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Improving the Readability of Scientific Concept Analogies
with Cognitive Conflict Reinforcement Learning

Yuang Cai Yuyu Yuan Jinsheng Shi Rui Han Zhenyu Zhao Zijie Shi
School of Computer Science, Beijing University of Posts and Telecommunications
{cyang,yuanyuyu,jinsheng,hanr,zhaozhenyu,shizijie}@bupt.edu.cn

Abstract

Large language models are increasingly being used for edu-
cation and science communication by automatically generat-
ing explanations of scientific concepts. However, prior re-
search has found that the analogies produced by LLMs lack
human-like psycholinguistic properties important for readabil-
ity. In this work, we propose cognitive conflict reinforcement
learning (CCRL) to improve the psycholinguistic properties of
analogies generated by LLMs. Specifically, we create cogni-
tive conflict between the original LLM and a cloned LLM dur-
ing reinforcement learning. This helps address the cognitive
rigidity problem in LLMs. Experimental results demonstrate
that our approach significantly outperforms existing RL algo-
rithms and human performance in improving various readabil-
ity metrics of generated analogies.
Keywords: large language models; readability; cognitive
rigidity; cognitive conflict; reinforcement learning

Introduction
In the era of large language models (LLMs), science teach-
ers and popular science editors may ask LLMs for explana-
tions of scientific concepts. The quality of these explanations
directly influences the effectiveness of teaching and publica-
tion. A common approach to explaining scientific concepts
is through the use of analogies. However, recent research
(Seals & Shalin, 2023) has revealed that LLMs lack human-
like psycholinguistic properties when generating long-form
analogies. The study demonstrates that evaluating the su-
perficially fluent and trustworthy texts generated by LLMs
requires techniques capable of capturing subtle and underly-
ing features of proficient language use. Therefore, the study
adopts Coh-Metrix (Graesser, McNamara, Louwerse, & Cai,
2004), an automated tool that calculates the computational
linguistic and psycholinguistic properties of written and spo-
ken texts, to assess the quality of scientific concept analogies
generated by LLM. By comparing the analogies produced
by LLMs with those created by humans, the study reveals
that LLMs significantly underperform humans in readability-
related metrics.

Text readability encompasses several evaluation metrics
within Coh-Metrix, such as narrativity, temporality, and word
concreteness (Graesser et al., 2004). Additionally, the Flesch-
Kincaid Reading Ease (Kincaid, Fishburne Jr, Rogers, &
Chissom, 1975) is a direct indicator of readability, as it
takes into account the average sentence length and the av-
erage number of syllables per word. These metrics, being
non-differentiable w.r.t. the input text, cannot be optimized

through backpropagation (Werbos, 1988), but can be opti-
mized using reinforcement learning (RL) (Sutton & Barto,
2018). However, the implementation of Coh-Metrix is com-
plicated and not open-sourced, which means it is difficult to
directly compute the online property scores related to read-
ability in the RL training loop. As a result, we need to
construct an appropriate reward modeling dataset concerning
readability and train a reward model to assess the readability
of a given text.

The utilization of RL in LLMs introduces the challenge
of mode collapse, where the model continuously generates
certain patterns with high confidence (Janus, 2023). Mitigat-
ing mode collapse in the RL fine-tuning of LLMs is a com-
plex task since the corruption of the model’s output distri-
bution brought by RL fine-tuning is a non-trivial transforma-
tion (Janus, 2023). Turner and Einhorn (2023) propose an ap-
proach called action-conditioned TD error (ACTDE), which
facilitates convergence towards softer optima. B. Zhu et
al. (2023) addresses mode collapse by proposing advantage-
induced policy alignment (APA) that introduces a squared er-
ror loss based on estimated advantages. These approaches
are primarily rooted in machine learning and mathematics.
However, considering that the mode collapse in LLMs shares
similarities with cognitive rigidity in human beings (Schultz
& Searleman, 2002), it is essential to adopt a cognitive per-
spective to analyze and address this issue effectively.

In this work, we create analogies for eight different scien-
tific concepts from four different domains and compute the
property scores related to readability for these analogies. We
compute and analyze the correlations between these proper-
ties to build the reward modeling dataset and train a reward
model using the dataset. Then, we propose cognitive con-
flict reinforcement learning (CCRL) to address the cognitive
rigidity problem in the LLM and train the LLM to maximize
the reward emitted by the reward model. We evaluate the
Coh-Metrix scores achieved by analogies generated by our
approach and compare them with human-written analogies.
Our approach surpasses humans in producing readable analo-
gies for the chosen scientific concepts.

This work makes the following main contributions:

• To the best of our knowledge, we are the first to utilize re-
inforcement learning to enhance the psycholinguistic prop-
erties of large language models
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• We develop a psycholinguistic reward modeling dataset to
evaluate the readability of scientific concept analogies and
present the idea of how to build the dataset,

• We analyze the mode collapse issue in LLM from the cog-
nitive perspective and propose a novel RL algorithm, cog-
nitive conflict RL, to address the issue.

Preliminaries
Text Readability
Text readability refers to the level of ease with which a writ-
ten piece can be understood. In their extensive analysis, Chall
(1958) examined early research on readability, categorizing it
into two types: ”survey and experimental studies” and ”quan-
titative associational studies.” The former type focused on
exploring the effects of various factors on readers, examin-
ing how modifying texts based on a single variable at a time
would influence readers’ experience. These studies also in-
volved gathering expert and reader opinions through surveys
to gain further insights. The primary aim was to comprehend
the elements that impact readability, particularly when reader
engagement with the text’s content was controlled.

Quantitative associational studies mainly focused on con-
ducting quantitative evaluations of text readability through
mathematical formulas. These formulas generally reflect the
ordering of the specific text relative to some other texts.
Sherman (1893) is the earliest to propose a quantitative anal-
ysis of text difficulty, which measures the readability by the
number of clauses per sentence. One of the most familiar for-
mulas is the Flesch-Kincaid Grade Level (or Flesch-Kincaid
Reading Ease) (Kincaid et al., 1975), which measures the av-
erage sentence length and the average number of syllables per
word. In this work, we employ the Flesch-Kincaid Reading
Ease as the direct metric of readability evaluation.

More recently, Graesser et al. (2004) developed Coh-
Metrix that analyzes texts on over 200 properties of cohesion,
language, and readability using lexicons, part-of-speech clas-
sifiers, syntactic parser, templates, corpora, latent semantic
analysis, and other components. Graesser, McNamara, and
Kulikowich (2011) studied textbooks of different grade levels
and text categories to identify the underlying components of
language, discourse, and cognition of traditional automated
metrics of text difficulty and the Coh-Metrix. The conclusion
is that word concreteness, syntactic simplicity, referential co-
hesion, causal cohesion, and narrativity are five major fac-
tors, i.e., properties, that account for most of the variance in
texts across grade levels and text categories. In this work, we
consider these properties in reward modeling and readability
evaluation.

Cognitive Rigidity
Cognitive rigidity, a long-standing construct in psychology, is
characterized by a tendency to form and persist in mental and
behavioral sets (Schultz & Searleman, 2002). Wason (2021)
shows that confirmation bias, the tendency to favor informa-
tion that confirms existing beliefs, can lead to cognitive rigid-

ity. Amadieu, Tricot, and Mariné (2009); Amadieu, Van Gog,
Paas, Tricot, and Mariné (2009); Shing and Brod (2016) show
that prior knowledge can both enhance and hinder learning
and memory processes, leading to cognitive rigidity in some
cases.

Cognitive rigidity can have significant impacts on human
language in several ways. It can hinder scientific thinking by
imposing rigid definitions, which limits the ability to think in
scientific terms (Zilversmit, 1964). This rigidity is also evi-
dent in the perceptual system, which is shaped by early lin-
guistic experience and remains relatively rigid (Mehler, Pal-
lier, & Christophe, 1998). More recently, Alves and Pozze-
bon (2013) found that cognitive rigidity can lead to resistance
to linguistic diversity. Thierry (2016) found that it can in-
fluence language perception and processing, as evidenced by
the link between linguistic distinctions and perceptual or con-
ceptual processing. Haig and Woodcock (2017) found that
individuals with Prader-Willi syndrome who were exposed
to increased rigidity in routines during development showed
higher resistance to change.

In this work, we show that cognitive rigidity also exists in
large language models. We analyze the reason for cognitive
rigidity in LLMs and propose a novel reinforcement learning
algorithm to alleviate this problem.

Cognitive Conflict
Cognitive conflict, as described by Rappoport (1969), is a
result of differences in thinking that can lead to interper-
sonal conflicts. This is particularly relevant in the context of
conceptual change, as highlighted by Larsson, Haglund, and
Halldén (2010), where it involves the restructuring of exist-
ing beliefs. Lee et al. (2003) further explores this by identi-
fying four key constructs of cognitive conflict: recognition
of an anomalous situation, interest, anxiety, and cognitive
reappraisal of the conflict situation. Woods (2012) extends
this understanding to strategic decision-making, proposing
the use of dialectical inquiry to create cognitive conflict and
improve organizational performance.

De Dreu and Nijstad (2008) suggests that cognitive conflict
can enhance critical thinking and creativity, contrary to the
traditional belief that it leads to rigidity. This is because cog-
nitive conflict can induce confusion, which in turn can lead to
enhanced learning (Lehman et al., 2013). Gauer and Kuzmics
(2020) suggest that cognitive conflict can facilitate the acqui-
sition of information about an opponent’s preferences, poten-
tially fostering empathy and alleviating cognitive rigidity.

Inspired by the idea that cognitive conflict alleviates cog-
nitive rigidity, we create conflict in the RL training process to
help the LLM avoid cognitive rigidity.

Reinforcement Learning in Text Generation
In reinforcement learning (RL), an agent interacts with the
environment and learns to achieve the maximum accumulated
rewards (Sutton & Barto, 2018). The interaction can be for-
mulated as a Markov decision process (MDP). An MDP can
be denoted as M = (S ,A ,P,R), where S is the state space,
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A is the action space, P : S ×A ×S 7→ [0,1] is the transition
probability, and R : S ×A 7→ R is the reward function. The
agent receives a reward R(s,a) when it takes action a under
state s and the environment has the probability P(s,a,s′) to
transfer to state s′.

A policy of an agent involves which action should be taken
under specific states. A policy can be denoted as π : S ×A 7→
[0,1], and π(a|s) means the probability of taking action a un-
der state s. The value function Vπ(s) is the expected sum of
rewards achieved by the agent when starting from state s and
following policy π. The state-action value function Qπ(s,a),
also known as the Q-function or Q-value, is the expected sum
of rewards achieved by the agent when taking action a under
state s and then following policy π. The relationship between
the value function and the Q function can be expressed as
Vπ(s) =Ea∼π(·|s) [Qπ(s,a)]. The objective of policy-based RL
is to maximize the expected sum of rewards achieved by the
agent, as shown in Equation 1, where πθ is the policy param-
eterized by θ and η is the distribution of the initial state.

J(θ) = Es∼η(·)
[
Ea∼πθ(·|s)

[
Qπθ

(s,a)
]]

(1)

In text generation tasks, the generative language model can
be viewed as the agent policy, and the sequence currently be-
ing generated can be viewed as the environment. The pol-
icy can be denoted as pθ(yt |x,y<t), where x is the prompt,
y<t = (y1,y2, · · · ,yt−1) is the currently generated text and yt
is the next token to be generated. The reward is only given at
the end of the sequence since the computation of the reward
generally depends on sentence-level metrics. For simplicity,
the reward can be denoted as R(x,y), where y is the complete
generated sequence. The reward function generally measures
the quality of the generated sequence and is generally pro-
portional to the quality. The objective of policy-based RL
in text generation is to maximize the expected reward of the
generated sequences, as shown in Equation 2, where D is the
prompt dataset and πθ(y|x) = ∏

|y|
t=1 pθ(yt |x).

J(θ) = Ex∼D
[
Ey∼πθ(·|x) [R(x,y)]

]
(2)

Psycholinguistic Reward Modeling
Analogy Dataset Creation
We consider eight scientific concepts from four different do-
mains: enzyme kinetics and glycolysis in biochemistry, TCP
three-way handshake and Asymmetric encryption in computer
science, inflation and market economy in economics, as well
as stock trading and options trading in finance. We use
the pre-trained Llama-2 model (Touvron et al., 2023) 1 as
the analogy generator. We build the basic prompt “Explain
how <concept> works by creating an analogy” to instruct
the model to create an analogy like Seals and Shalin (2023).

To enrich the diversity of the data distribution, we build the
enhancement prompt to enhance the psycholinguistic prop-
erties of the generated analogies. We consider nine psy-

1https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

Table 1: Coh-Metrix indices and function denotations of the consid-
ered psycholinguistic properties.

Property Coh-Metrix Abbr. Function
Narrativity PCNARz NAR fnar
Temporality PCTEMPz TMP ftmp
Word concreteness PCCNCz CNC fcnc
Deep cohesion PCDCz DC fdc
Referential cohesion PCREFz REF frc
Explicit connectives PCCONNz CON fecn
Syntactic simplicity PCSYNz SYN fsyn
Causal connectives CNCCaus CAU fccn
Flesch reading ease RDFRE FRE ffre

cholinguistic properties, as listed in Table 1. The enhance-
ment prompt is designed according to the definitions in Coh-
Metrix. For example, the definition of syntactic simplicity re-
quires using simpler, familiar syntactic structures that are less
challenging to process. Therefore, we design the enhance-
ment prompt for syntactic simplicity as ”Use simple syntax
instead of complex syntax in your analogy”.

For each basic prompt, we concatenate it with the 9 en-
hancement prompts and finally get 8× 9 = 72 prompts. We
then feed the 8 basic prompts and the 72 enhanced prompts to
Llama-2 and generate 300 analogies for each prompt, acquir-
ing 24000 analogies. We compute and normalize (Z-score
normalization) the scores of the above 9 properties for each
analogy to form the final analogy dataset DA. The normalized
scores are denoted as functions, as shown in the third column
of Table 1. We denote each item in the analogy dataset as
an 11-tuple containing the prompt x, the analogy y, and the 9
normalized scores.

Readability Function
The Flesch reading ease directly reflects the readability of
a text. However, we should also consider other properties
to evaluate the readability more comprehensively. In other
words, we should find a linear combination of the above prop-
erties to represent the readability. To determine how much
each property contributes to readability, we compute the Pear-
son correlation coefficients between the Flesch reading ease
and all other properties, as shown in Table 2.

We take each correlation coefficient as the weight of a
property and the readability function can be denoted as Equa-
tion 3, which we refer to as the soft readability function. Here,
F is a collection of the property functions in Table 1.

r(y) = ∑
f∈F

ρ ffre, f · f (y) (3)

Another approach is to simply take the properties whose cor-
relation coefficient is greater than a threshold ρ, as denoted in
Equation 4, where ρ is the correlation coefficient threshold.
We refer to Equation 4 as the hard readability function.

r(y) = ∑
f∈F

I(ρ ffre, f > ρ) · f (y) (4)
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Table 2: Correlations between FRE and other properties.

f fnar ftmp fcnc fdc frc fecn fsyn fccn ffre
ρ ffre, f 0.82 0.17 -0.09 0.21 -0.06 -0.05 0.30 0.26 1.00

Reward Dataset Creation
The computation of readability involves the computation of
Coh-Metrix, which is difficult to compute online in the RL
training loop. We need to create a reward dataset to train
a reward model to approximate the readability. In RLHF, a
human evaluator is given a prompt and two responses and is
required to choose which response is preferred, which results
in the chosen response and the rejected response. Here, in this
work, we compare the readability to determine which analogy
to choose or reject.

Specifically, we first compute the readability of the analo-
gies in the analogy dataset DA. Then, we group the dataset by
prompt, acquiring n groups GA

1 ,GA
2 , · · · ,GA

n . All data items in
a group GA

i share the same prompt xi. Based on each group
GA

i , we construct a chosen analogy set Y c
i containing k analo-

gies with the highest readability and a rejected analogy set Y r
i

containing k analogies with the lowest readability. We per-
form the Cartesian product between Y c

i and Y r
i , generating a

set of chosen-rejected analogy pairs. After that, we combine
each chosen-rejected pair with the prompt xi shared within
the group, acquiring a new group of reward data, and the fi-
nal reward dataset is the union of all reward data groups, as
shown in Equation 5.

GR
i = {(xi,yc

i ,y
r
i ) |(yc

i ,y
r
i ) ∈ Y c

i ×Y r
i } , DR =

n⋃
i=1

GR
i (5)

Reward Modeling Objective
The reward function is denoted by a neural network Rω which
takes the prompt and the response as input and outputs a
scalar reward, where ω is the parameter. The training ob-
jective is to make sure the reward of the chosen responses is
greater than the reward of the rejected responses, as shown in
Equation 6, where σ is the sigmoid function.

L(ω) =− ∑
x,yc,yr∈DR

logσ(Rω(x,yc)−Rω(x,yr)) (6)

Cognitive Conflict Reinforcement Learning
Cognitive Rigidity of LLMs
Recently, Janus (2023) has found that the LLM reinforced
by the PPO algorithm tends to output answers with signif-
icantly high confidence, which is not observed in the non-
reinforced LLM. In generative artificial intelligence (Cao et
al., 2023), this phenomenon is called mode collapse, which
was first observed in generative adversarial networks (GANs)
(Goodfellow et al., 2014).

One specific performance of mode collapse in LLM is that
it keeps generating similar answers to avoid the question. An
explanation for this is that the LLM is trained using RL with
a safety reward model to prevent it from answering contro-
versial questions. The RL training can lead to LLM being
overconfident in recognizing controversial questions, there-
fore mistaking ordinary questions for controversial ones and
further avoiding answering these questions.

From the machine learning perspective, RL training en-
courages safety responses without considering other circum-
stances, e.g., too conservative responses. From the cogni-
tive perspective, the RL training improperly injects knowl-
edge about safety into LLM and builds a confirmation bias in
LLM, which leads to cognitive rigidity in recognizing contro-
versial questions.

Creating Cognitive Conflict
The occurrence of conflict requires two entities (humans or
robots). We create a clone of the currently training LLM to
create conflict between the original LLM and the cloned one.
In conventional RL algorithms, the LLM always receives a
higher reward when it generates a better answer because the
reward itself reflects how good is the answer. We instead give
a reward according to the conflict between the original LLM
and the cloned one. Specifically, we sample another answer
to the same question by the cloned LLM. Then, we give a
reward or punishment to the LLM according to how much it
outperforms or underperforms the other answer.

In this way, when the conflict between the original LLM
and the cloned one is greater, a higher absolute value of the
reward (denoting a larger reward or punishment) will be re-
ceived by the original LLM. Moreover, even if the original
LLM generates a good answer as we expected, the answer
still has a probability of being challenged if the cloned LLM
generates a better answer. In this way, the overconfidence and
cognitive rigidity will be alleviated.

Creating the above conflict raises a new question: will
LLM still reach the expected optimization objective? For ex-
ample, we expected to improve the readability of LLM by
RL, but we do not always give a higher reward when it gener-
ates a response with higher readability. Will the LLM finally
achieve higher readability after RL training? The answer is
yes and we will prove it theoretically in the following part.

Cognitive Conflict Training Objective
The training objective of cognitive conflict RL can be denoted
as Equation 7, where θ is the parameter of the original LLM,
θ
′ is the parameter of the cloned LLM, πθ denotes the original

LLM policy, πθ
′ denotes the cloned LLM policy, and Rω is the

trained psycholinguistic reward model.

Jcc(θ) = Ex∼D

[
Ey∼πθ(·|x),y′∼π

θ′ (·|x)
[
Rω(x,y)−Rω(x,y′)

]]
(7)

The gradient of the objective cannot be directly computed
during training but can be approximated according to the pol-
icy gradient theorem (Williams, 1992). The approximated
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gradient is shown in Equation 8. Note that the gradient is only
concerning the parameter of the original LLM policy θ, not
concerning the parameter of the cloned policy θ

′, although
their values are identical to each other.

∇θJcc(θ)≈
[
Rω(x,y)−Rω(x,y′)

]
·∇θ logπθ(y|x) (8)

Proof of Optimality
Proof. The training objective in Equation 7 can be written
as Equation 9, where Vπ

θ′ (x) denotes the expected reward
achieved by starting from prompt x following policy πθ

′ .

Jcc(θ) = Ex∼D

[
Ey∼πθ(·|x),y′∼π

θ′ (·|x)
[
Rω(x,y)−Rω(x,y′)

]]
= Ex∼D

[
Ey∼πθ(·|x)

[
Rω(x,y)−Ey′∼π

θ′ (·|x)
[
Rω(x,y′)

]]]
= Ex∼D

[
Ey∼πθ(·|x)

[
Rω(x,y)−Vπ

θ′ (x)
]]

(9)
Here, Vπ

θ′ (x) can be viewed as a baseline taking a weighted
average of the rewards of all answers that may be generated.
Rω(x,y) is the reward of the specific answer y. Thus, the dif-
ference Rω(x,y)−Vπ

θ′ (x) can be viewed as the advantage of
generating answer y under policy πθ

′ . Given two arbitrary an-
swers y+ and y−, if there is Rω(x,y+)>Rω(x,y−), then there
is also Rω(x,y+)−Vπ

θ′ (x)> Rω(x,y−)−Vπ
θ′ (x). Therefore,

the optimality of the objective is preserved.

Experiment
Prompt Stimulation
Seals and Shalin (2023) provides the LLM with a basic
prompt ”Create an analogy to explain to explain xxx”, which
may not stimulate its psycholinguistic potential. In contrast,
we provide the LLM with the enhancement prompts. How-
ever, not all types of enhancement prompts can effectively
improve readability. According to the correlation values in
Table. 2, we only consider the enhancement prompts cor-
responding to properties that are positively related to Flesch
reading ease. The Coh-Metrix scores achieved by supple-
menting enhancement prompts are shown in Table. 3.

The result shows that the enhancement prompts corre-
sponding to most psycholinguistic properties can stimulate
the potential of LLM and can significantly improve the scores
of the corresponding properties. An exception is the deep co-
hesion (PCDCz) and the causal connectives (CNCCaus). In
conclusion, prompt stimulation is necessary and effective for
LLM to produce more psycholinguistic and readable analo-
gies.

Reward Model Comparison
We set k to 20 in reward dataset creation, i.e., combine the
top 20 analogies with the highest readability and the top 20
analogies with the lowest readability. For the hard readability
function, we set the threshold ρ to 0. Despite the proposed
soft and hard readability functions, we try merely using each
single property as the readability function, which performs as
a baseline.

Table 3: Coh-Metrix scores with different enhancement prompts.

NAR TMP DC SYN CAU FRE
Llama-2 0.22 0.51 0.09 -0.35 25.56 64.17
Enhancement Prompt
+ PCNARz 0.48 0.65 0.06 -0.26 24.07 69.43
+ PCTEMPz 0.22 0.60 0.07 -0.30 23.29 62.09
+ PCCNCz 0.38 0.59 0.33 -0.38 27.46 68.39
+ PCDCz -0.04 0.50 -0.05 -0.21 24.36 59.33
+ PCREFz -0.31 0.04 -0.09 -0.52 22.04 51.69
+ PCCONNz -0.34 0.55 0.01 -0.31 24.25 50.41
+ PCSYNz 0.48 0.67 0.58 -0.20 32.57 73.41
+ CNCCaus -0.03 0.49 0.07 -0.37 24.32 57.75
+ RDFRE 0.53 0.67 0.23 -0.31 26.28 70.01

Table 4: Coh-Metrix scores with different readability functions.

NAR TMP DC SYN CAU FRE
Llama-2 + PCSYNz 0.48 0.67 0.58 -0.20 32.57 73.41
Single Property
+ PCNARz Reward 0.51 0.53 0.56 -0.25 31.39 71.19
+ PCTEMPz Reward 0.32 0.69 0.47 -0.25 31.26 72.51
+ PCDCz Reward 0.37 0.50 0.64 -0.22 31.16 71.89
+ PCSYNz Reward 0.32 0.53 0.52 -0.20 31.43 72.30
+ CNCCaus Reward 0.42 0.49 0.55 -0.29 32.83 73.24
+ RDFRE Reward 0.45 0.61 0.58 -0.24 31.53 73.60
Ours
+ Soft Reward 0.51 0.68 0.64 -0.19 33.43 73.88
+ Hard Reward 0.52 0.65 0.63 -0.20 33.41 73.68

Each choice of the readability function corresponds to a
different training process and produces a different reward
model. We integrate all reward models into the cognitive con-
flict training of the LLM to see which reward model has the
best performance in improving the readability of the LLM.
We concatenate the best enhancement prompt (i.e., the syn-
tactic simplicity prompt) during cognitive conflict RL. The
result is shown in Table 4.

RL Algorithm Comparison
We first compare cognitive conflict RL with A2C (Mnih et
al., 2016), PPO (Schulman, Wolski, Dhariwal, Radford, &
Klimov, 2017), and self-critical sequence training (SCST)
(Rennie, Marcheret, Mroueh, Ross, & Goel, 2017), which are
classic RL algorithms commonly adopted in RL training of
LLMs. Then, we compare with ACTDE (Turner & Einhorn,
2023) and APA (B. Zhu et al., 2023), which are proposed to
solve the mode collapse (cognitive rigidity) issue from the
mathematical perspective. We still concatenate the best en-
hancement prompt during RL training. The result is shown in
Table 5. Despite computing the Coh-Metrix scores, we also
record the reward curve, which intuitively reflects the conver-
gence speed and the convergence upper bound of the training
process. We show the reward curves of different RL algo-
rithms in Figure 1.
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Table 5: Coh-Metrix scores with different RL algorithms.

NAR TMP DC SYN CAU FRE
Llama-2 + PCSYNz 0.48 0.67 0.58 -0.20 32.57 73.41
RL Approach
+ SCST 0.50 0.62 0.53 -0.17 32.56 73.67
+ PPO 0.43 0.62 0.49 -0.15 31.38 73.71
+ ACTDE 0.42 0.56 0.63 -0.26 32.64 72.94
+ APA 0.50 0.68 0.59 -0.28 32.58 73.94
+ CCRL (Ours) 0.51 0.68 0.64 -0.19 33.43 73.88
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Figure 1: Comparison of reward curves of different RL approaches.

The result in Table 5 shows that CCRL achieves the high-
est scores on most of the psycholinguistic properties related
to readability. PPO and APA do achieve the highest scores
on some of the properties but do not improve the properties
comprehensively, i.e., they underperform the non-reinforced
baseline approach on some properties. The reward curves in
Figure 1 show that CCRL achieves the highest reward at the
very beginning of the training, while other approaches take
more training steps to converge. Moreover, the PPO-based
approaches (PPO, ACTDE, and APA) suffer from reward de-
terioration after some training steps. Additionally, converg-
ing to higher rewards does not always ensure higher prop-
erty scores. For example, the SCST algorithm converges to a
higher reward than the APA algorithm as shown in Figure 1,
but underperforms the APA algorithm on most of the proper-
ties as shown in Table 5. This can be attributed to errors in
reward models reflecting psycholinguistic properties.

ChatGPT and Human Comparison
We also collect 20 human-written analogies for each concept
from 160 participants from different. We give each partici-
pant the same prompt as the one given to LLMs, i.e., the ba-
sic prompt corresponding to the concept and the enhancement
prompt related to syntactic simplicity. We collect 300 analo-

Table 6: Coh-Metrix scores achieved by human participants, Chat-
GPT, and our approaches.

NAR TMP DC SYN CAU FRE
Human + PCSYNz -0.31 0.50 0.21 0.08 32.14 70.15
ChatGPT + PCSYNz -0.34 0.36 -0.12 0.08 22.23 51.63
Llama-2 + PCSYNz 0.48 0.67 0.58 -0.20 32.57 73.41
+ CCRL 0.51 0.68 0.64 -0.19 33.43 73.88

Table 7: Diversity evaluation of different RL approaches. “↓” means
the diversity is higher when the value is lower.

DIST-sent ↑ SelfBLEU ↓
Llama-2 + PCSYNz 73.56 3.70
RL Approach
+ SCST 72.80 3.97
+ PPO 74.22 3.90
+ ACTDE 75.26 8.36
+ APA 72.95 5.02
+ CCRL (Ours) 75.70 3.62

gies for each concept from ChatGPT using the same prompt
as aforementioned. Table 6 shows the performance of human
participants and the ChatGPT.

We can see that our approaches, whether reinforced or not,
significantly outperform ChatGPT and human participants.
Additionally, by comparing Llama-2 + PCSYNz with Chat-
GPT + PCSYNz and Human + PCSYNz, we can conclude
that the Llama-2 model is more sensitive to psycholinguis-
tic property enhancement prompts than ChatGPT and human
participants.

Rigidity Analysis
We believe that, intuitively, lower diversity means higher cog-
nitive rigidity. Therefore, we estimate the cognitive rigid-
ity of LLMs using the diversity of the generated texts. We
adopt two metrics, distinct sentences (DIST-sent) (Li, Galley,
Brockett, Gao, & Dolan, 2015) and SelfBLEU (Y. Zhu et al.,
2018), to evaluate the lexical diversity. As shown in Table 7,
CCRL outperforms other approaches in diversity evaluation.

Conclusion
We analyzed the issue of cognitive rigidity in LLMs from a
cognitive perspective and proposed to create conflict between
the original LLM and a cloned LLM during reinforcement
learning, which helps alleviate the cognitive rigidity problem.
Experimental results demonstrated that our CCRL approach
significantly outperforms previous RL algorithms in improv-
ing various psycholinguistic properties related to readabil-
ity. The analogies generated by our approach also surpassed
human-written ones, achieving the highest readability scores.
A limitation of this work is that we only considered eight sci-
entific concepts from four domains and employed only one
pre-trained LLM. In future work, we plan to extend the ap-
proach to more scientific concepts and pre-trained LLMs.
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