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ABSTRACT OF THE DISSERTATION 
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by 
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Doctor of Philosophy in Bioengineering 
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Professor Liang Gao, Chair 

 

This dissertation proposes several solutions to alleviate two of the most fundamental problems in 

biomedical optics: imaging deep in tissue via photoacoustic imaging (PAI) and capturing fast 

dynamics through light field tomography (LIFT). On the one hand, photoacoustic tomography can 

image with chemical specificity up to tens of centimeters in tissue. However, its applicability is 

still limited due to its relatively poor sensitivity and noise robustness, high cost, and setup 

bulkiness. In order to overcome such limitations, I present three novel techniques: Photoacoustic 

Shadow-Casting Microscopy (PASM), All-optical Photoacoustic Microscopy (AOPAM), and 

Generalized Spatial Coherence (GSC). First, PASM is a technique that detects biological samples 

with unprecedented sensitivity by using an optical absorber that acts as a photoacoustic signal 
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amplifier alleviating photothermal damage in tissue samples while enabling fast acquisition and 

time-lapse applications. Secondly, AOPAM eliminates the use of conventional piezoelectric 

transducers in PAI setups by introducing an optical resonating ultrasound sensor: a Fabry-Perot 

etalon. This configuration allows system miniaturization and expands PAI’s applicability to 

intravascular imaging of atherosclerotic plaques and brain imaging in freely behaving rodents. 

Thirdly, GSC is a PAI beamforming reconstruction algorithm that takes advantage of spatial 

coherence between signals from multiple transducers to output state-of-the-art imaging quality 

metrics and noise robustness compared to gold standard techniques, such as delay-and-sum and 

similar spatial coherence beamforming techniques such as filtered delay-multiply-and-sum and 

short-lag spatial coherence.  

On the other hand, LIFT is a novel imaging method that allows  single snapshot capturing of three-

dimensional scenes at ultrafast speeds. In a nutshell, LIFT compresses three-dimensional scenes 

to  one-dimensional detectors in order to enhance acquisition speed by adequately rotating an array 

of cylindrical lenslets thus reformulating optical imaging as a computed tomography problem. 

LIFT has depth refocusing and extended depth-of-field capabilities as opposed to classical optical 

microscopy. In this work, LIFT’s application is three-dimensional fluorescent microscopy at 

kilohertz rates of neuronal action potentials, microfluidic flow sculpting dynamics, and 

cardiovascular voltage waves. 
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Chapter 1 Introduction 

There are three main limitations associated with the development of the next-generation 

biomedical optical systems: resolution, depth, and speed. On the one hand,  a considerable part of 

the research community has been focused on improving resolution: how can we image smaller 

structures? This huge effort led to the discovery optical superresolution techniques that surpass 

Abbe’s theoretical diffraction limit, which states that a light beam can be focused up to 

approximately half of its wavelength [1]. On the other hand, imaging through deep tissue and fast 

dynamics have no theoretical but current technological limit. Regarding depth, photons travelling 

through tissue experiment many scattering and absorption events that prevent imaging in relatively 

thick tissue. Concerning frame rate, many three-dimensional biological dynamics occur at a 

millisecond temporal resolution and there are no techniques that can image full field of view, three-

dimensional scenes at thousands of frames per second with the scanning device and sensor being 

the main bottlenecks. Obviously, there is a high need to research and engineer biomedical devices 

that can capture events in deep tissue and fast dynamics. Thus, during my graduate research I 

focused on solving these two problems: depth through photoacoustic imaging and speed through 

optically compressive imaging.  

1.1 Motivations in optical imaging 

Although there already exist well-established biomedical imaging techniques such as ultrasound, 

Magnetic Resonance Imaging (MRI), X-ray Computed Tomography, and Positron Emission 

Tomography (PET), it is still highly important to use optical imaging for three main reasons. First, 

light-matter interaction occurs at a molecular level. Thus, light has an advantageous position to 
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probe molecules inside our body. Secondly, its wavelength is located at the non-ionizing part of 

the electromagnetic spectrum. Thus, light does not damage tissue. Third, analogous to other non-

optical imaging techniques, optical imaging is capable of functional imaging similar to MRI, 

metabolic imaging analogous to PET, molecular imaging of gene expressions, and histological 

imaging. Light is at a unique part of the electromagnetic spectrum and an excellent tool suitable 

image tissue. 

1.2 Imaging through turbid media 

The main difficulty when imaging through the body is turbidity. Tissue is not transparent and that 

hampers optical penetration due to photons experiencing multiple scattering and absorption events 

in a relatively short mean free path. Figure 1 shows a diagram representing how different optical 

imaging techniques can see through tissue. First, in classical optical microscopy, tissue penetration 

is limited to a few hundred microns of tissue, at such depths, the wavefront is aberrated and we 

cannot sharply distinguish tissue features.  

Nevertheless, there are more advanced optical imaging techniques that can beat the aberration limit 

such as confocal microscopy, two-photon microscopy, and optical coherence tomography. First, 

confocal microscopy employs a pinhole to reject the out-of-focus light that is integrated in the 

detector allowing three-dimensional imaging by axially scanning the sample. Secondly, two-

photon microscopy uses non-linear excitation to reduce the out-of-focus fluorescent excitation and 

thus enhance optical imaging up to 1mm. Lastly, optical coherence tomography typically uses 

longer wavelengths for higher tissue penetration (2-3mm). All these applications were enabled by 

the invention of the laser. Imaging at millimeter depths already enables many applications but the 

final goal is to be able to image through full body. For instance, tumors that are located a few 
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millimeters below the skin, where the diffusion limit is, will not be seen by aforementioned 

techniques. 

In my graduate research, I used a technique, mainly developed in the 2000s,  able to surpass the 

diffusion limit enhancing imaging penetration by two orders of magnitude: photoacoustic imaging 

[2]. This technique uses a combination of optical excitation and ultrasound detection.  

 

 

 

 

 

 

 

In photoacoustic imaging, scattering is tolerated and it is absorption what prevents imaging. Thus, 

we can image up to 10cm deep in tissue, that is where light is completely absorbed by tissue 

(absorption limit).  Lastly, expanding depth imaging to the meter range with high fidelity images 

has not been achieved yet but there are promising wavefront engineering techniques that might 

surpass such limit allowing whole body imaging through the use of internal guide stars. 

1.3 Imaging faster three-dimensional dynamics 

High-speed cameras are essential in both fundamental and applied sciences. Many high speed 

cameras have been already developed but they still lack three-dimensional imaging. In 

biomedicine, there are many three-dimensional, relatively fast events such as protein folding, 

neuronal and cardiovascular activity, and microfluidic dynamics that play a fundamental role in 

the human body. During my graduate research, I focused on imaging three-dimensional fluorescent 

Figure 1: Optical technologies and tissue depth penetration 
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activity at thousands of frames per second. To the extent of my knowledge, previous techniques 

have not been able to image previous dynamics at such frame rate with near full field of view and 

in 3D. For instance, confocal microscopy relies on axially scanning the sample thus highly 

reducing the frame rate. Widefield microscopy can only achieve such high frame rates if the 

sensor’s region of interest is reduced but still lacks three-dimensional imaging.  

On the other hand, light field imaging has been able to obtain single snapshot three-dimensional 

images, without relying on scanning techniques, by dividing the main lens aperture into 

subapertures [3].  Then, each subaperture has a different perspective of the object and a near 3D 

image can be reconstructed. Note that I mentioned near because it would require a 360 degree view 

to see around the object. Light field imaging was first introduced by Gabriel Lippmann in 1908 

with a concept known as integral photography. Such concept was later revisited by Adelson and 

Berger with the idea of the plenoptic function [4], a function that describes all the possible 

information that is captured from a single viewing position; a ray of light can be decomposed by 

seven parameters: 𝑥, 𝑦, and 𝑧 are the ray coordinates in a three dimensional space. 𝜃, and 휙 express 

ray direction, 𝜆 is the wavelength of light, and 𝑡 is a particular time. If we could capture all seven 

variables, we could exactly represent any scene at any time interval. However, in reality these 

scenes are normally captured by two-dimensional conventional cameras, one-dimensional line-

scan cameras, or zero-dimensional single pixel imagers. In other words, we are encapsulating a 

high (seven) dimensional object into a low-dimensional detector. Since we cannot currently use a 

higher dimensional detector, we need to somehow transform the high dimensional function in 

order to accurately represent the scene. To do so, we cannot  practically rely on the classical 

Nyquist sampling theorem which would require us to use two pixels per voxel, the data cube will 

be dramatically huge to process. A more efficient idea is to make use of Compressed Sensing (CS) 
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theory, whose bottom-line is that high dimensional signals can be recovered with high fidelity 

from low dimensional measurements if the signal is sparse and incoherent in some domain.  In this 

work, I will present Light Field Tomography (LIFT), a compressive technique that allows ultrafast 

three dimensional imaging and apply it to microscopy in order to image three-dimensional 

fluorescent activity at thousands of frames per second.
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Chapter 2 Photoacoustic shadow-casting microscopy 

 
Photoacoustic imaging (PAI) is a rapidly emerging biomedical imaging technique that surpasses 

the optical diffusion limit whose contrast is based on optical absorption instead of scattering, as 

opposed to other optical imaging techniques. PAI allows centimeter scale tissue depth imaging.  

When light interacts with tissue, it will absorb its energy and further release it either in form of 

radioactive decay, fundamental for fluorescence imaging, or non-radioactive decay, meaning it 

will release heat. Photoacoustic imaging tries to efficiently generate ultrasound waves using light 

excitation and absorption which produces immediate heat release.  In principle, any light absorbing 

molecule can produce a photoacoustic signal whose origin can be located by using multiple 

ultrasound transducers or novel photonic integrated circuit detectors (PICs) [5]. However, in 

practice, it is hard to detect weakly absorbing samples because they are surrounded by thermal, 

dark, and electric noise sources. In this chapter, I will explain the principles behind photoacoustic 

imaging and my novel technique: photoacoustic shadow-casting microscopy, which relaxes the 

high laser power constrain that produces photothermal damage in biological samples and further 

extends PAI’s applicability to, for instance, time-lapse tissue imaging [6]. 

 

2.1 Fundamentals of photoacoustic excitation 

The photoacoustic effect is a physical process in which electromagnetic waves are converted to 

acoustic waves. From a biological viewpoint, when a tissue or cells absorbs an incoming photon 

it may release its energy via two paths: radioactive and non-radioactive decay. In radioactive 
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decay, the absorbed energy will be released in form of another electromagnetic wave but with 

different wavelength. This is the case of fluorescent imaging (Chapter 5). The latter is essentially 

thermal energy release. In that case, tissue will absorb light, increase its temperature, rise pressure, 

and release it via thermoelastic expansion. A key insight in photoacoustic imaging is that, in order 

to make the ultrasound wave efficiently generated, it is necessary that the duration of the excitation 

is less than the thermal and stress relaxation times. While thermal relaxation time characterizes the 

thermal diffusion decay over some tissue region, the stress relaxation time describes how pressure 

initially propagates. In other words, if the laser pulse duration is less than such times, tissue will 

heat up and release an acoustic wave before tissue diffuses heat and relaxes stress.  

Thermal relaxation time 𝑡  is given by Equation 1 [7]: 

 

𝑡 =
𝑑
𝛼  (1) 

where 𝑑  is the heated region and 𝛼  is the thermal diffusivity.  Moreover, stress relaxation time 

is given by Equation 2: 

𝑡 =
𝑑
𝑣   (2) 

 

where 𝑣  is the speed of sound. For instance, let us assume that we are targeting a 15 Pm  region, 

the thermal diffusivity of soft tissue is 1.3E3  , and the speed of sound in tissue is 1400  . 

Then, 𝑡  is 17𝑠 and 𝑡  is 1 𝜇𝑠. This means that we need less than a microsecond pulse to generate 

efficient photoacoustic signals. In that case, the fractional volume expansion expressed by 

Equation 3 is negligible: 
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𝑑𝑉
𝑉 = −𝜅𝑝 + ET = 0  (3) 

 

where 𝜅 is the isothermal compressibility, 𝑝 is the initial pressure, E is the thermal expansion 

coefficient, and T is temperature. Then, the initial photoacoustic pressure release is: 

  

𝑝 =
ET
𝜅   (4) 

which can be rewritten as  

𝑝 =  Г𝜂 𝜇 𝐹  (5) 

 

where Г is the Grüneisen parameter, 𝜂  is the percentage of absorbed energy converted to heat, 

𝜇  is the absorption coefficient of the sample (𝑐𝑚 ), and 𝐹  is the laser optical fluence (𝐽/𝑐𝑚 ).  

The initial pressure rise can achieve ~800 Pa from a milliKelvin temperature rise, which is 

detectable by conventional ultrasound transducers. We can conclude that the initial temperature 

rise leads to a pressure rise which is later released via thermoelastic expansion and detected by an 

ultrasound transducer. The overall photoacoustic effect process is illustrated in Figure 2.  

Regarding the laser delivery optical design and ultrasound detection configuration, PAI is a 

scalable technique in which we can target multiple depths, field of view, and resolution depending 

on the application. In this work, I focused on improving an established modality known as optical-

resolution photoacoustic microscopy (OR-PAM) [8]. The typical configuration is shown in Figure 

3. 
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Figure 2: Photoacoustic imaging principle 

A laser with selected wavelength depending on the target’s absorption spectrum from a given 

molecule will provide contrast to the image when focused on to an objective lens. Then, the 

absorber will emit an ultrasound wave that will propagate through tissue and be detected by the 

ultrasound transducer with the correct acoustic coupling media. Rather than focusing on deep 

tissue samples, this technique provides a different viewpoint than conventional widefield 

microscopy: there is chemical specificity since we can choose what to see in the image by selecting 

the right wavelength. This configuration only provides us single point information so it is 

necessary to scan the tissue in order to output an image.  

 

Figure 3: Optical-resolution photoacoustic microscopy 
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2.2 Photoacoustic shadow-casting microscopy principle 

Theoretically, any given target will absorb light, increase its temperature and release a 

photoacoustic wave. However, in practice, weakly absorbers are overwhelmed by environmental 

noise. A wide range of systems have been focused on improving the sensitivity [9], [10], accuracy 

[11], and imaging speed [12]. However, such approaches still have a tradeoff between 

photothermal damage to the sample and the acquisition speed that prevent its applicability. The 

goal of photoacoustic shadow-casting microscopy (PASM) is to overcome such limitations. PASM 

is a novel technique that alleviates photothermal damage and enhances acquisition speed by 

introducing a strong absorber after the biological sample that generates high SNR photoacoustic 

signals. 

PASM’s development is inspired on NASA Kepler’s mission, where the existence and size of 

exoplanets is determined by a dip in the brightness of stars. In PASM, the star is the strongly 

absorbing target and the dip is dictated by the imaged biological sample. Let me first explain this 

in mathematical terms.  The laser fluence at the absorbing background layer 𝐹  is given by Beer-

Lambert’s law: 

𝐹 = 𝐹 𝑒  (6) 

 

where 𝐹  is the original laser fluence at the sample stage,  𝜇  is the absorption coefficient of the 

specimen, and 𝑑 is the specimen thickness. As previously mentioned, since OR-PAM does not 

focus on deep tissue, we can consider the sample  as relatively thin. Thus, Beer-Lambert’s law can 

be approximated as a first order term from Taylor’s expansion: 
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𝐹 ≅ 𝐹  (1 − 𝑢 𝑑)  

 

Furthermore, we can also consider that, since the sample is relatively thin, the transducer integrates 

the signals coming from tissue and the background layer. As a side note, PASM can also work 

with other PAI modalities with thicker tissue such as acoustic-resolution photoacoustic microscopy 

(AR-PAM) at the cost of axial resolution. PASM’s detected pressure is equal to: 

  

𝑝 ≅ Г𝜂 (𝜇 + 𝜇  )𝐹 ′ (7) 

 

where 𝜇  is the absorption coefficient of the background layer. As 𝜇 ≫ 𝜇 , we can further 

simplify previous Equation 7 into: 

 

𝑝 ≅ Г𝜂 𝜇  𝐹 ′  

Now let us see what is the signal difference between conventional PAM and PASM. Consider that 

the signal coming from the background layer is: 

𝑝 ≅ Г𝜂 𝜇  𝐹  (8) 

Then, the difference in photoacoustic signals between the background layer and the tissue 

sample is: 

∇𝑝 = 𝑝 − 𝑝 =  Г𝜂 𝜇  ( 𝐹 − 𝐹 ) =  Г𝜂 𝜇 𝜇  𝐹 𝑑  

 

 

 

By choosing a background layer with an absorption coefficient 𝜇 > 1/𝑑, then the difference in 

photoacoustic pressure ∇𝑝 > 𝑝 and PASM’s detected pressure is higher than conventional PAM 

with a gain factor 𝑀 given by: 
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𝑀 =
∇𝑝
𝑝 = 𝜇 𝑑 (9) 

2.3 System design 

Overall, we can consider the PASM system as a minor modification from  conventional OR-PAM 

configuration. This is advantageous because we can obtain higher sensitivity and faster acquisition 

speed without adding any extra budget. To align the system, we first choose a laser according to 

the absorbing target. In this case, the ultimate goal is to image hemoglobin (Hb). Thus, the 

wavelength is 532nm [13]. As Figure 4 shows, there is relatively high absorption at this wavelength 

from both oxy and deoxyhemoglobin [14]. 

 

Figure 4: Absorption spectrum of hemoglobin (Hb) [14] 

Furthermore, according to stress and thermal relaxation times shown in Equations 1 and 2, it is 

required no more than a 1 μs pulse duration for targets with similar size to a single red blood cell 

(RBC). Thus, I chose a nanosecond pulsed laser Elforlight 532nm FQ series which provides up to 

400uJ pulse energy with pulsed width durations less than 5ns. PASM’s setup is shown in Figure 

5. After the laser pulse is fired, the beam is spatially filtered producing homogeneous illumination 



 13 

at the sample stage and expanded to cover the entire objective’s back aperture diameter for 

diffraction limited spot size at the sample plane.  

 

Figure 5: PASM configuration 

In order to get an image, it is necessary to raster scan the diffraction limited spot along the 

objective’s field of view, that is why two-dimensional galvanometer mirrors are placed after the 

spatial filter. Then, a scanning lens is placed at the conjugate plane of the objective lens, the image 

plane, and one focal length away from the scanning mirrors. This makes the system telecentric: 

there will be no magnification difference between different scanned points at the sample plane.  

Lastly, an infinity corrected objective lens and the tube lens act as a conventional microscope.  

The zoomed-in circled region in Figure 5 highlights PASM’s uniqueness. The biological sample 

is placed on a thin cover glass. Then, it is sandwiched on the other side with an optical absorbing 

layer. Such absorber can be any material that strongly absorbs light and emits high SNR ultrasound 

signal. In this case we choose polymethyl pentene, a transparent thermoplastic that offers a 

relatively strong acoustic coupling match to help the acoustic signals reach the ultrasound 

transducer. Finally, water or ultrasound gel is used as a coupling media. The ultrasound signal is 
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captured by the transducer (Olympus, unfocused, 25MHz central frequency),  amplified by two 

ZFL500NL+ Minicircuit (10-500MHz) in cascade, and digitized by a data acquisition card (GaGe 

CSE1422, 200MS/s). 

Figure 6 shows system’s LabVIEW user interface. We select a laser frequency of 1KHz which is 

synchronized with the scanning mirrors and the digitizer. The number of points (Nx,Ny, Nt) are 

signals sent to the scanning mirrors that determine the image’s field of view and scanning 

resolution. The amplitude determines the field of view. The sampling rate needs to match Nyquist 

sampling criteria. The DAQ is externally triggered by each laser pulse at every scanning point 

within the FOV. 

 

Figure 6: PASM LabVIEW UI 

2.4 System performance 

A 10X, 0.25NA objective lens is used to characterize the system’s resolution. In theory, PASM 

should have the diffraction limited resolution. To probe so, I placed an absorbing USAF resolution 

target at the sample stage. Then, I scan a relatively small feature and process the image (subfigure 

in Figure 7). 
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Figure 7: PASM resolution characterization 

Figure 7 shows the normalized Edge Spread Function (ESF) of the resolution target in blue, this is 

the lateral profile. Then, the Line Spread Function (LSF) is derived from the ESF and its full-with 

at half maximum (FWHM) determines the lateral resolution of PASM’s system, which is 

approximately 5μm. The theoretical resolution is roughly 1 μm so we can consider the system 

approximately diffraction limited. On the other hand, the axial resolution is determined by the 

ultrasound’s transducer bandwidth, which is 25MHz. Considering that the speed of sound in tissue 

is around 1500m/s, the axial resolution is 6 μm. Since we are imaging single layers of cells, it is 

not necessary to experimentally determine it. 

2.5 Performance evaluation 

As a proof of concept, we first need to demonstrate that PASM can achieve better sensitivity, 

alleviate photothermal damage, and enhance data acquisition speed compared to conventional OR-

PAM. To do so, we use 10μm diameter fluorescent beads as weak absorbers since they have 

relatively low nonradiative thermal energy release approximately equal to 1 −  𝛾, where 𝛾 is the 
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fluorophore’s quantum yield. To avoid photothermal damage we lower the pulse energy and image 

using conventional OR-PAM. As shown in Figure 8a, the obtained image is pure noise. This is 

because the SNR is not strong enough to image the beads. On the other hand, we now place the 

optical absorber between the sample and the ultrasound transducer to comply with PASM’s 

configuration. As opposed to conventional PAM, PASM (Figure 8b) can image the fluorescent 

beads due to a high increase of SNR from the optical absorbing layer. 

 

 

 

 

 

 

To further demonstrate that PASM alleviates photothermal damage in the sample we scan the 

sample up to ten times and see that the relative photoacoustic amplitude in Figure 8c is still intact. 

If we were to image the system using PAM and increase the laser power, we would only be able 

to scan the sample a few times. Thus, PAM is not a suitable technique for time-lapse imaging.  

Moreover, Figure 9 shows a comparison between raw photoacoustic signals from such fluorescent 

beads at the sample laser fluence. The blue plot is PAM, which achieves a 15dB SNR and the red 

plot is PASM’s signal, achieving a 50dB SNR. This experiment is proof of concept of PASM’s 

capabilities to highly increase the SNR expanding PAM applications. 

Figure 8: a) PAM fluorescent bead imaging. B) PASM imaging, first scan. C) PASM’s tenth scan. Scalebar 
10um 
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Figure 9: Comparison between PAM and PASM's SNR 

2.6 Application: red blood cell imaging. 

PAI is an ideal candidate to monitor hemoglobin (Hb) for many applications such as pulse 

oximetry or cancer detection in deep tissue and one of the main absorbers in the human body. In 

order to demonstrate PASM’s capabilities to image biological samples at low laser fluences versus 

PAM, I imaged red blood cells (RBCs). The chosen sample is a fresh smear of bovine RBCs, we 

placed a single RBC layer on a 0.17mm cover glass.  Similar to the previous fluorescent bead 

experiment, we lower the pulse laser energy avoiding photothermal damage. PAM’s RBC image 

is shown in Figure 10a. As expected, the SNR is not strong enough to reconstruct the signal. 

However, when we introduce an optical absorber made of polymethyl pentene (TPX) [15] the SNR 

highly increases and we can get a high resolution image (Figure 10b). 
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Figure 10: Bovine RBC imaging using a) OR-PAM b) PASM. Scale bar 40um 

2.7 Discussion and future work 

In PAM, there exists a lack of sensitivity at relative low fluences due to the highly inefficient 

conversion from optical to ultrasound energy [16]. This limits PAM’s to many applications that 

require low laser fluence, inefficient absorbers, fast dynamics, and time-lapse imaging. 

In contrast, PASM is an ideal imaging technique for low SNR scenarios and to meet such temporal 

dynamic requirements. Since PASM does not produce photothermal damage to cells, samples can 

be imaged many times. PASM maximum amplitude projection images are inverted due to PASM’s 

shadow casting nature. In other words, the optical absorber sets the highest signal value and light 

that passes through biological tissue generates less photoacoustic signal due to light scattering and 

absorption events in tissue. Hence the name ‘shadow-casting’. PASM is a simple and powerful 

add-on to PAM. We only need to place a costless optical absorber at the sample stage, which could 

even be a substitute to the common microscope slide glass seal since glass has a high acoustic 

impedance mismatch with respect to water/tissue and it introduces unwanted reflections and 

artifacts. Regarding the material chose for our experiments, TPX was used due to its transparency 

and acoustic impedance match with the ultrasound transducer and water; however, any thin 

material that highly absorbs light at the excitation wavelength can be used.   
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Moreover, in PAM, when avoiding photothermal damage or imaging weak absorber, a common 

technique to get reliable images is to average the laser pulses at one specific location. 

Unfortunately, this introduces a data speed acquisition limitation proportional to the number of 

points acquired per image. In PASM, a single scan is enough to get high quality metrics. Thus, it 

is an ideal candidate for high-speed photoacoustic microscopic imaging. 

Furthermore, PASM could also be used for low-cost PAI systems. Typically, nanosecond pulsed 

lasers are used to generate high enough signals to output an image. Continuous wave lasers with 

frequency modulation is a cheaper alternative that suffers from low SNR [17]. PASM could 

compensate for that loss with the use of an optical absorber. PASM might also eliminate the need 

to use contrast agents in certain tissue imaging experiments. Typically, weakly absorbers are 

loaded with exogeneous contrast agents such as gold nanoparticles to highly increase the SNR 

[18], [19]. 

In conclusion, PASM is a novel technique that provides unprecedented sensitivity in imaging 

biological samples compared to similar techniques. By using a highly optical absorber close to the 

tissue, an integrated ultrasound signal is obtained at the transducer. The signal is inverted with 

respect to conventional PAM: a high absorber will be shown as a lower signal in the final image 

since less laser fluence hits the optical absorbing layer at such position. 
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Chapter 3 All-optical photoacoustic imaging 

 

While the last chapter focused on photoacoustic shadow-casting microscopy, a technique that can 

change the system’s sensitivity without changing the sensor there is still a highly need to change 

the architecture of photoacoustic imaging systems for several reasons. For instance, many 

applications such as brain or intravascular imaging require sensor miniaturization which is 

nontrivial when using conventional piezoelectric ultrasound transducers due to the active 

element’s sensitivity being proportional to its area, bulky casing, isolation material, and 

preamplifiers [20]. This is where the idea of using optical sensors to have miniaturized and more 

sensitive photoacoustic imaging systems comes from. Hence the name ‘all-optical photoacoustic 

imaging’ [21], ultrasound transducers are the non-optical element in a conventional PAI setup.  In 

all-optical PAI, we will use optical excitation, ultrasound emission, and optical detection with 

interferometric resonance detectors. The fundamental basis of optical resonating photoacoustic 

sensors is that we can create a resonance using multiple optical cavity architectures such as 

whispering galleries modes [22], [23] or Fabry-Perot etalons [24] and later detect a shift in the 

resonant frequency when an ultrasound waves interacts with the sensor. In this chapter, I will 

explain the fundamentals of such sensors and explain the fabrication process of a Fabry-Perot 

sensor for photoacoustic imaging. 

3.1 Fabry-Perot ultrasound sensors 

Fabry-Perot architecture is one of the simplest forms of resonant cavities.  Figure 11 shows an 

schematic Fabry Perot ultrasound sensor in an all-optical photoacoustic imaging setup. In a 

nutshell, a spacing layer is sandwiched between two mirrors, the interrogation laser reflects from 

both mirrors creating interference and a resonance. An ultrasound wave from tissue produced by 
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the laser excitation’s wavelength travels to the Fabry-Perot sensor through an impedance matching 

layer (water), passes through the first mirror of the cavity, and reaches the spacer. The spacer 

should be fabricated from a material that has relatively Young’s modulus such that changes its 

length when being pushed by the ultrasound wave so that it modifies the resonant cavity properties. 

The sensor’s sensitivity is given by [25]: 

𝑆 =
𝑑𝑃
𝑑𝑝 = 𝐼 𝐴  (10) 

 

Equation 10 shows that the sensitivity depends on 𝑃 ,  the optical power modulation’s rate of 

change with respect to the change in pressure 𝑝 due to thermoelastic expansion explained in 

Chapter 1. Then, the overall sensitivity is a combination of optical and acoustic sensitivity:  𝐼  and 

𝐴 , respectively. Let me address each one separately in the following subsections. 

 

 

Figure 11: All-optical PAI with Fabry-Perot ultrasound sensor 

3.1.1 Optical sensitivity 

Equation 11 shows the optical phase after light wave has completed one roundtrip starting from 

first mirror, spacer, second mirror, spacer, and back to the first mirror. 



 22 

휙 =
4𝜋𝑛𝑙
𝜆  (11) 

 

It can be inferred from Equation 11 that if the cavity parameters are fixed and there is no incident 

ultrasound wave, the only parameter that will affect resonance is wavelength. Figure 12 shows the 

interferometric transfer function (ITF) simulation of the Fabry-Perot sensor, which shows how the 

cavity behaves then scanning different wavelengths [24]: 

 

Figure 12: Interferometric transfer function of Fabry-Perot ultrasound sensor 

 

From this graph we can extract that if we have a tunable laser source and we set the frequency to 

the highest slope of 𝑑𝑅/𝑑𝜆, a small change in the incident pressure could potentially cause a 

change in the reflectivity. Two main parameters can be inferred from the interferometric transfer 

function (ITF): free spectral range (FSR) and FWHM. The former indicates what is the frequency 

range between two resonant peaks while the latter showcases how strong and sensitive is each 

resonant peak.  
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For photoacoustic sensing purposes we need to make sure that the FSR is wide enough so that 

there is only one peak within the measuring range, otherwise we would have undetermined 

dynamic range scale. Secondly, the FWHM should be small enough that we can sense 

photoacoustic waves but big enough so that the Fabry-Perot does not saturate, that means 

transitioning from resonant to non-resonant state with a minimal amount of pressure. This 

ultimately depends on the reflectivity of the mirrors in the cavity [26]. 

3.1.2 Acoustic sensitivity 

Acoustic sensitivity can be described as how much does the phase delayed with upcoming pressure 

changes [27], [28]. This is shown in Equation 12 : 

A =
dϕ
dp (12) 

 

which can be expanded as: 

A =
dϕ
dp =

4πnl
λ

1
E 1 +

n pσ
2 |P (k)| (13) 

 

where 𝑛 is the refractive index, 𝑙 is the Fabry-Perot spacer thickness, 𝐸 is the spacer Young’s 

modulus, 𝑝 is the photoelastic constant, σ is the Poisson ratio, and |𝑃 (𝑘)| is an acoustic frequency 

dependent term that is inversely proportional to the acoustic’s frequency. Thus, as we set a 

thickness value or the cavity, there is a trade-off between acoustic sensitivity and sensor’s 

bandwidth. 
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3.1.3 Fabry-Perot sensor configuration 

The sensor’s configuration is as follows: the first mirror is made of a dielectric thin film stack of 

alternating layers of relative low and high refractive index materials to transmit the excitation 

wavelength and reflect the interrogation wavelength. Since the mirror is not 100% reflective, some 

light will couple into the cavity, made of Parylene C and reflect back from second mirror, which 

is made of the same material as the first. Let me first introduce the idea behind the thin film stack 

mirror for Fabry-Perot ultrasound resonating sensors [29] , shown in Figure 13: 

 

Figure 13: Bragg mirror concept 

Light traveling from air encounters a higher refractive index material. The refracted wave 

experiences a 180° phase shift and travels through the material until it encounters another lower 

refractive index material. When light is traveling from high to low index there is no phase shift. 

Furthermore, part of this wave will be reflected and will interact with the reflected wave from the 

first air-high index refractive material creating constructive or destructive interference. The 

condition to create destructive interference is: 

2𝑡 =
𝑚𝜆
2𝑛  (14) 
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where 𝑡 is the material thickness, 𝑚 is the order, 𝜆 is the wavelength of light, and 𝑛 is the refractive 

index. In such case, there will be no reflected wave and full transmission. Interference is the basis 

behind such high reflectance mirrors. We will create a stack of double layers of high and low 

refractive index materials with  quarter wavelength thickness. The choice of the materials is such 

that reflects ~770 nm, which is within interrogation laser tunable wavelength range and the 

bandwidth is proportional to the difference between refractive indices. The number of double 

layers is eight due to the required reflectivity >97% to produce an strong resonance in the cavity. 

Unless otherwise noted, incident light is always normal to the surface of the Fabry Perot sensor. 

The sensor is designed for two different wavelengths: excitation and interrogation. While the 

excitation wavelength is targeted to generate efficient photoacoustic waves at the tissue’s peak 

absorption, interrogation is to probe the sensor. In this particular application, we choose to target 

hemoglobin imaging so the excitation wavelength is 532nm.  

 

Figure 14: Bragg mirror reflectance spectrum 
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Figure 14 shows the mirror’s reflectance spectrum. As it can be seen, it is designed to have its peak 

wavelength and 770nm and transmit 532nm. It is made of double layers of silicon nitride (n = 

2.04), as the high refractive index material and silicon dioxide (n = 1.45) as the low. Each layer 

𝑡 =  is 93nm and 130nm thick, respectively, and the total mirror thickness is 1.7μm. 

Furthermore, the selected thickness of the Parylene C is 20μm to strike a balance between acoustic 

sensitivity and desired bandwidth (20MHz). After the second mirror is built, we will also add a 

thin layer of Parylene C to protect the sensor from the water coupling media. The overall sensor 

design is shown in Figure 15. 

Lastly, the selected substrate is polymethylmethacrylate (PMMA). Its function is the same as a 

backing stub material in conventional ultrasound transducers: avoid reflections and attenuate the 

signal. This means that there must be an acoustic impedance match between Parylene C and the 

substrate since the mirror is not considered due to the thickness size compared to the acoustic 

frequency and the substrate must attenuate the ultrasound signal to avoid further reflection. Thus, 

the substrate thickness is 1cm.  

 

Figure 15: Fabry Perot sensor configuration 
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3.1.4 Fabry-Perot sensor fabrication 

The entire fabrication process must be done at relatively low temperature since the melting point 

of the PMMA substrate is 160°C . Hence, material deposition is performed through plasma-

enhanced chemical vapor deposition (PECVD) [30]. Conventional chemical vapor deposition 

techniques use high temperature to provide enough energy for the deposition reaction. In a PECVD 

setup, show in Figure 16, plasma provides the energy and the substrate is placed on a platen. At 

the top of the chamber there is a gas inlet and a high voltage radiofrequency (RF) source which 

provides sufficient energy to produce plasma. Once RF source activates the plasma, the gases 

inside the chamber become chemically reactive and a thin film is created at the sample. The gas 

selection will depend on the desired deposited material.  

 

Figure 16: Plasma-Enhanced Chemical Vapor Deposition process 

I empirically calculated the deposition rate by placing a test target and depositing silicon nitride 

and silicon dioxide for thirty minutes. Then, the thickness is calculated according to its reflection 

spectrum. After the first mirror is fabricated, the sensor is translated to a Parylene C coater machine 

[31]. Such coating process has three main steps: sublimation, pyrolysis, and polymerization. In 
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sublimation, the Parylene C dimer is placed in a boat-like structure and partial vacuum. 

Temperature is risen to 150°C and the dimer is converted to gas. Then, the gas dimer is further 

heated to 690°C until its molecular shape and the dimer is split into monomers. Finally, the sensor 

is placed at the polymerization chamber at room temperature where monomers form chain like 

structures and are deposited on the sensor. Figure 17 illustrates this process. Lastly, after Parylene 

C is coated, the sample is brought back to the PECVD machine where I deposited the second 

mirror.  

 

Figure 17: Parylene C deposition process 

3.1.5 Fabry-Perot sensor test 

The Fabry-Perot sensor is tested according to Figure 11. A tunable laser source (TLB-6712 

Velocity, New Focus) is used to interrogate the laser from 760nm to 780nm and create a strong 

resonant dip. Once we have a map of the spectral response of the sensor, we can set the sensing 

wavelength at the maximum slope of the interferometric transfer function (ITF). That is the most 

sensitive point where incident pressure will cause a change in the system’s reflectivity. The 

experimental ITF is shown in Figure 18 and the selected resonant wavelength is 775.23nm. 

Furthermore, on the other part of the sensor, water is used as a coupling media and electrical tape 

is used as an optical absorber to produce high SNR PA signals.  
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Figure 18: Experimental Interferometric Transfer Function 

As it can be seen in Figure 19, the Fabry-Perot sensor is able to sense photoacoustic signals, the 

arrow indicates the characteristic bipolar ultrasound signals. The frequency response (20MHz) is 

calculated by calculating the Fourier transform of such pulse. 

 

Figure 19: Fabry-Perot sensor PA signals as a proof of concept 
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3.1.6 Conclusions and future work 

The main advantage of all-optical photoacoustic systems with respect to conventional ultrasound 

transducers is that it enables many different applications due to its scalable miniaturization and 

high sensitivity. For future work, we will work on intravascular of atherosclerotic plaques and 

functional brain imaging.  On the one hand, due to vulnerable atherosclerotic plaque rupture there 

are many cardiac deaths and strokes. In 2015, the World Health Organization estimated that out of 

the nearly 20 million cardiovascular deaths worldwide, 6 where due to coronary heart attack and 

7 due to stroke [32]. Atherosclerotic plaque vulnerability is related to its chemical composition, 

stress distribution, and inflammation. The key of intravascular imaging is miniaturization and the 

Fabry-Perot sensor can potentially provide that. Currently, the gold standard technique to image 

atherosclerosis is intravascular ultrasound (IVUS) [33]. However, IVUS can only provide around 

100 μm resolution at 40MHz and only structural information so it is hard to distinguish soft tissue 

and fat. Moreover, IVUS cannot be introduced in smaller vessels and capillaries since reducing 

the transducer’s size also reduces its active sensing element producing a sensitivity loss. To enable 

both structural and molecular imaging we will build a multimodal technique using optical 

coherence tomography (OCT) and PAI [34] for atherosclerotic plaque intravascular imaging. This 

is shown in Figure 20.  
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Figure 20: Multimodal OCT and PACT probe for intravascular imaging 

Figure 20a shows the OCT subsystem. A super luminescent diode (SLD) centered at 1325nm 

maximizes tissue penetration and the 1210nm laser is used for photoacoustic excitation. The OCT 

light source is then coupled into a single-mode fiber and focused onto tissue using a gradient 

refractive index (GRIN) lens. Then, OCT signals from tissue interfere with the fixed reference 

mirror and a spectral interferogram is analyzed after passing through the spectrometer. Moreover, 

PA waves are detected by the Fabry-Perot sensor and sent to the detector. Since this configuration 

only provides one pixel at a time we can use a motor to rotate the catheter probe and image both 

the structure and composition (Figure 20b). 

Moreover, our Fabry Perot could be potentially used for freely behaving mouse brain imaging 

[35], [36]. It has already been demonstrated PAI’s feasibility to do functional deep brain imaging 

compared to conventional optical techniques[37]. Figure 21 shows our proposed application: 
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Figure 21: PACT probe for brain imaging in freely behaving animals 

Figure 21a shows excitation and probe (interrogation) lasers as previously explained in Figure 20. 

A fiber bundle, shown in Figure 21b maps the 2D input from each spatial position from the Fabry-

Perot sensor into a one-dimensional streak camera which would enable high speed imaging. The 

use of a fiber bundle and the miniaturized optical sensors enables freely moving since the probe 

can be attached to head with low impact unlike conventional ultrasound transducer arrays. 

In conclusion, all-optical photoacoustic imaging enables many applications compared to 

conventional ultrasound transducers due to its size independence. A miniaturized sensor can be 

used for intravascular and brain imaging applications. There are different optical resonant 

architectures that can be used as ultrasounds sensors. The selection of the Fabry-Perot sensor is 

simple but powerful: it does not involve complicated fabrication process, and it is easily repeatable 

so that it could be translated to clinical scenarios as opposed to whispering gallery mode resonators, 

which are also commonly used in research. My main goal with this research project was the proof 

of concept so that it can be later used for aforementioned applications in our laboratory. 

 



 33 

Chapter 4 Generalized Spatial Coherence for Photoacoustic Tomography 

In this chapter, I will present a novel algorithm to reconstruct photoacoustic signals using 

conventional ultrasound transducers and optical resonators for ultrasound sensing (Chapter 3). 

There already exist many beamforming ultrasound reconstruction algorithms with multiple sensor 

geometries such as spherical, circular, and linear [38], [39]; from simple backprojection (delay and 

sum) [40]  to time-reversal approaches [41], f-k migration [42], [43], adaptive minimum variance 

[44], [45], to even deep learning-based algorithms [46].  However these methods still do not show 

an optimal noise robustness and photoacoustic signals that are generated at deeper regions in tissue 

cannot be imaged due to low light fluence and weakly absorbers are buried in noise. To overcome 

such limitations, spatial coherence beamforming techniques, which take advantage of correlation 

calculation between transducer elements, were studied. In this chapter, I will first present the 

standard reconstruction algorithm, delay-and-sum. Then, I will deepen into spatial coherence 

algorithms that enhance imaging quality metrics, mainly resolution and contrast. Lastly, I will 

explain my algorithm, generalized spatial coherence, and demonstrate how it performs compared 

to delay-and-sum and similar spatial coherence reconstruction techniques. 

4.1 Delay-and-sum reconstruction. 

Delay-and-sum is the most basic and common reconstruction algorithm in ultrasound imaging. 

Since in PACT we reconstruct the signal using multiple transducers, same principles apply. Figure 

22 shows an absorber emitting a photoacoustic wave which is detected by an array of ultrasound 

transducers. Delay-and-sum (DAS) reconstruction algorithm exploits the fact that the signals will 

arrive at different transducers at different times. Then, since the speed of sound and the spatial 

location of each transducer are known, the signal is time delayed for each transducer and summed. 

This is shown in Equation 14, the DAS beamforming equation: 
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𝑦 (𝑛) = 𝑠 (𝑛) (14) 

where 𝑠 (𝑛) is the delayed PA signal from the 𝑖 − 𝑡ℎ transducer element at the 𝑛 − 𝑡ℎ sample. 

Although DAS is a gold-standard algorithm, its signal-to-noise ratio and imaging quality is known 

to be fairly low due to its simplified modeling of ultrasound propagation in tissue and its lateral 

resolution is limited by the ratio of the main to the side lobe levels.  

 

Figure 22: Delay-and-sum beamforming algorithm 

4.2 Algorithms employing spatial coherence 

In order to improve imaging quality, some algorithms have previously employed spatial coherence, 

a fundamental property of waves, to abate noises exploiting the fact that noise and side lobes do 

not interfere coherently [47]. For instance, [48] used a phase and sign coherence to weight the 

DAS’ output for ultrasound imaging. Currently, there are two main algorithms that use spatial 

coherence of ultrasound waves as a contrast source: filtered delay-multiply-and-sum (FDMAS) 

[49], [50] and short lag spatial coherence (SLSC) [51]. Both algorithms have been used separately 

for PACT and combined with each other [52]–[62]. In this section we will visit these algorithms 
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in depth and identify their major advantages and disadvantages that will then lead to my algorithm: 

generalized spatial coherence (GSC). 

FDMAS is a modified version of DAS that adds a multiplication step between the delayed signals 

and posterior filtering. Multiplying signals from different transducers is essentially computing a 

spatial correlation operation that implicitly incorporates information about the spatial coherence 

between signals. DMAS’ equation is shown below: 

𝑦 (𝑛) =  𝑠𝑖𝑔𝑛 𝑠 (𝑛)𝑠 (𝑛)  𝑠 (𝑛)𝑠 (𝑛)
  

 (15) 

where 𝑠𝑖𝑔𝑛() is the signum function and 𝑁 is the number of transducers in the array.  In this way, 

the ultrasound signals can maintain its sign and be correctly scaled to the same dimensionality. 

Furthermore, while DAS outputs a zero-mean signal similar to the original signal amplitude 

spectrum, DMAS multiplies signals with the same frequency content generating two output 

signals, one being the same as with DAS, centered at 𝑓 − 𝑓 = 0 and a second harmonic 

component centered at 𝑓 + 𝑓 = 2𝑓 . Thus, an bandpass filtering step can be added to maintain 

the higher frequencies and attenuate the lower ones. 

Compared to DAS, FDMAS provides better resolution due to the wavelength decrease as a 

consequence of the multiplication step and the second harmonic frequencies. Also, it has more 

noise robustness due to the use of the correlation operation that effectively increases the synthetic 

aperture. To put this in mathematical terms we can first rearrange terms in Equation 15 in Equation 

16,  where the absolute value operator will be shown implicitly and aforementioned filter will be 

added: 

𝑦 (𝑛) = ℎ (𝑛) ∗ 
𝑠 (𝑛)𝑠 (𝑛)

𝑠 (𝑛)𝑠 (𝑛)  

 (16) 
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where ℎ (𝑛) is the bandpass filter, and ∗ denotes the convolution operation defined as: 

[𝑓 ∗ ℎ](𝑛) =  𝑓(𝜏)ℎ(𝜏 − 𝑛)
 

 (17) 

On the other hand, SLSC is an algorithm based on the same principle, taking advantage of the 

spatial coherence between multiple signals but with a different route taken. This algorithm was 

presented to compete with DAS. SLSC’s beamforming equation uses normalized spatial coherence 

directly as the imaging contrast. The normalized spatial coherence at an arbitrary lag 𝑚, number 

of separation elements between transducers, is given by Equation 18: 

𝑅(𝑚) =
1

𝑁 −𝑚
∑ 𝑠 (𝑛)𝑠 (𝑛)

∑ 𝑠 (𝑛)∑ 𝑠 (𝑛)
 (18) 

The kernel size 𝐾 = 𝑛 − 𝑛  is selected to strike a balance between correlation calculation and 

axial resolution. The first 𝑀 lags are summed while reaching a balance between lateral resolution 

and signal-to-noise ratio (Equation 19) [63]. As expected, SLSC has lower point resolution than 

FDMAS but its spatial covariance calculations makes it have higher noise robustness. 

𝑅𝐼 =  𝑅(𝑚) (19) 

Generally, both FDMAS and SLSC have advantages with respect to DAS but still have drawbacks 

that limit their applicability. On the one hand, SLSC discards signal magnitude evidence by 

normalizing the coherence values between multiple transducers. For instance, quantitative 

information might be useful for one of PACT’s main applications: blood oxygenation 

measurements. On the other hand, FDMAS increases imaging contrast compared to DAS without 

losing signal magnitude relative strength but has lower contrast-to-noise ratio for reasons that are 

still not fully understood [64] and will be explained later. 
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For such reasons, I present Generalized Spatial Coherence (GSC) beamformer [65], a novel 

reconstruction algorithm that combines the strength from previous spatial coherence beamforming 

techniques and generalizes them into a single equation. Compared to DAS, FDMAS, and SLSC, 

GSC provides superior imaging quality metrics. 

4.3 Generalized Spatial Coherence beamforming equation 

First, I will rewrite FDMAS’ beamforming Equation 16 to make it similar to SLSC’s equation and 

make the comparison between both algorithms obvious. 

𝑦 (𝑛) = ℎ (𝑛) ∗ [𝑠 (𝑛)𝑠 (𝑛)]  (20) 

where 𝑠 (𝑛) =  ( )

∑ ( )
 . In other words, FDMAS is a technique that adds all lags up to 𝑁 −

1. Similarly, we can rewrite Equation 20 as: 

𝑅𝐼 =  
1

𝑁 − 𝑚
∑ 𝑠 (𝑛)𝑠 (𝑛)

∑ 𝑠 (𝑛)∑ 𝑠 (𝑛)

=  
1

𝑁 −𝑚

𝑠 (𝑛)

∑ 𝑠 (𝑛)

𝑠 (𝑛)

∑ 𝑠 (𝑛)
 

 

=  
1

𝑁 −𝑚 ℎ (𝑛) ∗ [𝑠 (𝑛)𝑠 (𝑛)]   

(21) 

where 𝑠 (𝑛) =  ( )

∑ ( )
 and ℎ (𝑛) = [1, 1,… ,1], a low-pass filter. Now the differences 

between FDMAS (Equation 20) and SLSC (Equation 21) are obvious and we can generalize both 

into a single equation: 
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𝑦(𝑛) =  𝑤(𝑚) ℎ(𝑛) ∗  {𝑔[𝑠 (𝑛)]𝑔[𝑠 (𝑛)]}  (22) 

where 𝑤(𝑚) represents a weight function, ℎ(𝑛) is a filter, and 𝑔[𝑠 (𝑛)] is given by: 

𝑔[𝑠 (𝑛)] =  

{
  
 

  
 

𝑠 (𝑛)

∑ 𝑠 (𝑛)
 , FDMAS

𝑠 (𝑛)

∑ 𝑠 (𝑛)
, SLSC

 

Let us take a closer look at function 𝑔[𝑠 (𝑛)] in Equation 22. It highlights the key differences 

between FDMAS and SLSC. In the upper function, FDMAS can preserve the signal magnitude 

due to the use of a weaker normalization factor compared to SLSC. We can name this quasi-

normalization through fourth root. On the other hand, SLSC uses a more aggressive normalization 

(square root) that loses amplitude signal information. Furthermore, SLSC has a stronger robustness 

to noise due to the use of a larger kernel, it takes more samples in the time domain to calculate 

correlation. This does not happen in FDMAS with a one kernel that introduces noise in the 

coherence calculation [66]. We can further prove this; let us consider a real photoacoustic signal 

s (𝑛) that arrives at a transducer element as a sum of the original signal  f (𝑛) and uncorrelated 

noise Φ (𝑛) [67]: 

 s (𝑛) =  f (𝑛) + Φ (𝑛) (23) 

Then, 

𝑠 (𝑛) 𝑠 (𝑛)  ≅  𝑓 (𝑛) + 𝜎 (𝑛)  ∙ (24) 
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𝑓 (𝑛) + 𝜎 (𝑛)  

≅  [𝑓 (𝑛) +  𝜎 ] +  𝜑 (𝑛)  

∙  [𝑓 (𝑛) + 𝜎 ] + 𝜑 (𝑛)  

 

where ∑ [𝑓 (𝑛)𝜎 (𝑛)]  ≅ 0 determines the uncorrelation between the signal and the noise. 

휙 (𝑛) can be decomposed into its zero-mean component 𝜑 (𝑛) and variance 𝜎  . A larger kernel 

𝐾 effectively reduces the effect of noise 𝜑 (𝑛) relative to [𝑓 (𝑛) + 𝜎 ] by a factor of √𝐾, 

leading to a statistically more robust evaluation of spatial coherence in SLSC [68]. 

Furthermore, FDMAS and SLSC make use of filtering differently, according to Equation 22. As 

previously mentioned, FDMAS attenuates the zero-mean frequencies and passes the second 

harmonic component in contrast to SLSC algorithm, which implements a low-pass filter. In theory, 

both filters should yield the same spatial coherence calculation if the kernel is large enough. 

Otherwise, second harmonic filter might miss the development of higher frequencies components. 

The kernel should be at least one period of the transducer’s center frequency. Nevertheless, using 

the second harmonic filter can be beneficial in certain applications such as Doppler ultrasound, 

where the use of a higher frequency is desired [69].  

Lastly, the weight function 𝑤(𝑚) attributes a score to each correlation calculation. FDMAS 

assigns a coherence weight of 𝑁 −𝑚 by summing the 𝑁 −𝑚  quasi-normalized signal pairs at lag 

𝑚 without dividing by 𝑁 −𝑚. In contrast, SLSC uniformly assigns the 𝑁 −𝑚 signal coherence 

at lag 𝑚 and divide it by 𝑁 −𝑚. Since coherence is greater at smaller lags, short-lag coherence 
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contributes more than larger lags. Thus, to overcome previous limitations with FDMAS and SLC, 

I present the GSC equation: 

𝑦 (𝑛) =  𝑤(𝑛) ℎ(𝑛) ∗

[
 
 
 𝑠 (𝑛)

∑ 𝑠 (𝑛)
 

𝑠 (𝑛)

∑ 𝑠 (𝑛)]
 
 
 

 

 (25) 

where g(n) =  ( )

∑ ( )
 preserves signal magnitude and ℎ(𝑛) is a low-pass filter that extracts 

DC components. w(n) = 1 for m<M and 0 to give preference to contributions from small lags. 

The quasi-normalization and non-uniform weight function 𝑤(𝑚) from FDMAS and a larger kernel 

from SLSC gives GSC not only a generalized beamformer equation but it combines the strengths 

from multiple algorithms providing higher contrast and noise robustness compared to previous 

techniques.  

4.4 Imaging metrics  

In this section, I will define the imaging metrics used to compared DAS, FDMAS, SLSC, and GSC 

algorithms: contrast, signal-to-noise ratio, and generalized contrast-to-noise ratio. Equations 26, 

27, and 28 define these metrics, respectively: 

C = 20 log
S
S  (26) 

SNR = 20 log
|S |

 σ
   (27) 

gCNR = 1 − min{h (x ), h (x )} (28) 

  



 41 

where 𝑆  and  𝑆  are the mean brightness values inside and outside the imaging target, respectively. 

h (x ) and h (x ) are the histograms inside and outside the imaging target and x  is the bin index, 

and  σ  is the variance outside the target. It is worth noting that although contrast and SNR are 

standardized imaging metrics, generalized CNR is a relatively new metric that measures target 

detectability score from 0 to 1, with 1 being maximum detectability. Compared to traditional CNR, 

gCNR provides an improved linear relationship [70], [71]. 

4.5 Reconstruction simulation 

To confirm GSC’s feasibility to improve contrast, SNR, and gCNR with respect to DAS, FDMAS, 

and SLSC I first run simulations using K-wave MATLAB toolbox [72], a software designed to 

solve time-domain acoustic equations in complex media such as tissue. In this case, I set a 2D grid 

with 512x512 points and a total grid size of 20x20mm. In FDTD, to maintain a balance between 

numerical model stability and computational speed, we use the Courant-Friedrichs-Lewy (CFL) 

parameter defined as: 

𝐶𝐹𝐿 =  
𝑐 Δ𝑡
Δ𝑥  (29) 

where 𝑐  is the speed of sound in tissue (~1500 𝑚/𝑠), 𝛥𝑡 is the time step, and 𝛥𝑥 is the grid step 

size. Furthermore, the ultrasound sensor parameters, shown in Table I,  are chosen so that there 

are similar to the one that we will use in experiments (Section 4.6). 

 

Table 1: Transducer parameters 

Parameters Value 

Number of elements 128 

Pitch 0.67 mm 
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Sampling frequency 14.925 MHz 

Center frequency 2.5 MHz 

Fractional bandwidth 80% 

 

I performed four different simulations. Firstly, to determine the ultimate resolution from each 

beamformer, I set a point source 10mm away from the detector and reconstructed it using DAS, 

FDMAS, SLSC, and GSC. Figure 23 represents the PSFs from such beamformers: 

 

Figure 23: Noise-free PSF reconstruction from a) DAS, b), SLSC, c) FDMAS, and d) GSC. Scale bar: 1mm 

 

Although DAS and FDMAS do not have configurable parameters, in SLSC and GSC we selected 

a 𝑀 lag of 0.7 to strike a balance between lateral resolution and other imaging metrics. Without 

noise, SLSC might yield unrealistic results due to the fact that uses spatial coherence as the 
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imaging contrast and the point source should not have any coherence difference between 

transducer elements. Moreover, the kernel size is set two one wavelength to balance correlation 

stability and axial resolution. Normalized lateral PSFs from Figure 23 are shown in Figure 24a 

representing the ideal system resolution with aforementioned transducer configuration and a -40dB 

noise amplitude. FDMAS has the lowest resolution with 152Pm. GSC has 158Pm, SLSC 181Pm, 

and DAS 193 Pm. These results are expected since FDMAS improves resolution by implementing 

a second harmonic filter to remove low frequencies and DAS does not take advantage of spatial 

coherence between elements. GSC shows the lowest side lobes.  

Moreover, Figure 24b shows the normalized axial profile from Figure 23. GSC outputs the highest 

contrast (difference in low-to-high points). Although GSC can be already compared to state-of-

the-art techniques in noise free environment, we will now see realistic results with added noise. 

 

Figure 24: a) Lateral PSF b) Axial PSF 

Figure 25 represents reconstructed PSF with -12 dB noise added to the sensor data. From a 

qualitative perspective, we can see that our algorithm, GSC is more robust to noise compared to 

other techniques. As expected, DAS has a low noise tolerance and the image is already corrupted. 

FDMAS has higher tolerance than DAS but uses a one point kernel and that makes correlation 

calculations unstable. SLSC and GSC have similar noise robustness. Quantitatively, I calculated 
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the image contrast and SNR based on Equations 26, 27, and 28 and the outlined regions in Figure 

25. Results are outlined in Table 2: 

Table 2: Contrast and SNR comparison for -12dB noise PSF reconstruction 

Algorithm Contrast (dB) SNR (dB) 

DAS 14.8 21.1 

FDMAS 24.8 24.8 

SLSC 40.6 40.6 

GSC 41.2 41.8 

 

 

Figure 25: -12dB noise PSF reconstruction using a) DAS, b) SLSC, c) FDMAS, and d) GSC. Scale bar: 1mm 
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Although GSC and SLSC have similar quantitative imaging metrics, we need to recall one of 

SLSC’s main flaws: loss of quantitative information due to its aggressive normalization. To 

highlight this property, I reconstructed three point sources located at different spatial locations 

with normalized absorption coefficients of 0.4, 0.8, and 1, this is shown in Figure 26. The lateral 

line profile from each reconstructed image is shown in Figure 27 compared against its ground 

truth. The difference between SLSC and the rest of beamformers is notable: SLSC cannot preserve 

relative signal magnitude. This makes now clear that although SLSC can have similar noise 

robustness as GSC it cannot be applied to quantitative imaging techniques. 

 

Figure 26: Three-point reconstruction for signal magnitude preservation experiment using a) DAS, b) SLSC, c) 
FDMAS, and d) GSC. Scale bar: 1mm 
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Figure 27: Lateral weight profile of reconstructed points in Fig.26 

Moreover, one the main doubts when reconstructing images is how to adjust the M lag parameter 

in GSC. In Figure 28, we performed a study where we reconstruct the same point source from the 

simulation in Figure 25 using different lags. The qualitative results are as expected: using a small 

aperture (10-30%) yield results with low resolution since the difference with spatial coherence is 

relatively large. However, as we increase the synthetic aperture (50-90%) we obtain better 

resolution. In a low noise level scenario, larger lags will yield better imaging quality metrics until 

the SNR starts decreasing. This is quantitatively determined in Table 3. Imaging quality metrics 

reach a peak at 60% aperture and start lowering down due to trade-off between resolution and 

SNR. 
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Figure 28: GSC's point source reconstruction with different lags (10-90%). Scale bar: 1mm 

 

Table 3: GSC's imaging metrics at different lags 

Lag (%) C (dB) SNR (dB) gCNR (dB) 

10 28.94 34.96 0.8 

20 30.06 35.02 0.8 

30 32.76 38.79 0.9 

40 33.44 39.46 0.9 

50 40.1 40.1 0.9 

60 40.74 40.74 0.9 

70 40.66 40.66 0.9 

80 40.50 40.48 0.9 

90 37.08 39.47 0.9 
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Now that we have a general idea of how GSC outperforms DAS, FDMAS, and SLSC when 

reconstructing a point object, let us see a more realistic object. Since one of the main applications 

of PACT is cardiovascular imaging we will simulate a vessel-like phantom, shown in Figure 29: 

 

Figure 29: Ground truth vessel-like phantom. Scale bar: 1mm 

 

Figure 30 shows the reconstruction results from vessel-like phantom from DAS, SLSC, FDMAS 

and GSC at different noise levels determined by V, the noise standard deviation. Noise levels from 

a) to e) are -20dB, -12dB, -10dB, -5dB, and -1dB, respectively. In general, we can see that the 

phantom cannot be well reconstructed, this is due to the well-known limited view problem: since 

the transducer’s geometry is linear, structures that are oriented orthogonal with respect to the 

transducer will not be well reconstructed. We would need to change the transducer orientation to 

see them. Nevertheless, we can see that the last column (GSC) gives overall better result in 

qualitative terms at all noise levels. Starting at -20dB noise level, all techniques can yield an 

accurate reconstruction. All techniques behave similarly in terms of imaging metrics as with PSF 

reconstruction in Figure 25 due to noise robustness and filtering steps. 
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Figure 30: Vessel-like phantom reconstruction at five different noise levels (dB): a) -20; b) -12; c) -10; d) -5; e) -2. V 
indicates noise standard deviation for each reconstruction. Scale bar: 1mm 
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As noise increases in rows B and C from Figure 30, we can see that DAS quickly starts to lose its 

imaging quality and the vessel is surrounded by noise. Moreover, due to FDMAS’ use of only one 

point kernel, we can see it is not able to handle -10dB noise level and noise slowly starts to 

dominate the image. In row D, which corresponds to -5dB noise level, DAS and FDMAS can 

barely reconstruct the vessel. Lastly, at row E, with -2dB noise level, DAS and FDMAS cannot 

reconstruct the vessel with fidelity while SLSC and GSC can still differentiate between its features 

and noise. It is worth noting that in SLSC, vessel might be brighter than GSC in some regions due 

to signal magnitude loss which was previously demonstrated in Figure 27. Overall, we can see that 

GSC outperforms qualitatively all other techniques in PACT and ultrasound realistic scenarios, 

meaning, with a medium to high level of noise. 

On the other hand, Figure 31 shows quantitative results from Figure 30. We extracted information 

from inside and outside the target shown in the highlighted area for every beamformer at every 

noise level. In terms of contrast (Figure 31a), it is clear that DAS and FDMAS exhibit a higher 

negative gradient as noise level (dB) increases due to poor noise robustness, this is also applicable 

to other metrics such as SNR (Figure 31b) and gCNR (Figure 31c). 

At -10dB, GSC differs 4dB, 14dB, and 26dB from SLSC, FDMAS, and DAS, respectively, and 

consistently achieves a better contrast. Note that FDMAS starts obtaining better imaging metrics 

than SLSC but poorly handles higher noise levels. In addition, in SNR terms, GSC also shows the 

highest values consistently while FDMAS and DAS still show less noise robustness. 
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Figure 31: Imaging metrics a) Contrast; b) SNR; c) CNR for different noise levels in Fig. 30 

At -20dB and -15dB, GSC outperforms SLSC, FDMAS, and DAS by 9dB, 3dB, and 17dB, 

respectively. At the highest noise level (-2dB), the difference become 5dB, 22dB, and 15dB, 

respectively. Lastly,  in Figure 31c we can see that all beamformers output between 0.8 and 0.8 

gCNR (feature detectability) with the lowest noise level. As noise increases, two groups can be 

clearly differentiated, the short-lag techniques, with a selected lag of 30% to balance resolution 

and noise robustness, and DAS and FDMAS.  The gCNR shows a similar dependence on noise as 

with contrast and SNR. All beamforming techniques show between 0.8 and 0.9 detectability with 

a -20 dB noise level. At the second noise. At -5 dB and -2 dB, GSC outperformes others with 

highest lesion detectability values, 0.6 and 0.55, respectively, followed by SLSC with 0.2 

difference. At the highest noise level, DAS and FDMAS cannot reconstruct the vessel with high 

fidelity, and their gCNR are 0.27 and 0.32, respectively. It is also worth adding that GSC 

outperforms SLSC using the same lag. Figure 32 justifies why a 30% lag was selected for vessel 

phantom reconstruction and shows how GSC and SLSC compare. GSC improves SLSC 
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reconstruction in every metric at each noise level. In realistic simulations, the aperture needs to be 

reduced compared to the results with PSF with no noise added and PSF with various noise levels 

due to the sparsity of the object, which leads to a good reconstruction even when the noise level is 

high. In this case, the vessel has high frequency features which can be easily buried in noise so 

that is why a shorter lag provides better reconstruction results: 

 

 

 

 

 

 

 

 

 

 

Figure 32: Contrast and SNR in SLSC and GSC with different maximum lag selection in vessel phantom 

In conclusions, I performed four simulations that show that GSC outperforms four considered 

beamformers: classical DAS and spatial coherence algorithms FDMAS and SLSC. First, 

calculating the PSF in the absence of noise. Secondly, simulated noise effects. Third, evaluated 

beamformers in preserving signal magnitude and lastly, tested all beamformers with a realistic 

phantom at different noise levels. 
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4.6 Experimental setup 

In order to experimentally demonstrate GSC’s capabilities to produce state-of-the-art imaging 

quality reconstruction results, we built a PACT setup for hand palm imaging shown in Figure 33: 

 

 

Figure 33: schematic drawing of human palm PACT imaging setup 

Overall, the setup is a water tank with suitable acoustic coupling of ultrasound signals in an 

opening made of Fluorinated Ethylene Propylene (FEP) plastic film used as the imaging window. 

To ensure the correct functioning of the system, pulse-echo measurements were used before 

imaging to make sure there are no reflections or high attenuation through the FEP film (50Pm 

thick). The excitation light source is a nanosecond pulsed ND:YAG laser with 1064nm wavelength 

output and pulse repetition frequencies of 10Hz (Continuum, SL III). The light source is delivered 

to the sample through a fiber. A cold mirror reflects 90% of the light and a hot mirror transmits 

97% to the sample. It has also been tested that the light transmission trough the FEP film is 97%. 

The light delivery setup ensures maximum transmitted light at the sample plane. Furthermore, the 

cold mirror reflects incoming ultrasound waves to the transducer. In this way, we make sure that 

both light delivery and acoustic detection are coplanar. A 20 cm stroke translation stage 
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(McMASTER-Carr) mounted on an optical breadboard was used to ensure linear scanning. 

Moreover, the ultrasound transducer array (Imasonics, Inc) is custom-made with 128 linear units 

and curved features to achieve acoustic focusing without using an acoustic lens. Element pitch and 

central operating frequency are 0.67mm, and 2.25MHz, respectively.   

    All human procedures were performed in compliance with the University at Buffalo IRB 

protocol. All volunteers were enrolled after consent documents were signed. During imaging, the 

palm was placed on the plastic film (imaging window) with ultrasound gel as the coupling agent 

(Parker Laboratories, Inc.). The transducer-fiber bundle set (scan head) fixed in the 3D printed 

holder was immersed into the water tank. Energy irradiated on the palm was far below the ANSI 

safety limit of 100mJ/cm   for 1064 nm wavelength, measured as 21mJ/cm  [73]. For imaging, 

the palm was scanned linearly with a step size of 0.1mm per laser pulse. The total imaging window 

size was 20cm × 10cm [74]–[76].  

Figure 34 shows reconstruction results from palm imaging. We reconstructed each slice separately 

using the same four beamforming algorithms discussed in the simulation section: DAS, FDMAS, 

SLSC, and GSC. Then, we took a maximum amplitude projection (MAP) along the depth direction 

to show a final 2D image. In Figure 34a, we can see DAS reconstruction, the main structures of 

the hand vessels can be seen but they are surrounded by noise. Also, in the bottom right, we can 

see a feature showing relatively low contrast. In Figure 34b SLSC’s image reconstruction with a 

lag of 30% as with vessel phantom high level noise reconstruction is surprisingly poor and its 

artifacts may be due to the slicing process during acquisition.  
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Figure 34: Human palm PACT imaging reconstruction using a) DAS; b) SLSC; c) FDMAS; d) GSC. Scale bar: 2mm 

Furthermore, FDMAS shows the highest resolution, that was measure by taking a line profile of 

an arbitrary vessel (see outlined region in Figure 34a). FDMAS measured 1.7mm while others 

(DAS and GSC) showed 2.0mm. We did not measure resolution in SLSC due to slicing artifacts. 

However, FDMAS shows a poor contrast to noise ratio compared to GSC and many feature cannot 

be seen unless the signal is considerably higher compared to noise. 

Quantitative imaging metrics for reconstructed images from Figure 34 are shown in Table 4. GSC 

outperforms FDMAS, DAS, and SLSC by 8 dB, 10 dB, and 13 dB respectively. GSC also has the 

highest gCNR followed by FDMAS with 0.05 difference, DAS, and SLSC. SLSC’s SNR and 



 56 

gCNR is the lowest due to slicing artifacts. GSC ‘s SNR is more than 3 dB higher than all other 

beamformers. Overall, human hand palm imaging experimental results show that GSC 

outperforms DAS, FDMAS, and SLSC in all imaging metrics, as predicted by our previous 

simulations. 

Table 4: Imaging metrics from human palm PACT imaging 

 Contrast (dB) SNR (dB) gCNR 

DAS 8.94 25.2 0.73 

SLSC 6.67 17.3 0.54 

FDMAS 11.29 20.9 0.81 

GSC 19.63 28.0 0.86 

 
 

4. Discussion and conclusions 

 
First, it is worth noting that in GSC and similar to SLSC, choosing the lag is empirical since it is 

hard to calculate how it will exactly affect the lateral resolution and contrast. In objects surrounded 

by relatively low levels of noise, we can use a shorter lag to improve lateral resolution. However, 

in deeper tissue regions, where the laser fluence is low and thus there is a small photoacoustic 

signal amplitude, there is no reason for using short lag for two reasons: higher frequencies will be 

attenuated faster through tissue due to exponential relationship between absorption and frequency, 

and secondly because it will affect the reconstructed SNR. Thus, it is convenient to use a larger 

lag. In conclusion, using a larger 𝑀 lag will produce a better resolution since the effective aperture 

is increased while using relatively small lag values improves imaging contrast. Moreover, the 

second parameter to optimize is the kernel, the number of time points chosen for each correlation 

calculation. The rule of thumb is to select a value that balances axial resolution and correlation 
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stability; an acoustic wavelength is typically enough. Lastly, the filter in GSC beamforming 

equation should be selected depending on the application. For comparison, in FDMAS, the filter 

is used due to the doubled signal frequency produced by multiplying signals with similar content. 

Its goal is to attenuate lower frequencies and use half wavelength content which improves the 

resolution. In GSC, we can effectively achieve nearly the same resolution due to noise robustness. 

In addition, we could use a bandpass filter if we want to improve the resolution in critical 

applications. For instance, in elasticity imaging, the low-frequencies highly decrease lateral 

resolution. 

GSC is not only a combination and generalization formula for FDMAS and SLSC. It improves its 

strengths with no known weaknesses. As with FDMAS, GSC preserves relative signal magnitude. 

As with SLSC, it has larger noise robustness due to a larger kernel used to evaluate coherence 

calculations.  GSC further improves contrast, SNR, and gCNR with respect to classical and similar 

beamforming reconstruction techniques. GSC’s lateral resolution improvement depends on its 

parameters selection: filter, lag, and kernel. 

Although there are many other techniques that have modified and combined versions of FDMAS 

and SLSC, GSC takes the best from both technique into a single equation. SLSC has been 

previously modified with M-weighted and locally non-uniform weighted versions but still do not 

preserve relative signal magnitude for quantitative imaging applications [39], [55]. Similarly, there 

have also been improved versions of traditional FDMAS with a coherence factor that has enhanced 

resolution and SNR. However, CNR has still been a problem with a one point kernel when there 

is a relatively high noise level. In conclusion, GSC is a versatile and generalized spatial coherence 

algorithm that can span many more applications. 
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In terms computational cost terms, GSC has a similar cost compared to SLSC and FDMAS. DAS 

still remains more simple due to less calculations. Particularly, its cost compared to FDMAS and 

SLSC depends on the kernel selection. If we were to use kernel equal to one, it would be the same.     

In order to achieve real-time imaging in GSC, FDMAS, or SLSC, we can use parallel beamforming 

using a graphical processing unit (GPU) [77]. For a 512x512 reconstruction grid, our achieved 

frame rate was 10 Hz using Nvidia RTX2080Ti GPU. 

To conclude, we generalized FDMAS and SLSC beamformers into a single equation named 

generalized spatial coherence (GSC) which goes beyond combining the strengths from both 

beamformers: it has state-of-the-art noise robustness and preserves relative signal strength. 

4. Future work and applications 

We foresee that GSC will have many applications in biomedical imaging. This is because it is a 

general technique that could be implemented in any beamforming reconstruction setup. 

Particularly for PACT, GSC could be used in laparoscopic and hysterectomy procedures to 

visualize and differentiate ureter and uterine arteries avoiding injuries during surgical procedure 

[78]–[81]. Furthermore, PACT’s focus on cancer imaging applications has immensely grown in 

the past years [82]. GSC could potentially help locate tumors in deeper regions of any tissue where 

light delivery is non optimal and hence the absorber molecules are poor and surrounded by noise 

in the final image. In future work, we would like to test this technique in a more focused clinical 

application to help develop the next-generation photoacoustic imaging systems or in elastography 

for ultrasound imaging [83]. 
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Chapter 5 Light field tomographic microscopy 

In previous chapters, I have focused on the problem of imaging through deep tissue beyond the 

optical diffusion limit. Chapter 5 is different since it focuses on imaging tissue at high speeds. In 

many biological imaging problems as shown in Chapter 1, it is not only important to image at a 

required spatial resolution and contrast but also have enough temporal resolution. For instance, 

neuronal dynamics can occur at thousands of frames per second and if frame rate is not high 

enough, the scene will contain motion artifacts and blur. Common widefield microscopy can 

enhance its acquisition speed by either reducing the sensor’s dynamic range and  region of interest 

but still lack high field-of-view, three-dimensional fast imaging and the speed acquisition problem 

obviously relies on the sensor. 

In fluorescence tissue imaging, capturing images at thousands of frames per second has already 

been done [84]–[91]. However these techniques also lack full field of view and three-dimensional 

imaging. In this Chapter, I focus on imaging fast and three-dimensional dynamics. How can we 

get three-dimensional scenes at a desired frame rate? To solve this problem, we will first visit the 

plenoptic function. 

5.1 The plenoptic function 

In 1991, Adelson and Berger [4] revisited a concept first introduced by Gabriel Lippman in 1908 

that mathematically explains what our eyes capture and depict from our surroundings: the 

plenoptic function. Plenoptic, from Latin, plenus and optics, can be etymologically translated as 

‘complete’ ‘optic’. Such function contains all possible light fields parametrizations represented in 

Figure 35: 
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Figure 35: Representing the plenoptic function 

In theory, we can represent any scene, at any point, if we know where the ray of light is located in 

a three-dimensional space, that is : 𝑥, 𝑦, 𝑧, its angular direction 𝜃 and 휙, wavelength 𝜆 at time t. 

However, it is hopeless expecting to accurately determine even a small part of such function since 

in reality, we use two-dimensional charge-coupled devices (CCD) and complementary metal oxide 

cameras (CMOS), one-dimensional line scan detectors, and zero-dimensional single pixel sensors 

to capture the world. This means that if we wanted to capture the plenoptic function we would 

have to compress seven dimensions into a two-dimensional detector, at best. To do so, we cannot 

rely on classical Nyquist sampling theorem, which states that we need at least twice the sampling 

rate two accurately represent a scene; the data cube would be huge creating problems with data 

acquisition, processing, and rendering. A more efficient option is to make use of compressed 

sensing (CS), a technique that can recover high fidelity, high dimensional information, from a 

lower dimensional measurement. In mathematical terms, this means solving an undetermined 

linear system given that the signal is sparse and incoherent in some of the given dimensions.   
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5.2 Light field imaging 

Light field imaging can be considered as a re-interpretation of conventional two-dimensional 

photography. Let us first consider the light rays entering the aperture plane of a camera lens and 

the sensor plane shown in Figure 36. This is a two-dimensional representation of a light field. Each 

possible light ray shown has its corresponding location in 𝑥, 𝑢 coordinates where the former 

represents the spatial location of the image at the sensor plane and the later parametrizes the 

angular component of the rays at the camera [92]–[94].  

 

Figure 36: Light field parametrization 

 

Let us take a closer look at ray space diagram. The main reason why conventional photography 

cannot extract three-dimensional information is because all angular rays in 𝑢 are integrated for 

each spatial sensor position. Thus, if we want to capture light from different angular components 

and see through occlusions we need to preserve the 𝑢 component. Light field photography and 
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microscopy uses a microlens array at some plane to divide the aperture and image the same object 

from multiple perspectives with a single snapshot. In other words, the angular component 𝑢 is 

preserved for each sub aperture. Figure 37 shows how a representation of a light field image. 

In field imaging, the spatial resolution will be worse than classic photography due to the aperture 

division. However, we can computationally refocus the image and extend the camera’s depth of 

field since we capture the scenes from multiple angular perspectives. 

 

Figure 37: General representation of a light field raw image 

 

For biomedical applications, light field microscopy was first introduced to see through occlusions 

in semitransparent samples [95]. Its applicability has been hugely extended to brain imaging; since 

neurologists are interested in capturing neuronal activity in 3D [96]–[99]. However, one of the 

main drawbacks in conventional light field imaging is its frame rate, limited to a few hundred 

frames per second which is one order of magnitude less than what is required to capture neuronal 

action potentials. This is because to accurately reconstruct the scene from different perspectives, 

the back aperture of the objective lens must be relatively large and hence the CCD or CMOS sensor 

must be too. This can also be extrapolated from the raw light field image in Figure 37: there are 

only tiny differences with respect to each images that depend on the viewing position. Thus, light 
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field imaging through spherical micro lenses is a fairly inefficient technique. As the imaging speed 

bottleneck in light field imaging is the detector size, we can introduce the frame rate equation: 

𝐹𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒 =
1

𝐹𝑟𝑎𝑚𝑒 𝑎𝑐𝑞𝑢𝑖𝑠𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 + 𝐹𝑟𝑎𝑚𝑒 𝑟𝑒𝑎𝑑𝑜𝑢𝑡 𝑡𝑖𝑚𝑒 (30) 

 

Let us consider that the acquisition time is low in high-speed applications so that the only tunable 

parameter is the frame readout time, which changes with sensor technology. A typical CCD camera 

uses global shutter where all pixels are exposed at the same time. The advantage is that a single 

image is taken relatively fast and that may beneficiate when imaging a fast moving object within 

a single frame but the drawback is that there is a single analog-to-digital (ADC) converter so the 

time between frames is relatively low. On the other hand, conventional CMOS cameras have a 

rolling shutter in which different rows of the sensor are exposed sequentially. Depending on the 

number of pixels, each row might take up to 10Ps to read out. Such exposure mode might produce 

motion artifacts known as rolling-shutter effect in which fast objects are detected in both upper 

and lower exposed rows. Obviously, in CMOS cameras, the readout time is proportional to the 

number of extracted rows. If we were to increase the frame rate in conventional photography with 

a CMOS sensor, we could either reduce the dynamic range such that the number of pixels per 

second is lower or reduce the region of interest (ROI). In fluorescent imaging, which is our main 

application, reducing the dynamic range is usually not possible since the number of photons 

emitted by tissue is relatively low and the signal will be buried inside camera noise. The latter 

option is available if the field of view is small but this still limits many applications. 
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5.3 Light field tomographic microscopy principle 

From previous sections we can conclude that it is nontrivial to acquire high resolution, high 

dynamic range, and large field of view images at high speeds. In general, there is lack of tools that 

hamper single-shot acquisition of large two-dimensional time resolved data preventing many 

applications in biology, chemistry, and physics. Even more difficult is to extend high speed 

imaging to three-dimensional scenes that might be able to see around occlusions or non-line-of-

sight imaging applications. In order to overcome such limitations, I present light field tomographic 

(LIFT) microscopy. In a nutshell, LIFT is a technique that compresses three-dimensional scenes 

into a one-dimensional line detector [100].  

Let us see how to compress the data. First, in order to compress a three-dimensional scene into a 

two-dimensional detector we can use the same exact concept as light field: locate multiple lenses 

at multiple spatial locations within the aperture plane and take advantage of the disparity between 

them. This is show in Figure 38. Each lens will form its image with a different object perspective. 

 

 

Figure 38: Aperture division light field concept 

 

LIFT’s contribution is to further compress the conventional light field image into a one-

dimensional detector. To-do so, the key step is to substitute the spherical microlens array with a 
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cylindrical one and rotate each lens by a known angle. This process is explained in Figure 39, 

LIFT’s image formation process. In Figure 39a, we use a two-plane parametrization for light field 

analysis in which the spatial axis 𝑥 is the sensor plane, and 𝑢 is the lenslet array plane which 

provides angular information. 

 

Figure 39: LIFT imaging principle a) LIFT parameterization; b) Imaging through spherical lenses; c) Imaging 
through cylindrical lenses; d) Projection view of the object 

 

Furthermore, each lenslet has its own local coordinate plane 𝑥  whose origin is located where a 

point source located at infinity is imaged by each sub aperture. In this case, only four lenslets are 

shown for simplicity. This diagram is representing the parametrization of the 𝑥 and 𝑢 planes 

depending on where the object and the microlens array are located, same parameterization as with 

Figure 36. In LIFT, the classical imaging process is the same except for the cylindrical lens’ 
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invariant optical axis direction. If a point source is located at position 𝑥 , 𝑦 , 𝑑, the subimage of 

each local coordinate will be located at: 

𝑥 =
𝑎
𝑑 (𝑢 − 𝑥 )

𝑦 = −
𝑎
𝑑 𝑦

 (31) 

where 𝑎 is the distance from the lenslet array to the sensor.  Figure 39b, shows such pin-hole image 

formation model. As it can be inferred, if we use conventional spherical microlens array, the point 

images of each lenslet would not be detected by a line sensor. However, if we use a cylindrical 

lens oriented along arbitrary rotation angle, the point spread function (PSF) will be converted into 

a line spread function. This is because the cylindrical lens does not have optical power along one 

axis (invariant optical axis). In this case, as shown in the PSF convolution in Figure 39c, part of 

the image will hit the sensor and that is how we can compress a two-dimensional scene into a one-

dimensional line detector. The line-shaped PSF disperses each point in the image space onto a 

pixel on line sensor. The line length is given by the image magnification factor and the lenslet size: 

𝑙 = 1 +
1
𝑚 𝑞 (32) 

where 𝑚 is 𝑑/𝑎 and 𝑞 is the lenslet diameter. In other words, the image formation process is a 

parallel beam projection of the image that is obtained along the invariant optical axis direction. 

This is a key concept which means that optical imaging is reformulated as a computed tomography 

problem: we can relate the one-dimensional projection with a two-dimensional object via the 

Fourier slice theorem, we will delve into this concept in the next chapter. Overall we can recover 

a two-dimensional scene from the fact that we receive its one-dimensional projections and further 

get the three-dimensional scene if we consider that each projections has its own unique perspective 

of the object (Figure 39d). 
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Let us now focus on the last step of the image formation process: resampled projection. For now, 

we know that a point like object will be transformed into a line spread function rotated along an 

arbitrary angle dictated by the cylindrical lenslet’s invariant optical axis. Generally, the line sensor 

is not perpendicular to such line and to relate the unknown object to such data, via the Fourier slice 

theorem (Section 5.40), we need to make it perpendicular. This can be done by computationally 

resampling. Let us denote T as the angle between the invariant optical axis and the line sensor, the 

projection angle. The new virtual sensor local coordinates 𝑥 and 𝑦 perpendicular to the projection 

are given by: 

𝑥′
𝑦′ = 𝑅T

𝑥
𝑦  (33) 

where 𝑅T is a rotation matrix expressed as: 

𝑅T = 
𝑐𝑜𝑠T −𝑠𝑖𝑛T
𝑠𝑖𝑛T 𝑐𝑜𝑠T  

by combining Equations 32 and 33, the new image local coordinates are: 

𝑥 =
1
𝑚
(𝑢 − 𝑥 )𝑐𝑜𝑠T −  

1
m𝑦 𝑠𝑖𝑛T

𝑦 =  
1
𝑚𝑦 𝑠𝑖𝑛T+ 

1
m𝑦 𝑐𝑜𝑠T

 (34) 

Considering that the sensor is one-dimensional, 𝑦 = 0. We can also rewrite 𝑥  as: 

𝑥 =
𝑐𝑜𝑠T
𝑚

(𝑢 − 𝑥 − 𝑦 𝑡𝑎𝑛T)   (35) 

Equation 35 is LIFT’s imaging equation where cosT is the resampling factor, 𝑢 describes the light 

field component that enables depth retrieval and refocusing capabilities, and the last two terms 

explain the projection process. 
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5.4 Fourier slice theorem 

The Fourier slice theorem is illustrated in Figure 40. Let us assume that we want to image an object 

𝑓(𝑥, 𝑦) which has some Fourier transform 𝐹(𝑘). In LIFT, the object 𝑓(𝑥, 𝑦) is unknown but we 

have access to a number of projections 𝑝(𝑥) along arbitrary angles. The Fourier slice theorem 

states that a one-dimensional Fourier transform at an angle T is the same as a line to the origin with 

angle T of the two-dimensional Fourier transform representation of the entire object. Obviously, if 

we take multiple projections we can fill the entire Fourier space to later reconstruct the object in 

the spatial domain through a two-dimensional inverse Fourier transform. 

 

Figure 40: Fourier slice theorem representation 

In practice, the number of projections is fairly limited. Specially in LIFT, limited by the number 

of lenses that fit in the objective’s back aperture. The low frequencies are oversampled compared 

to the higher thus limiting the image quality depending on the sample sparsity in the spatial 

domain. For an accurate image reconstruction, we would need to fill the complete spatial frequency 

space by acquiring a sufficient number of projection data spanning from 0° to 180°. As a rule of 

thumb, in order to reconstruct a 𝑁 𝑥 𝑁 image, 𝑁 projections with 𝑁 number of pixels are needed. 

In LIFT, we use a 1D sensor whose pixels are limited to several thousand so this casts LIFT as a 

sparse computed tomography problem, we can only fit a very limited number of projections. 
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5.5 Limited view problem 

Considering that the one-dimensional line sensor is fixed, we are restricted to the range of angular 

projections that we could extract from the object. In the worst case scenario, the optical invariant 

axis of the cylindrical lens would be colinear to the line sensor and occupy a relatively big number 

of pixels thereby limiting the number of projections to a couple. This is known as the limited view 

problem [101]. This makes the angle selection key, especially when the number of views is fairly 

limited in LIFT compared to traditional computed tomography scans. The general rule is that, since 

the object is unknown, a uniformly distributed number of projections will produce the best results 

although there are current algorithms that are able to calculate the optimal projection angles [102], 

[103]. 

There are several methods to mitigate limited view problem. The first one is to rely on deep 

learning methods by training a neural network that can learn the statistical distributions and 

patterns of the system with a limited view problem by comparing the ground truth images with the 

LIFT ones and correct them after [100]. This solution requires system calibration and does not 

really eliminate the problem. The second choice is hardware-based: introduce Dove prisms as 

image rotators in front of the cylindrical lens. 

 

Figure 41: Dove prism as an image rotator 

 

Figure 41 shows a Dove prism rotating the image. If the rotation angle is T, the image is rotated 

by 2T. In such way, we can partially solve the limited view problem and project the object along 
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any rotation angle while optimizing the number of pixels used per projection at the sensor plane 

by placing the cylindrical lens invariant optical axis perpendicular to the sensor. The disadvantages 

of the Dove prism are chromatic aberration for broadband illumination and astigmatism if light is 

uncollimated. 

 

Figure 42: Line camera rotation 

Another choice is rotating the camera or building a camera array as depicted in Figure 42. This 

requires the camera to be compact and rotate with an accurate angle. By rotating the sensor camera 

with 7 lenslets by 3 times will not only enrich the projections to 21 for eliminating the limited view 

problem but also extend the light field to 2D. 

5.6 Limited field of view 

In LIFT, the use of line sensor limits the field of view (FOV) compared to conventional light field 

imaging. Figure 43 represents the last point, located at the extreme spatial XY location within the 

FOV in LIFT.  This point will be imaged as a line along certain angle according to the invariant 

axis and the edge of its line spread function will be detected by the sensor. Thus, the last detectable 
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point of the line sensor is limited to ℎ = 𝑙𝑐𝑜𝑠(𝜃)/2 and the LIFT’s FOV is determined by 2ℎ = 

𝑙𝑐𝑜𝑠(𝜃).  

 

Figure 43: Limitations in LIFT's FOV 

5.7 LIFT refocusing abilities 

Analogous to conventional light field imaging, LIFT has refocusing capabilities due to the 

existence of subaperture lenses located at different spatial locations that produce disparity cues. 

Figure 44 illustrates the refocusing process: 

 

Figure 44: LIFT’s refocusing capabilities 
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We can locate a virtual sensor plane at a distance ∆𝑎 from the original sensor and extract the image 

from the second depth 𝑑 . Then, the new light field imaging equation is given by: 

𝑥 = 1 + 
∆𝑎
𝑎 𝑥 − 

∆𝑎
𝑎 𝑢 = 1 + 

∆𝑎
𝑎 [𝑥 + 𝑠𝑢] (35) 

where 𝑠 =  − ∆
∆   

. We can further ignore the magnification factor 1 + ∆  since it is constant 

across the refocused imaged. Finally, the refocusing equation is: 

𝑥 = 𝑥 + 𝑠𝑢 (36) 

LIFT’s refocusing formula, Equation 36 is the same one in the ray space as conventional light field 

cameras but along one angular axis instead of two. Shearing the acquired light field will refocus 

the image onto different depths. From this equation we can extract two conclusions. First, LIFT is 

a one-dimensional light field, there is only angular disparity along the 𝑢 axis, as opposed to 

conventional light field cameras. This is different than 1D light field cameras which produce a 1D 

blurring effect, shown in in Figure 45 [104]:  

 

Figure 45: LIFT's blurring effect. Scale bar: 10um. 
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In LIFT, when the image of a point source is being focused, all projections intersect in the same 

lateral position forming the PSF. However, when the image is defocused and the number of 

projections is relatively low, different projections will have more than one intersection point and 

ghost images will appear. If we increase the number of projections we will see a similar blurring 

bokeh as with standard photography. This process also happens with conventional light field 

cameras with low angular resolution, ghost images will appear. 

5.8 Extending depth of field 

LIFT’s depth of field can be extended by computationally refocusing the image at different depths 

and identifying the sharpest feature around some determined ROI for each pixel in the focal stack. 

Then, an all-in-focus image can be extracted from graph cut algorithms [105] at the expense of 

computational reconstruction time. 

5.9 Depth retrieval  

Figure 46 shows the image processing pipeline employed to reconstruct a 3D image from 1D data. 

As previously mentioned, in LIFT, we reformulate light field imaging as a computed tomographic 

problem so that 1D data from multiple projections is reshaped as a 2D sinogram where 𝜃 

corresponds to each rotation angle. Then, the image is decompressed to 2D using tomographic 

reconstruction that we will see in depth in further sections. In this section we focus on how to 

obtain depth, similar to conventional light field. 
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Figure 46: LIFT's image reconstruction pipeline 

LIFT retrieves depth using depth-from-focus (DfF) algorithm [106]. The fundamental idea is to 

sweep the scene focal plane to get a focal stack and use a scoring technique to determine what is 

the best focused point within the stack and then estimate the depth of the point. The amount of 

focus (or defocus) is mainly determined by the high frequency content in the each image. Such 

quantity can be determined by algorithms such as sum of Laplacians. We take a small patch within 

the image and calculate the second derivative for each pixel and sum it. This is shown in Equation 

37: 

𝑀(𝑥, 𝑦) =  ∇ 𝑓(𝑖, 𝑗) (37) 

where 𝑖 and 𝑗 are the different pixels in the 2D reconstructed image, and 𝐾 is the rectangular 

window size. Then, the focus measure 𝑀(𝑥, 𝑦) can be mapped to a depth value. 

In practice, refocusing the light field image induces shift between multiple slices within the focal 

stack. Thus, we first use one image as a reference and we calculate the geometric relationship with 

respect to other images and apply a transformation. Furthermore, defocused images display 

artifacts that are denoised using a block matching and 3D filtering algorithm (BM3D). BM3D is a 

collaborative filtering process in which groups of similar blocks are extracted from the image if 
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some dissimilarity measure falls below a threshold. All blocks are then stacked in 3D and Wiener 

filtering is performed equally.  

 

Figure 47: Focus-to-depth LIFT 

Figure 47 illustrates the focus-to-depth process. If an object plane is located at distance 𝑑 from the 

lenslet array, the total distance between the leftmost and rightmost subapertures images is equal 

to: 

𝐿 =
𝑑 + 𝑎
𝑑 𝐷 

where 𝐷 is the baseline lenslet array length and 𝑎 is the distance from the array to the sensor plane. 

To connect distance 𝑑 with the computationally image refocusing parameter 𝑠 we can consider 

that the array length at infinity is 𝐿 = 𝐷. We can now calibrate the system to generate a 

quantitative 3D map by translating a point source across the depth of field of our LIFT microscope. 

Then, we generate a curve to match the ground truth axial position with the lateral shift of the line 

spread function at each measurement. Finally, we can fit that measurement and output a focus-

depth calibration curve, which is shown in Figure 48: 
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Figure 48: Focus-to-depth calibration curve 

5.10 Image compression 

Figure 49 shows how conventional light field and LIFT pixel extraction differ from each other 

from an artificial brain image. In light field, since we normally use spherical lenses, we need to 

utilize every row from the CMOS sensor. However, LIFT only requires 3 rows in the case where 

the microlens array is a 3x3 matrix.  Thus,  LIFT’s image compression enables high speed imaging.  

 

Figure 49: CMOS sensor plane using a) Light field imaging; b) LIFT imaging 
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5.11 Fourier LIFT 

In LIFT microscopy, we will implement an optical design that is based on Fourier light field 

imaging due to its benefits that are explained later in this section. Let us first see a conventional 

light field optical system where the microlens array (MLA) is placed at the native image plane of 

the tube lens. Figure 50 is a schematic of such concept. The camera sensor is placed at one focal 

distance away from the microlens array. To avoid overlapping between different sub images at the 

sensor plane, the numerical aperture (NA) at the imaging plane must match the MLA’s NA. This 

is expressed in Equation 38. 

 

Figure 50: Conventional light field microscopy 

 

𝑁𝐴
𝑀 =

𝑝
2𝑓  (38) 

where 𝑀 is the objective’s magnification, 𝑝 is the MLA’s pitch, and 𝑓  is the MLA’s focal 

length. This implementation presents practical problems in which if the MLA pitch is relatively 

low because we need to either increase the objective’s magnification and reduce the objective’s 

NA thus reducing the resolution. An alternative is to place the microlens array at the back focal 

plane of the objective lens. This is concept is known as Fourier light field microscopy illustrated 

in Figure 51: 
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Figure 51: Fourier light field microscopy 

In this case, since we do not have direct access to the Fourier plane of the objective lens, we can 

place relay it using a 4f system with lenses L1 and L2. Then, the MLA has direct access to the 

pupil plane and divides its aperture retaining both spatial and angular information. 

5.12 Unfocused LIFT 

One of the main drawbacks in LIFT is low light throughput due to the image along invariant optical 

axis size at the sensor plane. Information from a single pixel in the object plane is spread along 

rotation direction in the image space with a magnification dependent on the size of the lenslet and 

the focal length ratio. This hamper’s LIFT’s application especially in fluorescent imaging since 

this is a photon starving application and line spread function might be buried in sensor’s shot noise. 

For this reason, we need to modified Fourier LIFT setup into unfocused Fourier LIFT microscopy, 

shown in Figure 52: 
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Figure 52: Unfocused LIFT 

Here, we introduce a spherical microlens array behind the Dove prism at one focal length away 

from the objective lens’ back aperture. Figure 52a represents XZ plane, where the cylindrical lens 

has no optical power. Then, the chief rays will collimated by the lenslet, pass through the 

cylindrical lens without being refracted and form an image at the sensor plane. In contrast, at the 

YZ plane, where cylindrical lens has optical power, the collimated chief rays will be focused by 

the cylindrical lens on the sensor.  This means that on the y-axis we will image each sub pupil 

corresponding to the exit pupil image of the back aperture of the objective lens in Fourier light 

field configuration. Since the LIFT camera is imaging the light field of the pupil, we consider this 

setup as unfocused LIFT [107] [108]. 

5.13 System design 

LIFT is a general technique that can be applied to multiple setups including microscopy, non-line-

of-sight, and hyperspectral imaging. In my research, the main goal is to image fluorescent, fast 
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dynamics events such as neuronal action potentials so all my systems are applied towards 

fluorescent microscopy. 

5.13.1 First order design 

Figure 53 shows a general schematic of a LIFT microscope’s first order design. The targeted 

resolution is roughly 2-3μm and the FOV should be no less than 200μm for our imaging 

applications. 

 

Figure 53: First order paraxial design of an unfocused Fourier LIFT microscope 

Since LIFT is a computed tomography based imaging technique, we want to have as many 

projections or views of the object as possible to accurately reconstruct the object. Thus, the back 

aperture of the objective lens, given by Equation 39, should be as large as possible: 

𝐷 = 2𝑓𝑁𝐴 (39) 

Thus, the focal length and the NA of the infinity corrected objective lens should be maximized. I 

selected a low magnification, which provides longer focal length, high NA objective lens: 20X 

Olympus XLYMPLFLM Objective, 1.00 NA, 2.00mm WD. Although the relative long working 

distance is not an LIFT requirement, it will be a sample requirement in future sections such as in 
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vivo mouse brain imaging. With these parameters, the back aperture diameter should be around 

18mm. Then, a 1:1 system is used to relay the back aperture plane of the objective lens to an 

accessible point, since it is usually inside the objective’s housing. I used two SLR Magic Lens II 

50mm f/1.1 due to its relatively large entrance and exit pupils in order to avoid spherical 

aberrations. Furthermore, the Dove prisms are placed at the relayed pupil plane. Collimated light 

should avoid astigmatism.  There is a tradeoff between the chosen number that will fit in the back 

aperture (number of projections in CT reconstruction) thus affecting the imaging quality 

reconstruction and the lateral resolution. This is not determined by the Dove prisms but the 

cylindrical lens array instead, since there needs to be a one-to-one match for every sub pupil 

position and we need to the PSF needs to be twice the camera’s pixel size to meet Nyquist’s 

sampling criteria. 

The selected camera is a Teledyne Kinetix CMOS camera. There are several reasons why I choose 

this 2D camera instead of a 1D sensor for LIFT imaging. Firstly, due to its multi ROI capabilities, 

this means that we can convert the sensor into a multiplexed LIFT system where we extract a few 

rows from the sensor and we can highly increase the number of projections. The back part of the 

LIFT microscope illustrates such idea (Figure 54): 
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Figure 54: Unfocused LIFT ROI multiplexing concept 

If we were to use a single row to readout data, a line sensor would be sufficient. However, the 

number of projections would be limited to less than ten considering the optical design parameters 

and the reconstruction results for very sparse CT problems would be considerably poor in 

biological samples, which are considered as non-sparse. The increase of the number of projections 

comes at a cost: speed. As we increase the number of pixel rows to readout, the frame rate is 

reduced (see Section 5.10) but the data compression is still much higher than conventional light 

field imaging. 

The second reason behind camera selection is quantum efficiency, which is 95%. As mentioned, 

fluorescent imaging is a light starving application. Thus, it is key to convert as much photons into 

electrons as possible. The third reason is the large diagonal field of view, almost 30mm, which 

allows a big number of projections. Finally, the Kinetix model allows high frame rate imaging, we 

will see the exact frame rate in future calculations. 

Regarding the cylindrical lens’ parameters, they are designed and optimized using ZEMAX and 

later fabricated. Its focal length and diameter depends on the desired pupil plane image size. This 
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is the line spread function length mentioned in unfocused LIFT section: we want to make it as 

small as possible to optimize light throughput. Lastly, the conventional MLA that images the 

object needs to be designed considering desired resolution and FOV. Overall, LIFT’s first order 

design calculations are shown below. The total system magnification is equal to: 

𝑀 = 
𝑓

𝑓   =  
𝑓  

𝑓 .    
𝑀

=  
50

180/20 = 5.55𝑋  (40) 

The lateral resolution is determined by the MLA’s NA (Equation 41). The selected parameters are 

at an optimal tradeoff between number of projections and lateral and angular resolution. 

𝑁𝐴 = 
𝑅
𝑓_𝑀𝐿𝐴 =

1
50 = 0.02 (41) 

Moreover, the PSF at the sensor plane will be: 

𝑃𝑆𝐹 =  
𝜆

2𝑁𝐴 = 
532𝐸 − 9
2 ∗ 0.02 = 12 𝜇𝑚 (42) 

which is approximately twice the Kinetix’s pixel size (6.5μm) so Nyquist sampling criteria is met. 

Then, the pixel at the at the object plane will be: 

𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  
𝑃𝑆𝐹
𝑀 =

12 𝜇𝑚
5.6 = 2.14 𝜇𝑚 (43) 

and the field of view limited by the MLA: 

𝐹𝑂𝑉 = 
𝐷
𝑀 =

2𝑚𝑚
5.6 = 350 𝜇𝑚 (44) 

On the other hand, the vertical direction that images the pupil for unfocused LIFT configuration 

will have a size of: 

𝑑
𝑓
𝑓 = 2

10
50 = 0.4 𝑚𝑚  (45) 

which is equivalent to approximately 66 rows in the Kinetix camera and an output of 4800Hz at 8 

bit dynamic range and 1000Hz at 16bit. This is a one order of magnitude increase with respect to 
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conventional light field imaging. In conclusion, LIFT unfocused Fourier configuration can 

reconstruct three dimensional scenes with a 350μm FOV, 2μm lateral resolution at thousands of 

frames per second. 

5.13.2 Application design: fluorescence imaging 

Figure 55 shows a LIFT microscope configured for our main application: fluorescent imaging. 

Starting from the top side, in LIFT, we image the pupil along the invariant optical axis and the 

object along the plane perpendicular to the sensor rows.   

 

Figure 55: LIFT reflective fluorescence microscope 

A 90:10 beam splitter is placed on the optical path to have two arms: a reference arm with a 

conventional tube lens for widefield acting as a reference camera and capturing 10% of the light 

while still maximizing the transmitted (90%) of light to the LIFT arm. Finally, a replaceable filter 

cube is used to maximize both fluorescent excitation light at the sample stage by using a excitation 

filter, a 45º degree dichroic mirror, and emission wavelength coming from the sample. The LED 

light source is at the conjugate plane of the objective’s lens back aperture thus providing Koehler 

illumination. For more information of the setup please refer to previous section  5.13.1. 
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5.14 Reconstruction techniques 

Now that we know how to compress three-dimensional scenes into one-dimensional sensors and 

understand LIFT’s refocusing, extended depth-of-focus, and high speed imaging capabilities, we 

can focus on 1D to 2D image reconstruction. As mentioned before, LIFT reformulates imaging as 

a sparse computed tomography (CT) reconstruction problem and this is a well-established field. 

We will review the algorithms that we used to reconstruct LIFT images. 

5.14.1 Backprojection 

The most rudimentary algorithm in CT reconstruction is backprojection [109]. It consists of 

mathematically mapping the attenuation pathway at every angle measured.   In order to understand 

backprojection algorithm let us first visit the mathematical description of analytical projection 𝐿 

from a certain angle 𝜃 at 𝑡 intersection with respect to some detector of a two-dimensional object 

𝑓(𝑥, 𝑦) represented in Figure 57. This is the same concept as the Fourier slice theorem. 

 

Figure 56: One-dimensional projection of a two-dimensional object along arbitrary angle 

The detector function 𝑝 (𝑡) is the resampled line sensor describe in previous sections (see Section 

5.3).  The projection can be described by Equation 46:  
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𝐿(𝜃, 𝑡) = {(𝑥, 𝑦)� 𝑅 𝑥 𝑅: 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 = 𝑡 }  (46) 

 

If we project the object along all possible angles we will end up with an integral known as the 

Radon transform that captures the all necessary information to reconstruct the object in the 

projection domain: 

𝑅𝑓 = 𝑓(𝑥, 𝑦)𝑑𝑠 (47) 

 

In practice, the Radon transform is discretized and does not contain all possible viewing positions. 

Instead, a set of discretized limited integral is organized into a 2D function with 𝑥 and 𝜃 variables. 

This is known as a sinogram, since a Delta function in the object domain will be expressed as a 

sinusoidal pattern in the projection domain. Figure 58 shows a typical LIFT sinogram from a 

USAF resolution target. This is a linear operator so we can consider that any object is expressed a 

sum of sinusoidal waves. The x-axis contains the line integral and the y-axis the cylindrical lens 

rotation angle. The backprojection algorithm will map the sinogram to the object domain.  

 

Figure 57: LIFT sinogram of a USAF target 
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In order to extract a final image from the sinogram domain, we smear the one dimensional 

projection information along the rotation angle for each acquired projection. Mathematically we 

can express this step as: 

𝑓 = 𝑝 (𝑥 𝑐𝑜𝑠𝜃 + 𝑦 𝑠𝑖𝑛𝜃)𝑑𝜃 (48) 

This will lead to an object reconstruction that will be blurred due to the nature of projection 

sampling. This effect can be explained in the frequency domain: low frequencies are oversampled 

and high frequencies undersampled. In order to solve this issue, a high pass filter is typically used. 

To do so, the projection function is transformed in the Fourier domain and multiplied by the filter. 

There are multiple filter designs. For brevity purposes, we will not dig into filters and consider the 

gold-standard for CT reconstruction: Ram-Lak filter. Then, the low frequencies are suppressed and 

the high frequencies are amplified. Finally, the filtered version is inverse Fourier transformed and 

later backprojected. Mathematically this looks like Equation 49: 

𝑓 = 𝑞 (𝑥 𝑐𝑜𝑠𝜃 + 𝑦 𝑠𝑖𝑛𝜃)𝑑𝜃 (49) 

 

with  

𝑞 (𝑡) =  ∫ 𝑃 (휔)|휔|𝑒 𝑑휔; 

Although backprojection allows us to reconstruct images from different projections, LIFT’s sparse 

CT nature needs more advanced techniques to obtain high quality imaging metrics. Thus, iterative 

and deep algorithms will be now explained. 

5.14.2 LIFT’s forward model 

In order to understand the iterative reconstruction LIFT algorithm, let us first formulate the forward 

model. As previously mentioned, LIFT reformulates imaging as a CT problem. Now let us merge 
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both concepts into modeling equations. The 1D projection intensity at the sensor plane 𝐿(𝜃, 𝑡) can 

be considered as a convolution of an ideal pinhole image 𝑜(𝑥, 𝑦) and the line-shaped PSF from the 

cylindrical lens, that is: 

𝐿(𝜃, 𝑡) = [𝑜(𝑥, 𝑦) ∗ 𝛿(𝑥 cos 𝜃 + 𝑦 sin 𝜃)] ,  (50) 

where 𝛿(𝑥, 𝑦) is the Delta Dirac function, x, 𝑦 denote the image space coordinates, and 𝑘 is the 

local coordinate on the sensor behind each lenslet. By convolution’s definition, Equation 50 is 

equal to Equation 51: 

𝐿(𝜃, 𝑡) =  𝑜(𝑥, 𝑦)[𝛿(𝑥 − 𝑘)𝑐𝑜𝑠𝜃 +  𝑦 𝑠𝑖𝑛𝜃] 𝑑𝑥𝑑𝑦 (51) 

From this equation, we can extract that in LIFT the object projection along certain angle is 

equivalent to rotating the object and integrating along the 𝑦 direction. Then, by discretizing the 

model we can consider LIFT’s forward model as: 

𝐿(𝜃) = 𝑇𝑅 𝑔 (52) 

where 𝑇 is the integration, 𝑅  is the rotation matrix, and 𝑔 is the original object. We could use 

backprojection to reconstruct this data. However, since we now know the forward model, we can 

use inverse reconstruction algorithm to get a more accurate representation of the object. 

5.14.3 Iterative reconstruction 

In previous Equation 52, the goal is to extract the unknown vector 𝑔 by solving the linear system 

of equations. Ideally, we would multiply the inverse of the integration and rotation matrix 𝑇, and 

𝑅 , respectively with the projection data. Unfortunately, the integration and rotation matrices are 

not invertible since they are not squared and the system is typically undetermined due to the 

relatively low number of projection lenses in LIFT system. Thus, we only have access to an 
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approximate solution given by the minimum projection distance in some norm. To find optimal 

value we need to solve this problem iteratively. 

𝑔∗  = 𝑎𝑟𝑔𝑚𝑖𝑛 |𝑏 − 𝐴𝑔|  + 𝜌Φ(g)  (53) 

where φ(g) is a transform function that sparsifies the image, . is the l1 norm, and ρ is a 

regularization parameter. Various transform functions like total variation, wavelet transform, and 

discrete cosine transform, can be used to make the image representation sparse. This equation may 

be solved using an accelerated convergence version of the proximal gradient descent method: fast 

iterative shrinking thresholding algorithm (FISTA) [110]. For the sake of brevity, I will only 

explain the underlying algorithm [111]. 

Proximal gradient descent is a technique that solves L1 regularized least squares problem, 

comprised by a two-step alternating process. The first is two calculate least squares gradient 

descent from the current weight 𝑔, that is: 

𝑧 = 𝑔 − 𝜏𝐴 (𝐴𝑔 − 𝑏) (54) 

where τ is the step size. The second step is solving the close (proximal) regularization problem: 

𝑔 = 𝑎𝑟𝑔𝑚𝑖𝑛 |𝑧 − 𝑔 | +  𝜏λ |g |  (55) 

 

5.14.4 Deep learning approaches 

As we know, LIFT is a compressive imaging technique that highly increases three-dimensional 

data acquisition at the cost of resolution. We are currently investigating how to compensate 

resolution loss using deep learning. It has already been demonstrated that some sparse CT 

algorithms are capable to reconstruct high resolution  from low resolution ones with adequate 
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system training [112]–[116] . In this case, our ultimate goal is to make LIFT achieve diffraction 

limit resolution while maintaining kilohertz frame rate. 

5.15 LIFT system characterization 

In order to test LIFT  fluorescence microscope’s lateral and axial resolution I placed an microLED 

screen (Microled-info) with 5μm pixel size at the sample stage and turned on two pixels with a 

one pixel separation and kept increasing the separation until resolving both points using LIFT in a 

7 lenslet (projection) configuration: Figure 59 shows the line reconstruction results. As it can be 

seen, both points can be differentiated less than 10μm apart and that determines LIFT’s lateral 

resolution between 5-10 μm. It is important to note that this resolution depends on the number of 

projections and the sample. For a more spatially complicated (non-sparse) sample, we usually scale 

the number of lenslets up to match the required resolution. 

 

Figure 58: LIFT's lateral resolution 

Regarding axial resolution, I took a single point source and scanned it in the axial direction with 5 

μm increments. As a reminder, LIFT’s axial resolution can be experimentally determined by the 
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amount of travel that takes cylindrical lens PSF to shift one pixel and thus be able to later 

differentiate. Figure 60 shows refocusing  collage of data from the summed images of two point 

located 40μm away from each other: 

 

Figure 59: LIFT's experimental axial resolution 

The highlighted areas showcase the first and second point being refocused, respectively. There is 

a profile separation similar to Figure 59 where the separation is less than the FWHM of each 

individual PSF thereby determining 40μm of axial resolution .  

Reference  LIFT focal image 

Figure 60: Widefield (a) and LIFT (b) imaging of a fixed mouse kidney section 
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Furthermore, in order to demonstrate that LIFT is able to accurately reconstruct fluorescent 

biological samples, I placed a prepared Thermofisher fluorescent slide of a mouse kidney section 

where the glomeruli and convoluted tubules are labeled by Alexa Fluor 488 wheat germ agglutinin 

dye. Figure 60a, and 60b  show the reference widefield image and the LIFT enface focal image, 

respectively. As it can be seen, the resolution on the LIFT focal image is not diffraction limited, 

as with widefield. This is due to LIFT’s sparse CT nature, in this case by using 16 projection 

lenses. However, the number of projections can be scaled up until achieving near diffraction 

limited resolution. In the highlighted region, we can already note a key difference between 

widefield and LIFT; this feature is hollow in LIFT. This is due to LIFT’s 3D imaging nature in 

which we can see through some occlusions while widefield integrates the axial dimension hereby 

losing refocusing capabilities. In LIFT, we can extended the focal image to render a 3D volume. 

This is shown in Figure 61. The capability to image 3D scenes with a single snapshot at thousands 

of frames per second opens a huge number of applications including brain, cardiovascular, 

microfluidic, imaging that will be seen in depth in further sections. 

 

Figure 61: 3D LIFT rendering of mouse kidney section in Fig.60. Scalebar: 20um 
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5.13 Applications  

LIFT is a general optical compressive technique that can potentially be applied to many scenarios 

such as tomography, microscopy, general-purpose cameras or hyperspectral imaging. During my 

graduate research, I focused on the LIFT applications that can have a greater impact in our society. 

One of them is neuronal imaging. To date there is no technique that can image three dimensional 

volumes at kilohertz rates of action potentials. Moreover, the study of microfluidics, the behavior 

of fluids constrained to a small scale, has a huge impact in DNA chips, molecular biology, 

evolutionary biology, optics, fuels, food science, etc. It is essential to understand such dynamics 

and LIFT could potentially provide 3D info at high speeds. Lastly, cardiovascular imaging plays 

a pivotal role in human biology. Particularly, cardiac atrial fibrillation is a common cardiac 

arrythmia and a major contributor to stroke. 

5.15.1 Brain imaging 

High-speed volumetric imaging of dynamic neural activity over long periods still remains a big 

challenge in neuroscience. To this date, light field microscopy can get single snapshot three-

dimensional reconstruction but its speed is still limited to a few hundred frames per second. This 

allows light field imaging systems to capture genetically encoded calcium indicators (CECIs). 

However, calcium imaging is not exactly related to the voltage change in neurons, it only provides 

a limited information about natural signal processing and little information about the inhibitory 

and exhibitory neural signals. In contrast, voltage imaging allows directly measuring neural 

electrical activity and can overcome calcium imaging limitations. Particularly, genetically encode 

voltage indicators (GEVIs) are fluorescent electrosensitive molecules that change it brightness 

depending on neural voltage. Unfortunately, the temporal resolution needed to image such 

neuronal action potential is on the order of milliseconds and conventional light field imaging is 
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not suitable for this application since there is a tradeoff between imaging speed and signal-to-noise 

ratio (SNR). 

On the other hand, our LIFT microscope for fluorescent imaging meets all requirements for this 

application: high-resolution, high-volume, and high-speed. Our ultimate goal is to optimize LIFT 

for kilohertz volumetric imaging of neuronal action potentials. To prove this, I first tried to see 

lower temporal resolution dynamics and higher SNR molecules with GECIs to empirically 

optimize the system parameters for GEVIs. Thus, I set up a imaging chamber to record GCaMP 

activity from acute brain slices (see Appendix A for general protocol). Figure 6 illustrates such 

setup: 

 

Figure 62: LIFT acute brain slice imaging setup 

 

In order to preserve the physiological conditions of the brain slice we need to constantly perfuse 

fresh artificial cerebral spinal fluid (ACSF). A carbogen (95% O2, 5% CO2) tank keeps the ACSF 

solution saturated. Then, a 3D printed imaging chamber with an input channel for fresh ACSF and 
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output that goes to a discard chamber (not shown) perfuses the ACSF. The sample is held by a 

platinum harp to keep it steady at the bottom of the chamber. Once the slice is held in place we 

circulate a high potassium ACSF, which is known to activate neurons. Figure 63 shows such 

GCaMP activity in LIFT imaging. As it can be seen, after recording ACSF is applied, some 

neurons show a change in fluorescence with respect to its baseline. Our next step is to test these 

signal GCaMP in vivo by looking through an craniotomy window in brain and substitute GECIs 

with GEVIs. 

 

Figure 63: Acute brain slice GCaMP activity using LIFT microscopy. Scale bar: 10um 

5.15.2 Microfluidics 

Three-dimensional high-speed imaging in microfluidics application is key requirement to 

understand its dynamics. To probe LIFT’s capabilities, we tested 3D imaging on microfluidic 

sculpting channels. In this technique, we can place certain barriers in the microfluidic channel in 

a specific spatial location, predict, and sculpt how a liquid is going to flow through the channels.  

In this experiment, a barrier is placed at an arbitrary position in a microfluidic channel (Figure 64). 
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Figure 64: Barrier in a microfluidic channel for flow sculpting. Scale bar: 20um 

Then, Figure 65 shows of how the fluid is shaped in 3D at 2000fps. Such frame rate is not a 

limitation: since this is an image with relatively low frequency features we could use a low number 

of projections, less ROIs and image at tens of thousands of frames per second. 

 

Figure 65: 3D flow sculpting through LIFT imaging. Scalebar: 50um 

 

5.15.3 Cardiovascular imaging 
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One of LIFT’s main application is cardiovascular imaging of voltage waves in a fast beating 

zebrafish heart since it requires high spatiotemporal resolution and there is currently no technique 

that can address such needs. The embryonic zebrafish is a genetically tractable and transparent 

model that allows the study of electromechanical coupling in heart development: the dynamics and 

relationship between action potentials and myocardial contraction. This would help cardiologists 

better understand major fatal risk factors such as cardiac atrial fibrillation, a cardiac arrythmia and 

a major heart stroke cause in which there is a dysregulation of the electrical and mechanical 

coupling. 

As a proof of concept, I demonstrated in vivo dynamic 3D blood flow imaging at near kHz speeds. 

We labelled RBCs in the tail of a zebrafish larvae (tg:gata1:dared, 4dpf)  with dsRed fluorophore. 

Figure 66a shows the widefield (reference) camera dynamics while Figure 66b shows the LIFT 

images. LIFT also allows cross sectional imaging, which is shown in Figure 66c, we can now track 

single RBCs in 3D at thousands of frames per second. 
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Figure 66: Dynamic imaging of red blood cells flowing in a zebrafish larvae in vivo 

Furthermore, Figure 67 demonstrates calcium signaling imaging in LIFT microscope where a 

single cell expresses GCaMP. Calcium release from the sarcoplasmic reticulum occurs toward the 

myoplasm along the length of the cell. This figure shows how two signals propagate in opposite 

directions and later merge into a single signal. 



 99 

 

Figure 67:  LIFT imaging of calcium waves propagating in a cultured cardiomyocyte expressing GCaMP. Scalebar: 
40um 

5.16 Discussion and future work 

LIFT is a general optical technique that can span many applications. The basic principle is to 

compress three-dimensional information to a one-dimensional detector in order to highly increase 

data throughput. LIFT can extract 3D information from the same principle as conventional light 

field imaging: dividing the aperture into multiple sub apertures. Since each sub aperture has a 

different perspective of the object, we can see through occlusions assuming that the object is 

sparse. Then, the scene can be further compressed into a line sensor if we judiciously use 

cylindrical lenses and rotate them along certain orientations. This is a key step in LIFT: 

reformulating imaging as a CT problem . At the sensor plane, we detect projections from the object 

and each projection has a unique perspective of the object. We can later reconstruct the scene using 
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classic CT reconstruction techniques for 2D and light field shear and reconstruct algorithm for 3D. 

LIFT has the same refocusing and extended depth-of-field capabilities as with conventional light 

field imaging.  

Since there is only a fairly limited number of lenses that we can fit within the objective’s back 

aperture, LIFT is further considered as a sparse CT problem: a few number of projections are only 

able to image simpler objects. If we want to improve the system’s imaging capabilities we can 

either reduce the size of each projection which reduces the NA of each lenslet or use more 

advanced reconstruction techniques such as iterative and deep learning methods which can 

effectively reduce imaging streaking artifacts. Moreover, I have demonstrated LIFT imaging in 

microscopy applications. LIFT enables high-speed 3D imaging of many biological events. 

Particularly, in this dissertation we have visited neuronal, microfluidic, and cardiovascular 

imaging. 

Regarding future work, LIFT’s microscope can be expanded to any applications that requires high 

speed 3D imaging. In our lab will focus on capturing neuronal action potentials in brain mouse in 

vivo at kilohertz rates, microfluidics for flow cytometry application collaborations, and 

cardiovascular voltage wave imaging. 
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Appendix A 

Acute brain slice protocol 

1. Mice. Since our goal is to image GCaMP activity in mouse brain slice we can select any 

transgenic mice expressing GCaMP or perform viral injection. In this case we opted for 

viral injection at prefrontal cortex due to familiarity with the protocol. 

2. GCaMP injection. 

3. Obtaining acute brain slices. 

3.1 Materials: 

- Nest beaker: BSK4 Brain Slice Keeper. 

- Instant superglue. 

- Large scissors. 

- Straight fine scissors (Fisher Scientific, 12000155). 

- Dissecting fine-pointed forceps (Fisher Scientific, 08875). 

- Scalpel (Fisher Scientific, 08925). 

- Curved spatula (Electron Microscopy Sciences, 7832612). 

- Industrial general purpose razor blade (Surgical Design, 270B). 

- Dropper bulb (Fisher Scientific, 14060-11). 

- Carbogen tank (95% CO2, 5% O2). 

- Modified Pasteur pipette dropper. 

3.2 Reagents: 

- Sodium chloride (Fisher Scientific, 7647-14-5). 

- Glucose (Sigma Aldrich, G7201). 
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- Sodium bicarbonate (Fisher Scientific, 144-55-8). 

- Sodium phosphate monobasic anhydrous (Sigma Aldrich, 7558-80-7). 

- Potassium chloride (Fisher Chemical, 7447-40-7). 

- D-glucose (Fisher Chemical, 50-99-7). 

- Magnesium chloride (Sigma Aldrich, 7786-30-3). 

- Calcium chloride (Sigma Aldrich, 10043-52-4). 

- NMDA (Sigma Aldrich, 6384-92-5). 

- Isoflurane chamber. 

- Vibratome. 

- Ice-cold cutting artificial cerebrospinal fluid (ACSF) solution, see Recipes subsection. 

- Recovery ACSF solution, see Recipes subsection. 

- High KCl ACSF solution, see Recipes subsection. 

- NMDA ACSF solution, see Recipes subsection. 

3.3 Recipes: 

- Cutting ACSF (in mM): 222 sucrose, 11 D-Glucose, 1 sodium phosphate, 3 sodium 

chloride, 7 magnesium chloride, 0.5 calcium chloride. 

- Recovery ACSF (in mM): 124 sodium chloride, 2.5 potassium chloride, 26 sodium 

bicarbonate, 1.25 sodium phosphate, 10 D-Glucose, 4 sucrose, 2.5 calcium chloride, 2 

magnesium chloride. 

- High Kcl ACSF (in mM): 124 sodium chloride, 10 potassium chloride, 26 sodium 

bicarbonate, 1.25 sodium phosphate, 10 D-Glucose, 4 sucrose, 2.5 calcium chloride, 2 

magnesium chloride. 
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- NMDA ACSF (in mM): 0.2 NMDA, 124 sodium chloride, 2.5 potassium chloride, 26 

sodium bicarbonate, 1.25 sodium phosphate, 10 D-Glucose, 4 sucrose, 2.5 calcium 

chloride, 2 magnesium chloride. 

4. Procedure 

1. Prepare ACSF solutions preferably on the imaging experiment day. 

2. Saturate all solution using carbogen for ~20 mins. 

3. Place cutting ACSF in the freezer until it reaches ~4 degrees Celsius. 

4. Prepare cutting tools and vibratome. 

5. Place mouse in isoflurane chamber until deeply anesthetized. 

6. Decapitate mouse using large scissors. 

7. Quickly extract the brain while dipping in ice cold cutting solution every ~10-20s. 

8. Isolate the brain’s region of interest using razor blade. 

9. Place brain section in the vibratome and attach it using a small glue amount. 

10. Cover the whole cutting chamber with cutting ACSF. 

11. Cut slices to desired thickness (~300um). 

12. Using modified Pasteur pipette transfer the slices into recovery chamber (BSK4) filled 

with recovery ACSF while keeping carbogen bubbling. 

13. Let the slices recovery from mechanical slicing shock for 30 mins. 

14. Put the slices in the imaging chamber with a continuous and laminar flow of recovery 

ACSF solution. 

15. Change the input solution to high KCl ACSF or NMDA ACSF to activate the GCaMP 
signals. 
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