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Abstract

Children can use the statistical regularities of their environ-
ment to learn word meanings, a mechanism known as cross-
situational learning. We take a computational approach to in-
vestigate how the information present during each observation
in a cross-situational framework can affect the overall acqui-
sition of word meanings. We do so by formulating various
in-the-moment learning mechanisms that are sensitive to dif-
ferent statistics of the environment, such as counts and con-
ditional probabilities. Each mechanism introduces a unique
source of competition or mutual exclusivity bias to the model;
the mechanism that maximally uses the model’s knowledge of
word meanings performs the best. Moreover, the gap between
this mechanism and others is amplified in more challenging
learning scenarios, such as learning from few examples. Key-
words: cross-situational word learning; computational model-
ing; word learning biases

Introduction
How do people acquire the meanings of words as they be-
gin to learn a language? A well-supported proposal is cross-
situational learning (e.g., Pinker, 1989), which suggests that
people are sensitive to the regularities that repeat in different
situations, and use such evidence to identify the commonal-
ities, from which they can infer word meanings. As an ex-
ample, when a child hears what a cute kitty, be nice to the
kitty, etc., she/he could infer that the word kitty refers to the
common referent in all these situations, i.e., a cat. Recent
word learning experiments confirm that both adults and in-
fants keep track of cross-situational statistics across learning
trials, and infer the correct word–meaning mappings even in
highly ambiguous conditions (e.g., Yu & Smith, 2007; Smith
& Yu, 2008; Yurovsky, Fricker, Yu, & Smith, 2014).

Despite empirical evidence for statistical cross-situational
learning, the exact mechanisms in play are still not fully un-
derstood. In this paper, we focus on the first step of a cross-
situational framework – the learning that occurs on each ob-
servation of a word, which we call in-the-moment learning.
Given the words in an utterance and their potential meanings
in the accompanying situation, there are many possible ways
to associate words and meanings, but only some of these as-
sociations are correct. We refer to these in-the-moment as-
sociations of words and meanings as alignments, and con-
sider different strategies for assessing the strength of these
alignments, drawing on the evolving knowledge of word
meanings. We note that previous research has considered
“hard” (or binary) in-the-moment learning strategies, where
an alignment is either considered by the learner or not (e.g.,
Trueswell, Medina, Hafri, & Gleitman, 2013); we instead ex-
amine “soft” strategies where alignments have strengths be-
tween zero and one.

We formulate various in-the-moment learning mechanisms
that introduce different kinds of competition – i.e., the way
in which the strength of a word–meaning alignment depends
on and interacts with other possible alignments. Each mech-
anism corresponds to certain statistics of the word learning
input, such as the weighted frequency of word–meaning pairs
or their conditional probabilities. We show that the different
types of competition lead to various kinds of mutual exclu-
sivity behaviours. Mutual exclusivity has been proposed as
an explicit bias, in which children assume each word has a
single meaning (e.g., Markman, 1987; Markman & Wachtel,
1988). Here, mutual exclusivity of words and/or meanings
arises from competition in a way that focuses learning.

We take a computational modeling approach to investigate
the effectiveness of these mechanisms in overall acquisition
of word meanings in various long-term word learning scenar-
ios. Using a computational model enables us to explore the
impact of different learning mechanisms in a variety of con-
ditions, and to examine the role of one factor (e.g., frequency)
while controlling for another one (e.g., utterance length). We
find that the mechanism that maximizes the use of the accu-
mulated knowledge of learned meanings performs the best.
Interestingly, the performance gap between this mechanism
and others is most significant in more difficult learning con-
ditions, such as learning of low frequency words given long
utterances. This shows that using conditional probabilities
(as opposed to counts) and introducing competition (leading
to a mutual exclusivity bias) improves overall word learning
and might be necessary to guide learning in the presence of
ambiguity or little data.

A Cross-situational Word Learning Framework

There has been an increased interest in the last decade in de-
veloping computational models as tools to study word learn-
ing in people. Of particular interest are cross-situational
learners that are incremental (e.g., Siskind, 1996; Fazly, Al-
ishahi, & Stevenson, 2010; Kachergis, Yu, & Shiffrin, 2012),
which is necessary in studying developmental learning pat-
terns. Notably, the model of Fazly et al. (2008; 2010) (hence-
forth FAS) is the first probabilistic model that robustly pre-
dicts a range of observed behavior in child word learning.
Moreover, this model has been adopted and extended by a se-
ries of successive work (e.g., Nematzadeh, Fazly, & Steven-
son, 2012a; Grant, Nematzadeh, & Stevenson, 2016), demon-
strating its robustness in accounting for empirical data. We
adopt the FAS word learning framework to examine various
in-the-moment learning mechanisms.
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The FAS Model
Word learning input and output. The model’s input is a
sequence of utterance–scene pairs simulating what the child
hears and perceives, respectively. Each utterance is a set of
words (ignoring their order), and the corresponding scene is
a set of semantic features that represents possible meanings
of words in the utterance (see Ex. 1). Word meanings are
represented by multiple features, which exposes the model to
naturalistic commonalities among the words.

Utterance: { Joel, eats }
Scene: { PERSON, JOEL, ACT, CONSUME, ... } (1)

The output of the model, at each step in learning, is the cur-
rent representation of the meaning of each word w as a proba-
bility distribution, p(·|w), over all possible semantic features
f that the model has observed in the input scenes.
The word learning problem. Given a corpus of utterance–
scene pairs, the goal of the model is to learn the meaning
probability distribution, p(·|w), for all words w. Prior to re-
ceiving any input, all features f are equally likely for a word.
As the model processes each input pair, the probability is ad-
justed to reflect the cross-situational evidence in the corpus,
in two steps: (a) in-the-moment learning on this input pair
and (b) update of the word meaning probabilities using the
accumulated evidence over all inputs.

In-the-moment learning. Given an utterance and a scene,
which features in the scene are part of a word’s meaning?
There are different possible ways to determine whether a se-
mantic feature is associated with a word in the input pair, and
the corresponding strength of that association. FAS assumes
that each feature f in scene St at time t, independently of the
other features, is aligned to all the words w in the utterance
Ut with a particular strength (see Figure 1a):

at(w|f ) =
pt(f |w)

∑
w′∈Ut

pt(f |w′)
(2)

The alignment strength between a feature f and word w de-
pends on the current probability that f is part of the meaning
of w – i.e., pt( f |w) – as well as the probabilities that f is part
of the meaning of other words in the utterance (the denomi-
nator above).

In this way, Eqn. (2) has words in the utterance “com-
pete” to be associated with a given feature: a higher align-
ment strength of one word with a feature necessarily results
in a lower alignment strength for other words with that fea-
ture. This can be interpreted as a directional mutual exclu-
sivity bias: the alignment formulation limits the number of
words a feature can be strongly associated with, but does not
directly limit the number of features a word can be associated
with.

Updating the word meanings. How is the information
learned from an input pair incorporated into a learner’s long-
term knowledge of word meanings? The learner incremen-
tally accumulates the alignment strengths between each w

and f in an overall association score assoc(w, f ), which is
updated at each time t that w and f co-occur in an input pair:

assoct(w, f ) = assoct−1(w, f )+at( f |w) (3)

where assoct−1(w, f ) = 0 if w and f have not co-occurred
prior to t.

After updating the association scores, the meaning proba-
bility p(·|w) of each word w in the current input is adjusted
using a smoothed version of this formula:

pt+1(f |w) =
assoct(f , w)

∑
fj∈M

assoct(fj, w)
(4)

where M is the set of all features observed up to time t.
In Eqn. (4), the probability of a feature given a word is a

normalization of their association score over all possible fea-
tures, which introduces another source of competition, this
time, among features for a given word. This competition can
be thought of as a mutual exclusivity bias in the reversed di-
rection of the alignment score in Eqn. (2); here a word can
only be strongly associated to a limited number of features.

Using Sets of Features as Referents
In FAS, an input scene is the set union of all meaning features
for all words in the corresponding utterance. This represen-
tation lacks information that would be apparent to a child,
namely that each set of meaning features belongs to a sin-
gle entity or event – e.g., PERSON and JOEL, or ACT and
CONSUME in Ex. 1. However, replacing such sets of fea-
tures with a single symbol corresponding to the word mean-
ing would prevent the model from learning semantic similar-
ities among the words (e.g., Nematzadeh, Fazly, & Steven-
son, 2012b). Instead, following Alishahi, Fazly, Koehne, and
Crocker (2012), we simply maintain each set of semantic fea-
tures corresponding to the meaning of each word in the utter-
ance, and we call these sets of features referents, as in Ex. 5:1

Utterance { Joel, eats, an, apple }
Scene: { {PERSON, JOEL}, {ACT, CONSUME, ...},
{SINGULAR, INDEFINITE, DETERMINER, ... },
{APPLE, FRUIT, FOOD, ...} }

(5)

A scene is now a set of referents, each of which is a set
of semantic features corresponding to the meaning of a word.
In the FAS model, calculation of alignment strength between
a word w and feature f at time t uses the meaning proba-
bility pt( f |w). Now, aligning words with referents (as in 5)
requires consideration of strength of alignment of a word with
a set of features. In calculating alignment strength for a word
w and a referent r at time t, we change the FAS model to
consider sim(vt(w), v(r)), the cosine similarity between the
word’s current meaning representation and the representation
of the referent, where v(r) and vt(w) are vectors in which
the elements are meaning features. For vt(w), the value for

1We use the term referent to denote anything referred to by a
word – an object or event, or set of semantic properties (e.g., { IN-
DEFINITE, SINGULAR } for an).

854



each component feature f is pt( f |w). (I.e, vt(w) is a vector
corresponding to pt(·|w).) For v(r), the element values are 1
for features present in the definition of r and 0 otherwise. In
this way, alignment strength for word w and referent r is in-
fluenced by the strength of the meaning probabilities p( f |w)
for all features f that are part of the representation of r. In
the remainder of the paper, we explore variations in how the
alignment process actually does this, in ways that implement
different types of mutual exclusivity biases.

In-the-Moment Learning Mechanisms

Competition in the model. We observed above that the
alignment strength calculation in Eqn. (2) instantiates a form
of mutual exclusivity bias, because words are competing to be
strongly associated with a feature during this in-the-moment
learning process. With the change of aligning words to ref-
erents instead of to features, we have the opportunity to ex-
plore various ways to formulate competition in determining
the strength of alignments. The three alignment formulations
explored here implement (1) no competition among words
or referents, (2) competition of referents for a word (as in
Alishahi et al., 2012), and (3) competition of words for a ref-
erent (analogous to the competition of words for a feature in
FAS). Each of these ways of viewing competition implements
a different approach to mutual exclusivity in the model, and
we will explore the resulting impact on word learning in the
results.
No competition. The no-competition mechanism (hence-
forth, no-comp) serves as a baseline for comparison to the
other two. It assumes no mutual exclusivity bias – all the
alignments between words and referents are calculated inde-
pendently, and the value of one alignment does not effect any
of the others (see Figure 1b). We formulate such an alignment
between a word w and a referent r as simply the similarity be-
tween vt(w) and v(r) as described above:

at(w, r) = sim(vt(w), v(r)) (6)

This formulation can be seen as a simple weighted count,
where each feature relevant to r (valued 1 in v(r)) contributes
to the overall alignment strength proportionally to the model’s
prior knowledge of its meaning probability with that word.
Referent competition. Here we adopt the alignment formu-
lation of Alishahi et al. (2012), which we call “ref-comp”
because referents compete for alignment with a word. This
mechanism implements a directed mutual exclusivity bias in
which each word has a preference to be strongly associated
with one referent. In other words, referents in the scene com-
pete for a given word, while the alignments of words are in-
dependent of each other (see Figure 1c). This preference can
be implemented by normalizing the sim(vt(w), v(r)) over all
the referents in the scene:

at(r|w) =
sim(vt(w), v(r))

∑
r′∈St

sim(vt(w), v(r′))
(7)

By normalizing the weighted count of sim(vt(w), v(r)), this
alignment formulation can be interpreted as the conditional
probability of r given w, rather than a simple count.
Word competition. Here, we consider a competition that is
instead analogous to the competition of words for a feature in
FAS; “word-comp” is the reverse of ref-comp, because here
words compete for a referent. This leads to a directed mu-
tual exclusivity bias, but in the opposite direction to ref-comp.
The word-comp mechanism asserts a preference for each ref-
erent to be strongly associated with a single word, by having
words compete for a referent, while the alignments of refer-
ents are independent of each other (see Figure 1d). This bias
is formulated by normalizing the sim(vt(w), v(r)) over the
words in the utterance (as FAS did):

at(w|r) =
sim(vt(w), v(r))

∑
w′∈Ut

sim(vt(w′), v(r))
(8)

This formulation also yields a conditional probability, but
here of w given r.
The association score. We note one final change to the FAS
model to deal with referents: We must modify Eqn. (3) to
keep track of associations between a word w and all the fea-
tures of a referent r. Since a feature f can occur in more than
one referent in scene S, which can have multiple alignment
scores, we use the maximum alignment score of a referent
that contains the feature in updating the feature’s association
score:

assoct(w, f ) = assoct−1(w, f )+ max
r′∈S: f∈r′

at(w, r′) (9)

The meaning probabilities in the model continue to be cal-
culated between individual features and a word. Recall that
the meaning probability distribution p(·|w), as a conditional
probability over semantic features, enforces a competition
among them for the probability mass.

Experiments
Set-up
The utterances in the input are child-directed speech taken
from the Manchester corpus (Theakston, Lieven, Pine, &
Rowland, 2001) in CHILDES (MacWhinney, 2000). To cre-
ate the associated scene representations, each word in the cor-
pus is entered into a gold-standard lexicon with a set of se-
mantic features representing its gold-standard meaning, fol-
lowing the procedure of Fazly et al. (2008). The referents
shown in Ex. 5 correspond to the gold-standard meanings of
each of those words. (The word–mapping in the lexicon is
only used to generate scenes, and is not seen by the model.)
The model is trained on 20K utterance–scene pairs, at which
point behaviour is stable.

In the following experiments, we examine the quality of
the individual learned word representations in two ways: the
average acquisition score of all words observed by the model,
and the proportion of observed words that is learned. The
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(a) FAS. (b) No competition. (c) Referent competition. (d) Word competition.

Figure 1: Types of alignment mechanisms. Lines of the same color/style compete simultaneously. Thickness indicates varying
strength of alignment during a competition.

(a) Average acquisition score
over time.

(b) Proportion of learned words
over time.

Figure 2: Developmental plots

acquisition score of each word w is obtained by comparing
the word meaning representation v(w) with a gold standard
representation of the word gold(w) using cosine similarity:

acq(w) = sim(v(w),gold(w)) (10)

where gold(w) is a vector over all semantic features, with
value 1 for features part of the gold-standard meaning of w
and 0 otherwise. An observed word counts as “learned” if
its acq score is higher than some threshold θ, here set to 0.7
based on the experiments of Fazly et al. (2010).

Results

Overall Learning Patterns
Over time, all models converge to high average acq scores

(Figure 2a) and proportions of words learned (Figure 2b), but
with substantial differences between them. Notably, we find
that on the average acq score, the word-comp formulation
performs better than the original FAS (.96 vs. .86), while the
ref-comp and no-comp models do not learn the representa-
tions as well (both .83).

Two factors may underlie the varying performance of the
models: the semantic grouping of features into referents (dis-
tinguishing our models from FAS), and the type of in-the-
moment competition (and resulting type of mutual exclusiv-
ity). For the first factor, the word-comp mechanism provides
the most direct comparison to FAS: it uses the same direction
of bias – in which words compete to align with the elements
of the scene – but using referents instead of features. The
grouping into referents appears to improve learning. When

aligning features individually as in FAS, the correct features
for a word may be aligned more or less strongly (depending
on competition for each from other words), so that the over-
all meaning probability vector may not converge as easily to
the full set of correct features. By contrast, when a word has
a strong alignment with the correct referent – which corre-
sponds to the gold-standard meaning of the word – all fea-
tures of the referent are boosted in the meaning probability
of the word, yielding improved learning in word-comp over
FAS.

Second, we find an interesting asymmetry between the two
mechanisms involving competition between the words for a
referent (word-comp) and between the referents for a word
(ref-comp). Each imposes a conditional probability formu-
lation of competition, but word-comp performs much better,
with ref-comp behaving no better than the no-comp model.
In fact, the advantage of using referents instead of individual
features is completely eliminated in both the no-comp and the
ref-comp mechanisms, as both perform worse than FAS.

The source of this asymmetry, we believe, is the deploy-
ment of learned knowledge by the model. In both the no-
comp and the ref-comp model (Figure 1(b), (c)), a learned
word meaning is compared to the referents in isolation from
the learned meanings of the other words in the utterance. In
this set-up, the knowledge of other word meanings cannot
help to guide the model to determine how good a word’s
alignment to some referent is. By contrast, the word-comp
model (Figure 1(d)) tunes the alignments by comparing how
similar various learned word meanings are to a referent.

One might expect that mutual exclusivity in the reverse di-
rection (as in the ref-comp model) would achieve the same
effects: Tuning the similarity between a word meaning and a
referent by the similarity between that word meaning and all
other referents should guide the model to correct associations
more quickly than not doing so. However, we do not find this
effect. We will return to the reason for this lack of effect in
the section on the role of frequency.

Competition is clearly important in focusing alignments
and facilitating learning, but only in the context of appro-
priately constraining information: the most effective learning
occurs when the competition draws on the maximal amount
of learned knowledge in the model, in the form of the devel-
oping meaning probabilities. In what follows, we consider
the impact of increased ambiguity in forming alignments, or
decreased knowledge about words, to see how these factors
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Figure 3: Average acquisition score after 20K input items.

impact these various mechanisms. Because the proportion of
words learned shows similar relative behaviours to the acq
score, in the remaining analysis we focus on comparing acq
scores of each of the models after 20K inputs.

The Role of Frequency
Children are able to learn word meanings in various condi-

tions, sometimes after only a few observations. Previous re-
search suggests that children use biases such as mutual exclu-
sivity to guide their learning. Learning low-frequency words
is also a challenge for computational models, and understand-
ing the mechanisms that improve learning from little evidence
can shed light on how children address this issue. The type of
competition in our various models plays an important role in
their performance on low-frequency words. Figure 3a shows
that for the two models with competition over words – the
FAS and word-comp models – there is no decrease in perfor-
mance for words of low frequency (< 5) compared to high
frequency (> 10), while for the other two models, no-comp
and ref-comp, there is a dramatic drop off in learning.

Specifically, the competition among words in the FAS and
word-comp models – which maximizes the use of learned
knowledge in focusing alignments – appears to play a crucial
role in enabling these models to learn low-frequency words.
Comparing the alignments in Figure 1c and Figure 1d in the
face of a novel word and its novel referent (as an extreme
case of low frequency) will clarify the utility of the learned
meaning probabilities. In the word-comp model (Figure 1d),
the meaning probabilities of previously-seen words compet-
ing for a new referent will not have a very good match to the
feature vector for the new referent (since their probabilities
will have been adjusted to better fit referents they have been
seen with). The novel word will have uniform meaning prob-
abilities that will enable it to better match the new referent,
and thus will have a stronger alignment than previously-seen
words. By contrast, in the ref-comp model (Figure 1c), the
uniform probabilities of the new word will equally match all
the referents competing for it, whether they have been seen
before or not. There is no prior knowledge in the model in
this competition that indicates the previously-seen referents
have a better fit with other words. Thus a competition among
words works well for novel or low-frequency words by draw-
ing on the fact that previously-seen words will not compete
as strongly for a new(er) referent. In short: a new word can

in principle go equally well with any referent in the situation,
but a new referent not equally well with any word in the ut-
terance.

The Role of Utterance Length
Above, we found that the different types of competition

gave more pronounced results for low-frequency words than
for high-frequency ones. Similarly, we can explore whether
there is a differential impact of utterance length on the dif-
ferent models. To simulate this, we manipulated the input
generation procedure so that the model was trained only on
utterances of length 5 or higher (long-corpus), or 3 and lower
(short-corpus). Looking at Figure 3b, we observe that the
acquisition scores are globally lower when the models are
trained on long sentences only, likely due to the fact that there
is more uncertainty about which words and which referents
belong together.

Here we see that the word-comp model is the only one
to not substantially decline in performance when compar-
ing learning on the short-corpus and long-corpus. While the
competition over words seems to help the FAS and word-
comp models equally in dealing with low-frequency words,
here the bundling of features into referents as in word-comp
is also necessary for performance to be robust to the added
ambiguity of long utterances. The FAS model cannot “scale
up” to deal with the very long unstructured lists of features in
the long-corpus input. This also explains why the model of
Alishahi et al. (2012) (the ref-comp approach) worked well
in their experiments but not here: the utterances they used
all had two words, unlike the naturalistic data we train on
above, indicating that ref-comp also cannot scale effectively.
Interestingly, as shown in Figure 3c, the word-comp model is
particularly robust to the challenge of learning low-frequency
words in the corpus of longer utterances, with a very small
decrease in performance compared to the other models.

The Role of Referential Uncertainty
To explore the impact of referential uncertainty – the occur-

rence of many more potential referents in a scene than there
are words – we create a subcorpus that uses every ith utterance
from our full corpus, and uses the utterances in between those
to generate “extra” referents in the scenes for utterances in the
subcorpus. Here we report results on 20K inputs with refer-
ents added to each scene Si from 0, 1, or 2 utterances in ad-
dition to referents taken from utterance Ui. Figure 4 presents

857



0.5

0.6

0.7

0.8

0.9

1.0

0 1 2
referential uncertainty

av
er

ag
e 

ac
qu

is
iti

on
 s

co
re

Figure 4: Average acquisition score after 20K input items,
split over different amounts of referential uncertainty.

the results for no referential uncertainty, along with the two
added levels of uncertainty. As we expect, the learning per-
formance of all models degrades with higher referential un-
certainty. However, in contrast to our previous results, here
there is little benefit from either word-based competition or
feature bundling. The high degree of ambiguity introduced
by these levels of referential uncertainty may be better dealt
with by attentional mechanisms that focus joint attention on
a likely subset of relevant referents prior to alignment.

Conclusions and Future Work
Previous research shows that children are sensitive to the
cross-situational statistics of their environment: i.e., they can
use the regularities across different situations to learn word
meanings. However, the detailed mechanisms responsible for
cross-situational word learning are still not fully understood,
such as precisely what information is used from each ob-
servation in identifying the correct word meaning, and how
this information is incorporated in the accumulated knowl-
edge about a word. Moreover, children are good at learning
word meanings in a variety of situations: they can learn a
novel word from a few example and also acquire words from
ambiguous/noisy conditions. Previous research has suggested
that children are equipped with biases that guide them in word
learning by reducing the difficulty/ambiguity of a learning sit-
uation. The necessity of these biases in children, and whether
they are innate or learnable, are issues that have been debated
among cognitive scientists.

Here, we show that one such bias – the mutual exclusiv-
ity bias that limits the number of meanings a word takes –
can be modeled as a competition mechanism during in-the-
moment learning. The competition exists when the model
assesses possible word and referent associations with condi-
tional probabilities as opposed to counts. In other words, the
bias or competition is a learning mechanism that is able to
condition in-the-moment learning to the learned knowledge
of word meanings. We observe that the role of the bias is par-
ticularly significant when the learning is more challenging:
for example, for learning low-frequency words or from longer
utterances. Previous research has investigated how cognitive
processes such as memory and attention interact with cross-
situational word learning (e.g., Nematzadeh et al., 2012a).
Future work should study how these cognitive processes af-
fect the in-moment-learning.
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