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We present a unified description for time-resolved electron and photon scattering

spectroscopies from molecules prepared in nonstationary states. Signals are expressed

in terms of superoperator Green's functions and a systematic procedure for treating

various degrees of freedom consistently at different levels of theory is developed. The

standard Fermi Golden Rule expressions for photoelectron spectra, which are limited to

broad, slowly-varying signals, are obtained as a limiting case of our more general theory

that applies to broader parameter regimes.
1. Introduction

Molecular photophysical processes are widely monitored by detecting ejected
electrons or scattered X-ray photons.1–4 We present a computational framework
for time-resolved photoelectron spectroscopy (TRPES), Auger-electron spectros-
copy (AES), and off-resonant X-ray scattering (OXS). In these experiments, the
common objective is to monitor the electronic and nuclear dynamics of nonsta-
tionary states (oen prepared by excitation with a pump pulse). Electron spec-
troscopies in the X-ray regime will depend on valence, core, and continuum
electronic states, and nuclear degrees of freedom as well as uctuations from
coupling to the environment (this could be a thermal bath or represent solvent
degrees of freedom). Exactly including the nuclei quantum mechanically is oen
numerically too expensive and the Born–Oppenheimer approximation is made
separate of electronic and nuclear degrees of freedom. This separation fails when
electronic modes are vibronically coupled or at degeneracies (conical intersec-
tions).5,6 Thus, the level of theory employed for the nuclei can vary greatly (e.g.,
harmonic oscillators, Brownian oscillators, averaging over semiclassical trajec-
tories, surface hopping, spawning7). In particular, if some nuclear degrees of
freedom can be identied as the origin of the strongest intramolecular
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interactions and fastest dynamics, it would be preferable to treat these explicitly.
The remaining nuclear modes can then be treated implicitly, such an approach
was advocated by Seel and Domcke for TRPES.8 Except for model systems in which
such effects can be explicitly included in the Hamiltonian and solved analytically,
they are normally treated by numerical propagation or modication to the Fermi
Golden Rule (FGR). The large number of choices of what level of theory to employ
for various degrees of freedom calls for a consistent and comprehensive approach
to these signals. Liouville space is a natural setting for handling bath degrees of
freedom and making semiclassical approximations and can therefore provide a
unied treatment of these experiments.

We start with time-resolved photoelectron spectroscopy (TRPES) which is a
pump–probe technique in which a pump pulse prepares the system and, aer
some controlled delay time, a probe pulse ionizes it.1 The photoelectron current is
generally plotted as a function of the pulse parameters (principally the interpulse
delay) and the photoelectrons’ kinetic energy. This is given by the difference in
energy between the ionized and unionized system. Comparison with the ground
state spectra can thus be used to analyze the electronic and vibrational excited
state dynamics and to monitor non-radiative decay channels. Photoelectron
spectroscopy has been utilized to study a wide variety of material systems (e.g.
atoms, molecules, lms and surfaces, and metals9–12) and has recently been used
to track the non-adiabatic radiationless decay of various organic molecules (e.g.
uracil, thymine, benzene, and cis-dienes13–15) complementing optical methods
(e.g. ref. 16). TRPES has less restrictive selection rules compared to optical
detection schemes (any orbital may be ionized and the transition dipole to the
continuum states does not dependmuch on the continuum state andmay be well-
approximated as at in certain regions). The probabilities for excitation to various
continuum states can still depend sensitively on the nal molecular electronic
state and the continuum states serve as a probe.1,8

In the X-ray regime, the TRPES process involves valence, core, and continuum
electronic states. Photoionization prepares a core hole state, whose dynamics can
be monitored. This state ordinarily rapidly decays as a valence electron lls the
core hole while a second valence electron (the Auger electron, which is the object
of study in AES) is ejected with kinetic energy equal to the core–valence energy
gap. The Auger process is of interest in studying core-hole dynamics (the Auger
decay process adds a linewidth to the TRPES spectra), and is governed by a
Coulomb matrix element rather than a transition dipole. This difference in
selection rules oen leads to broader, less distinct spectra but can be useful for
viewing dipole-forbidden transitions. Like TRPES, AES has been used to study the
dynamics for diatomics, biomolecules, metals, oxide lms, and electro-
lytes.8,9,11,17–19 Because of the complexity of these processes, a variety of approaches
have been adopted for their simulation including methods based on direct wave
function propagation, many-body non-equilibrium Green's functions and the
core-hole spectral function as well as a more straightforward quadratic-response
function formalism.20–24 These are frequently approximated in a “two-step”
fashion in which the photoionization event is separated from the Auger decay (the
ionization is also typically taken to be to the relaxed core-hole state), removing
these restrictions is necessary to describe gain–loss peaks in the Auger spectra
due to excited states induced by the ionization process.25,26 Such considerations
are obviously important when tracking the decay of electronic excited states via
Faraday Discuss. This journal is © The Royal Society of Chemistry 2015
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TRPES/AES and, in this paper, we employ a one-step description so that the entire
history of the system is properly included.

A third commonly employed technique for tracking the structure and
dynamics of materials is the detection of scattered, off-resonant X-rays, whose
elastic portion, diffraction, has been widely used to study the electronic charge
density of materials.3,4,27–29 In a recent paper, we examined time-, frequency-, and
wavevector-resolved off-resonant X-ray scattering (OXS) from non-stationary
states and found that the signal separates into one- and two-particle terms which
carry different form factors.30 For OXS from the ground state, the two-particle
form factor was found to contain only elastic contributions while all inelastic
processes were contained in the one-particle form factor. The inelastic contri-
butions are thus dominated by the elastic for a many-particle sample. The one-
particle form factor contains inelastic terms and is clearly the only contribution in
a single molecule experiment. These inelasticities are therefore expected to be
especially relevant for ultrafast diffraction from single-molecules, a regime that
has drawn considerable interest recently.31–34

In this paper, we recast the theory of TRPES and AES in Liouville space; a
previous treatment incorporatedmultidimensional processes and quantum elds
but did not explicitly consider vibronic couplings between electronic states.35

From this, we derive the FGR expression ordinarily associated with these signals
revealing the underlying assumptions. The FGR should not hold when the nuclear
dynamics is fast compared to the photoionization time. We thus expect it to break
down near conical intersections where a more general formula will be needed.
Following exposition of the Liouville space formalism, we provide a semiclassical
simulation of the TRPES signal from acroleine following preparation of a valence
excitation and discuss how this simulation procedure may be generalized to allow
for nuclear motion during electronic coherences. We then discuss OXS as recently
recast so as to explicitly include the time, frequency, and wavevector resolution of
the photon detection event and analogies to TRPES/AES are discussed. In
particular, all of these processes, in addition to being useful probes of nonsta-
tionary states at both the electronic and nuclear level, prepare interesting states in
their own right. Following these processes, the system is le in a different
nonstationary excited state. This state may then be probed by other nonlinear
spectroscopic techniques that can also be described by the Liouville space theory
presented here.

2. Photoelectron spectroscopy; Hamiltonian and
the Fermi Golden Rule

We describe TRPES with the following Hamiltonian:

H ¼ HM + Hp + Hx(t) + Hv(t) (1)

where

HM ¼
X
II 0q

��Iq�E Iq

�
Iq
��þ ���I 0qEHI 0I

�
Iq
�� (2)

represents the molecule with E Iq the energy of the I-th electronic state with q holes
and HI0I the coupling between electronic states via nuclear coordinates. Both are
This journal is © The Royal Society of Chemistry 2015 Faraday Discuss.
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operators in the nuclear subspace. In a fully microscopic theory, the states and
parameters would be given in terms of single-particle occupation numbers (in a
second-quantized representation). This is discussed further in the appendix.

Hp ¼
X
p

3pc
†
pcp (3)

is the Hamiltonian of the photoelectron states (c†p, cp are creation/annihilation
operators for the orbital with energy 3p) and Hx(t) and Hv(t) represent interactions
with photoionizing X-ray and valence pump elds, respectively. We assume that
HM is block diagonal in the molecular charge number and label electronic states
of HM as |Iqi where the subscript indicates the molecular charge. The molecular
Hamiltonian remains an operator in the nuclear subspace while we assume that
the Hamiltonian of the continuum states is independent of the nuclei. In the
simplest model, the nuclear coupling gives a vibrational splitting to each elec-
tronic state. More generally, the nuclear degrees of freedom can couple the
electronic states (as in surface crossing and non-Born–Oppenheimer effects)
leading to population transport, etc. In the Condon approximation, the dipolar
interaction with the valence pump pulse is

HvðtÞ ¼ �EvðtÞ
X
II 0

m
ðqÞ
I 0I

���I 0qE�Iq��þ m
ðqÞ*
I 0I

��Iq�DI 0q��� (4)

where Ev(t) is the temporal envelope of the valence pump pulse. We work in the
product space of bound and continuum states and the interaction with the
photoionizing X-ray pulse is then written as

HxðtÞ ¼ �ExðtÞ
X
II 0p

m
ðqÞ
pI 0I c

†
p

���I 0qþ1

E�
Iq
��þ m

ðqÞ*
pI 0I cp

��Iq�DI 0qþ1

��� (5)

where Ex(t) is the temporal envelope of the ionizing X-ray pulse and we have
explicitly indicated the dependence of the transition dipoles on the charge
number. In the following, we will only consider pumping of the neutral molecule
and omit the q ¼ 0 superscript on the transition dipoles. Throughout, we work in
the interaction picture with respect to Hint(t) ¼ Hv(t) + Hx(t) and use atomic units
so that ħ ¼ me ¼ e ¼ 1. A straightforward application of the Fermi Golden Rule
gives the probability of generating a photoelectron in state |pi as second order in
the interaction with the ionizing pulse yielding

Pðp;TÞ ¼
X
II 0

rI0ðTÞ��ExmpI 0I
��2d�ux � 3p � E I 0

1
ðTÞ þ 3I0 ðTÞ

�
; (6)

where

rI0(T) f |EvmIg|
2d(uv � E I0

(0)) (7)

is the population of state |I0i and we have taken the snapshot limit of the pump
and probe pulses (whereby the spectral and temporal pulse envelopes are both d-
functions with ux and uv the frequencies of the X-ray and valence pump pulses,
respectively) and the signal only depends on the relative delay time T. The bound
state energies (denoted E ) and populations are operators in the nuclear subspace
and this expression must still be averaged over the nuclear degrees of freedom.
This can be done formally with a model for the nuclear–electronic coupling or
Faraday Discuss. This journal is © The Royal Society of Chemistry 2015
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semiclassically by averaging over stochastic trajectories. This approach is very
intuitive and is readily amenable to semiclassical treatments. Similar formulas
have been used to study the nuclear dynamics of the excited singlet state potential
energy surfaces of a variety of molecules.14,15

The FGR makes several assumptions that may not apply for ultrafast experi-
ments. One goal of this paper will be to elucidate these assumptions and how they
may be relaxed for a better description of ultrafast dynamics.
3. Liouville space description of TRPES

The photoelectron signal is dened as the integrated, energy-resolved current:

SPES ¼
ð ​ d
dt

�
npðtÞ

�
: (8)

Assuming that [np, HM] ¼ 0 (where np ¼ c†pcp is the occupation number of the
scattering state |pi), we have, from the Heisenberg equation of motion

_np ¼ �i[np, H] ¼ �2Ex(t)I {mp} (9)

where

mph
X
I0I1

m*
pI1I0

cpjI0ihI1j: (10)

The Liouville-space treatment can rigorously incorporate “bath” degrees of
freedom without explicitly treating them quantummechanically. We describe the
dynamics with the stochastic Liouville equation (SLE). This assumes that the
quantum system of interest is affected by a classical bath, whose stochastic
dynamics follow a Markovian master equation. The SLE is an equation of motion
for the eld-free evolution of the joint system density matrix:

| _r(t)ii ¼ L |r(t)ii ¼ �iH�|r(t)ii + Lb|r(t)ii (11)

where H� is the superoperator corresponding to commutation with the electronic
Hamiltonian (see Appendix) and Lb represents the stochastic Markovian
dynamics of the bath. The versatility of this approach lies both in the choice of
which degrees of freedom are explicitly incorporated into the Hamiltonian
dynamics versus which are relegated to the bath, and at what level the bath
dynamics is treated (commonly, some of the nuclear degrees of freedom are
described as a semiclassical bath and solvent effects can be treated in this manner
as well).

We consider a process in which a pump pulse populates the valence excited
states, which then evolve for a delay period T before interaction with the X-ray
probe. Since the photoelectron state is initially vacant, the lowest order non-
vanishing response has two interactions with the ionizing pulse. Since we are
considering photoionization of an electronic excited state, we also expand the
signal to the second order in the pump pulse. The space signal can be read from
the diagram in Fig. 1:
This journal is © The Royal Society of Chemistry 2015 Faraday Discuss.
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SPES ¼ �2
Ð
dt4dt3dt2dt1Ex(t4)I [(i)3

hh1|mpL(t4)G(t4,t3)L x(t3)G(t3,t2)L v(t2)G(t2,t1)L v(t1)|ggii] (12)

where

G(t,t0) h q(t � t0)exp[�iL (t � t0)] (13)

is the Liouville space propagator and the L subscript indicates action on the ket
(see Appendix). The initial density matrix is given by the pure state |ggii which
corresponds to the many body ground state in which the core is full, the
continuum is empty, and the valence states are occupied up to some level. In
principle all time propagations are with respect to H. However, assuming that H
conserves the charge, we may write HM ¼ HM(q) (as above, we assume [np, H] ¼ 0).
We then use projection operators to simplify the Green's functions in eqn (12). We
work with the product states |Iqi$|pi h |Iqpi and the associated Liouville-space
projection operators

P 1 ¼
X
I0

jI0; giihhI0; gj þ jg; I0iihhg; I0j (14)

P 2 ¼
X
I0

jI0; I0iihhI0; I0j

P 3 ¼
X
I0I1p

jI1p; I0iihhI1p; I0j

which allow to restrict attention to particular manifolds of states. In partic-
ular, P 1 projects into the space of coherences between the ground state and
the |0i manifold (the set of states with 0 holes), P 2 projects into the space of
populations of the |0i manifold and P 3 projects into the space of coherences
between the |1i and |0i manifolds (analogously to P 1, P 3 actually has two
terms but we have kept only the one that contributes). Aside from the
Fig. 1 Loop diagram for the TRPES process. The valence of both ket and bra are initially
excited via an external pulse (kv). Following a delay T, the system interacts with an X-ray
pulse (kx) which promotes an electron to the photoelectron continuum states (p). This one
loop diagram stands for two ladder diagrams since the valence pumping can occur first on
the ket or first on the bra.

Faraday Discuss. This journal is © The Royal Society of Chemistry 2015
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restriction to populations in P 2 (this is justied for pulses separated by times
larger than coherence decay times and is easily relaxed to account for over-
lapping pulses), inserting these projection operators entails no loss of
generality since the Hamiltonian conserves the number of p-electrons and
holes. This is equivalent to simply taking matrix elements by inserting reso-
lutions of the identity operator. However, the use of projection operators
makes clear how to include more complicated processes such as Auger decay
which gives width to TRPES lines. We thus re-write the signal as

SPES ¼ �2
Ð
dt4dt3dt2dt1Ex(t4)I [(i)3

hh1|mpL(t4)G(3)(t4,t3)L x(t3)G
(2)(t3,t2)L v(t2)G

(1)(t2,t1)L v(t1)|ggii] (15)

where

G(i)(t,t0) h P iG(t,t
0)P i. (16)

Inserting the denitions and expanding in eigenstates, we obtain

SPES ¼ �2

ð
dt4dt3dt2dt1I ðiÞ3E*

xðt4ÞEx

�
t3
�X

II 0

��mIgmpI 0I
��2Gð3Þ

I
0
1p;I0

ðt4; t3ÞGð2Þ
I0 ;I0

ðt3; t2Þ
"

� E*
UVðt2ÞEUVðt1ÞGð1Þ

I0 ;g
ðt2; t1Þ þ EUVðt2ÞE*

UVðt1ÞGð1Þ
g;I0

ðt2; t1Þ
#)(

(17)

where we have made the rotating wave approximation (requiring that eld
excitation is accompanied by material de-excitation and vice versa), and
dened:

G(i)
n,m(t,t

0) h G(i)
n0m0,nm(t,t

0)dn0ndm0m ¼ hhn,m|G(i)(t,t0)|n,mii (18)

valid when HI0I ¼ 0. Non-adiabatic effects (which are frequently the objects of
study in TRPES experiments) can cause electronic transitions and their
inclusion therefore requires the full tetradic structure of the Green's func-
tions. Since, in obtaining the semiclassical FGR result from the Liouville-space
treatment, these considerations are only relevant for the middle propagation
period G(2)(t3,t2), we ignore this complication on this rst approach. To
discuss the snapshot limit of pump–probe signals, it is convenient to utilize
the Wigner spectrogram for the incoming pulses

E*
i ðtÞEiðt0Þ ¼

ð
du

2p
W i

	
tþ t0

2
;u



eiuðt�t0Þ i˛fx; vg (19)

and make the approximation of ideal time and frequency resolution

W i(t,u) ¼ |Ei|
2d(t � ti)d(u � ui). (20)

Since the eld-free Hamiltonian is time-independent, we Fourier transform
with respect to the difference times si h ti+1 � ti giving
This journal is © The Royal Society of Chemistry 2015 Faraday Discuss.
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SPESðTÞ ¼ �2

ð2pÞ2jExj2jEvj2I i
X
II 0

��mIgmpI 0I
��2Gð3Þ

I 0
1
p;I0

ðuxÞGð2Þ
I0 ;I0

ðTÞ
"

� G
ð1Þ
I0 ;g

ðuvÞ þ G
ð1Þ
g;I0

ð�uvÞ
#)(

(21)

where we have dened T ¼ tx � tv and assumed that Gð2Þ
I0;I0

	
T � s1 þ s3

2



zGð2Þ

I0;I0ðTÞ
since T [ s1, s3. Following ref. 7, the coherence Green's function is

Gn,m(t) ¼ q(t)e�iHnLt eiHmRt. (22)

Using the relation

Gn;mðtÞ ¼ Gm;mðtÞ exp
�i
Ð t

0
dsULðsÞ

þ (23)

where

U(t) h eiHm(t)(Hn � Hm)e
�iHm(t) (24)

and exp+ is the positive time-ordered exponential. Eqn (22) includes all degrees of
freedom at the Hamiltonian level (and thus does not include bath degrees of
freedom in the Liouvillian sense). This facilitates the semiclassical simulation of
the nuclear dynamics and avoids the complication of solvent degrees of freedom
(which are readily included in the Lb operator). Recall that all parameters are
functions of the time-dependent nuclear coordinates {q}(t) and the signal given in
eqn (21) must be averaged over the nuclear space. In the static (classical) limit, we
neglect nuclear motions when the system is in an electronic coherence and U(s)
becomes time-independent

Gn,m(t) z e�iULt. (25)

Note that this is an operator only in the nuclear subspace and under the
semiclassical approximation, is an ordinary exponential. In this limit, we have for
the TRPES signal

SPES

�
3p;T

� ¼ X
I1I0

rI0ðTÞ��ExmpI1I0

��2d�ux � E I1ðfqgðTÞÞ þ E I0ðfqgðTÞÞ � 3p
�

(26)

where we have explicitly notated that the time dependence is through the set of
nuclear coordinates {q} and

rI0 ðTÞh
X
I 0
0

���EvmI 0
0
g

���2d�uv � E I 0
0
ðfqgð0ÞÞ

�
G

ð2Þ
I0I0 ;I

0
0
I 0
0

ðTÞ (27)

is the population of the Ith state of H(0) at time T including the effects of vibronic
coupling. Neglecting these effects amounts to the substitution
Gð2Þ
I0I0;I 00I

0
0
ðTÞ ¼ Gð2Þ

I0;I0ðTÞdI0;I 00 . This represents the classical limit of the TRPES
current. For practical simulations, the quantity Gð2Þ

I0I0;I 00I
0
0
ðTÞ is taken to be the

population of the state initially excited to I00 and propagated along a trajectory for
a time T (I0 is the nal state to which the system is propagated) and is averaged
over trajectories.
Faraday Discuss. This journal is © The Royal Society of Chemistry 2015
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The nite widths of the pump and probe pulses can be included aer the fact
by convoluting with the eld envelopes. This amounts to smearing the interaction
time but keeping the bra and ket interaction times the same and neglecting
electronic coherences. In cases where there is appreciable ultrafast nuclear
motion (when the system is still in an electronic coherence), it will be necessary to
go beyond this approximation and treat the coherence Green's function more
exactly. Clearly, eqn (17) provides the most direct way to go beyond the static
(classical) limit.

We represent the eld amplitudes as the product of an envelope and a carrier
frequency

Ei(t) ¼ ~Ei(t � ti)e
�iUi(t � ti) + c.c., i ˛ {x,v} (28)

whereUi is the carrier frequency for the pulse and ~Ei(t) is the envelope (centered at
t¼ 0). The time between the centers of the pulses is then T¼ tx � tv. To go beyond
the static approximation, we allow for coupling between electronic levels, leaving
the Green's function no longer diagonal.

SPES

�
3p;T

� ¼ I

" X
fI0 ;I1g

ðN
0

ds3

ðN
0

ds2

ðN
0

ds1m
*
pI 0

1
I 000
0
mpI1I

00
0
G

ð3Þ
I 0
1
pI 000

0
;I1pI

00
0
ðs3ÞGð2Þ

I 00
0
I 00
0
;I 0
0
I 0
0
ðs2Þ

�
n
mgI 0

0
mI0g

G
ð1Þ
I 0
0
g;I0g

ðs1Þ þ mgI0
mI 0

0
gG

ð1Þ
gI 0

0
;gI0

ðs1Þ
o

�
ð
dt4 ~Exðt4Þ ~Exðt4 � s3Þ ~Evðt4 � s3 � s2Þ ~Evðt4 � s3 � s2 � s1Þ

#
(29)

where
X
fI0;I1g

indicates summation over the set of state indices. As a rst approx-

imation to the extensions to the FGR expression, we treat the electronic gap
coordinate as a function rather than an operator (treating the nuclear coordinates
semiclassically) so that the time-ordered exponential reduces to a standard
exponential. We then utilize eqn (23) to express the coherence Green's functions
in terms of population Green's functions which have direct classical analogs. This
results in

SPES

�
3p;T

� ¼ I

" X
fI0 ;I1g

ðN
0

ds3

ðN
0

ds2

ðN
0

ds1m
*
pI 0

1
I 000
0
mpI1I

00
0

�
n
mgI 0

0
mI0g

eið�U1þUvÞs1 þ mgI0
mI 0

0
g e

iðU1�UvÞs1
o
eiðU3þUx�3pÞs3

�G
ð2Þ
I 000
0
I 000
0
;I 00
0
I 00
0

ðs3ÞGð2Þ
I 00
0
I 00
0
;I 0
0
I 0
0

ðs2ÞGð2Þ
I 0
0
I 0
0
;I0I0

ðs1Þ

�
ð
dt4 ~Exðt4Þ ~Exðt4 � s3Þ ~Evðt4 � s3 � s2Þ ~Evðt4 � s3 � s2 � s1Þ

#
(30)

where the auxilliary quantities

U1h
1

s1

ðs1
0

ds0E I0/I 0
0
ðs0Þ � E gðs0Þ U3h

1

s3

ðs3
0

ds0E I1/I 0
1
ðs0Þ � E I 00

0
/I 000

0
ðs0Þ (31)
This journal is © The Royal Society of Chemistry 2015 Faraday Discuss.

http://dx.doi.org/10.1039/C4FD00178H


Faraday Discussions Paper
Pu

bl
is

he
d 

on
 0

4 
N

ov
em

be
r 

20
14

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Ir

vi
ne

 o
n 

03
/0

3/
20

15
 1

9:
21

:3
2.

 
View Article Online
are the time-averaged electronic gap coordinates for time periods s1 and s3 where
the time averaging is done for each trajectory (symbolized by E i/f). As a reminder,
we have assumed the Franck–Condon approximation without which the transi-
tion dipoles would depend parametrically on time through their dependence on
the nuclear coordinates. All Green's functions remain operators in the nuclear
subspace and so eqn (26) and (30) must be averaged over these degrees of freedom
(although this is not explicitly notated in the above).

For cases in which environmental and vibronic couplings between excited
states are particularly simple, it is frequently more convenient to treat the
problem in Hilbert space. We therefore give the TRPES signal in this form as well
for completeness.

SPES

�
3p;T

� ¼ I

" X
fI0 ;I1g

ð ​
dt4dt3dt3dt1 ~Exðt4Þ ~Exðt3Þ ~Evðt2Þ ~Evðt1Þ

� �
mgI 0

0
ðt2ÞG�

I 0
0
;I 000
0
ðt2; t4Þm*

pI 0
1
I 000
0
ðt4ÞGþ

I 0
1
p;I1p

ðt4; t3ÞmpI1I
00
0
ðt3ÞGþ

I 00
0
;I0
ðt3; t1ÞmI0g

ðt1Þ
�#

(32)

where

Gþ
ij ðt; t0Þ ¼ qðt� t0Þhij exp�i

Ð t0

t
HðsÞds

þ jji; G�
ij ðt; t0Þ ¼ qðt0 � tÞhij expi

Ð t0

t
HðsÞds

� jji (33)

are the Hilbert space forward and backward propagators (exp� is the negative
time-ordered exponential) and we have explicitly notated the time dependence of
the transition dipole moments (which is only relevant outside the Franck–Condon
approximation) and the averaging over the nuclear subspace (represented by h.i).
4. Conical intersections in trans-acrolein

We present the simulation for a valence TRPES of trans-acrolein (propenal). The
molecule has a conjugated p-system composed from the C]C double bond and
the carbonyl group (C]O) making it an ideal system to investigate non-adiabatic
excited state dynamics. Quantum chemistry calculations were carried out with
MOLPRO36 at the complete active space self-consistent eld (CASSCF) level of
theory (sa4-CAS(6/5)/6-31+G*) with 6 electrons in 5 active orbitals. The molecular
orbitals (MOs) occupied in the electronic ground state are two p-orbitals for the
CC and the CO bond as well as the oxygen lone pair. The lowest unoccupied
molecular orbitals (LUMOs) correspond to the rst two p*-orbitals. At this level of
theory, 4 states have to be taken into account. The S2 and S3 states are separated
by z0.65 eV at the Franck–Condon point. Moreover, the S2 and S3 states are
coupled by a conical intersection which is in reach within the rst 25 fs of the time
Table 1 Calculated excitation energies at the Franck–Condon point in eV. The experi-
mental value is taken from ref. 37

Transition Calc. Exp.

S0 / S1 (n / p*) 3.6279
S0 / S2 (n / p*) 6.8740
S0 / S3 (p / p*) 7.5165 6.41(193 nm)
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evolution. The excitation energies calculated at CAS level are given in Table 1. A
vertical, resonant UV excitation is most favorable for the S0 / S3 transition with a
transition dipole moment of 0.18 au as opposed to the S0 / S2 transition, which
is much weaker (mS2,S0 ¼ 0.044 au).

The nuclear dynamics triggered by the UV excitation was calculated by the
Tully surface hopping (SH) algorithm38 (NEWTON-X39 with a homemade interface
to MOLPRO). The nuclear dynamics is described by the classical equations of
motion, while the electronic degrees of freedom are treated quantum mechan-
ically (sa4-CAS(5/6)/6-31+G*). The forces acting on the nuclei are derived from the
gradient of a particular electronic state the trajectory is in at time T. We interpret
the population rI0,I0 of an electronic state I0 as the average over all N trajectories:

rI0 ;I0ðtÞ ¼
1

N

XN
i¼1

dsiðtÞ;I0 ; (34)

where si(t) is the electronic state of trajectory i. The initial state populated by the
UV pulse is the electronic S3 state. We assume sudden excitation, thereby
neglecting possible Franck–Condon factors. All states are coupled to each other
by CoIn and consecutive state jumps back to the ground state are observed in our
trajectory simulations as well as under experimental conditions.37 The time
evolution of rI0,I0 is shown in Fig. 2 for the rst 500 fs. The S3 state undergoes a
rapid decay via a close by non-adiabatic coupling to the S2 state transferring half
of its population into the S2 state. The S1 state is populated in a next step and
reaches about 40% within 250 fs.

We use the semiclassical (FGR) expression for the TRPES spectra obtained in
eqn (26). The population Green's function from eqn (27) is realized by the SH
algorithm on the excited neutral states. In the SH method the electronic state
Fig. 2 Population of electronic states vs. time. The total number of contributing trajec-
tories is 100 generated from a Wigner distribution at 0 K. The initial state is the S3 state.
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populations are obtained by averaging over a large number of trajectories. The
TRPES signal SPES is then given by the sum over all N trajectories:

SPES;SH ¼
XN
n¼1

X
I1

��ExmpI1I0

��2d�ux � E I1 ðTÞ þ E I0ðTÞ � 3p
�
rI0 ;nðTÞ: (35)

Note that the nal state of the propagation (I0) is not summed over since this
averaging process is accounted for in the trajectory summation. Every trajectory is
in a specic state I0 at time T. Moreover it is assumed that the UV excitation pulse
is resonant with a specic electronic state (I 00) at T¼ 0 to yield the initial condition
(state) for all trajectories.

rI0 ;nðTÞh��EvmI0g

��2Gð2Þ
I0I0 ;I

0
0
I 0
0

ðTÞ (36)

The X-ray ionization pulse is given a nite width in frequency by replacing the d
in function in eqn (35) by a Gaussian giving the nal expression:

SPES;SHz
XN
n¼1

X
I1

rI0 ;nðTÞ��ExmpI1I0

��2 e�
�
ux�E I1

ðTÞþE I0
ðTÞ�3~p

�2�
2s2u

: (37)

To incorporate the ionized states into the simulations the corresponding ionic
doublet states D0–D4 are calculated at a similar level of theory (sa5-CAS(5/5)/6-
31+G*) as the neutral states. The different size of the active space and the fact that
CASSCF is not a consistent size introduces a small but negligible systematic error.
The transition dipole moments mpI1I0 from the neutral to ionic states are
approximated by utilizing Dyson orbitals:14,40,41

FD
I0 ;I1

�
~r
� ¼ ffiffiffiffiffi

N
p ð

d~r1.d~rN�1JI0

�
~r1.~rN

�
JI1

�
~r1.~rN�1

�
(38)

where JI0 is the electronic wave function of the neutral molecule and JI1 the ion
wave function for a particular snapshot. The norm of the Dyson orbital
hFD

I0;I1 jFD
I0;I1i is proportional to the ionization probability.14,42 In a molecular

orbital (MO) basis FD
I0;I1 can be written as:

FD
I0 ;I1

�
~r
� ¼ X

a

fa

�
~r
��
JI1

��aa��JI0

�
: (39)

Here aa is an annihilation operator which removes an electron from the MO
fa. In the case of a CASSCF wave function the index a runs over all orbitals in the
active space and FD can be expanded in the Slater determinants jI0,i and jI1,j and
their corresponding conguration interaction (CI) coefficients cI0,i and cI1,j:

14

FD
I0 ;I1

�
~r
� ¼ X

a

fa

�
~r
�X

i;j

cI0 ;icI1 ;j
�
jI1 ;j

��aa��jI0 ;i

�
: (40)

The overlap factor between the different congurations in eqn (40) is deter-
mined by calculating the overlap between the Slater determinants of the ionic and
neutral states:
Faraday Discuss. This journal is © The Royal Society of Chemistry 2015
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hjI1,j|aa|jI0,ii ¼ hf0
1.f0

a�1f
0
a+1.f0

N|f1.fa�1fa+1.fNi ¼ det(hfn
0|fmi) (41)

where fn
0 and fm are the MOs of the ionic and neutral wave function, respectively.

TheMOs of the neutral states form an orthonormal set and the norm of the Dyson
orbitals, giving the weight factor for the ionization probability, can be written as:�

FD
I0 ;I1

jFD
I0 ;I1

E
¼

X
a

���JI1

��aa��JI0

���2: (42)

By using the norm of the Dyson orbitals a possible dependence of the transi-
tion dipole moment on the photo electron kinetic energy is neglected as well as
any directional dependence. Combining eqn (37) and (42) the approximated
photo electron signal can then be written as:

SPES;SHz
XN
n¼1

X
I1

rI0 ;nðTÞjExj2
D
FD

I0 ;I1
jFD

I0 ;I1

E
e
�
�
ux�E I1

ðTÞþE I0
ðTÞ�3~p

�2�
2s2u

: (43)

The photoelectron spectrum calculated with eqn (43) is shown in Fig. 3. The
photon energy of the pulse is chosen to be 12 eV (103 nm) with a FWHM of 0.71 eV
which corresponds to a 5 fs temporal width. The shape of the spectrum reproduces
the main features of the trajectory calculations as shown in Fig. 2. This is the fast
decay to the S2 state within the rst 25 fs aer the UV excitation and the increase in
population in S1 between 150 and 250 fs. The population in S1 can attributed to the
band around 2 eV, while the S2 state population is visible through the band around
4.5 eV. Over the whole time evolution the variation due to nuclear motion is clearly
visible in the TRPES. From these fast features the improvements to the TRPESmodel
introduced in the previous sections can be directlymotivated. If several femtosecond
excitation and ionization pulses are used then corrections to the semiclassical limit
can be substantial. A direct propagation approach for the fast molecular vibrations
Fig. 3 TRPES for an ionization pulse with a photon energy of 12 eV and a FWHM of 5 fs.
The intensity is given in arbitrary units.
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(e.g. C–H stretch vibrations) which treats them by a full quantummodel even opens
up the route for coupling TRPES with vibrational spectroscopy methods like FSRS.
5. Time-resolved Auger signals

The above description of TRPES is suitable for the photoionization of both
valence and core electrons. However, a treatment of core TRPES should distin-
guish between core and valence holes. Obviously, this is necessary for a
description of Auger decay and Auger-electron spectroscopy. For this reason, in
this section, the q subscript on themolecular states will be reserved for core holes.
States with two fewer valence electrons than the neutral molecule (dicationic
valence states) will then be denoted by Ĩ.

In order to describe the Auger decay of core holes generated via TRPES
processes, we add the following terms to the Hamiltonian:

Hk ¼
X
k

3kc
†
kck A ¼

X
k~II

Ak~II c
†
k

��~I0�hI1j þ h:c: (44)

where Hk is the Hamiltonian of the Auger electron continuum states (which,
following ref. 23, we take to be energetically well-separated from any photoelec-
tron states so that their Hamiltonians commute) and the A-operator induces
Auger transitions. For clarity, this is represented in a fully microscopic manner
with a fermionic second-quantized description of the molecular states (core and
valence levels) in the Appendix. For the moment, we leave the expression in this
more model-independent form. As was done for TRPES, the signal is dened as
the integrated electron current

SA ¼
ð
d

dt
hnkðtÞi ​ ¼ �i½nk;HT � ¼ �2I ½Ak� (45)

where

Akh
X
~II

A*
k~II

ckjI1i
�
~I0
��: (46)

The Auger electrons originate from decay of the TRPES core hole and the
description therefore contains more propagators compared to TRPES. Since the
Auger states are initially unoccupied, the signal vanishes to zero order and must
be expanded at least once in Ak. Keeping only this term (which is second order in
the Auger coupling) and expanding to second order in the interactions with the
external pulses gives

SA ¼ �2
Ð
dt6.dt1I [(i)5hh1|AkG(t6,t5)A

†
kG(t5,t4)L x(t4)G(t4,t3)L x(t3)G(t3,t2)L v(t2)

G(t2,t1)L v(t1)|ggii]. (47)

The inclusion of the Auger electron necessitates an additional state label

|~Ii|pi|ki h |Ĩpki. (48)

As described above, when discussing core TRPES and Auger-electron spectros-
copy, we use Iq to denote states of the molecule that have q core holes and the same
Faraday Discuss. This journal is © The Royal Society of Chemistry 2015
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number of valence electrons as the neutral molecule. In Auger processes (Fig. 4), we
must also consider states of dicationic valence (valence states with two fewer elec-
trons than valence states of the neutral molecule). Such states will be labeled with a
“tilde” Ĩq. In addition to the projection operators dened previously, we introduce:

P 3 ¼
X
I0I1p

jI1p; I0iihhI1p; I0j þ jI0I1piihhI0; I1pj (49)

P 4 ¼
X
I1I

0
1
p

��I1p; I 01p����I1p; I 01p��

P 5 ¼
X X

I1 ~I0pk

��~I0pk; I1p����~I0pk; I1p��

With which the signal is then expressed as

SA ¼ �2
Ð
dt6dt5dt4dt3dt2dt1I [(i)5

hh1|AkG
(5)(t6,t5)A

†
kG

(4)(t5,t4)L x(t4)G
(3)(t4,t3)L x(t3)G

(2)(t3,t2)L v(t2)G
(1)(t2,t1)

L v(t1)|ggii] (50)

with G(i) dened as before. Substituting the interaction Liouvillians and formally
evaluating matrix elements gives

SA ¼ �2

ð
dt6dt5dt4dt3dt2dt1I



ðiÞ5

ð
d3p

X
I0I1I

0
1
~I0

��mI0g

��2

�Ak~I0I1
A*

k~I0I
0
1

mpI1I0
m*
pI 0

1
I0
G

ð5Þ
~I0pk;I

0
1
p
ðt6; t5ÞGð4Þ

I1p;I
0
1
p
ðt5; t4Þ

� E*
xðt4ÞExðt3ÞGð3Þ

I1p;I0
ðt4; t3Þ þ E*

xðt4ÞExðt3ÞGð3Þ
I0 ;I1p

ðt4; t3Þ G
ð2Þ
I0 ;I0

ðt3; t2Þ
��

� E*
vðt2ÞEvðt1ÞGð1Þ

I0 ;g
ðt2; t1Þ þ Evðt2ÞE*

vðt1ÞGð1Þ
g;I0

ðt2; t1Þ
#)(

(51)

where we have taken the Green's functions to be diagonal for now. Changing to
delay times and employing the snapshot limit of pulses as before, this becomes

SA ¼ �2

ð
dt6ds5jExEvj2I



ðiÞ3

X
I0I1I

0
1
~I0p

��mI0g

��2Ak~I0I1
A*

k~I0I
0
1

mpI1I0
m*
pI 0

1
I0
G

ð5Þ
~I0pk;I

0
1
p
ðs5Þ

G
ð4Þ
I1p;I

0
1
p
ðt6 � tx � s5Þ G

ð3Þ
I1p;I0

ðuxÞ þ G
ð3Þ
I0 ;I

0
1
p
ð�uxÞ G2

I0 ;I0
ðTÞ G

ð1Þ
I0 ;g

ðuvÞ þ G
ð1Þ
g;I0

ð�uvÞ
3
5

9=
;

8<
:

9=
;

8<
:

(52)

where we have Fourier transformed with respect to s1 and s3 and we have used
the approximations Gð4Þ

I1p;I01p
ðt6 � tx � s5 � s3=2ÞzGð4Þ

I1p;I01p
ðt6 � tx � s5Þ and
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Fig. 4 Loop diagram for the Auger decay process. As before, the valence of both ket and
bra are initially excited via an external pulse (kv) and then photoionized via an X-ray pulse
(kx) following a delay time T. The system then evolves under the influence of the Hamil-
tonian including the Auger decay term and emits an Auger electron. This one loop diagram
stands for 4 ladder diagram in Liouville space as each interaction with the external fields
can be in either order (ket first and then bra or vice versa).

Faraday Discussions Paper
Pu

bl
is

he
d 

on
 0

4 
N

ov
em

be
r 

20
14

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Ir

vi
ne

 o
n 

03
/0

3/
20

15
 1

9:
21

:3
2.

 
View Article Online
Gð2Þ
I0;I0

	
T � s1 þ s3

2



zGð2Þ

I0;I0ðTÞ justied in the limit of ultrashort, well-separated

excitation and ionization pulses. Substituting G(4) with its Fourier transform and
carrying out the dt6 integration gives

SAðk;TÞ ¼ �2jExEvj2I
"
i

X
I0I1I

0
1
~I0p

��mI0g

��2Ak~I0I1
A*

k~I0I
0
1

mpI1I0
m*
pI 0

1
I0
G

ð5Þ
~I0pk;I

0
1
p
ðu ¼ 0Þ

G
ð4Þ
I1p;I

0
1
p
ðu ¼ 0Þ

�
G

ð3Þ
I1p;I0

ðuxÞ þ G
ð3Þ
I0 ;I

0
1
p
ð�uxÞ

�
G

ð2Þ
I0 ;I0

ðTÞ
�
G

ð1Þ
I0 ;g

ðuvÞ þ G
ð1Þ
g;I0

ð�uvÞ
�35

(53)

where we have written the arguments of G(4) and G(5) so as to make clear that they
are frequency-domain Green's functions. Since the ket and bra of Gð4Þ

I1p;I 01p
are

summed over the same manifold of states, their principal value vanishes and we
make the substitution

G
ð4Þ
I1p;I

0
1
p
ðu ¼ 0Þ ¼ �ipd

�
E I1ðTÞ � E I 0

1
ðTÞ� (54)

which restricts the valence to being in a population during the s4 time period.
Combining the Green's functions for the periods s1 and s3 yields

SAðk;TÞ ¼ 2jExEvj2
ð
d3p

X
I0I1I

0
1
~I0

���mI 0
0
gmpI 0IAk~II

���2d�3k þ E ~I0
ðTÞ � E I1 ðTÞ�

d
�
ux þ E I0ðTÞ � E I1ðTÞ � 3p

�
G

ð2Þ
I0I0 ;I

0
0
I 0
0

ðTÞd�uv � E I0 ð0Þ
�
:

(55)

This is the semiclassical FGR result and is easily convoluted with spectral pulse
envelopes, detector sensitivity functions, etc. to simulate the Auger spectra. As was
done for TRPES, we have made several assumptions in arriving at this simplied
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expression. Principally, this takes the nuclei as frozen during electronic coher-
ences. Although this is well-justied in the limit of ultrafast, well-separated pul-
ses, it is certainly open to question in the case of excitation by overlapping or
broader pulses during which processes the systemmay spend non-trivial amounts
of time in electronic coherence. Eqn (51) provides an ideal starting point for going
beyond this semiclassical limit.

SAð3k;TÞ ¼ 2I

"
i

ð
d3p

X
fI0 ;I1 ~I0g

ð
dt6.dt1 ~Exðt4Þ ~Exðt3Þ ~Evðt2Þ ~Evðt1Þ

�G
ð5Þ
~I 00kpI 001 p;~I0kpI 01p

ðt6; t5ÞGð4Þ
I 00
1
pI 00

1
p;I 0

1
pI 0

1
p
ðt5; t4Þ

� m*
pI 0

1
I 000
0
mpI1I

00
0
G

ð3Þ
I 0
1
pI 000

0
;I1pI

00
0
ðt4; t3Þ þ m*

pI1I
00
0
mpI 0

1
I 00
0
G

ð3Þ
I 000
0
I 0
1
p;I 00

0
I1p
ðt4; t3Þ

on

�G
ð2Þ
I 00
0
I 00
0
;I 0
0
I 0
0

ðt3; t2Þ mgI 0
0
mI0g

G
ð1Þ
I 0
0
g;I0g

ðt2; t1Þ þ mgI0
mI 0

0
gG

ð1Þ
gI 0

0
;gI0

ðt2; t1Þ
3
5

9=
;

8<
:

(56)

where, for brevity, we have retained the interaction times (ti) rather than the delay
periods (si). As before, we may rewrite this in terms of population Green's func-
tions and propagated phase factors representing the electronic energy gaps

SAð3k;TÞ ¼ 2I

"
i

ð
d3p

X
fI0 ;I1 ~I0g

ð
dt6.dt1 ~Exðt4Þ ~Exðt3Þ ~Evðt2Þ ~Evðt1Þ eiðU5þ3kÞðt6�t5Þ

�G
ð4Þ
I 000
1
I 000
1
;I 00
1
I 00
1

ðt6; t5ÞGð4Þ
I 00
1
I 00
1
;I 0
1
I 0
1

ðt5; t4Þ

� m*
pI 0

1
I 000
0
mpI1I

00
0
eiðU3þUx�3pÞðt4�t3Þ þ m*

pI1I
00
0
mpI 0

1
I 00
0
e�iðU3þUx�3pÞðt4�t3Þ

on

�G
ð2Þ
I 000
0
I 000
0
;I 00
0
I 00
0

ðt4; t3ÞGð2Þ
I 00
0
I 00
0
;I 0
0
I 0
0

ðt3; t2ÞGð2Þ
I 0
0
I 0
0
;I0I0

ðt2; t1Þ

�
n
mgI 0

0
mI0g

eið�U1þUvÞðt2�t1Þ þ mgI0
mI 0

0
g e

iðU1�UvÞðt2�t1Þ
o35 (57)

where we have dropped the continuum state subscripts on the Green's functions
since they are assumed to be independent of the nuclear coordinates. The Ū1(3)

are dened as before and

U5h
1

t6 � t5

ðt6
t5

dt0E ~I0/~I
0
0
ðt0Þ � E I 0

1
/I 00

1
ðs0Þ (58)

is the time-averaged electronic energy gap between the core-hole states and the
dicationic-valence states. Eqn (55) and (57) must still be averaged over nuclear
degrees of freedom. This may be performed, as in TRPES, by propagating the
system along trajectories and then averaging. The expressions are written so as to
facilitate this approach.
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6. Off-resonant X-ray scattering

X-ray scattering is commonly employed for monitoring the electronic and nuclear
structure of materials.43–45 In the resonant case, this leads to X-ray absorption
spectroscopy as well as higher-order multidimensional techniques which are
commonly employed to obtain information on the electronic structure and track
the dynamics of wavepackets of nuclear excitations. In the off-resonant case, this
leads to diffraction which is used to determine the static structure of complex
systems as well as to monitor the motion of nuclei in non-equilibrium processes
(e.g. crystal melting46,47).

In a recent work, we analyzed the scattering of off-resonant X-rays coupled to
matter via the A2 term in the minimal-coupling Hamiltonian and gave a unied
treatment of time, frequency, and wavevector resolution through a rigorous
incorporation of the photon-detection event.30 The signal is taken to be the
integrated eld intensity at the detector

SOXS(�u,�t,�r,�k) ¼
Ð
dt
Ð
drhE(trfk)†(r,t)E(trfk)(r,t)i (59)

where the eld superscripts indicate multiplication (in appropriate domains) by
detector gating functions and the arguments of the signal are the central
parameters of these functions (we leave the dependence on the detector widths
implicit). Since the detected eld mode was initially unoccupied, we model the
interaction as spontaneous emission into vacuum eld modes (labeled with s and
s0) and reabsorption at the detector. The probe eld (labeled with p and p0) enters
through the magnetic vector potential A. Since the vector potential is linearly
coupled to the system's charge density (labeled ŝ), the bare OXS signal (before
consideration of the detector effects) will come as

SOXS;Bðt0;u0; r0; k0Þf
X
ss0

ð
dr1dr

0
1

ð
dt1dt

0
1

DD
1

���Eðs0Þ†
R

�
r0; t0

�
E

ðsÞ
L

�
r0; t0

�
A

ðs0Þ
R

�
r01; t

0
1

�
�A

ðpÞ†
R

�
r1
0; t1

0�sR

�
r1
0; t1

0�AðsÞ†
L ðr1; t1Þ$AðpÞ

L ðr1; t1ÞsLðr1; t1Þ
���rT ð0ÞEE (60)

where |rT(0)i is the total (eld andmatter) density matrix at time 0 (taken to be the
terminus of a process that leaves the system in a non-equilibrium state). This is
illustrated diagramatically in Fig. 5. The signal is not generally related to the time-
dependent, single-particle momentum-space charge density but rather to its
correlation function.27,48 A compact expression for the signal in the limit of ideal
spatial and spectral detector resolution is

SOXS(�u,L) f
Ð
dupdup0Ep(up)Ep*(up0)hsT(�q0,up0 � �u)sT(q,�u � up)i (61)

where qð0Þh
u

c
r̂� kpð0Þ is the momentum transfer (not to be confused with the

nuclear coordinates of previous sections), r̂ is the normalized position vector of
the detector pixel relative to the sample center, and L represents the pulse
parameters. Assuming that the sample is composed of N identical, non-inter-
acting molecules (indexed by a, b), the correlation function of the total charge
density operator (sT) may be expanded as
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Fig. 5 Loop diagrams for incoherent (a) and coherent (b) X-ray scattering processes. The
shaded area represents an unspecified process that prepares the system in an arbitrary
state (|gi is the electronic ground state). We denote modes of the pump with p and p0

whereas s and s0 represent relevant scattering modes (kp(0 ) has frequency up(0 ) and ks(0 ) has
frequency us(0 )). The time T between the termination of this preparation process and the
central time of the scattered pulse is shown via the arrow in the center of the figure. Elastic
scattering corresponds to uab ¼ ubc ¼ 0 (i.e. uac ¼ 0) for the incoherent and ubc ¼ ued ¼
0 for the coherent contribution. Elastic scattering therefore originates from scattering off
populations. For diagram rules, see ref. 52 and 53.
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�
sT

�� q0;u� up0
�
sT

�
q;up � u

�� ¼ X
a

e�iðq�q0Þ$ra�s�� q0;u� up0
�
s
�
q;up � u

��

þ
X
a

X
bsa

e�iðq$ra�q0$rbÞ�s�� q0;u� up0
���

s
�
q;up � u

��
(62)

where ra is the position vector of the center of particle a and we have taken

ŝTðrÞ ¼
X
a

ŝðr� raÞ so that the total charge density is composed of a superpo-

sition of the (identical) charge densities associated with each molecule (assumed
to be non-overlapping). We label the former (one-particle) terms in eqn (62) as
incoherent and the latter (two-particle) terms as coherent, reecting the way in
which contributions from different molecules in these terms add together. Of
particular note is that these two contributions come with different form factors.
The incoherent form factor permits excitation (inelastic scattering) from the
ground state while the coherent form factor only permits transitions between
previously occupied states and is therefore purely elastic when considering
scattering from the ground state. This is clearly seen from Fig. 5 since the
coherent terms only have interactions on one side of the density matrix and
therefore cannot cause transitions to unoccupied states.

X-ray diffraction is elastic and comes as the Fourier transform of the real-space
charge density. Since the number of two-particle terms scales quadratically with
the molecule number (versus the linear scaling of the one-particle terms), off-
resonant scattering from the ground state is dominated by the elastic contribu-
tion. In the case of single-molecule samples or nonstationary initial states, the
contribution from inelastic terms increases and can become substantial for
This journal is © The Royal Society of Chemistry 2015 Faraday Discuss.
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certain values of q. The inelasticities are therefore overwhelmed by the elastic
contributions for many-particle samples but are important in analyzing single-
molecule scattering patterns. In particular, the off-resonant X-ray scattering from
a single molecule cannot be represented as the ground state momentum-space
charge density as in ordinary diffraction experiments. It is for this reason that we
avoid the use of the term diffraction (which could be taken to imply this form for
the signal) in favor of the more generic “scattering”. This gives rise to the
possibility of creating a coherent excitation via off-resonant scattering and
probing this excitation with a second pulse, a process termed multidimensional
X-ray diffraction.49

A future goal would be to introduce this level of theory to the detection event
for photoelectron and Auger-electron experiments. This would require a
quantum-eld theoretical treatment of the continuum electrons but would
facilitate the incorporation of propagation effects between the sample and
detector. Such effects are necessary for a description of attosecond-resolution
techniques such as the attosecond streak camera and the RABBIT technique.2,50,51
7. Conclusions

The electronic and nuclear structure and dynamics of molecules and materials
are routinely probed by TRPES, AES, and OXS techniques. We have reported a
Liouville-space description of these signals. The abundance of different degrees
of freedom (core, valence, and continuum electronic states, vibrations, and
solvent/environmental effects) is most easily handled in a Liouville-space
framework since one may start with the full Liouvillian and approximate different
degrees of freedom at different levels (retaining Hamiltonian evolution only for
the fastest dynamics). For example, one can treat the electronic states and any
nuclear coordinates that cause conical intersections at the Hamiltonian level
while treating the remaining vibrational modes and the environment as a bath
(which can be approximated in a variety of ways7). Moreover, the explicit incor-
poration of the detection event given in our account of OXS can be extended to
TRPES and AES using a quantum eld description of the electrons. This would
then allow the formalism to handle propagation effects between the material and
the detector such as multiple scatterings and external eld effects as employed in
the streak camera and RABBIT techniques to gain time resolution. Finally, all of
these techniques leave the material system in a nontrivial excited state that can be
the object of further study via traditional nonlinear spectroscopic techniques.
Since, in Liouville space, the system (described by the |rii vector) travels only
forward in time, the processes can be regarded in a modular fashion and further
interactions are easily added to describe the probing of ionic states resulting from
TRPES/AES processes.
Appendix
A: Liouville space

In Liouville space, we promote the density matrix r to a vector denoted by a double
ket |rii. For every Hilbert space operator O, we associate Liouville space operators
OL and OR that indicate action on the ket or bra of the density matrix respectively:
Faraday Discuss. This journal is © The Royal Society of Chemistry 2015

http://dx.doi.org/10.1039/C4FD00178H


Paper Faraday Discussions
Pu

bl
is

he
d 

on
 0

4 
N

ov
em

be
r 

20
14

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Ir

vi
ne

 o
n 

03
/0

3/
20

15
 1

9:
21

:3
2.

 
View Article Online
OL| rii4Or

OR| rii4rO
(A1)

where the symbol “4” indicates equivalence between Liouville and Hilbert space
expressions. Additionally, we dene an associated Liouvillian for every Hamilto-
nian dened above:

L h H� h HL � HR. (A2)

This denition allows compact expressions for the commutations with the
interaction Hamiltonians. In Hilbert space, operator expectation values are given
by the trace of the operator product with the density matrix. The Liouville space
analogy is

hh1|OL|rii 4 Tr[Or] (A3)

where, as shorthand for the trace operator, we have used

hh1jh
X
i

hhiij (A4)

with i indexing any complete basis.
B: Second quantized fermionic description

In themain text, we le the description of the boundmolecular states as arbitrary.
In this section, we take some preliminary steps toward describing the states and
operators used in the TRPES and Auger sections in a 2nd-quantized language in
terms of the occupation numbers of the single-particle orbitals. Although this has
already been done for the continuum states, we now examine the bound states in
this manner as well. We will not specify a model for the Hamiltonian but will
simply use this to clarify the form of the transition dipoles and the Auger decay
operator. We index valence orbitals with l, m, n and the core orbitals with a, b. In
this basis, the Hamiltonians for the interaction with the valence pump and
ionizing X-ray pulse are

HvðtÞ ¼ �EvðtÞ
X
mn

mmnc
†
mcn þ c:c: HxðtÞ ¼ �ExðtÞ

X
pa

mpac
†
pca þ c:c: (B1)

The A-operator (which controls the Auger decay of the core hole) is a gener-
alized Coulomb matrix element and comes as

A ¼
X
kamn

Akamnc
†
kc

†
acmcn þ c:c: (B2)

where

Akamn ¼
ð
drdr0fkðrÞfaðr0Þ

1

jr� r0jfmðrÞfnðr0Þ: (B3)

We may explicitly connect these to the forms given in the main text by
supposing that we can construct the excited states from the ground state. We thus
write
This journal is © The Royal Society of Chemistry 2015 Faraday Discuss.
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jI0i ¼
X
mn

OIomnc
†
mcnjgi (B4)

jI1pi ¼
X
aI0

OI1aI0c
†
pcajI0i

��~I0pk� ¼ X
a

O~I0amnI1
c
†
kc

†
acmcnjI1pi

where the O coefficients are chosen to diagonalize the respective subspaces. With
this we obtain the relationship between the transition dipoles and Auger elements
in the two bases:

mI0g
¼

X
mn

OI0mnmmn (B5)

mpI1I0
¼

X
a

OI1aI0mpa

Ak~I0I1
¼

X
amn

O~I0amnI1
Akamn:
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50 J. M. Dahlström, D. Guénot, K. Klünder, M. Gisselbrecht, J. Mauritsson,

A. L'Huillier, A. Maquet and R. Täıeb, Chem. Phys., 2013, 414, 53.
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