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Disease progression is often facilitated by protein-protein interaction. Reports of 

commandeering host protein mechanisms by cancer and viral proteins has armed scientist 

with novel drug targets. The challenge arises when attempting to quantitatively evaluate 

the variety of covalent and non-covalent interactions that occur during disease 

progression. This thesis covers the development of a quantitative Förster resonance 

energy transfer (qFRET) assay for the evaluation of covalent SUMOylation of viral 

proteins and non-covalent interaction of programmed cell death 1 (PD1) with 

programmed cell death ligand 1 (PDL1).  

The interaction of PD1 and PDL1 results in the negative regulation of T cell 

immune response and is reported to be used by cancer cells to circumvent the immune 

checkpoint mechanism. Immune checkpoints inhibitors, that target PD1-PDL1 

interaction, have been the focus for cancer therapies in the past decade, but recent 
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development of novel treatments has plateaued. Reported here is a FRET based reporter 

for the in vitro characterization of the PD1 and PDL1 interaction. The results of the work 

produced a qFRET based KD of full-length custom codon optimized PD1 and PDL1 of 

0.82 µM with standard error of 0.13 µM and determined a qFRET based Ki of 

PermbrolizumabTM to be 1.14 nM with a 95 % confidence interval of 0.94 to 2.14 nM. 

The remainder of the work focuses on the development of an in vitro 

SUMOylation of viral proteins with qFRET as a reporter, in combination with mass 

spectrometry to identify SUMO1 modified lysine sites. The qFRET assay for the in vitro 

SUMOylation of IAV-Matrix Protein 1 in tandem with MS, resolved 5 SUMO1 

modification. The evaluation of the novel K21 modification proved fatal to the viral 

pathogenesis, and M1 K242R mutant reported diminished IAV infectivity. The qFRET 

based in vitro SUMOylation of severe acute respiratory syndrome coronavirus 2 

Nucleocapsid protein (SARS-CoV- 2 N) coupled with MS analysis identified 4 novel 

SUMO modified lysine residues. The evaluation of identified lysine in vitro and in cell 

mutant studies found lysine 61 and 65 to dimmish SUMOylation activity and modulate 

cellular translocation.  

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

Table of Contents 

Chapter 1 : Introduction 

1.1 Quantitative Protein-Protein Interaction Detection     .p1 

1.2 1.2 Technological Advancements in Detection of Protein-Protein Interaction .p3 

1.3 qFRET Platform        .p6 

1.4 CyPet and YPet a FRET Pair for Reporting Protein-Protein Interaction. .p8 

1.5 Quantitative FRET Signal Processing by Cross-Channel Analysis  .p10 

1.6 qFRET Assay for the Assessment of Programmed Death 1 (PD1)  

and Programmed Death Ligand 1 (PDL1) Interaction    .p14 

1.7 SUMOylation Post Translation Modification     .p17 

1.8 Current Methods for Investigating SUMOylation of Viral Proteins   .p20 

1.9 In vitro qFRET SUMOylation assay for the Identification  

of  Modified  Lysines Using  Mass Spectrometry    .p26 

 1.10 References         .p28 

Chapter 2 : The Development of QFRET Based Assay for The Interaction of PD1 

and PDL1 

2.1 The Biological Impact of PD1 interaction with PDL1   .p32 

2.2 PD1-PDL1 qFRET Assay Principle and Design    .p34 

2.3 qFRET dissociation constant KD      .p37 

2.4 qFRET competition assay        .p39 

2.5 Results         .p40 

2.6 Discussion         .p53 

2.7 Materials and Methods        p.55  

2.8 References         .p64 



ix 

 

Chapter 3: In-Vitro qFRET Assay for SUMOylation of IAV-M1 Protein coupled with MS 

Identification of SUMO1 modified lysine 

3.1 Influenza A Virus Life Cycle      .p66 

3.2 Post Translation Modification of Influenza A Virus Matrix 1 Protein  .p68 

3.3 In-Vitro SUMOylation of YPet-IAV-M1 with qFRET Reporter  

Design and Setup         .p72 

3.4 qFRET Assay Fluorescent Signal Acquisition and Processing   .p74 

3.5 Results          .p75 

3.6 Discussion          .p86 

3.7 Materials and Methods        .p89 

3.8 References          .p102 

Chapter 4: In vitro qFRET Assay for the SUMOylation of SARS-CoV-2 Nucleocapsid 

protein coupled with MS Identification of SUMO1 Modified Lysines 

4.1 SARS-CoV-2 Life Cycle        .p104 

4.2 SARS-CoV-2 Nucleocapsid Protein and Host Proteome Interaction   .p109 

4.3 SUMOylation Enzymatic Cascade of N Protein     .p119 

4.4 qFRET Assay for the In-Vitro SUMOylation of N protein    .p113  

4.5 Results         .p115 

4.6 Discussion         .p130 

4.7 Methods and Materials       .p132 

4.8 References          .p135 

 

 



x 

 

Chapter 5 

5.1 In vitro qFRET Based HTS Assay for Inhibitors of Atg4A   .p139 

5.2 QFRET Assay Design for Observing Atg4A Activity    .p141 

5.3 Motivation for the HTS development for PD1-PDL1 Interaction  

Inhibitors          .p142   

5.4 Cypet-PD1 and YPet-PDL1 Fusion Protein Design   .p143  

5.5 Measuring EmFRET         .p144  

5.6 Z’ Qualification Assay Setup       .p145 

5.7 Results          .p148  

5.8 Discussion          .p151 

5.9 Materials and Methods        .p152 

5.10 References         .p156  

Chapter 6  

6.1 Conclusion and Future Perspectives     .p157 

Appendix A :  Curriculum  Vide        .p159 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

 

List of Figures 

 

Figure 1          .p9  

The predicted FRET Efficiency Vs R plot with green pattern highlighting the range in R 

in nanometer of detectable FRET response. Illustration of FRET pair CyPet (blue barrel) 

and YPet (yellow barrel) fused to an interaction pair of interest 

 

Figure 2          .p10 

Principles of "three filter cube FRET". Illustrated the embedded crosstalk from donor and 

acceptor pairs within the FRET signal. 

 

Figure 3          .p19 

SUMOylation cascade illustrated here with each step in the cascade. A.) The Pre-SUMO 

is processed by the SENP enzyme, and the di-glycine motif is exposed. B.) The E1 

Enzyme activating Complex 1, a heterodimer, UBA2 and AOS1, are adenylated and 

SUMO attaches to UBA2 with a temporary thioester bond between SUMO-Gly98 and 

UBA2-Cys173. C.) E1 shuttles SUMO onto E2 conjugating enzyme, onto the Cys93. D.) 

The E3 ligase shown to have affinity to the target protein, and the RING domain, shown 

in purple, is a key component in the mechanism of SUMO attachment to the target 

protein. E.) Target protein is SUMOylated, by covalent attachment to a lysine residue at 

the di-glycine motif. PDB images were converted to illustration using the online server  

illustrate. 

 

Figure 4          .p24 

Predicted Trypsin digestion of C-terminal  wildtype SUMO1 K88 and mutant SUMO1 

R95. Other potential cleavage sites noted with gray font. Prediction to made by peptide 

cutter ExPASy. 

 

Figure 5           .p33 

A.)The interaction of PD1 with PDL1 or 2 exhausts the T-Cell receptor (TCR) response 

and allows the cancer cells to survive. The T cell surface receptor contacts the major 

histocompatibility complex I surface protein. The PD1 also interacts with the PDL1 

protein, and downstream signaling by TCR is inhibited by the recruitment of SHP-2. In 

contrast to when PD1 does not interact with PDL1 or 2 the SHP-2 is not recruited and 

does not inhibit the TCR response. B.) The anti-PD1 or anti-PDL mAbs block PD1 and 

PDL from interacting. PD1 can no longer recruit SHP-2 and the T-Cell activates to 

destroy the cancer cell. 

 

Figure 6           .p36  

A.) qFRET design is the donor fluorescent protein CyPet fused to OptPD1, and acceptor 

fluorescent protein YPet fused to OptPDL1. B.) Data is collected at three wavelengths, 

used to extract the EmFRET signal at 530 nm, directly related to the interaction of PD1 to 

PDL1. EmFRET is calculated by subtracting the fluorescent protein emission crosstalk at 



xii 

 

the FRET wavelength shown. C.) EmFRET equations is used to extract the EmFRET signal, 

and D.) Alpha α ratio for the donor is calculated by dividing the emission at 530 nm by 

emission at 475 nm when excited at 414 nm. The β parameter is determined by diving the 

emission of YPet at 530 nm when excited at 414 nm over the emission at 530 nm when 

excited by 475 nm 

 

Figure 7           .p41 

The scatterplots shown with standard deviation T bars, and average denoted with a line. 

Molecular Devices SpectraMax3 was used to measure the fluorescence response for both 

acceptor and donor molecule. 

 

Figure 8           .p43  

Overall relative codon adaptation frequency plotted for both wild type and selected codon 

for E. coli. The solid line represents the overall CAI score for wild type and the optimized 

sequence. The optimized PD1 sequence shifted the score to 0.9 from 0.6 in E. coli plot 

line in pink and black respectively Figure 8A. The results of optimization of PDL1 

shifted the score similarly from 0.6 in E.coli to 0.9, plot in black and green respectively. 

(Figure 8B). The plots were generated in GraphPad Prism5TM, and the scores were 

calculated in R. 

 

Figure 9           .p44  

Coomassie stain of SDS-PAGE of samples taken from various steps in the purification 

process. The uninduced is the cell pellet, taken from starting culture. The induced is cell 

pellet taken from the overnight expression. The soluble and insoluble fractions are taken 

after cell lysis. The rescued protein is the refolded externa domains.  

 

Figure 10           .p46 

The aggregation dye ProteoStat by Enzolifesciences is used to report protein aggregation, 

it is added to equivalent concentration of protein across each buffer at a 1:50 volumetric 

ratio, of dye to protein solution, using the soluble fraction purified YPet-OptPDL1 as 

control. Excitation at 550 nm and emission at 600 nm A. The CD plots are of the refolded 

proteins with soluble protein as control. The plots were made on GraphPad Prism5TM
.   

 

Figure 11           .p47  

KD measurement was done with CyPet-OptPD1 held constant at 0.5 µM and titration of 

the acceptor, YPet-OptPDL1 and YPet only, from 0 – 3.0 µM. The extracted EmFRET was 

plotted against the titration of total YPet-OptPDL1. Equation 16 was used to fit the data 

from both assays. GraphPad Prism 5TM is used for resolving KD showing the resulting 

non-linear regression fit line in the plot. 

 

Figure 12           .p49  

The qFRET Refolded  was setup as the constant and the titration of CyPet-hPD1 from (0 

– 2.5). The extraction of EmFRET from the assay is plotted against the total concentration 

of CyPet-hPD1. PrismTM is used for the non-linear regression solution, and all 



xiii 

 

measurements were taken on Molecular Devices Flexstation II 384 using Software Max 

Pro 7.0TM
. 

 

Figure 13           .p51 

qFRET Competition assay was setup with constant concentration of the substrate and 

titration of inhibitor. The fit results are tabulated next to the fit plot for A.) the response 

to the addition of GST-OptPD1 fitted to equation 17 for IC50 and both equation 17 and 19 

for Ki estimation (Blue Plot). B.) The response to the addition of Pembrolizumab is fitted 

to equation 17 for IC50 and both equation 17 and 19 for Ki estimation (Light Green Plot). 

The measurements were taken on Molecular Devices SpectraMax 3TM and GraphPad 

PrismTM is used for non-linear regression fit for IC50 and Ki.  

 

Figure 14           .p67 

Illustrated viral particle organization of influenza A virus (A.). N protein compacts the 

vRNA and interacts with the M1 protein lined along the inner membrane. vRNP is 

illustrated as the complex of PA, PB1, and PB2 B.) vRNA shown for the 8 RNA 

segments, PB1 segment codes for PB1 and PB1-F2, PA codes for PA and PA-X, M1 

codes for M1 and M2, NS codes for NS1 and NS2, and the rest are not spliced. C.) The 

vRNA is compacted around the N proteins that interact with M1, the super structure of 

the 8 segments is observed to have a 1+7 super structure shown here. The organization of 

the vRNP complex is not confirmed to be conserved. Created with BioRender.com  

 

Figure 15           .p71 

M1 a 252 amino acids protein has several observed PTMs. The N-terminal domain (1 – 

87 aa) defined as the nuclear export signal, the dimerization domain (87-165 aa) reported 

to be part of the M1 oligomerization, and the c-terminal domain (166 – 252 aa ) recently 

reported to also aid in oligomerization and stability of macro structure. The ubiquitination 

of M1 shown at positions 102 and 104 are found within the nuclear localization signal 

sequence. The phosphorylation at Y132 is found within the dimerization domain. The 

NEDDylation and SUMOylation modification are found within the C-Terminal domains.  

 

Figure 16           .p74 

Illustration of SUMOylation enzymatic cascade with qFRET assay components. The 

activation of the assay occurs with the addition of ATP into the reaction mixture. The 

CyPet-SUMO1 shown in green binds to E1 activating enzyme shown in complex (3KYC) 

as a temporary thioester bond at Cys173 with Gly98 and transfer to E2. The E2 

conjugating enzyme UBC9 (2PE6), shown in dark red, with the temporary thioester bond 

on the catalytic cysteine 93. The E3 ligase PIAS1 shown as a purple rectangle with the 

RING domain (1V66) recruits the target protein to E2. The RING domain also mediate 

the isopeptide bond of SUMO gly98 onto the lysine of the target protein. The FRET pairs 

are shown as cylinders, donor Cypet as a blue cylinder and YPet acceptor as a yellow 

cylinder. The FRET phenomenon occurs as a reporter of SUMO1 binding onto the target 

protein. 

 



xiv 

 

Figure 17           .p77 

In-Vitro SUMOylation of YPet-1AV-M1, acceptor and donor at 1:4 ratio fluorescent 

spectrum was measured across wavelength 450 - 550 nm, with 414 m excitation (A). The 

gray line is the SUMOylation reaction without ATP, and the black line is the reaction 

with ATP. B.)EmFRET monitored over time with acceptor and donor at 1:2 ratio C.)The 

in-vitro SUMOylation of IAV YPet-M1 with and without E3 ligase PIAS1, and with and 

without ATP at qFRET Optimized concentrations. The reaction is running under three 

conditions, without ATP, without E3, and one standard. An unpaired two tailed t-test was 

done across each reaction. p<0.0001***,p<0.005**   

 

Figure 18           .p78 

SDS-PAGE coomassie stain of SUMOylation reaction for MS. Lane 1 is no ATP, Lane 2 

is no E3 ligase, and Lane 3 is the standard reaction. CyPet-SUMO1 band shifts to target 

protein, leaving low concentration of unbound CyPet-SUMO1(A). B.) Three different 

digestions were done on the SUMOylated YPet-IAV-M1. The expected cuts from each 

are provided with dash lines. 

 

Figure 19           .p80 

Identified lysine modification on residues A.)Lysine 21, with identified GluC cut on 

SUMO1,B.)lysine 187 with identified Chymotrypsin cut on SUMO1 peptide, C.)Lysine 

230 with identified GluC cut on SUMO1, D.)lysine 242 with GluC cut on SUMO1, and 

E.)lysine 252 with GluC cut  on SUMO1. The alignment and spectrums are taken from 
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the graph. B.) The cytotoxic assay taken over a period of 48 hours post infection. The 

drop in signal was observed at 36 hours, for M1 wild type, M1 K187R and slightly for 
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ImmunoStains of M1 with Alexa 532 nm stain and nuclear stain with Hoechst emission at 

488 nm. The two channels are stacked in ImageJ and analyzed for intensity across the cell 

in both channels and plotted. 
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ImageJ is used to process the images. 
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SARS-CoV-2 pathogenesis, viral entry by S and ACE interaction, translation of vRNA, 

and expression of NSP proteins. NSP proteins inhibit mRNA translocation from the 

nucleus to cytosol to inhibit anti-viral response and cleave host RNA in the cytosol. The 
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yellow lines (30E). Spectrums were generated by Thermofisher Proteome DiscovererTM  
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Chapter 1: Introduction 

1.1 Quantitative Protein-Protein Interaction Detection 

We have reached another historic milestone for human genome sequencing, the 

historic 2003 report of human genome sequence which excluded regions of repeating 

sequences was updated May 2021.1 Began with a small group of scientist part of the 

“Telomere-to-Telomere consortium” utilized a multifaceted approach to overcome the 

technological hurdles that came with sequencing region of human genome with repeating 

base pairs (bp) sequences longer than the read fragment.1  Repeating DNA sequences are 

an inherent vulnerability in current DNA sequencing technology. Each technology 

fragments the genome into shorter DNA fragments, if the repeating region is longer then 

the fragment then the genome alignment has difficulty constructing the whole genome.  

Only through the combination of multiple sequencing technologies, specifically 

the longer read lengths, HiFi PacBio (read length 20K bp), Nanopore (read length 1K 

bp), and Illumina sequencing (read length 251-500 bp), the group was able to sequence 

and align the final 8 percent of the Human genome in the X chromosome. This feat 

provides evidence of the technological challenge faced when approaching the magnitude 

of problem as sequencing the human genome. Similarly, the proteomics community has 

reached a major milestone in identification of up to 90 percent of the human proteome.2   

The human proteome project (HPP) established recently in comparison to Human 

genome project, HPP began in 2010, set out to construct a blueprint database of the 

human proteome network. In 2020 the project reached a milestone in the blueprint 

covering more than 90 percent of the human proteome. This set of data consisted of the 
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combination of mass spectrometry (MS) and anti-body pull down accumulated by labs 

across the globe.2,3 The overall impact of sequencing the human genome and the near 

completion of identifying all the proteome are observed throughout personalized 

treatment of disease such as cancer and is still an uphill battle. The near completion of 

these two major projects is the starting line on the path to understanding the relationship 

of genotypes to phenotypes.   

 The breakthroughs in sequencing technology and MS have produced a greater 

understanding in genomic and proteomic identification of our biological network. 

Lessoned learned from the investigations of prediction of genotypic mutation to 

phenotype leads us to the natural transition to the interactome.4 In cancer models 

evidence of genomic mutations that are a marker for cancer subtypes are an amazing feat 

and are found to be the starting line in understanding the mechanism of this disease’s 

progression.5 At this starting line, our progress now moves towards understanding the 

mechanistic outcomes of genotypic mutations.  

The bottle neck in the transition from the proteome to interactome is the 

technological and biological challenges with characterization of protein-protein 

interactions. This work consists of the development of a protein-protein interaction 

technology platform based on Förster Resonance Energy Transfer (FRET). Quantitative 

Förster Resonance Energy Transfer (qFRET) a singular platform that provides kinetic 

constants such as equilibrium dissociation constant, the enzymatic constants like kcat/Km, 

and can also be adapted for characterization of enzymatic inhibition and determine Ki. 

The following set of work showcases the development of a qFRET approach to 
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characterize non-covalent receptor and ligand interaction and their response to inhibitors. 

The qFRET platform also adapted for evaluating the dissociation constant and covalent 

binding events of the SUMO modification in heterologous proteins from viral proteome.  

1.2 Technological Advancements in Detection of Protein-Protein Interaction  

A brief overview of PPI characterization technology highlights the advancements 

made in the characterization of this type of interaction across platforms and presents 

evidence of advantages of qFRET technology.  The two-alternative set of quantitative 

protein-protein interaction platforms are Surface plasmon resonance (SPR) and 

Isothermal titration calorimetry (ITC). The summaries below provide an overview of the 

two alternative platforms and highlight the advantages and disadvantages of the 

platforms.   

Surface Plasmon Resonance (SPR) Biosensor 

Surface plasmon resonance (SPR) biosensor is a quantitative spectroscopic 

technique that is widely used for measuring binding events and specializes in 

characterization of non-covalent interactions. The method detects the binding events at a 

functionalized surface, by monitoring modulation of SPR angle caused by changes in the 

refractive index at the functional surface.6 The sensing surface is a metallic (gold, silver, 

aluminum) surface interfaced with a prism.7,8 The metal surface is functionalized for 

attachment of a binding partner of interest. A monochrome light is reflected from the 

functionalized metal surface at an angle at which the excited metal surface electrons 

begin to oscillate and generate plasmon, SPR angle. The binding partner of interest is 

bound to the functionalized metal surface and potential binding molecules are solubilized 
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in binding solution and flown over the functionalized surface. On the event of 

biomolecules that bind to the bound proteins then the refractive index would change and 

the SPR angle will shift. This modulation is recorded in the change in the angle and or the 

intensity of the light reflected.9  

The advantages of this method are that you can detect both rate of binding partner 

on and rate of off at high sensitivity. Advancements of this technique include waveguide 

SPR sensors, that demonstrate an increase in sensitivity by replacing the prism metal 

interface with a core-cladding interface within a mated optical fiber instead of a prism. 

The technological advances in wave guide SPR sensors has paved the way to 

miniaturizing the SPR sensors with higher sensitivity.10 The major disadvantage of the 

SPR technique is the required surface attachment of one of the binding molecules to the 

surface. The attachment procedure can include covalent modification of biotin to the 

protein, or amine coupling to the sensor surface. SPR technique has been applied to 

characterize binding of small molecules to a protein surface, as well as detection of an 

organism by attaching antigen on the functionalized surface. The future development of 

this technology includes its adaptation to high-throughput studies and applications of 

functional hydrogels for small molecule diffusion studies. This technique is versatile, 

SPR has been adapted for non-covalent PPI KD, small molecule and protein interaction 

Ki, and antigen-antibody interaction.  

Isothermal Titration Calorimetry 

Isothermal titration calorimetry (ITC) is a method for characterization of affinity 

and stoichiometry of interacting molecules. The ITC method records minutiae changes in 
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temperature caused by the endothermic or exothermic reaction between two interacting 

molecules.11,12 General instrument setup contains two metallic chambers with a 

thermopile attached to them that measures, records, and helps modulate temperature. One 

of the chambers acts as a reference and the other is the sample chamber and the 

temperature is kept at a constant between the two chambers. The temperature difference 

between the sample chamber and the reference is continuously adjusted and the change in 

temperature is recorded in real time.  

The sample chamber is connected to a motorized syringe system that injects the 

binding molecule (substrate of interest), solubilized in the sample buffer in series of 

injections. The change in enthalpy is determined with each cycle of injection of binding 

molecule into the sample chamber, and the correction of temperature increase, 

exothermic, or decrease, endothermic reaction is recorded as a raw feedback signal. The 

feedback signal to power the heating element for adjustment of temperature in an 

endothermic or exothermic reaction, provides the raw report for the interaction of the two 

molecules along with the magnitude of feedback signal. Series of injections provide a 

feedback response till the samples in the chamber are saturated and results in no change 

in temperature detected. Extraction and analysis of the raw feedback power signal gives 

differences in free and bound states and ultimately can be used to determine dissociation 

constant.12  

This method has been adapted for enzyme kinetics by having a low concentration 

of enzyme in the sample chamber and introducing titration of substrate till the enzyme is 

saturated.13 This technique does not require modification of the molecules when taking 



6 

 

the measurement, immobilization or tag are not needed for this technique, measured KD, 

Ki, kcat, and Km have been reported.14 The disadvantage in this technique is the need to 

use high concentration of molecules for response. The technique is limited by the 

thermopile, and temperature regulators to observe sub nano-molar range of interaction.   

1.3 qFRET Platform 

The applications of the Förster resonance energy transfer (FRET) phenomenon 

have revolutionized protein studies and provided numerous dimensions of freedom to 

protein scientists.15 The FRET signal reports the non-radiative energy transfer from a 

fluorescent donor molecule to an acceptor fluorescent molecule and the efficiency of that 

transfer depends on a known set of parameters that include the spectral overlap of the two 

molecules and their proximity. The technique allows scientists to study the interaction of 

solubilized or immobilized molecules with only a bench top fluorometer to detect the 

FRET signal.16  

Historically the FRET phenomenon was first reported by a father and son pair, 

Jean-Baptiste Perrin, and Francis Perrin. This pair were the first to note the distance 

dependency of the dipole-dipole interaction between the donor and accepter pairs.17 

Theodor Förster later characterized the phenomenon and found that the dipole-dipole 

coupling occurred only within the range of 1 – 10 nm.18 Förster described the 

fundamental energy transfer efficiency equation E (Eq1) between the donor molecule and 

the acceptor molecule, shown below.17 The FRET requirements extended to not only the 

distance between the two molecules (R), but also their spectral overlap (J) and the 

orientation kappa (κ) of the transition dipoles of both molecules that defines R0. Each 
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FRET pair of molecules will have a Förster distance, R0, value which is the distance at 

which half of the excited energy of the donor is transferred to the acceptor.  

                                 Equation 1.1:        E =
R0

6

R0
6+R6

                                                        

                                 Equation 1.2:         R0
6 = 0.021 ∗ κ2 ∗ n−4 ∗ ΦD ∗ J    

                                 Equation 1.3:         J = ∫ ID̅ ∗∈A∗ λ4 ∗ dλ                               

The R0 distance is determined using the relationship above, the ΦD is the quantum 

yield of the donor, and the n is the refractive index. The kappa squared (κ2) parameter is 

assumed to be 2/3 as dipole orientation is very difficult to predict due to the uncertainty 

in molecular motion. The spectral overlap J is dependent on the normalized emission of 

the donor spectrum, ID̅ , and the molar extinction coefficient, ∈A , of the acceptor at its 

peak absorption wavelength, and the wavelength at the spectral overlap, λ4. The larger 

the overlap the larger the J component of R0. Thus, with a pair of donor and acceptor 

molecules with a known R0, we can relate the efficiency of FRET to the physical distance 

between the donor and acceptor pair. Equation 1.1 highlights the R6 magnitude of 

sensitivity to the distance between acceptor and donor on FRET efficiency. The 

applications of this principle have sparked a series of  biomolecular assays that can 

interpret the FRET efficiency between two molecules coming together or apart down to 

nano meter resolution.16 The applications of this phenomenon is dependent on the 

development of sensitive donor and acceptor pairs. In this work we utilize an engineered 

FRET fluorescent protein pair to detect the interaction of proteins.  
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1.4 CyPet and YPet a FRET Pair for Reporting Protein-Protein Interaction  

 The green fluorescent protein (GFP) mutants have paved the way for 

fluorescent protein applications such as reporters for gene expression, protein 

intercellular trafficking, and protease activity.19,20 Fluorescent proteins can be expressed 

in cells at sufficient levels to be detected for in-cell analysis and purified in significant 

quantities for high-throughput screening assays.  The GFP mutants have provided a 

variety of fluorescent proteins that cover much of the visible spectrum. The group 

Nguyen Annalee W. and Daugherty Patrick S., from U.C. Santa Barbara, report a 

mutation study on the cyan-fluorescent protein (CFP) and yellow-fluorescent protein 

(YFP) for improvement in FRET efficiency.21 The study resulted in the two proteins 

CyPet and YPet which demonstrated a 20-fold improvement in FRET efficiency in 

comparison to CFP-YFP. The optimized FRET pairs reported R0 is 5.15 nm and reported 

range of FRET signal falls within 1 – 10 nm. The predicted dynamic range of FRET 

efficiency of the optimized FRET pair is approximately 3 – 10 nm (Figure 1A).22 The 

optimized pair have high efficiency between 0 – 3 nm, which can make is very difficult 

to detect changes in R between 0 – 3 nm and distances between 8 – 10 nm will be more 

difficult to detect due to lower 5 % efficiency range. 
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Figure 1:The predicted FRET Efficiency Vs R plot with green pattern highlighting the range in R 

in nanometer of detectable FRET response. Illustration of FRET pair CyPet (blue barrel) and 

YPet (yellow barrel) fused to an interaction pair of interest.  

 

The protein-protein interaction of two separate proteins recombinantly fused to 

CyPet or YPet provide effective range in FRET efficiency and fluorescent signal to be 

detected from a bench top fluorometer (Figure 1B). The nature of the FRET phenomenon 

requires evaluation of the observed fluorescence for false positives, as the interpretation 

of the FRET signal reports the distance between the donor and acceptor and not the direct 

binding event. Additionally, the FRET signal can have crosstalk from donor and acceptor 

emission in the FRET wavelength emission. The magnitude of the FRET fluorescent 

signal could be heavily impacted by the amount of crosstalk that occurs when the donor 

fluoresces into the FRET wavelength, and if the acceptor is excited by the donor 

excitation wavelength.    
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1.5 Quantitative FRET Signal Processing by Cross-Channel Analysis 

In Liao lab we have developed a qFRET technique for the investigation of 

protein-protein interactions in-vitro.23 The qFRET technique leverages the principles of 

the “three cube FRET” (three filter cube FRET) which account for the channel cross talk 

into the FRET wavelength.15,24 The raw total FRET emission, EmTotal, signal for CyPet-

YPet pair is measured at emission wavelength 530 nm with excitation at 414 nm (Figure 

2A). Within the “EmTotal” signal, at 530 nm, is the embedded cross talk from the free 

(unbound) donor and acceptor emission (Figure 2A). To extract the crosstalk signal 

originating from the donor pair, a crosstalk coefficient, α, and acceptor pair cross talk 

coefficient, β, are first resolved.  

Table 1: Three channel fluorescent measurements, EmTotal, donor fluorescence FLD, and the 

acceptor fluorescence FLA. These excitation and emission wavelengths are used to extract EmFRET 

for the FRET pair CyPet-YPet  

 Excitation (λ) Emission (λ) 

EmTotal 414 nm 530 nm 

FlD 414 nm 475 nm 

FLA 475 nm 530 nm 

 

 
Figure 2: Principles of "three filter cube FRET". Illustrated the embedded crosstalk from 

donor and acceptor pairs within the FRET signal. 
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The EmFRET signal is resolved by taking three measurements of a qFRET reaction 

(Table 1). The EmTotal taken with excitation at 414 nm and emission at 530 nm. The 

CyPet contribution is resolved by, FLD, the emission of the donor taken at 414 nm 

excitation and 475 nm emission, multiplied by the crosstalk coefficient α. The YPet 

contribution is resolved by, FLA, the emission of the acceptor, at 475 nm excitation and 

530 nm emission, multiplied by the crosstalk coefficient β. The equation EmFRET derived 

from the principles of “three cube FRET”. 

EmFRET = (EmTotal) − ((FLD ∗  α) + (FLA ∗  β))          Equation 1.4 

α =
Donor emisson at 530 nm with excitation at 414 nm

Donor emisson at 475 nm with excitation at 414 nm
   Equation 1.5 

β =
Acceptor emission at 530 nm with excitation at 414 nm

Acceptor emission at 530 nm with excitation at 474 nm
   Equation 1.6 

The crosstalk parameters, alpha (α), and beta (β) are part of the qFRET signal 

extraction equation resolving EmFRET (Equation 4). Alpha and beta are unitless 

ratiometric constants that are unique to the instrument’s response to the donor and 

acceptor fluorescence. The donor protein, CyPet, is excited at 414 nm and has peak 

emission is at 475 nm. The acceptor protein, YPet, is excited at 475 nm with peak 

emission at 530 nm. The alpha (α) parameter is determined for the fluorometer by 

exciting the donor fusion protein CyPet at 414 nm and then a ratio of emission at FRET 

wavelength of 530 nm divided by the emission at 475 nm. The beta (β) parameter for the 

acceptor protein, YPet, is derived by dividing the emission at 530 nm when excited at 

414 nm by the emission at 530 nm when excited at 475 nm. We observed the crosstalk 

parameter of donor CyPet to be at 0.34 (α) standard deviation of 0.003 and a CV of 0.1 

%. The accepter YPet to be at 0.03 (β) standard deviation of 0.001 and a CV of 3 % n = 9 
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for both parameters. Table 2 lists the alpha and beta parameter determined for the 

instrument Molecular Devices Spectra Max3TM used in this work.  

Table 2: Listed mean, standard deviation, Coefficient of variation over 9 measurements at 

constant concentration of both acceptor and donor. 

Parameter Alpha (α) Beta (β) 

Mean 0.34 0.03 

Standard Deviation 0.003 0.001 

Coefficient Of Variation 0.001 0.03 

n 9 9 

 

 The qFRET platform has been developed into a toolbox of assays for 

characterization of protein-protein interaction. The dissociation constant KD of SUMO1 

and UBC9 is reported in the study conducted by Song et al..23 The work completed 

provides a foundation for qFRET based KD where two fusion proteins, CyPet-SUMO1, 

and YPet-UBC9 can be accurately measured for their KD. The two fusion proteins are 

expressed in E. coli and purified for in-vitro reactions.  The KD assay is setup with CyPet-

SUMO1 fusion protein kept at a singular concentration. Followed by a titration of the 

partner fusion protein YPet-UBC9 across a series of qFRET reactions.23 Each singular 

reaction can be measured on a benchtop fluorometer for each of the EmFRET signals. 

Compared to the ITC and the SPR techniques this method does not require any 

specialized equipment and the applicability of the assay onto a fluorescence plate reader 

is seamless.  

 The qFRET platform is versatile in its ability to also be applied to qFRET based 

biosensors. The SUMO1 and UBC9 interactions are a non-covalent transient protein-
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protein interaction the work reported by Liu et al. provide an example of qFRET reporter 

for enzymatic activity.  The SUMO endopeptidase, Sentrin/SUMO specific protease 

(SENP) cleaves pre-SUMO to activate SUMO and is responsible for removing SUMO 

from a target. The qFRET method required no modification of the purified proteins, 

required no specialized equipment such as a fluidics module to run the assay. 

Additionally, only the substrate is tagged with the fluorescent protein, the enzyme is 

completely untagged and solubilized in solution, to mimic biological activity as closely 

as possible. By observing the EmFRET signal decrease we can interpret the enzymatic 

activity and determine kcat/Km across multiple substrates. This application showcases the 

flexibility of the qFRET platform and its accessible application to a variety of protein-

protein interaction assays.  

 Tabulated below provides a summary of the advantages and disadvantages of the 

three techniques outlined. The SPR technique has reported a kcat or Km by coupling mass 

spectrometry analysis following binding kinetics. Each technique is advantageous in its 

unique method, however the qFRET technique is the most accessible in comparison. The 

range of qFRET applications and robust assays make it a go-to technique for rapid 

assessment of protein-protein interaction studies in-vitro.   
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Table 3: List of protein-protein interaction detection techniques, with their advantages and 

disadvantages.  

Technique 
Surface Plasmon 

Resonance (SPR) 

Isothermal Titration 

Calorimetry (ITC) 

Quantitative Förster 

Resonance Energy 

Transfer (qFRET) 

Advantages 

- Sub nanomolar 

detection 

- Resolve KD/Ki 

- Solubilized 

- No tag required 

- Resolve 

KD/Ki/kcat/Km 

- Both soluble and 

immobilized assay 

- In-cell PPI 

- Resolve KD/Ki/kcat/Km 

Disadvantages 

- Immobilization 

- Protein 

modification 

- Specialized 

instrument 

- High concentration 

of protein required 

- Specialized 

instrument 

-Fluorescent tag 

required 

 

1.6 qFRET Assay for the Assessment of Programmed Death 1 (PD1) and 

Programmed Death Ligand 1 (PDL1) Interaction 

The non-covalent interaction between cell surface proteins is a crucial part of 

cellular function and has implications on the cell life cycle. The second chapter in this 

thesis applies the qFRET platform onto the interaction between the Programmed Death 1 

(PD1) and Programmed Death Ligand 1 (PDL1) cell surface proteins. These two proteins 

are part of an immune checkpoint mechanism between the immune cell presenting the 

PD1 protein and an antigen presenting cell presenting the PDL1 protein.25 The interaction 

is based on the affinity of PD1-PDL1 and the successful interaction of the two proteins 

sets off a cascade of events that can allow diseases to circumvent our immune system. 
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Due to the implications of this non-covalent protein-protein interaction, protein scientists 

have studied these two proteins extensively.26–28  

Table 4: Dissociation constant KD measured across instruments of PD1-PDL1 external domain. 

FlowC.(Flow Cytometry),Exp Host(Expression Host), Post Mod.(Modification) 

Authors 

Flow 

C. 

µM 

SPR 

µM 

ITC 

µM 

BLI 

µM 
Year Exp. Host Domain Post Mod. 

Youngnak et 

al. 
0.526 0.114 - - 2003 

Human 

Jurkat Cells 

External 

Domain 

Amino 

Coupling 

Butte et al. - 0.77 - - 2008/2013 COS Cells 
External 

Domain 

Amine 

Coupling 

Cheng et al. - 8.2 2.2 - 2013 
E. coli 

BL21(DE3) 

External 

Domain 
Biotinylated 

Tang et al. - - - 4.1 2019 
Human 

Expi293F 

External 

Domain 

Amine 

Coupling 

 

The table above lists the previously measured interaction of the external domains 

of PD1 and PDL1. The historical study completed in 2003 that first demonstrated the 

difference in affinity of PDL1 and PDL2 to PD1. The group utilized two sets of 

technologies, flow cytometry and SPR on part of the protein, and found affinity for PD1, 

and found the measured KD to be sub micromolar. This observation is unique as more 

recent measurements of this interaction have a much higher KD. The highest observed is 

8.2 µM and the lowest being 0.77 µM measured on SPR. The Biolayer interferometry 

techniques measured a KD of 4.1 µM.  Biolayer interferometry (BLI), a technique that 

applies similar principles as SPR however implemented with throughput in mind and use 

an array of “tip” sensors without a fluidics module. However, it has been criticized for 

the reproducibility of results, and is still in the developmental phase of applications.29  

All three SPR measurements require immobilization of one of the interacting 

pairs onto the sensor surface, as the method used is amino coupling which non-
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specifically attaches the amino backbone to the sensor surface. The alternative method 

used is biotinylating of one of the interacting proteins, which allows a streptavidin coated 

sensor surface to immobilize the biotinylated protein. Both amino coupling and 

biotinylating modifications are non-specific and add an unknown variable in the 

assessment of the PD1-PDL1 interaction with SPR.  

The evaluation of PD1-PDL1 using ITC the group observed a KD of 2.2 µM, an 

affinity of PD1-PDL1 four-fold higher than the one measured using SPR. This supports 

the claim that the immobilization of one of the proteins can be a factor in the difference 

in observed KD as ITC does not immobilize either protein to any surface. However, the 

resolution of ITC is hindered by the amount of protein used, where SPR can be sub-

nanomolar, ITC cannot and requires a high concentration of bound product to make 

accurate readings. In this work full length PD1 and PDL1 proteins are expressed and 

qFRET based KD is applied and resolved dissociation constant, KD of 816 nM with 

standard error of 130 nM is reported. Additionally, a qFRET based competition assay is 

developed to observe interaction inhibitors of PD1-PDL1. The impact of PD1-PDL1 

inhibitors on cancer treatments and the demand for novel or improved inhibitors is very 

high. The qFRET platform provides an elegant benchtop assay to approach challenges 

like the characterization of PD1-PDL1 interaction.  
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1.7 SUMOylation Post Translation Modification  

 The discovery of the post-translation modification (small ubiquitin like modifier) 

SUMOylation is relatively new, in the early 1990s several groups discovered a 12 kDa 

small protein modification that regulated protein function. A group from the Howard 

Huges Medical Institute, reported SUMOylation of GTPase-activating protein for Ran, 

RanGAP130. The group discovered that SUMOylation is a reversible covalent attachment 

to the C-terminal of RanGAP1 and observed to modulate the translocation of RanGAP1 

to the nucleus, and RanGAP1 association with nuclear pore complex. Similarly, another 

group, out of Los Lamos New Mexico, identified that RAD51/RAD52 proteins are 

modified by what they described as Ubiquitin-like 1 protein, and found several proteins 

to have the same modification.  

Furthermore, the group out of New Mexico identified that this modification plays 

a role in mitosis and DNA repair and recombination.31 The role of SUMOylation PTM is 

then investigated across the scientific community and found to be as ubiquitous as 

Ubiquitin. The SUMO proteins occur in four paralogs throughout the human proteome, 

the SUMO1, 2 and 3 variants can be found throughout the body, but the SUMO4 variant 

is found predominantly in the kidney.32 SUMOylation plays an essential role in cellular 

process and homeostasis, that include DNA damage repair, transcription regulation, 

translocation, and the modified protein interaction with the proteome.33–35  
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SUMOylation Enzymatic Cascade 

The SUMOylation enzymatic cascade is the SUMO activation, conjugation, and 

ligation onto a target protein. The mechanism of SUMOylation is well understood 

through rigorous investigations in the enzymes involved in the covalent attachment of 

this PTM. The PTM SUMO covalently attaches to lysine residue of a target protein with 

help of a cascade of enzymes E1 activating enzyme, E2 conjugating enzyme, and E3 

ligase. The E1 activating enzyme a heterodimer consists of the proteins AOS1 and 

UBA2. The E1 activating enzyme is first adenylated by ATP and will recruit SUMO onto 

a conserved cysteine-173 creating a temporary thioester bond with C-terminal glycine-98 

of SUMO.36 The E1-SUMO complex shuttles the SUMO onto the catalytic cysteine-93 of 

Ubiquitin Conjugating enzyme 9 (UBC9) the SUMO E2 conjugating enzyme. The E2 

conjugating enzyme and the E3 ligase interact and shuttle SUMO onto the target 

protein.37 This enzymatic cascade is illustrated in figure 3.   

In comparison to Ubiquitin, not as many proteins have been identified to have 

SUMO E3 ligase activity. Like the ubiquitin E3 ligase mechanism, the complex 

formation of SUMO bound UBC9 and the E3 ligase collected target initiates the SUMO 

interaction with the really interesting new gene (RING) domain of the E3 ligase. The 

RING domain shuttles the SUMO to the lysine of the target protein in a mechanism that 

has been observed to transfer SUMO from the E2 directly or indirectly onto the target 

protein. The most notable E3 ligase is the protein inhibitor of activated STAT 1 (PIAS1), 

discovered by a team out of UCLA, Lui Bin and Liao Jiayu et al..38 PIAS1 E3 ligase of 

SUMO is observed to express in high levels in breast cancer patients and is regarded as a 
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bio-marker for breast cancer.38,39 Recent proteomics on PIAS1 identified 62 substrates for 

PIAS1 mediated SUMOylation.40 The SUMOylation cascade results in the target protein 

lysine terminal amine group forming a isopeptide bond to the carboxyl group on the C-

terminal glycine.  

 

 

Figure 3:SUMOylation cascade illustrated here with each step in the cascade. A.) The Pre-SUMO 

is processed by the SENP enzyme, and the di-glycine motif is exposed. B.) The E1 Enzyme 

activating Complex 1, a heterodimer, UBA2 and AOS1, are adenylated and SUMO attaches to 

UBA2 with a temporary thioester bond between SUMO-Gly98 and UBA2-Cys173. C.) E1 

shuttles SUMO onto E2 conjugating enzyme, onto the Cys93. D.) The E3 ligase shown to have 

affinity to the target protein, and the RING domain, shown in purple, is a key component in the 

mechanism of SUMO attachment to the target protein. E.) Target protein is SUMOylated, by 

covalent attachment to a lysine residue at the di-glycine motif. PDB images were converted to 

illustration using the online server  

illustrate.45  

 

The lysine residue location has been noted to follow a sequence motif of an 

upstream neighboring hydrophobic residue (ψ), and downstream of any amino acid, (x) 

next to an aspartic acid (D) or glutamic acid (E) residue. The current motif follows 

ψKxD/E and has been observed in numerous in-cell SUMOylation events.41–43 The 
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reversibility, or de-SUMOylation function falls on the protease Sentrin/SUMO-

specific protease (SENP) which cleave SUMO at the C-terminal of the SUMO again 

exposing the diglycine motif. SENP functions to also process pre-SUMO to mature 

SUMO protein for activation and attachment.44 

1.8 Current Methods for Investigating SUMOylation of Viral Proteins 

 The overall cellular modulation of SUMOylation associated with the Influenza A 

virus (IAV) infection has been observed by two groups.46,47 The observation at the 

proteome level by these groups provide a broad overview of the intersection of viral 

proteome and the host human proteome. Furthermore, as the modulation of SUMOylation 

occurred only during infection sparked a series of investigations in the viral proteome’s 

deliberate modulation of the SUMOylation mechanism. For example, proteomic studies 

of endogenous proteins such as TRIM28, a known SUMO E3 ligase, and is found to be 

SUMOylated under native conditions, however during IAV infection the protein 

modification levels are significantly lower. The loss of SUMOylated TRIM28 results in 

the inhibition of human antiviral response by inhibiting the IFN-mediated autoimmune 

response. The IFN-mediated autoimmune response is part of the host defense against 

viral RNA.48  

The identification of SUMOylated proteins during viral infection became the 

center of focus for numerous investigations of host and virus proteome interaction. The 

current methods for isolation of SUMOylated products from cell lysate have been very 

useful in the primary discovery of the phenomenon. However, a need for mechanistic 
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understanding of the SUMOylation site on the protein and its outcome is the natural next 

step in the understanding of SUMOylation and viral proteome interaction.    

Immunoblotting for Identification of Covalent Modification 

The first of the broader proteome SUMOylation study was the work done by Pal 

S. et al. group, in 2011. The investigation involved extensive immunoprecipitation with 

western blots and the group confirmed instances of the Influenza Viral proteome heavily 

SUMOylated during infection. The study had also completed in-vitro SUMOylation 

reactions of all the Influenza A viral proteins reported by immunoblots. The in-vitro 

reactions are ran on a sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-

PAGE) and analyzed by size. The SDS-PAGE process separates the proteins within the 

acrylamide gel by size in the vertical direction, as top of the gel are larger proteins and 

the bottom are smaller proteins. The band shift in the vertical direction in the 

immunoblots are assumed to be mass increase in the target protein due to SUMOylation. 

For the in-vitro SUMOylation events, RNA-directed RNA polymerase catalytic subunit 1 

(PB1), Nucleoprotein (NP), Non-Structured protein 1 (NS1),  Non-Structured Protein 2 

(NS2), and Matrix 1 protein (M1) were observed to be SUMOylated.47 However, the in-

cell methods used to elucidate these SUMOylation events, are under scrutiny as SUMO is 

overexpressed along with the viral genes within the human cell lines and no information 

of lysine site of SUMOylation was resolved.  
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“Slice-By-Slice” Method for Identifying Modified Proteins 

The work published by Domingues et al., observed a profound difference in the 

SUMOylation activity on endogenous proteins involved in, DNA repair, transcription, 

and RNA quality control mechanism were found to be SUMOylated during infection. 

Additionally, the study observed the SUMOylation of IAV, Non-Structured protein 1 

(NS1), Non-Structured Protein 2 (NS2), and Matrix 1 protein (M1). The method used by 

Domingues et al. was to identify SUMOylated proteins directly by mass spectrometry 

coupled with 1D SDS-PAGE gel, called “slice-by-slice”. The extraction and purification 

of SUMOylated proteins was through Tandem-affinity-purified (TAP) proteins.  

Tandem-affinity-purification is a two-part affinity purification to select proteins 

from cell lysate used in many studies to identify modified proteins.46,49 The technique is 

based on the principles of immunoprecipitation of target proteins. The Domingues et al. 

group expressed an exogenous SUMO protein fused with the TAP tag, that contains two 

epitopes, the calmodulin-binding peptide (CBP) and Staphylococcus aureus (Protein A) 

with a Tobacco Etch Virus (TEV) proteasomal cut site between the two. The exogenous 

SUMOylated proteins are first captured by an Ig bound beads with affinity towards the 

Protein A tag. After the first round of purification, the protein A tag is cleaved through 

protease TEV cut and the complex is released, followed by binding to calmodulin beads, 

which have an affinity to CBP. The two rounds of purification yield a complex of 

proteins that are SUMOylated or are non-specific proteins bound to the complex. This 

method of purification is arduous and the yield of SUMOylated proteins is often low, 
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however it is a widely used method to retrieve a complex of proteins from within cell 

lysate.  

The two-step purification is necessary due to the nature of in-cell SUMOylation 

and purification process. The initial in-cell SUMOylation occurs with the over expression 

of an exogenous TAP-SUMO in the cell. Due to the high concentration of exogenous 

TAP-SUMO, the probability of binding to an exogenous-over expressed-SUMO is much 

higher than the native SUMO. Furthermore, once the cells are lysed the SUMOylated 

products tend to form a complex with non-specific proteins. The non-specific proteins 

result in noise within the downstream mass-spectrometry analysis. Thus, a secondary 

purification step, CBP-Calmodulin, is applied to purify the SUMOylated complex further 

and isolate the SUMO bound target proteins.46,50 Applications of this method have also 

found that the SUMOylated proteins are at a much lower concentration compared to the 

unmodified proteins, this major drawback is in part due to the high de-SUMOylation 

activity by SENP within cell lysate.51  

The next step in the process is the identification of SUMOylated protein using 

mass-spectrometry. The method used in these studies is called “slice-by-slice”, and it is a 

process where the TAP purified proteins are ran on an SDS-PAGE and Coomassie 

stained. The SDS-PAGE process separates the proteins within the acrylamide matrix by 

size in the vertical direction, each stain band is assumed to be a target protein shifted in 

sized due to SUMO modification. The gel is then cut into many slices along the vertical 

axes and each section of the gel is sent for mass-spectrometry for protein identification.  
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The indirect method of identification of SUMOylation occurs at this point. The 

slices of the gel represent changes in mass of the protein due to the covalent attachment 

of SUMO. Thus, if a protein is detected above the expected mass of the protein, at a 

higher slice, it is assumed to be SUMOylated. The slice-by-slice method of identifying 

SUMOylated proteins is applicable for a general overview of identifying protein 

modification. However, the technique lacks the resolution to determine which lysine is 

modified, and due to the in-cell SUMOylation event, not every possible SUMOylation 

site can be detected as other possible lysine modifications can replace SUMO, such as 

Ubiquitination, NEDDylation, or acetylation.  

Mutant SUMO for identification of SUMOylation site 

The in-cell SUMOylated purified target protein yields are very low, and the 

downstream processing of the modified proteins results in very limited possibilities for 

analysis. Post purification, the proteins can be directly digested by a protease to create 

peptides for MS fragmentation and identification. However, trypsin digestion of the 

SUMO protein for MS analysis results in a very large peptide of 19-32 amino acids that is 

not ideal for identification with MS.43 Trypsin cleaves the C-terminal of the lysine K and 

arginine R residues. The SUMO glycine isopeptide bond formed to the lysine of the 

target protein protects the lysine from tryptic digestion and cleaves the covalently bound 

SUMO. The C-terminal cleaved peptide can be found very low concentrations and MS 

fragmentation of that peptide makes it very difficult to identify. The figure 4 below 

outlines the potential products formed with trypsin cleavage.   
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Figure 4:Predicted Trypsin digestion of C-terminal  wildtype SUMO1 K88 and mutant SUMO1 

R95. Other potential cleavage sites noted with gray font. Prediction to made by peptide cutter 

ExPASy. 52  

The substitution of arginine at the C-terminal of the SUMO protein, T95R, 

provides a method to overcome the pitfalls of trypsin digestion. The mutant SUMO 

provides the certainty of the size of peptide formed with trypsin digestion and allows for 

the identification of modified lysine site from in-cell SUMOylation. This method in 

combination with enrichment of product using immunoprecipitation make this a viable 

option for identifying SUMOylation sites. However, the combination of a mutant SUMO 

overexpressed in a cellular environment can add unknown variables that can lead to false 

positive and false negative lysine identifications. This method aims to overcome the 

digestion pitfall of wildtype SUMO proteins by the introduction of a mutant SUMO. The 

wildtype SUMO trypsin digestion can produce a fragment, but the large size of the 

peptide in combination of the low concentration of modified protein in the sample is the 

main disadvantage of most SUMO pull down techniques.  

Issues with SUMO Overexpression 

The current methods to improve identification of SUMOylation in cell can tend to 

produce false positives by over expression of exogenous SUMO, false negative by 

deSUMOylation during purification, and eventual cost of time and money on product 

enrichment and multiple MS analysis. Each method outlined required SUMO to be over 
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expressed within the cell during the experiment. The overexpression of exogenous 

SUMO improved the chances of isolating a SUMOylated product, as the native SUMO 

levels are not always enough for downstream analysis with MS. Over expression of 

SUMO within a cellular environment can have unintended outcomes which can 

compromise an investigation. For example, the over expression of SUMO paralogs 

results in overall change in the proteomic profile of the cell due to cross talk of SUMO 

with ISG.53  

A separate study found that overexpression of SUMO3 within the cell modulate 

the interferon production. The over expression of SUMO3 decreased interferon alpha 

induced STAT1 phosphorylation, a mechanism critical in innate immunity response.54 

The innate immunity of a cell in response to a viral infection is an important aspect of 

anti-viral activity. The modulation of these cellular mechanisms can ultimately burden 

investigations of viral infection and SUMOylation. Alternatively with the bulk 

identification of possible SUMOylated targets, in vitro techniques provide a clear 

assessment of SUMOylated lysines on proteins.  

1.9 In vitro qFRET SUMOylation assay for the Identification of  Modified  Lysines 

Using  Mass Spectrometry 

The third and fourth chapter of this thesis outline the systematic assessment of the 

interaction of SUMOylation cascade on heterologous viral proteins with qFRET as a 

reporter. The SUMO covalent modification has been a target of viral proteome and has 

been “hijacked” by disease to progress in its pathogenesis.34,55 Though slice-by-slice 

method of identifying SUMOylated proteins is applicable for a broad overview of 
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SUMOylated proteins. The follow up studies require a robust method for identifying all 

possible SUMOylation sites without hindrance of cellular mechanisms. In addition, yield 

high concentration of SUMOylated product that can be directly transferred to mass 

spectrometry analysis.  

Demonstration in this work the qFRET platform is applied as a reporter for in 

vitro SUMOylation of the viral proteins matrix 1 (M1) from the influenza A virus and 

nucleocapsid (N) protein from the severe acute respiratory syndrome coronavirus 2 

(SARS-CoV 2).34,35,55 The result of the in vitro assay are the qFRET report of SUMO 

covalent attachment, and the SUMO modified product for downstream MS analysis. The 

qFRET assay is nondestructive and can be readily applied to secondary analysis 

techniques such as MS, immunoblots, or other secondary assays for broader 

investigations.  

In the work presented we applied the qFRET plus MS assay to both the IAV M1 

protein and SARS-CoV-2 N protein.  Influenza A virus M1 proteins was observed to 

have 5 lysine residues modified. The SARS-CoV-2 N protein was found to have 4 lysine 

residues modified. For both protein’s lysine mutants were evaluated and found to have an 

impact in the viral pathogenesis for M1 and found to have modulation of in cell activity 

with N protein mutants. The assays outlined in chapters 3 and 4 provide a framework for 

rapid assessment of modified lysine sites from in vitro SUMO modification. 
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Chapter 2: The Development of QFRET Based Assay for the Interaction of PD1 and 

PDL1 

2.1 The Biological Impact of PD1 interaction with PDL1 

The immune checkpoint inhibitors that target the regulation mechanism of our 

immune response to cancer cells have revolutionized cancer therapy.1–3 The inhibition of 

activated T cell immune response is initiated by a coinhibitory receptor Programmed 

death 1 (PD1) expressed on the T cell surface. Programmed death 1 (PD1) is a 

transmembrane glycoprotein receptor with an immunoglobulin (IgV) like extracellular 

domain and a cytoplasmic domain with an immune inhibitor switch motif that plays a 

part in the downstream immune regulation once bound. The programmed death ligand 1 

(PDL1), is a type 1 transmembrane glycoprotein that is composed of IgC type 

extracellular domains and is expressed on the surface of antigen presenting cells (APC) 

that bind to PD1 on the T cell.3–5  The interaction of PD1-PDL1 initiates the downstream 

inhibition of T cell receptor (TCR) signaling, and inhibits the release of cytokines such as 

interleukin 2 (IL-2) to exhaust the T cell response.(Figure 5) 

 



33 

 

 

Figure 5: A.) The interaction of PD1 with PDL1 or 2 exhausts the T-Cell receptor (TCR) 

response and allows the cancer cells to survive. The T cell surface receptor contacts the major 

histocompatibility complex I surface protein. The PD1 also interacts with the PDL1 protein, and 

downstream signaling by TCR is inhibited by the recruitment of SHP-2. In contrast to when PD1 

does not interact with PDL1 or 2 the SHP-2 is not recruited and does not inhibit the TCR 

response. B.) The anti-PD1 or anti-PDL mAbs block PD1 and PDL from interacting. PD1 can no 

longer recruit SHP-2 and the T-Cell activates to destroy the cancer cell. 

Adaptive immune resistance and treatment toxicity has been observed in tumor 

cells with increased induction of PDL1 expression to exhaust the TCR response to cancer 

cells.6–8 Furthermore, trends in clinical trials over time for monoclonal antibody treatment 

leading up to 2020 show an increase in combinatory therapies, a decrease in mono-

therapies, and ultimately very few reaching FDA approval.9,10 The efficacy of the 

treatment varies with numerous factors such as age of the patient and type of cancers. A 

clinical study reports failure to treat brain cancer in pediatric patients using FDA 

approved anti-PD1 antibodies, as type of cancer and patient age were noted as factors.11 

Highlighting the need for continued development on check point inhibitors and of novel 

and viable protein-protein interaction inhibitors of PD1-PDL1 for use in cancer therapy. 

Alternative methods for assessing protein-protein interactions are surface plasmon 
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resonance (SPR) and isothermal titration calorimetry (ITC). Both SPR and ITC require 

extensive specialized equipment for implementation, in comparison to the qFRET 

platform which requires a bench top fluorometer.12,13 Additionally, SPR is a low 

throughput assay that requires the immobilization of one of the interacting proteins onto a 

functional surface, which is not ideal for investigating protein-protein interaction. In 

comparison the qFRET assay is implemented with both fusion proteins solubilized in 

solution in a 384 well format that can be readily scaled up for large scale inhibitor 

screening.14 We demonstrate a robust qFRET assay for the assessment of interacting 

proteins PD1 and PDL1 to resolve their dissociation constant, KD, and the 

characterization of PD1-PDL1 interaction inhibitors.  

2.2 PD1-PDL1 qFRET Assay Principle and Design 

 The qFRET technology leverages the Förster Resonance Energy Transfer (FRET) 

phenomenon for the assessment of two biomolecules interaction within the range of 1 – 

10 nm.15 FRET is a non-radiative energy transfer that occurs by dipole-dipole coupling 

interaction of an excited fluorescent molecule, donor, to a ground state fluorescent 

molecule, acceptor, only when both are within 1 to 10 nanometers of each other. 16,17 The 

FRET efficiency relationship depends on the inverse-sixth power distance between the 

acceptor and donor, making this phenomenon sensitive to the distance between the donor 

and acceptor. The reported Förster distance R0 of 5.15 nm of CyPet-YPet falls within 

range of 1-10 nm protein-protein interaction.18,19 The proposed quantitative application is 

designed to report the interaction of fusion protein, CyPet-PD1 (acceptor fusion protein), 

with YPet-PDL1 (donor fusion protein). The fusion protein design is illustrated in figure 
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6A, with the fluorescent protein on the N-terminal and the interacting proteins on the C-

terminal. The EmFRET signal is extracted by post processing the measured EmTotal signal 

following the EmFRET equation in figure 6C. The EmTotal is the unprocessed fluorescent 

signal at the FRET emission wavelength that has the donor, CyPet, and acceptor, YPet, 

fluorescent crosstalk embedded (figure 6B). In the implementation of this assay three 

measurements are taken at each reaction, EmTotal, the unbound CyPet-PD1 (FLD), and 

the unbound YPet-PDL1 (FLA). Tabulated in figure 6B the EmFRET wavelength is the 

excitation of the donor and the emission of the acceptor and FLD and FLA are specific to 

the donor and acceptor. The EmFRET equation figure 6C, provides the post processing 

equation for the accurate extraction of EmFRET signal and removal of donor and acceptor 

cross talk contributions. The resulting EmFRET signal is the extracted FRET response from 

the interaction of our two proteins of interest without crosstalk from CyPet and YPet. 
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Figure 6:A.) qFRET design is the donor fluorescent protein CyPet fused to OptPD1, and acceptor 

fluorescent protein YPet fused to OptPDL1. B.) Data is collected at three wavelengths, used to 

extract the EmFRET signal at 530 nm, directly related to the interaction of PD1 to PDL1. EmFRET is 

calculated by subtracting the fluorescent protein emission crosstalk at the FRET wavelength 

shown. C.) EmFRET equations is used to extract the EmFRET signal, and D.) Alpha α ratio for the 

donor is calculated by dividing the emission at 530 nm by emission at 475 nm when excited at 

414 nm. The β parameter is determined by diving the emission of YPet at 530 nm when excited at 

414 nm over the emission at 530 nm when excited by 475 nm. 

 

PD1-PDL1 qFRET Alpha (α) and Beta (β) cross talk coefficients 

The primary assessment in the setup of the qFRET assay is evaluation of the 

donor and acceptor pair’s fluorescence cross talk coefficients parameters alpha (α) and 

beta (β). The alpha (α) and beta (β) parameters are utilized in this method to extract the 

EmFRET signal from the measured EmTotal fluorescence and evaluate the fluorescence 

from each protein to the fluorometer. The equations shown in figure 6D, we define the 

alpha (α) and beta (β) values for both the donor and acceptor. We determined the two 

constants by measuring the fluorescence of the two molecules individually, at constant 

concentration, across the FRET wavelength and dividing it by the fluorescent protein’s 
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own emission wavelength. We observed the crosstalk parameter of donor CyPet to be at 

0.34 (α), standard deviation of 0.003, (n=9). The accepter YPet to be at 0.03 (β) standard 

deviation of 0.001, (n=9)  

2.3 qFRET dissociation constant (KD)  

 The qFRET based dissociation constant is determined by analysis of qFRET 

signal across a titration of concentration of the non-covalent interaction of proteins 

CyPet-OptPD1 and YPet-OptPDL1. The dissociation constant, KD, is a widely utilized 

metric for evaluating affinity of two interacting molecules at equilibrium. The schematic 

of the receptor [R] and ligand [L] binding to form the product [RL] at equilibrium we 

define the dissociation constant KD, Equation 5. We design the qFRET assay to observe 

the change in EmFRET signal with the change in ligand concentration while keeping the 

receptor concentration constant. We titrate the concentration of ligand till all the receptor 

is bound, and this will result in the plateau of the EmFRET response. Based on this 

experiment design we can state that in the maximum formed product PD1-PDL1, 

[RL]Max, is equivalent to the total receptor concentration, [R]Total (Equation 9). 

Additionally, the EmFRETMax will occur at the saturation of the receptor, [RL]Max, and a 

ratio of EmFRET observed to EmFRETMax is equivalent to the ratio of [RL] observed to 

[RL]Max concentration. (Equation 10). The set of equations below resolve a relationship 

for deriving KD with the change in EmFRET dependent ultimately on the change in ligand 

concentration. Given the schematic of two reactants [R] and [L] -> [RL] interacting we 

derive the solution for EmFRET with changing [L]Total.  
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[L]
Total

= [L]
Free

+[RL] Eq. 2.1 

[R]
Total

=[R]
Free

+[RL] Eq. 2.2 

[RL] = [L]
Total
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Free

 Eq. 2.3 

[R]
Free

= [R]
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-[L]
Total
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KD =
[R]

Free
*[L]

Free

[RL] 
 Eq. 2.5 

KD =
([R]Total - [L]Total +[L]Free) *[L]Free)

([L]Total-[L]Free)
 Eq. 2.6 

Rearrange Eq 6, 0 = [L]Free
2 + [L]Free*([R]Total - [L]Total+ KD) -KD*[L]Total Eq. 2.7 

Eq 7 solved for [L]Free, [L]Free =
([L]

Total
−[R]

Total
−KD)+√([R]

Total
+KD−[L]

Total
)2+4∗KD∗[L]
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2

 
Eq. 2.8 

Assume the maximum bound is equivalent to [R]Total, [RL]Max=[R]Total Eq. 2.9 

Assume ratio of bound [RL] to EmFRET response, [RL]=[RL]Max ∗
EmFRET

EmFRETMax

 Eq. 2.10 
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Total
- [RL])*[L]

Free
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 Eq. 2.11 
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) Eq. 2.16 

 

Derived here at Eq. 2.16 is the relationship between the EmFRET observed 

dependent on titration of [L]Total, constant [R]Total, constant EmFRETMax, and constant KD. 

GraphPad Prism 5TM software suit is used to fit equation 16, using the non-linear 

regression curve fitting tool that uses the Marquardt and Levenberg method where a mix 
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of linear decent and Gauss-Newton both are used to step towards the least sum-of-

squares.20 The initial conditions for [R]Total, [L]Total, KD, EmFRETMax, and constraints of the 

curve fit are described in detail in the Methods section.  

2.4 qFRET competition assay 

 The qFRET competition assay provides insight into the activity of inhibitor on the 

interacting pair of proteins CyPet-PD1 and YPet-PDL1. In this competitive binding 

assay, we introduce an unlabeled molecule that competes for binding to either donor or 

acceptor and inhibits the formation of the [CyPet-PD1.YPet-PDL1] product. The binding 

event of the unlabeled molecule directly decreases the amount of product formed [CyPet-

PD1.YPet-PDL1] and is observed as a decrease in EmFRET. The inhibitory concentration 

where the EmFRET response drops to half of the initial uninhibited EmFRET value, is called 

the half maximal inhibitory concentration (IC50). The IC50 value is resolved by the 

nonlinear regression fit of the EmFRET response to equation 17 and is a commonly used 

metric to evaluate an inhibitors potency. However, the IC50 of an inhibitor can change 

depending on the concentration of the substrate, resolving the equilibrium constant for 

the inhibitor, Ki is an alternative approach to characterize the potency of an inhibitor. 

Applied here is the Cheng Prusoff relationship to resolve Ki based on IC50, equation 18, 

we can solve both relationships together, by solving for “LogIC50
” using equation 17, 

applying the dissociation constant KD, and the substrate concentration at which the assay 

was ran.21,22 We solved equation 18 for IC50, in log form to get equation 19, and applied 

non-linear regression fit to equations 17 and 19 GraphPad Prism5TM to obtain Ki. The 
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assay details and setup such as the acquisition settings of the EmFRET response, and the 

non-linear regression fit setup of equations 17 and 19 are outlined in the methods section.  

EmFRET = EmFRETMin +
(EmFRETMax − EmFRETMin)

1 + 10([I]Total−LogIC50)
 Eq 2.17 

Cheng Prusoff relationship of IC50 to Ki, 𝐊𝐢 =
IC50

(1+
[R]

KD 
)
 Eq 2.18 

Log(IC50) = log (10log(𝐊𝐢) ∗ (1 +
[R]

KD 
)) Eq 2.19 

2.5 Results  

qFRET Assay Alpha (α) and Beta (β) Results 

 We observed the crosstalk parameter of donor CyPet to be at 0.34 (α) standard 

deviation of 0.003 and a CV of 0.1 %. The accepter YPet to be at 0.03 (β) standard 

deviation of 0.001 and a CV of 3 % n = 9 for both parameters. The beta cross talk in 

comparison to alpha has a much lower cross channel signal, this is by design and 

provides the support for using both CyPet-YPet as the acceptor and donor pair. The 

fluorescent plate reader utilized in this study is made by Molecular Devices and is called 

SpectraMax M3TM packaged with SoftMax Pro 7TM software suite. Plotted in PrismTM. 

The plate reader by Molecular Devices, Flexstation II 384(TM), the alpha and beta values, 

for CyPet and YPet were determined to be 0.360 (α) and beta of 0.026 (β) in a previous 

publication by Song et al..23   
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Table 5: Listed mean, standard deviation, Coefficient of variation over 9 measurements at 

constant concentration of both acceptor and donor. 

Parameter Alpha (α) Beta (β) 

Mean 0.34 0.03 

Standard Deviation 0.003 0.001 

Coefficient Of Variation 0.001 0.03 

n 9 9 

 

Figure 7:The scatterplots shown with standard deviation T bars, and average denoted with a line. 

Molecular Devices SpectraMax3 was used to measure the fluorescence response for both acceptor 

and donor molecule. 

 

Codon optimization and expression of CyPet-PD1 and YPet-PDL1 

 The human programmed death 1 and human program death ligand 1 and both can 

be classified as difficult-to-purify proteins.24 The main factors that contributes to their 

low purification yields is their protein structure complexity and their transmembrane 

region. Additionally, expression of human genes within a different host organism such as 

E. coli the codon bias plays a pivotal role in protein translation levels.25,26 The pET 

system (NovagenTM) developed in tandem with BL21(DE3)TM, allows for the strict 

control of protein expression by the engineered lac operon to control the binding of T7 

RNA polymerase on pET vector and the host expression of exogenous T7 RNA 
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polymerase.27,28 We observe the codon selection for E. coli BL21(DE3) and optimize the 

full length cDNA sequence of hPD1 and hPDL1 to fit the BL21(DE3) E. coli host 

organism.  

The results of the expression levels were analyzed on an SDS-PAGE gel with 

coomassie stain. We observed a band at 60 kDa, for 6XHisCyPet-PD1 and 63 kDa 

6XHisYPet-PDL1. The expression was analyzed for protein in the cell pellet as well. We 

observed a significant improvement in expression levels with codon optimization. 

Additionally, we observed a significant band for our fusion protein in cell lysate, 

indicating inclusion body formation. 

Table 6: CAI Score across organisms for PD1 and PDL1 

 
CAI Score 

Human 

CAI Score E. coli Wildtype CAI Score E. coli 

Optimized 

hPDL1 0.7 0.6 0.9 

hPD1 0.8 0.6 0.9 
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Figure 8: Overall relative codon adaptation frequency plotted for both wild type and selected 

codon for E. coli. The solid line represents the overall CAI score for wild type and the optimized 

sequence. The optimized PD1 sequence shifted the score to 0.9 from 0.6 in E. coli plot line in 

pink and black respectively Figure 8A. The results of optimization of PDL1 shifted the score 

similarly from 0.6 in E.coli to 0.9, plot in black and green respectively. (Figure 8B). The plots 

were generated in GraphPad Prism5TM, and the scores were calculated in R. 

 

Refolding extracellular domain CyPet-ExtPDL1 and YPet-ExtPD1 

 The external domains of the human PD1 (extPD1) and human PDL1 (extPDL1) 

were rescued from inclusion bodies. The method used was derived from a series of 

groups that have refolded extPD1 and extPDL1 successfully. The results show a singular 



44 

 

band from both CyPet-ExtPDL1 and YPet-extPD1 (Figure 9). The rescued proteins have 

fluorescence and were able to be quantified by fluorometer.  

 
Figure 9:Commasie stain of SDS-PAGE of samples taken from various steps in the purification 

process. The uninduced is the cell pellet, taken from starting culture. The induced is cell pellet 

taken from the overnight expression. The soluble and insoluble fractions are taken after cell lysis. 

The rescued protein is the refolded externa domains.  

Refolding Buffer Screen and Circular Dichroism Measurements 

The expression results show a significant amount of protein in the inclusion body. 

In the past several groups have refolded the external domain of hPDL1 and hPD1.29,30 We 

utilized an aggregation reporter dye from the NovagenTM refolding kit to gauge levels of 

aggregated proteins. Table 1 below outlines the refolding buffers used in the screen. 

Every component besides the denaturant in the refolding buffer stayed consistent with the 

buffer series 1-4. The last dialysis series was PBS and after measured for protein 

concentration and setup for circular dichroism (CD) measurements and aggregation dye 

qualification. 

The aggregation reporter dye, ProteostatTM by Enzolifesciences, is applied for the 

initial assessment of the refolded proteins. The aggregation reporter dye binds to 
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aggregated amyloid structures and when excited at 550 nm emits at 600 nm. Thus, we 

expect to see very low signal from the aggregation in the soluble fraction and the four 

refolded proteins. We observed that buffers 1 and 2 had very similar aggregation 

response, and buffer 3 had the lowest signal among the four refolded proteins (Figure 

10A).  

The circular dichroism is utilized for assessment of the secondary structure of the 

refolded fusion protein YPet-PDL1. We observe [ϴ], deg*cm2*dmol-1 as the response 

from exposing 195 nm to 250 nm range of light onto the sample. Observed a similar 

profile between soluble and refolded proteins Figure 10B. The protein refolded in buffer 

2 has the most similar profile to the soluble fraction, with both having a profile indicative 

of a secondary structure with an alpha-helix.  Buffer 1 shows an artifact in the 

measurements after 200 nm, this artifact can be caused by potential differences in the 

secondary structure. Buffer 3 and 4, a flat profile in the measurements is indicative of 

denatured protein in the sample. The final characterization of the refolded proteins is to 

perform the qFRET Kd assay to determine integrity of protein structure.  
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Table 7: Buffer conditions used to refold YPet-OptPDL1 from inclusion body. 

 Buffer Components 

Buffer 1 
0.5 M Guanidine HCl, 50 mM Tris pH 8, 300 mM NaCl, 500 mM Arginine, 0.8 mM KCl, 

0.5/0.25 mM Glutathione R/O 

Buffer 2 
0.5 M Guanidine HCl, 50 mM Tris pH 8, 300 mM NaCl, 250 mM Arginine, 0.8 mM KCl, 

0.5/0.25 mM Glutathione R/O 

Buffer 3 
1.0 M Guanidine HCl, 50 mM Tris pH 8, 300 mM NaCl, 500 mM Arginine, 0.8 mM KCl, 

0.5/0.25 mM Glutathione R/O 

Buffer 4 
1.0 M Guanidine HCl, 50 mM Tris pH 8, 300 mM NaCl, 250 mM Arginine, 0.8 mM KCl, 

0.5/0.25 mM Glutathione R/O 

Control Sol F. Soluble Fraction Purified Protein in PBS 

 

Figure 10:The aggregation dye ProteoStat by Enzolifesciences is used to report protein 

aggregation, it is added to equivalent concentration of protein across each buffer at a 1:50 

volumetric ratio, of dye to protein solution, using the soluble fraction purified YPet-OptPDL1 as 

control. Excitation at 550 nm and emission at 600 nm A. The CD plots are of the refolded 

proteins with soluble protein as control. The plots were made on GraphPad Prism5TM
.   

qFRET based dissociation constant KD determination 

 The results of the qFRET based KD is shown in figure 11, we observe the fitted 

curve and a saturation of EmFRET signal, and a saturation in binding is reached within 3 

µM of ligand introduction. Negative control is the interaction assay with only the 

fluorescent FRET pairs and without the interacting molecule, OptPDL1, fused at the C-



47 

 

Terminal. The resolved KD of CyPet-OptPD1 and YPet-OptPDL1 from the fit of the 

qFRET assay is 0.81 µM and a standard error of 0.13 µM. The non-linear regression fit 

results also provide a 95% confidence interval of 0.55 to 1.07 µM. The R2 value of 0.97 

goodness of fit provides additional confidence in the determined constant. The negative 

control had a large KD value of 25.21 µM with standard error of 21.95 µM and 95% 

confidence interval of 0 to 70.73, these results do not gain any confidence in the resolved 

KD of negative control YPet protein alone. 

 
Figure 11: KD measurement was done with CyPet-OptPD1 held constant at 0.5 µM and titration 

of the acceptor, YPet-OptPDL1 and YPet only, from 0 – 3.0 µM. The extracted EmFRET was 

plotted against the titration of total YPet-OptPDL1. Equation 16 was used to fit the data from 

both assays. GraphPad Prism 5TM is used for resolving KD showing the resulting non-linear 

regression fit line in the plot. 

 

Refolding human full length Program Death Ligand 1 

We screened refolding conditions for full length optPDL1 using qFRET KD as a 

confirmation for folded proteins. The buffers outlined in table 1, lists a series of refolding 

conditions, based on refolding studies from past groups attempts to refold external 
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domain of hPDL1 and hPD1.29–31. The buffers used all had Guanidine-HCl as the 

denaturant, with varying amount of aggregation inhibitor and Glutathione 

Reduced/Oxidized to sustain the redox potential. We observed a significant difference in 

qFRET KD across buffers with no qFRET KD resolved in buffers 3 and 4 (Figure 12). The 

refolded proteins with buffer 1 and 2 showed a similar secondary structure profile in 

circular dichroism measurements when compared to the YPet-OptPDL1 purified from the 

soluble fraction. The results from the refolded YPet-OptPDL1 from buffer 2 estimated a 

KD of 0.79 µM, standard error of 0.16 µM, with a 95% confidence interval of 0.46 to 1.12 

µM (Figure 12). The soluble fraction and the refolded PDL1 both had comparable 

dissociation constants and provide confidence in the approach and buffer used.  

Table 8:Refolding buffers screen for rescuing YPet-OptPDL1 from inclusion body 

Buffer 1 
0.5 M Guanidine HCl, 50 mM Tris pH 8, 300 mM NaCl, 500 mM 

Arginine, 0.8 mM KCl, 0.5/0.25 mM Glutathione O/R 

Buffer 2 
0.5 M Guanidine HCl, 50 mM Tris pH 8, 300 mM NaCl, 250 mM 

Arginine, 0.8 mM KCl, 0.5/0.25 mM Glutathione O/R 

Buffer 3 
1.0 M Guanidine HCl, 50 mM Tris pH 8, 300 mM NaCl, 500 mM 

Arginine, 0.8 mM KCl, 0.5/0.25 mM Glutathione O/R 

Buffer 4 
1.0 M Guanidine HCl, 50 mM Tris pH 8, 300 mM NaCl, 250 mM 

Arginine, 0.8 mM KCl, 0.5/0.25 mM Glutathione O/R 
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Figure 12: The qFRET Refolded  was setup as the constant and the titration of CyPet-hPD1 from 

(0 – 2.5). The extraction of EmFRET from the assay is plotted against the total concentration of 

CyPet-hPD1. PrismTM is used for the non-linear regression solution, and all measurements were 

taken on Molecular Devices Flexstation II 384 using Software Max Pro 7.0TM
. 

qFRET based competition assay 

The two molecules characterized for inhibition of CyPet-OptPD1-YPet-OptPDL1 

interaction are GST-OptPD1 without a fused fluorescent protein, and the anti-PD1 mAbs 

Pembrolizumab (MK-3475). The observed inhibition profiles (Figure 13) are consistent 

to competition assay response to an inhibitor. The fit for equations 17 and 19 were 

implemented directly to the EmFRET data with titration of inhibitors to resolve the Ki and 
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IC50. The determined Ki for the GST-OptPD1 from this competition assay is 94.93 nM 

(Figure 13A), 95% confidence interval for Ki is as low as 48.74 nM and as high as 184.94 

nM with R2 value of 0.91.  We also fit equation 17 alone to estimate IC50 value for this 

assay, and found IC50 to be 118.38 nM, 95% confidence interval to be 60.77 nM and as 

high as 230.60 nM with R2 value of 0.91. The observed Ki for pembrolizumab is 1.41 nM 

(Figure 13B) and the fit results show a 95 % confidence interval of 0.94 to 2.14 nM with 

an R2 value of 0.97. The IC50 fit observed was 1.76 nM with 95% confidence interval of 

1.17 to 2.66 nM. 
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Figure 13:qFRET Competition assay was setup with constant concentration of the substrate and 

titration of inhibitor. The fit results are tabulated next to the fit plot for A.) the response to the 

addition of GST-OptPD1 fitted to equation 17 for IC50 and both equation 17 and 19 for Ki 

estimation (Blue Plot). B.) The response to the addition of Pembrolizumab is fitted to equation 17 

for IC50 and both equation 17 and 19 for Ki estimation (Light Green Plot). The measurements 

were taken on Molecular Devices SpectraMax 3TM and GraphPad PrismTM is used for non-linear 

regression fit for IC50 and Ki 

 

2.6 Discussion 

 The qFRET assay is readily applied to characterize the cell surface proteins PD1 

and PDL1. The equilibrium constant KD for PD1-PDL1 was estimated to be 0.81 µM 

with standard error of 0.13 µM. The reported KD of external domain PD1 and external 

domain PDL1 using SPR range from 8.2 µM by Cheng et al. (2012), 0.77 µM by Butte et 
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al. (2013) and more recently, 4.1 µM Tang et al. (2019).7,32,33 The broad range of 

reported dissociation constants could result from the differences in protein expression, 

and preparation of protein for the technique utilized. The application of SPR requires 

immobilization and modification of one of the binding proteins. The qFRET interaction 

assay reported here does not require any post purification modifications, and both 

proteins are in solution. The refolding study demonstrated the utility of qFRET for the 

rapid assessment of refolded proteins. The codon optimization of both donor and acceptor 

fusion proteins provided a significant increase in protein yields. The resulting expression 

and purification of both CyPet-OptPD1 and YPet-OptPDL1 demonstrated that both 

proteins will form inclusion bodies in E.coli.  

The observed KD from buffer 2 condition was the most comparable to the soluble 

fraction. The external domains of PD1 and PDL1 after refolding were evaluated for their 

KD and we observed a drop in affinity to 1.2 µM, with standard error 0.2 µM and a 95 % 

confidence interval of 0.77 to 1.63 µM. The slight decrease in affinity can be an artifact 

of the refolding process, however the full-length refolded protein demonstrated a similar 

affinity as the soluble fraction. The external domain of the two protein have been 

evaluated for their affinity numerous times and they’ve reported a much higher KD, (8.2 

µM, 4.1 µM, and 2.2 µM) by the groups mentioned earlier. The refolding process that 

includes a rapid qFRET based assay, provides once again the utility of the qFRET 

platform. 

The qFRET competition assay evaluated the inhibition of PD1-PDL1 binding 

with two inhibitor molecules. The GST-OptPD1 inhibition response was evaluated with 
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an estimated Ki of 94.93 nM, with a confidence interval of 48.74 to 184.94 nM. The 

affinity of PD1 to PDL1 has been established by many groups and adding soluble PD1 to 

act as an inhibitor provides an evidence of the assays functionality when targeting the 

acceptor fusion protein. The other inhibitor is an engineered antibody, pembrolizumab, 

against PD1 and has been reported to have  very high affinity to PD1 in in-vitro 

experiments. The reported SPR evaluation of this antibody to PD1 has shown to have a 

KD of 2.5 nM.34 The observed Ki of pembrolizumab based on the qFRET competition 

assay is 1.41 nM with a 95% confidence interval of  0.94 to 2.14 nM. SPR measured KD 

of pembrolizumab to external domain of PD1 is 3.9 nM ± 0.5 nM.34 The measured value 

here using the qFRET platform is within a very close range of the previously reported 

affinity. The qFRET platform utility is showcased here with 1.) The sample to kinetic 

measurement workflow, without modifying expressed proteins or attachment of proteins 

to a surface. 2.) One simplified platform for kinetic parameter determination, dissociation 

constant KD of two proteins as well as determine Ki of a given inhibitor based on qFRET 

signal. Furthermore, the observed robust response of the EmFRET signal between PD1 and 

PDL1 provide confidence of this assays ability to detect the interaction of other surface 

proteins. The accessible approach to the evaluation of this category of protein-protein 

interaction can accelerate the discovery and characterization of inhibitors.  

2.7 Materials and Methods 

Crosstalk parameters, alpha α, and beta β 

The crosstalk parameters, alpha, and beta are part of the qFRET extraction 

equation resolving EmFRET. The fluorescent proteins CyPet, donor, and YPet, acceptor, 
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are a FRET optimized pair developed to maximize FRET efficiency.18 The donor protein 

CyPet, at 500 µM, is excited at 414 nm and has peak emission is at 475 nm. The acceptor 

protein YPet, at 200 µM, is excited at 475 nm with peak emission at 530 nm. The alpha 

(α) parameter is determined for the fluorometer by exciting the donor fusion protein 

CyPet-PD1 at 414 nm and then a ratio of emission at FRET wavelength of 530 nm 

divided by the emission at 475 nm. The beta (β) parameter for the acceptor protein, YPet, 

is derived by dividing the emission at 530 nm when excited at 414 nm by the emission at 

530 nm when excited at 475 nm 

The fluorescent plate reader utilized in this study is made by Molecular Devices 

and is called SpectraMax M3TM packaged with SoftMax Pro 7TM software suite. Plotted 

in PrismTM. The measurements are taken in PBS and in volumes of 60 µL at room 

temperature (22°C), using Greiner 384 well plates, black with clear bottom. The plate 

reader by Molecular Devices, Flexstation II 384(TM), the alpha and beta values, for CyPet 

and YPet were determined to be 0.360 (α) and beta of 0.026 (β) in a previous publication 

by Song et al..23   

Construction of qFRET fusion proteins, CyPet-PD1 and YPet-PDL1 

 The full-length PD1 and PDL1 are membrane proteins that fall under the category 

of difficult-to-purify proteins. The codon optimized full length PD1 and PDL1 and fusion 

cDNA constructs were constructed by the Huaxi Research Hospital. The fully constructed 

full length codon optimized PD1 and PDL1 were cloned into pET28 (NovagenTM) 

vectors. Each gene is fused to the qFRET pair CyPet and YPet on the N-terminal of the 

fusion proteins with a linker more details of the linker can be found in the following 
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study (Kaur H. et al.).35 The restriction sites NHEI and SALI flank the fluorescent 

proteins followed by a linker region to allow more freedom of movement to the 

interacting molecules. The genes of interest codon optimized cDNA are on the C-

terminal of the linker region with the restriction sites SALI and NOTI flanking the gene 

coding sequence, with the stop codon at the C terminal. This results in a fusion protein 

with a 6xHistadine tag followed by the fluorescent protein, linker region, and the gene of 

interest. 

The expression of full-length fusion protein CyPet-OptPD1 and YPet-OptPDL1 is 

demonstrated here by applying codon optimization on the native cDNA for optimization 

in the host expression organism Escherichia coli (E. coli) BL21(DE3). Amino acid 

translation has synonymous codons for each amino acid, and the frequency of a singular 

codon out of the synonymous codons for an amino acid results in a codon bias. Codon 

bias has downstream implication to amino acid translation, such as the availability of 

tRNA will match the codon bias for quick translation. In this method we apply a codon 

optimization technique that accounts for tRNA frequency within E. coli B Strain. A 

metric used to evaluate codons selection bias is the relative codon adaptation frequency 

(w) and the codon adaptation index is the average of w score across the length of the 

amino acid chain (CAI).36–38 The adaptation frequency provides a singular metric for the 

frequency of any codon and compares that to the frequency of the most adapted codon for 

an amino acid within the host organism.  The w plot highlights the difference between the 

codon optimized and the human native cDNA sequence for the E. coli B Strain organism.  

The codon optimization was constructed in R with BioSeqiner and StringR Package. The 
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codon selection was based on the studies that focused on measured tRNA levels.36,37,39 

The plots were completed on PrismTM.  

Expression and Purification of CyPet-OptPD1 and YPet-OptPDL1 

 The bacteria strain used to express and purify full length PD1 and PDL1, fusion 

proteins is The SHuffle® T7(Neb) bacteria strain (Gifted by Perry Lab). The proteins 

hPD1 and hPDL1 both have complex secondary structures that require disulfide bond 

formation, cysteine 54 – 123 on PD1, cysteine 40 – 114 and cysteine 155 – 209 on PDL1. 

The SHuffle® T7(Neb) strain provides the functionality of a disulfide isomerase to 

promote the formation of disulfide bonds. The cells are inoculated at 1:100 starting 

culture to expression medium, Terrific Broth™ (RPI), and once reached 0.4 OD were 

induced with 0.350 mM IPTG (isopropyl β-D-1-thiogalactopyranodie) and expressed at 

22 °C overnight. Cell were lysed using sonication in binding buffer (20 mM Tris-HCl, 

500 mM NaCl, 10 mM Imidazole, 1 mM phenylmethylsulfonyl fluoride (PMSF)) and 

centrifuged after sonication at 35,000 X g for 30 minutes at 4 °C. Both proteins are found 

in the inclusion body and in the soluble fraction during purification. All the purification 

steps are completed at 4 °C. The soluble fraction of the proteins was bound to NiNTA 

beads and washed 20x bead volume with a.) 20 mM Tris-HCl pH 7.5, 500 mM NaCl b.) 

20 mM Tris-HCl pH 7.5, 1.5 mM NaCl, and 0.1 % Triton X-100 c.) 20 mM Tris-HCl pH 

7.5, 500 mM NaCl, and 10 mM Imidazole. After washes are complete the proteins were 

eluted from the NiNTA column by elution buffer (20 mM Tris-HCl, 50 mM NaCl, and 

350 mM Imidazole). The eluted proteins were dialyzed in PBS overnight at 4 °C. The 
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proteins were stored in 10% glycerol at -80 °C. The protein freeze thaw cycles were 

limited.  

Similarly for GST-hPD1 with GST bead binding/lysis buffer (50 mM Tris-HCl 

pH 8.0, 150 mM NaCl, and 0.1 mM EDTA) and three 20x bead volume GST bead 

washes with the binding buffer. Eluted with GST elution buffer (50 mM Tris-HCl pH 8.0, 

150 mM NaCl, 0.1 mM EDTA, and 20 mM Glutathione reduced) and dialyzed in PBS 

over night at 4 °C. The proteins were stored in 10% glycerol at -80 °C. 

Refolding extracellular domain CyPet-ExtPDL1 and YPet-ExtPD1 

The extracellular domain of PD1 and PDL1 protein have been purified from 

inclusion bodies and reported previously. In this study the cDNA of the external domain 

for PD1 and PDL1 were fused to the FRET pair YPet and CyPet respectfully and rescued 

from inclusion bodies. The fusion genes were expressed in BL21(DE3), the 2xYT 

(RPMI) media was inoculated at 1:100 ratio, and at OD 600 expression was induced with 

0.4 mM IPTG. The expression temperature was at 22°C overnight. The cells were 

pelleted by centrifugation at 8000 X g for 5 mins at 4°C. The cell pellet was resuspended 

in lysis buffer (20 mM Tris-HCl, 500 mM NaCl, 10 mM Imidazole, 1 mM 

phenylmethylsulfonyl fluoride (PMSF)) and sonicated, after sonication the lysate was 

centrifuged at 35,000 X g for 30 minutes at 4 °C. The two fusion proteins are found in the 

inclusion body, coomassie stain SDS-PAGE gel show most of the proteins are in the 

precipitate. The cell precipitate after lysis and centrifugation is resuspended and sonicated 

in 50 mM Tris-HCl pH 8.0, 500 mM NaCl, and 0.1% Triton X-100, two times and the 

final third wash in lysis buffer.  The washed pellet is finally resuspended in denaturing 
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buffer (50 mM Tris-HCl pH 8.0, 500 mM NaCl, 6 M Guanidine) left agitating over night 

at 4 °C. The dissolved pellets were centrifuged at 35,000 X g for 30 minutes at 4 °C. The 

individual pellets were refolded by dialysis over a guanidine step down (6,3,2,1,0.5 M), 

50 mM Tris-HCl pH 8.0, 500 mM NaCl, 250 mM Arginine. For hPD1 and hPDL1 the 

refolding buffer series had Glutathione Reduced/Oxidized at 0.5/0.25 mM and 1/0.5 mM 

hPDL1. Each dialysis was over night at 4 °C, with centrifugation at 35,000 X g for 15 

minutes at 4 °C at each exchange. The final dialysis was in PBS for 36 hours at 4 °C, 

with fresh PBS every 24 hours. Results of the purified proteins were ran on SDS-PAGE 

gel, with protein samples taken at various steps in the purification process. 

Refolding of YPet Fused Full length OptPDL1 

 Inclusion bodies of YPet-hPDL1 were collected and sonicated, at 65 Hz with 10 

second pulse on and off, for 5 mins, in pellet wash buffer (50 mM Tris-HCl pH 8.0, 500 

mM NaCl, and 0.1% Triton X-100). After sonication, the inclusion body was centrifuged 

at 35,000 X g, and the process was repeated twice. Following triton wash, inclusion body 

was suspended in wash buffer (50 mM Tris-HCl pH 8.0, 500 mM NaCl) and, sonicated at 

65 Hz with 10 second pulse on and off, for 5 mins and centrifuged each time. The washed 

inclusion body pellet was resuspended in denaturing buffer (50 mM Tris-HCl pH 8.0, 500 

mM NaCl, 6 M Guanidine-HCl), and allowed to fully denature over night at 4 °C with 

constant agitation. The denatured fractions were setup for dialysis in four buffers, listed 

in table 1, with similar base (50 mM Tris-HCl pH 8.0, 500 mM NaCl, Glutathione R/O 

0.5/0.25 mM) with varying concentration of denaturant (Guanidine-HCL), aggregation 

inhibitor (Arginine), and Glutathione oxidized/reduced at 4 °C for no less than 12 hours. 
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After each overnight dialysis the fraction was centrifuged at 35,000 x g for 30 minutes at 

4 °C. Each dialysis condition stepped down the denaturant from 6 M to the refolding 

buffers. The last refolding dialysis buffer consisted of the four buffers outlined in table 1 

for 12 hours at 4 °C. Finally, the protein was dialyzed in PBS for 72 hours with fresh 

PBS every 24 hours at 4 °C. At every buffer exchange the fraction was centrifuged. The 

refolded protein was stored in PBS with 10 % glycerol and limited the freeze thaw cycles.  

We utilized an aggregation reporter dye from the NovagenTM refolding kit to 

gauge levels of aggregated proteins. Table 1 below outlines the refolding buffers used in 

the screen. The buffering system is 50mM Tris at pH 8.0 throughout the process till the 

final PBS dialysis at pH 7.4.  The last dialysis series was PBS and after measured for 

protein concentration and setup for circular dichroism (CD) measurements and 

aggregation dye qualification. 

Circular Dichroism Setup and Measurements 

The circular dichroism is utilized for assessment of the secondary structure of the 

refolded fusion protein YPet-PDL1. The technique applies two circular polarized Electric 

€ waves, right-handed (ER) and lefthanded (EL), onto a sample, and the sample will 

absorb the two opposite circular polarized waves differently depending on the secondary 

structure of the molecule.  After interacting with the sample, the two E waves are added 

together to produce a now elliptical E wave which is reported as degrees ellipticity [ϴ]. 

We observe [ϴ], deg*cm2*dmol-1 as the response from exposing 195 nm to 250 nm range 

of light onto the sample. For the samples to be measured down to 195 nm, fractions of the 

protein samples were dialyzed in 10 mM potassium phosphate buffer (pH 7.4) with 100 
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mM NaCl overnight. Measurements taken on Jasco J-810
TM

 circular 

dichroism/spectropolarimeter with a 0.1 mm cuvette. MilliQ water was used to rinse the 

cuvette between measurements. The samples were measured at 5 µg/ml, as some sample 

yields were low due to precipitation of protein.  

qFRET KD Assay 

The Molecular Device instrument SpectraMax 3TM and Software Max Pro 7 

software suit set for “Endpoint” reads, with fluorescence measurements and the PMT 

gain set to a constant at “Low” setting all at 22°C. The EmFRET vs YPet-OptPDL1Total 

([L]Total) series of reaction are setup in-vitro in PBS with the [R]Total at 0.50 µM and 

titrating concentration of ligand from 0 – 3.0 µM, post mixing the reactions are incubated 

at 37°C for 30 minutes. The post processing of the EmTotal signal to resolve EmFRET 

requires the measurement of three signals. First is the EmTotal, emission at 530 nm when 

excited at 414 nm, the raw signal with the embedded donor and acceptor crosstalk 

contribution. The donor crosstalk contribution is resolved by measuring the CyPet-

OptPD1 emission at 475 nm when excited at 414 nm, FLD, and multiplying FlD with alpha 

(α). The acceptor contribution, YPet-OptPDL1 emission at 530 nm when excited at 475 

nm, FLA, and multiplying by beta (β). The post processing of the EmTotal signal resolves 

the qFRET data, EmFRET vs YPet-OptPDL1Total ([L]Total).  

GraphPad Prism 5TM is used to resolve the KD and EmFRETMax values by fitting 

equation 16 onto the data set EmFRET vs YPet-OptPDL1Total ([L]Total). The regression 

solution constraints are set as following, [R]Total concentration is kept as a constant at 0.5 

µM, KD and EmFRETMax must be greater than 0. The initial value for KD is set to 0.1 µM 



61 

 

and EmFRETMax is set to 1. The fit results include the value for EmFRETMax and KD with a 

standard error, 95% confidence interval, and a R2 value for the goodness of fit.    

qFRET Competition Assay 

The competition assay is setup in a similar manner with CyPet-PD1 at 0.2 µM and 

YPet-PDL1 at 1 µM and is kept constant with varying concentration of inhibitor. The 

range of concentration of inhibitor varies with each inhibitor molecule. For GST-PD1 we 

varied the concentration from 0 – 1 µM. For pembrolizumab (MCE- HY-P9902) we used 

a range from 0 – 3 µM, and PBS was used to dilute the reactions.  

The Non-linear regression curve fitting tool was used, to resolve Ki directly. 

Utilizing equation 17 and 19, the solver will resolve LogIC50, and uses that solution for 

the adapted, Cheng-Prsuoff relationship, equation 19. The basis for equation 19 is derived 

from the Ki and IC50 relationship, we solve equation 18 for IC50, and keep IC50 and Ki in 

log form. Using the solver with both equations together allows us to solve for Ki directly 

from the EmFRET data. GraphPad Prism 5TM custom equation allows for both equations, 

Equation 17 and 19, to be used within the same solution. The constants [R] and [KD] are 

specified in the same units as the inhibitor, and [R] and [KD]  are kept as constants in the 

constraints. The EmFRETMax and EmFRETMin are initially set to Ymax and Ymin. No constraint 

is placed on EmFRETMax, EmFRETMin and LogKi during the solve. The fit will result in a 

LogKi value, which is setup to be reported by the antilog of the solved logKi. The IC50 is 

also resolved similarly by fitting the EmFRET response to inhibitor to equation 17. With 

the only initial condition and constraint of EmFRETMax set to Ymax and EmFRETMin set to 

YMin.   
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Chapter 3: In-Vitro qFRET Assay for SUMOylation of IAV-Matrix 1 Protein for 

MS Analysis of Modified Lysines 

3.1 Influenza A Virus Life Cycle 

The influenza A viral particle contains anti-sense viral RNA (vRNA) packaged as 

a viral Ribonucleoprotein(vRNP) complex.1 The vRNP complex packages the eight viral 

RNA strands wrapped around numerous nucleoprotein (NP) and individual viral 

polymerase (P) subunits PB1, PB2, and PA. The vRNP complex has been observed to be 

packaged as a 1+7 configuration that demonstrates the complexity of the viral RNA 

genome super structure.2 The vRNP complex NP protein interact with the M1 protein 

which acts as structural support and is bound on the inside of the viral particle envelope. 

The host derived lipid membrane is the envelope that contains the vRNP complex. The 

envelope is lined with M1 protein and extending through are the membrane proteins 

Hemagglutinin (HA), Neuraminidase (NA), and Matrix 2 (M2) proteins. The initiation of 

viral entry occurs when membrane protein HA binds onto the host cell surface 

glycoconjugate’s terminal SA residue. The NA protein functions as a sialidase to improve 

affinity and improve HA binding.  

Endocytosis occurs and the vRNP complex are released into the cell cytosol. 

Within the cell cytosol the vRNP is imported into the nucleus using the importin-α-

importin-β nuclear import pathway. The NP protein hold nuclear localization sequence 

(NLS) that recruit the importin-α, and then the importin-β transport receptor that directs 

the vRNP to the nucleus. The translocation of the vRNP into the nucleus is essential for 
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negative sense viruses before any proteins can be translated the RNA must be transcribed 

and processed.   

 

 
Figure 14: A.) Illustrated viral particle organization of influenza A virus. N protein compacts the 

vRNA and interacts with the M1 protein lined along the inner membrane. vRNP is illustrated as 

the complex of PA, PB1, and PB2 B.) vRNA shown for the 8 RNA segments, PB1 segment codes 

for PB1 and PB1-F2, PA codes for PA and PA-X, M1 codes for M1 and M2, NS codes for NS1 

and NS2, and the rest are not spliced. C.) The vRNA is compacted around the N proteins that 

interact with M1, the super structure of the 8 segments is observed to have a 1+7 super structure 

shown here. The organization of the vRNP complex is not confirmed to be conserved. Created 

with BioRender.com 

  

The Influenza A virus is part of the Orthomyxoviridae family and have negative 

sense RNA that must first be transcribed to vRNA and then polyadenylated all inside the 

nucleus. Followed by RNA splicing for the Matrix (M1 and M2) proteins and the Non-

Structured (NS1 and NS2) vRNA and exported to the cytoplasm to be translated. The 

viral trans-membrane proteins HA, NA, and M2 vRNA is transferred into the 

endoplasmic reticulum for expression and ultimately reside on the cell membrane. The 

vRNP complex translated proteins M1, NP, PA, PB1, and PB2 are translocated into the 

nucleus to form the vRNP complex.3 The M1 protein has two primary interactions within 

the vRNP complex, M1 links the NS2 to vRNP and interacts with NP to aid in transport 

of vRNP to the cytosol.4 The secondary role of M1 protein is to assemble the viral 
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particle at the membrane of the host cell. The translated M1 protein within the cytosol, 

interacts with the lipid layer, and translated HA and NA proteins for viral particle 

generation.5 This initiates the viral particle budding with M1 protein binding the lipid 

membrane of the host cell. The vRNP complex after translocation to the cytosol, travels 

up to the budding site and interacts with M1. Assembly of all the components at the 

budding site, the lipid layer begins to deform, and the viral particle takes shape. The viral 

particle release from the rest of the membrane is aided by the sialidase function of the NA 

protein.6  

3.2 Post Translation Modification of Influenza A Virus Matrix 1 Protein 

The M1 protein’s role in viral pathogenesis is crucial in formation of vRNP and 

budding of the viral particle. Numerous reports of post translation modification (PTM) of 

M1 protein demonstrates the complex interaction between host cellular processes with 

M1 protein. Reports of M1 PTM ranging from NEDDylation, ubiquitination, 

phosphorylation, and SUMOylation provide ample evidence of M1 functional range 

modulated by post translation modifications.4,7,8 Matrix 1 protein is one of the more 

abundant proteins expressed of the Influenza A proteome. The phosphorylation PTM is 

reported to modify eleven proteins among the influenza A virus proteome. The M1 

protein phosphorylation at tyrosine 132 has been demonstrated to modulate the importin-

α1 binding for M1 for translocation into the nucleus.8 The location of phosphorylation on 

the M1 protein is upstream of the nuclear localization sequence (NLS) and is 

hypothesized to be the reason for exposing the NLS to importin-α1. The nuclear 

transportation of M1 is a critical part of viral particle formation as some of the M1 
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proteins are recruited to the HA proteins the M1 is also required in the nucleus for 

formation of vRNP.  

 The ubiquitination PTM is a powerful cellular mechanism that is utilized mainly 

for proteasomal degradation. The Influenza A virus utilization of this mechanism is 

explored in a study with interference RNA knock down of ubiquitin ligase Itch and found 

that the ubiquitination of M1 plays an essential role in the vRNP release into the cell.9 

The study found that Itch E3 ligase is recruited into the endosome before viral particle 

release, and coimmunoprecipitation experiments find M1 and Itch protein precipitated 

together as evidence of interaction. Insight in the ubiquitin activity is further 

demonstrated in the M1 translocation into the nucleus. Mehesutihan et al. report the 

ubiquitination of M1 mediated by the Ubiquitin E3 ligase AIP4 onto lysine K102 and 

K104.10 The group reported that the mutation of K102R or K104R was lethal for the 

virus, and found this modification to be essential to IAV replication. In contrast, 

Neddylation investigation by Li et al., discovered lysine 187 to be Neddylated and found 

improvement in infectivity with K187R mutant M1.7 

The post translation modification mono-SUMOylation occurring with the SUMO 

paralog, SUMO1, and poly-SUMOylation occurring with SUMO2 and SUMO3 grants a 

target protein with the ability to interact with an array of cellular processes such as 

nuclear transport.11 The global effect of SUMOylation is demonstrated when Influenza A 

Virus demonstrated inhibited infectivity with SUMO E2 enzyme, hUBC9, knock down 

cell line.4 SUMOylated lysine modifications has been reported for the viral proteins NP, 

NS1, and M1.12,13 NS1 SUMOylation sites were investigated in our lab, and one site was 
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determined to be a bona fide SUMOylation site, and modulation of virus infection was 

observed.14 Previous reports of SUMOylation of M1 protein have shown modulation of 

pathogenesis, with singular M1-K242R mutants show decreased infectivity in 

comparison to wild type. Furthermore, Matrix 1 (M1) protein observed to have inhibited 

formation of M1-vRNP complex and demonstrated malformed viral particles.4  

The M1 protein has an essential role in the pathogenesis of the virus and has 

adapted several host PTMs for the pathogenesis of the virus. The discovery of M1 

SUMOylation from the three groups (Domingues et al., Pal et al., and Wu et al.) have 

provided great insight into the interaction of M1 with the SUMO PTM mechanism, and 

promote investigation into M1 SUMOylation.4,15,16 The M1 protein holds 13 total lysines 

each have the possibility of being SUMOylated. The method used to determine possible 

SUMOylation test sites by Wu et al., was a homology model approach, as they believed 

that the lysines most likely to be SUMOylated would be a conserved lysine. Thus, 

evaluation of lysine 187 and 242 were the only two reported in study and only lysine 242 

was reported to be modified by Wu et al.. 17 The insight brought by this study is valuable 

and provides confidence in M1 and SUMO mechanism. However, due to the homology 

approach taken by the group, an argument can be made that there can be other potential 

sites that are as useful or have a lethal outcome. As loss of ubiquitination of M1 proved 

lethal to the pathogenesis, would loss of all SUMOylation activity be lethal as well? 
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Table 9: Reported Post Translation Modifications of M1.Ubiquitination and 

phosphorylation mutant M1 both have proven to be lethal to the virus. NEDDylation of 

mutant K187R has proven to surprisingly improve infectivity of the protein.   

Modification Position Study 

Ubiquitination K102/K104 Mahesutihan et al. (2018) 

Phosphorylation Y132 Wang et al. (2012) 

NEDDylation K187 Li et al. (2020) 

 

 

 

 

 

Figure 15: M1 a 252 amino acids protein has several observed PTMs. The N-terminal domain (1 

– 87 aa) defined as the nuclear export signal, the dimerization domain (87-165 aa) reported to be 

part of the M1 oligomerization, and the c-terminal domain (166 – 252 aa ) recently reported to 

also aid in oligomerization and stability of macro structure. The ubiquitination of M1 shown at 

positions 102 and 104 are found within the nuclear localization signal sequence. The 

phosphorylation at Y132 is found within the dimerization domain. The NEDDylation and 

SUMOylation modification are found within the C-Terminal domains. 

 

Multiple covalent (multivalent) attachment of SUMO has been observed across 

the human proteome, and has great impact in DNA repair mechanisms.18 The multivalent 

SUMO activity is observed to increase affinity of target proteins by increasing interaction 

surface area. Examples of discovery of multiple SUMO modifications are found with 

IAV-NP SUMOylation discovery. The Han et al. study found two sites on IAV 

nucleoprotein to be SUMOylated, and a lysine mutation screening method was used 

where all 19 lysine residues are mutated on NP individually.13,19 Furthermore, groups 
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have also resorted to using SUMOylation prediction software to gain an idea of all 

possible sites, however this method can be labor intensive and yield only a small fraction 

of sites to be bona-fide SUMOylated.14 In this study we provide an in-vitro method of 

SUMOylation that is coupled with MS to provide direct insight to site of SUMOylation. 

The method applies the qFRET platform to 1.) observe in real-time SUMOylation of 

target protein, and 2.) directly apply qFRET reaction to MS for identification of modified 

lysine residues.    

3.3 In-Vitro SUMOylation of YPet-IAV-M1 with qFRET Reporter Design and 

Setup  

The reconstitution of SUMOylation reaction with quantitative Förster’s 

Resonance Energy transfer (qFRET) as a reporter is a robust and rapid method for 

identifying SUMOylation events and identifying SUMOylation sites. This method 

includes a E3 ligase for its enhanced SUMOylation activity and the design of the assay 

allows for direct input of a complete SUMOylated target protein for mass spectrometry 

(MS) identification of SUMOylated lysines. The qFRET assay utilizes a FRET optimized 

donor fluorescent protein tag, CyPet, on the SUMO1 protein and acceptor fluorescent 

protein tag, YPet, on the SUMOylation target protein, Influenza A Virus M1.20 The 

fusion proteins CyPet-SUMO1 and YPet-IAV-M1 allow us to monitor the completion of 

the SUMOylation assay without destroying the sample and is used for MS processing 

directly. The qFRET platform has been applied previously for evaluation of kinetic 

variables such as KD and kcat/Km.21,22 The qFRET platform is directly applied to the 
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evaluation of enzymatic covalent attachment of fusion protein CyPet-SUMO1 onto YPet-

IAV-M1. 

The reconstituted complete SUMOylation cascade, with the E3 ligase PIAS1 

which enhances the SUMOylation of target protein Matrix 1 (M1) protein.  The 

enzymatic reaction is setup in-vitro with E1 activating enzyme hetro-dimmer, Activating 

Enzyme Subunit 1 (AOS1), and Ubiquitin Activating Enzyme 2 (UBA2), SUMO specific 

E2 Conjugating enzyme, Ubiquitin Carrier 9 (UBC9), and coupled with the addition of 

the target specific E3 ligase, Protein Inhibitor of activated STAT 1 (PIAS1). The 

enzymatic cascade is initiated by the addition of ATP to activate the E1 heterodimer, 

CyPet-SUMO1 Gly98 makes a thiol intermediate with Cys173 on UBA2. The E1-SUMO 

complex interacts with the UBC9 and transfers CyPet-SUMO1 onto the catalytic Cys93, 

and finally the E3 ligase specific to the target protein mediates the aminolysis reaction for 

covalent attachment of SUMO1 onto lysine of M1.  The conjugation of the fusion protein 

Cypet-SUMO1 onto lysine residue on YPet-M1 is a covalent conjugation and brings the 

FRET pairs within the range of transfer for an observable increase in EmFRET signal. 

Illustrated in Figure 16.  

 

 



74 

 

 

Figure 16: Illustration of SUMOylation enzymatic cascade with qFRET assay components. The 

activation of the assay occurs with the addition of ATP into the reaction mixture. The CyPet-

SUMO1 shown in green binds to E1 activating enzyme shown in complex (3KYC) as a 

temporary thioester bond at Cys173 with Gly98 and transfer to E2. The E2 conjugating enzyme 

UBC9 (2PE6), shown in dark red, with the temporary thioester bond on the catalytic cysteine 93. 

The E3 ligase PIAS1 shown as a purple rectangle with the RING domain (1V66) recruits the 

target protein to E2. The RING domain also mediate the isopeptide bond of SUMO gly98 onto 

the lysine of the target protein. The FRET pairs are shown as cylinders, donor Cypet as a blue 

cylinder and YPet acceptor as a yellow cylinder. The FRET phenomenon occurs as a reporter of 

SUMO1 binding onto the target protein.  

3.4 qFRET Assay Fluorescent Signal Acquisition and Processing 

 The in-vitro SUMOylation assay is adapted for a microplate fluorescent reader 

allowing rapid measurements in real time and direct processing. The FRET wavelength, 

EmTotal, are 414 nm excitation and 530 nm emission. Emission from unbound donor 

CyPet, FlD, 414 nm excitation and 475 nm emission, and unbound acceptor YPet, FlA, 

475 nm excitation and 530 nm emission. The crosstalk correction parameters alpha (α) 

and beta (β) must be evaluated for every fluorescent spectrometer. Alpha α is the ratio of 

donor emission at 530 nm over the emission at 475 nm when both are excited at 414 nm, 

equation 2. Beta β is the ratio of acceptor emission at 530 nm when excited by 414 nm 
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over the emission at 530 nm when excited at 475 nm. The quantitative EmFRET 

parameters, 0.34 ± 0.003 α and 0.03 ± 0.001 β variables are determined using the same 

formulation outlined in previous work from Yang et al., equations 2 and 3 respectively. 

Equation 1 provides the relationship of EmFRET that can be quantified for the FRET 

increase based on the direct physical SUMOylation of substrate. 

Table 10: qFRET measurements taken at three unique excitation and emission points. 

The three wavelengths are recorded and processed for qFRET signal using equation 1. 

 Excitation (λ) Emission (λ) 

EmTotal 414 nm 530 nm 

FlD 414 nm 475 nm 

FLA 475 nm 530 nm 

 

EmFRET = (EmTotal) − ((𝐹𝐿𝐷 ∗  𝛼) + (𝐹𝐿𝐴 ∗  𝛽))   Equation 3.1 

𝛼 =
Donor em𝑖𝑠𝑠𝑜𝑛 𝑎𝑡 530 𝑛𝑚 𝑤𝑖𝑡ℎ 𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 414 𝑛𝑚

Donor em𝑖𝑠𝑠𝑜𝑛 𝑎𝑡 475 𝑛𝑚 𝑤𝑖𝑡ℎ 𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 414 𝑛𝑚
   Equation 3.2 

𝛽 =
Acceptor em𝑖𝑠𝑠𝑜𝑛 𝑎𝑡 530 𝑛𝑚 𝑤𝑖𝑡ℎ 𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 414 𝑛𝑚

𝐴𝑐𝑐𝑒𝑝𝑡𝑜𝑟 em𝑖𝑠𝑠𝑜𝑛 𝑎𝑡 530 𝑛𝑚 𝑤𝑖𝑡ℎ 𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 475 𝑛𝑚
   Equation 3.3 

 

The specificity of SUMO protein to the SUMOylation target has the potential to 

yield a false positive FRET response. Thus, functional controls of reactions without ATP 

are implemented in parallel to gain confidence of SUMOylation event.  

3.5 Results  

In vitro qFRET assay SUMOylation of IAV M1 

The observed raw FRET signal demonstrates the donor quenching with the 

addition of ATP. This quenching and fluorescent increase at the FRET wavelength at 530 
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nm is a direct result of FRET occurring between donor fusion protein CyPet-SUMO1, 

and acceptor YPet-IAV-M1 (Figure 17A). The ATP initiates the SUMOylation reaction 

and the covalent attachment of the SUMO1 onto the M1 puts both acceptor and donor 

within range of FRET. The real time evaluation of the EmFRET signal for the duration of 

60 minutes shows the saturation of EmFRET at the plateau of the signal. The covalent 

attachment of SUMO1 at a 1:2 ratio of concentration of SUMO to target protein results in 

all the SUMO1 bound to substrate. The saturation of the bound SUMO1 is observed in 

the plateau of the EmFRET signal. Observed within the 60-minute reaction the EmFRET 

signal no longer increases past the plateau (Figure 17 B).  

This observation allows us to set consistent times for each reaction, based entirely 

on the EmFRET signal. The observation of the two tests demonstrates the robust signal of 

SUMOylation events. The other observations are the high background within the signal 

and is observed in the timed EmFRET experiment. Thus, we optimized the concentration of 

CyPet-SUMO1 as the donor is the major contributor to the crosstalk, with alpha at 0.34. 

The last reaction is the reduced CyPet concentration of 0.5 µM, and all other reactants 

stayed the same. Furthermore, the experiment also setup a reaction without the E3 

present, shown to have a significant difference from the no ATP negative control. 

However, the E3 ligase PIAS1 shows a very significant increase at 60-minute incubation 

at p value being smaller then 0.0001 with the unpaired two tailed t-test.   
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Figure 17: In-Vitro SUMOylation of YPet-1AV-M1, acceptor and donor at 1:4 ratio 

fluorescent spectrum was measured across wavelength 450 - 550 nm, with 414 m 

excitation. The gray line is the SUMOylation reaction without ATP, and the black line is 

the reaction with ATP(A). B.)EmFRET monitored over time with acceptor and donor at 1:2 

ratio C.)The in-vitro SUMOylation of IAV YPet-M1 with and without E3 ligase PIAS1, 

and with and without ATP at qFRET Optimized concentrations. The reaction is running 

under three conditions, without ATP, without E3, and one standard. An unpaired two 

tailed t-test was done across each reaction. p<0.0001***,p<0.005**   
 

MS Sample Preparation and MS Identified SUMO Modification 

 The SUMOylation of IAV-M1 was completed in-vitro. The SDS-PAGE gel 

provides a secondary confirmation of SUMOylation as we observe the CyPet-SUMO1 

band dimmish with the reaction of ATP and E3 ligase. The reaction directly digested with 

the three protease with their respective buffer conditions and ran over night. The expected 

cut pattern from each protease is shown in figure 18B. The Glu-C protease cleaves the 

carboxyl end of glutamic acid, and we find seven expected sites at the c-terminal end. 

The window of amino acid  on the c-terminal considered does not extend farther then 20 -

30 base pairs, as the numerous cut sites will result in a shorter peptide, and longer 

peptides larger than 20 amino acids become more difficult to identify as a modification.  
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Figure 18:SDS-PAGE coomassie stain of SUMOylation reaction for MS. Lane 1 is no ATP, Lane 

2 is no E3 ligase, and Lane 3 is the standard reaction. CyPet-SUMO1 band shifts to target protein, 

leaving low concentration of unbound CyPet-SUMO1(A). B.) Three different digestions were 

done on the SUMOylated YPet-IAV-M1. The expected cuts from each are provided with dash 

lines. 

 

The results of identified sites with SUMO modifications are showing in figure 20, 

with the mass to charge (m/z) vs the intensity of the signal along with a diagram of 

aligned particles. The illustration of the five identified modified lysines is shown in figure 

20F. The coverage of the IAV-M1 protein is observed to be 95 % of the protein with 

every lysine found in the MS results. The lysine sites identified with the SUMO 

modification were 21, 187, 230, 242, and 252. The M1 protein holds 13 lysine residues 

and the 8 other lysines were also confirmed to be found in peptides that were not SUMO 

modified. The n-terminal lysine 21, is identified with a SUMO1 peptide that follows the 

GluC cut at glutamic acid (E) at position 89 on SUMO1 c-terminal. Lysine 187 observed 
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to be modified with SUMO1 peptide that follows the chymotrypsin cut at leucine position 

80 on SUMO1. Lysine 230 observed to be modified with SUMO1 peptide that follows a 

GluC cut at glutamic acid on position 89 on SUMO1. The Wu et al.. identified lysine at 

position 242 is also found to be modified with a SUMO1 peptide following a GluC cut at 

position 80. The last lysine at position 252 was also identified to have a SUMO1 

modification following the GluC cut at position 93 on SUMO1.  
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Figure 19: Identified lysine modification on residues A.)Lysine 21, with identified GluC cut on 

SUMO1,B.)lysine 187 with identified Chymotrypsin cut on SUMO1 peptide, C.)Lysine 230 with 

identified GluC cut on SUMO1, D.)lysine 242 with GluC cut on SUMO1, and E.)lysine 252 with 

GluC cut  on SUMO1. The alignment and spectrums are taken from Thermofisher Proteome 

Discoverer TM.F.) The illustration provides the location of all the lysine peptides found and only 5 

determined to be modified by SUMO1. 
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In vitro SUMOylation of IAV-M1 Mutants 

The qFRET assay for in-vitro SUMOylation of M1wildtype (wt) and M1 mutants 

provides a rapid assessment of the M1 SUMOylation sites in vitro. The results of the 

EmFRET assay are calculated and plotted as bar plots with standard deviation on 

GraphpadPrism5TM (Figure 21). The single mutants K21R, K187R, K230R, K242R, and 

K252R, all demonstrated a significant EmFRET response to ATP and E3 ligase. The most 

significant drop in EmFRET signal is with the C-terminal mutants. The reactions with E2 

conjugating enzyme in comparison to the addition of E3 ligase PIAS1 had no significant 

drop with or without the addition of ATP besides in the lysine 242 mutant. A two-tailed t-

test was completed on each variant reaction, with -ATP as the control group.  

 

Figure 20:In-vitro SUMOylation of IAV-M1, IAV-M1 K21R, IAV-M1 K35R, IAV-M1 K187R, IAV-M1 

K230R, IAV-M1 K242R, IAV-M1 K252R, IAV-M1 K21/35R, IAV-M1 K187,230,242,252R, and 

K21/35/187/230/242/252R mutant. The reactions all were plotted on GraphPad Prism5TM. Unpaired two 

tailed t-test was done for all mutants, with their control reactions. p<0.0005*** p<0.001** p<0.05* 

 

Viral Plaque Assay of M1 Wildtype and Mutants  

 The plaque assays were completed for all individual mutants, and the complete 

mutant M1, K21,35,187,230,242,252R. The crystal violet clearing signifies a plaque, 
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observed in the M1 wild type and various mutant wells. The degree of clearing is directly 

related to the infectivity of the viral particles generated with P2. We observe clear 

singular plaques at the higher dilutions and allow us to calculate plaque forming units. 

The plaque assays in figure 22 provide a qualitative measure of the ability of the virus to 

infect cells. The mutant 35, 187, 230, 242, and 252 all demonstrated infectivity to some 

degree in the P2 infections. The notable mutant lysine 21 to arginine displays no plaques 

formed at any dilution of the virus. The same result is shown with the mutant with lysine 

K21/35/187/242/252R mutations, no plaques observed with the direct infection.     

 
Figure 21: IAV M1 mutant plaque assays, using P2 of the generated virus particle for each 

mutant. The 6 ell plates were used to observe the infectivity of the virus together with serial 

dilutions. Noted next to the image of the plaque are the dilutions used in each well. The images 

were taken on a digital bright field camera with illuminated back lighting.  

Cytotoxicity Assay of Viral Particles Generated from M1 Wildtype and M1 Mutants 

 The reconstitution assay demonstrated infectivity of the individual lysine to 

arginine mutant viruses, besides the single lysine 21 mutant. The plaque forming units 

were determined for all the viral particles that form plaques, since M1 K21R cannot form 
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plaques Pfu/ ml value was zero. The bar plot below is the calculated Pfu of the plaque 

assays (Figure 23A). The variation in the Pfu values is not indicative of infectivity, as 

other variables such as transfection efficiency can modulate the number of viral particles 

formed. The K35R mutant had a very low Pfu/ml in comparison to wild type and is 

notated on the graph as 0.2*106 Pfu/ml.  The cytotoxic assay provides a normalized 

method to compare infectivity of the viral particles. We compared the infectivity of 

wildtype M1 against lysine 242 mutant, lysine 187 mutant at an MOI of 0.005, and 

introduce K21R M1 mutant viral particles undiluted, and a control set with no infection, 

to the assay to determine if any activity can be observed (Figure 23B). We monitor the 

release of ATP over 48 hours with measurements taken at 0 hours, 24 hours, 36 hours, 

and 48 hours. The wild type M1 and the K187R mutant wells dropped in signal within 36 

hours. In comparison to no infection, we see a drastic difference in signal this assay. The 

M1 mutant lysine 21 is added with no dilution to determine if any activity of infection is 

found, and we observe no observable difference between no-infection and K21R mutant 

M1. The K242R mutant signal shows diminished signal like the M1 wildtype, however 

the signal does not reach as low as M1 wildtype or M1 K187R.  
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Figure 22: A.) Bar plot of Pfu/ml of generated viral particles. The M1 mutant K21R has 

no calculated Pfu, and the K35R Pfu/ml was much smaller than the others, thus it is noted 

on the graph. B.) The cytotoxic assay taken over a period of 48 hours post infection. The 

drop in signal was observed at 36 hours, for M1 wild type, M1 K187R and slightly for 

K242R. The control are wells with no infection for observing signal of natural cell death.  

Cellular Translocation of wildtype M1 and M1 Mutants 

 The immunostaining of M1had a significant signal in the 533 nm emission and 

overlapped with the Hoechst stain. The response of the Hoechst stain was very high, a 

constant exposure of 2 milliseconds was used to obtain an observable signal. The mutant 

M1 K21R had a similar cellular location within the nucleus as the wildtype (Figure 24). 

The mutant M1 K242R had a significant signal in both the nuclear stain and the M1 stain, 

and the overlap in the intensity implies the location is within the nucleus.  
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Figure 23: ImmunoStains of M1 with Alexa 532 nm stain and nuclear stain with Hoechst 

emission at 488 nm. The two channels are stacked in ImageJ and analyzed for intensity 

across the cell in both channels and plotted. 

Immunoprecipitation of Wildtype M1, M1-K21R, and SUMOylated M1-wildtype 

 The immune staining for M1 and M1 K21R produce clear blots from protein 

capture from the cell. The SUMOylated M1 capture resulted in extra bands at ~100 – 130 

kDa, the anti-M1 antibody is 150 kDa and can result in a similar band. The M1 wildtype 

and M1 K21R both in the pDZ vector are confirmed to have M1 expression. The size of 

the M1 protein without a tag is 28 kDa and has been demonstrated by groups to have a 

blot at approximately 26 – 28 kDa. The SUMOylation of M1 is confirmed with M1 blot 

and bands at 36 and 48 kDa show feint signal.  
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Figure 24: Immunoblot of M1 wildtype, M1 K21R, and blank HEK293 cells(A). 

B.)Immunoblot of SUMOylated M1, stained with M1 and with SUMO1. Images taken in 

UVP camera and ImageJ is used to process the images. 

3.6 Discussion  

 The in vitro SUMOylation assay with qFRET reporter demonstrated here provides 

a rapid assessment of a target protein SUMOylation. The controlled reaction is applied to 

a heterologous protein influenza A virus Matrix 1 protein and demonstrated to have 

multiple SUMOylated lysines. The qFRET assay was quickly adapted for a timed and 

robust response to M1 SUMOylation in figure 18. The EmFRET response to ATP qualifies 

the assay as a reporter of a SUMOylation event. The assay also provides insight into the 

activity of the E3 ligase, with a significant SUMOylation response when ATP is added. 

The SUMOylated target protein was followed by MS analysis with the SUMO enzymes, 

E1, E2, and E3 in the MS sample. The SDS-PAGE in figure 19A with coomassie stain 

demonstrated that majority of the CyPet-SUMO1 protein is covalently bound. Compared 

to the no ATP added lane, where the CyPet-SUMO1 band is still present. This 

observation provides confidence that majority of the 4 µM CyPet-SUMO1 is covalently 

attached to the target fusion protein YPet-IAV-M1.  
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 The mass spectrometry analysis of the SUMOylated IAV-M1 provided 5 lysines 

that are modified by SUMO1. The sites observed includes the lysine 242 identified before 

by Wu et al. and four novel SUMOylated lysines. The coverage of IAV M1 was 95 % 

which is an advantage of in vitro reactions, allowing higher concentration of target 

protein in comparison to in-cell. The digested peptides resulting from the SUMO1 protein 

matched GluC cut pattern and based on these observations GluC alone provides great 

resolution of SUMO1 modification. The c-terminal of SUMO1 holds seven glutamic acid 

positions within thirty base pairs. The GluC protease cut profile matched for lysine 

positions 21, 230, 242, and 252.  

Cross talk between the other lysine modification cascades such as Ubiquitin and 

Neddylation could interfere in the identification of SUMOylated sites in cell. In an in 

vitro reaction we have confidence that the identified modification is of SUMO1. The 

modification of lysine 187 detected in MS provides an example of cross talk between 

SUMOylation and Neddylation. The previously discovered Nedd8 modification on lysine 

187 which was observed to negatively regulate pathogenesis by Li et al.. Demonstrated 

similar behavior here in figure 23B, M1 K187R mutant infectivity was slightly improved 

in comparison to wildtype M1.  

The plaque assay and viral cytotoxicity assay both demonstrated that lysine 21 is 

essential for viral replication. We observed lysine 21 to be SUMOylated in the MS 

results, which was the only lysine on the n-terminal that was found to be SUMOylated in 

vitro. The plaque assays demonstrated infectivity in lysine mutants 35, 187. 230, 242, and 

252. However, lysine 21 and the 6 mutant M1 had no infectivity. This was tested again 
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with the viral cytotoxicity assay and observed no virus induced cell death. The mutation 

of 242 to lysine   

Lethal mutations have been observed in other PTMs investigations, as ubiquitin 

K102 and 104 mutant M1 could not regenerate the virus. Additionally, tyrosine 132 

mutation also proved lethal, and no virus could be regenerated in mutation studies. 

Demonstrated here the in vitro SUMOylation of lysine 21 and observed that lysine 21 

mutation to arginine alone renders the virus pathogenesis shutdown. We did not observe 

modulation in translocation of M1 with the mutation, as M1 was found in the nucleus 

with wild type M1, lysine 21 mutant, and 242 mutant. The translocation of M1 has been 

reported to be dependent on the phosphorylation of tyrosine residue near the nuclear 

localization sequence.8 The immune precipitation of M1 provides a secondary 

confirmation of M1 K21R mutant expression in the cell. We observe a band for M1 at 

~28 kDa in both lanes of M1 wildtype and M1 K21K. The secondary confirmation of M1 

expression is the immunostaining within the cell in figure 24. These results confirm 

expression of mutant M1 in the cell, but in the reconstitution assay no viral activity was 

observed.  

  The in vitro SUMOylation of M1 demonstrated 5 lysine residues to be SUMO1 

modified in vitro, and the immunostaining of M1 with SENP inhibitor demonstrated 

multiple bands with M1 blot and SUMO1 blot. The multiple bands are indicative of 

multiple SUMOylation modifications, and the band shifts of approximately 10 kDa 

indicates SUMO1 modifications. The in vitro SUMOylation with qFRET reported 

demonstrated multiple SUMOylation events, as the single mutants all had significant 
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EmFRET signal with E3 ligase and ATP added. These findings corroborate the conclusion 

of multiple SUMO1 attachments of M1 and provide evidence of essential lysine 21 

modification.  

3.7 Methods and Materials 

Expression and purification of recombinant SUMOylation proteins 

 The in-vitro Förster’s Resonance Energy Transfer (FRET) SUMOylation reaction 

is completed with the E1, E2, and E3 enzymes in the SUMOylation cascade. The E1 

activation enzyme complex, UBA2 and AOS1, E2 conjugating enzyme UBC9, and E3 

ligase PIAS1 were all cloned into pET28B vector for expression in BL21(DE3) cells. The 

FRET pairs CyPet and YPet are N-terminal tagged to SUMO1 and the substrates 

respectively and cloned into pET28B for expression in BL21(DE3). Each BL21(DE3) 

cell line with individual proteins were inoculated at 1:100 and grown to 0.4 OD at 600 

nm at 37 °C, and then induced at overnight at 22°C with 0.25 mM IPTG. The cells were 

lysed, lysis buffer (20 mM Tris-HCl (pH 7.5), 0.5 M NaCl, 5 mM Imidazole), by 

sonication and centrifuged at 35,000 x g. The soluble fraction was purified by 6XHis tag 

to NiNTA beads affinity chromatography through a gravity column. The bound proteins 

were washed with, buffer 1 (20 mM Tris-HCl (pH 7.5), 0.3 M NaCl), buffer 2 (20 mM 

Tris-HCl (pH 7.5), 1.5 M NaCl, and 0.5% Triton X-100), and buffer 3 (20 mM Tris-

HCl(pH 7.5), 0.5 M NaCl, and 10 mM Imidazole). The proteins eluted using the 

following buffer, (20 mM Tris-HCl, 300 mM NaCl, and 450 mM Imidazole) and dialyzed 

in 20 mM Tris-HCl (pH 7.5), 50 mM NaCl, and 1 mM DTT.   
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In-vitro qFRET SUMOylation Reaction Setup and Measurement 

 The SUMOylation assay is evaluated for its response to various concentrations of 

acceptor fusion protein, CyPet-SUMO1. The enzyme concentrations are kept constant at 

0.1 µM  E1 hetro-dimer, 0.2 µM E2 conjugating enzyme, and 0.25 µM E3 ligase.  The 

raw signal of in-vitro reactions allows us to observe the quenching of the acceptor 

molecule at 475 nm and the fluorescence’s of the acceptor molecule at 530 nm. The raw 

signal spectrum is implemented at 1 µM of donor, CyPet-SUMO1, and 2 µM of acceptor, 

YPet-IAV-M1. The same reaction setup for EmFRET resolution and monitored in real time 

over a period of 60 minutes at 37֯C. Three wavelengths monitored over the 60 minutes are 

tabulated in table 2, the EmTotal, FLD, and FLA are measured and processed according to 

equations 1 to resolve EmFRET. The reaction is setup without ATP as a control to observe 

only FRET signal resulting from SUMOylation of target protein.  

The optimized concentrations of acceptor and donor with lowest observed 

background signal is implemented at 0.5 µM CyPet-SUMO1, E1 activating enzyme at 0.1 

µM, E2 conjugating enzyme at 0.2 µM, E3 ligase at 0.25 µM, and acceptor target protein 

at 2 µM, with the reaction ran for 60 minutes at 37 ֯ Celsius. All reactions are completed 

in SUMOylation buffer of 20 mM Tris-HCl (pH 7.5) 50 mM NaCl, 4 mM MgCl, 1 mM 

DTT, and 2mM ATP. Functional controls are put in place for non-specific interaction, by 

a negative control reaction without ATP, and to observe E3 activity a control reaction 

without E3 ligase. Each reaction was incubated at 37°C for 60 minutes. 

The SUMOylated samples are added to a 384 well micro plate (GreinerTM 384) 

for fluorescence measurements on a fluorescent plate reader. The plate reader used for 
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this study is the Molecular Devices SpectraMax3TM with the SoftMax Pro 7TM. The 

fluorescence measurements are taken according to the excitation and emission of the 

three wavelengths, EmTotal, FlD, and FLA. The PMT setting are set to a constant of 

“Low” with “Endpoint” set for read mode.  

Sample preparation for mass spectrometry post in-vitro SUMOylation reaction 

The in-vitro SUMOylation reactions of IAV M1 protein tagged YPet (M1), and 

CyPet tagged SUMO1 protein are added at the 1:1 ratio of 4 µM each.  Activating 

Enzyme Complex 1 (E1) is at 0.1 µM, and Conjugating Enzyme 2 (E2) at 0.2 µM, E3 

ligase at 0.5 µM. The reactions were completed at 37 ° Celsius for 4 hour to insure 

highest percentage of SUMOylation of M1 protein. Additionally, two reactions were 

implemented in parallel without ATP as negative controls. The following day 5 ug of 

each reaction was ran on an SDS-PAGE gel with Coomassie stain to observe band shift 

with and without the activating reagent ATP, and the rest of the sample was stored at – 80 

° C till they were ready for MS preparation.   

The proteolytic digestions were performed with three different enzymes 

separately. Trypsin (PierceTM Trypsin Protease-MS Grade, Thermofisher) , Chymotrypsin 

(PierceTM Chymotrypsin Protease-MS Grade, Thermofisher), and Glu-C (PierceTM Glu-C 

Protease-MS Grade, Thermofisher) were the enzymes selected to provide a large 

diversity in digested peptides for MS (Figure 19B). Each enzyme was digested at 1:100 

ratio for sample to enzyme ratio and ran overnight (16 hours) at 37 ° Celsius. Each 

completed digestion was acidified to a final concentration of 0.1% v/v TFA, and speed 
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vacuumed to dry product, and then reconstituted to 0.1% v/v TFA readied for MS 

loading.  

LTQ Orbitrap Xl Loading and Run 

Samples consisted of approximately 1000 nM of in-solution digested product 

from each proteolytic enzyme digestion. The samples were loaded and desalted at a flow 

rate of 50 ul/min for 5 min on a C18 trap column (Waters Symmetry C18 180µm x 2cm) 

in acetonitrile at 2% v/v, water at 97.9% v/v, formic acid 0.1% v/v. The samples were 

separated on a C18 reversed-phase analytical column (Waters BEH C18 

1.7umx75umx200mmOrbitrap Column Dimensions) using a Waters nanoAcquity UPLC 

(Orbitrap Ramping System) over a 70 min gradient. Mobile phase A was 0.2% formic 

acid in water and mobile phase B was 0.2% formic acid in acetonitrile. The gradient was 

as follows: from 5% to 45 % buffer acetonitrile 80% v/v, water 19.9% v/v, formic acid 

0.1% v/v at a flowrate of approximately 300 nL/min.   

The Thermo Orbitrap FusionLTQ Orbitrap mass spectrometer was operated in 

parallel acquisition Data-dependent acquisition (DDA)IDA mode. Masses from 400-2000 

Da were acquired in the orbitrap with nominal resolution of 120k (FWHM) at m/z 200 

for MS. Peaks above intensity 5e8 with charges 2-8 were selected for sequential CID, 

HCD, and ETD fragmentation in the orbitrap at 30,000 resolutions followed by dynamic 

exclusion for 15 seconds.  

Bioinformatic Analysis of MS Results 

The LTQ-orbitrap XL (.raw) raw data was analyzed on Thermofisher Proteome 

AnalyzerTM. The complete amino acid sequence of each protein was provided as a 
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reference for analysis. The SUMOylated lysines proteolytic products are tabulated and 

searched for using both software suits. Precursor ion peptide tolerances were set at 5 

ppm, and MS/MS peptide tolerances were set at 1 Dalton. Table 3 outlines the predicted 

mass of SUMO1 cleave with protease digestion. We utilized every possible protease cut 

to allow identification of any SUMO modifications with as many possible protease 

processing.  

Table 11: SUMO1 proteolytic peptides from Trypsin, Chymotrypsin, and V8 enzyme 

Peptide Amino Acid Sequence Mass (Da) Peptide Description 

ELGMEEEDVIEVYQEQTGG 2155.27 C90H139N21O38S1 

LGMEEEDVIEVYQEQTGG 2026.16 C85H132N20O35S1 

GMEEEDVIEVYQEQTGG 1913.00 C79H121N19O34S1 

MEEEDVIEVYQEQTGG 1855.94 C77H118N18O33S1 

EEEDVIEVYQEQTGG 1724.75 C72H109N17O32 

EEDVIEVYQEQTGG 1595.64 C67H102N16O29 

EDVIEVYQEQTGG 1466.52 C62H95N15O26 

DVIEVYQEQTGG 1337.41 C57H88N14O23 

VIEVYQEQTGG 1222.32 C53H83N13O20 

IEVYQEQTGG 1123.18 C48H74N12O19 

EVYQEQTGG 1010.03 C42H63N11O18 

VYQEQTGG 880.91 C37H56N10O15 

YQEQTGG 781.78 C32H47N9O14 

QEQTGG 618.60 C23H38N8O12 

EQTGG 490.53 C18H30N6O10 

QTGG 361.40 C13H23N5O7 

TGG 233.25 C8H15N3O5 

GG 132.13 C4H8N2O3 

G 75.07 C2H5NO2 

 

Construction and design of M1 Mutants 

The mass spectrometry results provided a total of five lysine residues that were 

SUMOylated. The figure 20F illustrates that out of the 13 lysine residues that were found 

on M1, Lysine 21, 187, 230, 242, and 252 were found to be SUMOylated in the in-vitro 
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reaction. To determine which lysine residues are critical for the progression of the viral 

infection, M1 mutants were made. The M1 mutants MS identified SUMOylated lysines 

mutated to arginine, to maintain charge properties. The mutants were constructed through 

PCR and Gibson ligation, with point mutations at the lysine coding sequences. Tabulated 

PCR primers shown below for each mutation. The M1 wild type and M1 mutants are 

ligated onto pET28B-YPet construct with linker, backbone pET28B-YPet-linker 

construct taken from Malik et al..23 The PDZ vector for gifted from García-Sastre lab for 

IAV reconstitution assays.24  

Table 12: The list of Primers used to make point mutations on IAV-M1 protein.  

Amino Acid Primer 

k21r fwd aggccccctccgagccgagatcgcacagag 

k21r rev tctcggctcggagggggcctgacgggatga 

k35r fwd ctttgcagggcggaacactgatcttgaggttct 

k35r rev cagtgttccgccctgcaaagacatcttcaa 

187r fwd cactacagctcgg gctatggagcaaatggctg 

k187r rev ccatagcccgagctgtagtgctggctaaaa 

k230r fwd tgctggtctgcgaaatgatcttcttgaaaatttgcaggccta 

k230r rev gatcatttcgcagaccagcactggagctag 

k242r fwd ggcctatcagcga cgaatgggggtgcagatg 

k242r rev ccattcgtcgctgataggcctgcaaatttt 

k252r fwd atgggggtgcagatgcaacggttccggtga 

k252r rev tggtggtggtgctcgagtgcggccgctcaccggaaccgttgcatct 
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In vitro SUMOylation of IAV-M1 Mutants 

The in-vitro SUMOylation assay of IAV M1 is an initial screening of lysine sites 

essential for SUMOylation. We observed 5 lysines in the MS analysis with the SUMO 

modification, and we include lysine 35 which was initially identified with low probability 

to have the SUMO modification. The in vitro SUMOylation assay screening includes 

individual mutants as well as all sites in the N-terminal, C-terminal, and all tested lysines. 

The assay is setup at the same concentration as the optimized conditions, 6xHisCyPet-

SUMO1 500 nM, 6xHisYPet-M1 wildtype and mutants 2000 nM, E1 hetro-dimmer 

AOS1/UBA2 at 100 nM, E2 conjugating enzyme UBC9 200 nM, E3 ligase PIAS1 250 

nM, and SUMOylation buffer of 20 mM Tris-HCl (pH 7.5) 50 mM NaCl, 4 mM MgCl, 1 

mM DTT. Functional controls are put in place for non-specific interaction, by a negative 

control reaction without ATP, and to observe a significant boost in FRET a control 

reaction without E3 ligase. Each reaction was incubated at 37°C for 60 minutes. 

Following Equation 1 we measure the three wavelengths, EmTotal, FLD, and FLA. The 

measurements are taken on Molecular Devices Spectra M3TM, with “Endpoint” settings, 

with PMT at constant gain set to “Low”.   

Reconstitution of Viral Particles M1wt and M1 Mutants 

 The reconstitution of Influenza A virus is completed by following the virus 

reconstitution assay constructed by Adolfo Garcia-Sastre lab.24  The eight influenza virus 

genes were cloned into the pDZ vector gifted by Sastre lab. The pDZ plasmid design is 

outlined in the protocol as a bidirectional plasmid with human RNA polymerase I and 

terminator sequence. Additionally, chicken β-actin promoter and terminator within the 
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same plasmid. The cytomegalovirus promotor will work in human and Madin-Darby 

Canine Kidney (MDCK) cells. The chicken β-actin promoter is also added to allow 

reconstitution within chicken eggs.  

The pDZ plasmids are transformed in Top10TM bacteria cells under ampicillin 

selection. The BiomigaTM and QiagenTM midi-prep kits were used to obtain transfect 

DNA for each pDZ vector. Lipofectamine 3000TM was used to co-transfect 1 ug of each 

pDZ vector (PB2, PB1, PA, HA, NP, NA, M and NS) into HEK293-MDCK cell co 

culture on 6 well plate the first day. Post 24 hours of transfection, the media is replaced 

with media without FBS, infectious media, DMEM 0.3% Bovine Albumin (BA), 1% 

Penicillin/Streptomycin (PS) with 1 ug/ml of TPCK-trypsin. After the media change and 

48 hours of incubation and viral particle generation the entire media is collected. The 

content of collected material is the media without FBS and TPCK/trypsin, cell debris, and 

viral particles. The collected media is centrifuged at 1000 x g to pellet cell debris and is 

now used as passage 0 (P0). The collected P0 virus is introduced to fresh 6 well MDCK 

cells at 80 % confluency. The cells are first rinsed with 1xPBS to remove any residual 

FBS media and incubated with 250 µL P0 for 1 hour with gentle agitation every 10 

minutes. The volume of infecting material can vary by the size of the plate, as the aim is 

to not allow the cell to dry during the 1-hour incubation. Once the 1-hour infection with 

P0 is completed the P0 material is removed and replaced with DMEM 0.3% Bovine 

Albumin (BA), 1% Penicillin/Streptomycin (PS) with 1 ug/ml of TPCK-trypsin, the 

volume used varies and for a 6 well plate 2 mL post infection media is added. The virus 

is incubated for 48 hours, and the infection is repeated now with Passage 1 (P1) material 
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making passage 2. Each passage event exponentially increases the infectious viral particle 

count. The resulting material is viral particles from P0 to P2 of viral particle in FBS free 

infection media.  

Plaque Assay M1wt and M1 Mutants 

 The viral plaque assays are implemented to quantify and determine viability of 

virus generated from the reconstitution assay. The list of reconstituted viruses differs in 

the M1 construct, each pDZ M1 and M1 mutant is used to generate virus. The P2 virus 

generated from M1wt and M1 mutants is titrated in increments of 1:1000 to determine 

over all plaque forming units. The P2 virus is diluted in 1xPBS with 0.5% BSA, and each 

viral titer is prepared before in 300 µL volumes. Fresh MDCK cells are plated onto a 12 

well plate and brought to 80 % confluency. The cells are washed with 1xPBS, and 150 

µL of titer is added to the wells and incubated at 37°C, with gentle agitation every 10 

minutes, and after 1 hour the titer is removed. Post infection overlay medium, is added 

onto the wells, and incubated at 37°C for 48 hours. After 48 hours the overlay medium is 

aspirated and rinsed with ddH2O. Fixing solution (4% Paraformaldehyde (PFA)) is added 

to the cells and incubated for 30 minutes and discarded. Post fixing the cells are covered 

with cell stain, 1% Crystal Violet in 20 % ethanol is added to each well. The cell stain is 

incubated in each well for 30 minutes and is gently washed off with ddH2O. Images are 

collected on a bright field digital camera with a back light illumination.   

Cytotoxicity Assay of viral particles with M1wt and M1 Mutants 

 The viral titer is first analyzed for plaque forming units. Utilizing equation 4 the 

plaque forming units are calculated. The multiplicity of infection (MOI) is then 
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calculated using equation 5 B. The cell survival assay used is a type of stain of adhered 

cells that is measured by absorbance at 540 nm. The Neural Red Cell Cytotoxicity 

AssayTM, by BioVision, kit uses a dye that is taken up by the cell and binds onto 

liposomes within the cell cytosol. The amount of dye binding to each well will depend on 

the number of cells within that well. The cells are then washed, and the dye-stained cells 

are exposed to an acid buffer, that releases the bond dye from the cells. The difference in 

the absorption from each well directly points to the number of cells survived after the 

infection. The comparison of M1 wildtype and M1 mutants proved insight into the virus 

infectivity with M1 mutant.  

The cytotoxicity assay is implemented on 96 well plate. The plate is seeded with 

MDCK cells at 80 % confluency. The cells are introduced to M1 viral particle, M1wt, 

M1K21R, M1K35R, M1K187R, M1K230R, M1K242R, and M1K252R. The cells 

infections are stopped at time points 0, 24, 36, 48 hours and measured for cell survival. 

The reporter for the assay measured the amount of free-floating ATP in the medium, the 

higher the ATP the more cells that have lysed due to infection.  

Pfu/ml =
Average # of Plaques

Dilution∗ Volume of diluted virus added
  Equation 3.3 

M. O. I. =
Pfu

Number of cells 
            Equation 3.4 

Translocation of wildtype M1 and M1 Mutants 

  Immunostaining of M1 is used to investigate the dependency of SUMOylation of 

M1 on translocation between cytosol and nucleus. Glass coverslips are coated with L-

lysine overnight at 22°C under UV light in a 12 well plate. Post coating HUH7 cells are 

seeded onto the coverslips and grown till 50 % confluent. The cells are transfected with 
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M1wt, M1K21R, and M1K242R. Post 24 hours of transfection, the cells are washed with 

DPBS, and fixed in 4% Paraformaldehyde (PFA) for 15 minutes with rocking. Post fixing 

the PFA is aspirated, and the cells are washed with DPBS. After fixing the cells are 

blocked (1XDPBS, 1 % BSA, 0.1 % Triton x-100) for 60 minutes at 22°C with rocking. 

Post blocking the antibody is diluted 1:100 in blocking buffer and is stained overnight at 

4°C with rocking. The cells are rinsed with DPBS for 5 minutes and repeated 3 times. 

The cells are then incubated for 60 minutes with the secondary anti-mouse 488 Alexa-dye 

(Invitrogen) in 1XDPBS, 1 % BSA, 0.1 % Triton x-100. The cells are rinsed with DPBS 

for 5 minutes and repeated 3 times. Post-secondary stain the cell nucleus stain Hoechst 

33342, by Thermofisher (H1399) is applied and incubated for 15 minutes at room 

temperature. Post nuclear stain, the cells are washed 4 times with DPBS with 5-minute 

incubation at room temperature. The cells were imaged on Olympus upright fluorescence 

microscope, and images were stacked and analyzed using ImageJ software.  

Immunoprecipitation of wild type M1, M1 K21R, and SUMOylated M1 wildtype 

 The M1 plaque assays and cytotoxicity assay provide insight in decrease in viral 

activity in mutants M1K242R, and no activity in M1K21R. Confirmation of M1 K21R 

and wildtype expression in cells is demonstrated through immune precipitation. The 

wildtype M1 and mutant M1 K21R is transfected in 10 cm plates with 70% confluent 

HEK293 cells. Lipofectamine 3000 is used to transfect 15 µg of M1 wildtype and 

M1K21R in separate plates. Additionally, confirmation of M1 SUMOylation in cells is 

demonstrated by transfection of wildtype M1 with hSUMO1 and E2 conjugating enzyme 

UBC9. Lipofectamine 3000 is used to transfect HEK293 cells with 5 µg of pDZ-IAV-
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M1, 2.5 µg of pEF1-hSUMO1 (Addgene : 27290), and 2.5 µg of pcDNA3.1-YFP-UBC9 

(Addgene 2093) in 10 cm plate.  

After 48 hours of transfection the 10 cm plates are moved to 4 °C and washed 

with 1xPBS with PMSF that was preincubated at 4 °C. The cells are then scraped off the 

plate and transferred into a 1.5 mL microtube. The cells are centrifuged and all 1xPBS is 

removed from the tube. The cells are resuspended in Cell-Lytic MTM (Sigma Aldrich) 

with 1xPMSF and setup on a shaker at 4 °C for 30 minutes. The SUMOylated M1 has 

lysis buffer has 20 mM of NEM (N-ethylmaleimide) SENP inhibitor and 1x PMSF. The 

deSUMOylation activity of SENP is inhibited by NEM, but NEM cannot pass the cell 

wall, thus NEM is added to lysis buffer. Post cell lysis the cell debris is separated by 

centrifugation of tubes at 3000xg for 5 minutes. The cell lysate is transferred to another 

tube where anti-M1 antibody is added at 1:50 dilution. The primary anti-body is 

incubated with the cell lysate for 60 minutes at 4°C. The agarose beads with Protein A/G 

(Santa Cruz Antibody sc-2003) are equilibrated with lysis buffer at 4°C. The beads are 

then centrifuged at 500 x g for 3 minutes. The equilibrated beads are added to the cell 

lysate with anti-M1 to capture any M1 protein. The tubes are rocked overnight at 4°C and 

centrifuged the next morning at 500xg for 2 minutes. The beads now potentially have 

bound M1 protein to them and is precipitated for both M1 wildtype and M1 mutant. The 

beads are then washed two times with Cell-Lytic MTM (Sigma Aldrich) and one time with 

1xPBS.  

 Post isolation of agarose beads 40 µL of lamenelli buffer is added. The beads and 

buffer require denaturing by heat with incubation at 98°C for 3 minutes. Post denaturing 
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the cell samples are ran on SDS-PAGE. The sample set up included the wild type M1 and 

M1 mutant, along with blank HEK293 cells. The transfer of protein to nitrile membrane 

was completed under 100 mV and 450 Amp. The membrane is then incubated with 

blocking buffer, (1 x TBST, 1% BSA), for 60 minutes. After the 60-minute incubation 

with blocking buffer is used to dilute the primary antiM1 1:500 dilution. The primary 

antibody blotting is completed over night at 4°C with gentle rocking. The next day the 

membrane is washed in 1 X DPBS, and secondary HRP anti-Mouse (Thermofisher G-

21040) antibody is added to the cells and gently rocked for 60 minutes. The stain is 

aspirated from the membrane and rinsed 3 times with TBST. SuperSignalTM West Pico 

PLUS (Thermofisher 34579) is used as substrate for HRP bioluminescence. The UVP 

camera and software suit is used to image the membrane. 
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Chapter 4: In vitro qFRET Assay for the SUMOylation of SARS-CoV-2 

Nucleocapsid protein with MS analysis of Modified Lysines 

4.1 SARS-CoV-2 Life Cycle 

 The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global 

pandemic responsible for the upper respiratory disease Coronavirus Disease 2019 

(COVID-19). The disease in 2020 developed the delta variant which has been reported to 

have 1,260 times higher viral load in comparison to the original strain. The SARS-CoV-

2B.1.617 lineage identified originally in India, containing the functional mutations to the 

spike protein, NTD (T19R, G142D, Δ156, Δ157, R158G), RBD (L452R, T478K), S2 

region (D950N) and P681R.1 The delta variant has a reduced neutralizing immune 

response when compared to the previous variants after a complete first and second dose 

Pfizer and AstraZeneca vaccine. Furthermore, investigation on vaccine dose response 

show no neutralizing response to a single dose of Pfizer or AstraZeneca vaccine to the 

delta variant. The rapid development of variants with onset of functional mutations 

highlights to the global science community to purse all available avenues of neutralizing 

this viral infection and the viral proteome interaction with host factors are a potential 

avenue left relatively undiscovered.2  

SARS-CoV-2 Life Cycle Overview 

 The SARS-CoV-2 viral particle is composed of starting from the core the positive 

sense single strand RNA (~30 kb) packed around nucleocapsid (N) proteins. The 

compacted RNA nucleocapsid complex is enveloped in a lipid membrane with embedded 

membrane proteins (M) and envelope protein (E).3 The glycoprotein spike protein (S) 
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exposed outside on the viral particle surface is found to have high affinity for human 

angiotensin-converting enzyme 2 (hACE2).4  

The binding event initiates the mechanism of viral entry into the cell. Recent studies have 

demonstrated that the post translation modification (PTM) glycosylation plays an essential 

role in S and hACE2 interaction.5 Once bound the human cell surface protein 

transmembrane protease serine 2 (TMPRSS2) cleaves the spike protein which results in 

the cleaved spike protein binding to the host cell surface.6 The S protein unravels and 

merges the two lipid membranes together and a endocytosis mechanism delivers the 

particle into the cell.7  

 

Figure 25: Viral particle organization. Spike protein depicted by the crystal structure (5x5b) 

found on the membrane, along with the envelope protein (PDB:5x29), and membrane protein 

(M). Within the particle are nucleocapsid proteins that compact the vRNA, shown in a beads on a 

string formation. 

The viral particle releases all N protein and the viral positive sense RNA into the 

host cytosol. The vRNA is then unpacked and translated by the host ribosome. The 

translation results in an amino acid chain which is processed into proteins by two viral 

proteases NSP3 and NSP5. The result is an array of SARS-CoV-2 Non-structural proteins 
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(NSP) 1 - 16(Figure 26A). NSPs hijack host functions to inhibit host RNA expression 

and inhibit host anti-viral response elements from being translated.  NSP1 protein has 

been reported to interact with host factors to inhibit anti-viral response and remodel the 

cellular environment for virus pathogenesis.8,9 The spike protein infiltrates the host cell 

membrane and recruits adjacent host cells expressing hACE2 and fuses the cells together 

creating super structures called syncytia.10 Meanwhile the viral proteins NSP 3 and 5 

attack the endoplasmic reticulum (ER) and eventually snip off pieces of the ER creating 

double membrane vesicles (DMVs).11 These DMVs house vRNA till the viral protein 

NSP3 has been observed to release that vRNA out into the cytoplasm.11 The released 

RNA is packaged into a lipid envelope constructed from lysosome.12 This newly 

constructed viral particle within the lipid envelope moves towards the cell surface. The S 

protein is said to be processed by a host protease Furin which activates the S protein, but 

is not essential for release of infectious particles.13 This complex series of events have 

been characterized by groups of scientists across the globe and provide insight into the 

viral pathogenesis.  
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Figure 26: SARS-CoV-2 pathogenesis, viral entry by S and ACE interaction, translation 

of vRNA, and expression of NSP proteins. NSP proteins inhibit mRNA translocation 

from the nucleus to cytosol to inhibit anti-viral response and cleave host RNA in the 

cytosol. The vRNA is also observed to be packaged in double membrane vesicles (DMV) 

made by NSP5 protease from the endoplasmic reticulum. The vRNA is replicated and 

packaged again within the DMV and released into the cytosol. The Golgi Apparatus aid 

in expression of viral membrane proteins which encapsulate the vRNA and a form a viral 

particle within a lysosome. The lysosome releases the viral particle out of the cell.  

SARS-CoV-2 Nucleocapsid Protein Structure and Functional Packaging of vRNA 

 SARS-CoV-2 viral pathogenesis highlights the modulation and interaction of host 

factors that enable the virus to infect and spread throughout the host. The focus of this 

study is on the N protein and the intersection of its role in pathogenesis with host factors. 

The N protein is the most abundant proteins of the viral proteome observed in patient 

samples of live virus.14 The major known function of N proteins is to form viral RNA-

protein complex (vRNP) with compacted vRNA genome and interact with M protein 

within the viral particle.15 The innate organization of the N protein within the viral 

particle is reported to compact into a varying degrees of condensate that aid in 

circumventing the host immune response to vRNA and enable packaging of vRNA into a 

viral particle.16  



110 

 

N protein is responsible for binding and conforming vRNA and making a 

structural bond with M protein within the viral particle. Cryo-electron tomography 

(CryoET) studies have elucidated the complex overall structure of N protein bound to 

vRNA and N protein bound to M protein. Recent investigations concluded the 

oligomerized N protein compacts RNA into a structure that forms a phase-separated 

condensate within the viral particle that binds to M protein.3,16–18 Highlights of CryoET 

and sub tomogram averaging (STA) work has investigated the organization of vRNPs 

within the viral particle. They observed the average diameter of a viral particle to be 80 

nm and contained 30-35 vRNPs. The group predicted each vRNP is 15 nm in diameter 

and holds 12 copies of N protein wrap and coated in RNA, creating a condensate that 

encapsulates the genomic vRNA and interacts with M protein.16,19 The sub-domains that 

enable protein-protein complexes of the N protein oligomers form dimers and tetramers, 

that enable the complex formation of vRNP and ultimately enclosure within a viron.  

Structure of N Protein 

The SARS-CoV-1 N protein and SARS-CoV-2 N proteins have homology across 

their sequences, and demonstrated to have similar domains and function.14 The N protein 

identified domains N-terminal domain (NTD from 1-50 aa) is followed by the RNA 

binding domain (RBD from 51-174 aa), the dimerization domain (247-364 aa), and the 

C-terminal domain (CTD from 365-419aa).20 The CTD reported to interact with M 

protein within the viral envelope and supports the vRNA super structure.16 Between the 

RBD and the dimerization domain is a liker region (174-245 aa), this region is a serine 

and arginine rich region on the protein that is reported to be phosphorylated.21   
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Figure 27:Nucleocapsid protein illustration of n and c terminal domains. The protein n-terminal 

interacts with the vRNA, the linker region is reported to be phosphorylated, and the c-terminal 

domain reported to be the interacting domain for oligomerization. 

4.2 SARS-CoV-2 Nucleocapsid Protein and Host Proteome Interaction 

Investigations of the intersection of N protein interaction network with host 

proteome have expanded the functional attributes of N protein beyond the vRNP 

complex. The anti-viral response of host cells is reported to be inhibited by N protein 

interaction with host immune response protein, signal transducer and activator of 

transcription (STAT1 & 2). N protein mediate inhibition of interferon antiviral response 

by sequestering activated STAT proteins within the cytosol and disrupting the INF 

signaling from progressing.22 Furthermore, N protein is reported to depend on PTMs 

from host proteome for its functional RNA binding properties.   

Recent PTM studies on the SARS-CoV-2 N protein have found potential 

phosphorylation on serine 197 and threonine 205.21 The study co-expressed N protein 

with the catalytic subunit of the enzyme protein kinase A (PKA) in bacteria, and isolated 

phosphorylated N protein. The study reported a total of 20 sites modified by 

phosphorylation using mass spectrometry. The study ruled out 18 sites due to predicted 
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binding inefficiencies of phosphorylating enzymes and homology studies across variants. 

The study observed SARS-CoV-2 N protein modulation of RNA binding with mutations 

at 197 and 205 in the S/R rich region. The phosphorylation modification is inherent to the 

proteins function and demonstrates the dependence of virus progression on host 

PTMs.16,17 Furthermore, an investigation in ubiquitination, screened in-cell modified N 

protein for ubiquitination and observed lysine 169, 374, and 388 to be ubiquitin 

modification. No follow up investigations were done in the study as identification of 

PTM location was the only objective.23   

In the following study we investigate the PTM SUMOylation on SARS-CoV-2 N 

protein, a small ubiquitin like modification (SUMO) that has been reported with the 

variant SARS-CoV-1 N protein to modulate its function in cell.24 The SUMOylation of 

SARS-CoV-1 N protein at lysine 62 was predicted by homology and SUMOylation motif 

predictions. SUMO mutant of SARS-CoV-1 N protein follow up studies demonstrated 

some modulation in oligomerization with SUMO mutant N proteins, and some 

modulation of nuclear translocation. A significant impact that was alluded to in the 2005 

study by Li et al., is the modulation of oligomerization of N protein with the SUMO 

modification. The evidence provided in the study was a western blot that observed the 

decrease of crosslinked N proteins. However, it has been demonstrated that N proteins 

can form super structures of dimers and tetramer which ultimately form condensate.16,18 

The oligomerization of N protein is described to be a critical factor in viral genome 

packaging. The study outlined here, is in part, to investigate the non-covalent interaction 

of N protein oligomerization using an in vitro quantitative Förster’s resonance energy 



113 

 

transfer (qFRET) assay and determine if SUMOylation has any impact on the non-

covalent oligomerization of N proteins.   

SUMO proteins are small ubiquitin-related modifier (SUMO) that is a vital post 

translation modification utilized in our proteome. The SUMO modification of a target 

protein increases the target protein affinity to other cellular processes and extends the 

target proteins non-covalent interaction network range to proteins with affinity to SUMO 

proteins.25,26 In this work we demonstrate an in-vitro qFRET assay for the SUMOylation 

of N protein coupled with mass spectrometry to identify the site of SUMO modified 

lysine. The modified lysine sites are then mutated to arginine individually making N 

protein SUMO mutants. The N protein mutants are evaluated by in vitro SUMOylation 

assay, and modulation of N protein cellular localization.  

The investigation in modulation of dissociation constant of SUMOylated N 

protein by applying a qFRET based kinetic assay to determine KD of SUMO modified N 

proteins. The previous investigation on SUMOylation of SARS-CoV-1 N protein used 

western blot to infer the decrease in binding and formation of dimers or trimers. The 

advantage of applying N-protein SUMO mutants to a qFRET assay to determine KD over 

western blot analysis is that it provides resolution on the non-covalent interaction 

between N-protein - N-protein affinity. The in vitro assessment of the affinity of N 

protein to N protein with SUMO mutants provides insight of the condensate formation of 

oligomerized N protein with modulation of SUMO modification. 
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4.3 SUMOylation Enzymatic Cascade of N Protein 

The reconstituted complete SUMOylation cascade, with the E3 ligase PIAS1 

which enhances the SUMOylation of target SARS-CoV-2 N protein. The fusion proteins 

CyPet-SUMO1 and Ypet-N are constructed with the fluorescent protein at the n-terminal 

(Figure 29A).  The enzymatic reaction is setup in-vitro with E1 activating enzyme hetro-

dimer, Activating Enzyme Subunit 1 (AOS1), and Ubiquitin Activating Enzyme 2 

(UBA2). The SUMO specific E2 Conjugating enzyme, Ubiquitin Carrier 9 (UBC9), and 

coupled with E3 ligase, Protein Inhibitor of activated STAT 1 (PIAS1). The enzymatic 

cascade is initiated by the addition of ATP to activate the E1 hetero-dimer, CyPet-

SUMO1 Gly98 makes a thiol intermediate with Cys173 on UBA2. The E1-SUMO 

complex interacts with UBC9 and transfers CyPet-SUMO1 onto the catalytic Cys93, and 

finally the E3 ligase specific to the target protein mediates the aminolysis reaction for 

covalent attachment of SUMO1 onto lysine of N protein.  The conjugation of the fusion 

protein Cypet-SUMO1 onto lysine residue on YPet-N is a covalent conjugation and 

brings the FRET pairs within the 10 nm range of transfer for an observable increase in 

EmFRET signal. 
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Figure 28:A. Diagram of the fusion protein CyPet-SUMO1 and YPet-N. B.) In-vitro SUMOylation 

assay with qFRET as a reporter illustrated here. The fusion protein CyPet-hSUMO is first bound 

to E1 activating enzyme, for the intermediate E1-Cypet-SUMO1 thioester bond at cys-173 to 

glycine 98 on SUMO1. The SUMO is then transferred to the catalytic cystiene93 of E2 conjugating 

enzyme. The E3 ligase and target protein are said to non-covalently interact with the E2-SUMO1 

complex. The CyPet-SUMO1 is then shuttled to a lysiene on the target protein, to be covalently 

bound by a isopeptide bond. The covalent binding of SUMO onto N protein closes the proximiy of 

CyPet-Ypet to less then 10 nm allowing FRET to occur.  

 

4.4 qFRET Assay for the In-Vitro SUMOylation of N protein 

 The reconstitution of SUMOylation reaction with qFRET as a reporter is a robust 

and rapid method for identifying SUMOylation events, characterizing enzymatic activity, 

and identifying SUMOylation sites.27,28 This method includes the E3 ligase PIAS1 for its 

enhanced SUMOylation activity and is coupled with mass spectrometry to provide 

insight into identifying multiple SUMOylation sites.29–31 The qFRET assay utilizes a 

FRET optimized donor fluorescent protein tag, CyPet, on the SUMO1 protein and FRET 

optimized acceptor fluorescent protein tag, YPet, on the N-protein.32 The CyPet-YPet 

fluorescent proteins experience the non-radiative FRET phenomenon, when within 10 nm 
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distance between them which is applicable for observing SUMO1 attachment. The FRET 

phenomenon has been described and applied in various studies of protein-protein 

interaction, and its response to distance between donor acceptor, r, is demonstrated to 

directly impact FRET efficiency by r6.33–35 We have developed a fluorescence based 

method in determining covalent attachment of Cypet-SUMO1 to YPet-N protein. The 

method demonstrated here applies a “three cube FRET” fluorescence reporter that 

extracts the emission of FRET signal, EmFRET, from the raw fluorescent signal, EmTotal, 

at the FRET wavelength. The extraction applies three different fluorescent measurements 

(Table 1), to extract the EmFRET response from a FRET reaction. The method filters out 

cross channel signal of the unbound donor or acceptor from the FRET wavelength. The 

relationship applied in equation 1, determines the contribution of cross talk form both 

acceptor and donor by applying ratiometric constants alpha (α Equation 2) and beta (β 

Equation 3), to subtract the crosstalk signal from the EmTotal. The details on the 

development of the qFRET method can be found on a previous study on development of 

the qFRET signal by Song et al..28  The method has been applied previously to determine 

kinetic values of protein-protein interactions such as dissociation constant KD, enzymatic 

constants kcat/Km, and applied to assess SUMO modification of viral proteins.28,36,37 
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Table 13: EmFRET relationship to raw EmFRET signal, EmTotal, the donor cross talk contribution, 

and acceptor cross talk contribution. 

 Excitation 

(λ) 

Emission 

(λ) 

EmTotal 414 nm 530 nm 

FlD 414 nm 475 nm 

FLA 475 nm 530 nm 

 

EmFRET = (EmTotal) − ((FLD ∗  α) + (FLA ∗  β))    Equation 4.1 

𝛼 =
Donor em𝑖𝑠𝑠𝑜𝑛 𝑎𝑡 530 𝑛𝑚 𝑤𝑖𝑡ℎ 𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 414 𝑛𝑚

Donor em𝑖𝑠𝑠𝑜𝑛 𝑎𝑡 475 𝑛𝑚 𝑤𝑖𝑡ℎ 𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 414 𝑛𝑚
   Equation 4.2 

𝛽 =
Acceptor em𝑖𝑠𝑠𝑜𝑛 𝑎𝑡 530 𝑛𝑚 𝑤𝑖𝑡ℎ 𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 414 𝑛𝑚

𝐴𝑐𝑐𝑒𝑝𝑡𝑜𝑟 em𝑖𝑠𝑠𝑜𝑛 𝑎𝑡 530 𝑛𝑚 𝑤𝑖𝑡ℎ 𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 475 𝑛𝑚
 Equation 4.3 

 

4.5 Results  

In vitro qFRET Assay for SUMOylation of N Protein 

 The observed EmFRET response for the SUMOylation of SARS-CoV-2 N protein 

demonstrates a significant difference in the magnitude of EmFRET with the addition of 

ATP (Figure 29). A t-test analysis was completed on the triplicate measurements, 

compared with and without ATP, as well as with and without E3 ligase. There was also a 

significant EmFRET signal without E3 ligase, which demonstrates a robust SUMOylation 

event. A one-way ANOVA was used to analyze the significance between the control 

group without ATP (-ATP), with ATP and no E3 ligase, and with ATP and E3 ligase.  
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Figure 29: In vitro SUMOylation of N protein, without ATP, without E3 ligase PIAS1, 

and with both ATP and E3 ligase(A). p<0.0001***  

 

Mass Spectrometry Analysis to Determine SUMO Modified Lysine on N Protein 

 The identified modified lysines are illustrated in figure 31D along with the other 

25 lysines found unmodified by SUMO1. The coverage of the N protein was 95 %. The 

spectrum of the identified peptide with lysine 61 modification was a large section of N 

protein from position 41 to 67, which had lysines 61 and 65 contained within it. This cut 

pattern matches for n-terminal arginine-41, and the cleave at arginine-68 after the 

proline-67. The GluC protease cuts the carboxyl ends of glutamic acids and can also cut 

the n terminal of arginine (R) and c terminal of aspartic acid (D). The SUMO1 peptide 

“GGTQ” followed by a glutamic acid at position 93 is cleaved and matches the expected 

GluC cut. Figure 31B has a similar peptide however with lysine-65 holding the SUMO1 

modification. The GluC cut positions on the peptide are the same as the previous peptide, 

N protein position 41 - 67. Figure 31C, the N protein peptide from positions 341 -  355, 

with SUMO1 GG peptide. This peptide match the GluC cut pattern at aspartic acid 
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position 341 – 357. However, some discrepancies can be noted in figure 31c, the c 

terminal of the peptide should have an isoleucine after the modified lysine. This could be 

an aberration in the MS analysis or an artifact of GluC non-specific cut. We still included 

these two sites in the study as the other 25 lysines had no detected modification.  

 The secondary analysis of each lysine site can be done through evaluation of each 

site matching the SUMO consensus motif. Based on the SUMO consensus motif, of a 

hydrophobic residue (Ψ), the modified lysine (K), any amino acid, and either an aspartic 

acid or a glutamic acid. The Ψ-K-x-D/E motif has been applied by numerous groups to 

ascertain SUMOylation site. Using two only servers, GPS-SUMO and JASSA were used 

to determine if these sites matched the SUMO consensus.38,39 Both servers only pointed 

to lysine position 338 as the highest probability, and lysine 61, 65, 347, and 355 all were 

low probability. This result did not match the SARS-CoV-1 N protein SUMOylation site, 

also does not match the in vitro SUMOylation sites, and was not included in this study.    
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Figure 30: The in vitro MS sample was measured for qFRET signal before processing for MS, 

with and with ATP and E3 (30A). MS spectrum of peptide containing modified lysine 61 (30B), 

with a GluC cut on SUMO1, GGTQ. Lysine 65 (30C) with the same GluC cut on the SUMO1 

peptide. The lysine 347 and 355 are both found in the same peptide, with SUMO1 peptide GG 

identified mass (30D). The illustration of the location of the four discovered lysines, along with a 

total of 31 lysines on the protein shown as yellow lines (30E). Spectrums were generated by 

Thermofisher Proteome DiscovererTM   
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qFRET Assay for In-Vitro SUMOylation N Protein Mutants 

 The results of the in vitro SUMOylation of N protein with qFRET as a reporter is 

shown below (Figure 32). We observe significant signal in all proteins with E3 ligase and 

ATP, this indicates the activity of PIAS1 ligase, to SUMOylate N protein is high. The 

significant differences can be seen in reactions without E3 ligase, we see a significant 

difference without ATP and without E3 ligase. This indicates some level of modulation in 

SUMO1 activity. In comparison the wildtype N protein observed significant differences 

when ATP was added, in both -E3 and +E3. The 61 and 65 mutants showed a drop in the 

signal in -E3, and this pattern followed in the double mutant without E3 ligase. The one-

way ANOVA analysis with Tukey Test, results in significant differences when ATP is 

added across all E3+ reactions. However, it should be noted that modulation in minus E3 

(-E3) reactions was detected.    

 
Figure 31: In vitro SUMOylation with qFRET as the reporter. Comparison of no ATP (-ATP), 

with no E3 ligase PIAS1 (-E3), and a complete reaction with ATP and E3 ligase PIAS1  (+ ATP+ 

E3). The reactions were all done under the same conditions, and the measurements were all taken 

on the same instrument, Molecular Devices SpectraMax3TM. One-Way ANOVA was done on the 

data sets of -ATP/-E3/+ATP+E3, the -ATP was the control group. Tukey test was used as the 

post-HOC analysis, and displayed p values are p<0.0001***, p<0.05*, and no significant 

difference (ns), n=3 
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Cellular Translocation Nucleocapsid Protein 

The YPet signal on the N protein demonstrated a condensate like formation within 

the cytosol. We observe fluorescent granules forming within the cell which is inherent to 

the N protein function. The first image at the top are the nuclear stains using, Hoechst, 

that provide the location of the nucleus, Figure 32. The second image is in the YPet 

channel, where we observe the Ypet bound N protein. The formed bright spots are 

observed to be condensate or granules of N protein.  We observe modulation of N protein 

shuttling in and out of the nucleus which can be seen as the individual bright spots within 

the nucleus. The first set of images are of the wild type N protein, and we observe 

granules/condensate within the nucleus and the cytosol. The N protein K61R we observe 

granules within the cell and the cytosol. The N protein K65R showed minimal spotting in 

the nucleus but presented signal in the cytosol. The c terminal mutations K347R and 

K355R presented small condensates in both cytosol and nucleus.  
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Figure 32: Fluorescent Imaging and Immunostaining of Nucleocapsid protein taken on a 

fluorescent microscope, Olympus BX43. The nuclear stain Hoechst was imaged at 488 nm and 

YPet tag was imaged at 533 nm. Images were processed on ImageJTM. 

qFRET KD of SUMOylated N Protein 

 The results of the wildtype N protein affinity assays are listed in table 16, 

with SUMO1 modified and unmodified N protein. The calculated EmFRET from the 

titration of acceptor fusion protein YPet-Nwt is plotted in points (circle/orange) for 

unmodified, and (diamond/green) for SUMO1 modified. We observe a KD of Wt N 

protein when SUMO1 modified to be 0.46 µM, standard error of 0.34, and 1.46 µM 

standard error of 0.09 when not modified. The EmFRET response from the titration of total 

acceptor protein and the fit profile plotted in figure 33. The results of qFRET KD assay on 

the N protein mutants are listed in table 4. The results of the fit including the KD values 

are listed, for both modified and unmodified mutant proteins. The EmFRET response 
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across 0 to 2.5 µM of protein demonstrates modulation of affinity with and without 

SUMOylation. The affinity of the un-modified N proteins ranged from 0.65 to 2.45 µM, 

and the range for modified was 0.30 to 1.70 µM. The lysine 65 and 355 mutants had 

variation in their data, the reported R2 values are lower than the rest of the data set. 

 
Table 14: Non-Linear Regression Fit of Equation 4, to determine KD of SUMO1 modified and 

SUMO1 unmodified wild type Nucleocapsid protein

 
 

 

 
Figure 33: qFRET KD of modified Nucleocapsid Protein, plot on GraphPadPrism5TM. The 

determined fit of SUMO modified(Diamond/Green), and unmodified (Circle/Orange) EmFRET to 

total acceptor fusion protein, YPet-Nc wt. 
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Table 15: qFRET KD results of Nucleocapsid protein SUMO mutants, K61R, K65R, K347R, and 

K355R. The fit results are tabulated here, for each mutant with and without SUMO 

modification. 

 

 K61R 

-ATP 

K61R 

+ATP 

K65R 

-ATP 

K65R 

+ATP 

K347R 

-ATP 

K347R 

+ATP 

K355R 

-ATP 

K355R 

+ATP 

K
D

  

(µM) 0.92 0.64 1.38 1.84 1.98 1.70 0.51 0.17 

Standard 

Error 

(µM) 
0.14 0.11 0.44 0.58 0.61 0.37 0.20 0.07 

95 % 

Confidence 

Interval 

(µM) 

0.62 to 

1.21 

0.41 

to 

0.87 

0.46 to 

2.30 

0.64 to 

3.03 

0.71 to 

3.21 

0.99 

to 

3.97 

0.08 to 

0.90 

0.01 

to 

0.32 

R
2

 0.99 0.98 0.95 0.91 0.97 0.97 0.90 0.90 

n 27 27 27 27 27 27 27 27 

 

 

 
Figure 34: Fit plots of each qFRET KD assay, with EmFRET vs. total acceptor concentration. The 

SUMO modified mutant is shown in (Diamond/Green) and the unmodified (Circle/Orange). The 

plots and the fits were generated on GraphpadPrism5TM. 
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4.6 Discussion 

 The in vitro SUMOylation assay of SARS-CoV-2 Nucleocapsid protein 

demonstrated here provided four SUMOylation sites, K61, 65, 347, and 355 determined 

in vitro. The qFRET based SUMOylation assay, used alternatively to immunoblot, is 

used in the evaluation of covalent modifications of proteins. The SARS-CoV-2 proteome 

is relatively new to the scientific community, and access to versatile techniques that can 

evaluate protein modifications and evaluate protein properties is difficult. Demonstrated 

here is a versatile method to evaluate the covalent modification and non-covalent 

interactions using the same platform. An advantage of the in vitro evaluation of 

SUMOylation modifications is it also provides certainty in the observations. Due to the 

numerous in-cell lysine modifications the probability of missing or false negative 

classification of a lysine modification is high. Furthermore, the yield of a modified 

protein from an in-cell pull-down assay can be challenging and have low yields. Thus, 

researchers look to over express the SUMOylation mechanism, however within a cellular 

environment, over SUMOylation can bring about unwanted consequences to the cellular 

proteome. The in vitro qFRET assay used here provided a fluorescent reporter for 

SUMOylation and was directly used in the identification of modified lysine residues. The 

coverage of the protein identified in MS was up to 95 %, the other 5 % is assumed to be 

degraded during the digestion and sample preparation. The high certainty and the overall 

coverage of the protein in MS analysis provide confidence in the identified SUMOylation 

sites.  
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 The lysine resides identified were evaluated using qFRET and observed the 

reaction to be very robust, and sensitive to lysine mutations without the E3 present. The 

one-way ANOVA analysis of the reactions demonstrated a significant difference in the 

minus E3 reactions from mutant N proteins 61 and 65. The in-cell analysis of cellular 

translocation we observed formation of bright spots that are granules of N protein.  The N 

protein resides in the cytosol, however, reports of it shuttling in and out of the nucleus are 

consistent with our findings. We observe the wildtype N protein in bright spots in the 

cytosol, and in the nucleus. These findings are consistent with reports of N protein 

cellular translocation. The modulation of translocation was observed with lysine 65 

mutation. The findings suggest a decrease in nuclear translocation, without 

SUMOylation.  

 The qFRET KD assessment of the N protein provides insight into the N proteins 

non-covalent interaction. The N protein is found to crosslink at high concentrations in the 

cell, but forms tetramers and dimers. The overall organization of the vRNP complex 

formation by the N protein requires non-covalent interaction of the various forms of N 

protein. Demonstrated here the modulation of affinity of N protein with the SUMO 

modification. Though the difference in affinity is not large, it is observed, and found to be 

dependent on SUMOylation in vitro. The qFRET platform provides the rapid assessment 

of a heterologous protein and is applied to evaluate in vitro covalent modification of a 

viral protein. The next step for this analysis is to determine the impact of the 

SUMOylation of N protein on the viral pathogenesis. 
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4.7 Methods and Materials 

Expression and Purification of SUMOylation Enzymes and SARS-CoV-2 N protein 

The in-vitro qFRET SUMOylation reaction is completed with the E1, E2, and E3 

enzymes in the SUMOylation cascade. The E1 activation enzyme complex, UBA2 and 

AOS1, E2 conjugating enzyme UBC9, and E3 ligase PIAS1 were all cloned into pET28B 

vector for expression in BL21(DE3) cells. The FRET pairs CyPet and YPet are N-

terminal tagged to SUMO1 and the substrates respectively and cloned into pET28B for 

expression in BL21(DE3). Each BL21(DE3) cell line with individual proteins were 

inoculated at 1:100 and grown to 0.4 OD at 600 nm at 37 °C, and then induced at 

overnight at 22°C with 0.25 mM IPTG. The cells were lysed, lysis buffer (20 mM Tris-

HCl (pH 7.5), 0.5 M NaCl, 5 mM Imidazole), by sonication and centrifuged at 35,000 x 

g. The soluble fraction was purified by 6XHis tag to NiNTA beads affinity 

chromatography through a gravity column. The bound proteins were washed with, buffer 

1 (20 mM Tris-HCl (pH 7.5), 0.3 M NaCl), buffer 2 (20 mM Tris-HCl (pH 7.5), 1.5 M 

NaCl, and 0.5% Triton X-100), and buffer 3 (20 mM Tris-HCl pH 7.5, 0.5 M NaCl, and 

10 mM Imidazole). The proteins eluted using the following buffer, (20 mM Tris-HCl, 

300 mM NaCl, and 450 mM Imidazole) and dialyzed in 20 mM Tris-HCl (pH 7.5), 50 

mM NaCl, and 1 mM DTT.   

In-vitro SUMOylation Assay Setup 

The in-vitro SUMOylation assay is completed with 6xHisCyPet-SUMO1 500 nM, 

6xHisYPet-N protein wildtype 2000 nM, E1 hetro-dimer AOS1/UBA2 at 100 nM, E2 

conjugating enzyme UBC9 200 nM, E3 ligase PIAS1 250 nM, and in SUMOylation 
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buffer (20 mM Tris-HCl (pH 7.5) 50 mM NaCl, 4 mM MgCl, 1 mM DTT). Functional 

controls are put in place for observing non-specific interaction, by a negative control 

reaction without 2 mM adenosine triphosphate (ATP). Each reaction was incubated at 

37°C for 60 minutes and measured in a 384 well microplate (Grenier 384 M6811). The 

FRET wavelength, EmTotal, are 414 nm excitation and 530 nm emission, FlD, 414 nm 

excitation and 475 nm emission, and FlA, 475 nm excitation and 530 nm emission. The 

quantitative EmFRET parameters, α of 0.34 ± 0.003, and β 0.003 ± 0.001 variables are 

determined using the formulation outlined in previous work from Yang et al.. Equation 1 

provides the calculation of EmFRET that quantifies the FRET increase based on the 

SUMOylation of substrate. The specificity of SUMO protein to the SUMOylation target 

has the potential to yield a false positive FRET response. Thus, functional controls of 

reactions without ATP are implemented in parallel to observe differences between ATP 

and no ATP. Samples from each reaction of -ATP/-E3/+ATP/+E3 was also immune 

blotted with anti SUMO1.  

Mass spectrometry analysis to determine SUMO modified Lysine on N protein 

The in-vitro SUMOylation reactions the substate, YPet-SARS-CoV-2 

Nucleocapsid protein is added at 3000 nM, and CyPet tagged SUMO1 protein are added 

at 1000 nM.  Activating Enzyme Complex 1 (E1) is at 100 nM, and Conjugating Enzyme 

2 (E2) at 100 nM, E3 ligase at 500 nM in SUMOylation buffer (20 mM Tris-HCl (pH 

7.5) 50 mM NaCl, 4 mM MgCl, 1 mM DTT) and 2 mM ATP. The reactions were 

completed at 37 ° Celsius for 4 hours. The in-solution proteolytic digestions were 

performed with PierceTM Glu-C Protease. Samples were digested at 1:100 ratio for 
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sample to enzyme ratio and ran overnight (16 hours) at 37 ° Celsius. Each completed 

digestion was acidified to a final concentration of 0.1% v/v TFA, and speed vacuumed to 

dry product, and then reconstituted to 0.1% v/v TFA readied for MS loading.  

LTQ Orbitrap Xl Loading and Run 

Samples consisted of approximately 1000 nM of in-solution digested product 

from each proteolytic enzyme digestion Liquid chromatography was performed on a 

Thermo nLC1200 in single-pump trapping mode with a Thermo PepMap RSLC C18 

EASY-spray column (2 µm, 100 Å, 75 µm x 25 cm) and a Pepmap C18 trap column (3 

µm, 100 Å, 75 µm x 20 mm). Solvents used were A: water with 0.1% formic acid and B: 

80% acetonitrile with 0.1% formic acid. Samples were separated at 300 nL/min with a 

250-minute gradient starting at 3% B increasing to 30% B from 1 to 231 minutes, then to 

85% B at 241 minutes, holding for 10 minutes. 

Mass spectrometry data was acquired on a Thermo Orbitrap Fusion in data-

dependent mode. A full scan was conducted using 60k resolution in the Orbitrap in 

positive mode. Precursors for MS2 were filtered by monoisotopic peak determination for 

peptides, intensity threshold 5.0e3, charge state 2-7, and 60 second dynamic exclusion 

after 1 analysis with a mass tolerance of 10 ppm. Higher-energy C-trap dissociation 

(HCD) spectra were collected in ion trap MS2 at 35% energy and isolation window 1.6 

m/z.  

Bioinformatic Analysis of MS Data 

The LTQ-orbitrap XL (.raw) raw data was analyzed on Thermofisher Proteome 

AnalyzerTM. The complete amino acid sequence of each protein was provided as a 
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reference for analysis. The SUMOylated lysines proteolytic products are tabulated and 

searched for using both software suits. Precursor ion peptide tolerances were set at 5 

ppm, and MS/MS peptide tolerances were set at 1 Dalton.  

Table 16: SUMO1 proteolytic peptides for identification of lysine modification.  

Peptide Amino Acid Sequence Mass (Da) Peptide Description 

ELGMEEEDVIEVYQEQTGG 2155.27 C90H139N21O38S1 

LGMEEEDVIEVYQEQTGG 2026.16 C85H132N20O35S1 

GMEEEDVIEVYQEQTGG 1913.00 C79H121N19O34S1 

MEEEDVIEVYQEQTGG 1855.94 C77H118N18O33S1 

EEEDVIEVYQEQTGG 1724.75 C72H109N17O32 

EEDVIEVYQEQTGG 1595.64 C67H102N16O29 

EDVIEVYQEQTGG 1466.52 C62H95N15O26 

DVIEVYQEQTGG 1337.41 C57H88N14O23 

VIEVYQEQTGG 1222.32 C53H83N13O20 

IEVYQEQTGG 1123.18 C48H74N12O19 

EVYQEQTGG 1010.03 C42H63N11O18 

VYQEQTGG 880.91 C37H56N10O15 

YQEQTGG 781.78 C32H47N9O14 

QEQTGG 618.60 C23H38N8O12 

EQTGG 490.53 C18H30N6O10 

QTGG 361.40 C13H23N5O7 

TGG 233.25 C8H15N3O5 

GG 132.13 C4H8N2O3 

G 75.07 C2H5NO2 
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Construction and Design of N Protein Lysine to Arginine Mutants 

The mass spectrometry results provided a total of four lysine residues that were 

SUMOylated. There are a total of 31 lysine residues on SARS-CoV-2 N protein, Lysine 

61, 65, 347, and 355 were found to be SUMOylated in the in-vitro reaction. The mutants 

DAN templates were constructed through PCR, with point mutations at the lysine to 

arginine coding sequences. Final Gibson reaction of bacterial expression pET28B vector 

SALI and NOTI and for mammalian expression pCDNA3.1-FLAGtag-Nprotein-YPet 

were created. Tabulated PCR primers shown below for pET28B and for pcDNA3.1.  

 

Table 17: Primers listed for constructing N Protein Mutants in E. coli 

pET28B Primers 

 
K61RFor ccagcatggcagagaagacctgaaattt 

K61RRev caggtcttctctgccatgctgggtcag 

K65RFor gaagacctgagatttccgcgcggccag 

K65RRev ctggccgcgcggaaatctcaggtcttc 

K347RFor gatccgaattttcgagatcaggtgatt 

K347RRev aatcacctgatctcgaaaattcggatc 

K355RFor attctgctgaatagacatattgacgcg 

K355RRev cgcgtcaatatgtctattcagcagaat 
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Table 18: List of primers for mutations on N protein in HUH7 cells 

pCDNA3.1 Primers 

 
pcD_Ncwt_61For ctcactcaacatggcagggaagacctt 

pcD_Ncwt_61Rev aaggtcttccctgccatgttgagtgag 

pcD_Ncwt_65For gaagaccttagattccctcgaggacaa 

pcD_Ncwt_65Rev ttgtcctcgagggaatctaaggtcttc 

pcD_Ncwt_347For aaagatccaaatttcagagatcaagtcatt 

pcD_Ncwt_347Rev aatgacttgatctctgaaatttggatcttt 

pcD_Ncwt_355For gtcattttgctgaataggcatattgacgcatac 

pcD_Ncwt_355Rev gtatgcgtcaatatgcctattcagcaaaatgac 

 

In-Vitro SUMOylation with qFRET Reporter for N Protein Mutants 

The in-vitro SUMOylation assay of SARS-CoV-2 N protein mutants is an initial 

screening to determine impact of lysine sites on SUMOylation. The assay is setup at the 

same concentration as the optimized conditions, 6xHisCyPet-SUMO1 500 nM, 

6xHisYPet-N Protein wildtype and mutants 2000 nM, E1 hetro-dimer AOS1/UBA2 at 

100 nM, E2 conjugating enzyme UBC9 200 nM, E3 ligase PIAS1 250 nM, and 

SUMOylation buffer of 20 mM Tris-HCl (pH 7.5) 50 mM NaCl, 4 mM MgCl, 1 mM 

DTT. Functional controls are put in place for non-specific interaction, by a negative 

control reaction without ATP, and to observe a significant boost in FRET a control 

reaction without E3 ligase. Each reaction was incubated at 37°C for 60 minutes. 

Following Equation 1 we measure the three wavelengths, EmTotal, FLD, and FLA. The 
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measurements are taken on Molecular Devices Spectra M3TM, with “Endpoint” settings, 

with PMT at constant gain set to “Low”.  The post analysis was completed on 

GraphpadPrism7TM, One-way ANOVA with post HOC Tukey Test was done with minus 

ATP as the control group.  

Cellular Translocation of N protein 

Immunostaining of N protein is used to investigate the dependency of 

SUMOylation of N protein on translocation between cytosol and nucleus. Glass 

coverslips are coated with L-lysine overnight at 22°C under UV light in a 12 well plate. 

Post coating HUH7 cells are seeded onto the coverslips and grown till 50 % confluent. 

The cells are transfected with M1wt, M1K21R, and M1K242R. Post 24 hours of 

transfection, the cells are washed with DPBS, and fixed in 4% Paraformaldehyde (PFA) 

for 15 minutes with rocking. Post fixing the PFA is aspirated, and the cells are washed 

with DPBS. After fixing the cells are blocked (1XDPBS, 1 % BSA, 0.1 % Triton x-100) 

for 60 minutes at 22°C with rocking. Post blocking the antibody is diluted 1:100 in 

blocking buffer and is stained overnight at 4°C with rocking. The cells are rinsed with 

DPBS for 5 minutes and repeated 3 times. The cells are then incubated for 60 minutes 

with the secondary anti-mouse 488 Alexa-dye (Invitrogen) in 1XDPBS, 1 % BSA, 0.1 % 

Triton x-100. The cells are rinsed with DPBS for 5 minutes and repeated 3 times. Post-

secondary stain the cell nucleus stain Hoechst 33342, by Thermofisher (H1399) is 

applied and incubated for 15 minutes. Post nuclear stain, the cells are washed 4 times 

with DPBS with 5-minute incubation. The cells were imaged on Olympus BX43, and 

images were stacked and analyzed using ImageJ software.  
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qFRET KD of SUMOylated N Protein 

 The evaluation of N protein oligomerization by in vitro qFRET based KD affinity 

assay. The individual N protein wild type and mutants are first cloned into the FRET 

fusion genes. Each N protein must be tagged with the donor or acceptor pair fluorescent 

proteins for the implementation of this assay. Thus, five pairs of interacting N proteins 

are made into pET-28B, the wild type pair, mutant 61, 65, 347, and 355. Each pair of 

proteins are in vitro SUMOylated following optimized concentrations of enzyme and 

SUMO1. 6xHisCyPet-SUMO1 6000 nM, 6xHisYPet-N protein 6000 nM, E1 hetro-dimer 

AOS1/UBA2 at 100 nM, E2 conjugating enzyme UBC9 200 nM, E3 ligase PIAS1 250 

nM, and in SUMOylation buffer (20 mM Tris-HCl (pH 7.5) 50 mM NaCl, 4 mM MgCl, 1 

mM DTT). Functional controls are put in place for observing non-specific interaction, by 

a negative control reaction without 2 mM ATP. The SUMOylation reaction is incubated 

at 37°C for 1 hour, along with the negative control of no ATP.  

The reactions include the N protein bound to CyPet (donor) and the separate 

reaction of bound YPet (acceptor). A total of four reactions are setup for each pair of N 

proteins, that includes the negative control of no ATP. After the incubation the reaction is 

directly setup for affinity measurements. The qFRET based KD method holds the donor 

fusion protein constant at 500 nM, and the acceptor is titrated up to 2500 nM from 0 nM. 

The series of titrations are individual measurements that provide the EmFRET response to 

the concentration of acceptor fusion protein, YPet-N protein. For each titration of 

acceptor, EmFRET value is calculated. Following Equation 1 we measure the three 

wavelengths, EmTotal, FLD, and FLA for each reaction. The measurements are taken on 
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Molecular Devices Spectra M3TM, with “Endpoint” settings, with PMT at constant gain 

set to “Low”. We obtain a data set of EmFRET vs Total acceptor concentration, and with 

and without ATP. 

Equation 4.4 

EmFRET

= EmFRETMax
Max

∗ (
[Acceptor]

Total
− [Donor]

Total
− KD + √([Donor]

Total
+ KD − [Acceptor]

Total
)2 + 4 ∗ KD ∗ [Acceptor]

Total
[Donor]

Total
+ KD − [Acceptor]

Total
+ √([Donor]

Total
− [Acceptor]

Total
+ KD)2 + 4 ∗ KD ∗ [Acceptor]

Total

) 

 

This data set of EmFRET vs total donor fusion protein concentration, is fitted to the 

nonlinear derived relationship, equation 4, described in the work by Sang et al..28 For the 

analysis of this data, GraphpadPrism5TM is used to fit the nonlinear equation to the data 

set collected. The constraints for the non-linear regression fit are set to donor 

concentration at a constant of 500 nM, and the constraint KD and EmFRETMax cannot be 

zero.  
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Chapter 5: Development of In vitro High throughput Screening (HTS) for Inhibitors 

of Protein-Protein Interaction With qFRET as a Reporter 

 The high throughput screening approach to drug discovery requires a versatile 

reporter of a protein’s function or interaction, and the applicability of that reporter to be 

applied in a high throughput fashion. The qFRET technique provides a robust solution in 

applying a FRET reporter of protein function or interaction and its scalability in 

microscale reactions that can be detected on a bench top plate reader. This chapter 

outlines the Z’ qualification of in vitro qFRET based HTS for two assays, one is the 

inhibitor of protease activity, and second is the more traditional protein-protein 

interaction inhibitor.  

5.1 In vitro qFRET Based HTS Assay for Inhibitors of Autophagy Related Protein 

4A  

The protease of interest is, Autophagy related protein 4 (Atg4A), part of an 

intercellular process that is conserved across eukaryotic cells and contributes to 

sustaining cellular homeostasis. Autophagy process degrades cellular material, such as 

misfolded proteins, and the process extends to larger cellular organelles such as damaged 

endoplasmic reticulum, mitochondria, and damaged nucleus.1,2 Autophagy plays an 

important role in cell response to the environment, notably within oxidative stressed or 

starvation, and response to a pathogen. Recent studies have reported cases where 

resistance to chemotherapy accompanies increased levels of autophagy, additionally, 

inhibition of autophagy has been shown to reverse drug resistant cancer cell lines.3,4 The 
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immense role that this process plays in cell survival and cell death makes the modulation 

of this process a potential target for drug discovery.  

The construction of the autophagosome requires interaction between two protein 

cascade systems, Autophagy related genes 12-15 and Autophagy related gene 8 (Atg8)-

phosphatidylethanolamine(PE) conjugation system. This study focuses on the Atg8 

conjugation system, the conjugation protein cascade is initiated with the precursor Atg8 

protein is processed by protease Autophagy related gene 4 (Atg4) to expose the glycine 

residue at the C-terminus, which is essential for its E1 enzyme, Autophagy related gene 7 

(Atg7), to adenylate Atg8. The adenylation reaction is ATP dependent, and the 

intermediate consists of a thioester bond between Atg8 and Atg7, E1-Atg8 intermediate. 

The E1-Atg8 intermediate then forms thioester intermediate with the E2 enzyme to 

finally be transferred onto the amino group of the PE, completing the Atg8-PE moiety. 

The Atg8-PE mediates the membrane formation of the phagosome and provides a way to 

select for content to be degraded. Atg4 is employed by the Atg8-PE conjugation system 

to act as the processor of Atg8-PE moiety by deconjugation of Atg8-PE where it cleaves 

the moiety, referred to as delipidation. Delipidation of Atg8-PE moiety by Atg4 is for 

recycling Atg8 to restart the protein cascade.1,4  

Atg4 protease role is essential for the autophagy pathway in its function as the 

protease of Atg8, this critical role can be leveraged as a potential drug target for the 

modulation of the autophagy pathway. The Atg4 protease has four homologs in humans, 

Atg4A, Atg4B, Atg4C, and Atg4D. The homologs differ in their affinity to the six 

homologs of Atg8, all six are split between the sub family’s light chain 3 (LC3) and its 
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homologs, and the γ-aminobutyric acid receptor associated protein (GABARAP) family 

of proteins. The protease Atg4A has very low affinity to LC3 and its homologs but has 

very high affinity to GABARAP family of proteins, specifically to Golgi-associated 

ATPase enhancer of 16 kDa (GATE-16). 

5.2 QFRET Assay Design for Observing Atg4A Activity 

The first example is the in-vitro HTS assay for inhibitors of Atg4A with the 

GABARAP family of proteins, Golgi-associated ATPase enhancer of 16 kDa (GATE-16) 

based on Förster Resonance Energy Transfer (FRET). The FRET efficiency between our 

donor and acceptor is dependent on inverse of the sixth power of the distance, r, between 

the donor and acceptor. The protein construct is designed to place the substrate between 

the acceptor and donor molecules, which have been optimized for efficient FRET.5 The 

activity of the protease can be correlated to the FRET signal decrease, with the acceptor 

molecule being cleaved from the substrate and separating the donor and acceptor 

proteins. The substrate designed is based on previous work for the study of SUMO 

protease activity.6,7  

The design for the substrate consists of a donor fluorescent protein CyPet on the 

N-terminal of the substrate, GATE16, and the acceptor fluorescent protein, YPet, 

downstream of the cleavage site on the C-terminal of the substrate (Figure 1). The 

EmFRET from the measurement after we subtract the contribution from cross channel 

fluorescence from the donor and the acceptor, we can establish EmFRET of intact 

substrate, un-cleaved substrate. The activity of the protease is inversely proportional to 

the EmFRET, as the activity of the protease increases the EmFRET decrease. (Figure 1) 
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Figure 35:Illustration of GATE16 sensor for Atg4A activity, decrease in EmFRET signal with Atg4 cleave of 

GATE16 (A).  

5.3 Motivation for the HTS development for PD1-PDL1 Interaction Inhibitors 

The second qFRET based HTS development is to screen for inhibitors of 

Programmed Death 1 (PD1) interaction with Programmed Death Ligand 1 (PDL1). PD1 

interaction with PDL1 biological impact is described in detail in chapter 2. Within the 

past decade six total FDA approved anti-PD1/PDL therapies are currently used in 

treatment. One example of a novel treatment is KeytrudaTM (Pembrolizumab) which is an 

immune-checkpoint inhibitor for treatment of cancer. The trends in clinical trials with 

Pembrolizumab have evolved to combination therapies, and this is mainly due to lack in 

efficacy and the discovery of immune-related adverse events.8,9 The recent studies of 

clinical data from the combination therapies of FDA approved anti-PD1/PDL1 such as 

Pembrolizumab, Nivolumab, and Durvalumab is the occurrence of varying levels of 

pulmonary toxicity.10 Furthermore, clinical trials recruitment involving pembrolizumab 

alone or in combination with other treatments are still on the rise, however only a fraction 

makes it to completion. Shown in the accumulated data below of clinical trials involving 

pembrolizumab, the number of active and or completed trials is decreasing since 2015. A 

novel inhibitor of PD1-PDL1 would expand the current portfolio of anti-PD1 or PDL1 

therapies and provide new dimension for treatment options.  
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Figure 36: Total posted Pembrolizumab clinal trials on clinicaltrials.gov database. (A) Data 

of Pembrolizumab clinical trials were first posted, from 2010 – 2021. Active or completed 

clinical trials, in red triangle, of those that are recruiting or enrolling in green square, and 

of those that are terminated or withdrawn in black triangle pointed down.  

 

5.4 CyPet-PD1 and YPet-PDL1 Fusion Protein Design  

 The qFRET based HTS for inhibitors of PD1-PDL1interaction demonstrated here 

is optimized for a microplate reaction, that can be measured on a 384 well plate. The 

overall design applies the FRET pair CyPet-YPet to the full length PD1-PDL1 proteins. 

The donor fluorescent protein, CyPet, is recombinantly fused to the N terminal of PD1 

and acceptor fluorescent protein YPet is recombinantly fused to the N terminal of PDL1, 

illustrated in Figure 3. Based on the FRET principles the interaction of the fusion protein 

CyPet-PD1 and YPet-PDL1 will result in an increase in EmFRET signal. The inhibition of 

the PD1-PDL1 interaction results in decrease of EmFRET signal. This design is different 

from the Atg4 activity assay with GATE16 fusion protein, as here we observe a decrease 
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in signal, while in Atg4A activity assay we observe a constant EmFRET signal with 

inhibitor activity.   

 

 

Figure 37: The qFRET assay design with CyPet-PDL1 and YPet-PDL1  

5.4 Measuring EmFRET 

We monitor the FRET emission as well as the donor and acceptor wavelengths to 

extract the EmFRET signal out of the combined EmFRETTotal. EmFRET is calculated based on 

equation 1. We measure the emission of the FLD by excitation at 414 nm and emission at 

475 nm, the FLA excitation at 475 nm with emission at 530 nm. The EmTotal is measured 

by excitation at 414 nm with emission at 530 nm. We determine the donor contribution 

by multiplying the donor fluorescence FLD, with the crosstalk parameter alpha (α). The 

acceptor contribution by multiplying the acceptor fluorescence FLA, with the crosstalk 

parameter beta (β). The alpha (α) and beta (β) parameters are unique for each 

fluorescence instrument and must be characterized initially. The alpha parameter is a 

unitless ratio of the fluorescence of the donor in the FRET wavelength 530 nm to the 

fluorescence of the donor in its emission wavelength 475 nm. The beta parameter is also 

a unitless ratio of the fluorescence of the acceptor when excited at 414 nm and measured 

emission at 530 nm to the fluorescence at 530 nm when excited at 475 nm. The alpha 



149 

 

parameter is determined previously to be 0.34 ± 0.003 and the beta parameter is 

determined to be 0.03 ± 0.001 for the Molecular Devices SpectraMax3TM.  

 

Figure 38: Illustration of the emission spectrum of the protein construct when excited at 

414 nm, component EmTotal, is composed the emission from the un cleaved substrate 

construct, (EmFRET), free YPet protein emission contribution, and CyPet emission 

contribution at 530 nm. The contribution of CyPet is resolved by monitoring the emission 

of CyPet at 475 nm when excited at 414 nm, FLD,  and multiplying by the CyPet 

contribution ratio, α. The YPet contribution is resolved by measuring the acceptor 

emission at 530 nm, FLA, when excited at 475 nm and multiplied by β, the YPet 

contribution ratio (B).  

 

5.5 Z’ Qualification Assay Setup  

 The primary metric for confidence in the HTS assay and inhibitor “hits” is the Z’. 

The qualification assay is designed for a 384 well plate format and set in a sequence 

outlined within the assay guidance manual developed . The Z’ is resolved by equation 5.4 

under three different reaction conditions that are orchestrated to yield a Max, Mid, and 

Min EmFRET signal from the assay. The Z’ considers the difference between the Max 

signal, the low signal, and the variability in the measurements. The difference between 

the Max and Min signal in our EmFRET signal represent the nominal distance between our 

𝐄𝐦𝐅𝐑𝐄𝐓 = (𝐄𝐦𝐅𝐑𝐄𝐓) − ((𝐅𝐋𝐀 ∗  𝛂) + (𝐅𝐋𝐃 ∗  𝛃)             Equation 5.1 

 

𝜶 =
Donor em𝒊𝒔𝒔𝒐𝒏 𝒂𝒕 𝟓𝟑𝟎 𝒏𝒎 𝒘𝒊𝒕𝒉 𝒆𝒙𝒄𝒊𝒕𝒂𝒕𝒊𝒐𝒏 𝒂𝒕 𝟒𝟏𝟒 𝒏𝒎

Donor em𝒊𝒔𝒔𝒐𝒏 𝒂𝒕 𝟒𝟕𝟓 𝒏𝒎 𝒘𝒊𝒕𝒉 𝒆𝒙𝒄𝒊𝒕𝒂𝒕𝒊𝒐𝒏 𝒂𝒕 𝟒𝟏𝟒 𝒏𝒎
   Equation 5.2 

 

𝜷 =
Acceptor em𝒊𝒔𝒔𝒐𝒏 𝒂𝒕 𝟓𝟑𝟎 𝒏𝒎 𝒘𝒊𝒕𝒉 𝒆𝒙𝒄𝒊𝒕𝒂𝒕𝒊𝒐𝒏 𝒂𝒕 𝟒𝟏𝟒 𝒏𝒎

𝑨𝒄𝒄𝒆𝒑𝒕𝒐𝒓 em𝒊𝒔𝒔𝒐𝒏 𝒂𝒕 𝟓𝟑𝟎 𝒏𝒎 𝒘𝒊𝒕𝒉 𝒆𝒙𝒄𝒊𝒕𝒂𝒕𝒊𝒐𝒏 𝒂𝒕 𝟒𝟕𝟓 𝒏𝒎
   Equation 5.3 
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donor and acceptor “Max” EmFRET, and the lowest EmFRET signal, where the donor and 

acceptor are most separated for that assay.     

The Max signal is the highest consistent EmFRET we can achieve within the 

reaction conditions for that specific assay. The Min is the minimum EmFRET we can 

achieve within the reaction conditions. The Mid signal is implemented to fall between the 

max and min values as close to 50 % of the difference between Max and Min as possible. 

The variation of the signal is considered by calculating the coefficient of variation, CV, 

equation 5.5. The criteria for Z’ are that the observed Z’ must be higher then 0.4, and the 

percent CV must be lower than 20% .The overall objective for the Z’ qualification assay 

is to observe the assay performance as close to HTS settings as possible. The variation 

that occurs on a day-to-day basis with formulating assay buffers, protein freeze thaw, and 

the instrument measurements all are tested and presented in the Z’.   

𝒁′ =
(𝑨𝑽𝑮𝑴𝒂𝒙−

𝟑𝑺𝑫𝑴𝒂𝒙
√𝒏

)−(𝑨𝑽𝑮𝑴𝒊𝒏−
𝟑𝑺𝑫𝑴𝒊𝒏

√𝒏
)

𝑨𝑽𝑮𝑴𝒂𝒙−𝑨𝑽𝑮𝑴𝒂𝒙
  Equation 5.4 

 

𝑪𝑽 =
(

𝑺𝑫

√𝒏
)

𝑨𝑽𝑮
 Equation 5.5 

 

The assay is conducted at interleaved-signal format which further qualifies the 

assay for non-uniformity. The format for a 384 well plate follows the outlined guide 

shown in figure 5. The H is the reactions that produce a Max EmFRET signal, M is Mid, 

and L is Min.  This pattern is repeated across each three plates each of the three days. The 

EmFRET signal is calculated across the each of the three plates with the Max, Mid, and 

Min pattern. The robustness and confidence in the assay are directly determined through 

calculating the Z’ and CV from the data collected over the course of three days.  
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Figure 39: Interleaved-Signal Assay plate format for day 1, 2, and 3. The format follows the 384 

well format, with double lanes for each high, mid, and low.  
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5.6 Results 

qFRET Based HTS for Inhibitors of Atg4A 

 The Z’ qualification assay for Atg4A activity is applied here over three days. The 

Atg4A response to DTT within the reaction buffer provides the Max signal, (1 mM 

DTT), Min (0 mM DTT), and Mid (0.1 mM  DTT). The resolved EmFRET mean is plotted 

for each plate across the rows. An average of each Max, Mid, and Min along the rows 

was taken and plotted with standard deviation at each row (Figure 6). The assay also 

requires a qualitative assessment of the variation at the edges of the plate. No trend in the 

reads is observed across the plates over the three days, however variation in data is 

observed. On Day 3 the mid signal is lower than the days 1 and 2, however it is within 

constraints and does not impact the outcome. The Z’ for the entire plate is calculated over 

the days and tabulated in table 1. The Z’ represents the overall score for each plate and is 

resolved here to be within the constraints of Z’ > 0.4. The percent coefficient of variation 

is calculated across each control set and tabulated in table 2. Each value is shown in 

percentage and observed to be within constraints of CV < 20%.  
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Figure 40: Z’ assay of Atg4A response, plot of EmFRET mean of Max, Mid, and Min with standard 

deviation over each row, across each plate and day. The plots were generated on 

GraphPadPrism5TM. Each data point represents an n of 8, in each row.  

Table 79: Z' results for qFRET based HTS for inhibitors of Atg4 at each day on each plate. 

 Day 1 Day 2 Day 3 

Plate 1 0.96 0.97 0.96 

Plate 2 0.97 0.97 0.97 

Plate 3 0.97 0.98 0.98 

 

Table 80:Percent Coefficient of Variation across each control set of Max, Mid, and Min. 

  Day 1 Day 2 Day 3 

  Plate 1 Plate 2 Plate 3 Plate 1 Plate 2 Plate 3 Plate 1 Plate 2 Plate 3 

Max 0.86 0.71 0.88 0.7 0.5 0.64 1.08 0.99 0.62 

Mid 0.7 0.69 0.86 0.69 0.81 0.91 1.14 1.01 0.9 

Min 3.65 1.87 2.49 1.15 1.33 1.31 1.84 1.97 2.57 
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qFRET Based HTS for Inhibitors of PD1-PDL1 Interaction 

 The Z’ qualification assay for the PD1-PDL1 HTS results are shown in figure 7.  

The Guanidine HCL at varying concentrations is used to induce decreased EmFRET signal. 

An average of each Max, Mid, and Min along the rows was taken and plotted with 

standard deviation at each row. We observe a negative EmFRET at Min signal across all 

plates, this could be an artifact of the Guanidine HCL at high concentrations which 

denatures the fluorescent proteins. The Z’ for the entire plate is calculated over the days 

and tabulated in table 1. The Z’ for each plate meet the criteria of Z’>0.4 and pass the 

main metric to qualify. The percent coefficient of variation is calculated across each 

control set and tabulated in table 2. Each value is shown in percentage and observed to be 

within constraints of CV < 20%.  

 
Figure 41: Z’ assay for PD1-PDL1 response, plot of EmFRET mean of Max, Mid, and Min 

with standard deviation over each row, across each plate and day. The plots were generated on 

GraphPadPrism5TM. Each data point represents an n of 8, in each row.  
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Table 21: Z' Results for each plate on each day 

 Day 1 Day 2 Day 3 

Plate 1 0.96 0.98 0.98 

Plate 2 0.97 0.98 0.98 

Plate 3 0.97 0.98 0.98 

 

Table 22:Percent Coefficient of Variation across each control set of Max, Mid, and Min. 

  Day 1 Day 2 Day 3 

  Plate 1 Plate 2 Plate 3 Plate 1 Plate 2 Plate 3 Plate 1 Plate 2 Plate 3 

Max 0.91 0.53 0.47 0.49 0.36 0.49 0.36 0.34 0.45 

Mid 0.94 0.89 1.00 0.62 0.52 0.56 0.48 0.46 0.56 

Min -17.54 -9.70 -5.91 -1.10 -0.96 -1.27 -1.95 -1.83 -1.81 

 

5.7 Discussion 

 The  qFRET based HTS assay qualified here demonstrate a consistent Z’ of above 

0.9 across all plates tested, under both assays. The rigorous testing across the multiple 

day’s exercises the buffer stability and protein fidelity with multiple freeze thaws. The 

enzyme activity of Atg4A was consistent across the freeze thaws over the three days. The 

Atg4A reaction buffer with DTT had to be made at time of use, as the DTT reagent 

degraded overnight. The response to an oxidative environment that Atg4A provides gives 

insight into the acute reactivity this mechanism has embedded within the protein 

sequence and structure. The Z’ for the qFRET based HTS of inhibitors of Atg4A was 

higher than 0.9 across all plates. The difference between the Min and the Max is 

consistently large with minimal standard deviation across each row. The Min signal that 

approached zero or went negative is observed to have a larger CV across all plates. This 

variation is due to the system noise at the lower RFUs. As we approach zero or very low 
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signal, the system noise is higher than the actual detected signal. Thus, the standard 

deviation in the Min signal is as high as the calculated Min EmFRET. The result is the 

mean of the Min signal is only a few factors higher than the standard deviation, and a 

higher percent CV in the Min signals. This could potentially be problematic for the 

Atg4A assay as the Min signal represents full protease activity. This issue is minor as the 

Max signal represents the “Hit” of the assay, and that is consistently several folds higher 

than the Min.  

 The qualification for the in vitro qFRET based HTS for the inhibitors of PD1-

PDL1 interaction was implemented together with the help of Amanda Xaypraseuth. The 

development of the work is published in the undergraduate journal.11 The assay utilized 

Guanidine-HCl to disrupt the PD1-PDL1 interaction and provide the varying signals that 

are required for Z’ qualification. The observed Z’ across all plates is within the criteria, 

the Z’> 0.4. Similarly, the Min values across the plate had higher CV. Though the criteria 

are met without fail on each plates, we can still attempt to improve the CV. The 

instrument noise within the system will not change, the future development for this assay 

can be to characterize the system noise and filter it from the observed EmFRET.  

5.8 Methods and Materials 

DNA constructs and protein purification for Atg4A and Cypet-GATE16-YPet 

fusion protein 

 The protein construct for the substrate were made using recombinant DNA 

cloning techniques. The protease Atg4A was purchased from Addgene and cloned into 

pET28b within the expression vector pET-28b. The cDNA for GATE16 was acquired 
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through Addgene. The substrate protein construct was made using pET28b with CyPet at 

the N-terminal and YPet at the C-Terminal, with GATE16 centered between restriction 

sites, Xho1 and Nhe1 restriction sites flanking GATE16 substrate. The construct was 

previously reported in qFRET study published by Hariharan et al..12  The BL21(DE3) E. 

coli bacteria were transformed with the two pET28b constructs separately. The strains 

were expressed overnight at 20 degrees Celsius and were pelleted using centrifugation at 

8000xg for 10 mins. The cell pellets were resuspending with lysing buffer, (20 mM Tris 

HCl pH 7.4, 0.5 M NaCl, and 10 mM Imidazole). The cells were lysed using a probe 

sonicator at 60 Hz for 5 seconds on and 10 seconds off and centrifuged at 35,000 g for 30 

minutes at 4 degrees Celsius.  

The supernatant was then subjected to nickel bead affinity chromatography, with 

three washes at 10 times the volume of the nickel beads in the column. The first wash is a 

high salt buffer wash, (20 mM Tris-HCl pH 7.4, 300 mM NaCl), the second wash is 

tween with high salt (20 mM Tris-HCl pH 7.4, 1500 mM NaCl, and 0.5 % Tween X-

100), and the last wash, (20 mM Tris-HCl pH 7.4, 500 mM NaCl, and 10 mM Imidazole). 

After the washes the protein was eluted from the nickel beads using 20 mM Tris-HCl, 50 

mM NaCl, and 200 mM Imidazole. The eluted proteins were then left in dialysis buffer 

(20 mM Tris-HCl pH 7.4, 50 mM NaCl, and 1 mM DTT) over night at 4 degrees Celsius 

on a stir plate at 200X volume of eluted proteins. The expression and purification of 

CyPet-PD1 and YPet-PDL1 is noted in chapter 2.  
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Setup of Z’ Qualification Assay for the In vitro qFRET Based HTS for Inhibitors of 

Atg4A 

 The Atg4A enzyme is qualified beforehand for level of EmFRET wanted within 

each assay. The recommended target to inhibitor concentration is at 1:100 molar ratio of 

enzyme to inhibitor. The HTS is implemented at 10 µM of inhibitor in each reaction, thus 

we setup the enzyme to 0.1 µM, lower levels of enzyme are applicable here as well. The 

substrate complex is added at 0.2 µM to deliver a high EmFRET signal. The inhibitor is 

dissolved in DMSO and is added to the reaction at up to 3 % volume. The reaction 

implemented here uses 1.2 µL of DMSO in 60 µL of reaction. The Z’ qualifications all 

implemented at these settings, to mimic the screening conditions as closely as possible.  

 The protease Atg4A requires a reducing agent in the buffer to function and cleave 

the fusion protein. The reducing agent used in this reaction is dithiothreitol (DTT). The 

reactions were done in 384 well plate format and set in a sequence outlined in section 5.5. 

The “Max” EmFRET reaction provides the highest FRET signal, where the protease is not 

active, this reaction was setup at 0.2 uM CyPet-GATE16-YPet substrate with 0.1 uM 

Atg4, with no DTT within the reaction buffer, Tris-HCl pH 8.0 and 150 mM NaCl. The 

“Mid” reaction buffer is the same as “Max” (Tris-HCl pH 8.0 and 150 mM NaCl) 

however with 0.1 mM DTT. The “Min” reaction provided the lowest EmFRET signal and 

the high activity of the protease at 1 mM DTT and standard reaction buffer (Tris-HCl pH 

8.0 and 150 mM NaCl). Each buffer is made the day of use, as DTT degrades overnight. 

The reaction plates are incubated at 37°C for 30 minutes before measuring 
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Setup of Z’ Qualification Assay for the In vitro qFRET Based HTS for Inhibitors of 

PD1-PDL1 Interaction 

 The fusion protein CyPet-PD1 and YPet-PDL1 are kept at 1:1 molar ratio at 0.5 

µM. The DMSO % volume is kept below 3% and the reaction buffer is PBS. The “Max” 

EmFRET signal is with no Guanidine-HCl and will have nominal FRET. The “Mid” signal 

is orchestrated with half the substrate concentration. The “Min” signal is supplemented 

with 50 µM Guanidine HCl to inhibit all PD1-PDL1 interactions. Each reaction volume 

is kept at 60 µM. The reaction plates are incubated at 37°C for 30 minutes before 

measuring.  

Fluorescence Plate Reader 

Molecular Devices SpectraMax3TM and FlexStationII384TM, was used to monitor the 

fluorescence at three wavelengths. The EmTotal, is measured at 414 nm and excitation 

with emission at 530 nm. The FLD, CyPet wavelength with excitation at 414nm and 

emission at 475 nm. The FLA, YPet contribution through excitation at 475 nm and 

emission at 530 nm. The measurements are taken using SoftMax Pro 7TM at constant 

PMT gain at “Low”. The reaction results were plotted in GraphPad.  
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 Chapter 6: Conclusion and Future Perspectives 

 The aim of this thesis is to apply qFRET technology in the characterization of 

non-covalent and covalent interaction between the “difficult to purify” proteins PD1 and 

PDL1, and the SUMO modification of viral proteins. The method outlines how to process 

the raw data to extract the FRET signal using correction parameters that can be derived 

for any commercial fluorescent plate reader. The secondary aim is to present the qFRET 

technique not only as a plug and play but as a hands-on technique with the versatility to 

investigate a broad range of protein-protein interactions. The qFRET platform is an 

accessible technique that scientists can apply in a multifaceted way to investigate 

complex protein-protein interactions that are non-covalent or covalent.  

The qFRET based characterization of PD1-PDL1 interaction reported a KD of 

0.82 µM. In comparison to the past investigations of PD1-PDL1 the KD values ranged 

from 8.2 µM  to ~ 0.5 µM. This reported variation could be due to the inherent pitfalls in 

immobilization requirement in SPR and could also be because here the full-length protein 

was used. The qFRET technique applied here provides an alternative method that 

removes many of the initial processing steps, such as immobilization, in the assay that 

can introduce variances in the measurement. Furthermore, the qFRET KD is also applied 

towards the assessment of refolding proteins. This allowed for a rapid screening of 

rescued proteins that otherwise use a qualitative method such as aggregation reporters to 

gauge refolded proteins. The assay established here provides a framework for the 

assessment of other difficult to purify proteins. The alternative binding partners to PD1 

such as Programmed Death Ligand 2 (PDL2), and their interaction has also been 
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demonstrated to circumvent the immune response from T cells. Furthermore, this assay is 

developed in a 384 well microplate format allowing seamless transition for high-

throughput screening for novel inhibitors.    

 The detection of covalent attachment of SUMO1 to IAV M1, and SARS-CoV-2 N 

protein is successfully demonstrated here. The qFRET method provides a rapid 

assessment of the covalent interaction between the target viral proteins, and the SUMO 

enzymatic cascade. The evaluation of IAV-M1 resulted in the discovery of an essential 

lysine that is proven fatal to the virus upon mutation. The MS analysis of the qFRET 

assay provided 4 novel, and 1 previously discovered SUMOylation site. The method 

outlined here is advantageous in the versatility of using the entire SUMOylation cascade 

in vitro. The entire SUMOylation event is a complex enzymatic cascade involving the 

synchronized function of three enzymes. The in vitro application of the SUMOylation 

cascade yields a heavily modified protein that can be directly applied to MS analysis.  

 The in vitro SUMOylation of SARS-CoV-2 N protein provided novel 

SUMOylation sites, lysine 61, 65, 347, and 355. This is the first reported SUMOylation 

of the novel SARS-CoV-2 N protein and was also found to modulate in-cell activity. The 

fluorescent imaging analysis of N protein mutants demonstrated a modulation in cellular 

localization with lysine 65 mutation. Furthermore, the in vitro SUMOylation assay 

demonstrated a modulation in SUMO attachment with lysine 61 and 65 mutation without 

E3 present. The combined observations of, MS analysis, in vitro qFRET based 

SUMOylation assay, and fluorescent imaging of mutant N protein, we can conclude that 

lysine 61 and 65 are likely SUMOylated.  
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