light, the other being RF pickup in

the cables causing actual first order deflection of the Doppler cooling light into the fiber (and

hence to the ion). The first scenario we have observed in the lab, and should cause photons

that are -110 MHz detuned from the line to leak into the trap. The second scenario has also

been observed, but can be solved by shifting the operating frequencies of other AOMs on

during optical pumping. We therefore shifted the optical pumping AOM from +110 MHz
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Figure 8.6: Optical pumping rate experiment measuring the population in |1〉g as a func-
tion of the time the 411 nm + 976 nm lasers are applied for |0〉g state preparation. The
measured time constant in this instance is τ = 115 µs. Standard spin 1/2 hyperfine qubit
measurement is used here, so an overall offset to the exponential fit is allowed to account for
the measurement fidelity of the |0〉g state.

to +120 MHz, and compensated for the frequency shift with the double pass during optical

pumping. Optical intensities of the leak through laser light are too small to measure with

out optical power meter, and are not visible by eye on the output of the fiber.

Both of these effects can be checked by running the following experiment: prepare the

|0〉g state as well as possible, and then allow for a variable dead time between the end of

optical pumping and the beginning of shelving and see how the fidelity scales as a function

of the wait time. This works, in principle, but is hindered by the effects of heating on the

experiment. If we leave the ion in the dark for long periods of time (> 100 ms), significant

heating can occur and degrade the effectiveness of shelving. It is therefore hard to deconvolve

the effects of leak-through light and ineffective shelving at long wait times.

115



8.4 Preparation of |1〉g

To perform a SPAM measurement, we need to show our ability to prepare and detect both

of qubit basis states. We have shown that state preparation (SP of SPAM) of the |0〉g state

in our lab is, in theory, feasible at the 1 - 10−8 level, and further investigation for state

preparation of the |1〉g state is now necessary.

In nuclear spin 1/2 ions, when the qubit basis states are the ground state hyperfine clock

states, it is typical to prepare the |1〉g state by first preparing |0〉g and performing a single

qubit gate to rotate |0〉g → |1〉g. This is done primarily because no simple method of inco-

herent optical pumping is available to prepare the |1〉g state, and most quantum information

laboratories have all the tools to perform arbitrary single qubit gates at reasonable fidelities.
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Figure 8.7: Rabi flopping of the ground state qubit, with measurement performed via electron
shelving. Each point is the result of 400 experimental trials.

After state initialization and performing a single qubit rotation for time t, with resonant

Rabi frequency Ω and detuning ∆ from the qubit transition, the population in the |1〉g is

given by solving the standard two level Rabi problem,
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|c1(t)|2 = P1(t) =
Ω2

Ω2 + ∆2
sin2

( t
2

√
Ω2 + ∆2

)
=

1

1 + (∆/Ω)2
sin2

(Ωt

2

√
1 + (∆/Ω)2

) (8.15)

The challenge experimentally is to maintain small errors in the applied microwave frequency

and amplitude at the location of the ion. Determining the correct transition frequency

is often relatively easy by implementing a variable delay Ramsey experiment at a fixed

detuning, through which the resonant frequency of the qubit can be determined to ∼ Hz

accuracy and precision, or about a part in 109 for qubits in the GHz range.

Correctly determining the appropriate interaction time is often more difficult, as it is in-

fluenced by additional experimental factors. To accomplish a π rotation (for full preparation

of the |1〉g), the interaction must be applied for a time t = π/Ω at zero detuning. Due to

thermal drifts of high power amplifiers, often Ω cannot be considered a constant in time,

and can often vary temporally and with the duty cycle of a particular experiment. This

makes it challenging to accurately determine Ω to the desired precision, which in turn leaves

uncertainty in setting the interaction time.

Taking the ∆→ 0 limit of 8.15 we get

P1(t) = sin2
(Ωt

2

)
(8.16)

where we have dropped terms O((∆/Ω)2). Typical values for the resonant Rabi frequnecy

on our experiment are Ω = 2π× (2-20) kHz, so if the detuning is calibrated to better than

10 Hz, a typical ratio of the detuning to the resonant Rabi frequency is of order 10−3. The

quantity Ωt ≡ θ is often referred to as the pulse area, and the parameter θ is chosen as it

represents the polar angle on the two level Bloch sphere. Expanding 8.16 around θ = π, we
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get

P1(t) ≈ 1− 1

4
(θ − π)2

= 1− δθ2

4

(8.17)

where δθ is the pulse area error in radians. In order to perform a population transfer to |1〉

better than F|1〉 = 1− 10−5 we need to maintain a pulse area error below 0.6%. For a fixed

Rabi frequency of 10 kHz, this means timing the microwave application time to ±100 ns.

The pulse area error can conveniently be expressed in terms of the programmed tπ and a

timing error δt as δθ = πδt
tπ

, where the timing error could be the result of misidentifying the

Rabi frequency or a result of limitations of our pulse sequencer which can only supply TTL

signals in increments of 40 ns.

We characterize our π-pulse fidelity by concatenating Np π-pulses with random phases,

where the set of random phases for a fixed Np is regenerated every 100 experiments to ensure

sufficient randomization. Numerical simulations suggest that using at least 100 different sets

of randomly generated phases is enough to simulate a random walk about the poles of the

Bloch sphere. If a pulse has constant pulse area error δθ, after Np π-pulses with random

phases, on average the angular displacement of the Bloch vector from the pole will be
√
Npδθ.

Since equation 8.17 scales quadratically with small angular displacements from the pole, the

measured process fidelity should scale linearly with the number of concatenated π-pulses.

We perform this measurement for Np = {2, 12, 16, 22, 28, 32, 42}, and fit the resulting

process fidelities to the function I(Np) = Npεπ + εSPAM , where we interpret the y-intercept

as the state preparation and measurement error for Np = 0 pulses. The results are shown in

Figure 8.8. Since we only perform even numbers of pulses, we expect to always begin and

end the experiment in |0〉g . This means the interpretation of the y-intercept is the SPAM

of the |0〉g state, and is consistent with auxiliary measurements of the |0〉g SPAM fidelity

with standard state detection.

To further validate our single qubit gate fidelity, we perform randomized benchmarking of
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Figure 8.8: Results of concatenating π-pulses. The results of this experiment imply a single
π-pulse infidelity of επ = 1.0(2)× 10−4 and a SPAM intercept of 4.5(5)× 10−3.
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Figure 8.9: Results of single qubit randomized benchmarking experiment. The alpha chan-
neled black datapoints are the results of each individual sequence, and the red hexagons are
the mean result for each sequence length. We find a resulting error per random computa-
tional gate of εg = 8(2)× 10−5 and a SPAM intercept of εspam = 9.1(7)× 10−3.

our single qubit gates following the prescription in [KLR08]. Sequences of length N are com-

posed of N-1 random computational gates, where each random computational gate is com-

posed of a Pauli gate chosen uniformly at random from the set P ∈ {±X(π),±Y (π),±Z(π),
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±I(π)} followed by a Clifford gate chosen uniformly at random from the set C ∈ {±X(π/2),±Y (π/2)}.

The Pauli gates are e±iπσp/2, implemented as pulses with area π rotating the qubit about

the corresponding axis of the Bloch sphere. Similarly, the Clifford gates are e±iπσc/4, im-

plemented as pulses with area π/2 rotating the qubit about the corresponding axis of the

Bloch sphere. The first N-1 computational gates are randomly generated, at which point

the resulting computational basis state to end the sequence in is chosen at random from

{|0〉g , |1〉g}, and the the Nth computational gate is chosen such that the qubit is rotated to

the chosen computational basis state. The Clifford Z gate is only used in the Nth computa-

tional gate if the qubit already resides in the computational basis after the first N-1 random

computational gates. Pauli ±I gates are implemented as an empty sequence of duration tπ,

and Pauli ±Z gates are implemented as an empty sequence of duration tπ with a rotation

of the logical frame for subsequent pulses.

The sequence lengths chosen are the Fibonacci sequence as suggested in [Mei13] since the

lengths were unlikely to hide errors due to use of only odd or even length sequences and their

general exponential increase in separation. We use sequence lengths N = {1, 2, 3, 5, 8, 13, 21, 34,

55, 89, 144}, terminating at length 144 only due to limitations of our pulse sequencer. Ide-

ally for confirming random computational gate infidelities of order εg, one should perform

sequences up to length Nmax ∼ 1/εg in order to observe the exponential decrease in survival

probability. If a sufficient number of randomly generated sequences for each length are ex-

plored, the resulting process fidelity as a function of the sequence length should follow the

form

F(N) =
1

2
+

1

2
(1− 2εspam)(1− 2εg)

N (8.18)

We perform 100 experiments per point shown in Figure 8.9, where we use Nc = 5 unique

sequences of Clifford gates each of which is randomized by Np = 10 unique sets of Pauli gates,

for a total of length(N)NcNp = 550 unique sequences. We find a resulting error per random

computational gate of εg = 8(2) × 10−5 and a SPAM intercept of εspam = 9.1(7) × 10−3,

consistent with our state preparation and measurement fidelity measured through auxiliary

experiments. The mean survival probability for each sequence length is fit via a least squares
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algorithm provided by the Python SciPy package to equation 8.18. A potential interpretation

of this result is provided in [KLR08]: all Clifford gates are of real pulse area π/2 and half of

the utilized Pauli operators are of pulse area π, so that εg may be interpreted at the error

rate of random gates of action π.

8.4.1 Deshelving

When electron shelving, deshelving population stranded in the metastable manifold is an

essential part of the operation. Efficient deshelving both ensures that stranded population

after state detection is quickly retrieved, and that at any other necessary point in the ex-

periment erroneous population transfer to the metastable manifold is not detrimental (e.g.

during quadrupole optical pumping).

Deshelving of 2Fo7/2 population is achieved with a pair of 760 nm DBR lasers separated

in frequency by 5.257 GHz. The large frequency difference owes in part to the large hyper-

fine splittings in both the 2Fo7/2 and the 1[3/2]o3/2 fine structure levels. The 2Fo7/2 hyperfine

splitting we have measured to be ωHFF = 2π × 3.6205 GHz by direct resonant microwave

spectroscopy, and the 1[3/2]o3/2 hyperfine splitting we have measured to be about 8.88 GHz.

The bracket state splitting was measured both via direct measurement of the two 760 nm

laser laser transitions, as well as the 861 nm transitions.

A second laser at 976 nm is also applied to prevent population excited to 1[3/2]o3/2 from

decaying back to 2Fo7/2 via 2D5/2 .

8.5 The SPAM measurement

The experiment that measures state preparation and measurement fidelity interleaves prepa-

ration of the |0〉g and |1〉g state every 100 experiments. This is done to make sure no sys-

tematic effect is causing the measurement of one of the states to be better than it should be.

The qubit frequency is measured every hour to track its drift, and the resonant Rabi rate is

measured every ∼2000 experiments to track drifts.
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Figure 8.10: Deshelving rate experiment. Population in the metastable state is inferred
from 2S1/2 population measurement after a variable amount of deshelving time. During
deshelving, both 760 nm lasers along with the 976 nm laser and 935 nm laser are applied so
the metastable 2DJ states are depopulated efficiently. With ∼ 15 mW per 760 nm laser, the
observed deshelving time constant is τ = 350 µs.

Throughout the measurement, our wavemeter is calibrated to a saturated absoprtion

locked 780 nm laser every 5 minutes to minimize drifts in the software frequency locks. All

lasers are locked in this way, except for our 369 nm ECDL which is stabilized to an optical

cavity via the Pound-Drever-Hall method. This is particularly important for the 822 nm

laser lock, where drifts on the order of MHz can affect the population transfer process.

In the process of taking data, we log the number of scattered photons during state

detection and Doppler cooling. We use the Doppler cooling counts to ensure that at the

beginning of an experiment the ion is present and properly cooled, and use the counts as a

filter for experiments where the ion was not properly cooled beforehand.

We define a successful attempt at SPAM as having found the ion properly cooled before
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and after the SPAM attempt. We have found experimentally that the majority of our

|0〉g SPAM errors occur preceding a failed Doppler cooling test, which we label as ion storage

errors. To verify that the storage errors are not related to the population transfer process,

we perform state preparation and measurement |0〉g without applying 411 nm laser light

during the shelving step, but instead leaving the ion in the dark for the identical amount of

time (200 ms). If not filtered, the contribution of storage errors to our SPAM is determined

to be 3+0.7
−0.5 × 10−4 (27 errors in 88474 attempts). When filtering for storage errors, we see a

contribution to our infidelity of 1.1+2.9
−0.6 × 10−5 (1 error in 88403 attempts), in line with the

measured SPAM with application of the shelving laser light.

Figure 8.11: Results of the SPAM measurement. The measured state preparation and mea-
surement infidelity is εSPAM = 1.5+0.4

−0.3 × 10−4, where the main contribution is single qubit
gate errors in preparation of |1〉g .

The total state preparation and measurement fidelity of the ground state qubit is εSPAM =

1.5+0.4
−0.3×10−4. The state preparation and measurement fidelity of |0〉g is ε|0〉g = 3.4+3.4

−1.7×10−5,

and the state preparation and measurement fidelity of |1〉g is ε|1〉g = 2.7+0.8
−0.6×10−4. The main

contribution to the infidelity is error in our single qubit gates throughout the measurement,
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consistent with an average π-pulse infidelity of επ ∼= 1.9× 10−4.

8.5.1 Achievable SPAM

While our SPAM measurement fidelity is limited by our ability to perform a single qubit

gate, this is not the limit of the scheme. To determine the true potential SPAM fidelity

achievable with 200 ms of narrow-band optical pumping, we can take the |0〉g data from

above and combine it with the 2S1/2 |F = 1〉 manifold preparation data from earlier and

gather a pseudo-SPAM fidelity. The “fidelity” is the combine SPAM fidelity of the |0〉g state

combined with our ability to prepare the 2S1/2 |F = 1〉 manifold with three separate π-pulses

to the separate magnetic sub-levels after preparation of |0〉g . This results in a pseudo-SPAM

fidelity of F = 0.99993+2
−3.

8.6 Shelving speed up options

Here we will go over some potential pathways to faster population transfer to the 2Fo7/2 of

in general the |1〉g state in a qubit basis selective way. Each scheme will be worked out in

moderate detail.

8.6.1 Shelving via 1[5/2]o5/2

The idea behind this scheme is for population to spontaneously emit photons via an M1 or

E2 amplitude from the 1[5/2]o5/2 state to the 2Fo7/2 . To achieve this, a two step excitation

can be performed via the intermediate 2DJ states. Either driving |1〉g → 2D3/2 |F = 2〉 →
1[5/2]o5/2 |F = 3〉 at 435 nm and 410 nm respectively, or driving |1〉g → 2D5/2 |F = 3〉 →
1[5/2]o5/2 |F = 3〉 at 411 nm and 436 nm respectively, can achieve the same goal. Since

lingering population in the 2D5/2 will decay to the 2Fo7/2 directly with branching ratio 0.83,

the latter scheme seems favorable.

The issue with this scheme is twofold: appropriate repumping of the other 2DJ hyperfine

levels must be done to avoid population mixing, and the Einstien A coefficient of the bracket
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state to the metastable manifold must be greater than 19 Hz for this scheme to be faster

than using the 2D5/2 directly.

Repumping of the 2DJ would be done at 861 nm and 976 nm via the 1[3/2]o3/2 |F = 2〉

state. This would ensure that population would either couple back to the 2S1/2 |F = 1〉

manifold, or back to any of the 2DJ hyperfine manifolds, all of which are either being

repumped or shelved. This rempumping applies to either of the shelving pathways mentioned

above, with just a slight adjustments of which hyperfine manifolds are addressed.

The transition rate ABF of the bracket state to the shelved manifold will have two con-

tributions: M1 and E2. Based on the electron configuration of the two states, it makes it

seem like the core electrons are undergoing an M1 like transition (4f 13(2Fo5/2)→ 4f 132Fo7/2 )

and the outer electrons will undergo an E2 like transition (6s5d(1D) → 6s2(1S)). Since ap-

proaching a multi-electron transition likely necessitates a more formal approach for a precise

answer, we can modify out approach to set a bound on the rate. For optical transitions,

magnetic dipole rates are typically stronger than E2 rates, so if we treat the transition as

if the core was the only contributor (as in the M1 moment is the only contribution to the

transition moment), this should set an upper bound on ABF (which will likely be further

reduced by the addition of the E2 moment).

The transition occurs at 385.4 nm, leading to a rate of 258.4 Hz. This suggests that this

could be a potential pathway to faster shelving if the appropriate repump lasers are used.

8.6.2 Addition of 3.4 µm laser

There is potential for using a 3.4 µm laser to drive the 2D5/2 ↔ 2Fo7/2 transition to speed

up the population transfer process. A number of ideas have been discussed as to how this

would be performed, a few of which are outlined below.

• Perform multiple population transfer steps in the form of a coherent π-pulse with the

411 nm laser, followed by a coherent π-pulse with the 3.4 µm laser to the 2Fo7/2 . This

can be repeated many times, each time the population is transferred to a new magnetic

125



sublevel in the 2Fo7/2 . The difficulty here is the effective need for two operational optical

qubits just for electron shelving.

• Stimulated Raman adiabatic passage (STIRAP)

• Instead of performing sequential π-pulses at 411 nm and 3.4 µm, an off resonant

two photon stimulated Raman transition transition could be performed directly from

2S1/2 to 2Fo7/2 .
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CHAPTER 9

The Metastable Qubit

9.1 The metastable qubit platform

In laser cool-able trapped ion species with non-zero nuclear spin, there can exist excited

states that have moderately long lifetimes (> 1s) which exist outside of the standard cycling

transition and possess hyperfine structure. The hyperfine interaction generates convenient

energy intervals in these excited states, between which we can define a qubit.

These species are required, in this scheme, to possess a suitable ground state qubit (g-

type), a moderately long lived metastable state (> 1s) with a convenient metastable state

qubit (m-type), and a means of performing coherent population transfer via an optical tran-

sition between the g and m qubit types (o-type). In 171Yb+, the OMG (Optical, Metastable,

and Ground) qubits are detailed below

• g-type: hyperfine zero-field clock qubit defined between the

2S1/2 |F = 0〉 ↔ 2S1/2 |F = 1,mF = 0〉 states.

• m-type: hyperfine zero-field clock qubit defined between the 2Fo7/2 |F = 3,mF = 0〉 ↔
2Fo7/2 |F = 4,mF = 0〉 states. Like the ground state, there are other options for defining

a qubit in this excited manifold, but the clock state is chosen for its low magnetic field

sensitivity.

• o-type: Electric octupole transition between the 2S1/2 g-type states and the 2Fo7/2 m-

type states. This is the proposed o-type scheme, but there may be other options for

performing two step coherent transfer via less restrictive transitions.
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Figure 9.1: The 171Yb+ metastable qubit scheme. Each primitive operation is performed in
one of the three qubit types, all three are necessary for full operation of the o-m-g qubit
quantum information processor.

Let’s run through the 6 steps outlined in Figure 9.1:

• Initialization: all qubits can be prepared in one of the basis states of the m-type

Hilbert space. This can be done in a heralded fashion by utilizing dissipative population

transfer to the metastable manifold along with a few additional operations, but that

may be slow and scales poorly to many qubits. A preferable method would be to first

prepare the g-type qubit in |0〉g, and utilize the o-type operation to map the g-type

Hilbert space to the m-type Hilbert space. Then, the state preparation can be heralded

via laser induced fluorescence in the g-type manifold.

• Activation: multi-qubit gates can be performed in the g-type qubit, so individually

addresses o-type operations will perform the desired m-type to g-type Hilbert space

shuttling (H|m〉 ↔ H|g〉) prior to the multi-qubit gate. This will either be achieved

by the one step 467 nm E3 transition, or potentially a multi step coherent population

transfer (3.43 µm followed by 411 nm, for instance)

• Gates: multi-qubit gates, as well as single qubit gates if necessary, will be driven in

the g-type Hilbert space via stimulated Raman transitions coupling the g-type qubit

to the motion of the crystal.
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• Archive: Following g-type gate operations, the quantum information in the g-type

qubits will be shuttled in Hilbert space (H|m〉 ↔ H|g〉) to the m-type manifold for

storage. This is essential so that subsequent multi-qubit gates not containing those

particular physical qubits can be performed without cross-talk with the m-type Hilbert

space (although the motion of the collective crystal can still be excited).

• Activation: prior to dissipative state readout or conversion of a physical qubit into

a refrigerant ion, an m-type qubit can be mapped to the g-type qubit via individually

addressed o-type operations.

• Cooling/readout: o-type operation can perform full/partial m-to-g Hilbert space

mapping for qubit state readout. This can in fact be performed by either coherent

operation with the o-type qubit, or entropically (yet still state selectively) with the

760 nm lasers.

This scheme takes advantage of the various properties of the m-type and g-type qubit

and utilizes both Hilbert spaces to perform flexible operations.

9.1.1 Alternative scheme for 171Yb+

The 171Yb+ metastable qubit platform is unique in the fact that the “metastable” manifold is

more of a “stable” manifold, acting almost like a second ground state due to its extreme life-

time (τ ∼ 5 years). This provides the opportunity to potentially operate the 171Yb+ system

in a different way, where all qubit (unitary) operations are performed in the m-type qubit,

and all dissipative operations are performed in the g-type manifold (which in this case is not

utilized as a computational qubit).

This configuration removes the need for coherent o-type operations, replacing them with

m-type qubit state selective dissipative population transfer to the g-type manifold. An

outline is given below in Figure 9.2.

• Initialize: ions to be used as physical qubits are initialized into one of the m-type
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Figure 9.2: Alternate scheme for 171Yb+ metastable qubit

qubit basis states, which can be done as described in the previous section. Ions that

are to remain as refrigerant ions can remain in the g-type manifold.

• Gates: both single qubit and multi qubit gates will be performed by individually

addressed lasers in the m-type manifold. Options for these gates will be discussed

later.

• Cooling: ions initialized in the ground state will remain as refrigerant ions, where

standard Doppler cooling and resolved sideband cooling can be performed to cool the

motional modes of the crystal. The arrangement of refrigerant ions within the chain

of physical qubits is flexible and can be optimized for a particular system.

• Readout: Either m-type qubit computational basis state can be state selectively

returned to the g-type manifold with the application of 760 nm and 976 nm laser light

(other options exist).

9.2 Single and multi m-qubit gates

The metastable qubit will be hosted in the 2Fo7/2 excited state in Yb+. If the isotope of

choice is 171Yb+ , some choices could be
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Figure 9.3: Diagram of the OMG system in 171Yb+ . The ground state qubit is hosted in the
2S1/2 , and the metastable qubit is hosted in the 2Fo7/2 . The o-type qubit can be operated at
467 nm by directly driving the 2S1/2 ↔2Fo7/2 electric octupole transition, or by performing a
stimulated Raman transition mediated by the 2D5/2 . In the latter case, the 411 nm leg of
the transition is mediated by an electric quadrupole moment, and the 3.4 µm leg is mediated
by an electric dipole moment.

• Hyperfine clock states: 2Fo7/2 |F = 3,mF = 0〉 and 2Fo7/2 |F = 4,mF = 0〉

• Stretched hyperfine qubit: 2Fo7/2 |F = 3,mF = ±3〉 and 2Fo7/2 |F = 4,mF = ±4〉

• Any other combination of allowed M1 transitions: 2Fo7/2 |F = 3,mF 〉 and

2Fo7/2 |F = 4,mF = mF ′〉

If utilizing 173Yb+, there are numerous choices since there will exist 6 hyperfine manifolds.

Regardless of the choice, we want to know what laser will best allow us to perform individ-

ually addressed single qubit gates (with good motional coupling), and multi qubit gates in

the metastable qubit. If we wish to couple the qubit to a strong transition our options are

• Single qubit gate: stimulated Raman process with E1 coupling

• Multi qubit gate: MS (σXσX) gate coupled to same E1 transition
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Alternatively, we can couple our qubit to a weaker transition, likely an electric quadrupole

transition. If this path is chosen, the options are

• Single qubit gate: stimulated Raman process with E2 coupling

• Multi qubit gate: light-shift gate (σZσZ) coupled to same E2 transition

Alternatively, a suitable E2 transition can also be used as an optical based qubit. There are

also a multitude of optical M1 transitions that should exhibit stronger couplings than the

E2 transitions, but most seem to have short lifetimes due to E1 coupling to less energetic

levels such as the DJ states.

9.2.1 Strong transitions

Data from the NIST spectral database the the DREAM project databases will show that

there are only a few options for coupling the metastable qubit to a strong transition. The

table below summarizes all E1 allowed transitions with λ > 320 nm.

Electric Dipole Allowed Transitions from 2F7/2

State Wavelength [nm] Partial Linewidth [MHz] Lifetime [ns]
(7/2, 0)7/2 377.45 2π× 0.101 41.5
(7/2, 1)7/2 363.88 2π× 1.21 31.8
(7/2, 1)9/2 358.65 2π× 1.98 29.2
(7/2, 1)5/2 356.13 2π× 2.46 28.8

Table 9.1: Electric dipole transitions: listed above are the lowest lying E1-allowed transitions
excluding the transition to the 2D5/2. Partial linewidths are given by the corresponding Ein-
stein A coefficient from the DREAM database. Lifetimes of the excited states are calculated
via τ = 1∑

j Aij
for an excited state i and all states j to which an E1 decay is allowed from

excited state i.

There will be a few questions we want to answer about these potential candidates: what

is the laser technology like at these wavelengths, and with that technology what are the

attainable Rabi frequencies and error rates. With the given range of wavelengths of the

available E1 transitions, it seems natural to ask if there is an optimum for using a single
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laser for gates in the ground state qubit and the metastable qubit. The ground state qubit

can be flexible, and gates can be operated ± 20 nm from 369 nm, so it is worth considering

if there is a certain wavelength selection that would work well for both qubits.

Figure 9.4: Relevant levels for E1 mediated stimulated Raman transitions between
metastable qubit states. Each state is labeled with the partial linewidth, γp. A pair of
Raman beams with σ+, σ− polarization in equal amounts will drive metastable qubit tran-
sitions via a beatnote at the qubit frequency and coupled to the excited states. The Raman
lasers have equal detunings below the lowest level by an amount ∆, and the excited states
have fine structure splittings {∆1,∆2,∆3} = 2π × {29.62, 12.02, 5.9} THz.
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An important quantity when considering stimulated Raman transitions mediated by elec-

tric dipole transitions will be the dipole matrix element between the ground and excited

states. In this case, the electric dipole interaction Hamiltonian is HE1 = d ·E. Here, d = er

is the electron dipole moment and E = E ε̂ is the applied electric field with field strength E

and polarization unit vector ε̂. A general state that we will be considering will have quantum

numbers {F, mF , J, L, S, I}. These are still good quantum numbers for the ground state

(2F7/2), but LS coupling is no longer the good coupling scheme for all the excited states

under consideration here. These excited states are best represented in the J1J2 basis. All

four of these states consist of an unfilled 4f shell with 13 electrons, a single electron in an

outer 6s shell, and an excited electron in a outer 6p shell. The J1J2 coupling scheme first

couples the spin and orbital angular momenta of the core and outer electrons separately, and

then couples the core total angular momentum to the outer total angular momentum.

Jc = lc + sc

Jo = lo + so

J = Jc + Jo

(9.1)

Parentheses states (Jc, Jo)J
Term symbol Electron Configuration (lc, sc) (lo, so)
(7/2, 0)7/2 4f13(2Fo7/2)6s6p(3Po

0) (3, 1/2) (1, 1)

(7/2, 1)7/2 4f13(2Fo7/2)6s6p(3Po
1) (3, 1/2) (1, 0)

(7/2, 1)9/2 4f13(2Fo7/2)6s6p(3Po
1) (3, 1/2) (1, 0)

(7/2, 1)5/2 4f13(2Fo7/2)6s6p(3Po
1) (3, 1/2) (1, 0)

Table 9.2: Parentheses states under consideration for E1 mediated stimulated Raman tran-
sitions. The two outer electrons are in the spin triplet state in the lowest lying level, and in
the spin singlet state for the three excited states. There also exist (7/2, 2)J states when the
outer electrons are in the spin triplet state and Jo = |lo+so| = 2 as apposed to Jo = |lo−so| =
0.

It is worth looking at is what is happening in these transitions at the electron orbital

level. The initial state the 2Fo7/2 where the electron configuration is 4f 13(2F7/2)6s2 and we
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transfer to states that look like 4f 13(2F7/2)6s6p(3PJ). This is a bit similar to a Helium-like

transition from a filled valence S shell (1S0) to an excited two electron configuration with

an electron in the s orbital and the other excited to a p orbital (2S+1PJ). The electron spin

does not partake in the electric dipole interaction, so ∆S = 0. The electron configurations

for the aforementioned parentheses states will reveal that the leading order term in the

wavefunctions are all 3PJ for the valence electrons, which would seem to indicate all of these

transitions are dipole forbidden to leading order. A deeper dive will reveal that there are in

fact higher order terms contributing to the wavefunction, listed below.

(7/2, 0)7/2 = (86.8%){2F7/2,
3 P0}+ (9.1%){2F7/2,

3 P1}+ (2.2%){2F7/2,
3 P2}

(7/2, 1)7/2 = (84.2%){2F7/2,
3 P1}+ (10.1%){2F7/2,

3 P0}+ (2.8%){2F7/2,
1 P1}

(7/2, 1)9/2 = (90.8%){2F7/2,
3 P1}+ (4.4%){2F7/2,

1 P1}+ (1.7%){2F7/2,
3 P1}

(7/2, 1)5/2 = (85.1%){2F7/2,
3 P1}+ (5.2%){2F7/2,

1 P1}+ (4.8%){2F7/2,
3 P2}

(9.2)

The percentages to not total up to 100% because there exist smaller contributions from other

electron configurations not included in the literature. As can be seen, the states with outer

electrons in a spin singlet configuration (so = 0) have overlap with a 1P1 like wavefunction,

which would possibly provide a non-vanishing contribution to the electric dipole moment

between the metatstable manifolds and these excited states.

One potentially insightful option is to express the states expressed in the J1J2 basis in

the LS basis, just like the lower state. This may help provide some intuitive reasoning as to

what kind of interaction may couple these states. Recoupling of four angular momenta is

covered in many texts (see for example Zare).
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|(j1j4)j14(j2j3)j23jmj〉 =
∑
j12,j34

√
(2j12 + 1)(2j34 + 1)(2j14 + 1)(2j34 + 1)×

j1 j2 j3

j4 j5 j6

j7 j8 j9

 |(j1j2)j12(j3j4)j34jmj〉
(9.3)

Where the term in {· · ·} is a Wigner 9-j symbol. Most programs do not have built in

functions for the 9-j symbol, but regularly do for the Wigner 3-j and 6-j symbols (i.e. python,

Mathematica). It will be useful then to relate the 9-j symbol to a sum over 6-j symbols,

which is


j1 j2 j3

j4 j5 j6

j7 j8 j9

 =
kmax∑
kmin

(−1)2k(2k + 1)

j1 j4 j7

j8 j9 k


j2 j5 j8

j4 k j6


j3 j6 j9

k j1 j2

 (9.4)

Where kmin = max(|j1 − j9|, |j4 − j8|, |j2 − j6|) and kmax = min(|j1 + j9|, |j4 + j8|, |j2 + j6|).

Using these relationships we can now expand the J1J2 coupled states of interest in the LS

basis.
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〉
= − 1

2
√
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〉
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〉
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√
5
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〉
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〉
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√
5
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〉
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〉
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〉
+

1√
21

∣∣2F5/2

〉
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〉
=

3
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√
3

7

∣∣2F7/2

〉
+

1

2
√

7
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〉
∣∣(7/2, 1)9/2

〉
=
∣∣2G9/2

〉
(9.5)

Another insight from (9.2) is that in any of these transitions, the core electrons remain

unaffected. Both the 2F7/2 and the excited states under consideration have a core configura-

tion with (lc, sc, Jc) = (3, 1/2, 7/2), which can all be ascertained from the core electron term
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symbol for each state. When we consider the matrix element between the metastable ground

state and the excited states, it will be the outer electrons that facilitate a non-vanishing ma-

trix element. What we can do then is decouple the angular momenta of the ground and

excited states into three parts: the nuclear spin wavefunction, the core wavefunction, and

the outer electron wavefunctions. This is done with a series of angular momenta decoupling

steps. First we decouple the total electron angular momentum from the nuclear spin, and

then we decouple the total electron angular momentum into the core and outer angular total

angular momenta. The end result is

|Jc, Jo, J, I, F,mF 〉 =
∑
mI ,mJ

(−1)J−I+mF
√

2F + 1

 J I F

mJ mI −mF


( ∑

mc,mo

(−1)Jc−Jo+mJ
√

2J + 1

Jc Jo J

mc mo −mJ

 |Jc,mc〉 |Jo,mo〉

)
|I,mI〉

=
∑
mI ,mJ
mc,mo

(−1)J+Jc−Jo−I+mF+mJ
√

(2J + 1)(2F + 1)

 J I F

mJ mI −mF


Jc Jo J

mc mo −mJ

 |Jc,mc〉 |I,mI〉 |Jo,mo〉

(9.6)

If we now consider a electric dipole matrix element between two states decomposed in iden-

tical ways, the matrix element will look like
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〈J ′c, J ′o, J ′, I ′, F ′,m′F |µ1
q |Jc, Jo, J, I, F,mF 〉 =

=
∑

(m′,m)

f ′({j′m′})f({jm})
(
〈J ′c,m′c| 〈I ′,m′I | 〈J ′o,m′o|

)
µ1
q

(
|Jo,mo〉 |I,mI〉 |Jc,mc〉

)
=
∑

(m′,m)

f ′({j′m′})f({jm}) 〈J ′o,m′o|µ1
q |Jo,mo〉 δJ ′c,Jcδm′c,mcδI′,Iδm′I ,mI

=
∑

(m′,m)

f ′({j′m′})f({jm})(−1)J
′
o−m′o

 J ′o 1 Jo

−m′o q mo

 〈J ′o| |µ1| |Jo〉 δJ ′c,Jcδm′c,mcδI′,Iδm′I ,mI

(9.7)

where the f({jm}) are the geometric factors in equation 9.6 and the sum over {m′,m}

includes all the magnetic subcomponents from 9.6. The above procedure works, but will

require some slick angular momentum algebra to end up at a result that could be obtained

a bit simpler. Instead of working in the uncoupled basis from the beginning, we can begin

in the J1J2 basis, and utilize the repeated reduction formula. This is appropriate when a

spherical tensor operator Tkq acts within one of the angular momentum sub-spaces of the

total angular momentum (i.e. Sx operating on the state |γ, L, S, J,mJ〉). The procedure

allows for the reduction of the matrix element to a single reduced matrix element dependent

only on the angular momentum partaking in the interaction. In the case of the stimulated

Raman transitions we are concerned with here, the assertion will be that only the outer total

angular momentum, Jo, partakes in the interaction. The expression for the matrix element

can be written as

〈J ′cJ ′oJ ′I ′F ′m′f |Tkq|JcJoJIFmf〉 =

(−1)F
′−m′F+F+J ′+I+J+J ′o+Jc+2k

√
(2F + 1)(2F ′ + 1)(2J + 1)(2J ′ + 1)J ′ F ′ I

F J k


J ′o J ′ Jc

J Jo k


 F ′ k F

−m′F q mF

 〈J ′o||Tk||Jo〉
(9.8)
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where the reduced matrix element now only depends on the total angular momentum of

the outer electrons (and potentially lo, so). Following the procedure from [BKD05], we can

relate the reduced matrix element to the Einstein A coefficient (a.k.a. the transition partial

linewidth) via

|〈J ′o| |µ1| |Jo〉|2 =
3πε0~c3

ω3
o

(2J ′o + 1)γp (9.9)

Where µ1 is the reduced electric dipole operator. We have now identified the spherical tensor

operator as the electric dipole operator, and γp is the partial linewidth of the transition. This

combined with equation 9.8 gives us a value for the electric dipole transition moment between

any two states in the |JcJoJIFmF 〉 basis, given that our assumptions hold and the partial

linewidth of the transition is known or has been calculated.

〈J ′cJ ′oJ ′I ′F ′m′f |µ1
q|JcJoJIFmf〉 =

(−1)F
′−m′F+F+J ′+I+J+J ′o+Jc

√
(2F + 1)(2F ′ + 1)(2J + 1)(2J ′ + 1)(2J ′o + 1)J ′ F ′ I

F J 1


J ′o J ′ Jc

J Jo 1


 F ′ 1 F

−m′F q mF

√3πε0~c3

ω3
o

γp

(9.10)

A sanity check we can make here is to look at the stretched state transition, for which all the

angular momentum factors should evaluate to 1 ( including the
√

2J ′o + 1 picked up from the

reduced matrix element). For the states considered here, the stretched state transition is the

2F7/2 |F = 4,mF = 4〉 ↔ (7/2, 1)9/2 |F = 5,mF = 5〉 transition, which indeed does evaluate

to 1.

Using this to evaluate the electric dipole matrix elements, the results of some basic

analysis of the stimulated Raman transitions are shown in Figures 9.5 and 9.6. All plots

where relevant are made assuming P = 1 mW per laser in a Gaussian beam with ωo = 1 µm,

The two photon Raman Rabi frequency is calculated by summing over all couplings to

excited states, assuming the Raman lasers are σ+ polarized. An expression for the Raman
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Figure 9.5: Magnitude of the two photon Raman Rabi frequency as a function of wavelength.
Constructive interference occurs in the fine structure interval between the (7/2, 1)5/2 and
(7/2, 1)9/2 states, where the optimal wavelength is found to be λopt ≈ 357.2 nm.

Rabi frequency is given by

ΩR =
1

2
E2
∑
e

〈1|d · ε2 |e〉 〈e|d · ε1 |0〉
∆e

(9.11)

where it has been assumed that the two laser fields have equal amplitude E and phase

difference φ1−φ2 = 0. This expression for the Rabi frequency is such that the time to make

a full qubit rotation is given by tπ = π/ΩR.

A common quantity of interest is the the gate error due to spontaneous emission during

a π-rotation of the qubit. This conveniently does not scale with laser power (at least not

in our treatment), and thus is only a function of the atomic structure. The spontaneous

emission rate from the excited state will scale as the population in the excited state, ρee,

time the spontaneous decay rate of that state, γe. In the large detuning limit (∆e � γe),

this can be written as
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ΓSE = E2
∑
e

∑
q=0,1

∑
i=1,2

γe
2
pq
|〈q|d · εi |e〉|2

∆2
e

(9.12)

where the sum over q is over the qubit states, pq is the population in a given qubit state, the

sum over i is over the two raman lasers, and the sum over e is over all excited states that

can be coupled to either of the qubit states by either Raman laser. For the purpose of our

analysis, we assume p0 = p1 = 1/2 so that all potential laser couplings to the excited states

are accounted for. The probability of spontaneous emission during a π-pulse is the just the
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time it takes to perform the rotation times the scattering rate, PSE = tπΓSE. PSE exhibits

a minimum of 2.3× 10−5 at λ = 355.17 nm.

9.3 Experimental progress

Below we will detail, somewhat chronologically, our experimental progress in developing

primitive operations for the OMG system. As we currently have the g-type qubit well under

control with the exception of resolved sideband cooling and multi qubit gates, most of our

focus will be on initial spectroscopy in the 2Fo7/2 of 171Yb+ and some characterization of qubit
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properties.

9.3.1 State preparation: initial scheme

In our system we do not have a way of preparing a pure state incoherently in the 2Fo7/2 , so to

initially find the microwave transitions we incoherently prepare multiple magnetic sublevels

of the 2Fo7/2 |F = 3〉 by applying 411 nm laser light to drive |0〉g → 2D5/2 |F = 2〉. The

polarization of the 411 nm light is chosen such that it will predominantly drive |∆mF | = 1

transitions (k ⊥ B ‖ ε̂). This is chosen to maximally populate the 2Fo7/2 |F = 3,mF = 0〉

state without making and drastic changes to our system. The ion is shelved at 411 nm

for 40-80 ms with the addition of our 369 nm optical pumping beam to prevent population

trapping in the 2S1/2 |F = 1〉 levels.

Resonant microwaves are delivered to the ion via a standard ex-vacuo gain horn antenna,

providing up to 16 W 1 of microwave radiation at ωm ≈ 2π × 3.620 GHz 2. Microwaves are

applied for a duration of ∼ 100 - 200 µs, and the frequency is scanned around ωm. At the

end of each interrogation, population is transferred out of the 2Fo7/2 |F = 3〉 manifold at 760

nm to return any population back to the ground state, where laser induced fluorescence re-

veals population that projected into the 2Fo7/2 |F = 3〉 manifold. Any successful population

transfer to the 2Fo7/2 |F = 4〉 manifold will result in a dark ion during laser-induced fluores-

cence (LIF), and indicate that we are driving one of the desired microwave transitions. Early

results are shown in Figure 9.7

As outlined earlier, we expect to populate the 2Fo7/2 |F = 3,mF = 0〉 more than any

other state with our given scheme, so we focused first on the transition at ∆/2π = +534 kHz

which appears to be about 50% more populated than the other transitions (assuming that

the resonant Rabi frequency of all transitions are equal, which is typically not the case). To

verify that this is in fact the zero-field clock state, we perform qubit scans of this transition

1ZHL-16W-43-S+

2Signal generator is either a RF Consultant TPI-1001-B synthesizer, or a frequency octupled DDS from
the Pulser operating at fDDS = 452.5 MHz
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Figure 9.7: First set of microwave linescans in the 2Fo7/2 . We are able to identify the
transition at ∆/2π = +534 kHz as the clock qubit by varying the magnetic field and per-
forming additional scans. The transitions at ∆/2π ≈ −350,−1250 kHz are identified as
the |F = 3,mF = 3〉 → |F = 4,mF = 4〉 and the |F = 3,mF = −1〉 → |F = 4,mF = −1〉
transitions, respectively.

and the ground state |0〉g → |F = 1,mF = +1〉 transition at two distinct magnetic fields to

compare the energy shifts as a function of the applied magnetic field strength. As can be seen

in Figure 9.8, there is no observable shift in the transition frequency for the ∆/2π = +534

kHz transition as compared to the shift in the magnetic sensitive ground state transition,

indicating this is likely the zero-field clock state transition.

With the transition frequency identified, we can perform Rabi flopping of the qubit and

attempt to optimize the position of our microwave horn to maximize the Rabi frequency.

Despite the additional power provided by our amplifier, we can only achieve Rabi frequencies

of a few kHz in our system. This is likely due to the fact that at 3.6 GHz is it hard to deliver

high intensity microwave radiation with a gain horn antenna, since the active aperture of
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Figure 9.8: Verification of the zero-field clock state qubit transition frequency. For a magnetic
field change of ≈ 70 mG, we observe no noticeable change in the metastable transition fre-
quency. Change in transition frequency this small is also inconsistent with mF 6= 0,∆mF = 0
transitions that only have suppressed first order magnetic field sensitivity to the order of
∼ 0.28µB in the 2Fo7/2 state.

the antenna (and therefore the area over which the power is delivered) is significantly larger

for a 3.6 GHz antenna (87.9 mm × 110.0 mm) vs. our 12.6 GHz antenna (53.6 mm × 73.1

mm).

9.3.2 State preparation: heralding

With the ability to perform single qubit gates, we can start to think about other scheme

for state preparation. We will be interesting in quantifying various qubit properties such

as coherence time, precise qubit frequency, and state preparation and measurement fidelity.

Generally these experiments will require or be aided by high fidelity state initialization,

which is also a general quality we want to develop for any qubit.
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In order to prepare a single qubit state with a high degree of certainty, we can take

advantage of the fact that we can return population from either qubit manifold in a state

selective way to the ground state, after which LIF can provide us with additional information.

It is worth noting briefly how we deshelve each manifold in the 2Fo7/2 in a state selective way:

• 2Fo7/2 |F = 3〉: Application of a 760 nm laser to couple the |F = 3〉 to 1[3/2]o3/2 |F = 1〉

is already state selective and will not mix into the 2Fo7/2 |F = 4〉 manifold. The excited

state can decay to the 2S1/2 with high probability, the 2D3/2 which is repumped with

a 935 nm laser directly back to the 2S1/2 , or to 2D5/2 |F = 2〉 via an electric dipole

moment, which cannot mix into the 2Fo7/2 |F = 4〉 manifold.

• 2Fo7/2 |F = 4〉: Application of 760 nm laser to couple the |F = 4〉 to the 1[3/2]o3/2 |F = 2〉

is not perfectly state selective. Spontaneous emission to either 2D5/2 hyperfine man-

ifold can cause population mixing into the 2Fo7/2 |F = 3〉. This effect can be highly

suppressed by applying 976 nm laser light coupling both 2D5/2 |F = 2, 3〉 manifolds to

the 1[3/2]o3/2 |F = 2〉 state, suppressing the decay channel into the 2Fo7/2 . In theory

this is ideally done with two separate resonant laser tones on the 976 nm laser with

frequency difference of 191 MHz, but in practice we place the 976 nm laser between

the two 2D5/2 hyperfine manifolds to off resonantly couple to both.

To herald state preparation of the m-type qubit, we start by incoherently preparing the

2Fo7/2 |F = 3〉 manifold just as before. We then perform a microwave pulse with pulse area

θ = π on the qubit transition. Subsequent deshelving of the 2Fo7/2 |F = 3〉 manifold followed

by LIF will either reveal that we have not populated the |1〉m state properly (indicated by

finding the ion in 2S1/2 , and therefore scattering many photons), or that we have (indicated

by a lack of scattered photons). While this heralding process does cause us to take a hit on

the number of experiments we need to perform to attain a certain statistical certainty (i.e.

if heralding is only 15% efficient, and we perform 1000 experiments, we will only get 150

useful experiments on average where we heralded preparation of the |1〉m state), the ability

to perform high fidelity state preparation is very useful for future small scale metastable

qubit experiments at UCLA.
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Figure 9.9: Diagramatic layout of the heralding procedure. In (a), we incoherently pre-
pare population in the 2Fo7/2 |F = 3〉 manifold, ideally populating the |0〉m state as much
as possible. We follow manifold preparation with a microwave π-pulse on the m-qubit to
transfer population in |0〉m to |1〉m , shown in (b). Following the π-pulse, we incoherently
deshelve population remaining in 2Fo7/2 |F = 3〉. Subsequent Doppler cooling reveals if the
the ion projected into |1〉m by producing no LIF photons, or that the heralding has failed
by producing many LIF photons.

To exhibit the effect of heralding, we Rabi flop the qubit both with and without heralded

state preparation. The difference of y-axis on this plot is simply due to the fact that when

we do not herald, the initial state is the |0〉m state (and many other magnetic sublevels in

the 2Fo7/2 |F = 3〉), where as when we perform successful heralded state preparation we are

actually heralding the preparation of the |1〉m state.

The amplitude of the heralded Rabi curve is fitted to be 0.99(1), demonstrating that we

can both herald the initial state preparation well and perform single qubit gates with reason-

able fidelity. In order to understand our system better, we can perform a state preparation

and measurement experiment.
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Figure 9.10: Resonant Rabi flopping of the metastable qubit, both without (top) and with
(bottom) heralded state preparation of the m-qubit.

Note on heralding : in our system, we can only herald the preparation of a quantum

state up to the fidelity with which we can perform that process. For instance, let’s suppose

we were trying to herald preparation of the |1〉m state by outcoupling the 2Fo7/2 |F = 3〉

manifold population, and we are not applying the 760 nm laser for a sufficient amount of

time. If we only apply the 760 nm laser to return on average 80% of the population to the

ground state, then there is a high probability that I do not register any photons in the laser

induced fluorescence step but that I also left the ion in the |F = 3〉 manifold, which would

be a state preparation error. Likewise, if we do not perform LIF for a sufficient period of

time to herald the state, then we will be subject to how well we can distinguish two nearby

Poissonian distributions.
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9.3.3 State preparation and measurement of m-qubit

Throughout our work with the m-type qubit thus far we have performed two difference SPAM

measurements of the qubit with slightly different approaches to state preparation. In the

first experiment, we herald state preparation of the |1〉m state as described in the previous

section, followed by an optional microwave π-pulse to prepare |0〉m if that is the target state.

Measurement is performed after state preparation by applying 760 nm laser light to deshelve

population in the 2Fo7/2 |F = 3〉 manifold for a period of time tdeshelve, followed by a period

of LIF by applying the Doppler cooling laser light and the 935 nm repump laser light for a

time tdetect. In this way, the |0〉m state can be labeled the “bright” state and the |1〉m state

is the “dark” state.
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Figure 9.11: State preparation and measurment histograms of the m-type qubit where only
|1〉m state preparation is heralded.

In this first version of the SPAM measurement, we find that our |1〉m state preparation
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and measurement fidelity is F|1〉m = 1.0+0.0
−6e−4 in 1798 experiments, and that our |0〉m state

preparation and measurement fidelity is F|0〉m = 0.994+1.5e−3
−2.0e−3 in 1894 experiments. The total

SPAM fidelity is measured to be Fm = 0.9970+8e−4
−1e−3, with the histograms shown in Figure

9.11. The drift in the bright state histogram is due to our optical cavity drifting without

correction over the course of the experiment. The relatively poor fidelity of the |0〉m state

is likely due to poor characterization of the qubit transition as performing high quality

Ramsey experiments to determine the transition frequency and high quality Rabi flopping

to determine the proper interrogation time takes a long period of time with our heralding

scheme.
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Figure 9.12: State preparation and measurment histograms of the m-type qubit where both
|1〉m and |0〉m preparation is heralded.

The second SPAM measurement, with histograms shown in Figure 9.12, is very similar to

the first with the exception that we herald preparation of both |1〉m and |0〉m . This is done

by inserting a heralding step after the microwave π-pulse that will state selectively deshelve
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population left in the 2Fo7/2 |F = 4〉 to the ground state. What this effectively does is either

project our ion into the 2S1/2 or into the |0〉m state, and we can check when the former even

occurs by looking for population in the ground state. This scheme is advantageous, since so

long as we can perform a reasonable π-pulse, it will not cause much experimental overhead

for state preparation, and it will catch any errors we made in the microwave rotation.

In this second version of the SPAM measurement, we find that our |1〉m state prepa-

ration and measurement fidelity is F|1〉m = 0.99970+1.8e−4
−4.5e−4 in 3456 experiments, and that

our |0〉m state preparation and measurement fidelity is F|0〉m = 1.0+0.0
−3.0e−4 in 3392 experi-

ments. The total SPAM fidelity is measured to be Fm = 0.99985+9e−5
−2.3e−4. These fidelities

are based on a procedure where we optimize the state discriminator to optimize the mea-

sured fidelity, though, and if we were running this system as an experimenter we would

likely draw the histogram discriminator somewhere closer to d = 25, in the middle of the

“valley of nothingness” between the histograms. With this value for the discriminator only

the |0〉m state fidelity is changed, coming out to be F ′|0〉m = 0.9994+3.0e−4
−6.0e−4 and a total SPAM

fidelity F ′m = 0.99956+1.9e−4
−3.3e−4.

9.3.4 Limits of m-type SPAM

We unfortunately up to this point have not had a lot of time to work on the metastable

qubit, an therefore have not had a lot of time to address sources of state preparation and

measurement infidelity. Despite that, we can address in theory what issues there may be.

We will limit out analysis strictly to the situation where we are heralding both qubit states,

since this is likely the route to the lowest possible state preparation infidelity.

A first potential source of error is in the first heralding step. The main sources of error

are:

• Incomplete depopulation of the 2Fo7/2 |F = 3〉 manifold. This should not be a problem

in principle, since deshelving can readily be achieved with 1/e times of 0.5-1 ms with

760 nm and 976 nm laser light. Therefore achieving population transfer infidelities less
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than 1× 10−6 should be possible in less than 15 ms.

• Off resonant population of other magnetic sublevels in the 2Fo7/2 |F = 4〉 during first π

pulse. This issue can be minimized by reducing the microwave intensity at the sacrifice

of increased tπ, and should be easy to keep errors of this type below 1× 10−6.

• Off resonant deshelving of population of the |1〉m state, followed by a decay to 2D5/2 ,

followed by a decay to 2Fo7/2 . Without the 976 nm laser to clear out 2D5/2 population to

the 2S1/2 , this can cause an error (2.2%)(83%) = 1.8% of every off resonant scattering

event. With the 976 nm laser present this should not be an issue.

Following the heralding of the |1〉m state, a microwave π-pulse is applied followed by a second

heralding step. The sources of error in the second step are very similar to that of the first

step, with the additional potential for improper heralding caused by insufficient suppression

of the 2D5/2 →2Fo7/2 decay channel by the 976 nm laser.

9.3.5 Effects of g-type lasers on m-type qubit

One of the essential paradigms of the OMG platform is that g-type operations can be per-

formed without necessitating physical separation of the g-type and m-type qubits. This type

of operation is akin to dual-special operation in ion trap quantum information processors

that is becoming more common as computational demands get higher and cooler ions are

necessary for high fidelity operations [PDF20, BMS19]. We do not currently have the ability

to test the effects of g-type qubit lasers on the m-type qubit, but what we can test is the

effect of the 369 nm and 935 nm lasers on the m-type qubit properties.

The first thing we can check is a simple sanity test: do the 369 nm laser and 935 nm laser

couple m-type qubit population out of the metastable manifold. One easy way to answer

this is that if they did in such a way that population returned to the 2S1/2 , there wouldn’t

be much need for repump lasers to depopulate the 2Fo7/2 when population gets trapped there.

To check this a bit more systematically, we load two ions into the trap and pulse the 411 nm

laser until one ion is in the ground state and one is in the metastable state.
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We only performed this experiment a small number of times, with varying results that

all point to the lasers having no observable effect on the ion. Of the times we performed

this experiment we either: deshelved the dark ion manually after 10 minutes to confirm

it was still there, the ion left the trap and we were left with the original bright ion, or a

collision occurred (deduced by a complete drop out of fluorescence, and subsequent revival

of fluorescence 10 seconds later) and the originally dark ion returned to the 2S1/2 .

To perform more systematic short timescale experiments investigating the effects of these

lasers on the qubit, we perform Ramsey spectroscopy to deduce whether they cause a differ-

ential AC stark shift or a loss of qubit coherence.

Coherence measurement: to measure the coherence time of the qubit, we first herald

preparation of the |1〉m state, followed by an immediate resonant π/2 - pulse. After a variable

wait time twait, we apply a final π/2 pulse with relative phase φ = 0, π/2 with respect to

the first pulse. By performing the measurement for a given wait time twice with these two

analysis phases, we can minimize the number of points we need to take on the Ramsey fringe

and extract the contrast of the fringe using maximum likelihood analysis techniques.

We then perform the exact same experiment, but with the application of 369 nm and 935

nm laser light in the wait time with all the available intensity on our experiment. For us,

this amounts to about 80 kW/m2 of 935 nm laser intensity and 14 kW/m2 of 369 nm laser

intensity. The fringe contrast as a function of delay time is fit to a decaying Gaussian ∝

e−t
2/(2τ)2 , a decay in contrast that occurs when the coherence time of the noise source causing

decoherence is long compared to the wait time. The data implies that the decoherence rate

due to the presence of the cooling lasers is

γlasers = (0.17± 0.93) Hz (9.13)

which is consistent with the lasers having nearly no effect on the metastable qubit coherence

in this particular experiment. Higher precision experiments will need to be carried out to

determine the effect of g-type cooling lasers more precisely.
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Figure 9.13: Coherence time measurement of the metastable qubit with and without g-type
Doppler cooling lasers present during the Ramsey delay zone. We find no observable effect
of these lasers on the metastable qubit coherence, which we believe may be limited by other
factors such as the phase stability of our local oscillator.

Differential AC Stark shift measurement: To observe the effect of the lasers on the

qubit energy splitting, we make a precision frequency measurement of the energy splitting via

Ramsey spectroscopy again. By detuning the applied microwave from the qubit transition

by ∆ = 2π × 1 kHz and varying the delay time, we should trace out a Ramsey fringe of the

form

P (∆) =
1

2
(1 + cos(∆Tdelay)) (9.14)

The measured detunings from the qubit transition for the two fringes are ∆off/2π =

1.023± 0.013 kHz and ∆on/2π = 1.021± 0.010, corresponding to a measured differential AC

Stark shift due to the 369 nm and 935 nm lasers of

∆ = 2π × (2± 16) Hz (9.15)

which is again consistent with the Doppler cooling lasers having no measurable effect on the
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Figure 9.14: Qubit frequency measurement via Ramsey spectroscopy both with and without
the g-type Doppler cooling lasers present during the variable delay time.

metastable qubit. Both of these results bode well for sympathetic cooling to the Dopppler

limit of registers of m-type qubits by standard g-type refrigerant ions in the 171Yb+ OMG

system.

Another important test that we have not performed is to investigate sideband resolved

sympathetic cooling to the motional ground state in a mixed g-type / m-type ion chain.

If stimulated Raman transitions in the g-type qubit are to be used for resolved sideband

cooling, the transitions in Table 9.1 will need to be taken carefully into account, as they all

have the potential to be a strong channel for m-type qubit decoherence due to off resonant

coupling. Of particular concern would be the popular choice of mode locked 355 nm lasers

to perform this task in the g-type qubit, which is known to be a substitute for standard

repump lasers for trapped population in the 2Fo7/2 .
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9.4 Dissipation as a driver of quantum gates

One of the unique properties of the metastable qubit in 171Yb+ is the ability to apply 760

nm laser light, and check for population in the ground state without affecting the dynamics

of the metastable qubit. This led use to the idea of using measurement as a tool in the

metastable qubit, potentially as a way to flag certain types of gate errors [Cam20] or to

physically drive the gate. Our focus in this section will be on experiments implementing

the latter type of gate, where measurement either once or many times during the gate will

influence the result of the gate.

What these experiments will illuminate is how the act of measurement projects the wave-

function into the measurement basis, and how that can be taken advantage of to design

schemes where full single qubit gates can be driven by projection.

9.4.1 Mid-gate projection

As a foyer into the effects of measurement during a gate, we perform some simple yet in-

teresting experiments that can be understood with basic introductory quantum mechanics.

The experiment goes as follows:

1. Herald state preparation of the |1〉m state

2. Perform a σx gate with θp = π or θp = π/2.

3. Measure the qubit in the σz basis (when θp = π/2) or the σx basis (when θp = π).

4. Continue performing the gate from step 2.

The results of these experiments are shown below, where in each case the experiment was

designed to project into one of the eigenstates of σz (|±z〉) or σx (|±x〉). In the case where

the qubit was to be projected into one of the σx basis states at θp = π, the measurement

step was removed to illustrate the effect of measurement on the gate process.
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Figure 9.15: Projection onto |±x〉. When the qubit has reached the state |0〉m (an eigenstate
of σz), we use an additional microwave pulse and a 760 nm laser to project the qubit into
the σx basis. Blue shows an experiment designed to project onto the |−〉X basis state,
and red shows an experiment designed to project onto the |+〉X eigenstate. In both cases,
Rabi flopping and measurement in the σz basis is continued after projection. The black
curve illustrates the same procedure as the blue curve, but with the projective measurement
removed.

9.4.2 Gate driven by measurement

In order to drive a gate with measurement, we need to be able to measure in along an

arbitrary axis on the Bloch sphere. To perform a full single qubit rotation by making N

measurements, we will need to be able to measure in N different bases. For a π-pulse

performed by N measurements, the protocol is as follows:

1. Herald preparation of the |1〉m state

2. Measure the qubit in the basis that makes an angle θ = π/N with the |−z〉 =|0〉m axis,

corresponding to a measurement in the |ψ〉 = sin2( π
2N

) |0〉m + cos2( π
2N

) |1〉m basis.

3. Follow step 1 by a measurements in the |ψ〉 = sin2(n π
2N

) |0〉m + cos2(n π
2N

) |1〉m for
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Figure 9.16: Projection onto |±z〉.

n ∈ [2, N ] bases.

4. At the end of the gate attempt, check for population in the 2S1/2 which would indicate

the gate failed.

5. End the protocol by checking directly for population in |0〉m , which would indicate

the gate has succeeded.

Each measurement step has a probability of success given by cos2( π
2N

), which is the prob-

ability that the qubit projected onto the desired basis state. Therefore at the end of the

protocol, assuming each measurement step is independent, the probability of a successful

gate is cos2N( π
2N

), and the probability of failing is 1−cos2N( π
2N

). The results of this protocol

up to N = 25 are shown in Figure 9.17
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Figure 9.17: Measurement driven gate success and failure probability as a function of N.

9.5 Future work

To demonstrate the full capability of the OMG protocol in 171Yb+ , a few more primitives

are necessary. Although 171Yb+ has the arguable huge advantage of an extremely long T1 for

the metastable qubit, this comes at the cost of likely much more difficult o-type operations.

The original proposal was to perform o-type operations akin to how they would be performed

in the other OMG-ions: via direct coupling with a laser. For other ion species considered

(43Ca+, 88Sr+, and 133Ba+), this is an electric quadrupole transition where resonant Rabi fre-

quencies ∼ MHz/mW are achievable. Comparatively, electric octupole transitions are much

more challenging to drive and Rabi frequencies closer to (10 - 100) Hz/mW are achievable

[FYK20]. An alternative option is to leverage stronger couplings to drive E2-E1 mediated

stimulated Raman transitions via the 2D5/2 , where the E2 path is at 411 nm and the E1

path is at 3.43 µm.
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A side note about the use of 3.43 µm light. There is a wonderful coincidence with 3.43

µm light that makes it readily integrable into most ion trap experiments utilizing Yb+. UV

grade fused silica transmission drops off pretty dramatically after λ = 2.3µm, and actually

nearly zeroes out. But, the transmission revives and reaches a peak of about 82% at ∼ 3.3µm

and is approximately 77% at 3.43µm, which is a fairly minimal power hit as compared to

the amount of laser intensity that will be necessary.
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Figure 9.18: Transmission as a function of wavelength measured for uncoated UV grade
fused silica. Data downloaded from ThorLabs.

Additionally, sympathetic resolved sideband cooling of an m-type qubit by a g-type qubit

will be an essential component to the platform. The first thing will be to ensure that sideband

cooling can be performed without deleterious effects for the stored m-type qubit. Second, if

direct coupling to motion is to be investigated in the m-type qubit, enhancement of single and

multi qubit gate fidelities in the metastable manifold via sympathetic ground state cooling

by ground state ions will be particularly interesting.
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CHAPTER 10

Ytterbium 173

The m = 173 isotope of ytterbium is the only other stable isotope that exhibits non-zero

nuclear spin, with I = 5/2. This higher order nuclear spin, and the availability of its

convenient I = 1/2 sibling, has caused 173Yb+ to be overlooked as a resource in trapped ion

quantum information experiments.

10.1 Motivation

The higher order nuclear spin allows for higher order interaction moments between the

nuclear spin and the electron angular momentum, leading to higher order terms in the

hyperfine interaction. Recent experiments have attempted to measure the magnitude of the

higher order nuclear moments via precision spectroscopy of hyperfine structure, leading to

results that differ significantly from theoretical treatments of the structure [GKK20, XLC20].

These precision measurements can give insight into various properties of the nucleus, such

as its charge deformation.

Additionally, it has been suggested in theoretical treatments of the 173Yb+ structure that

the abnormally large electric quadrupole moment of the nucleus leads to perturbations of the

normally hydrogen-like 2S1/2 and 2Fo7/2 wavefunctions such that they have a non-vanishing

electric dipole moment. For certain transition lines on the typically electric octupole me-

diated interaction, this leads to predicted lifetimes that are potentially up to 3 orders of

magnitude shorter than those coupled by the electric octupole moment alone [DF16].

To perform any experiment related to these interests, we first need to learn to trap and

efficiently laser cool 173Yb+ ions in our system.
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10.2 Doppler cooling

The requirements for efficient Doppler cooling of higher nuclear spin isotopes of Yb+ are no

different than other isotopes: we need to be able to efficiently scatter photons on a strong

cycling transition without population trapping in dark states. This will be achieved with the

369 nm and 935 nm lasers. The main hurdle to overcome at first is, as in 171Yb+ , we need

to apply multiple microwave sidebands to each of these lasers so that population doesn’t get

pumping into unaddressed hyperfine levels.

Figure 10.1: Diagram of energy levels needed for laser cooling of 173Yb+.

The hyperfine splitting of the 2S1/2 in 173Yb+ was precisely measured to be ωHFS =

2π × 10.491 GHz, corresponding to a hyperfine magnetic dipole coefficient A = 3497 MHz

[MBG87]. It is be possible to run a full optical Bloch equation model of this system to de-

termine an optimal laser cooling scheme given the hyperfine structure, but we have not done

this. Detailed treatment of sophisticated cooling schemes for ions with complex hyperfine

strucutre has been covered in [Jan15]. Instead, we choose a simple scheme where we pass
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all AOM double passed 369 nm light through a resonant bulk EOM with resonant frequency

5.245 GHz. Both positive and negative frequency first order sidebands are used to address

the 2S1/2 |F = 2, 3〉 → 2Po
1/2 |F 〉 transition, where F = 2 or 3. We find that this is sufficient

to achieve scattering rates comparable to what we achieve in 171Yb+ , with likely room for

optimization in the future.

10.3 Theoretical hyperfine structure

Some of the more important states for laser cooling and of interest in our experiments have

had some theoretical treatment to determine their hyperfine coefficients up to the electric

quadrupole term. This will at the very least give us enough information to determine how

to properly laser cool and formulate a plan for initial spectrsocopy of these states.
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Figure 10.2: Theoretical hyperfine structure of the 2D3/2 in 173Yb+. The hyperfine coeffi-
cients are given in [Ita06].

Here the 2D3/2 is shown, which exhibits a large hyperfine spitting between the F=1

and F=2 manifolds. Initial experiments to determine how to optimally laser cool 173Yb+

began with the two 369 nm laser tones addressing the 2S1/2 |F = 2, 3〉 →2Po
1/2 |F = 3〉 level.

Branching into the 2D3/2 should therefore only populate the F = 2, 3 and 4 levels, which are

closer energetically than the F = 1 level, although off resonant scatter to the 2Po
1/2 |F = 2〉

will still occasionally populate 2D3/2 |F = 1〉.

The scan shown in Figure 10.3 was taken by Doppler cooling the ion on the aforemen-
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Figure 10.3: Linescans of the 2D3/2 → 3[3/2]o1/2 transition taken by scanning the 935 nm

laser frequency while laser cooling a single 173Yb+ ion. The spectrum is fit to the sum of two
lorentzians since the hyperfine intervals between the F = 2, 3, 4 manifolds are not resolved
in these scans.

tioned transitions. The splitting of about 1.8 GHz is believed to be the hyperfine energy

splitting between the 3[3/2]1/2 F = 2 and F = 3 levels. Since this state will only have mag-

netic dipole hyperfine interaction, we can deduce what we would believe the hyperfine AM1

coefficient to be by comparison to known magnetic dipole hyperfine constants in other states

in both 171Yb+ and 173Yb+.

A173,B
M1 =

A173,S
M1 A171,B

M1

A171,S
M1

≈ −608MHz (10.1)

which would give a hyperfine splitting of approximately 1.82 GHz, consistent with our mea-

surement.

10.3.1 Future spectroscopy

To begin the high precision spectroscopy in the 2Fo7/2 , we first need to learn more about

our pathway into the 2Fo7/2 , the 2D5/2 . Luckily, it appears based on theoretical values for
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the hyperfine coefficients that the F = 0 hyperfine level is well separated from the remaining

hyperfine levels in the 2D5/2 , as shown in Figure 10.4. This will help us build a strategy to
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Figure 10.4: Theoretical hyperfine structure of the 2D5/2 in 173Yb+. The hyperfine coeffi-
cients are given in [Ita06].

do intial spectroscopy of these states. By driving only the 2S1/2 |F = 2〉 → 2D5/2 |F = 0〉

transition, we will selectively populate just the 2Fo7/2 |F = 1〉 hyperfine manifold. We only

currently have two 760 nm lasers available to us, so limiting our exposure to all the hyperfine

levels in the 2Fo7/2 will make finding the 760 nm transitions a bit easier. This form of state

preparation will also make heralded state preparation of pure states in the 2Fo7/2 of 173Yb+

straightforward, and even might provide a way to optically pump into a pure state with the

addition of microwave times to clean out neighboring states.
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Figure 10.5: Theoretical hyperfine structure of the 2Fo7/2 in 173Yb+. The hyperfine coefficients
are given in [Ita06, XLC20, PSW12]
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