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ABSTRACT OF THE DISSERTATION

Developing the Next-generation Biomedical Optical Systems:

Higher Sensitivity, Deeper in Tissue, and Faster Dynamics.

by

Jorge Tordera Mora
Doctor of Philosophy in Bioengineering
University of California, Los Angeles, 2022

Professor Liang Gao, Chair

This dissertation proposes several solutions to alleviate two of the most fundamental problems in
biomedical optics: imaging deep in tissue via photoacoustic imaging (PAI) and capturing fast
dynamics through light field tomography (LIFT). On the one hand, photoacoustic tomography can
image with chemical specificity up to tens of centimeters in tissue. However, its applicability is
still limited due to its relatively poor sensitivity and noise robustness, high cost, and setup
bulkiness. In order to overcome such limitations, I present three novel techniques: Photoacoustic
Shadow-Casting Microscopy (PASM), All-optical Photoacoustic Microscopy (AOPAM), and
Generalized Spatial Coherence (GSC). First, PASM is a technique that detects biological samples

with unprecedented sensitivity by using an optical absorber that acts as a photoacoustic signal
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amplifier alleviating photothermal damage in tissue samples while enabling fast acquisition and
time-lapse applications. Secondly, AOPAM eliminates the use of conventional piezoelectric
transducers in PAI setups by introducing an optical resonating ultrasound sensor: a Fabry-Perot
etalon. This configuration allows system miniaturization and expands PAI’s applicability to
intravascular imaging of atherosclerotic plaques and brain imaging in freely behaving rodents.
Thirdly, GSC is a PAI beamforming reconstruction algorithm that takes advantage of spatial
coherence between signals from multiple transducers to output state-of-the-art imaging quality
metrics and noise robustness compared to gold standard techniques, such as delay-and-sum and
similar spatial coherence beamforming techniques such as filtered delay-multiply-and-sum and
short-lag spatial coherence.

On the other hand, LIFT is a novel imaging method that allows single snapshot capturing of three-
dimensional scenes at ultrafast speeds. In a nutshell, LIFT compresses three-dimensional scenes
to one-dimensional detectors in order to enhance acquisition speed by adequately rotating an array
of cylindrical lenslets thus reformulating optical imaging as a computed tomography problem.
LIFT has depth refocusing and extended depth-of-field capabilities as opposed to classical optical
microscopy. In this work, LIFT’s application is three-dimensional fluorescent microscopy at
kilohertz rates of neuronal action potentials, microfluidic flow sculpting dynamics, and

cardiovascular voltage waves.
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Chapter 1 Introduction

There are three main limitations associated with the development of the next-generation
biomedical optical systems: resolution, depth, and speed. On the one hand, a considerable part of
the research community has been focused on improving resolution: how can we image smaller
structures? This huge effort led to the discovery optical superresolution techniques that surpass
Abbe’s theoretical diffraction limit, which states that a light beam can be focused up to
approximately half of its wavelength [1]. On the other hand, imaging through deep tissue and fast
dynamics have no theoretical but current technological limit. Regarding depth, photons travelling
through tissue experiment many scattering and absorption events that prevent imaging in relatively
thick tissue. Concerning frame rate, many three-dimensional biological dynamics occur at a
millisecond temporal resolution and there are no techniques that can image full field of view, three-
dimensional scenes at thousands of frames per second with the scanning device and sensor being
the main bottlenecks. Obviously, there is a high need to research and engineer biomedical devices
that can capture events in deep tissue and fast dynamics. Thus, during my graduate research [
focused on solving these two problems: depth through photoacoustic imaging and speed through

optically compressive imaging.

1.1 Motivations in optical imaging

Although there already exist well-established biomedical imaging techniques such as ultrasound,
Magnetic Resonance Imaging (MRI), X-ray Computed Tomography, and Positron Emission
Tomography (PET), it is still highly important to use optical imaging for three main reasons. First,

light-matter interaction occurs at a molecular level. Thus, light has an advantageous position to
1



probe molecules inside our body. Secondly, its wavelength is located at the non-ionizing part of
the electromagnetic spectrum. Thus, light does not damage tissue. Third, analogous to other non-
optical imaging techniques, optical imaging is capable of functional imaging similar to MRI,
metabolic imaging analogous to PET, molecular imaging of gene expressions, and histological
imaging. Light is at a unique part of the electromagnetic spectrum and an excellent tool suitable

image tissue.

1.2 Imaging through turbid media

The main difficulty when imaging through the body is turbidity. Tissue is not transparent and that
hampers optical penetration due to photons experiencing multiple scattering and absorption events
in a relatively short mean free path. Figure 1 shows a diagram representing how different optical
imaging techniques can see through tissue. First, in classical optical microscopy, tissue penetration
is limited to a few hundred microns of tissue, at such depths, the wavefront is aberrated and we
cannot sharply distinguish tissue features.

Nevertheless, there are more advanced optical imaging techniques that can beat the aberration limit
such as confocal microscopy, two-photon microscopy, and optical coherence tomography. First,
confocal microscopy employs a pinhole to reject the out-of-focus light that is integrated in the
detector allowing three-dimensional imaging by axially scanning the sample. Secondly, two-
photon microscopy uses non-linear excitation to reduce the out-of-focus fluorescent excitation and
thus enhance optical imaging up to Imm. Lastly, optical coherence tomography typically uses
longer wavelengths for higher tissue penetration (2-3mm). All these applications were enabled by
the invention of the laser. Imaging at millimeter depths already enables many applications but the

final goal is to be able to image through full body. For instance, tumors that are located a few



millimeters below the skin, where the diffusion limit is, will not be seen by aforementioned
techniques.

In my graduate research, I used a technique, mainly developed in the 2000s, able to surpass the
diffusion limit enhancing imaging penetration by two orders of magnitude: photoacoustic imaging

[2]. This technique uses a combination of optical excitation and ultrasound detection.

Confocal microscopy
2-P microscopy
Optical coherence

Classical microscopy tomography Photoacoustic tomography Wavefront engineering
" .r M
10 pm 100 pm 1mm 10cm Im
I | I I I g
Aberration limit Diffusion limit Absorption limit
Cell Skin Organ Whole body

Figure 1: Optical technologies and tissue depth penetration

In photoacoustic imaging, scattering is tolerated and it is absorption what prevents imaging. Thus,
we can image up to 10cm deep in tissue, that is where light is completely absorbed by tissue
(absorption limit). Lastly, expanding depth imaging to the meter range with high fidelity images
has not been achieved yet but there are promising wavefront engineering techniques that might

surpass such limit allowing whole body imaging through the use of internal guide stars.

1.3 Imaging faster three-dimensional dynamics

High-speed cameras are essential in both fundamental and applied sciences. Many high speed
cameras have been already developed but they still lack three-dimensional imaging. In
biomedicine, there are many three-dimensional, relatively fast events such as protein folding,
neuronal and cardiovascular activity, and microfluidic dynamics that play a fundamental role in
the human body. During my graduate research, I focused on imaging three-dimensional fluorescent

3



activity at thousands of frames per second. To the extent of my knowledge, previous techniques
have not been able to image previous dynamics at such frame rate with near full field of view and
in 3D. For instance, confocal microscopy relies on axially scanning the sample thus highly
reducing the frame rate. Widefield microscopy can only achieve such high frame rates if the
sensor’s region of interest is reduced but still lacks three-dimensional imaging.

On the other hand, light field imaging has been able to obtain single snapshot three-dimensional
images, without relying on scanning techniques, by dividing the main lens aperture into
subapertures [3]. Then, each subaperture has a different perspective of the object and a near 3D
image can be reconstructed. Note that I mentioned near because it would require a 360 degree view
to see around the object. Light field imaging was first introduced by Gabriel Lippmann in 1908
with a concept known as integral photography. Such concept was later revisited by Adelson and
Berger with the idea of the plenoptic function [4], a function that describes all the possible
information that is captured from a single viewing position; a ray of light can be decomposed by
seven parameters: x, y, and z are the ray coordinates in a three dimensional space. 8, and ¢ express
ray direction, A is the wavelength of light, and t is a particular time. If we could capture all seven
variables, we could exactly represent any scene at any time interval. However, in reality these
scenes are normally captured by two-dimensional conventional cameras, one-dimensional line-
scan cameras, or zero-dimensional single pixel imagers. In other words, we are encapsulating a
high (seven) dimensional object into a low-dimensional detector. Since we cannot currently use a
higher dimensional detector, we need to somehow transform the high dimensional function in
order to accurately represent the scene. To do so, we cannot practically rely on the classical
Nyquist sampling theorem which would require us to use two pixels per voxel, the data cube will

be dramatically huge to process. A more efficient idea is to make use of Compressed Sensing (CS)



theory, whose bottom-line is that high dimensional signals can be recovered with high fidelity
from low dimensional measurements if the signal is sparse and incoherent in some domain. In this
work, [ will present Light Field Tomography (LIFT), a compressive technique that allows ultrafast
three dimensional imaging and apply it to microscopy in order to image three-dimensional

fluorescent activity at thousands of frames per second.



Chapter 2 Photoacoustic shadow-casting microscopy

Photoacoustic imaging (PAI) is a rapidly emerging biomedical imaging technique that surpasses
the optical diffusion limit whose contrast is based on optical absorption instead of scattering, as
opposed to other optical imaging techniques. PAI allows centimeter scale tissue depth imaging.
When light interacts with tissue, it will absorb its energy and further release it either in form of
radioactive decay, fundamental for fluorescence imaging, or non-radioactive decay, meaning it
will release heat. Photoacoustic imaging tries to efficiently generate ultrasound waves using light
excitation and absorption which produces immediate heat release. In principle, any light absorbing
molecule can produce a photoacoustic signal whose origin can be located by using multiple
ultrasound transducers or novel photonic integrated circuit detectors (PICs) [5]. However, in
practice, it is hard to detect weakly absorbing samples because they are surrounded by thermal,
dark, and electric noise sources. In this chapter, I will explain the principles behind photoacoustic
imaging and my novel technique: photoacoustic shadow-casting microscopy, which relaxes the
high laser power constrain that produces photothermal damage in biological samples and further

extends PAI’s applicability to, for instance, time-lapse tissue imaging [6].

2.1 Fundamentals of photoacoustic excitation

The photoacoustic effect is a physical process in which electromagnetic waves are converted to
acoustic waves. From a biological viewpoint, when a tissue or cells absorbs an incoming photon

it may release its energy via two paths: radioactive and non-radioactive decay. In radioactive



decay, the absorbed energy will be released in form of another electromagnetic wave but with
different wavelength. This is the case of fluorescent imaging (Chapter 5). The latter is essentially
thermal energy release. In that case, tissue will absorb light, increase its temperature, rise pressure,
and release it via thermoelastic expansion. A key insight in photoacoustic imaging is that, in order
to make the ultrasound wave efficiently generated, it is necessary that the duration of the excitation
is less than the thermal and stress relaxation times. While thermal relaxation time characterizes the
thermal diffusion decay over some tissue region, the stress relaxation time describes how pressure
initially propagates. In other words, if the laser pulse duration is less than such times, tissue will
heat up and release an acoustic wave before tissue diffuses heat and relaxes stress.

Thermal relaxation time t;;, is given by Equation 1 [7]:
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where dZ is the heated region and a,, is the thermal diffusivity. Moreover, stress relaxation time

is given by Equation 2:
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where vy is the speed of sound. For instance, let us assume that we are targeting a 15 um region,

the thermal diffusivity of soft tissue is 1.3E3 % , and the speed of sound in tissue is 1400 % .

Then, t;y, is 17s and ¢, is 1 us. This means that we need less than a microsecond pulse to generate
efficient photoacoustic signals. In that case, the fractional volume expansion expressed by

Equation 3 is negligible:



—=—kp+pT=0 (3)

where K is the isothermal compressibility, p is the initial pressure, B is the thermal expansion

coefficient, and T is temperature. Then, the initial photoacoustic pressure release is:

_ BT
P= (4)
which can be rewritten as
Po = InentiaFy (5)

where T' is the Griineisen parameter, 1, is the percentage of absorbed energy converted to heat,
1S is the absorption coefficient of the sample (cm™1), and F, is the laser optical fluence (J/cm?).
The initial pressure rise can achieve ~800 Pa from a milliKelvin temperature rise, which is
detectable by conventional ultrasound transducers. We can conclude that the initial temperature
rise leads to a pressure rise which is later released via thermoelastic expansion and detected by an
ultrasound transducer. The overall photoacoustic effect process is illustrated in Figure 2.

Regarding the laser delivery optical design and ultrasound detection configuration, PAI is a
scalable technique in which we can target multiple depths, field of view, and resolution depending
on the application. In this work, I focused on improving an established modality known as optical-

resolution photoacoustic microscopy (OR-PAM) [8]. The typical configuration is shown in Figure

3.
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Figure 2: Photoacoustic imaging principle

A laser with selected wavelength depending on the target’s absorption spectrum from a given
molecule will provide contrast to the image when focused on to an objective lens. Then, the
absorber will emit an ultrasound wave that will propagate through tissue and be detected by the
ultrasound transducer with the correct acoustic coupling media. Rather than focusing on deep
tissue samples, this technique provides a different viewpoint than conventional widefield
microscopy: there is chemical specificity since we can choose what to see in the image by selecting
the right wavelength. This configuration only provides us single point information so it is

necessary to scan the tissue in order to output an image.

Ultrasound transducer element

Excitation light

Lens

Figure 3: Optical-resolution photoacoustic microscopy



2.2 Photoacoustic shadow-casting microscopy principle

Theoretically, any given target will absorb light, increase its temperature and release a
photoacoustic wave. However, in practice, weakly absorbers are overwhelmed by environmental
noise. A wide range of systems have been focused on improving the sensitivity [9], [10], accuracy
[11], and imaging speed [12]. However, such approaches still have a tradeoff between
photothermal damage to the sample and the acquisition speed that prevent its applicability. The
goal of photoacoustic shadow-casting microscopy (PASM) is to overcome such limitations. PASM
is a novel technique that alleviates photothermal damage and enhances acquisition speed by
introducing a strong absorber after the biological sample that generates high SNR photoacoustic
signals.

PASM’s development is inspired on NASA Kepler’s mission, where the existence and size of
exoplanets is determined by a dip in the brightness of stars. In PASM, the star is the strongly
absorbing target and the dip is dictated by the imaged biological sample. Let me first explain this
in mathematical terms. The laser fluence at the absorbing background layer Fj; is given by Beer-

Lambert’s law:

F} = Fye “ad (6)

where F, is the original laser fluence at the sample stage, pJ is the absorption coefficient of the
specimen, and d is the specimen thickness. As previously mentioned, since OR-PAM does not
focus on deep tissue, we can consider the sample as relatively thin. Thus, Beer-Lambert’s law can

be approximated as a first order term from Taylor’s expansion:
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Furthermore, we can also consider that, since the sample is relatively thin, the transducer integrates
the signals coming from tissue and the background layer. As a side note, PASM can also work
with other PAI modalities with thicker tissue such as acoustic-resolution photoacoustic microscopy

(AR-PAM) at the cost of axial resolution. PASM’s detected pressure is equal to:

Po = Tnen (U + b Fy' (7)

where u? is the absorption coefficient of the background layer. As u2 > u3, we can further

simplify previous Equation 7 into:

po = Iyl Fo'
Now let us see what is the signal difference between conventional PAM and PASM. Consider that
the signal coming from the background layer is:
po = Menitg Fo (8)
Then, the difference in photoacoustic signals between the background layer and the tissue
sample is:
Vp =pg —po = Inenpa (Fo — Fg) = Tnenkiag Fod
By choosing a background layer with an absorption coefficient u2 > 1/d, then the difference in
photoacoustic pressure Vp > p and PASM’s detected pressure is higher than conventional PAM

with a gain factor M given by:
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2.3 System design

Overall, we can consider the PASM system as a minor modification from conventional OR-PAM
configuration. This is advantageous because we can obtain higher sensitivity and faster acquisition
speed without adding any extra budget. To align the system, we first choose a laser according to
the absorbing target. In this case, the ultimate goal is to image hemoglobin (Hb). Thus, the
wavelength is 532nm [13]. As Figure 4 shows, there is relatively high absorption at this wavelength

from both oxy and deoxyhemoglobin [14].

Molar extinction coefficient vs. wavelength
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Figure 4: Absorption spectrum of hemoglobin (Hb) [14]

Furthermore, according to stress and thermal relaxation times shown in Equations 1 and 2, it is
required no more than a 1 us pulse duration for targets with similar size to a single red blood cell
(RBC). Thus, I chose a nanosecond pulsed laser Elforlight 532nm FQ series which provides up to
400uJ pulse energy with pulsed width durations less than 5Sns. PASM’s setup is shown in Figure

5. After the laser pulse is fired, the beam is spatially filtered producing homogeneous illumination
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at the sample stage and expanded to cover the entire objective’s back aperture diameter for

diffraction limited spot size at the sample plane.
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Figure 5: PASM configuration

In order to get an image, it is necessary to raster scan the diffraction limited spot along the
objective’s field of view, that is why two-dimensional galvanometer mirrors are placed after the
spatial filter. Then, a scanning lens is placed at the conjugate plane of the objective lens, the image
plane, and one focal length away from the scanning mirrors. This makes the system telecentric:
there will be no magnification difference between different scanned points at the sample plane.
Lastly, an infinity corrected objective lens and the tube lens act as a conventional microscope.

The zoomed-in circled region in Figure 5 highlights PASM’s uniqueness. The biological sample
is placed on a thin cover glass. Then, it is sandwiched on the other side with an optical absorbing
layer. Such absorber can be any material that strongly absorbs light and emits high SNR ultrasound
signal. In this case we choose polymethyl pentene, a transparent thermoplastic that offers a
relatively strong acoustic coupling match to help the acoustic signals reach the ultrasound

transducer. Finally, water or ultrasound gel is used as a coupling media. The ultrasound signal is

13



captured by the transducer (Olympus, unfocused, 25MHz central frequency), amplified by two
ZFL500NL+ Minicircuit (10-500MHz) in cascade, and digitized by a data acquisition card (GaGe
CSE1422, 200MS/s).

Figure 6 shows system’s LabVIEW user interface. We select a laser frequency of 1KHz which is
synchronized with the scanning mirrors and the digitizer. The number of points (Nx,Ny, Nt) are
signals sent to the scanning mirrors that determine the image’s field of view and scanning
resolution. The amplitude determines the field of view. The sampling rate needs to match Nyquist

sampling criteria. The DAQ is externally triggered by each laser pulse at every scanning point
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Figure 6: PASM LabVIEW Ul

2.4 System performance

A 10X, 0.25NA objective lens is used to characterize the system’s resolution. In theory, PASM
should have the diffraction limited resolution. To probe so, I placed an absorbing USAF resolution
target at the sample stage. Then, I scan a relatively small feature and process the image (subfigure
in Figure 7).
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Figure 7: PASM resolution characterization
Figure 7 shows the normalized Edge Spread Function (ESF) of the resolution target in blue, this is
the lateral profile. Then, the Line Spread Function (LSF) is derived from the ESF and its full-with
at half maximum (FWHM) determines the lateral resolution of PASM’s system, which is
approximately Sum. The theoretical resolution is roughly 1 pm so we can consider the system
approximately diffraction limited. On the other hand, the axial resolution is determined by the
ultrasound’s transducer bandwidth, which is 25MHz. Considering that the speed of sound in tissue
is around 1500m/s, the axial resolution is 6 um. Since we are imaging single layers of cells, it is

not necessary to experimentally determine it.

2.5 Performance evaluation

As a proof of concept, we first need to demonstrate that PASM can achieve better sensitivity,
alleviate photothermal damage, and enhance data acquisition speed compared to conventional OR-
PAM. To do so, we use 10um diameter fluorescent beads as weak absorbers since they have

relatively low nonradiative thermal energy release approximately equal to 1 — y, where y is the
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fluorophore’s quantum yield. To avoid photothermal damage we lower the pulse energy and image
using conventional OR-PAM. As shown in Figure 8a, the obtained image is pure noise. This is
because the SNR is not strong enough to image the beads. On the other hand, we now place the
optical absorber between the sample and the ultrasound transducer to comply with PASM’s
configuration. As opposed to conventional PAM, PASM (Figure 8b) can image the fluorescent

beads due to a high increase of SNR from the optical absorbing layer.

spnundue v aane@y

Figure 8: a) PAM fluorescent bead imaging. B) PASM imaging, first scan. C) PASM’s tenth scan. Scalebar
10um

To further demonstrate that PASM alleviates photothermal damage in the sample we scan the
sample up to ten times and see that the relative photoacoustic amplitude in Figure 8c is still intact.
If we were to image the system using PAM and increase the laser power, we would only be able
to scan the sample a few times. Thus, PAM is not a suitable technique for time-lapse imaging.
Moreover, Figure 9 shows a comparison between raw photoacoustic signals from such fluorescent
beads at the sample laser fluence. The blue plot is PAM, which achieves a 15dB SNR and the red
plot is PASM’s signal, achieving a 50dB SNR. This experiment is proof of concept of PASM’s

capabilities to highly increase the SNR expanding PAM applications.
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Figure 9: Comparison between PAM and PASM's SNR

2.6 Application: red blood cell imaging.

PAI is an ideal candidate to monitor hemoglobin (Hb) for many applications such as pulse
oximetry or cancer detection in deep tissue and one of the main absorbers in the human body. In
order to demonstrate PASM’s capabilities to image biological samples at low laser fluences versus
PAM, I imaged red blood cells (RBCs). The chosen sample is a fresh smear of bovine RBCs, we
placed a single RBC layer on a 0.17mm cover glass. Similar to the previous fluorescent bead
experiment, we lower the pulse laser energy avoiding photothermal damage. PAM’s RBC image
is shown in Figure 10a. As expected, the SNR is not strong enough to reconstruct the signal.
However, when we introduce an optical absorber made of polymethyl pentene (TPX) [15] the SNR

highly increases and we can get a high resolution image (Figure 10b).
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Figure 10: Bovine RBC imaging using a) OR-PAM b) PASM. Scale bar 40um

2.7 Discussion and future work

In PAM, there exists a lack of sensitivity at relative low fluences due to the highly inefficient
conversion from optical to ultrasound energy [16]. This limits PAM’s to many applications that
require low laser fluence, inefficient absorbers, fast dynamics, and time-lapse imaging.

In contrast, PASM is an ideal imaging technique for low SNR scenarios and to meet such temporal
dynamic requirements. Since PASM does not produce photothermal damage to cells, samples can
be imaged many times. PASM maximum amplitude projection images are inverted due to PASM’s
shadow casting nature. In other words, the optical absorber sets the highest signal value and light
that passes through biological tissue generates less photoacoustic signal due to light scattering and
absorption events in tissue. Hence the name ‘shadow-casting’. PASM is a simple and powerful
add-on to PAM. We only need to place a costless optical absorber at the sample stage, which could
even be a substitute to the common microscope slide glass seal since glass has a high acoustic
impedance mismatch with respect to water/tissue and it introduces unwanted reflections and
artifacts. Regarding the material chose for our experiments, TPX was used due to its transparency
and acoustic impedance match with the ultrasound transducer and water; however, any thin

material that highly absorbs light at the excitation wavelength can be used.
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Moreover, in PAM, when avoiding photothermal damage or imaging weak absorber, a common
technique to get reliable images is to average the laser pulses at one specific location.
Unfortunately, this introduces a data speed acquisition limitation proportional to the number of
points acquired per image. In PASM, a single scan is enough to get high quality metrics. Thus, it
is an ideal candidate for high-speed photoacoustic microscopic imaging.

Furthermore, PASM could also be used for low-cost PAI systems. Typically, nanosecond pulsed
lasers are used to generate high enough signals to output an image. Continuous wave lasers with
frequency modulation is a cheaper alternative that suffers from low SNR [17]. PASM could
compensate for that loss with the use of an optical absorber. PASM might also eliminate the need
to use contrast agents in certain tissue imaging experiments. Typically, weakly absorbers are
loaded with exogeneous contrast agents such as gold nanoparticles to highly increase the SNR
[18], [19].

In conclusion, PASM is a novel technique that provides unprecedented sensitivity in imaging
biological samples compared to similar techniques. By using a highly optical absorber close to the
tissue, an integrated ultrasound signal is obtained at the transducer. The signal is inverted with
respect to conventional PAM: a high absorber will be shown as a lower signal in the final image

since less laser fluence hits the optical absorbing layer at such position.
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Chapter 3 All-optical photoacoustic imaging

While the last chapter focused on photoacoustic shadow-casting microscopy, a technique that can
change the system’s sensitivity without changing the sensor there is still a highly need to change
the architecture of photoacoustic imaging systems for several reasons. For instance, many
applications such as brain or intravascular imaging require sensor miniaturization which is
nontrivial when using conventional piezoelectric ultrasound transducers due to the active
element’s sensitivity being proportional to its area, bulky casing, isolation material, and
preamplifiers [20]. This is where the idea of using optical sensors to have miniaturized and more
sensitive photoacoustic imaging systems comes from. Hence the name ‘all-optical photoacoustic
imaging’ [21], ultrasound transducers are the non-optical element in a conventional PAI setup. In
all-optical PAI, we will use optical excitation, ultrasound emission, and optical detection with
interferometric resonance detectors. The fundamental basis of optical resonating photoacoustic
sensors is that we can create a resonance using multiple optical cavity architectures such as
whispering galleries modes [22], [23] or Fabry-Perot etalons [24] and later detect a shift in the
resonant frequency when an ultrasound waves interacts with the sensor. In this chapter, I will
explain the fundamentals of such sensors and explain the fabrication process of a Fabry-Perot

sensor for photoacoustic imaging.

3.1 Fabry-Perot ultrasound sensors

Fabry-Perot architecture is one of the simplest forms of resonant cavities. Figure 11 shows an
schematic Fabry Perot ultrasound sensor in an all-optical photoacoustic imaging setup. In a
nutshell, a spacing layer is sandwiched between two mirrors, the interrogation laser reflects from

both mirrors creating interference and a resonance. An ultrasound wave from tissue produced by

20



the laser excitation’s wavelength travels to the Fabry-Perot sensor through an impedance matching
layer (water), passes through the first mirror of the cavity, and reaches the spacer. The spacer
should be fabricated from a material that has relatively Young’s modulus such that changes its
length when being pushed by the ultrasound wave so that it modifies the resonant cavity properties.

The sensor’s sensitivity is given by [25]:

S =——=I4; (10)

Equation 10 shows that the sensitivity depends on P., the optical power modulation’s rate of
change with respect to the change in pressure p due to thermoelastic expansion explained in
Chapter 1. Then, the overall sensitivity is a combination of optical and acoustic sensitivity: I and

A, respectively. Let me address each one separately in the following subsections.
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Figure 11: All-optical PAI with Fabry-Perot ultrasound sensor

3.1.1 Optical sensitivity

Equation 11 shows the optical phase after light wave has completed one roundtrip starting from

first mirror, spacer, second mirror, spacer, and back to the first mirror.
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It can be inferred from Equation 11 that if the cavity parameters are fixed and there is no incident
ultrasound wave, the only parameter that will affect resonance is wavelength. Figure 12 shows the
interferometric transfer function (ITF) simulation of the Fabry-Perot sensor, which shows how the

cavity behaves then scanning different wavelengths [24]:

Fabry Perot interferometric transfer function
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Figure 12: Interferometric transfer function of Fabry-Perot ultrasound sensor

From this graph we can extract that if we have a tunable laser source and we set the frequency to
the highest slope of dR/dA, a small change in the incident pressure could potentially cause a
change in the reflectivity. Two main parameters can be inferred from the interferometric transfer
function (ITF): free spectral range (FSR) and FWHM. The former indicates what is the frequency
range between two resonant peaks while the latter showcases how strong and sensitive is each

resonant peak.
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For photoacoustic sensing purposes we need to make sure that the FSR is wide enough so that
there is only one peak within the measuring range, otherwise we would have undetermined
dynamic range scale. Secondly, the FWHM should be small enough that we can sense
photoacoustic waves but big enough so that the Fabry-Perot does not saturate, that means
transitioning from resonant to non-resonant state with a minimal amount of pressure. This

ultimately depends on the reflectivity of the mirrors in the cavity [26].

3.1.2 Acoustic sensitivity

Acoustic sensitivity can be described as how much does the phase delayed with upcoming pressure

changes [27], [28]. This is shown in Equation 12 :

d¢
As = dp (12)
which can be expanded as:
A _dd  4mnl1l 1+n2p0 P (K

where n is the refractive index, [ is the Fabry-Perot spacer thickness, E is the spacer Young’s
modulus, p is the photoelastic constant, o is the Poisson ratio, and |P;(k)| is an acoustic frequency
dependent term that is inversely proportional to the acoustic’s frequency. Thus, as we set a

thickness value or the cavity, there is a trade-off between acoustic sensitivity and sensor’s

bandwidth.
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3.1.3 Fabry-Perot sensor configuration

The sensor’s configuration is as follows: the first mirror is made of a dielectric thin film stack of
alternating layers of relative low and high refractive index materials to transmit the excitation
wavelength and reflect the interrogation wavelength. Since the mirror is not 100% reflective, some
light will couple into the cavity, made of Parylene C and reflect back from second mirror, which
is made of the same material as the first. Let me first introduce the idea behind the thin film stack

mirror for Fabry-Perot ultrasound resonating sensors [29] , shown in Figure 13:

K

Figure 13: Bragg mirror concept

Light traveling from air encounters a higher refractive index material. The refracted wave
experiences a 180° phase shift and travels through the material until it encounters another lower
refractive index material. When light is traveling from high to low index there is no phase shift.
Furthermore, part of this wave will be reflected and will interact with the reflected wave from the
first air-high index refractive material creating constructive or destructive interference. The
condition to create destructive interference is:

2t = mA 14
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where t is the material thickness, m is the order, A is the wavelength of light, and n is the refractive
index. In such case, there will be no reflected wave and full transmission. Interference is the basis
behind such high reflectance mirrors. We will create a stack of double layers of high and low
refractive index materials with quarter wavelength thickness. The choice of the materials is such
that reflects ~770 nm, which is within interrogation laser tunable wavelength range and the
bandwidth is proportional to the difference between refractive indices. The number of double
layers is eight due to the required reflectivity >97% to produce an strong resonance in the cavity.
Unless otherwise noted, incident light is always normal to the surface of the Fabry Perot sensor.
The sensor is designed for two different wavelengths: excitation and interrogation. While the
excitation wavelength is targeted to generate efficient photoacoustic waves at the tissue’s peak
absorption, interrogation is to probe the sensor. In this particular application, we choose to target

hemoglobin imaging so the excitation wavelength is 532nm.
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Figure 14: Bragg mirror reflectance spectrum
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Figure 14 shows the mirror’s reflectance spectrum. As it can be seen, it is designed to have its peak
wavelength and 770nm and transmit 532nm. It is made of double layers of silicon nitride (n =

2.04), as the high refractive index material and silicon dioxide (n = 1.45) as the low. Each layer

t= ﬁ is 93nm and 130nm thick, respectively, and the total mirror thickness is 1.7pum.

Furthermore, the selected thickness of the Parylene C is 20 pum to strike a balance between acoustic
sensitivity and desired bandwidth (20MHz). After the second mirror is built, we will also add a
thin layer of Parylene C to protect the sensor from the water coupling media. The overall sensor
design is shown in Figure 15.

Lastly, the selected substrate is polymethylmethacrylate (PMMA). Its function is the same as a
backing stub material in conventional ultrasound transducers: avoid reflections and attenuate the
signal. This means that there must be an acoustic impedance match between Parylene C and the
substrate since the mirror is not considered due to the thickness size compared to the acoustic
frequency and the substrate must attenuate the ultrasound signal to avoid further reflection. Thus,

the substrate thickness is 1cm.
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Figure 15: Fabry Perot sensor configuration
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3.1.4 Fabry-Perot sensor fabrication

The entire fabrication process must be done at relatively low temperature since the melting point
of the PMMA substrate is 160°C . Hence, material deposition is performed through plasma-
enhanced chemical vapor deposition (PECVD) [30]. Conventional chemical vapor deposition
techniques use high temperature to provide enough energy for the deposition reaction. In a PECVD
setup, show in Figure 16, plasma provides the energy and the substrate is placed on a platen. At
the top of the chamber there is a gas inlet and a high voltage radiofrequency (RF) source which
provides sufficient energy to produce plasma. Once RF source activates the plasma, the gases
inside the chamber become chemically reactive and a thin film is created at the sample. The gas

selection will depend on the desired deposited material.

Showerhead (Cathode) I

Sample

Sample holder (Anode)

Figure 16: Plasma-Enhanced Chemical Vapor Deposition process

I empirically calculated the deposition rate by placing a test target and depositing silicon nitride
and silicon dioxide for thirty minutes. Then, the thickness is calculated according to its reflection
spectrum. After the first mirror is fabricated, the sensor is translated to a Parylene C coater machine

[31]. Such coating process has three main steps: sublimation, pyrolysis, and polymerization. In
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sublimation, the Parylene C dimer is placed in a boat-like structure and partial vacuum.
Temperature is risen to 150°C and the dimer is converted to gas. Then, the gas dimer is further
heated to 690°C until its molecular shape and the dimer is split into monomers. Finally, the sensor
is placed at the polymerization chamber at room temperature where monomers form chain like
structures and are deposited on the sensor. Figure 17 illustrates this process. Lastly, after Parylene
C is coated, the sample is brought back to the PECVD machine where I deposited the second

mirror.
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Figure 17: Parylene C deposition process

3.1.5 Fabry-Perot sensor test

The Fabry-Perot sensor is tested according to Figure 11. A tunable laser source (TLB-6712
Velocity, New Focus) is used to interrogate the laser from 760nm to 780nm and create a strong
resonant dip. Once we have a map of the spectral response of the sensor, we can set the sensing
wavelength at the maximum slope of the interferometric transfer function (ITF). That is the most
sensitive point where incident pressure will cause a change in the system’s reflectivity. The
experimental ITF is shown in Figure 18 and the selected resonant wavelength is 775.23nm.
Furthermore, on the other part of the sensor, water is used as a coupling media and electrical tape

1s used as an optical absorber to produce high SNR PA signals.
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Figure 18: Experimental Interferometric Transfer Function

As it can be seen in Figure 19, the Fabry-Perot sensor is able to sense photoacoustic signals, the
arrow indicates the characteristic bipolar ultrasound signals. The frequency response (20MHz) is

calculated by calculating the Fourier transform of such pulse.
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Figure 19: Fabry-Perot sensor PA signals as a proof of concept
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3.1.6 Conclusions and future work

The main advantage of all-optical photoacoustic systems with respect to conventional ultrasound
transducers is that it enables many different applications due to its scalable miniaturization and
high sensitivity. For future work, we will work on intravascular of atherosclerotic plaques and
functional brain imaging. On the one hand, due to vulnerable atherosclerotic plaque rupture there
are many cardiac deaths and strokes. In 2015, the World Health Organization estimated that out of
the nearly 20 million cardiovascular deaths worldwide, 6 where due to coronary heart attack and
7 due to stroke [32]. Atherosclerotic plaque vulnerability is related to its chemical composition,
stress distribution, and inflammation. The key of intravascular imaging is miniaturization and the
Fabry-Perot sensor can potentially provide that. Currently, the gold standard technique to image
atherosclerosis is intravascular ultrasound (IVUS) [33]. However, IVUS can only provide around
100 pm resolution at 40MHz and only structural information so it is hard to distinguish soft tissue
and fat. Moreover, IVUS cannot be introduced in smaller vessels and capillaries since reducing
the transducer’s size also reduces its active sensing element producing a sensitivity loss. To enable
both structural and molecular imaging we will build a multimodal technique using optical
coherence tomography (OCT) and PAI [34] for atherosclerotic plaque intravascular imaging. This

is shown in Figure 20.
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Figure 20: Multimodal OCT and PACT probe for intravascular imaging

Figure 20a shows the OCT subsystem. A super luminescent diode (SLD) centered at 1325nm
maximizes tissue penetration and the 1210nm laser is used for photoacoustic excitation. The OCT
light source is then coupled into a single-mode fiber and focused onto tissue using a gradient
refractive index (GRIN) lens. Then, OCT signals from tissue interfere with the fixed reference
mirror and a spectral interferogram is analyzed after passing through the spectrometer. Moreover,
PA waves are detected by the Fabry-Perot sensor and sent to the detector. Since this configuration
only provides one pixel at a time we can use a motor to rotate the catheter probe and image both
the structure and composition (Figure 20b).

Moreover, our Fabry Perot could be potentially used for freely behaving mouse brain imaging
[35], [36]. It has already been demonstrated PAI’s feasibility to do functional deep brain imaging

compared to conventional optical techniques[37]. Figure 21 shows our proposed application:
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Figure 21: PACT probe for brain imaging in freely behaving animals

Figure 21a shows excitation and probe (interrogation) lasers as previously explained in Figure 20.
A fiber bundle, shown in Figure 21b maps the 2D input from each spatial position from the Fabry-
Perot sensor into a one-dimensional streak camera which would enable high speed imaging. The
use of a fiber bundle and the miniaturized optical sensors enables freely moving since the probe
can be attached to head with low impact unlike conventional ultrasound transducer arrays.

In conclusion, all-optical photoacoustic imaging enables many applications compared to
conventional ultrasound transducers due to its size independence. A miniaturized sensor can be
used for intravascular and brain imaging applications. There are different optical resonant
architectures that can be used as ultrasounds sensors. The selection of the Fabry-Perot sensor is
simple but powerful: it does not involve complicated fabrication process, and it is easily repeatable
so that it could be translated to clinical scenarios as opposed to whispering gallery mode resonators,
which are also commonly used in research. My main goal with this research project was the proof

of concept so that it can be later used for aforementioned applications in our laboratory.



Chapter 4 Generalized Spatial Coherence for Photoacoustic Tomography

In this chapter, I will present a novel algorithm to reconstruct photoacoustic signals using
conventional ultrasound transducers and optical resonators for ultrasound sensing (Chapter 3).
There already exist many beamforming ultrasound reconstruction algorithms with multiple sensor
geometries such as spherical, circular, and linear [38], [39]; from simple backprojection (delay and
sum) [40] to time-reversal approaches [41], f-k migration [42], [43], adaptive minimum variance
[44], [45], to even deep learning-based algorithms [46]. However these methods still do not show
an optimal noise robustness and photoacoustic signals that are generated at deeper regions in tissue
cannot be imaged due to low light fluence and weakly absorbers are buried in noise. To overcome
such limitations, spatial coherence beamforming techniques, which take advantage of correlation
calculation between transducer elements, were studied. In this chapter, I will first present the
standard reconstruction algorithm, delay-and-sum. Then, I will deepen into spatial coherence
algorithms that enhance imaging quality metrics, mainly resolution and contrast. Lastly, I will
explain my algorithm, generalized spatial coherence, and demonstrate how it performs compared

to delay-and-sum and similar spatial coherence reconstruction techniques.

4.1 Delay-and-sum reconstruction.

Delay-and-sum is the most basic and common reconstruction algorithm in ultrasound imaging.
Since in PACT we reconstruct the signal using multiple transducers, same principles apply. Figure
22 shows an absorber emitting a photoacoustic wave which is detected by an array of ultrasound
transducers. Delay-and-sum (DAS) reconstruction algorithm exploits the fact that the signals will
arrive at different transducers at different times. Then, since the speed of sound and the spatial
location of each transducer are known, the signal is time delayed for each transducer and summed.

This is shown in Equation 14, the DAS beamforming equation:
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N-1
Yoas = ) si(n) (14)
i=1
where s;(n) is the delayed PA signal from the i — th transducer element at the n — th sample.
Although DAS is a gold-standard algorithm, its signal-to-noise ratio and imaging quality is known

to be fairly low due to its simplified modeling of ultrasound propagation in tissue and its lateral

resolution is limited by the ratio of the main to the side lobe levels.

Ultrasound
transducer
array

Excitation light

Figure 22: Delay-and-sum beamforming algorithm

4.2 Algorithms employing spatial coherence

In order to improve imaging quality, some algorithms have previously employed spatial coherence,
a fundamental property of waves, to abate noises exploiting the fact that noise and side lobes do
not interfere coherently [47]. For instance, [48] used a phase and sign coherence to weight the
DAS’ output for ultrasound imaging. Currently, there are two main algorithms that use spatial
coherence of ultrasound waves as a contrast source: filtered delay-multiply-and-sum (FDMAS)
[49], [50] and short lag spatial coherence (SLSC) [51]. Both algorithms have been used separately
for PACT and combined with each other [52]-[62]. In this section we will visit these algorithms
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in depth and identify their major advantages and disadvantages that will then lead to my algorithm:
generalized spatial coherence (GSC).

FDMAS is a modified version of DAS that adds a multiplication step between the delayed signals
and posterior filtering. Multiplying signals from different transducers is essentially computing a
spatial correlation operation that implicitly incorporates information about the spatial coherence

between signals. DMAS’ equation is shown below:

Youas) = D D sign[sis; )] J|si s (15)
i=1 j=i+1

where sign() is the signum function and N is the number of transducers in the array. In this way,
the ultrasound signals can maintain its sign and be correctly scaled to the same dimensionality.
Furthermore, while DAS outputs a zero-mean signal similar to the original signal amplitude
spectrum, DMAS multiplies signals with the same frequency content generating two output
signals, one being the same as with DAS, centered at f — f; = 0 and a second harmonic
component centered at f, + f, = 2f,. Thus, an bandpass filtering step can be added to maintain
the higher frequencies and attenuate the lower ones.

Compared to DAS, FDMAS provides better resolution due to the wavelength decrease as a
consequence of the multiplication step and the second harmonic frequencies. Also, it has more
noise robustness due to the use of the correlation operation that effectively increases the synthetic
aperture. To put this in mathematical terms we can first rearrange terms in Equation 15 in Equation

16, where the absolute value operator will be shown implicitly and aforementioned filter will be

added:

N-1 N

Yrpmas(M) = hy(n) * z Si(n)Sj (n)

i=1 J'=Z14 Siz(n)sz(n) (16)
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where h; (n) is the bandpass filter, and * denotes the convolution operation defined as:
L
[f Rl = > f@hE=n) (17)
T=-L
On the other hand, SLSC is an algorithm based on the same principle, taking advantage of the
spatial coherence between multiple signals but with a different route taken. This algorithm was
presented to compete with DAS. SLSC’s beamforming equation uses normalized spatial coherence
directly as the imaging contrast. The normalized spatial coherence at an arbitrary lag m, number

of separation elements between transducers, is given by Equation 18:

N-m
1 Zinl Si (n)5i+m (Tl)

N—-m
= \/ZZinl Siz (n) Z‘:ll;h Siz"‘m ()

R(m) =

(18)

The kernel size K = n, —n, is selected to strike a balance between correlation calculation and
axial resolution. The first M lags are summed while reaching a balance between lateral resolution
and signal-to-noise ratio (Equation 19) [63]. As expected, SLSC has lower point resolution than

FDMAS but its spatial covariance calculations makes it have higher noise robustness.

M
RI = Z R(m) (19)
m=1

Generally, both FDMAS and SLSC have advantages with respect to DAS but still have drawbacks
that limit their applicability. On the one hand, SLSC discards signal magnitude evidence by
normalizing the coherence values between multiple transducers. For instance, quantitative
information might be useful for one of PACT’s main applications: blood oxygenation
measurements. On the other hand, FDMAS increases imaging contrast compared to DAS without
losing signal magnitude relative strength but has lower contrast-to-noise ratio for reasons that are

still not fully understood [64] and will be explained later.
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For such reasons, I present Generalized Spatial Coherence (GSC) beamformer [65], a novel
reconstruction algorithm that combines the strength from previous spatial coherence beamforming
techniques and generalizes them into a single equation. Compared to DAS, FDMAS, and SLSC,

GSC provides superior imaging quality metrics.

4.3 Generalized Spatial Coherence beamforming equation

First, I will rewrite FDMAS’ beamforming Equation 16 to make it similar to SLSC’s equation and
make the comparison between both algorithms obvious.

N— -
Veomas(n) = Z Z (5t (St ()] (0)

m=1 i=1

si(n)

em, st

1. Similarly, we can rewrite Equation 20 as:

RI = z < i — Z Zﬁinl s;i(M)siym (M)

TR [T, sE0 D, st
). (E, ) (i, sEon ()

M 1 N-m
- Z N—-m ; =
P
Z D ha@) ¢ [5{ st (]

n=nq

where s;(n) = In other words, FDMAS is a technique that adds all lags up to N —

2 s;(n) Si+m (M)

21)

I
1=
2
5

where s{(n) = S and h,(n) =[1,1,...,1], a low-pass filter. Now the differences

2/2n ny SE()

between FDMAS (Equation 20) and SLSC (Equation 21) are obvious and we can generalize both

into a single equation:
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M N-m

yamy = ) wm) )

m=1

where w(m) represents a weight function, h(n) is a filter, and g[s;(n)] is given by:

glsi(n)] = 1

h(n) * {glsi(M)]g[sirm (M1}

r .
L  FDMAS
4
L’ SLSC
2
s, st

(22)

Let us take a closer look at function g[s;(n)] in Equation 22. It highlights the key differences

between FDMAS and SLSC. In the upper function, FDMAS can preserve the signal magnitude

due to the use of a weaker normalization factor compared to SLSC. We can name this quasi-

normalization through fourth root. On the other hand, SLSC uses a more aggressive normalization

(square root) that loses amplitude signal information. Furthermore, SLSC has a stronger robustness

to noise due to the use of a larger kernel, it takes more samples in the time domain to calculate

correlation. This does not happen in FDMAS with a one kernel that introduces noise in the

coherence calculation [66]. We can further prove this; let us consider a real photoacoustic signal

s;(n) that arrives at a transducer element as a sum of the original signal f;(n) and uncorrelated

noise ®;(n) [67]:

si(n) =
Then,
np np
D s ) stm)
n=ng n=nq

fi(n) + @;(n)

= ifiz(nﬂ Z ot ()

n=nq n=nq
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where Zzzznl[fi (n) 0;(n)] = 0 determines the uncorrelation between the signal and the noise.

¢Z(n) can be decomposed into its zero-mean component ¢;(n) and variance o . A larger kernel
K effectively reduces the effect of noise ¢;(n) relative to [f2,,(n) + 2] by a factor of VK,
leading to a statistically more robust evaluation of spatial coherence in SLSC [68].

Furthermore, FDMAS and SLSC make use of filtering differently, according to Equation 22. As
previously mentioned, FDMAS attenuates the zero-mean frequencies and passes the second
harmonic component in contrast to SLSC algorithm, which implements a low-pass filter. In theory,
both filters should yield the same spatial coherence calculation if the kernel is large enough.
Otherwise, second harmonic filter might miss the development of higher frequencies components.
The kernel should be at least one period of the transducer’s center frequency. Nevertheless, using
the second harmonic filter can be beneficial in certain applications such as Doppler ultrasound,
where the use of a higher frequency is desired [69].

Lastly, the weight function w(m) attributes a score to each correlation calculation. FDMAS
assigns a coherence weight of N — m by summing the N — m quasi-normalized signal pairs at lag
m without dividing by N — m. In contrast, SLSC uniformly assigns the N — m signal coherence

at lag m and divide it by N — m. Since coherence is greater at smaller lags, short-lag coherence
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contributes more than larger lags. Thus, to overcome previous limitations with FDMAS and SLC,

I present the GSC equation:

M N-m
10 Stem ()
Yosc(m) = w(n) )’ 2 h(n) * | — (25)
= £ B, 52 [Sh s, SEom ()

si(n)

where g(n) = ———
*EnZn, s20)

DC components. w(n) = 1 for m<M and 0 to give preference to contributions from small lags.

preserves signal magnitude and h(n) is a low-pass filter that extracts

The quasi-normalization and non-uniform weight function w(m) from FDMAS and a larger kernel
from SLSC gives GSC not only a generalized beamformer equation but it combines the strengths
from multiple algorithms providing higher contrast and noise robustness compared to previous

techniques.

4.4 Imaging metrics

In this section, I will define the imaging metrics used to compared DAS, FDMAS, SLSC, and GSC
algorithms: contrast, signal-to-noise ratio, and generalized contrast-to-noise ratio. Equations 26,

27, and 28 define these metrics, respectively:

S
C=20log (26)

(o)

1Si
e @

SNR = 201log

gCNR =1 — z min{h; (x), ho (1)} (28)
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where S; and S, are the mean brightness values inside and outside the imaging target, respectively.
h; (xy) and h, (xy) are the histograms inside and outside the imaging target and xy is the bin index,
and o2 is the variance outside the target. It is worth noting that although contrast and SNR are
standardized imaging metrics, generalized CNR is a relatively new metric that measures target
detectability score from 0 to 1, with 1 being maximum detectability. Compared to traditional CNR,

gCNR provides an improved linear relationship [70], [71].

4.5 Reconstruction simulation

To confirm GSC’s feasibility to improve contrast, SNR, and gCNR with respect to DAS, FDMAS,
and SLSC I first run simulations using K-wave MATLAB toolbox [72], a software designed to
solve time-domain acoustic equations in complex media such as tissue. In this case, [ set a 2D grid
with 512x512 points and a total grid size of 20x20mm. In FDTD, to maintain a balance between
numerical model stability and computational speed, we use the Courant-Friedrichs-Lewy (CFL)

parameter defined as:

CFL = (29)

where c, is the speed of sound in tissue (~1500 m/s), At is the time step, and Ax is the grid step
size. Furthermore, the ultrasound sensor parameters, shown in Table I, are chosen so that there

are similar to the one that we will use in experiments (Section 4.6).

Table 1: Transducer parameters

Parameters Value
Number of elements 128
Pitch 0.67 mm
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Sampling frequency 14.925 MHz

Center frequency 2.5 MHz

Fractional bandwidth 80%

I performed four different simulations. Firstly, to determine the ultimate resolution from each
beamformer, I set a point source 10mm away from the detector and reconstructed it using DAS,

FDMAS, SLSC, and GSC. Figure 23 represents the PSFs from such beamformers:

DAS SLSC

FDMAS GSC
|

Max

Figure 23: Noise-free PSF reconstruction from a) DAS, b), SLSC, ¢) FDMAS, and d) GSC. Scale bar: Imm

Although DAS and FDMAS do not have configurable parameters, in SLSC and GSC we selected
a M lag of 0.7 to strike a balance between lateral resolution and other imaging metrics. Without

noise, SLSC might yield unrealistic results due to the fact that uses spatial coherence as the
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imaging contrast and the point source should not have any coherence difference between
transducer elements. Moreover, the kernel size is set two one wavelength to balance correlation
stability and axial resolution. Normalized lateral PSFs from Figure 23 are shown in Figure 24a
representing the ideal system resolution with aforementioned transducer configuration and a -40dB
noise amplitude. FDMAS has the lowest resolution with 152um. GSC has 158um, SLSC 181 um,
and DAS 193 um. These results are expected since FDMAS improves resolution by implementing
a second harmonic filter to remove low frequencies and DAS does not take advantage of spatial
coherence between elements. GSC shows the lowest side lobes.

Moreover, Figure 24b shows the normalized axial profile from Figure 23. GSC outputs the highest
contrast (difference in low-to-high points). Although GSC can be already compared to state-of-

the-art techniques in noise free environment, we will now see realistic results with added noise.

Magnitude (dB)
Magnitude (dB)

-80 -

-100 -

0 25 50 75 100 125 150 175 0 25 S0 75 100 125 150 175 200
Points Points

Figure 24: a) Lateral PSF b) Axial PSF

Figure 25 represents reconstructed PSF with -12 dB noise added to the sensor data. From a
qualitative perspective, we can see that our algorithm, GSC is more robust to noise compared to
other techniques. As expected, DAS has a low noise tolerance and the image is already corrupted.
FDMAS has higher tolerance than DAS but uses a one point kernel and that makes correlation

calculations unstable. SLSC and GSC have similar noise robustness. Quantitatively, I calculated
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the image contrast and SNR based on Equations 26, 27, and 28 and the outlined regions in Figure
25. Results are outlined in Table 2:

Table 2: Contrast and SNR comparison for -12dB noise PSF reconstruction

Algorithm Contrast (dB) SNR (dB)
DAS 14.8 21.1
FDMAS 24.8 24.8
SLSC 40.6 40.6
GSC 41.2 41.8
DAS SLSC

FDMAS GSC

Min Max

Figure 25: -12dB noise PSF reconstruction using a) DAS, b) SLSC, ¢) FDMAS, and d) GSC. Scale bar: Imm
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Although GSC and SLSC have similar quantitative imaging metrics, we need to recall one of
SLSC’s main flaws: loss of quantitative information due to its aggressive normalization. To
highlight this property, I reconstructed three point sources located at different spatial locations
with normalized absorption coefficients of 0.4, 0.8, and 1, this is shown in Figure 26. The lateral
line profile from each reconstructed image is shown in Figure 27 compared against its ground
truth. The difference between SLSC and the rest of beamformers is notable: SLSC cannot preserve
relative signal magnitude. This makes now clear that although SLSC can have similar noise

robustness as GSC it cannot be applied to quantitative imaging techniques.

SLSC
FDMAS
Min Max

Figure 26: Three-point reconstruction for signal magnitude preservation experiment using a) DAS, b) SLSC, c¢)
FDMAS, and d) GSC. Scale bar: Imm
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Figure 27: Lateral weight profile of reconstructed points in Fig.26

Moreover, one the main doubts when reconstructing images is how to adjust the M lag parameter
in GSC. In Figure 28, we performed a study where we reconstruct the same point source from the
simulation in Figure 25 using different lags. The qualitative results are as expected: using a small
aperture (10-30%) yield results with low resolution since the difference with spatial coherence is
relatively large. However, as we increase the synthetic aperture (50-90%) we obtain better
resolution. In a low noise level scenario, larger lags will yield better imaging quality metrics until
the SNR starts decreasing. This is quantitatively determined in Table 3. Imaging quality metrics
reach a peak at 60% aperture and start lowering down due to trade-off between resolution and

SNR.
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Max

Figure 28: GSC's point source reconstruction with different lags (10-90%). Scale bar: Imm

Table 3: GSC's imaging metrics at different lags

Lag (%) C (dB) SNR (dB) ¢CNR (dB)
10 28.94 34.96 0.8
20 30.06 35.02 0.8
30 32.76 38.79 0.9
40 33.44 39.46 0.9
50 40.1 40.1 0.9
60 40.74 40.74 0.9
70 40.66 40.66 0.9
80 40.50 40.48 0.9
90 37.08 39.47 0.9
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Now that we have a general idea of how GSC outperforms DAS, FDMAS, and SLSC when
reconstructing a point object, let us see a more realistic object. Since one of the main applications

of PACT is cardiovascular imaging we will simulate a vessel-like phantom, shown in Figure 29:

Figure 29: Ground truth vessel-like phantom. Scale bar: Imm

Figure 30 shows the reconstruction results from vessel-like phantom from DAS, SLSC, FDMAS
and GSC at different noise levels determined by o, the noise standard deviation. Noise levels from
a) to e) are -20dB, -12dB, -10dB, -5dB, and -1dB, respectively. In general, we can see that the
phantom cannot be well reconstructed, this is due to the well-known limited view problem: since
the transducer’s geometry is linear, structures that are oriented orthogonal with respect to the
transducer will not be well reconstructed. We would need to change the transducer orientation to
see them. Nevertheless, we can see that the last column (GSC) gives overall better result in
qualitative terms at all noise levels. Starting at -20dB noise level, all techniques can yield an
accurate reconstruction. All techniques behave similarly in terms of imaging metrics as with PSF

reconstruction in Figure 25 due to noise robustness and filtering steps.
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Figure 30: Vessel-like phantom reconstruction at five different noise levels (dB): a) -20; b) -12; ¢) -10; d) -5; ) -2. &
indicates noise standard deviation for each reconstruction. Scale bar: Imm
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As noise increases in rows B and C from Figure 30, we can see that DAS quickly starts to lose its
imaging quality and the vessel is surrounded by noise. Moreover, due to FDMAS’ use of only one
point kernel, we can see it is not able to handle -10dB noise level and noise slowly starts to
dominate the image. In row D, which corresponds to -5dB noise level, DAS and FDMAS can
barely reconstruct the vessel. Lastly, at row E, with -2dB noise level, DAS and FDMAS cannot
reconstruct the vessel with fidelity while SLSC and GSC can still differentiate between its features
and noise. It is worth noting that in SLSC, vessel might be brighter than GSC in some regions due
to signal magnitude loss which was previously demonstrated in Figure 27. Overall, we can see that
GSC outperforms qualitatively all other techniques in PACT and ultrasound realistic scenarios,
meaning, with a medium to high level of noise.

On the other hand, Figure 31 shows quantitative results from Figure 30. We extracted information
from inside and outside the target shown in the highlighted area for every beamformer at every
noise level. In terms of contrast (Figure 31a), it is clear that DAS and FDMAS exhibit a higher
negative gradient as noise level (dB) increases due to poor noise robustness, this is also applicable
to other metrics such as SNR (Figure 31b) and gCNR (Figure 31c¢).

At -10dB, GSC differs 4dB, 14dB, and 26dB from SLSC, FDMAS, and DAS, respectively, and
consistently achieves a better contrast. Note that FDMAS starts obtaining better imaging metrics
than SLSC but poorly handles higher noise levels. In addition, in SNR terms, GSC also shows the

highest values consistently while FDMAS and DAS still show less noise robustness.
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Figure 31: Imaging metrics a) Contrast; b) SNR; ¢) CNR for different noise levels in Fig. 30

At -20dB and -15dB, GSC outperforms SLSC, FDMAS, and DAS by 9dB, 3dB, and 17dB,
respectively. At the highest noise level (-2dB), the difference become 5dB, 22dB, and 15dB,
respectively. Lastly, in Figure 31c we can see that all beamformers output between 0.8 and 0.8
gCNR (feature detectability) with the lowest noise level. As noise increases, two groups can be
clearly differentiated, the short-lag techniques, with a selected lag of 30% to balance resolution
and noise robustness, and DAS and FDMAS. The gCNR shows a similar dependence on noise as
with contrast and SNR. All beamforming techniques show between 0.8 and 0.9 detectability with
a -20 dB noise level. At the second noise. At -5 dB and -2 dB, GSC outperformes others with
highest lesion detectability values, 0.6 and 0.55, respectively, followed by SLSC with 0.2
difference. At the highest noise level, DAS and FDMAS cannot reconstruct the vessel with high
fidelity, and their gCNR are 0.27 and 0.32, respectively. It is also worth adding that GSC
outperforms SLSC using the same lag. Figure 32 justifies why a 30% lag was selected for vessel

phantom reconstruction and shows how GSC and SLSC compare. GSC improves SLSC
51



reconstruction in every metric at each noise level. In realistic simulations, the aperture needs to be

reduced compared to the results with PSF with no noise added and PSF with various noise levels

due to the sparsity of the object, which leads to a good reconstruction even when the noise level is

high. In this case, the vessel has high frequency features which can be easily buried in noise so

that is why a shorter lag provides better reconstruction results:
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Figure 32: Contrast and SNR in SLSC and GSC with different maximum lag selection in vessel phantom

In conclusions, I performed four simulations that show that GSC outperforms four considered

beamformers: classical DAS and spatial coherence algorithms FDMAS and SLSC. First,

calculating the PSF in the absence of noise. Secondly, simulated noise effects. Third, evaluated

beamformers in preserving signal magnitude and lastly, tested all beamformers with a realistic

phantom at different noise levels.

52



4.6 Experimental setup

In order to experimentally demonstrate GSC’s capabilities to produce state-of-the-art imaging

quality reconstruction results, we built a PACT setup for hand palm imaging shown in Figure 33:
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Figure 33: schematic drawing of human palm PACT imaging setup

Overall, the setup is a water tank with suitable acoustic coupling of ultrasound signals in an
opening made of Fluorinated Ethylene Propylene (FEP) plastic film used as the imaging window.
To ensure the correct functioning of the system, pulse-echo measurements were used before
imaging to make sure there are no reflections or high attenuation through the FEP film (50um
thick). The excitation light source is a nanosecond pulsed ND:Y AG laser with 1064nm wavelength
output and pulse repetition frequencies of 10Hz (Continuum, SL IIT). The light source is delivered
to the sample through a fiber. A cold mirror reflects 90% of the light and a hot mirror transmits
97% to the sample. It has also been tested that the light transmission trough the FEP film is 97%.
The light delivery setup ensures maximum transmitted light at the sample plane. Furthermore, the
cold mirror reflects incoming ultrasound waves to the transducer. In this way, we make sure that

both light delivery and acoustic detection are coplanar. A 20 cm stroke translation stage
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(McMASTER-Carr) mounted on an optical breadboard was used to ensure linear scanning.
Moreover, the ultrasound transducer array (Imasonics, Inc) is custom-made with 128 linear units
and curved features to achieve acoustic focusing without using an acoustic lens. Element pitch and
central operating frequency are 0.67mm, and 2.25MHz, respectively.

All human procedures were performed in compliance with the University at Buffalo IRB
protocol. All volunteers were enrolled after consent documents were signed. During imaging, the
palm was placed on the plastic film (imaging window) with ultrasound gel as the coupling agent
(Parker Laboratories, Inc.). The transducer-fiber bundle set (scan head) fixed in the 3D printed
holder was immersed into the water tank. Energy irradiated on the palm was far below the ANSI
safety limit of 100mJ/cm? for 1064 nm wavelength, measured as 21m]J/cm? [73]. For imaging,
the palm was scanned linearly with a step size of 0.1mm per laser pulse. The total imaging window
size was 20cm % 10cm [74]-[76].

Figure 34 shows reconstruction results from palm imaging. We reconstructed each slice separately
using the same four beamforming algorithms discussed in the simulation section: DAS, FDMAS,
SLSC, and GSC. Then, we took a maximum amplitude projection (MAP) along the depth direction
to show a final 2D image. In Figure 34a, we can see DAS reconstruction, the main structures of
the hand vessels can be seen but they are surrounded by noise. Also, in the bottom right, we can
see a feature showing relatively low contrast. In Figure 34b SLSC’s image reconstruction with a
lag of 30% as with vessel phantom high level noise reconstruction is surprisingly poor and its

artifacts may be due to the slicing process during acquisition.
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Figure 34: Human palm PACT imaging reconstruction using a) DAS; b) SLSC; ¢) FDMAS; d) GSC. Scale bar: 2mm

Furthermore, FDMAS shows the highest resolution, that was measure by taking a line profile of
an arbitrary vessel (see outlined region in Figure 34a). FDMAS measured 1.7mm while others
(DAS and GSC) showed 2.0mm. We did not measure resolution in SLSC due to slicing artifacts.
However, FDMAS shows a poor contrast to noise ratio compared to GSC and many feature cannot
be seen unless the signal is considerably higher compared to noise.

Quantitative imaging metrics for reconstructed images from Figure 34 are shown in Table 4. GSC
outperforms FDMAS, DAS, and SLSC by 8 dB, 10 dB, and 13 dB respectively. GSC also has the

highest gCNR followed by FDMAS with 0.05 difference, DAS, and SLSC. SLSC’s SNR and
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gCNR is the lowest due to slicing artifacts. GSC ‘s SNR is more than 3 dB higher than all other
beamformers. Overall, human hand palm imaging experimental results show that GSC
outperforms DAS, FDMAS, and SLSC in all imaging metrics, as predicted by our previous

simulations.

Table 4: Imaging metrics from human palm PACT imaging

Contrast (dB) | SNR (dB) | gCNR
DAS 8.94 25.2 0.73
SLSC 6.67 17.3 0.54
FDMAS 11.29 20.9 0.81
GSC 19.63 28.0 0.86

4. Discussion and conclusions

First, it is worth noting that in GSC and similar to SLSC, choosing the lag is empirical since it is
hard to calculate how it will exactly affect the lateral resolution and contrast. In objects surrounded
by relatively low levels of noise, we can use a shorter lag to improve lateral resolution. However,
in deeper tissue regions, where the laser fluence is low and thus there is a small photoacoustic
signal amplitude, there is no reason for using short lag for two reasons: higher frequencies will be
attenuated faster through tissue due to exponential relationship between absorption and frequency,
and secondly because it will affect the reconstructed SNR. Thus, it is convenient to use a larger
lag. In conclusion, using a larger M lag will produce a better resolution since the effective aperture
is increased while using relatively small lag values improves imaging contrast. Moreover, the
second parameter to optimize is the kernel, the number of time points chosen for each correlation

calculation. The rule of thumb is to select a value that balances axial resolution and correlation
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stability; an acoustic wavelength is typically enough. Lastly, the filter in GSC beamforming
equation should be selected depending on the application. For comparison, in FDMAS, the filter
is used due to the doubled signal frequency produced by multiplying signals with similar content.
Its goal is to attenuate lower frequencies and use half wavelength content which improves the
resolution. In GSC, we can effectively achieve nearly the same resolution due to noise robustness.
In addition, we could use a bandpass filter if we want to improve the resolution in critical
applications. For instance, in elasticity imaging, the low-frequencies highly decrease lateral
resolution.

GSC is not only a combination and generalization formula for FDMAS and SLSC. It improves its
strengths with no known weaknesses. As with FDMAS, GSC preserves relative signal magnitude.
As with SLSC, it has larger noise robustness due to a larger kernel used to evaluate coherence
calculations. GSC further improves contrast, SNR, and gCNR with respect to classical and similar
beamforming reconstruction techniques. GSC’s lateral resolution improvement depends on its
parameters selection: filter, lag, and kernel.

Although there are many other techniques that have modified and combined versions of FDMAS
and SLSC, GSC takes the best from both technique into a single equation. SLSC has been
previously modified with M-weighted and locally non-uniform weighted versions but still do not
preserve relative signal magnitude for quantitative imaging applications [39], [55]. Similarly, there
have also been improved versions of traditional FDMAS with a coherence factor that has enhanced
resolution and SNR. However, CNR has still been a problem with a one point kernel when there
is a relatively high noise level. In conclusion, GSC is a versatile and generalized spatial coherence

algorithm that can span many more applications.
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In terms computational cost terms, GSC has a similar cost compared to SLSC and FDMAS. DAS
still remains more simple due to less calculations. Particularly, its cost compared to FDMAS and
SLSC depends on the kernel selection. If we were to use kernel equal to one, it would be the same.
In order to achieve real-time imaging in GSC, FDMAS, or SLSC, we can use parallel beamforming
using a graphical processing unit (GPU) [77]. For a 512x512 reconstruction grid, our achieved
frame rate was 10 Hz using Nvidia RTX2080Ti GPU.

To conclude, we generalized FDMAS and SLSC beamformers into a single equation named
generalized spatial coherence (GSC) which goes beyond combining the strengths from both
beamformers: it has state-of-the-art noise robustness and preserves relative signal strength.

4. Future work and applications

We foresee that GSC will have many applications in biomedical imaging. This is because it is a
general technique that could be implemented in any beamforming reconstruction setup.
Particularly for PACT, GSC could be used in laparoscopic and hysterectomy procedures to
visualize and differentiate ureter and uterine arteries avoiding injuries during surgical procedure
[78]-[81]. Furthermore, PACT’s focus on cancer imaging applications has immensely grown in
the past years [82]. GSC could potentially help locate tumors in deeper regions of any tissue where
light delivery is non optimal and hence the absorber molecules are poor and surrounded by noise
in the final image. In future work, we would like to test this technique in a more focused clinical
application to help develop the next-generation photoacoustic imaging systems or in elastography

for ultrasound imaging [83].
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Chapter 5 Light field tomographic microscopy

In previous chapters, I have focused on the problem of imaging through deep tissue beyond the
optical diffusion limit. Chapter 5 is different since it focuses on imaging tissue at high speeds. In
many biological imaging problems as shown in Chapter 1, it is not only important to image at a
required spatial resolution and contrast but also have enough temporal resolution. For instance,
neuronal dynamics can occur at thousands of frames per second and if frame rate is not high
enough, the scene will contain motion artifacts and blur. Common widefield microscopy can
enhance its acquisition speed by either reducing the sensor’s dynamic range and region of interest
but still lack high field-of-view, three-dimensional fast imaging and the speed acquisition problem
obviously relies on the sensor.

In fluorescence tissue imaging, capturing images at thousands of frames per second has already
been done [84]-[91]. However these techniques also lack full field of view and three-dimensional
imaging. In this Chapter, I focus on imaging fast and three-dimensional dynamics. How can we
get three-dimensional scenes at a desired frame rate? To solve this problem, we will first visit the

plenoptic function.

5.1 The plenoptic function

In 1991, Adelson and Berger [4] revisited a concept first introduced by Gabriel Lippman in 1908
that mathematically explains what our eyes capture and depict from our surroundings: the
plenoptic function. Plenoptic, from Latin, plenus and optics, can be etymologically translated as
‘complete’ ‘optic’. Such function contains all possible light fields parametrizations represented in

Figure 35:

59



73

Figure 35: Representing the plenoptic function

In theory, we can represent any scene, at any point, if we know where the ray of light is located in
a three-dimensional space, that is : x, y, z, its angular direction 8 and ¢, wavelength A at time t.
However, it is hopeless expecting to accurately determine even a small part of such function since
in reality, we use two-dimensional charge-coupled devices (CCD) and complementary metal oxide
cameras (CMOS), one-dimensional line scan detectors, and zero-dimensional single pixel sensors
to capture the world. This means that if we wanted to capture the plenoptic function we would
have to compress seven dimensions into a two-dimensional detector, at best. To do so, we cannot
rely on classical Nyquist sampling theorem, which states that we need at least twice the sampling
rate two accurately represent a scene; the data cube would be huge creating problems with data
acquisition, processing, and rendering. A more efficient option is to make use of compressed
sensing (CS), a technique that can recover high fidelity, high dimensional information, from a
lower dimensional measurement. In mathematical terms, this means solving an undetermined

linear system given that the signal is sparse and incoherent in some of the given dimensions.



5.2 Light field imaging

Light field imaging can be considered as a re-interpretation of conventional two-dimensional
photography. Let us first consider the light rays entering the aperture plane of a camera lens and
the sensor plane shown in Figure 36. This is a two-dimensional representation of a light field. Each
possible light ray shown has its corresponding location in x, u coordinates where the former
represents the spatial location of the image at the sensor plane and the later parametrizes the

angular component of the rays at the camera [92]-[94].

Object plane
u
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Figure 36: Light field parametrization

Let us take a closer look at ray space diagram. The main reason why conventional photography
cannot extract three-dimensional information is because all angular rays in u are integrated for
each spatial sensor position. Thus, if we want to capture light from different angular components

and see through occlusions we need to preserve the u component. Light field photography and
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microscopy uses a microlens array at some plane to divide the aperture and image the same object
from multiple perspectives with a single snapshot. In other words, the angular component u is
preserved for each sub aperture. Figure 37 shows how a representation of a light field image.

In field imaging, the spatial resolution will be worse than classic photography due to the aperture
division. However, we can computationally refocus the image and extend the camera’s depth of

field since we capture the scenes from multiple angular perspectives.

Figure 37: General representation of a light field raw image

For biomedical applications, light field microscopy was first introduced to see through occlusions
in semitransparent samples [95]. Its applicability has been hugely extended to brain imaging; since
neurologists are interested in capturing neuronal activity in 3D [96]-[99]. However, one of the
main drawbacks in conventional light field imaging is its frame rate, limited to a few hundred
frames per second which is one order of magnitude less than what is required to capture neuronal
action potentials. This is because to accurately reconstruct the scene from different perspectives,
the back aperture of the objective lens must be relatively large and hence the CCD or CMOS sensor
must be too. This can also be extrapolated from the raw light field image in Figure 37: there are

only tiny differences with respect to each images that depend on the viewing position. Thus, light
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field imaging through spherical micro lenses is a fairly inefficient technique. As the imaging speed

bottleneck in light field imaging is the detector size, we can introduce the frame rate equation:

1

Frame rate =
Frame acquistion time + Frame readout time (30)

Let us consider that the acquisition time is low in high-speed applications so that the only tunable
parameter is the frame readout time, which changes with sensor technology. A typical CCD camera
uses global shutter where all pixels are exposed at the same time. The advantage is that a single
image is taken relatively fast and that may beneficiate when imaging a fast moving object within
a single frame but the drawback is that there is a single analog-to-digital (ADC) converter so the
time between frames is relatively low. On the other hand, conventional CMOS cameras have a
rolling shutter in which different rows of the sensor are exposed sequentially. Depending on the
number of pixels, each row might take up to 10us to read out. Such exposure mode might produce
motion artifacts known as rolling-shutter effect in which fast objects are detected in both upper
and lower exposed rows. Obviously, in CMOS cameras, the readout time is proportional to the
number of extracted rows. If we were to increase the frame rate in conventional photography with
a CMOS sensor, we could either reduce the dynamic range such that the number of pixels per
second is lower or reduce the region of interest (ROI). In fluorescent imaging, which is our main
application, reducing the dynamic range is usually not possible since the number of photons
emitted by tissue is relatively low and the signal will be buried inside camera noise. The latter

option is available if the field of view is small but this still limits many applications.
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5.3 Light field tomographic microscopy principle

From previous sections we can conclude that it is nontrivial to acquire high resolution, high
dynamic range, and large field of view images at high speeds. In general, there is lack of tools that
hamper single-shot acquisition of large two-dimensional time resolved data preventing many
applications in biology, chemistry, and physics. Even more difficult is to extend high speed
imaging to three-dimensional scenes that might be able to see around occlusions or non-line-of-
sight imaging applications. In order to overcome such limitations, I present light field tomographic
(LIFT) microscopy. In a nutshell, LIFT is a technique that compresses three-dimensional scenes
into a one-dimensional line detector [100].

Let us see how to compress the data. First, in order to compress a three-dimensional scene into a
two-dimensional detector we can use the same exact concept as light field: locate multiple lenses
at multiple spatial locations within the aperture plane and take advantage of the disparity between

them. This is show in Figure 38. Each lens will form its image with a different object perspective.

(
(el

Figure 38: Aperture division light field concept

LIFT’s contribution is to further compress the conventional light field image into a one-

dimensional detector. To-do so, the key step is to substitute the spherical microlens array with a
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cylindrical one and rotate each lens by a known angle. This process is explained in Figure 39,
LIFT’s image formation process. In Figure 39a, we use a two-plane parametrization for light field
analysis in which the spatial axis x is the sensor plane, and u is the lenslet array plane which

provides angular information.

1D sensor

1D sensor

Figure 39: LIFT imaging principle a) LIFT parameterization; b) Imaging through spherical lenses; c) Imaging
through cylindrical lenses; d) Projection view of the object

Furthermore, each lenslet has its own local coordinate plane x; whose origin is located where a
point source located at infinity is imaged by each sub aperture. In this case, only four lenslets are
shown for simplicity. This diagram is representing the parametrization of the x and u planes
depending on where the object and the microlens array are located, same parameterization as with

Figure 36. In LIFT, the classical imaging process is the same except for the cylindrical lens’
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invariant optical axis direction. If a point source is located at position x,,y,, d, the subimage of

each local coordinate will be located at:

x; =~ (u—xo)
d
a (31)
Vi = —EYO

where a is the distance from the lenslet array to the sensor. Figure 39b, shows such pin-hole image
formation model. As it can be inferred, if we use conventional spherical microlens array, the point
images of each lenslet would not be detected by a line sensor. However, if we use a cylindrical
lens oriented along arbitrary rotation angle, the point spread function (PSF) will be converted into
a line spread function. This is because the cylindrical lens does not have optical power along one
axis (invariant optical axis). In this case, as shown in the PSF convolution in Figure 39c, part of
the image will hit the sensor and that is how we can compress a two-dimensional scene into a one-
dimensional line detector. The line-shaped PSF disperses each point in the image space onto a

pixel on line sensor. The line length is given by the image magnification factor and the lenslet size:

1
[ = <1 + E) q (32)
where m is d/a and q is the lenslet diameter. In other words, the image formation process is a
parallel beam projection of the image that is obtained along the invariant optical axis direction.
This is a key concept which means that optical imaging is reformulated as a computed tomography
problem: we can relate the one-dimensional projection with a two-dimensional object via the
Fourier slice theorem, we will delve into this concept in the next chapter. Overall we can recover
a two-dimensional scene from the fact that we receive its one-dimensional projections and further

get the three-dimensional scene if we consider that each projections has its own unique perspective

of the object (Figure 39d).
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Let us now focus on the last step of the image formation process: resampled projection. For now,
we know that a point like object will be transformed into a line spread function rotated along an
arbitrary angle dictated by the cylindrical lenslet’s invariant optical axis. Generally, the line sensor
is not perpendicular to such line and to relate the unknown object to such data, via the Fourier slice
theorem (Section 5.40), we need to make it perpendicular. This can be done by computationally
resampling. Let us denote 0 as the angle between the invariant optical axis and the line sensor, the
projection angle. The new virtual sensor local coordinates x'and y'perpendicular to the projection

are given by:

[;] =Ry [;C,] (33)

where Ry is a rotation matrix expressed as:

[cose —sin®

7 lsind cosO

by combining Equations 32 and 33, the new image local coordinates are:

1
xX; = E(u — Xy)Cc0s0 — Byosine
1 . 1 (34)
v = EyOSLnB + Byocose

Considering that the sensor is one-dimensional, y; = 0. We can also rewrite x; as:

, cosO
X =— (u — xg — yotan0) (35)

Equation 35 is LIFT’s imaging equation where cos0 is the resampling factor, u describes the light
field component that enables depth retrieval and refocusing capabilities, and the last two terms

explain the projection process.
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5.4 Fourier slice theorem

The Fourier slice theorem is illustrated in Figure 40. Let us assume that we want to image an object
f (x,y) which has some Fourier transform F (k). In LIFT, the object f(x,y) is unknown but we
have access to a number of projections p(x) along arbitrary angles. The Fourier slice theorem
states that a one-dimensional Fourier transform at an angle 0 is the same as a line to the origin with
angle 6 of the two-dimensional Fourier transform representation of the entire object. Obviously, if
we take multiple projections we can fill the entire Fourier space to later reconstruct the object in

the spatial domain through a two-dimensional inverse Fourier transform.

Projection p(x)

Slice Ky w

Fourier
transform

Figure 40: Fourier slice theorem representation

In practice, the number of projections is fairly limited. Specially in LIFT, limited by the number
of lenses that fit in the objective’s back aperture. The low frequencies are oversampled compared
to the higher thus limiting the image quality depending on the sample sparsity in the spatial
domain. For an accurate image reconstruction, we would need to fill the complete spatial frequency
space by acquiring a sufficient number of projection data spanning from 0° to 180°. As a rule of
thumb, in order to reconstruct a N x N image, N projections with N number of pixels are needed.
In LIFT, we use a 1D sensor whose pixels are limited to several thousand so this casts LIFT as a
sparse computed tomography problem, we can only fit a very limited number of projections.
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5.5 Limited view problem

Considering that the one-dimensional line sensor is fixed, we are restricted to the range of angular
projections that we could extract from the object. In the worst case scenario, the optical invariant
axis of the cylindrical lens would be colinear to the line sensor and occupy a relatively big number
of pixels thereby limiting the number of projections to a couple. This is known as the limited view
problem [101]. This makes the angle selection key, especially when the number of views is fairly
limited in LIFT compared to traditional computed tomography scans. The general rule is that, since
the object is unknown, a uniformly distributed number of projections will produce the best results
although there are current algorithms that are able to calculate the optimal projection angles [102],
[103].

There are several methods to mitigate limited view problem. The first one is to rely on deep
learning methods by training a neural network that can learn the statistical distributions and
patterns of the system with a limited view problem by comparing the ground truth images with the
LIFT ones and correct them after [100]. This solution requires system calibration and does not
really eliminate the problem. The second choice is hardware-based: introduce Dove prisms as

image rotators in front of the cylindrical lens.

Figure 41: Dove prism as an image rotator

Figure 41 shows a Dove prism rotating the image. If the rotation angle is 6, the image is rotated

by 26. In such way, we can partially solve the limited view problem and project the object along
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any rotation angle while optimizing the number of pixels used per projection at the sensor plane
by placing the cylindrical lens invariant optical axis perpendicular to the sensor. The disadvantages
of the Dove prism are chromatic aberration for broadband illumination and astigmatism if light is

uncollimated.
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Figure 42: Line camera rotation

Another choice is rotating the camera or building a camera array as depicted in Figure 42. This
requires the camera to be compact and rotate with an accurate angle. By rotating the sensor camera
with 7 lenslets by 3 times will not only enrich the projections to 21 for eliminating the limited view

problem but also extend the light field to 2D.

5.6 Limited field of view

In LIFT, the use of line sensor limits the field of view (FOV) compared to conventional light field
imaging. Figure 43 represents the last point, located at the extreme spatial XY location within the
FOV in LIFT. This point will be imaged as a line along certain angle according to the invariant

axis and the edge of'its line spread function will be detected by the sensor. Thus, the last detectable
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point of the line sensor is limited to h = lcos(8)/2 and the LIFT’s FOV is determined by 24 =

lcos(0).

Sensor

Figure 43: Limitations in LIFT's FOV
5.7 LIFT refocusing abilities
Analogous to conventional light field imaging, LIFT has refocusing capabilities due to the
existence of subaperture lenses located at different spatial locations that produce disparity cues.

Figure 44 illustrates the refocusing process:

........................................................................................................
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Figure 44: LIFT’s refocusing capabilities
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We can locate a virtual sensor plane at a distance Aa from the original sensor and extract the image

from the second depth d,. Then, the new light field imaging equation is given by:

Aa Aa Aa
X2 =<1+ 7>xl— 7u=<1+ 7) [x; + su] (35)

Aa
Aa +

. . . AN
where s = — - We can further ignore the magnification factor (1 + 7‘1) since it 1s constant

across the refocused imaged. Finally, the refocusing equation is:
Xip = X+ su (36)

LIFT’s refocusing formula, Equation 36 is the same one in the ray space as conventional light field
cameras but along one angular axis instead of two. Shearing the acquired light field will refocus
the image onto different depths. From this equation we can extract two conclusions. First, LIFT is
a one-dimensional light field, there is only angular disparity along the u axis, as opposed to
conventional light field cameras. This is different than 1D light field cameras which produce a 1D

blurring effect, shown in in Figure 45 [104]:

Figure 45: LIFT's blurring effect. Scale bar: 10um.
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In LIFT, when the image of a point source is being focused, all projections intersect in the same
lateral position forming the PSF. However, when the image is defocused and the number of
projections is relatively low, different projections will have more than one intersection point and
ghost images will appear. If we increase the number of projections we will see a similar blurring
bokeh as with standard photography. This process also happens with conventional light field

cameras with low angular resolution, ghost images will appear.

5.8 Extending depth of field

LIFT’s depth of field can be extended by computationally refocusing the image at different depths
and identifying the sharpest feature around some determined ROI for each pixel in the focal stack.
Then, an all-in-focus image can be extracted from graph cut algorithms [105] at the expense of

computational reconstruction time.

5.9 Depth retrieval

Figure 46 shows the image processing pipeline employed to reconstruct a 3D image from 1D data.
As previously mentioned, in LIFT, we reformulate light field imaging as a computed tomographic
problem so that 1D data from multiple projections is reshaped as a 2D sinogram where 6
corresponds to each rotation angle. Then, the image is decompressed to 2D using tomographic
reconstruction that we will see in depth in further sections. In this section we focus on how to

obtain depth, similar to conventional light field.
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Figure 46: LIFT's image reconstruction pipeline

LIFT retrieves depth using depth-from-focus (DfF) algorithm [106]. The fundamental idea is to
sweep the scene focal plane to get a focal stack and use a scoring technique to determine what is
the best focused point within the stack and then estimate the depth of the point. The amount of
focus (or defocus) is mainly determined by the high frequency content in the each image. Such
quantity can be determined by algorithms such as sum of Laplacians. We take a small patch within

the image and calculate the second derivative for each pixel and sum it. This is shown in Equation

37:
x+K Yt+K
MEY = D > V) (37)
i=x—K j=y—-K

where i and j are the different pixels in the 2D reconstructed image, and K is the rectangular
window size. Then, the focus measure M (x, y) can be mapped to a depth value.

In practice, refocusing the light field image induces shift between multiple slices within the focal
stack. Thus, we first use one image as a reference and we calculate the geometric relationship with
respect to other images and apply a transformation. Furthermore, defocused images display
artifacts that are denoised using a block matching and 3D filtering algorithm (BM3D). BM3D is a

collaborative filtering process in which groups of similar blocks are extracted from the image if
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some dissimilarity measure falls below a threshold. All blocks are then stacked in 3D and Wiener

filtering is performed equally.

RV

Figure 47: Focus-to-depth LIFT

Figure 47 illustrates the focus-to-depth process. If an object plane is located at distance d from the
lenslet array, the total distance between the leftmost and rightmost subapertures images is equal
to:

L_d+aD
d

where D is the baseline lenslet array length and a is the distance from the array to the sensor plane.
To connect distance d with the computationally image refocusing parameter s we can consider
that the array length at infinity is L, = D. We can now calibrate the system to generate a
quantitative 3D map by translating a point source across the depth of field of our LIFT microscope.
Then, we generate a curve to match the ground truth axial position with the lateral shift of the line
spread function at each measurement. Finally, we can fit that measurement and output a focus-

depth calibration curve, which is shown in Figure 48:
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Figure 48: Focus-to-depth calibration curve
5.10 Image compression
Figure 49 shows how conventional light field and LIFT pixel extraction differ from each other
from an artificial brain image. In light field, since we normally use spherical lenses, we need to
utilize every row from the CMOS sensor. However, LIFT only requires 3 rows in the case where

the microlens array is a 3x3 matrix. Thus, LIFT’s image compression enables high speed imaging.

Figure 49: CMOS sensor plane using a) Light field imaging; b) LIFT imaging
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5.11 Fourier LIFT

In LIFT microscopy, we will implement an optical design that is based on Fourier light field
imaging due to its benefits that are explained later in this section. Let us first see a conventional
light field optical system where the microlens array (MLA) is placed at the native image plane of
the tube lens. Figure 50 is a schematic of such concept. The camera sensor is placed at one focal
distance away from the microlens array. To avoid overlapping between different sub images at the
sensor plane, the numerical aperture (NA) at the imaging plane must match the MLA’s NA. This

is expressed in Equation 38.

Sample

I
pane Objective

lens

CCD

Figure 50: Conventional light field microscopy

NAobjective — p
M 2fMlA

(38)

where M is the objective’s magnification, p is the MLA’s pitch, and fy; 4 is the MLA’s focal
length. This implementation presents practical problems in which if the MLA pitch is relatively
low because we need to either increase the objective’s magnification and reduce the objective’s
NA thus reducing the resolution. An alternative is to place the microlens array at the back focal
plane of the objective lens. This is concept is known as Fourier light field microscopy illustrated
in Figure 51:

77



CCD

y MLA
Sample
[
pane Objective
lens
Backfocal
plane

Figure 51: Fourier light field microscopy

In this case, since we do not have direct access to the Fourier plane of the objective lens, we can
place relay it using a 4f system with lenses L1 and L2. Then, the MLA has direct access to the

pupil plane and divides its aperture retaining both spatial and angular information.

5.12 Unfocused LIFT

One of the main drawbacks in LIFT is low light throughput due to the image along invariant optical
axis size at the sensor plane. Information from a single pixel in the object plane is spread along
rotation direction in the image space with a magnification dependent on the size of the lenslet and
the focal length ratio. This hamper’s LIFT’s application especially in fluorescent imaging since
this is a photon starving application and line spread function might be buried in sensor’s shot noise.
For this reason, we need to modified Fourier LIFT setup into unfocused Fourier LIFT microscopy,

shown in Figure 52:
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Figure 52: Unfocused LIFT

Here, we introduce a spherical microlens array behind the Dove prism at one focal length away
from the objective lens’ back aperture. Figure 52a represents XZ plane, where the cylindrical lens
has no optical power. Then, the chief rays will collimated by the lenslet, pass through the
cylindrical lens without being refracted and form an image at the sensor plane. In contrast, at the
YZ plane, where cylindrical lens has optical power, the collimated chief rays will be focused by
the cylindrical lens on the sensor. This means that on the y-axis we will image each sub pupil
corresponding to the exit pupil image of the back aperture of the objective lens in Fourier light
field configuration. Since the LIFT camera is imaging the light field of the pupil, we consider this

setup as unfocused LIFT [107] [108].

5.13 System design

LIFT is a general technique that can be applied to multiple setups including microscopy, non-line-

of-sight, and hyperspectral imaging. In my research, the main goal is to image fluorescent, fast
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dynamics events such as neuronal action potentials so all my systems are applied towards

fluorescent microscopy.

5.13.1 First order design

Figure 53 shows a general schematic of a LIFT microscope’s first order design. The targeted

resolution is roughly 2-3um and the FOV should be no less than 200um for our imaging

applications.
f=50mm
f=20mm
Objective lens Camera lens pair Dove C- MLACMOS
20X, 1NA 1:1 relay prism MLA

2mm WD

Figure 53: First order paraxial design of an unfocused Fourier LIFT microscope

Since LIFT is a computed tomography based imaging technique, we want to have as many
projections or views of the object as possible to accurately reconstruct the object. Thus, the back

aperture of the objective lens, given by Equation 39, should be as large as possible:

Dbackaperture =2fNA (39)

Thus, the focal length and the NA of the infinity corrected objective lens should be maximized. |
selected a low magnification, which provides longer focal length, high NA objective lens: 20X
Olympus XLYMPLFLM Objective, 1.00 NA, 2.00mm WD. Although the relative long working

distance is not an LIFT requirement, it will be a sample requirement in future sections such as in
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vivo mouse brain imaging. With these parameters, the back aperture diameter should be around
18mm. Then, a 1:1 system is used to relay the back aperture plane of the objective lens to an
accessible point, since it is usually inside the objective’s housing. I used two SLR Magic Lens II
50mm /1.1 due to its relatively large entrance and exit pupils in order to avoid spherical
aberrations. Furthermore, the Dove prisms are placed at the relayed pupil plane. Collimated light
should avoid astigmatism. There is a tradeoff between the chosen number that will fit in the back
aperture (number of projections in CT reconstruction) thus affecting the imaging quality
reconstruction and the lateral resolution. This is not determined by the Dove prisms but the
cylindrical lens array instead, since there needs to be a one-to-one match for every sub pupil
position and we need to the PSF needs to be twice the camera’s pixel size to meet Nyquist’s
sampling criteria.

The selected camera is a Teledyne Kinetix CMOS camera. There are several reasons why I choose
this 2D camera instead of a 1D sensor for LIFT imaging. Firstly, due to its multi ROI capabilities,
this means that we can convert the sensor into a multiplexed LIFT system where we extract a few
rows from the sensor and we can highly increase the number of projections. The back part of the

LIFT microscope illustrates such idea (Figure 54):
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Figure 54: Unfocused LIFT ROI multiplexing concept

If we were to use a single row to readout data, a line sensor would be sufficient. However, the
number of projections would be limited to less than ten considering the optical design parameters
and the reconstruction results for very sparse CT problems would be considerably poor in
biological samples, which are considered as non-sparse. The increase of the number of projections
comes at a cost: speed. As we increase the number of pixel rows to readout, the frame rate is
reduced (see Section 5.10) but the data compression is still much higher than conventional light
field imaging.

The second reason behind camera selection is quantum efficiency, which is 95%. As mentioned,
fluorescent imaging is a light starving application. Thus, it is key to convert as much photons into
electrons as possible. The third reason is the large diagonal field of view, almost 30mm, which
allows a big number of projections. Finally, the Kinetix model allows high frame rate imaging, we
will see the exact frame rate in future calculations.

Regarding the cylindrical lens’ parameters, they are designed and optimized using ZEMAX and

later fabricated. Its focal length and diameter depends on the desired pupil plane image size. This
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is the line spread function length mentioned in unfocused LIFT section: we want to make it as
small as possible to optimize light throughput. Lastly, the conventional MLA that images the
object needs to be designed considering desired resolution and FOV. Overall, LIFT’s first order

design calculations are shown below. The total system magnification is equal to:

M = fMLA — fcyl lens — 50 _55oy
fobj lens fstd.tube lens 180/20 (40)
M

The lateral resolution is determined by the MLA’s NA (Equation 41). The selected parameters are

at an optimal tradeoff between number of projections and lateral and angular resolution.

Ryia _ 1
NA = ——=—=20.02
MLA = TMLA 50 (41)
Moreover, the PSF at the sensor plane will be:
A 532E -9
PSF = = =12 um (42)

2NA 2%0.02

which is approximately twice the Kinetix’s pixel size (6.5um) so Nyquist sampling criteria is met.

Then, the pixel at the at the object plane will be:

Lateral resolution = —or = 22K _ 514 43
ateral resolution = M - 5e & um (43)
and the field of view limited by the MLA:
D 2mm
Fov = =24 =~ =350 um (44)

M 5.6

On the other hand, the vertical direction that images the pupil for unfocused LIFT configuration

will have a size of:

10

MLA 50

which is equivalent to approximately 66 rows in the Kinetix camera and an output of 4800Hz at 8

bit dynamic range and 1000Hz at 16bit. This is a one order of magnitude increase with respect to
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conventional light field imaging. In conclusion, LIFT unfocused Fourier configuration can
reconstruct three dimensional scenes with a 350um FOV, 2um lateral resolution at thousands of

frames per second.

5.13.2 Application design: fluorescence imaging

Figure 55 shows a LIFT microscope configured for our main application: fluorescent imaging.
Starting from the top side, in LIFT, we image the pupil along the invariant optical axis and the

object along the plane perpendicular to the sensor rows.

Koehler illumination

LiFT cariiers Beam splitter

Tube lens

Back focal plane

Ta e : ; Objective lens: 20X, 1NA, water
immersion, WD 2mm

i ]

Dove Prism and cylindrical lens array \ 14 relay camera lens pair

|

'\'
P
4

Dichroic filter

Sample plane

Widefield reference camera

Figure 55: LIFT reflective fluorescence microscope

A 90:10 beam splitter is placed on the optical path to have two arms: a reference arm with a
conventional tube lens for widefield acting as a reference camera and capturing 10% of the light
while still maximizing the transmitted (90%) of light to the LIFT arm. Finally, a replaceable filter
cube is used to maximize both fluorescent excitation light at the sample stage by using a excitation
filter, a 45° degree dichroic mirror, and emission wavelength coming from the sample. The LED
light source is at the conjugate plane of the objective’s lens back aperture thus providing Koehler

illumination. For more information of the setup please refer to previous section 5.13.1.
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5.14 Reconstruction techniques

Now that we know how to compress three-dimensional scenes into one-dimensional sensors and
understand LIFT’s refocusing, extended depth-of-focus, and high speed imaging capabilities, we
can focus on 1D to 2D image reconstruction. As mentioned before, LIFT reformulates imaging as
a sparse computed tomography (CT) reconstruction problem and this is a well-established field.

We will review the algorithms that we used to reconstruct LIFT images.

5.14.1 Backprojection

The most rudimentary algorithm in CT reconstruction is backprojection [109]. It consists of
mathematically mapping the attenuation pathway at every angle measured. In order to understand
backprojection algorithm let us first visit the mathematical description of analytical projection L
from a certain angle 0 at t intersection with respect to some detector of a two-dimensional object

f (x,y) represented in Figure 57. This is the same concept as the Fourier slice theorem.

&,
()
Ay \/&o’b
N “%,
\\oo
.
%
&

&%

X

fxy)

L(8,t)

Figure 56: One-dimensional projection of a two-dimensional object along arbitrary angle

The detector function pg (t) is the resampled line sensor describe in previous sections (see Section

5.3). The projection can be described by Equation 46:
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L(O,t) ={(x,y)eR x R:xcosf + ysinf =t } (46)

If we project the object along all possible angles we will end up with an integral known as the
Radon transform that captures the all necessary information to reconstruct the object in the

projection domain:

L
Rf = f f(x,y)ds (47)

In practice, the Radon transform is discretized and does not contain all possible viewing positions.
Instead, a set of discretized limited integral is organized into a 2D function with x and 6 variables.
This is known as a sinogram, since a Delta function in the object domain will be expressed as a
sinusoidal pattern in the projection domain. Figure 58 shows a typical LIFT sinogram from a
USAF resolution target. This is a linear operator so we can consider that any object is expressed a
sum of sinusoidal waves. The x-axis contains the line integral and the y-axis the cylindrical lens

rotation angle. The backprojection algorithm will map the sinogram to the object domain.

200 400 600 800 1000 1200 1400
Points

Figure 57: LIFT sinogram of a USAF target
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In order to extract a final image from the sinogram domain, we smear the one dimensional
projection information along the rotation angle for each acquired projection. Mathematically we

can express this step as:

fop = fpg (x cosO + y sin6)do (48)

This will lead to an object reconstruction that will be blurred due to the nature of projection
sampling. This effect can be explained in the frequency domain: low frequencies are oversampled
and high frequencies undersampled. In order to solve this issue, a high pass filter is typically used.
To do so, the projection function is transformed in the Fourier domain and multiplied by the filter.
There are multiple filter designs. For brevity purposes, we will not dig into filters and consider the
gold-standard for CT reconstruction: Ram-Lak filter. Then, the low frequencies are suppressed and
the high frequencies are amplified. Finally, the filtered version is inverse Fourier transformed and

later backprojected. Mathematically this looks like Equation 49:

frpp = fqg(x cos6 + y sinf)do (49)

with

q6(t) = [ Py(w)lwle™™* dw;
Although backprojection allows us to reconstruct images from different projections, LIFT’s sparse
CT nature needs more advanced techniques to obtain high quality imaging metrics. Thus, iterative

and deep algorithms will be now explained.

5.14.2 LIFT’s forward model

In order to understand the iterative reconstruction LIFT algorithm, let us first formulate the forward

model. As previously mentioned, LIFT reformulates imaging as a CT problem. Now let us merge
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both concepts into modeling equations. The 1D projection intensity at the sensor plane L(6, t) can
be considered as a convolution of an ideal pinhole image o(x, y) and the line-shaped PSF from the

cylindrical lens, that is:
L(0,t) = [o(x,y) * §(x cos 6 + ysinO)],=k =0 (50)

where §(x, y) is the Delta Dirac function, x,y denote the image space coordinates, and k is the
local coordinate on the sensor behind each lenslet. By convolution’s definition, Equation 50 is

equal to Equation 51:

L(,t) = ff 00o(x, Y[6(x — k)cosO + ysinf] dxdy (51)

From this equation, we can extract that in LIFT the object projection along certain angle is
equivalent to rotating the object and integrating along the y direction. Then, by discretizing the

model we can consider LIFT’s forward model as:

L(8) =TRyg (52)

where T is the integration, Ry is the rotation matrix, and g is the original object. We could use
backprojection to reconstruct this data. However, since we now know the forward model, we can

use inverse reconstruction algorithm to get a more accurate representation of the object.

5.14.3 Iterative reconstruction

In previous Equation 52, the goal is to extract the unknown vector g by solving the linear system
of equations. Ideally, we would multiply the inverse of the integration and rotation matrix T, and
Ry, respectively with the projection data. Unfortunately, the integration and rotation matrices are
not invertible since they are not squared and the system is typically undetermined due to the

relatively low number of projection lenses in LIFT system. Thus, we only have access to an
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approximate solution given by the minimum projection distance in some norm. To find optimal

value we need to solve this problem iteratively.

*

i 2
g* =argmin ||b—Agl|” + p®(g), (53)

where ¢(g) is a transform function that sparsifies the image, .;is the 11 norm, and p is a
regularization parameter. Various transform functions like total variation, wavelet transform, and
discrete cosine transform, can be used to make the image representation sparse. This equation may
be solved using an accelerated convergence version of the proximal gradient descent method: fast
iterative shrinking thresholding algorithm (FISTA) [110]. For the sake of brevity, I will only
explain the underlying algorithm [111].

Proximal gradient descent is a technique that solves L1 regularized least squares problem,
comprised by a two-step alternating process. The first is two calculate least squares gradient

descent from the current weight g, that is:
zx = gx — TAT(Agk — b) (54)

where T is the step size. The second step is solving the close (proximal) regularization problem:

Jks1 = argmingHZk - gk||§ + T?\||gk||1 (55)

5.14.4 Deep learning approaches

As we know, LIFT is a compressive imaging technique that highly increases three-dimensional
data acquisition at the cost of resolution. We are currently investigating how to compensate
resolution loss using deep learning. It has already been demonstrated that some sparse CT

algorithms are capable to reconstruct high resolution from low resolution ones with adequate
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system training [112]-[116] . In this case, our ultimate goal is to make LIFT achieve diffraction

limit resolution while maintaining kilohertz frame rate.

5.15 LIFT system characterization

In order to test LIFT fluorescence microscope’s lateral and axial resolution I placed an microLED
screen (Microled-info) with Spum pixel size at the sample stage and turned on two pixels with a
one pixel separation and kept increasing the separation until resolving both points using LIFT in a
7 lenslet (projection) configuration: Figure 59 shows the line reconstruction results. As it can be
seen, both points can be differentiated less than 10pum apart and that determines LIFT’s lateral
resolution between 5-10 um. It is important to note that this resolution depends on the number of
projections and the sample. For a more spatially complicated (non-sparse) sample, we usually scale

the number of lenslets up to match the required resolution.
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Figure 58: LIFT's lateral resolution

Regarding axial resolution, I took a single point source and scanned it in the axial direction with 5

um increments. As a reminder, LIFT’s axial resolution can be experimentally determined by the
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amount of travel that takes cylindrical lens PSF to shift one pixel and thus be able to later
differentiate. Figure 60 shows refocusing collage of data from the summed images of two point

located 40pm away from each other:

Figure 59: LIFT's experimental axial resolution

The highlighted areas showcase the first and second point being refocused, respectively. There is
a profile separation similar to Figure 59 where the separation is less than the FWHM of each

individual PSF thereby determining 40um of axial resolution .

Reference LIFT focal image

——————

1o — . R

() m
Figure 60: Widefield (a) and LIFT (b) imaging of a fixed mouse kidney section
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Furthermore, in order to demonstrate that LIFT is able to accurately reconstruct fluorescent
biological samples, I placed a prepared Thermofisher fluorescent slide of a mouse kidney section
where the glomeruli and convoluted tubules are labeled by Alexa Fluor 488 wheat germ agglutinin
dye. Figure 60a, and 60b show the reference widefield image and the LIFT enface focal image,
respectively. As it can be seen, the resolution on the LIFT focal image is not diffraction limited,
as with widefield. This is due to LIFT’s sparse CT nature, in this case by using 16 projection
lenses. However, the number of projections can be scaled up until achieving near diffraction
limited resolution. In the highlighted region, we can already note a key difference between
widefield and LIFT; this feature is hollow in LIFT. This is due to LIFT’s 3D imaging nature in
which we can see through some occlusions while widefield integrates the axial dimension hereby
losing refocusing capabilities. In LIFT, we can extended the focal image to render a 3D volume.
This is shown in Figure 61. The capability to image 3D scenes with a single snapshot at thousands
of frames per second opens a huge number of applications including brain, cardiovascular,

microfluidic, imaging that will be seen in depth in further sections.

Figure 61: 3D LIFT rendering of mouse kidney section in Fig.60. Scalebar: 20um
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5.13 Applications

LIFT is a general optical compressive technique that can potentially be applied to many scenarios
such as tomography, microscopy, general-purpose cameras or hyperspectral imaging. During my
graduate research, I focused on the LIFT applications that can have a greater impact in our society.
One of them is neuronal imaging. To date there is no technique that can image three dimensional
volumes at kilohertz rates of action potentials. Moreover, the study of microfluidics, the behavior
of fluids constrained to a small scale, has a huge impact in DNA chips, molecular biology,
evolutionary biology, optics, fuels, food science, etc. It is essential to understand such dynamics
and LIFT could potentially provide 3D info at high speeds. Lastly, cardiovascular imaging plays
a pivotal role in human biology. Particularly, cardiac atrial fibrillation is a common cardiac

arrythmia and a major contributor to stroke.

5.15.1 Brain imaging

High-speed volumetric imaging of dynamic neural activity over long periods still remains a big
challenge in neuroscience. To this date, light field microscopy can get single snapshot three-
dimensional reconstruction but its speed is still limited to a few hundred frames per second. This
allows light field imaging systems to capture genetically encoded calcium indicators (CEClIs).
However, calcium imaging is not exactly related to the voltage change in neurons, it only provides
a limited information about natural signal processing and little information about the inhibitory
and exhibitory neural signals. In contrast, voltage imaging allows directly measuring neural
electrical activity and can overcome calcium imaging limitations. Particularly, genetically encode
voltage indicators (GEVIs) are fluorescent electrosensitive molecules that change it brightness
depending on neural voltage. Unfortunately, the temporal resolution needed to image such
neuronal action potential is on the order of milliseconds and conventional light field imaging is
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not suitable for this application since there is a tradeoff between imaging speed and signal-to-noise
ratio (SNR).

On the other hand, our LIFT microscope for fluorescent imaging meets all requirements for this
application: high-resolution, high-volume, and high-speed. Our ultimate goal is to optimize LIFT
for kilohertz volumetric imaging of neuronal action potentials. To prove this, I first tried to see
lower temporal resolution dynamics and higher SNR molecules with GECIs to empirically
optimize the system parameters for GEVIs. Thus, I set up a imaging chamber to record GCaMP
activity from acute brain slices (see Appendix A for general protocol). Figure 6 illustrates such

setup:

Objective lens

Platinum harp

Brain slice Imaging chamber

ACSF inlet

Figure 62: LIFT acute brain slice imaging setup

In order to preserve the physiological conditions of the brain slice we need to constantly perfuse
fresh artificial cerebral spinal fluid (ACSF). A carbogen (95% 02, 5% CO2) tank keeps the ACSF
solution saturated. Then, a 3D printed imaging chamber with an input channel for fresh ACSF and
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output that goes to a discard chamber (not shown) perfuses the ACSF. The sample is held by a
platinum harp to keep it steady at the bottom of the chamber. Once the slice is held in place we
circulate a high potassium ACSF, which is known to activate neurons. Figure 63 shows such
GCaMP activity in LIFT imaging. As it can be seen, after recording ACSF is applied, some
neurons show a change in fluorescence with respect to its baseline. Our next step is to test these
signal GCaMP in vivo by looking through an craniotomy window in brain and substitute GECIs

with GEVIs.

Figure 63: Acute brain slice GCaMP activity using LIFT microscopy. Scale bar: 10um

5.15.2 Microfluidics

Three-dimensional high-speed imaging in microfluidics application is key requirement to
understand its dynamics. To probe LIFT’s capabilities, we tested 3D imaging on microfluidic
sculpting channels. In this technique, we can place certain barriers in the microfluidic channel in
a specific spatial location, predict, and sculpt how a liquid is going to flow through the channels.

In this experiment, a barrier is placed at an arbitrary position in a microfluidic channel (Figure 64).
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Figure 64: Barrier in a microfluidic channel for flow sculpting. Scale bar: 20um

Then, Figure 65 shows of how the fluid is shaped in 3D at 2000fps. Such frame rate is not a
limitation: since this is an image with relatively low frequency features we could use a low number

of projections, less ROIs and image at tens of thousands of frames per second.

Figure 65: 3D flow sculpting through LIFT imaging. Scalebar: 50um

5.15.3 Cardiovascular imaging
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One of LIFT’s main application is cardiovascular imaging of voltage waves in a fast beating
zebrafish heart since it requires high spatiotemporal resolution and there is currently no technique
that can address such needs. The embryonic zebrafish is a genetically tractable and transparent
model that allows the study of electromechanical coupling in heart development: the dynamics and
relationship between action potentials and myocardial contraction. This would help cardiologists
better understand major fatal risk factors such as cardiac atrial fibrillation, a cardiac arrythmia and
a major heart stroke cause in which there is a dysregulation of the electrical and mechanical
coupling.

As a proof of concept, I demonstrated in vivo dynamic 3D blood flow imaging at near kHz speeds.
We labelled RBCs in the tail of a zebrafish larvae (tg:gatal:dared, 4dpf) with dsRed fluorophore.
Figure 66a shows the widefield (reference) camera dynamics while Figure 66b shows the LIFT
images. LIFT also allows cross sectional imaging, which is shown in Figure 66¢, we can now track

single RBCs in 3D at thousands of frames per second.
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Figure 66: Dynamic imaging of red blood cells flowing in a zebrafish larvae in vivo

Furthermore, Figure 67 demonstrates calcium signaling imaging in LIFT microscope where a
single cell expresses GCaMP. Calcium release from the sarcoplasmic reticulum occurs toward the
myoplasm along the length of the cell. This figure shows how two signals propagate in opposite

directions and later merge into a single signal.
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Figure 67: LIFT imaging of calcium waves propagating in a cultured cardiomyocyte expressing GCaMP. Scalebar:

40um

5.16 Discussion and future work

LIFT is a general optical technique that can span many applications. The basic principle is to
compress three-dimensional information to a one-dimensional detector in order to highly increase
data throughput. LIFT can extract 3D information from the same principle as conventional light
field imaging: dividing the aperture into multiple sub apertures. Since each sub aperture has a
different perspective of the object, we can see through occlusions assuming that the object is
sparse. Then, the scene can be further compressed into a line sensor if we judiciously use
cylindrical lenses and rotate them along certain orientations. This is a key step in LIFT:
reformulating imaging as a CT problem . At the sensor plane, we detect projections from the object

and each projection has a unique perspective of the object. We can later reconstruct the scene using
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classic CT reconstruction techniques for 2D and light field shear and reconstruct algorithm for 3D.
LIFT has the same refocusing and extended depth-of-field capabilities as with conventional light
field imaging.

Since there is only a fairly limited number of lenses that we can fit within the objective’s back
aperture, LIFT is further considered as a sparse CT problem: a few number of projections are only
able to image simpler objects. If we want to improve the system’s imaging capabilities we can
either reduce the size of each projection which reduces the NA of each lenslet or use more
advanced reconstruction techniques such as iterative and deep learning methods which can
effectively reduce imaging streaking artifacts. Moreover, | have demonstrated LIFT imaging in
microscopy applications. LIFT enables high-speed 3D imaging of many biological events.
Particularly, in this dissertation we have visited neuronal, microfluidic, and cardiovascular
imaging.

Regarding future work, LIFT’s microscope can be expanded to any applications that requires high
speed 3D imaging. In our lab will focus on capturing neuronal action potentials in brain mouse in
vivo at kilohertz rates, microfluidics for flow cytometry application collaborations, and

cardiovascular voltage wave imaging.
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2.

3.

Appendix A

Acute brain slice protocol

. Mice. Since our goal is to image GCaMP activity in mouse brain slice we can select any

transgenic mice expressing GCaMP or perform viral injection. In this case we opted for
viral injection at prefrontal cortex due to familiarity with the protocol.
GCaMP injection.

Obtaining acute brain slices.

3.1 Materials:

Nest beaker: BSK4 Brain Slice Keeper.

Instant superglue.

Large scissors.

Straight fine scissors (Fisher Scientific, 12000155).

Dissecting fine-pointed forceps (Fisher Scientific, 08875).
Scalpel (Fisher Scientific, 08925).

Curved spatula (Electron Microscopy Sciences, 7832612).
Industrial general purpose razor blade (Surgical Design, 270B).
Dropper bulb (Fisher Scientific, 14060-11).

Carbogen tank (95% CO2, 5% O2).

Modified Pasteur pipette dropper.

3.2 Reagents:

Sodium chloride (Fisher Scientific, 7647-14-5).

Glucose (Sigma Aldrich, G7201).
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- Sodium bicarbonate (Fisher Scientific, 144-55-8).

- Sodium phosphate monobasic anhydrous (Sigma Aldrich, 7558-80-7).

- Potassium chloride (Fisher Chemical, 7447-40-7).

- D-glucose (Fisher Chemical, 50-99-7).

- Magnesium chloride (Sigma Aldrich, 7786-30-3).

- Calcium chloride (Sigma Aldrich, 10043-52-4).

- NMDA (Sigma Aldrich, 6384-92-5).

- Isoflurane chamber.

- Vibratome.

- Ice-cold cutting artificial cerebrospinal fluid (ACSF) solution, see Recipes subsection.

- Recovery ACSF solution, see Recipes subsection.

- High KCI1 ACSF solution, see Recipes subsection.

-  NMDA ACSF solution, see Recipes subsection.

3.3 Recipes:

- Cutting ACSF (in mM): 222 sucrose, 11 D-Glucose, 1 sodium phosphate, 3 sodium
chloride, 7 magnesium chloride, 0.5 calcium chloride.

- Recovery ACSF (in mM): 124 sodium chloride, 2.5 potassium chloride, 26 sodium
bicarbonate, 1.25 sodium phosphate, 10 D-Glucose, 4 sucrose, 2.5 calcium chloride, 2
magnesium chloride.

- High Kcl ACSF (in mM): 124 sodium chloride, 10 potassium chloride, 26 sodium
bicarbonate, 1.25 sodium phosphate, 10 D-Glucose, 4 sucrose, 2.5 calcium chloride, 2

magnesium chloride.
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- NMDA ACSF (in mM): 0.2 NMDA, 124 sodium chloride, 2.5 potassium chloride, 26

sodium bicarbonate, 1.25 sodium phosphate, 10 D-Glucose, 4 sucrose, 2.5 calcium

chloride, 2 magnesium chloride.

4. Procedure

1.

2.

10.

11.

12.

13.

14.

15.

Prepare ACSF solutions preferably on the imaging experiment day.

Saturate all solution using carbogen for ~20 mins.

. Place cutting ACSF in the freezer until it reaches ~4 degrees Celsius.

Prepare cutting tools and vibratome.

Place mouse in isoflurane chamber until deeply anesthetized.

Decapitate mouse using large scissors.

Quickly extract the brain while dipping in ice cold cutting solution every ~10-20s.
Isolate the brain’s region of interest using razor blade.

Place brain section in the vibratome and attach it using a small glue amount.

Cover the whole cutting chamber with cutting ACSF.

Cut slices to desired thickness (~300um).

Using modified Pasteur pipette transfer the slices into recovery chamber (BSK4) filled
with recovery ACSF while keeping carbogen bubbling.

Let the slices recovery from mechanical slicing shock for 30 mins.

Put the slices in the imaging chamber with a continuous and laminar flow of recovery
ACSEF solution.

Change the input solution to high KCl ACSF or NMDA ACSF to activate the GCaMP
signals.
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