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THE REVIEW OF SCIENTIFIC I:-./STRUMENTS VOLUME 39. NUMBER 2 FEBRUARY 1968 

Asymptotic Theory of Beam Break-Up in Linear Accelerators* 

W. K. H. PA~OFSKY AND M. BANDERt 

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 

(Received 5 October 1967) 

The phenomenon of radial beam break-up observed in terms of long, multi-section electron linear accelerators has 
been analyzed using a multi-cavity model. In this model the source of regeneration due to backward wave ampli­
fication is ignored. The dominant phenomenon involves build-up of radial modes in each cavity as coupled by the 
electron beam. The resulting differential equations are integrated by the method of steepest descent and by a 
numerical iteration method. Scaling laws in terms of the pulse length, beam intensity, energy gradient, and length 
of the structure are derived. 

I. GENERAL DESCRIPTION OF 
OBSERVED PHENOMENA 

THE observed beam current of the SLAC 960-section 
linac appears to obey the results of independent 

particle dynamics at low intensities. However, as was first 
observed on April 24, 1966, the pulse length of the trans­
mitted beam appears to shorten, provided the beam 
current exceeds a threshold value at a given distance along 
the accelerator; the greater the distance, the lower the 
threshold. This general behavior is illustrated in Fig. 1. 
Further tests clearly indicated that the phenomenon re­
sponsible is the sudden onset of a radial progressive in­
stability conventionally called beam break-up (BBU). 

Observation of radial instability in high current linear 
accelerators is not new,1-6 and the phenomenon has been 
conclusively associated with the excitation of transverse 
deflecting modes. However, one should clearly recognize 
that we are dealing with two quite distinct mechanisms by 
which such modes can lead to an amplifying action. The 
first mechanism discussed in the above references results 
from the negative group velocity of the HEM mode of 
the conventional disk-loaded structure. This negative 
group velocity will feed transverse energy from the end of 
a given accelerating section to the front, thus leading to the 
regenerative action involved in the "backward-wave 
oscillator." This phenomenon of regeneration within a 
given section characteristically occurs at currents of several 
hundred milliamperes at pulse lengths of several micro­
seconds. The second mechanism which is dominant in a 
multisection relatively low current accelerator (such as 
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Field," Tech. Note No. SLAC-TN-66-17, Stanford Linear Accelera­
tor Center, Stanford Univ., Stanford, Calif. (1%6). 
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SLAC or the Kharkov 2-GeV accelerator7) involves ampli­
fication from section to section, coupled only by the elec­
tron beam without backward propagation of electro­
magnetic energy. 

In this paper we give the theory of the second mecha­
nism only, which is the dominant cause of the BBU phe­
nomena occurring at SLAC. As is seen, this mechanism i& 
very general, being quite independent of the detailed struc­
ture of the accelerating sections. 

II. THE MULTI CAVITY MODEL 

A. The Model 

We represent each section of the accelerator by a single 
cavity; the cavity geometry constitutes a free parameter 
which can be chosen to fit the experimental behavior. 

We assume: 

(a) Only one resonant mode at a frequency Wo and loss 
factor Q is of significance. 

(b) The cavity has axial symmetry and the axial electric 
field vanishes along the axis of symmetry. 

(c) The rate of build-up of oscillation giving rise to the 
radial modulation of the beam is small compared to woo 

Consider a particle of charge e to cross at a time t the 
nth of N cavities at a distance x from the z axis, taken to 
be an axis of symmetry. Let L be the distance between 
cavities, and let the particle velocity be V~C= 1 (see Fig. 2). 

B. Equation of Motion 

Let the electric field E in the nth cavity be derivable 
from a vector potential A, and let each cavity be excited 

I I 

~ : 

r. 
O.5/Lsec/DIVISION _ 

FIG. 1. Current pulse shapes ob­
served at the end of the accelerator 
shown for 3 peak current ampli­
tudes. Note the pulse shortening 
effect of beam break-up. 

7 G. V. Voskresenskii, V. 1. Koroza, and Yu. N. Serebryakov, 
Uskoriteli (Accelerators) 8, 135 (1966), and V. A. Vishnyakov, I. A. 
Grishaev, A. I. Zykov, and L. A. Makhnenko, "A Question Concern­
ing the Rise ot the Limit of Current in a Multisection Linear Ac­
celerator," Pub!. No. 309/VE-072, Acad. of Sciences, Ukrain. SSR 
Phys. and Eng. Inst. 
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FIG. 2. The single cavity model. The figure shows the notation used 
describing the geometry of the nth cavity relative to the preceding 
and following unit. Each cavity represents resonant excitation of a 
particular transverse mode of each of the sections of the accelerator. 

near a single resonant frequency WOo We obtain from the de­
flection theorems for the change in transverse momentum 
px in the nth cavity 

f 

aAz 
!:J.px=e -dz. 

ax 
(1) 

This transverse momentum !:J.px results in a difference in 
displacement of (!:J.p"j mo'Y)L between the (n+ l)th and 
nth cavity where mo'Y is the particle energy. We can thus 
write a difference equation which can be approximated as 
a transverse differential equation of motion as follows: 

~('Y ax) = eL f aA zdz . 
an dn mo ax 

(2) 

C. Excitation of Cavities 

Equation (2) gives the radial equation of motion as 
governed by the transverse gradient of the longitudinal 
component of the vector potential and hence the electric 
field. No special assumptions as to mode structure are as­
sumed. If the particle passes at a distance x (assumed 
constant in each cavity) from the symmetry axis, then, in 
general, work is done against the longitudinal field. 

Each cavity excited at a frequency w near Wo loses energy 
U to the current j at the rate jJE·dz and loses energy to 
wall losses at the rate wU /Q. The rate of build-up is there­
fore given by (averaged over many cycles as designated by 
the -- symbol) 

aa~ =-j f E·dz-w;. (3) 

If the field E=O on the axis and varies linearly from the 
axis, JE·dz can be approximated by 

(4) 

where x is the transverse coordinate at which the beam 
carrying the current j passes from the axis. The cavity 
excitation is thus proportional to x; on the other hand the 
cavity, once excited, will affect the motion in x according 
to Eq. (2). As a result the beam will receive a transverse 

8 W. K. H. Panofsky and W. A. Wentzel, Rev. Sci. Instr. 27, 967 
(1956). 

structure so that x will be modulated at a frequency w near 
woo 

Note that the field integrals appearing in Eq. (2) and 
in Eq. (4) are simply related if we can assume that oscilla­
tions take place near w=wo and that the rates of build-up 
or damping are slow relative to woo We adopt the conven­
tion that all field amplitudes vary as e+iwt and that we con­
sider the transverse displacement to vary as e+iwt also. The 
quantities x, E, A thus become complex amplitudes carry­
ing both the phase and the (slowly varying) amplitude 
information. 

Using this convention we can write the field integral in 
Eq. (4), using Ez= -aAz/at, 

f 
aEz faA. 

I(t)= -dze'V-iw -dz, 
ax ax 

(5) 

giving the equations of motion and the energy build-up 
equations 

(a/dn)['Y(ax/dn)]= (ieL/mQW)I, (6) 

(au/at)+(wu/Q)=-xlj. (7) 

In general U and I are related quadratically through a 
(generally complex) impedance. In general we can write 

U=tRe{KII*} (8) 
and 

xl =tRe{xI*}, (9) 

where * denotes the complex conjugate and Re the real 
part. Hence Eq. (7) becomes, 

(aI/at) + (w/2Q)I = (- j/2K)x. (10) 

Combining Eqs. (6) and (10) we obtain: 

[( 
a w) a ( a) ijeL ] (11) 
at+2Q an 'Yan +2KmoW x=O 

as the basic differential equation governing the build-up 
of the instability. 

The impedance constant K can be related qualitatively 
to the dimensions of the cavity. Let 1 be the length of the 
cavity which can be interpreted as an effective "inter­
action length" in the actual case. We have dimensionally 

where a is a radial dimension of the cavity. More quanti­
tatively, for a simple cylindrical cavity of radius a= 3.83/ K 

where the symbols have their usual meaning. The integral 
in Eq. (12) then gives 

U=a4 !I!2/3621. (14) 
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FIG. 3. Field configuration in a typical transverse mode. 

The constant Kin Eqs. (8)-(11) is thus 

K=(a4/1)/181. (15) 

Let us measure beam intensity in terms of the quantity 
J=number of particles/sec (or number of particles/unit 
length, since we take V"'='C= 1). Hence we can write Eq. (11) 

as 

(16) 

where 
(3=w/2Q 

and 
(17) 

is a dimensionless constant expressed in terms of the 
classical electron radius ro=e2/mo=2.8X1O-13 cm. 

D. Physical Discussion 

The build-up of oscillation is governed by the integrals 
of Eq. (16); blow-up will be dominated by that frequency 
w which will maximize the build-up rate. 

Let us understand some of the qualitative features of 
these equations. 

The field in the deflecting mode has the qualitative 
configuration shown in Fig. 3. The above analysis shows 
that the details of the field are of minimum significance, 
since the same integral lover the fields governs both the 
transverse momentum imparted to the particle as well as 
the coupling of the particle in "driving" the field build-up. 
Equation (6) shows that the transverse momentum Apx 
is in phase quadrature (leading) with the field integral I. 

According to Eq. (10) a linear combination of the field 
integral I and its rate of build-up is 1800 out of phase with 
the driving displacement x. On the other hand x and Apx 

FIG. 4. Phase relationships 
between transverse displace­
ment x, transverse momentum 
gain Ll.px, and the field inte­
gral I. 

must have a common in-phase component if the oscilla­
tions are to grow. Therefore for maximum build-up the 
phase of x will be somewhere between the phase of Apx 
and -I, as shown in Fig. 4. 

E. Solution by Laplace Transform Using the 
Method of Steepest Descent 

In this section we study the solution of the Eq. (16) 
where l' is a given function of n. 

Let us try the Laplace transform solution, using an ap­
propriate contour c, 

x(n,t) = e- f3J f(n,p.)el'tdp. (18) 

in Eq. (16). The function j(n,p.) satisfies 

p.('Y j')'+iCJ j=O (19) 

where' denotes differentiation with respect to n. We can 
integrate this equation by assuming adiabatic variation of 
l' with n (WKB approximation). The result is 

f(n,p.)"',,(-! exp{±i(iCJ)lp.-lg} (20) 
where 

g(n) = fn ,,(-!dn', 
no 

(21) 

since the general WKB solution of the equation 

(Af')'+Bf=O 
is 

l"'(1/-v AB) ex{ ±ifn .y B/Adn] (22) 

The i term in the exponent of Eq. (20) is carried from 
Eq. (16) and governs the phase of the space harmonic in 
x at the frequency w relative to the phase of the electric 
field in each cavity, as discussed previously. Hence the 
general solution is 

where the weighting function w(p.) depends on the starting 
conditions. We chose the root giving a positive real part 
in the exponent. 

Evaluation of the function w(p.) in terms of specific 
starting condition, such as a unit disturbance in x occur­
ring at n= no at a fixed time, is quite straightforward, but 
evaluation of the inverse Laplace integral, Eq. (23), in 
general is not possible in closed analytical form. 

Among such starting sources are shot noise in beam, 
shock excitation through misalignments, thermal noise in 
early sections, noise or spurious signals from klystron power 
sources, or electrical discharges in high microwave fields. 
Present experimental evidence is not conclusive as to which 
of these initial driving terms are important. However, the 
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question of largest practical interest is the dependence of 
x on the various physical parameters (current, length of 
current pulse, number of cavities) once a "blow-up" of x, 
sufficiently large to lead to beam loss, has occurred. Such 
loss requires a large (107 to 109) amplification. For this 
purpose an asymptotic solution is adequate which can be 
generated by the method of steepest descent. 

The "saddle point" of the exponent in Eq. (23) is at one 
of the roots J.I.= E of the equation 

(d/dJ.l.){± (Cf)lgem".ijJ.-I+jJ.t} =0, (24) 

which occur at 
(25) 

leading to a value 8(E) of the exponent of Eq. (23) of 

8(E}= 2!tt(Cf)tgl[!eOHn )"'i], (26) 

where n is any integer. 
We chose that value of n for which E has the greatest 

real part, i.e., for which blow-up occurs at the maximum 
rate. This gives n= 2 or 

8(E) = 3 (21/4) (v3-i) (Cft)tgl= (1.64-0.94i) (Cft)tgl. (27) 

The appropriate contour passes through the "saddle­
point" jJ.= E along a direction of "steepest descent," i.e., 
along a direction to make 8(jJ.) a greatest maximum. If we 
expand 8(jJ.) about jJ.= E, we can put 

8(jJ.)=8(E)+HjJ.-E)28"(E). (28) 

Differentiation of Eq. (26) gives 

8" (E) = (3/2 1/3) (Cf)-it5/3g-lei"./6. (29) 

Let the argument of the contour c of steepest descent when 
passing through jJ.= E be 1/;, i.e., let jJ.- E=peiY, where p and 
1/; are real. The argument of 

(jJ.-E)28"(E)=p2 18"(E) I ei (2H"./6) (30) 

is'll" along the path of steepest descent, or ",=5'11"/12. The 
appropriate contour is shown in Fig. 5. The function of 
(n,jJ.) thus falls off steepest in both directions along c away 
from the real axis. This leads to a useful approximation if 
the exponent is large, i.e., if "blow-up" has largely 
progressed. 

The asymptotic solution is then given by evaluation of 
the integral [Eq. (23)], using Eqs. (26), (28), and (29); 
and obtain 

x(n,t) = xo(n,t) exp[3(2t/4) (v3-i) (Cft)igl-{1t], (31) 

where xo(n,t) is a relatively slowly varying function given 
by 

xo(n,t) "",j1/6t-5/ 6gil'-l. 

The growth is thus controlled by the exponent 

1.64Ci (tJ g2)! 

(32) 

(33) 

in the highly transient break-up observed at SLAC, where 

}J-- PLANE 

STEEPEST 
DESCENT 

STEEPEST 
DESCENT 

FIG. 5. Location of the saddle point in the complex plane 
and the path of steepest descent. 

the term {1t is small compared to the term given by 
Eq. (33). 

For a constant "blow-up factor" we thus obtain the basic 
scaling law: 

(It)g2= const. (34) 

Hence the total charge (It) per pulse which can be accel­
erated to a specified point along the accelerator under a 
given acceleration program I'(n) within a limiting blow-up 
factor is constant, i.e., independent of pulse length. 

Let us evaluate the integral g if we accelerate from no to 
nl at a uniform energy gain 1" and coast from there to 
section n2. We obtain 

g= fn2 

I'-!dn' = (2/1"1;) (nIt-nO!) 

nO +[1/(nI/")t](n2- n I). (35) 

For constant acceleration (no coasting) and nI»nO we 
obtain the simple scaling law, 

(36) 

while for "pure" coasting from ni to n2 at an energy I' c we 
obtain 

(37) 

Numerical comparison of these relations with experience 
is good and has been discussed elsewhere.9 Suffice it to say 
that reasonable agreement is obtained with an exponent 
of about 20 leading to beam loss through BBD. 

The steepest descent calculation leads to valid results 
only if the exponent is large. The error can be estimated by 
estimating the variation of xo(n,t) as given by Eq. (32) 
over the range of interest. For numerical situations of 

9 O. H. Altenmueller et 01., "Beam Break-Up Experiments at 
SLAC," Stanford Linear Accelerator Center, Stanford Univ., Stan­
ford, Calif., Proc. 1966 Linear Accelerator Con£. LA-3609 (3-7 Oct .. 
1966). 
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FIG. 6. The amplitudes of the functions A(S) and B (S) 
as defined in Eq. (49). 

interest this might add a correction of no more than 20% 
to the exponent. 

F. Solution by Iteration 

The steepest descent solution is purely asymptotic and 
thus cannot be linked to the starting condition. Let us now 
examine the solution of the basic differential Eq. (16) 
under the boundary conditions corresponding to a «5-func­
tion impulse at t= T, i.e., 

x(n=no, t)=«5(t-T), 

(ax/an) (n=no, t)=O. 
(38) 

As mentioned above, the exponential factor exp( -(3t) is 
always factorable; we can thus write a first integral by 
putting 

y (n,t) = x (n,t) exp ((3t) , 

where y(n,t) satisfies 

a (ay ) It - "I-(n,t) +iCJ y(n,t')dt'=O, 
an an -00 

and where the boundary conditions are 

y(n=no, t)=o(t-T)ef:JT 

(ay/an)(n=no, 1)=0. 

We again make the WKB approximation. Let 

1 
y(n,t)=--F[g(n),t]. 

["I (n)]1 

(39) 

(40) 

(41) 

(42) 

If we neglect terms of the order of (d"l/ dn)2 and (cf2"1/ dn2) 
(which is exact in the absence of acceleration), we find that 

F (z,t) satisfies 

(a2/az2)F(z,t) = -iCJ {too F(z,t')dt' 

F(O,t) = "Iolef:JTo(t- T) (43) 

(aF/az) (z=O, t)= ("(0'/4"I01)«5(t- T)ef:JT 

"10= "I (no) ; "10'= (a"l/an) (n=no). 

Incorporating these boundary conditions we obtain an 
integral equation for F(z,t), 

F(z,t) = _iCJl
t 

dt' {Z dz' (Z' dz"F(z",t') 
-00 Jo Jo 

+ ("Io'/4"101)ze f:JT«5(t- T)+"Ioi«5(t- T)ef:JT. (44) 

The solution Eq. (7) may be found by iteration, 

( 
"IO'Z) F(z t)=e{jt«5(t-T) "101+-

, 4')'ot 

00 (t- T)j-1 
+fJ(t-T)ef:JT L (_iCJ)i_--

i~l (j-l)! 

[
"IOIZ2i "10' Z2i+1 ] 

X -+- (45) 
(2j)! 4"Iot (2j+l)! ' 

where O(t- T) is a unit step function. 
Using the definition for 

g(n)=jn "I-1dn' 
no 

given by Eq. (21), we may trace back to obtain a solution 
for x(n,t), 

e-{j(t-T) {( "10' ) 
x(n,t) =--, "Iol+-,g(n) «5(t- T) 

["I(n)} 4"10' 

00 (t- T)i-l 
+fJ(t-T) L (-iCJ)j---

i~l (j-l)! 

x["Iot[g(n)]2i+ "10' [g(n)]2i+l]}. (46) 

(2j)J 4"Iot (2j+l)J 

For the coasting (nonaccelerating) case this simplifies to 

{ 
CJ 

x(n,t) = e-f:J(t-T) «5(t- T)+fJ(t- T)-(n-no)2 
"Ie 

X~l (-i){[ (t-T)(n-no)2~~Jj-1/[ (2j )!(j-1)r])}. 

(47) 

Due to the appearance of (2 j) ! (j -1) ! in the denomina­
tor, this series converges very rapidly. For Z2(t- T)",,3000, 
fifteen terms would be sufficient. 

In Figs. 6 and 7, the numerical evaluation of the sums 
is presented. Let g(n), "10, and "10' be as above. Note that 
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FIG. 7. The phases 1/;(s) and c/>(s) as 
defined in Eq. (49). 
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(48) 

is the same as that appearing in the asymptotic calculation 
leading to Eq. (31). Re-expressing Eq. (46) in terms of 
functions of s, we obtain 

x(n,t) 

[ 
'Yo'g(n)]} X 'YolA (s)e i <!> (8)+--1-B (s)e if (8) • 

4'Yo' 
(49) 

The amplitude functions A (s) and B(s) are shown in 
Fig. 6. Asymptotically the functions behave as 

exp(3!X 2!/4)s= exp(1.64s), 

in agreement with the steepest descent solution Eqs. (27) 
and (31). Figure 7 gives the phase functions ¢(s) and 1/1 (s). 
The first term in Eq. (49) is generally negligible since it 
represents the original impulse without build-up. 

These figures (Figs. 6 and 7) can be used to construct 
by superposition any build-up pattern resulting from an 
initial disturbance x(t) at n=no. 

G. Steady State Solution 

If the pulse length is sufficiently long, equilibrium with 
the wall losses will be reached. The basic differential equa­
tion (16) then reduces to 

[ f1a:('Ya:)+ iCJ }=O. (50) 

s 

This has the WKB solution [see Eq. (21)J 

x(n)"'-' «(3/'YCJ) 1 exp{ ±ifn (iCJ /(3'Y)ldn'}' (51) 

Ignoring a phase factor and multiplicative constants, this 
gives a positive exponential solution, valid at a time 
t»Q/w, 

x(n)"'[y(n)J-I exp[(QCJ/w)ig(n)J. (52) 

This case is not of relevance to the SLAC accelerator since 
Q/w",l }.Isec. However, for a potential low temperature 
accelerator permitting cw operation, the steady state solu­
tion is of interest. 

III. THE EFFECT OF TRANSVERSE FOCUSING 

In the previous sections we analyzed the general be­
havior of the BBU phenomenon in the absence of trans­
verse forces other than those associated with the trans­
verse modes associated with the BBU itself. The actual 
accelerator contains a series of strong focusing lenses to 
confine the beam; these will affect the BBU "gain" of 
each section and their strength and distribution can be 
used to increase the BBU current threshold by a significant 
amount. 

The theory of the preceding section is completely linear; 
it is therefore easy to introduce the effect of linear focusing 
devices such as quadrupole or magnetic solenoids; on the 
other hand it is difficult to introduce either the effect of 
lenses of higher than quadrupole order, or the effect of 
bunching into the theory; we note however that to the 
extent that the bunch structure is incoherent with the fre-
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quency of the BEU, longitudinal bunching will not affect the phenomenon. On the basis of these remarks we can introduce the effect of linear transverse focusing by introducing a term 
-yk2x 

into the basic differential Eq. (19), giving 
µ[(-yf')'+-yk2f]+iCJ f =0. 

(53) 
(54) 

Here 21r/k(n) is the "betatron wavelength" produced by the external focusing system produced by quadrupoles. The Laplace transform solution [Eq. (22)] then becomes 
J(n,µ)=-y-l ex{ ±il: (iCJ µ-y+k2)½dn] (55) 

The evaluation of this integral by the method of steepest descent is not possible analytically. \Ve can however obtain an approximate solution for "weak focusing" correspond­ing to (56) 
where e is given by Eq. (25). Carrying only linear terms in 
k2

, the exponent in Eq. (55) becomes 
/J(µ) = µt±[il(CJ / µ)lg+ z:l (µ/CJ)!KJ, (57) 

where g(n) is given by Eq. (21) as before, and K is the integral 1 n K(n)=-f k2-yldn'. 2 no 

(58) 

The saddle point occurs to order linear in K at the point 
µ=e given by 
f= (CJ)½(g/2t)ie-"il 6[l-(2½/3)Kg-½(CJt)-le-<llriJ. (59) 
This leads to a value of the exponent /J(e) given by 

/J( e) = f X 2½(g2CJ/)½e-("i/B) -2-tglK (C Jt)-½erri/H. (60) 
The leading term agrees with Eq. (27) while the second 
term is a damping factor proportional to the focusing integral K. The real part of Eq. (60) can be written in the 
simple form 

(61) 
where F= 1.64(g2CJ/)l is the exponent in the absence of external focusing. The current which will lead to a given value of BBU amplification will thus be increased by a factor f given by 

f~1+(3X0.56iF2)(Jn:-y-½dn)(l� -y1k2dn} (62) 
This formula gives reasonable agreement with experiment for a value of F � 20. 
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