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Summary 

Cancer progression to an aggressive phenotype often co-opts aspects of stem cell biology. Here, we 

developed gene signatures for normal human stem cell populations to understand the relationship 

between epithelial cancers and stem cell transcriptional programs. Using a pan-cancer approach, we 

reveal that aggressive epithelial cancers are enriched for a transcriptional signature shared by 

epithelial adult stem cells. The adult stem cell signature selected for epithelial cancers with worse 

overall survival and alterations of oncogenic drivers. Lethal small cell neuroendocrine lung, prostate, 

and bladder cancers transcriptionally converged onto the adult stem cell signature and not other stem 

cell signatures tested. We found that DNA methyltransferase expression correlated with adult stem 

cell signature status and was enriched in small cell neuroendocrine cancers. DNA methylation 

analysis uncovered a shared epigenetic profile between small cell neuroendocrine cancers. These 

pan-cancer findings establish a molecular link between human adult stem cells and aggressive 

epithelial cancers.  

 

 

Keywords: stem cell signature; pan-cancer; neuroendocrine prostate cancer; small cell lung cancer; 

adult stem cells 
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Introduction 

 Cancer shares a number of parallels with normal human development. Processes that underlie 

normal differentiation are often altered during the initiation and/or progression of epithelial cancers  

(Clevers, 2006; Turner and Grose, 2010). Microenvironmental cues and cellular cross-talk are vital for 

stem cell self-renewal and functionality (Jones and Wagers, 2008). Further, defects in these cell-cell 

communications activate signaling pathways that drive neoplastic growth and invasiveness. Cellular 

plasticity enables embryonic and cancer epithelial cells to migrate to and settle into distant anatomical 

sites in order to form new organs or tumors (Nieto, 2013). Disruption in the epigenetic machinery that 

guides normal lineage commitment can produce impaired differentiation states and epigenome 

reprogramming characteristic of malignant tumors (Feinberg et al., 2016).  

 Molecular profiling of stem and cancer cells has increased our understanding of the links between 

these cell populations. For multiple epithelial cancers, the cell-of-origin can be a stem/progenitor cell 

that resides within the tissue (White and Lowry, 2015). Certain epithelial cancers are known to revert 

to a molecular state reminiscent of their tissue stem cell as they become more aggressive (Merlos-

Suárez et al., 2011; Pece et al., 2010; Smith et al., 2015). Histologically poorly differentiated tumors 

can possess gene sets and transcription factors enriched in human embryonic stem cells (hESCs) 

(Ben-Porath et al., 2008; Wong et al., 2008). Recent evidence supports that ESCs can reside in 

alternative states of pluripotency: naive and primed. In the mouse, naive embryonic stem cells are 

derived from the pre-implantation inner cell membrane, while the primed ESC represents a more 

developmentally advanced pluripotent state. Conventional hESCs are believed to represent a primed 

state due to their molecular and functional similarities with the mouse postimplantation epiblast 

(Nichols and Smith, 2009). Specific culture conditions can convert hESCs to a naive state that 

transcriptionally corresponds to an earlier developmental stage than primed hESCs (Theunissen et 

al., 2016). It is unclear how these alternative pluripotent states relate to human epithelial cancers. 

 Pan-cancer efforts by The Cancer Genome Atlas (TCGA) and others have shown that cancers 

originating from different tissues share similar genomic signatures (Bailey et al., 2018; Hoadley et al., 

2018). Certain breast and bladder cancers display a basal-like molecular profile characterized by p63 



 4 

activation and the expression of specific basal cell cytokeratins (Damrauer et al., 2014). Further, 

basal-like breast cancers share numerous molecular features including actionable targets with high-

grade serous ovarian cancer (The Cancer Genome Atlas Research Network, 2012a). Copy number 

alteration patterns were found to be common in breast, ovarian, lung, and uterine samples and were 

predictive of glycolytic phenotypes (Graham et al., 2017). Squamous cell carcinomas from different 

anatomical sites share frequent alterations in TP53, PIK3CA, CDKN2A, SOX2, and CCND1 compared 

to other cancer phenotypes (Schwaederle et al., 2015).  

 Almost every epithelial tissue can develop a highly aggressive cancer phenotype characterized in 

part by expression of neuroendocrine differentiation markers (Frazier et al., 2007). These 

neuroendocrine cancers encompass a spectrum of different histological phenotypes including small 

cell, large cell, adenocarcinoma with neuroendocrine differentiation, and others. However, they often 

exhibit similar clinical features including rapid metastasis and resistance to currently approved 

therapeutic strategies. These cancers almost universally have loss-of-function alterations in RB1 and 

TP53 and often include amplifications in the MYC family of genes and altered expression of 

epigenetic regulators (Beltran et al., 2011; Beltran et al., 2016; George et al., 2015; Poirier et al., 

2015). Further, conversion to a neuroendocrine phenotype has emerged as a mechanism of treatment 

resistance in prostate and lung cancers (Davies et al, 2018; Oser et al., 2015). Transcriptional 

profiling of primary human prostate epithelial populations revealed that advanced prostate cancer 

subtypes vary in their enrichment of a prostate basal stem cell signature with small cell 

neuroendocrine prostate cancer (SCNPC) being the most stem-like. SCNPC and the normal prostate 

basal stem cell shared a transcriptional program associated with E2F targets and specific transcription 

factors such as SOX2 (Smith et al., 2015). The observed phenotypic plasticity along with 

overexpression of known stem cell associated transcriptional regulators implies that small cell 

neuroendocrine (SCN) cancers from different epithelial tissues may share a stem-like molecular 

component. 

 Here, we used a pan-stem cell, pan-cancer approach to interrogate the relationship between 

epithelial cancers and normal stem cell-associated expression networks. We show that a number of 
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epithelial cancers become enriched for a human epithelial adult stem cell (ASC) signature during 

progression to an advanced, aggressive state. The human ASC signature provided prognostic 

information and was associated with genomic alterations that influence cancer aggressiveness and 

lineage differentiation. In this analysis, we simplified the nomenclature for histologically defined 

neuroendocrine cancers and defined all epithelial derived-neuroendocrine cancer subtypes as small 

cell neuroendocrine to prevent confusion when alternating between tissue types. Using multiple gene 

expression datasets composed of clinical samples, we found that aggressive small cell 

neuroendocrine cancers derived from different tissues have higher adult stem cell signature scores 

than non-small cell neuroendocrine phenotypes. Further, we provide evidence that SCN cancers 

share a core set of methylation regulated genes that are linked to their ASC-associated expression 

programs.  

 

Results 

Development of gene signatures for human stem cell populations. 

 Previous stem cell signatures have been developed by comparing ESCs to multiple cell types, 

and/or by applying logical, but somewhat ad-hoc combinations of criteria (Ben-Porath et al., 2008; 

Wong et al., 2008). Recent identification of human adult stem cell populations allows for the definition 

of stem cell signatures from tissues sorted for cells with or without stem cell markers, providing a 

more direct comparison of stem-associated gene expression. To investigate stem cell related 

signaling across multiple different epithelial cancers, we developed gene signatures for human 

epithelial adult stem cells. As a comparison, we included signatures from naive hESCs and primed 

hESCs. For the human epithelial adult stem cell signature, we compiled datasets that included 

primary Trop2+CD49fHi sorted prostate basal stem cells, Lin-CD49fHiEpCAM- mammary stem cells, 

EphB2 sorted intestinal stem cells, and their differentiated counterparts (Jung et al., 2011; Lim et al., 

2009; Smith et al., 2015). For the naive and primed hESC signatures, we utilized two datasets from 

two different laboratories that profiled these cell populations (Takashima et al., 2014; Theunissen et 

al., 2014). To evaluate and combine the signatures, we applied a rank-rank hypergeometric overlap 
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(RRHO) algorithm, which enables identification of significantly concordant transcriptional profiles from 

independent RNA profiling experiments regardless of sequencing platform or other variables  (Plaisier 

et al., 2010) (Figure 1A). RRHO was applied to three possible combinations of human adult stem 

cells revealing high overlap between the transcriptional profiles of the epithelial stem populations 

(Figure 1B). A similar comparison between primary human epithelial stem cells and hematopoietic 

stem cells did not show the same level of overlap, highlighting the similarity between the epithelial 

stem cell populations (Eppert et al., 2011) (Figure S1).  RRHO analysis of naive and primed hESCs 

indicated that the respective hESC sub-populations from each dataset were highly related at the gene 

expression level (Figure 1B). Signatures consisted of the top 50-genes associated with either the 

adult stem cell, naive hESC, or primed hESC population, with no gene overlap between the three 

stem cell signatures (Table S1). Gene signatures of this size are amenable to PCR or Nanostring-

based clinical assays as exemplified by the PAM50 signature for identifying breast cancer subtypes 

(Wallden et al., 2015). Applying the signatures to independent datasets further validated that our stem 

cell signatures selected for the appropriate cell populations (Figure 1C).  

 

The human adult stem cell signature is associated with advanced epithelial cancers and a poor 

clinical outcome.  

 We utilized gene expression datasets from The Cancer Genome Atlas to determine if pan-tissue 

epithelial cancers activate transcriptional programs defined by specific human stem cell populations 

as they progress to an advanced state. In addition to the adult stem cell rank-based signature that we 

developed, we included the rank-based naive and primed hESC signatures and published gene set 

based human ESC and ESC-like transcriptional signatures (Ben-Porath et al., 2008; Wong et al., 

2008). Unsupervised clustering based on stem cell signatures showed that most epithelial cancers 

become enriched for the adult stem cell signature as they progress from early stage disease (Stage 1) 

to advanced localized/metastatic disease (Stage 3-4). Some cancer types exhibited a similar trend 

with the other stem cell signatures though not to the extent as with the ASC signature (Figure 2A and 

S2A). Applying the stem cell signatures to TCGA specimens organized by tumor grade revealed a 
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similar trend with the high grade, undifferentiated tumors having higher ASC signature scores 

compared to lower grade tumors (Figure S2B). The ASC signature performed better than other stem 

cell signatures tested in separating low grade from high grade tumors (Figure 2B). Further, the adult 

stem cell signature was significantly enriched in the high Gleason score and tumor stage organ-

confined prostate cancers, though we observed other stem cell signatures to be significantly 

associated with high Gleason score tumors (Figure S2C-S2E). Interestingly, we found that the ASC 

signature significantly improved determination of prostate cancer stage beyond Gleason score alone 

(p-value = 9.0 x 10-4). 

 To determine if the stem cell signatures provided pan-cancer prognostic information, we combined 

all TCGA epithelial cancer samples together and then stratified the samples into High and Low groups 

according to their stem cell signature scores. After controlling for tissue-of-origin or molecular 

subtypes along with other clinical features, the adult stem cell signature was most significantly 

associated with poor survival (Figure 2C). To control for cell cycle and proliferation, we developed a 

proliferation signature that either 1) removed common genes from the adult stem cell signature or 2) 

removed samples that were classified as high for both the adult stem cell and proliferation signatures. 

The adult stem cell signature proved to be significantly predictive of a poor prognosis even after 

controlling for proliferation (Figure 2D). Evaluating each epithelial cancer independently further 

supported that the ASC signature is enriched in samples with lower overall survival (Figure 2E). Lung 

adenocarcinoma is the one of the leading causes of cancer related deaths worldwide. Looking at the 

TCGA and an independent dataset, lung adenocarcinomas enriched for the ASC signature had a 

significantly worse survival than samples with low signature scores (Figures 2E and 2F). Our results 

indicate that aggressive epithelial cancers activate a transcriptional program common to human 

epithelial adult stem cells. 

 

The adult stem cell signature is associated with specific genomic alterations. 

 To gain insight into genomic alterations associated with the stem cell signatures, we performed a 

hypergeometric test between stem cell signature status (High and Low) and genomic alteration. We 
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found ASC signature status to be associated with broad, high-level gene amplifications in 

chromosomes 3q, 5p, and 8q when analyzed across our compendium of epithelial cancers. (Figure 

3A). These alterations were not associated with either ASC Low designated samples or samples not 

classified as ASC High (Figure S3A). We observed that the ASC High samples were highly 

represented by head and neck (22%) and lung squamous carcinomas (24%). Removing these 

samples from our analysis slightly decreased the alteration frequency in chromosome 3q; however, 

genes in this genomic location remained significantly associated with ASC status (Figure S3B). The 

naive and primed hESC signatures were less associated with high-level amplifications than the ASC 

signature, though the naive hESC and ASC signatures were correlated with a number of 

amplifications in chromosomes 3q and 5p (Figure S3C). However, the ASC signature exhibited a 

noticeably higher frequency of alterations in these chromosomes than the naive hESC signature. 

 For the ASC signature, high-level amplifications occurred in known oncogenes (TERT, PIK3CA), 

developmental genes (MECOM, SOX2, FGFR1), MYC family members (MYC, MYCL), and 

immunomodulators (CD274) (Figure 3B and Table S2). Further, ASC signature was significantly 

associated with deletions of tumor suppressors including CSMD1 (33%), CDKN2A (29%), CDKN2B 

(28%), RB1 (16%), PTEN (8%)  (Escudero-Esparza et al. 2016) (Figure 3B and Table S3). The naive 

hESC signature was less associated with deep deletions than either the ASC or primed hESC 

signatures; however, it did specifically select for deletions in chromosome 18q. The primed hESC was 

enriched in chromosome 3p deletions (Figure S3C). As an alternative method for evaluating RB1 

functional status, we applied a RB1 loss signature composed of 120 genes that are positively 

correlated with RB1 loss in breast cancer (Ertel et al., 2010). ASC High samples exhibited significantly 

higher RB1 loss signature scores than ASC Low samples implying that the ASC signature selects for 

cancers with RB1 loss-of-function alterations (Figure 3C).  

 Interrogation of mutation data revealed that TP53 mutations and NOTCH1 mutations were highly 

associated with the ASC and naive hESC signatures (Table S4). The adult stem cell signature was 

specifically connected with FBXW7 mutations, which occurred in approximately 10% of ASC enriched 

epithelial cancers. FBXW7 is a tumor suppressor that controls differentiation decisions in certain stem 
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cell populations (Wang et al., 2012). The naive hESC signature was correlated with PRDM9 and 

OR4A5 mutations, while the primed hESC signature selected for cancers containing VHL mutations. 

PRDM9 is a histone methyltransferase that plays a major role in specifying meiotic recombination 

hotspots in mammals (Baudat et al., 2010). VHL is part of the E3 ubiquitin-protein ligase complex, 

which is involved in the ubiquitination and degradation of hypoxia inducible factors. Mutations leading 

to VHL loss-of-function are a major driver of clear-cell renal cell carcinomas (Gossage et al., 2015).   

 We confirmed that DNA amplified genes associated with developmental pathways and lineage 

decisions were also overexpressed at the transcript level in ASC signature enriched samples (Figure 

3D). Interestingly, genes commonly overexpressed in aggressive, small cell neuroendocrine cancers 

such as SOX2, DLL3, and MYC family members were also amplified and overexpressed in ASC High 

epithelial cancers. RB1 loss and TP53 and NOTCH1 mutations, as discussed above, are also 

characteristic of SCN tumors. Further, over 60% of amplified protein coding genes in small cell 

neuroendocrine lung cancers (SCNLC) were found within the top 204 most frequently amplified genes 

correlated with ASC status (p-value < 1.0 x 10-100, hypergeometric test) (Rudin et al., 2012) (Figure 

3E). These results support that the ASC signature selects for genomic alterations inherent to lethal 

epithelial cancer variants.  

  

The adult stem cell signature is enriched in aggressive small cell neuroendocrine cancers 

from multiple epithelial tissues. 

 Given that the ASC signature selected for tumors with alterations linked to small cell 

neuroendocrine cancers, we further investigated this aggressive cancer subtype. Recent publications 

have molecularly profiled large cohorts of these tumors, thus we mined multiple gene expression 

datasets composed of human SCN prostate and lung cancers and their non-SCN counterparts 

(Beltran et al., 2011; Beltran et al., 2016; Clinical Lung Cancer Genome Project and Network Genomic 

Medicine, 2013; Takeuchi et al., 2006). In both prostate and lung cancers, the SCN phenotype was 

associated with significantly higher ASC signature scores than the non-SCN variant (Figure 4A). 

Other stem cell signatures, specifically those previously connected to hESCs, were activated in SCN 
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cancers; however, only the ASC signature was significantly enriched in the SCN phenotype in all 

datasets (Figure 4B). Within human prostate cancer, ASC signature scores followed clinical 

progression with organ-confined adenocarcinomas having the lowest ASC scores, followed by 

metastatic castration-resistant adenocarcinoma, and with the metastatic castration-resistant SCN 

phenotype having the highest ASC score (Figure S4A). Applying the signature to prostate cancer 

mouse models revealed similar results with the ASC signature most strongly activated in the most 

aggressive, SCNPC phenotype (Figure S4B). A combined dataset of over 1,100 lung cancer samples 

further validated the preferential expression of the ASC signature in SCN cancers (Figure S4C). 

 We further examined whether the ASC transcriptional signature was activated in small cell 

neuroendocrine cancers from additional epithelial tissues. We analyzed a dataset of metastatic 

cancers biopsied from over 22 organs, which included a number of epithelial derived-SCN and poorly 

differentiated neuroendocrine tumors (Robinson et al., 2017). Metastatic SCN tumors showed a 

significant enrichment in the adult stem cell signature compared to non-small cell neuroendocrine 

tumors from similar epithelial tissues (Figure 4C). Notably, the ASC signature performed better than 

other stem cell signatures tested (Figure 4D). A recent characterization of muscle invasive bladder 

cancers included a minor fraction of samples (~ 1%) histologically defined as small cell 

neuroendocrine or a mixed phenotype with a small cell neuroendocrine component (Robertson et al., 

2017). Comparing the ASC signature scores between the SCN and non-SCN bladder cancers 

revealed that the SCN bladder cancers were significantly more adult stem cell-like (Figure 4E). 

Interestingly, the SCN bladder cancer sample with the lowest ASC score was the only SCN sample 

with a mixed phenotype. This observation was consistent with the Beltran 2011 prostate cancer 

dataset with the mixed SCN phenotypes having lower ASC scores than the pure SCN phenotypes. 

Further, the original publication described a series of gene expression-based subtypes within this 

same collection of bladder cancer including a poor survival neuronal subtype that contained both SCN 

and non-SCN histologically defined variants. This aggressive neuronal subtype exhibited the highest 

ASC signature score compared to the other muscle invasive bladder cancers expression subtypes 

(Figure S4D and S4E). In sum, these results highlight that small cell neuroendocrine cancers from 
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multiple epithelial tissues share a transcriptional program common to human epithelial adult stem 

cells. 

 

The adult stem cell signature’s association with small cell neuroendocrine cancers is not 

significantly influenced by other molecular signatures. 

 MYC signaling is prevalent in many cancers and stem cell populations thus we sought to 

determine if the human adult stem cell signature was substantially a MYC signature (Kim et al., 2010). 

Even after removing MYC and MYC target genes, the adult stem cell signature remained significantly 

associated with the SCNPC and SCNLC phenotypes (Figure 5A). We also examined the influence of 

cell cycle/proliferation genes in the adult stem cell signature. Removing the cell cycle/proliferation 

genes from the ASC signature did not change the general trend that epithelial derived SCN cancers 

were enriched in the ASC signature (Figure 5A). We removed genes that were in common between 

the human adult stem cell signature and ESC signatures. Again, removing these genes did not 

change the enrichment for the adult stem cell signature in the prostate and lung small cell 

neuroendocrine phenotypes though they did affect the overall significance (Figure 5A). Performing a 

permutation analysis with 10,000 random 50-gene signatures showed that the ASC signature 

exhibited a greater difference between SCN and Non-SCN samples compared to random signatures 

with permutation p-value ≤ 3.3 x 10-3 (Figure 5B). The above analyses indicate that while the ASC 

signature does contain some shared content with other molecular signatures, it generally remains 

strongly related to small cell neuroendocrine cancer subtypes even when these other signatures are 

accounted for.  

 

Small cell neuroendocrine cancers from the lung and prostate share a methylation profile. 

 DNA methylation is a vital epigenetic modification, impacting numerous biological processes 

including transcription, cell fate decisions, and development (Jaenisch, 1997). The DNA 

methyltransferase DNMT1 was part of the adult stem cell signature (Table S1). Furthermore, we 

observed that ASC signature scores were highly correlated with gene expression of DNA 
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methytransferase family members (DNMT1, DNMT3A, DNMT3B) within the human prostate and lung 

cancer datasets. (Figures 6A). DNMT transcripts were overexpressed in SCN prostate and lung 

cancer compared to the non-SCN phenotype (Figure 6B). We further examined the protein 

expression of DNMT1 in malignant prostate and lung tissues since 1) DNMT1 was within the ASC 

signature, 2) DNMT1 was the most significantly overexpressed in the SCN phenotype, and 3) DNMT1 

was the most correlated DNMT with the ASC signature score (after removing DNMT1 from the 

signature). Consistent with results observed in clinical samples, DNMT1 was overexpressed in the 

SCNPC cell line and SCNPC patient derived xenografts (Figure 6C). Using prostate xenograft 

tissues, DNMT1 immunohistochemistry displayed stronger staining in the small cell neuroendocrine 

tissues than the non-SCN (Figure 6D). DNMT1 immunostaining of lung cancer tissue microarrays 

showed similar results with the SCN phenotype having the highest DNMT1 levels (Figures 6E and 

6F).  

 Given the overexpression of DNMTs in small cell neuroendocrine cancers, we were interested in 

defining potential methylation regulated genes shared between lung and prostate SCN cancers. To 

identify common differentially methylated genes between SCN and Non-SCN cancers, we first 

established which gene transcripts were significantly anti-correlated with their methylation status in 

both the human prostate cancer and lung cancer cell line datasets (Beltran et al., 2016; Iorio et al., 

2016). Filtering from these 571 genes (p = 0.04, Fischer’s exact test) for genes that were either 

differentially hypomethylated or hypermethylated in both SCN prostate and lung cancers, we were left 

with 124 genes including known regulators of cell fate decisions (ASCL1, HES6, etc.) (Figure 7A and 

Table S5). Further, we identified a number of hypermethylated genes related to apoptotic processes 

including CASP8, CFLAR, and TNFRSF1A, which is consistent with previous observations 

(Shivapurkar et al., 2002). Functional enrichment analysis of the 124 genes revealed 

overrepresentation of gene sets related to neural developmental and signal transduction (Figure 7B).  

 To gain insight into the activation of the differentially methylated genes in small cell 

neuroendocrine cancers, we generated a transcription program-based interactome using the ARACNe 

algorithm and gene expression data from the human prostate cancer or lung cancer cell line cohorts 



 13 

(Lachmann et al., 2016). We then utilized the Virtual Inference of Protein-activity by Enriched Regulon 

analysis (VIPER) algorithm, which infers protein activity (e.g. transcription factors, epigenetic factors, 

etc.) based on measurements of the transcript targets they regulate (Alvarez et al., 2016). The VIPER 

analysis revealed that the inferred activities of the differentially methylated genes were significantly 

anti-correlated with their methylation status in prostate and lung cancer datasets (Figure 7C). Further, 

ASC signature scores were significantly anti-correlated with methylation status and positively 

correlated with gene expression in the same datasets (Figure S5A). Unsupervised clustering of the 

human prostate cancer and lung cancer cell line datasets using the VIPER-inferred activities of the 

common negatively correlated and differentially methylated genes showed good separation of the 

SCN and non-SCN tumors (Figure S5B). Applying this same activity-based clustering to independent 

datasets of human prostate and lung cancer clinical samples further confirmed that the differentially 

methylated genes generally separate samples into their respective histological phenotypes (Figure 

7D). Thus, these results support that small cell neuroendocrine cancers differentially methylate and 

activate a core group of genes, independent of tissue-of-origin. 

 To interrogate the functional essentiality of methylation regulated genes to small cell 

neuroendocrine biology, we mined a large-scale RNAi (shRNA) loss-of-function dataset that includes 

SCN and non-SCN phenotypes for both lung and prostate cancer cell lines (Tsherniak et al., 2017). 

We focused our analysis on the pan-tissue shared epigenetically regulated genes. Using enrichment 

analysis, we found that the shared hypomethylated genes (lower left quadrant of right panel in Figure 

7A) were more essential for SCN cancers compared to their non-SCN counterpart. Gene set 

enrichment analysis enables identification of a core set of genes termed leading edge genes, which 

account for the enrichment signal in a given phenotype and thus represent biologically important 

candidates (Subramanian et al., 2005). This lung and prostate enrichment analysis resulted in an 

overlapping set of 16 leading edge genes that have shared essentiality in the SCN cancer phenotype 

(Figure 7E). This core essential gene set included genes known to control neural lineage specification 

(NPTX1), cell programming processes (FOXD1), and genes encoding multi-pass cell surface 

associated proteins (CCKBR, MCOLN3, etc.) (Boles et al., 2014; Koga et al., 2014). Though not 
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identified as a shared leading edge gene, ASCL1 was more essential for SCN than non-SCN cancers, 

which is aligned with published work in neuroendocrine lung cancers (Augustyn et al., 2014) (Figure 

S5C). Our observations support that a core set of epigenetically regulated genes are more essential 

for SCN cancers and represent potential targets for the treatment of this stem-like, highly lethal 

phenotype. 

 

Discussion  

 Advancing our understanding of the molecular underpinnings of aggressive malignancies is critical 

for discovering new therapeutic strategies, prognostic signatures, and biomarkers.  Our pan-cancer, 

adult stem cell-directed approach was established to explore a relationship between human stem cell 

transcriptional programs and aggressive epithelial cancers independent of tissue of origin. We 

leveraged three human adult stem cell populations, sorted from three different epithelial tissue types, 

to define a pan-epithelial adult stem cell signature. Through interrogating the TCGA collection of 

epithelial cancers, we found that as epithelial cancers progress to an advanced, aggressive state, 

they activate a transcriptional program common to human epithelial adult stem cells. Furthermore, 

highly lethal, small cell neuroendocrine cancers arising in multiple epithelial tissues converge, in part, 

onto the adult stem cell signature. Taken together, our results support a molecular link between 

human adult stem cells and aggressive cancers from multiple epithelial tissues. The ASC molecular 

phenotype is particularly strong in small cell neuroendocrine cancers and results to an extent from 

epigenetic reprogramming.  

 The observed parallels between stem cells and cancers have led other groups to investigate their 

shared molecular programs. These studies have largely focused on identifying molecular 

commonalities between human embryonic stem cells and human cancers. Both expression gene set- 

and gene module-based analyses have provided evidence that poorly differentiated cancers from 

different tissues activate gene programs found in human embryonic stem cells (Ben-Porath et al., 

2008; Wong et al., 2008). Indeed, our analyses revealed similar results using these published hESC 

signatures. Unlike the previous studies, our approach benefits from the inclusion of a human pan-
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tissue adult stem cell comparator. Our rank-based pan-tissue signature generation approach enabled 

us to define a pan-epithelial adult stem cell transcriptional fingerprint shared in sorted adult stem cell 

populations from three human tissue types. We found that approximately 20-25% of the genes in the 

ASC signature were in common with previously described ESC or ESC-like gene expression 

signatures.  This overlap is anticipated since adult stem cells share a number of features with 

embryonic stem cells including self-renewal. Removing these common hESC and adult stem genes 

from the ASC signature did not substantially influence our results (Figure 5A). Overall, the adult stem 

cell-defined signature generally outperformed embryonic stem cell-defined signatures in identifying 

aggressive tumors with poor survival. Taken together, our findings support that genes specific for 

human epithelial adult stem cells are reflecting an underlying biology in aggressive epithelial cancers 

from a variety of tissue types.  

 Epithelial tissues derived from different developmental lineages can develop malignancies 

exhibiting neuroendocrine differentiation either de novo or in some cases as a treatment-resistance 

mechanism. Strikingly, our TCGA pan-epithelial cancer dataset contained only a handful of 

histologically defined small cell neuroendocrine cancers, yet the adult stem cell signature was 

significantly associated with genetic alterations common to this highly lethal phenotype. The ASC 

signature was consistently enriched in SCN cancers independent of whether they emerged de novo or 

as an adaptive response to treatment implying that this underlying stemness component is 

independent of the cancer’s evolutionary route (Figure 4). Cancer cells-of-origin can prime tumors 

towards specific phenotypes and molecular features of the cancer-initiating cell can be co-opted by 

the corresponding tumor (Latil et al., 2017; Visvader, 2011). This combined with evidence that multiple 

epithelial tissues develop biphenotypic SCN and non-SCN tumors with nearly identical genomic 

alterations supports an epithelial stem-like cell as a potential cell-of-origin for human epithelial derived 

neuroendocrine cancers (Calvalcanti et al., 2017; Cheng et al., 2005; Williamson et al., 2011). Indeed, 

genetically engineered and in vivo regeneration mouse models have provided evidence that epithelial 

cells can be the cells-of-origin for neuroendocrine prostate and lung cancers (Lee et al., 2016; 

Sutherland et al., 2011; Zhou et al., 2007).  
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 For both adult stem cells and SCN cancers, there is an appreciated epigenetic component that 

dictates lineage decisions. The presence of DNMT1 in our adult stem cell signature led us to observe 

that SCN prostate and lung cancers generally overexpressed DNA methyltransferase family members 

with DNMT1 being the most overexpressed (Figure 6). While our work focused on DNA 

methyltransferases, we did observe upregulation of genes encoding PcG proteins including EZH2 in 

the small cell neuroendocrine cancers, which has been described by others (Beltran et al., 2016; 

Byers et al., 2012). The relationship between EZH2 and DNMTs is well established in other cellular 

contexts and warrants additional investigation in SCN cancers and human adult stem cells. Given the 

aforementioned molecular links between adult stem cells and SCN cancers, it’s possible that cancers 

with an inherently high adult stem cell signature are primed to develop into the small cell 

neuroendocrine phenotype following treatment. With the increasing longitudinal sampling and 

molecular profiling of treated tumors in the clinic, it will be informative to 1) interrogate the utility of the 

ASC signature to predict tumors that will become small cell neuroendocrine following treatment and 2) 

further understand the common molecular mechanisms regulating these lethal cancer variants. 

 Our work further uncovered a shared DNA methylation link between small cell neuroendocrine 

cancers from different epithelial tissues. We found that small cell neuroendocrine cancers from 

different epithelial tissues 1) have a highly stem-like phenotype and 2) exhibit common epigenetic 

alterations. Combined DNA methylation and signaling activation analyses provided insight into the 

preferential hypomethylation and activation of neural developmental regulators in SCN cancers. 

Notably, genome-wide functional screening data support that a number of these genes may be 

important for SCN biology. Interestingly, we found components of cell death processes as 

hypermethylated and down regulated in the small cell neuroendocrine phenotype (Figure 7A). Pre-

clinical studies have provided evidence that combination treatment with DNMT inhibitors can sensitize 

SCNLC cells to programmed cell death partially through restoration of caspase-8 expression (Sabari 

et al., 2017). These results further support targeting epigenetic-based tumor lineage commitment to a 

more differentiated state as a potential treatment strategy, analogous to all-trans retinoic acid based 

differentiation therapy in acute promyelocytic leukemia. Indeed, reversing cell differentiation states 
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through the use of epigenetic modifiers has shown success in restoring sensitivity to anti-androgen 

therapy in a pre-clinical model of SCNPC (Ku et al., 2017).  

 In conclusion, our results demonstrate a molecular connection between normal human adult stem 

cells and aggressive epithelial cancers. Disrupting pathways or signaling hubs vital for maintaining 

stem-like attributes is an attractive strategy for controlling tumor growth in numerous cancers (Kreso 

et al., 2014; Takebe et al., 2015). The advancement of targeted cancer therapies has resulted in an 

increased prevalence of therapy-resistant small cell neuroendocrine cancer variants that we find are 

notably enriched for adult stem cell attributes. Thus, our pan-cancer analysis establishes an adult 

stem cell-based transcriptional and epigenetic foundation for identifying additional therapeutic targets 

for the treatment of aggressive epithelial malignancies from multiple tissue types.  
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Main figure titles and legends 

 

Figure 1. Generation of human stem cell molecular signatures. (A) Schematic for generating 

human stem cell gene expression signatures. (B) Rank-rank hypergeometric overlap heatmap plots 

for normal human epithelial cell dataset comparisons used to generate stem cell signatures. Dotted 

circles indicate regions where genes were derived from to generate the signatures. Heatmap scale 

bars = -log10 p-value. (C) Human stem cell signature scores in validation datasets. Intestine stem cell: 

n = 4, Intestine differentiated cell: n = 4, Naive: n = 6, Primed: n = 5. Mean ± SD. See also Figure S1 

and Table S1. 

 

Figure 2. The human adult stem cell signature selects for aggressive epithelial cancer 

phenotypes. (A) Unsupervised clustering of TCGA epithelial cancers according to average stem cell 

signature scores for cancer stages. Scale color key is based on z-scores. (B) Overall survival of ASC 

signature associated samples in TCGA epithelial cancers. ASC High: n = 1097, ASC Low: n = 923. 

(C) P-values and hazard ratios for human stem cell signatures in the pan-epithelial cancer dataset 

after controlling for covariates including cancer types or cancer molecular subtypes. Mean ± 95% CI. 

Dotted line indicates a p-value = 0.05. (D) Hazard ratios for the ASC signature with and without 

removal of proliferation associated signals. Min and max bars represent the 95% CI. (E) Hazard ratios 

for ASC signature enriched samples according to cancer lineage. Red circles outlined in black 



 31 

indicate a p-value < 0.05. Min and max bars represent the 95% CI. (F) Overall survival of ASC 

signature stratified lung adenocarcinoma samples from Takeuchi et al., 2006. ASC High: n = 12, ASC 

Low: n = 13. See also Figure S2.  

 

Figure 3. The ASC signature is associated with epithelial cancers exhibiting genomic 

alterations in developmental regulators and small cell neuroendocrine lung cancers. (A) Copy 

number amplifications (red) and deletions (blue) associated with the ASC signature. Alterations are 

plotted according to the frequency in ASC-associated samples. (B) Notable genes significantly 

associated with ASC signature status. Red denotes genes that are significantly amplified and blue 

bars indicate genes that are significantly deleted. (C) RB1 loss-of-function signature in ASC stratified 

samples. Mean ± SD. (D) Expression of notable genes in ASC signature High and Low samples. 

Mean ± SD. ***P-value < 1.0 x 10-3. (E) Small cell neuroendocrine lung cancer (SCNLC) amplifications 

that are associated with ASC status. All SCNLC amplifications encoding protein-coding genes (Rudin 

et al., 2012) were found within the top 7000 amplifications associated with ASC status as ordered 

according to amplification frequency. Of the 290 common protein-coding gene amplifications found in 

SCNLC and associated with ASC, 181 were within the top 204 amplifications associated with ASC 

status (p-value < 1.0 x 10-100). See also Figure S3, Table S2, Table S3, and Table S4. 

 

Figure 4. Small cell neuroendocrine cancers are enriched for the ASC signature. (A) ASC 

signature in non-small cell neuroendocrine (red) and small cell neuroendocrine (green) samples from 

prostate and lung cancer datasets. Takeuchi: SCNLC n = 9, Non-SCNLC n = 149. CLCGP: SCNLC n 

= 28, Non-SCNLC n = 233. Beltran 2016: SCNPC n = 15, Non-SCNPC n = 34. Beltran 2011: SCNPC 

n = 7, Non-SCNPC n = 30. Mean ± SD. (B) Statistical significance of human stem cell signatures in 

prostate and lung cancer datasets. Dotted line indicates the signed log10 value for a p-value = 0.05. 

HSC: hematopoietic stem cell signature from Eppert et al., 2011. (C) ASC signature scores in 

metastatic small cell neuroendocrine (n = 15) and non-small cell neuroendocrine (n = 90) cancer 

samples from Robinson et al., 2017. Mean ± SD. (D) Enrichment of human stem cell signatures in the 
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metastatic cancer dataset from C. Dotted line indicates the signed log10 value for a p-value = 0.05. (E) 

ASC signature scores in SCN bladder cancer (n = 4) and non-SCN bladder cancer (n = 402) clinical 

samples from Robertson et al., 2017. Mean ± SD. See also Figure S4.  

 

Figure 5. Other molecular signatures do not significantly influence the ASC signature’s 

enrichment in small cell neuroendocrine cancers. (A) Summary of gene signature enrichment in 

the small cell neuroendocrine phenotype for each dataset. Values represent -log10 p-values. 

*Indicates signatures that did not reach a p-value < 0.05 in the respective dataset. Dotted line 

represents the -log10 p-value for p = 0.05. (B) Permutation analysis comparing ASC signature (red 

circle) to random 50-gene signature scores in the indicated prostate and lung cancer datasets. 

***Permutation p-value < 1.0 x 10-4, **P-value = 3.3 x 10-3. 

 

Figure 6. DNMT1 is overexpressed in small cell neuroendocrine prostate and lung cancers. (A) 

Correlation of DNMT expression with ASC signature scores in prostate and lung cancer cohorts. 

Correlation values are shown above the individual bars. (B) DNMT gene expression in prostate and 

lung cancer phenotypes. Mean ± SEM. ***P-value < 0.001. (C) DNMT1 expression in prostate cancer 

cell lines (top, from Cancer Cell Line Encyclopedia), and patient derived xenografts (bottom, LuCaP 

series). LuCaP xenografts: SCNPC n = 4, Non-SCPC n = 20. (D) DNMT1 immunostaining of prostate 

cancer xenograft tissue. Scale bar = 100 μm. (E) DNMT1 immunohistochemistry of lung cancer 

clinical samples. Top row images: scale bar = 500 μm; middle and bottom row images: scale bar = 

200 μm. (F) DNMT1 immunohistochemical staining scores for the lung cancer clinical samples. AD: 

adenocarcinoma (n = 48), SQ: squamous cell carcinoma (n = 49), SCNLC: n = 35. Mean ± SEM. ***P-

value < 1.0 x 10-5. 

 

Figure 7. Small cell neuroendocrine prostate and lung cancers share a core set of differentially 

methylated and activated genes. (A) Schematic for identifying common negatively correlated and 

differentially methylated genes in prostate cancer and lung cancer datasets. From the 571 common 
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negatively correlated genes, 180 were differentially methylated in both datasets (shown in far right 

panel). Of these, 89 were hypomethylated in both datasets (p-value = 1.1 x 10-6) and 35 were 

hypermethylated in both datasets (p-value = 0.003). The number of genes associated with either 

hypermethylation or hypomethylation is in parentheses. (B) Functional categories associated with 

common negatively correlated and differentially methylated genes. (C) Correlation of inferred protein 

activation and signed log10 p-values for differentially methylated genes in the human prostate cancer 

(top) and lung cancer cell line (bottom) datasets. Inferred protein activation was calculated using 

VIPER. Inset heatmap represents the rho correlation value of each gene’s methylation status with the 

ASC signature score. (D) Unsupervised clustering of human prostate cancer (Beltran 2011) and lung 

cancer (CLCGP) datasets using the inferred activation scores of the differentially methylated genes. 

Scale bar represents the z-score. (E) Experimental flow-through (top) to identify commonly 

hypomethylated genes that are essential for SCN cancers. The heatmap reflects each gene’s 

essentiality ranking relative to approximately 17,000 total genes (scale bar). The combined p-value 

(comb. pval.) was calculated using the Stouffer’s combined method. See also Figure S5 and Table 

S5. 

 

STAR Methods 

Contact for Reagent and Resource Sharing 

Further information and requests for resources and reagents should be directed to and will be fulfilled 

by the Lead Contact, Thomas G. Graeber (tgraeber@mednet.ucla.edu). 

 

Experimental Model and Subject Details 

Cell Lines 

LNCaP and 22Rv1 prostate cancer cell lines were grown in RPMI-1640 media supplemented with 

10% fetal bovine serum and penicillin/streptomycin. The MSKCC EF1 small cell neuroendocrine 

prostate cancer cell line was grown in RPMI-1640 media supplemented with 10% fetal bovine serum 

and penicillin/streptomycin (Lee et al., 2018). NCI-H660 small cell neuroendocrine prostate cancer cell 
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line was grown in advanced DMEM/F12 media supplemented with EGF (PeproTech Inc., 10 ng/mL 

final concentration), FGF basic (PeproTech Inc., 10 ng/mL final concentration) and Glutamax (Gibco, 

1X).  

 

Prostate Cancer Xenografts for Immunohistochemistry 

Immunocompromised male mice (strain: NOD.Cg-PRKDCscid Il2rgtm1Wjl/SzJ; 6-8 weeks old) were 

subcutaneously injected with 1.0 x 106 prostate cancer cells from either the LNCaP, 22Rv1, MSKCC 

EF1, or NCI-H660 cell line. Tumor tissue was collected after 1 month and fixed in 10% buffered 

formalin (in PBS) overnight. Tissues were then paraffin-embedded, sectioned to 4 μm thickness, and 

mounted on Superfrost glass slides (Fisher Scientific, Cat#12-550-12). 

 

Method Details 

Data Acquisition and Processing 

We downloaded level 3 RNA-seq data from The Cancer Genome Atlas using the TCGA-assembler 

tool (Zhu et al., 2014). For the complete pan-TCGA epithelial cancer dataset, raw counts from each 

cancer dataset were combined, quantile normalized, and log2 (x+1) transformed. A list of the cancers 

and their abbreviations in the complete pan-epithelial cancer dataset has been included in Table S6. 

For analyses involving individual TCGA cancers, raw counts were upper quartile normalized then log2 

(x+1) transformed. We collected mutation events from MAF files that were downloaded for each 

individual TCGA epithelial cancer from Firebrowse (www.firebrowse.org). GISTIC copy number 

calls for each epithelial cancer were downloaded from Firebrowse and combined to make the pan-

epithelial cancer dataset.  

 Stem cell associated RNA-seq and microarray gene expression datasets were downloaded from 

GSE31257 (Jung et al., 2011), GSE16997 (Lim et al., 2009), GSE68340 (Jung et al., 2015), 

GSE30377 (Eppert et al., 2011), GSE59435 (Theunissen et al., 2014), E-MTAB-2857 (Takashima et 

al., 2014), and GSE76970 (Pastor et al., 2016). The human ESC1 and ESC2 gene set-based 

signatures were acquired from Ben-Porath et al., 2008, and the ESC-like gene set-based signature 
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was from Wong et al., 2008. Processing of the human prostate stem cell and non-stem cell and the 

Beltran et al. 2011 and 2016 human prostate cancer gene expression datasets have been described 

previously (Lee et al. 2016; Smith et al., 2015).  The CLCGP et al. and Takeuchi et al. lung cancer 

gene expression datasets were downloaded from www.uni-koeln.de/med-fak/clcgp and GSE11969, 

respectively. For the combined small cell neuroendocrine lung cancer, lung adenocarcinoma, and 

lung squamous cell carcinoma dataset shown in Figure S4C and Figure 5B, raw counts data was 

downloaded from EGAS00001000925 (SCNLC; George et al., 2015) and Firebrowe for the TCGA 

LUAD and LUSC datasets (The Cancer Genome Atlas Research Network, 2012b; The Cancer 

Genome Atlas Research Network, 2014), upper quartile normalized then combined. LuCaP prostate 

cancer patient derived xenograft (PDX) gene expression data was downloaded from GSE66187 

(Zhang et al., 2015). The prostate cancer mouse model dataset was downloaded from GSE90891 (Ku 

et al., 2017), and the prostate cancer PDX dataset was downloaded from GSE59986 (Akamatsu et 

al., 2015). Metastatic cancer gene expression data from Robinson et al., 2015 (phs000915.v1.p1) and 

Robinson et al., 2017 (phs000673.v2.p1) was obtained from the Database of Genotypes and 

Phenotypes (dbGaP) as FASTQs then processed through the TOIL pipeline with default settings. Raw 

reads were upper quartile normalized then log2 (x+1) transformed.  

 

Immunohistochemistry 

For DNMT1 immunostaining, unstained sections of prostate xenograft tumor tissue or human lung 

cancer tissue microarrays (purchased from US Biomax, Derwood, MD) were deparaffinized, hydrated, 

and subjected to heat-induced antigen retrieval using 40 mM sodium citrate buffer (pH 6.0). Staining 

was performed using an anti-DNMT1 mouse monoclonal antibody (1:450, Abcam) at 4 °C overnight. 

Slides were then stained with a peroxidase polymer anti-mouse Ig reagent (Vector Labs, Cat#MP-

7402) for 60 minutes. Liquid DAB + substrate reagent (Dako, K346b) was added to the slides to 

enable chromogenic detection.  

 

Quantification and Statistical Analysis 
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Generation of Stem Cell Signatures  

To generate the human stem cell signatures, gene naming was standardized across the different 

sequencing platforms and stem cell datasets using the org.HS.eg.db package in R.  Differential 

expression analysis was performed on a dichotomy (stem cell vs non-stem cell for epithelial cell 

comparisons or naive vs primed) within each dataset. For the human epithelial cell datasets, we 

classified the Lin-CD49fHiEpCAM- mammary stem cell (n = 3), the human prostate Trop2+CD49fHi (n = 

10), and the human intestinal EphB2Hi/Med  (n = 6) populations as adult stem cells. The human Lin-

CD49f-EpCAM+ mammary luminal (n = 3), human prostate Trop2+CD49fLo (n = 10), and human 

intestinal EphB2Lo/Neg cell (n = 5) populations were classified as non-stem cells. The EphB2Hi and 

EphB2Med populations and the EphB2Lo and EphB2Neg populations were combined to increase sample 

numbers for the stem cell and non-stem cell group in the analysis. For microarray data, we used 

limma to create a linear model of the log2 transformed data to moderate standard error. For the 

comparison, a ranked signature was generated using the signed log p-values from limma. Ranked 

signatures were intersected to find common genes then compared using the rank-rank 

hypergeometric test (Plaisier et al, 2010). Sets were considered correlated if they had a maximum 

rank-rank log p-value > 80. The top 50 averaged ranked genes were included into the signature for 

the specific human stem cell population. The list of genes for each generated stem cell signature is 

included in Table S1. 

 

Stem Cell Signature Scoring 

To calculate signature scores for each sample, the gene expression z-score for each gene within the 

signature was summed in the respective dataset (e.g. cancer dataset, stem cell validation dataset, 

etc.). The adult stem cell signature was validated in an independent dataset of human intestinal cells 

sorted on the surface marker PTK7 in Figure 1C (PTK7Hi/Med = intestine stem cell, n = 4; PTK7Lo/Neg = 

intestine differentiated cell, n = 4) (Jung et al., 2015). The naive and primed hESC signatures were 

validated in an independent dataset from Pastor et al., 2016, which is RNA-seq based. For the Pastor 

et al., 2016 dataset, raw counts were normalized using the estimateSizeFactors function in the 
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DESeq2 package and then converted to z-scores (Love et al., 2014). P-values were calculated using 

a student’s t-test for stem cell signature validation analyses and analyses comparing stem cell 

signature enrichment in small cell neuroendocrine and non-small cell neuroendocrine cancer samples.  

 For analyses involving tumor staging and grading data, a summary stem signature score was 

calculated using the average stem score across all it constituent tumors. These values were then 

clustered using Euclidean distance and complete linkage using the pheatmap package in R.  P-values 

for staging and grading were calculated using a t-test across all the individual cancers between stages 

1 and 2 versus stages 3 and 4 or grades 1 and 2 versus grades 3 and 4. Results can be found in 

Figures 2A, S2A, S2B. For prostate cancer gleason score and staging analyses, p-values were 

calculated using ANOVA. 

 To remove MYC associated genes from the adult stem cell signature, we identified genes within 

the 50-gene adult stem cell signature that were also in common with one of the following MYC related 

gene signatures from the Molecular Signatures Database (MSigDB) (Hallmarks MYC Targets V1, 

Hallmarks MYC Targets V2, Dang MYC Targets Up, Ben-Porath MYC MAX Targets, and Ben-Porath 

MYC Targets with EBox) or the human MYC module from Kim et al., 2010. After removing these 

genes from the signature, the signature scores were calculated using the expression z-scores for 

each remaining gene in the signature and then summed together. To remove cell cycle and 

proliferation associated genes from the adult stem cell signature, we identified genes within the 50-

gene adult stem cell signature that were also in common with one of the following cell cycle or 

proliferation related databases or gene signatures from MSigDB: Cyclebase (Santos et al., 2015), 

Ben-Porath Proliferation, Ben-Porath Cycling Genes, KEGG cell cycle. To remove ESC associated 

signature genes from the ASC signature, we identified genes within the 50-gene adult stem cell 

signature that were also in common with the Ben-Porath ES_1 signature (for ESC genes) or Wong 

Embryonic Stem Cell Core signature (for ESC-like genes) from MSigDB (Ben-Porath et al., 2008, 

Wong et al., 2008). The signature scores were calculated using the remaining genes with the same 

method as described for the MYC removed stem cell signatures. P-values were calculated using 
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student’s t-test. P-values for independent datasets were combined using the Fischer method with a 

chi-squared statistic. Results can be found in Figure 5A.  

 To assess the robustness of signature scores, we designed a permutation test of random 50-gene 

signatures (10,000 permutations) using the mean difference between the small cell neuroendocrine 

and non-small cell neuroendocrine phenotypes in the indicated prostate or lung cancer datasets in 

Figure 5B. Permutation p-values are the percentage of normalized mean difference (NMD) scores 

using random 50-gene signatures at or more extreme than the observed NMD score using the adult 

stem cell signature. Results are presented in Figure 5B. The George and TCGA combined lung 

cancer dataset described and shown in Figure S4C and Figure 5 are the same dataset. 

 

Prostate Cancer Staging Prediction 

Using ordinal logistic regression two models based on “gleason score” alone or “gleason plus ASC 

score” were compared. The p-value was derived using a likelihood ratio test between the full and 

restricted model (Hoadley et al., 2014). Ordinal logistic regressions were performed using polr in the 

MASS package in R. Gleason was ordered via (6, 7, 8, 9, 10) and stage (T2a, T2b, T2c, T3a, T3b, 

T4). 

 

Survival Analysis 

We used the pan-epithelial cancer gene expression dataset and stratified samples into High signature 

score and Low signature score groups based on +/- 1 standard deviation from the mean signature 

score. We used the R package survival and p-values were calculated using Cox regression with 

covariates as cancer type, age, and gender for “Cancer Types” or molecular subtypes (52 subtypes 

defined from the compendium of TCGA publications; e.g. PAM50 subtypes in breast cancer, mRNA 

subtypes in bladder cancer, etc.), age, and gene for “Cancer Subtypes.” Results from these analyses 

are presented in Figures 2B and 2C. 

 To control for cell cycle and proliferation, we developed a proliferation signature using genes 

found in one of the following databases or gene signatures from Cyclebase or MSigDB: Ben-Porath 
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Proliferation, Ben-Porath Cycling Genes, KEGG cell cycle. We then removed genes from the adult 

stem cell signature that were in common with our proliferation signature, calculated the signature 

score as described in the Stem Cell Signature Scoring section (in Methods), stratified samples into 

High and Low, and performed the survival analysis. The results from this analysis are shown as 

“Proliferation genes removed” in Figure 2D. We also removed samples that were classified as both 

adult stem cell signature High and proliferation signature High and performed the survival analysis 

using the remaining adult stem cell signature High samples. The results from this analysis are shown 

as “Proliferation high samples removed” in Figure 2D. To calculate adult stem cell signature 

associated survival within individual cancers, samples were stratified into High and Low groups based 

on +/- 1 standard deviation from the mean signature score within that respective cancer dataset. 

Hazard ratios and log ranked p-values were calculated using the R package survival. 

 

Stem Cell Signature Associated Genomic Alterations 

To identify mutations associated with the stem cell signature, we created 2x2 contingency tables with 

mutational status (mutated vs non mutated) and stem signature status (samples +/- 1 standard 

deviation of the mean score in the pan-epithelial cancer gene express dataset) and performed a 2-

way hypergeometric test for each gene. Genes were considered mutated if the mutation was non-

synonymous (all mutations not classified as “SILENT” or “RNA”). An analogous analysis was 

performed using copy number alterations and stem cell signature status. We compared high-level 

amplifications (GISTIC = 2) to diploid, shallow, and deep deletions (GISTIC of 0, -1, -2) for each gene. 

For copy number deletions, we compared deep deletions (GISTIC = -2) to diploid, shallow, and high-

level amplifications (GISTIC of 0, 1, 2) for each gene. P-values were corrected for multiple hypotheses 

using the Benjamini-Hochberg method. 

 To estimate the significance of common amplifications found in small cell neuroendocrine lung 

cancers that are also associated with ASC status, we performed a hypergeometric test using a list of 

SCNLC amplifications from Rudin et al., 2012. Among the population of all coding genes (~18,000), 

290 SCNLC protein-coding gene amplifications were found within the list of amplifications associated 
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with ASC status. Of those 290 protein-coding genes, 181 were within the top 204 amplifications 

associated with ASC status, as ordered by amplification frequency. We chose the cutoff at the top 204 

amplifications since this is where we observed the largest change in ASC associated amplification 

frequency between two successive SCNLC associated amplifications.  

 

DNMT1 Expression Analysis 

DNMT isoform expression was obtained from the indicated datasets in Figure 6 and as described in 

Data Acquisition and Processing (in Methods). P-values associated with differential DNMT isoform 

expression were calculated using student’s t-test for prostate and lung cancer datasets. DNMT1 

immunostained lung tissue microarrays were scored by a trained pathologist. DNMT1 immunostain 

scoring (Q-score) was calculated by multiplying the intensity of the staining (1-3) by the percentage of 

cells stained. The number of samples scored for each lung cancer phenotype is indicated in the 

legend for Figure 6. The maximum Q-score is 300 and tissue microarray cores that were negative for 

DNMT1 staining were given a Q-score of 0. ANOVA analysis was performed using Graphpad Prism 5. 

 

DNA Methylation Analysis 

Lung cell line 450K array data was obtained in processed format from GSE68379 (Iorio et al., 2016). 

Prostate cancer reduced representation bisulfite sequencing (RRBS) data was obtained from dbGaP 

(phs000909.v1.p1; Beltran et al., 2016) and aligned to hg38 using bwa-meth (Pedersen et al., 2014). 

Methylation levels were expressed as β-values, indicating the overall proportion of methylation at 

each particular site [methylated/(methylated+unmethylated)]. For downstream analysis, site-level data 

was averaged to gene-level methylation data, using either the IlluminaHumanMethylation450k.db 

package to provide mappings between probe IDs and genes, or using track files from the UCSC table 

browser to map CpG sites to gene locations. All subsequent analyses were performed in R. To 

compare the relationship between methylation and expression at different genomic locations, site-

based measurements were averaged to gene level for various gene regions including locations 0 -

1500 bp upstream of the transcription start site (TSS1500, promoter region), TSS1500 and 1st exon, 
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1st exon alone, and gene body alone. Spearman’s correlation was calculated between methylation 

and expression data for each gene using the R function cor.test and samples where both types of 

data were available. Methylation measurements covering TSS1500 and 1st exon were used for further 

analysis because it yielded measurements for more genes than other genomic locations tested and 

had a high proportion of genes with negative methylation-expression correlation, as previously 

appreciated and reported (Brenet et al., 2011; Schultz et al., 2015). Spearman’s rank correlation test 

was used to filter for genes with significant negative correlation (p-value < 0.05). Using this filtering 

criteria, we were left with 4387 genes for the lung cancer cell lines dataset and 1420 genes for the 

human prostate cancer dataset. The overlap of these two sets resulted in 571 commonly negatively 

correlated genes.   

 To calculate differentially methylated genes, Wilcoxon rank-sum test was performed for each 

gene. Differentially methylated genes were called for p-value < 0.05. Genes were classified into 

hypermethylated and hypomethylated using the Hodges-Lehman estimator, which is a nonparametric 

measure of the location parameter. To calculate the direction of the shift in ranks between the two 

groups for each gene, all the possible differences between the samples classified as small cell 

neuroendocrine and samples classified as non-small cell neuroendocrine were calculated. The sign of 

the median of all the pairwise differences was used to determine the direction of the location 

shift. This was implemented using the R function wilcox.test. From the 571 common negatively 

correlated genes, 180 were consistently differentially methylated in the prostate and lung cancer 

datasets. Of these, 89 were hypomethylated and 35 were hypermethylated in the small cell 

neuroendocrine phenotype (Table S5). 

 To identify overrepresented gene sets associated with negatively correlated and consistently 

differentially methylated genes in the small cell neuroendocrine phenotype, we utilized the list of 124 

consistently differentially methylated genes identified by the Wilcoxon rank-sum test. Hypomethylated 

or hypermethylated genes were input into the PANTHER overrepresentation test (release 4-13-17, 

Bonferroni correction applied) (Mi et al., 2013). 
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VIPER Analysis 

ARACNe-AP, a computationally tractable version of the original ARACNe framework, was used to 

reconstruct gene regulatory networks (Lachmann et al., 2016). For each individual prostate and lung 

cancer dataset, networks were built using the RNA-seq data from the 124 genes whose expression 

was negatively correlated with methylation status and were consistently differentially methylated 

between small cell neuroendocrine and non-small cell neuroendocrine phenotypes. The 124 genes 

are included in Table S5. ARACNe reconstructs networks using multiple bootstraps and an 

information-theoretic framework that calculates the mutual information (MI) between all pairs of 

features. For each bootstrap, interactions are pruned if they do not exceed a MI threshold dependent 

on the number of samples, or if they are considered indirect via a first order data processing inequality 

based filter. Using a poisson distribution based significance calculation on the number of times an 

interaction is detected across the multiple bootstraps, a consensus network is built. The algorithm was 

run using 100 bootstraps, a threshold p-value of 1.0 x 10-8, and bonferroni corrected q-values of 0.05 

for the consolidation step. 

  Normalized enrichment scores (NES) for creation of ASC correlations were created using multi-

sample VIPER with the 124-gene regulon on the small cell neuroendocrine to non-small cell 

neuroendocrine dichotomy, including only genes with ten or more targets. For each regulator-target 

gene interaction, the regulon consists of two terms: 1) the likelihood of a given regulator-target mode 

of regulation (MoR) is determined using a 3 Gaussian mixture model (positive, negative, or no 

regulation) from the distribution of regulator-target spearman correlations across the whole network 

and 2) the regulator-target interaction confidence term which is the mutual information value from 

ARACNe. A rank based enrichment test on the dichotomy takes into account the MoR, the interaction 

confidence term, and was compared to a sample-shuffled null model. 

 For clustering, computational inference of upstream regulator activity was performed using a 

single sample version of VIPER on the 124 gene networks from ARACNe. Only those genes that were 

shared across the Beltran et al. 2011, Beltran et al. 2016, CLCGP et al., 2013, and the lung cancer 

cell lines (Iorio et al., 2016) datasets, and included ten or more targets were used, which left 80 gene 
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activities. Unsupervised clustering (correlation, complete linkage) was performed using the z-

normalized activities of these 80 genes. 

 To detect likely mischaracterized samples in the Beltran et al. 2016 dataset, a linear discriminant 

analysis (LDA) was performed using the integrated neuroendocrine scores and androgen receptor 

scores from Beltran et al., 2016. Leave one out cross validation was used to predict each sample 

using the remaining data. Two samples NEPC samples WCMC7520 and WCMC192 were classified 

as non-small cell neuroendocrine by LDA and removed from the ARACNe and VIPER analyses. 

WCMC7520 was also removed from ARACNe and VIPER analyses involving the Beltran et al., 2011 

prostate cancer dataset. 

 

Small Cell Neuroendocrine Cancer Gene Essentiality 

We downloaded genome-wide, shRNA loss-of-function screening data from Project Achilles (v2.20.2; 

https://portals.broadinstitute.org/achilles) to determine which commonly methylated regulated genes 

that small cell neuroendocrine cancers would have preferential dependency for. The differential 

essentiality of each gene for lung small cell neuroendocrine vs non-small cell neuroendocrine was 

calculated using a directionally signed log t-test p-value. Since prostate only has one SCN cell line, 

the differential gene essentiality was determined by calculating the mean and standard deviation for 

each gene in the non-small cell neuroendocrine prostate cell lines (n = 6) then z-normalizing the small 

cell neuroendocrine cell line, by gene, using these values. All genes (Approximately 17,000) were 

ranked according to their essentiality for small cell neuroendocrine cancers compared to the all 

samples in each dataset. GSEA was performed in classic mode using the commonly hypomethylated 

SCN genes described in (89 genes; Table S5) with the differential gene essentiality list for prostate 

and lung cancer cell lines. Overlapping lung and prostate cancer leading edge genes, which were 

outputted from the GSEA analysis, were identified and shown in Figure 7E. We chose to focus on 

leading edge genes since these genes contribute the most to a given gene set’s enrichment and thus 

represent biologically important candidates. 
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Supplemental table titles and legends 

Table S2. Copy number amplifications significantly associated with human stem cell signatures (q-

value < 0.05), Related to Figure 3.  

 

Table S3. Copy number deletions significantly associated with human stem cell signatures (q-value < 

0.05), Related to Figure 3. 

 

Table S5. Common negatively correlated and differentially methylated genes in small cell 

neuroendocrine prostate and lung cancers, Related to Figure 7. 

 

 



Key Resources Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Mouse anti-human DNMT1 Abcam Cat#ab13537; 
RRID:AB_300438 

Biological Samples   

Human lung cancer tissue microarrays US Biomax Cat#HLug-
NSCLC150PT-01; 
Cat#BC04002a; 
Cat#LC1009 

Chemicals, Peptides, and Recombinant Proteins 

Anti-mouse Ig reagent Vector Laboratories Cat#MP-7402; 
RRID:AB_23336528 

Dako Liquid DAB+ substrate chromagen system Agilent Cat#K3468 

FisherBrand Superfrost Plus Microscope Slides Thermo Fisher 
Scientific 

Cat#12-550-15 

Gibco Advanced DMEM/F12 Thermo Fisher 
Scientific 

Cat#12634010 

Gibco RPMI Medium 1640 Thermo Fisher 
Scientific 

Cat#11879020 

Penicillin/Streptomycin Omega Scientific Cat#PS-20 

Fetal Bovine Serum Omega Scientific Cat#FB-06 

Human FGF Basic PeproTech Cat#10018B 

Human EGF PeproTech Cat#AF-100-15 

Gibco Glutamax Thermo Fisher 
Scientific 

Cat#35050061 

Experimental Models: Cell Lines 

LNCaP ATCC RRID:CVCL_1379 

22Rv1 ATCC RRID:CVCL_1045 

NCI-H660 ATCC RRID:CVCL_1576 

MSKCC EF1 Lee et al., 2018 N/A 

Experimental Models: Organisms/Strains 

Mouse: NOD.Cg-PRKDCscid Il2rgtm1Wjl/SzJ Jackson Laboratory JAX:005557 

Software and Algorithms 

TCGA-assembler Zhu et al., 2014 PMID:24874569 

org.HS.eg.db N/A http://bioconductor.o
rg/packages/org.Hs.
eg.db/ 

BWA-meth Pedersen et al., 2014 N/A 

ARACNe-AP Lachmann et al., 2016 PMID:27153652 

VIPER Alvarez et al., 2016 PMID:27322546 

PANTHER NA http://www.pantherd
b.org/; 
RRID:SCR_004869 

pheatmap N/A https://cran.r-
project.org/web/pack
ages/pheatmap/ 

limma N/A RRID:SCR_010943 

DESeq2 Love et al., 2014 RRID:SCR_015687 

Rank-rank hypergeomtric overlap Plaisier et al., 2011 http://systems.crump
.ucla.edu/rankrank/r
ankranksimple.php; 
RRID:SCR_014024 

Key Resource Table



Survival analysis-Survival N/A https://cran.r-
project.org/web/pack
ages/survival/index.h
tml 

R statistical package N/A http://www.r-
project.org/; 
RRID:SCR_001905 

Prism 5 Graphpad software https://www.graphpa
d.com/scientific-
software/prism/;  
RRID:SCR_001905 

Gene Set Enrichment Analysis Subramanian et al., 
2005 

RRID:SCR_003199 

IlluminaHumanMethylation450k.db N/A http://bioconductor.o
rg/packages/ 
IlluminaHumanMeth
ylation450k.db/ 
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