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34Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
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A search for the decays B ! ��770�� and B0 ! !�782�� is performed on a sample of 211 � 106

��4S� ! BB events collected by the BABAR detector at the SLAC PEP-II asymmetric-energy e�e�

storage ring. No evidence for the decays is seen. We set the following limits on the individual branching
fractions: B�B� ! ���� < 1:8 � 10�6, B�B0 ! �0�� < 0:4 � 10�6, and B�B0 ! !�� < 1:0 � 10�6 at
011801-3
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the 90% confidence level. We use the quark model to limit the combined branching fraction
B�B ! ��=!��	 < 1:2 � 10�6, from which we determine a constraint on the ratio of Cabibbo-
Kobayashi-Maskawa matrix elements jVtdj=jVtsj.

DOI: 10.1103/PhysRevLett.94.011801 PACS numbers: 13.20.He, 12.15.Hh
Within the standard model (SM), the decays B ! ��
and B0 ! !� proceed primarily through a b ! d� elec-
tromagnetic penguin process that contains a top quark
within the loop [1]. The rates for B� ! ���, B0 ! �0�,
and B0 ! !� [2] are related by the spectator-quark model,
and we define the average branching fraction [3],
B�B ! ��=!��	 � 1

2 fB�B� ! ���� � ��B�=�B0� �

�B�B0 ! �0�� � B�B0 ! !��	g, where �B�=�B0 is
the ratio of B-meson lifetimes. Recent calculations
of B�B ! ��=!��	 in the SM indicate a range of
�0:9-1:8� � 10�6 [3,4]. There may also be contributions
resulting from physics beyond the SM [5]. The ratio
between the branching fractions for B ! ��=!��
and B ! K�� is related in the SM to the ratio of
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements
jVtdj=jVtsj [3,6]. Previous searches by BABAR [7] and
CLEO [8] have found no evidence for B ! ��=!��
decays.

We search for B ! �� and B0 ! !� decays in a data
sample containing �211 � 2� � 106 ��4S� ! BB decays,
collected by the BABAR detector [9] at the SLAC PEP-II
asymmetric-energy e�e� storage ring. The data corre-
spond to an integrated luminosity of 191 fb�1.

The decay B ! �� is reconstructed with �0 ! ����

and �� ! ���0, while B0 ! !� is reconstructed with
! ! �����0. Background comes primarily from
e�e� ! q �q continuum events, where q � u; d; s; c, in
which a high-energy photon is produced through
�0=� ! �� decays or via initial-state radiation (ISR).
There are also significant BB backgrounds: B ! K��,
K� ! K�, where a K� is misidentified as a ��;
B ! ��=!��0 and B ! ��=!��, where a high-energy
photon comes from the �0 or � decay; and combinatorial
background, mostly from high multiplicity b ! s� decays.

We select �� candidates from tracks with a momentum
transverse to the beam direction greater than 100 MeV=c.
The �� selection algorithm combines measurements of
energy loss in the tracking system with any associated
Cherenkov photons measured by the ring imaging
Cherenkov detector. The algorithm is optimized to reduce
backgrounds from K� produced in b ! s� processes [7].

Neutral pion candidates are identified as pairs of neutral
energy-deposits reconstructed in the CsI crystal calorime-
ter, each with an energy greater than 50 MeV in the
laboratory frame. For B0 ! !� �B� ! ���� decays, the
invariant mass of the pair is required to satisfy 110 <
m�� < 150 MeV=c2 �117 < m�� < 145 MeV=c2�. To re-
duce combinatorial background, we require the cosine of
the opening angle between the daughter photons in the
01180
laboratory frame be greater than 0.6; this selection retains
98% of �0 from signal decays.

A �0 candidate is reconstructed by selecting two iden-
tified pions that have opposite charge and a common
vertex. We obtain �� candidates by pairing �0 candidates
with an identified ��. The ! candidates are reconstructed
by combining a �0 candidate with pairs of oppositely
charged pion candidates that originate from a common
vertex; the charged pion pair must be consistent with
originating from the interaction region to suppress K0

S
decays. We select � �!� candidates with an in-
variant mass satisfying 630 < m�� < 940 MeV=c2

(764 < m�����0 < 795 MeV=c2).
The high-energy photon from the signal B decay is

identified as a neutral energy deposit in the calorimeter.
We require that the deposit meet a number of criteria
designed to eliminate background from charged particles
and hadronic showers [10]. We veto photons from �0���
decay by requiring that the invariant mass of the candidate
combined with any other photon of laboratory energy
greater than 30 �250� MeV not be within the range
105-155 MeV=c2 (500-590 MeV=c2).

The photon and �=! candidates are combined to form
the B-meson candidates. We define �E� � E�

B � E�
beam,

where E�
B is the center-of-mass (c.m.) energy of the

B-meson candidate and E�
beam is the c.m. beam energy.

The �E� distribution of Monte Carlo (MC) simulated
signal events is centered at zero, with a resolution of about
50 MeV. We also define the beam-energy-substituted mass

mES �
�������������������������
E�2

beam � p�2
B

q
, where p�B is the c.m. momentum of

the B candidate. Signal MC events peak in mES at the mass
of the B meson mB with a resolution of 3 MeV=c2. The
distribution of continuum and combinatorial BB back-
ground peaks in neither mES nor �E�; the back-
ground distributions of B ! K��, B ! ��=!��0, and
B ! ��=!�� peak at mB in mES and between
�190 MeV and �60 MeV in �E�. We consider candi-
dates in the ranges �0:3 < �E� < 0:3 GeV and 5:20 <
mES < 5:29 GeV=c2 to incorporate sidebands that allow
the combinatorial background yields to be extracted from a
fit to the data.

Several variables that distinguish between signal and
continuum events are combined in a neural network [11].
The input variables depend mainly on the rest of the event
(ROE), defined to be all charged tracks and neutral energy
deposits in the calorimeter not used to reconstruct the B
candidate. To reject ISR events, we compute the ratio of
second-to-zeroth order Fox-Wolfram moments [12] for the
ROE and the �=! candidate, in the frame recoiling against
1-4



FIG. 1. Projections of the combined fit to B ! �� and B0 !
!� in the four discriminating variables: (a) mES, (b) �E�,
(c) N , and (d) F . The points are data, the solid line is the total
PDF and the dashed line is the background only PDF. The
selections applied, unless the variable is projected, are: 5:272 <
mES < 5:286 GeV=c2, �0:10 < �E� < 0:05 GeV, and N >
0:9; the selection efficiencies for signal events are 45%, 57%,
70%, and 44% for the mES, �E�, N , and F projections,
respectively.
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the photon momentum. To discriminate between the jetlike
continuum background and the more spherically symmet-
ric signal events, we compute the angle between the photon
and the thrust axis of the ROE in the c.m. frame and the
moments Li �

P
jp

�
j � j cos��

j j
i=
P

jp
�
j , where p�

j and ��
j

are the momentum and angle with respect to an axis,
respectively, for each particle j in the ROE. We use L1,
L2, and L3 with respect to the thrust axis of the ROE, as
well as L1 with respect to the photon direction. Differences
in lepton and kaon production between background and B
decays are exploited by including BABAR flavor tagging
variables [13] as well as the maximum c.m. momentum
and number of K� and K0

S in the ROE. For the
B0 ! ��0=!�� modes, we also use the separation along
the beam axis of the B-meson candidate and ROE vertices;
to remove poorly reconstructed events we require the
separation be less than 4 mm. A separate neural network
is trained for each mode. We make a loose selection on the
output of the neural network N that retains around 80% of
the signal events.

To suppress background, we combine a number of
signal-decay variables in a Fisher discriminant [14] F
separately for each mode. We calculate the B-meson pro-
duction angle ��

B, the �=! helicity angle �H, which is
defined with respect to the normal of the decay plane for
! candidates, and the ! Dalitz angle �D [7]. To reject
B ! ���0=�� and B ! !��0=�� events in the
B� ! ��� and B0 ! !� �B0 ! �0�� selection, we re-
quire j cos�Hj < 0:70 �0:75�.

After applying the N and j cos�Hj criteria, the expected
average candidate multiplicity in signal events is 1.15,
1.03, and 1.14 for B� ! ���, B0 ! �0�, and
B0 ! !�, respectively; in events with multiple candidates
the one with the smallest value of j�E�j is retained.

The signal yield is determined from an extended maxi-
mum likelihood fit to the selected data. We fit the four-
dimensional distribution of mES, �E�, F , and N . For the
B ! �� fits, five event hypotheses are considered: signal,
continuum background, combinatorial B background,
peaking B ! ���0=�� background, and peaking
B ! K�� background. For the B0 ! !� fit we consider
only signal, continuum background, and peaking
B ! !��0=�� background. The correlations among the
observables are small; therefore, we assume that the proba-
bility density function (PDF) P � ~xj; ~"i� for each hypothe-
sis is the product of individual PDFs for the variables
~xj � fmES; �E�;F ;N g given the set of parameters ~"i.
The likelihood function is a product over all Nk candidate
events of the sum of the PDFs,

L k � exp
�
�

XNhyp

i�1

ni

��YNk

j�1

	XNhyp

i�1

niP i� ~xj; ~"i�


�
;

where ni is the yield of each hypothesis, k is
01180
the B!��=!�� mode, and Nhyp �5�3� for
B!�� (B ! !�).

The mES and �E� PDFs are parametrized by a Crystal
Ball function [15] for both the signal and peaking back-
ground. The parametrization is determined from signal MC
samples, except the mean of the �E� distribution, which is
offset by the observed difference between data and MC
samples of B ! K�� decays. The continuum background
mES and �E� distributions are parametrized by an ARGUS
threshold function [16] and a second-order polynomial,
respectively. The combinatorial B background is described
by a smoothed distribution [17] determined from MC
events in both mES and �E�. The distribution of N for
signal and BB background is parametrized by a Crystal
Ball function. The N distribution for continuum is deter-
mined from sideband data, and a histogram is used as the
PDF. The distribution of F is parametrized by smoothed
histograms of sideband data for the continuum background
and MC events for all other hypotheses.

The fit to the data determines the shape parameters of the
continuum background mES and �E� PDFs, as well as the
signal, continuum background, and combinatorial BB
background yields. All other parameters are fixed, includ-
ing the peaking BB background yields. A combined fit is
also performed relating the modes using the definition of
B�B ! ��=!��	 to determine an effective yield (neff)
1-5
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assuming n�B� ! ���	 � neff � '�B� ! ���	 and
n�B0 ! ��0=!��	 � 1

2 ��B0=�B��neff � '�B0 ! ��0=!��	,
where n and ' are the yields and reconstruction efficiencies
of each mode; the efficiencies include the daughter branch-
ing fractions. We take �B�=�B0 � 1:086 � 0:017 [18].
Figure 1 shows the projections of the combined fit results
compared to the data. The results for the individual mode
signal yields and neff are given in Table I. The significance
is computed as

������������������
2� logL

p
where � logL is the log like-

lihood difference between the best fit and the null-signal
hypothesis. No significant signal is observed.

The most important systematic uncertainties are associ-
ated with the modeling of BB backgrounds, the fixed
parameters of the PDFs used in the fit, and the signal
reconstruction efficiency. The first two contribute to the
uncertainties on the signal yields.

The uncertainty on the peaking B ! K�� background is
dominated by the K�misidentification rate; the rate is
corrected by the difference in K� misidentification be-
tween data and MC samples of D� decays, with the whole
correction taken as the uncertainty. For the
B� ! ����0=��, B0 ! �0�, and B0 ! !��0=�� peak-
ing background decays, we vary the branching fractions by
either 1 standard deviation from the measured values or
between zero and the measured upper limit if the decay has
not been observed [19,20]; the value of the B0 ! �0�0

branching fraction is varied between zero and 5:1 � 10�6

[20,21]. The uncertainty on the peaking background of
each mode is shown in Table I. We find that the bias
from neglecting the B ! K�� background and combina-
torial BB background in the fit to B0 ! !� candidates is
1:1�1:9

�1:1 events; the corrected yield is given in Table I. To
estimate the uncertainty related to the extraction of the
signal mES and �E� PDFs from MC distributions, we vary
the parameters within their errors. The variation in the
fitted signal yield is taken as a systematic uncertainty.
The uncertainty related to the statistics of the histogram
PDF that describes the continuum N distribution is eval-
uated by varying the binning and by using a fifth-order
polynomial as an alternative PDF. Several different control
samples of data and MC events were used to determine
alternative PDFs for the different hypotheses; none of these
resulted in a significant change to the fitted signal yield.
TABLE I. The signal yield �nsig�, continuum background yield
deviations +, efficiency �'�, and branching fraction �B� central value
combined fit are shown in the bottom row where nsig is equal to neff

first is statistical and the second is systematic.

Mode nsig ncont npeak Significan

B� ! ��� 26�15�2
�14�2 6850 � 90 18 � 4 1.9

B0 ! �0� 0:3�7:2�1:7
�5:4�1:6 4269 � 73 18 � 7 0.0

B0 ! !� 8:3�5:7�1:3
�4:5�1:9 1378 � 37 2:6�0:8

�1:2 1.5

Combined 269�126�40
�120�45 — — 2.1
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The signal efficiency systematic error contains uncer-
tainties from tracking, particle identification, photon/�0

reconstruction, photon selection, and the neural network
selection that are determined as in Ref. [22]. We determine
the effect of correlations among the fit variables by using
an ensemble of MC experiments of parametrized contin-
uum background simulations embedded in samples of fully
simulated signal and BB background events. No bias is
observed within the statistical error on the mean yields
from this ensemble, which is taken as a multiplicative
systematic uncertainty. The total multiplicative systematic
error values are 11%, 13%, and 10% for B� ! ���,
B0 ! �0�, and B0 ! !�, respectively. The corrected sig-
nal efficiencies and their uncertainties are shown in Table I.

In calculating branching fractions, we assume
B���4S� ! B0B0� � B���4S� ! B�B�� � 0:5. The
90% confidence level (C.L.) is taken as the largest value
of the efficiency-corrected signal yield at which
2� logL � 1:282. We include systematic uncertainties by
increasing the efficiency-corrected signal yield by 1.28
times its systematic uncertainty. Table I shows the resulting
upper limits on the branching fractions.

Using the measured value of B(B ! K��) [22], we
calculate a limit of B�B ! ��=!��	=B�B ! K��� <
0:029 at 90% C.L. This limit is used to constrain the ratio
of CKM elements jVtd=Vtsj by means of the equation [3,6]:

B�B! ��=!��	
B�B!K���

�


Vtd

Vts


2
�

1�m2
�=M2

B

1�m2
K�=M2

B

�
3
)2�1��R	;

where ) describes the flavor-SU(3) breaking between �=!
and K�, and �R accounts for annihilation diagrams. Both )
and �R must be taken from theory [3,6,23]. Following [3],
we choose the values ) � 0:85 � 0:10 and �R � 0:10 �
0:10, which is the average over the values given for the
three modes. We find the limit jVtdj=jVtsj < 0:19 at 90%
C.L, ignoring the theoretical uncertainties. Our upper limit
on jVtdj=jVtsj constrains jVtdj < 0:008 at 90% C.L. assum-
ing jVtsj � jVcbj [18]; this lies within the current 90%
confidence interval 0:005 < jVtdj < 0:014, which is ob-
tained from a fit to experimental results on the CKM matrix
elements [18]. Varying the values of ) and �R within their
(ncont), peaking background (npeak), significance in standard
and upper limit at the 90% C.L for each mode. The results of the
, which is described in the text. When two errors are quoted, the

ce �+� '�%� B�10�6� B�10�6� 90% CL

13:2 � 1:4 0:9�0:6
�0:5 � 0:1 <1:8

15:8 � 1:9 0:0 � 0:2 � 0:1 <0:4
8:6 � 0:9 0:5 � 0:3 � 0:1 <1:0

— 0:6 � 0:3 � 0:1 <1:2
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uncertainties leads to changes in the limits by �0:03 and
�0:001 for jVtdj=jVtsj and jVtdj, respectively.

In conclusion, we have found no evidence for the ex-
clusive b ! d� transitions B ! �� and B0 ! !� in
211 � 106 ��4S� ! BB decays studied with the BABAR
detector. The 90% C.L. upper limits on the branching
fractions and jVtdj=jVtsj are significantly lower than our
previous values [7] and restrict the range indicated by SM
predictions [3,4].
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